WorldWideScience

Sample records for modeling mlrs operations

  1. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    Science.gov (United States)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  2. Simulacija rafala višecevnog bacača raketa / MLRS salvo simulation

    Directory of Open Access Journals (Sweden)

    Marko S. Holclajtner

    2010-04-01

    Full Text Available U radu je predstavljena procedura za efikasno simuliranje rafala višecevnog bacača raketa i uticaja rakete na ostale delove sistema. Analizirano je ponašanje rakete u odnosu na referentnu idealnu trajektoriju, koju generiše idealna raketa. Kvalitet rafalne vatre je rasturanje padnih tačaka na cilju što je mera preciznosti i tačnosti. U radu je razmatran samo uticaj preciznosti, tj. rasturanja raketa, pri čemu se smatra da je greška tačnosti zanemarljiva. Na taj način identifikuju se sopstveni (municijski uticaji na fenomen rasturanja trajektorija. Rasturanje na cilju upoređeno je sa rasturanjem na kraju aktivne faze u takozvanim estimatorskim koordinatama (detektorskoj ravni i biće utvrđena njihova korelacija. / This paper presents a procedure for an efficient simulation of MLRS barrage fire as well as of the effects of rocket parameters. The rocket behavior will be analyzed with reference to an ideal trajectory generated by an ideal rocket. The quality of MLRS fire is expressed through dispersion of impact points in the target area thus representing precision and accuracy. This work assumes absolutely correct accuracy and concentrates primarily on the effects of precision i. e. on the dispersion of rockets. Other types of effects on rocket dispersion, such as those of atmosphere, launching, etc. are neglected. The ammunition effects on the trajectory dispersion will be thus identified. The dispersion in the target area will be correlated with the dispersion of trajectory points at the end of the active (rocket motor burn out phase.

  3. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  4. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  5. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.

    Science.gov (United States)

    Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena

    2013-01-01

    The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Acquisition of Contemporary Tactical Munitions. Volume 1. Summary Report

    Science.gov (United States)

    1990-03-01

    not capable of satisfying the operational and technical requirements of the missile and had to be replaced with a transmitter based on traveling -wave...0.56708 AGM-114A/B Hellfire 0.45419 BGM-71A TOW I 0.27860 BGM-71D TOW U 0.84932 MLRS 0.57514 M-712 Copperhead CLGP 0.45419 5" Deadeye SALP 0.52415 IV-22

  7. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Directory of Open Access Journals (Sweden)

    Júlia Niehues da Cruz

    2017-04-01

    Full Text Available ABSTRACT Membrane/lipid rafts (MLRs are plasmalemmal microdomains that are essential for neuronal signaling and synaptic development/stabilization. Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (statins can disable the N-methyl-D-aspartate (NMDA receptor through disruption of MLRs and, in turn, decrease NMDA-mediated anxiety. This hypothesis will contribute to understanding the critical roles of simvastatin in treating anxiety via the NMDA receptor.

  8. Upregulation of CD200 is associated with Foxp3+ regulatory T cell expansion and disease progression in acute myeloid leukemia.

    Science.gov (United States)

    Memarian, Ali; Nourizadeh, Maryam; Masoumi, Farimah; Tabrizi, Mina; Emami, Amir Hossein; Alimoghaddam, Kamran; Hadjati, Jamshid; Mirahmadian, Mahroo; Jeddi-Tehrani, Mahmood

    2013-02-01

    Immunosuppression in acute myeloid leukemia (AML) is an important mechanism of tumor escape. CD200, as an immunosuppressive molecule, is overexpressed in some hematological malignancies and it has also been shown to be an independent prognostic factor in AML. In the current study, simultaneous CD200 expression and Foxp3(+) regulatory T cell levels were investigated in Iranian patients with AML by flow cytometry. We also assessed the effect of CD200-CD200R blockade on Th1 and T-reg cytokine production and T cell proliferation in autologous AML- and monocyte-DC mixed lymphocyte reactions (MLRs). ELISA assay was performed to detect IL-2, IL-12, IFN-γ, IL-10, and TGF-β production in MLR supernatants. Expression of Foxp3, IL-10, and TGF-β mRNAs in MLRs were detected by real-time PCR. Our results demonstrated significant overexpression of CD200 (P = 0.001) in association with higher frequencies of Foxp3(+) T cells in AML patients (r = 0.8, P T cell levels with lower Foxp3 intensity was also shown in CD200-CD200R-blocked MLRs. Expression of IL-10 mRNA declined significantly only in AML-DC MLRs where CD200-CD200R interaction was blocked and the same result was observed for TGF-β and Foxp3 mRNA in both AML- and monocyte-DC MLRs. These data present a significant role for CD200 in suppressing anti-tumor immune response through stimulation of regulatory mechanisms in AML patients and suggest that CD200 may have a prognostic value in this malignancy and its blockade may be used as a target for AML immunotherapy.

  9. Modelling arithmetic operations

    Energy Technology Data Exchange (ETDEWEB)

    Shabanov-kushnarenk, Yu P

    1981-01-01

    The possibility of modelling finite alphabetic operators using formal intelligence theory, is explored, with the setting up of models of a 3-digit adder and a multidigit subtractor, as examples. 2 references.

  10. Mental models of the operator

    International Nuclear Information System (INIS)

    Stary, I.

    2004-01-01

    A brief explanation is presented of the mental model concept, properties of mental models and fundamentals of mental models theory. Possible applications of such models in nuclear power plants are described in more detail. They include training of power plant operators, research into their behaviour and design of the operator-control process interface. The design of a mental model of an operator working in abnormal conditions due to power plant malfunction is outlined as an example taken from the literature. The model has been created based on analysis of experiments performed on a nuclear power plant simulator, run by a training center. (author)

  11. Academic Education Chain Operation Model

    OpenAIRE

    Ruskov, Petko; Ruskov, Andrey

    2007-01-01

    This paper presents an approach for modelling the educational processes as a value added chain. It is an attempt to use a business approach to interpret and compile existing business and educational processes towards reference models and suggest an Academic Education Chain Operation Model. The model can be used to develop an Academic Chain Operation Reference Model.

  12. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  13. Contralateral White Noise-Induced Enhancement in the Guinea PigÕs MLR: A Possible Link to Direc- tional Hearing

    OpenAIRE

    GÖKSOY, Cüneyt

    2000-01-01

    The evoked potential components in a time window of 10-50 ms following an acoustic stimulus are called middle latency responses (MLRs). It is known that an amplitude enlargement occurs in guinea pig MLRs to monaural clicks when continuous white noise is applied to the other ear. This study was undertaken to see whether this enlargement is due simply to an overall, generalised effect of contralateral white noise (WN), or whether it may have some connection to directional hearing. Re...

  14. Selective effects of alpha interferon on human T-lymphocyte subsets during mixed lymphocyte cultures

    DEFF Research Database (Denmark)

    Hokland, M; Hokland, P; Heron, I

    1983-01-01

    Mixed lymphocyte reaction (MLR) cultures of human lymphocyte subsets with or without the addition of physiological doses of human alpha interferon (IFN-alpha) were compared with respect to surface marker phenotypes and proliferative capacities of the responder cells. A selective depression on the T...... T4 cells and decreased numbers of T4 cells harvested from IFN MLRs (days 5-6 of culture). In contrast, it was shown that the T8 (cytotoxic/suppressor) subset in MLRs was either not affected or slightly stimulated by the addition of IFN. The depression of the T4 cells by IFN was accompanied...... by a decrease in the number of activated T cells expressing Ia antigens. On the other hand, IFN MLRs contained greater numbers of cells expressing the T10 differentiation antigen. In experiments with purified T-cell subsets the IFN effect was exerted directly on the T4 cells and not mediated by either T8...

  15. Computer-aided operations engineering with integrated models of systems and operations

    Science.gov (United States)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  16. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelated...... modes are required to cover the whole operational window of a processs plant including intermediary operating modes. Development of such an model ensemble for a plant would constitute a systematic way of defining the possible plant operating modes and thus provide a platform for also defining a set...... of candidate control structures. The present contribution focuses on development of a model ensemble for a plant with an illustartive example for a bioreactor. Starting from a functional model a process plant may be conceptually designed and qualitative operating models may be developed to cover the different...

  17. Operating cost model for local service airlines

    Science.gov (United States)

    Anderson, J. L.; Andrastek, D. A.

    1976-01-01

    Several mathematical models now exist which determine the operating economics for a United States trunk airline. These models are valuable in assessing the impact of new aircraft into an airline's fleet. The use of a trunk airline cost model for the local service airline does not result in representative operating costs. A new model is presented which is representative of the operating conditions and resultant costs for the local service airline. The calculated annual direct and indirect operating costs for two multiequipment airlines are compared with their actual operating experience.

  18. A proposal for operator team behavior model and operator's thinking mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Takano, Kenichi; Sasou, Kunihide

    1995-01-01

    Operating environment in huge systems like nuclear power plants or airplanes is changing rapidly with the advance of computer technology. It is necessary to elucidate thinking process of operators and decision-making process of an operator team in abnormal situations, in order to prevent human errors under such environment. The Central Research Institute of Electric Power Industry is promoting a research project to establish human error prevention countermeasures by modeling and simulating the thinking process of operators and decision-making process of an operator team. In the previous paper, application of multilevel flow modeling was proposed to a mental model which conducts future prediction and cause identification, and the characteristics were verified by experienced plant operators. In this paper, an operator team behavior model and a fundamental operator's thinking mechanism especially 'situation understanding' are proposed, and the proposals are evaluated by experiments using a full-scale simulator. The results reveal that some assumptions such as 'communication is done between a leader and a follower' are almost appropriate and that the situation understanding can be represented by 'probable candidates for cause, determination of a parameter which changes when an event occurs, determination of parameters which are influenced by the change of the previous parameter, determination of a principal parameter and future prediction of the principal parameter'. (author)

  19. THERMAL AND CHEMICAL EVOLUTIONS OF GALAXY CLUSTERS OBSERVED WITH SUZAKU

    Directory of Open Access Journals (Sweden)

    Kosuke Sato

    2013-12-01

    Full Text Available We studied the properties of the intracluster medium (ICM of galaxy clusters to outer regions observed with Suzaku. The observed temperature dropped by about ~30% from the central region to the virial radius of the clusters. The derived entropy profile agreed with the expectation from simulations within r500, while the entropy profile in r > r500 indicated a flatter slope than the simulations. This would suggest that the cluster outskirts were out of hydrostatic equilibrium. As for the metallicity, we studied the metal abundances from O to Fe up to ~0.5 times the virial radius of galaxy groups and clusters. Comparing the results with supernova nucleosynthesis models, the number ratio of type II to Ia supernovae is estimated to be ~3.5. We also calculated not only Fe, but also O and Mg mass-to-light ratios (MLRs with K-band luminosity. The MLRs in the clusters had a similar feature.

  20. Visualization study of operators' plant knowledge model

    International Nuclear Information System (INIS)

    Kanno, Tarou; Furuta, Kazuo; Yoshikawa, Shinji

    1999-03-01

    Nuclear plants are typically very complicated systems and are required extremely high level safety on the operations. Since it is never possible to include all the possible anomaly scenarios in education/training curriculum, plant knowledge formation is desired for operators to enable thein to act against unexpected anomalies based on knowledge base decision making. The authors have been conducted a study on operators' plant knowledge model for the purpose of supporting operators' effort in forming this kind of plant knowledge. In this report, an integrated plant knowledge model consisting of configuration space, causality space, goal space and status space is proposed. The authors examined appropriateness of this model and developed a prototype system to support knowledge formation by visualizing the operators' knowledge model and decision making process in knowledge-based actions with this model on a software system. Finally the feasibility of this prototype as a supportive method in operator education/training to enhance operators' ability in knowledge-based performance has been evaluated. (author)

  1. Glass operational file. Operational models and integration calculations

    International Nuclear Information System (INIS)

    Ribet, I.

    2004-01-01

    This document presents the operational choices of dominating phenomena, hypotheses, equations and numerical data of the parameters used in the two operational models elaborated for the calculation of the glass source terms with respect to the waste packages considered: existing packages (R7T7, AVM and CEA glasses) and future ones (UOX2, UOX3, UMo, others). The overall operational choices are justified and demonstrated and a critical analysis of the approach is systematically proposed. The use of the operational model (OPM) V 0 → V r , realistic, conservative and robust, is recommended for glasses with a high thermal and radioactive load, which represent the main part of the vitrified wastes. The OPM V 0 S, much more overestimating but faster to parameterize, can be used for the long-term behaviour forecasting of glasses with low thermal and radioactive load, considering today's lack of knowledge for the parameterization of a V 0 → V r type OPM. Efficiency estimations have been made for R7T7 glasses (OPM V 0 → V r ) and AVM glasses (OPM V 0 S), which correspond to more than 99.9% of the vitrified waste packages activity. The very contrasted results obtained, illustrate the importance of the choice of operational models: in conditions representative of a geologic disposal, the estimation of R7T7-type package lifetime exceeds several hundred thousands years. Even if the estimated lifetime of AVM packages is much shorter (because of the overestimating character of the OPM V 0 S), the release potential radiotoxicity is of the same order as the one of R7T7 packages. (J.S.)

  2. Modeling and simulation with operator scaling

    OpenAIRE

    Cohen, Serge; Meerschaert, Mark M.; Rosiński, Jan

    2010-01-01

    Self-similar processes are useful in modeling diverse phenomena that exhibit scaling properties. Operator scaling allows a different scale factor in each coordinate. This paper develops practical methods for modeling and simulating stochastic processes with operator scaling. A simulation method for operator stable Levy processes is developed, based on a series representation, along with a Gaussian approximation of the small jumps. Several examples are given to illustrate practical application...

  3. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Science.gov (United States)

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The Launch Systems Operations Cost Model

    Science.gov (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  5. Academic Education Chain Operation Model

    NARCIS (Netherlands)

    Ruskov, Petko; Ruskov, Andrey

    2007-01-01

    This paper presents an approach for modelling the educational processes as a value added chain. It is an attempt to use a business approach to interpret and compile existing business and educational processes towards reference models and suggest an Academic Education Chain Operation Model. The model

  6. Implementation of an operator model with error mechanisms for nuclear power plant control room operation

    International Nuclear Information System (INIS)

    Suh, Sang Moon; Cheon, Se Woo; Lee, Yong Hee; Lee, Jung Woon; Park, Young Taek

    1996-01-01

    SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation

  7. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  8. Operational characteristics of nuclear power plants - modelling of operational safety

    International Nuclear Information System (INIS)

    Studovic, M.

    1984-01-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  9. Analytical modeling of nuclear power station operator reliability

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Husseiny, A.A.

    1979-01-01

    The operator-plant interface is a critical component of power stations which requires the formulation of mathematical models to be applied in plant reliability analysis. The human model introduced here is based on cybernetic interactions and allows for use of available data from psychological experiments, hot and cold training and normal operation. The operator model is identified and integrated in the control and protection systems. The availability and reliability are given for different segments of the operator task and for specific periods of the operator life: namely, training, operation and vigilance or near retirement periods. The results can be easily and directly incorporated in system reliability analysis. (author)

  10. Modeling Control Situations in Power System Operations

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Singh, Sri Niwas

    2010-01-01

    for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system......Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...

  11. Fuzzy rule-based model for hydropower reservoirs operation

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  12. Business Intelligence Modeling in Launch Operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce

  13. Business intelligence modeling in launch operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined

  14. Reactor core modeling practice: Operational requirements, model characteristics, and model validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1997-01-01

    The physical models implemented in power plant simulators have greatly increased in performance and complexity in recent years. This process has been enabled by the ever increasing computing power available at affordable prices. This paper describes this process from several angles: First the operational requirements which are more critical from the point of view of model performance, both for normal and off-normal operating conditions; A second section discusses core model characteristics in the light of the solutions implemented by Thomson Training and Simulation (TT and S) in several full-scope simulators recently built and delivered for Dutch, German, and French nuclear power plants; finally we consider the model validation procedures, which are of course an integral part of model development, and which are becoming more and more severe as performance expectations increase. As a conclusion, it may be asserted that in the core modeling field, as in other areas, the general improvement in the quality of simulation codes has resulted in a fairly rapid convergence towards mainstream engineering-grade calculations. This is remarkable performance in view of the stringent real-time requirements which the simulation codes must satisfy as well as the extremely wide range of operating conditions that they are called upon to cover with good accuracy. (author)

  15. Modeling Operations Costs for Human Exploration Architectures

    Science.gov (United States)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  16. Modeling Optimal Scheduling for Pumping System to Minimize Operation Cost and Enhance Operation Reliability

    Directory of Open Access Journals (Sweden)

    Yin Luo

    2012-01-01

    Full Text Available Traditional pump scheduling models neglect the operation reliability which directly relates with the unscheduled maintenance cost and the wear cost during the operation. Just for this, based on the assumption that the vibration directly relates with the operation reliability and the degree of wear, it could express the operation reliability as the normalization of the vibration level. The characteristic of the vibration with the operation point was studied, it could be concluded that idealized flow versus vibration plot should be a distinct bathtub shape. There is a narrow sweet spot (80 to 100 percent BEP to obtain low vibration levels in this shape, and the vibration also follows similar law with the square of the rotation speed without resonance phenomena. Then, the operation reliability could be modeled as the function of the capacity and rotation speed of the pump and add this function to the traditional model to form the new. And contrast with the tradition method, the result shown that the new model could fix the result produced by the traditional, make the pump operate in low vibration, then the operation reliability could increase and the maintenance cost could decrease.

  17. Operational Plan Ontology Model for Interconnection and Interoperability

    Science.gov (United States)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  18. Development of operator thinking model and its application to nuclear reactor plant operation system

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Endou, Akira; Himeno, Yoshiaki

    1992-01-01

    At first, this paper presents the developing method of an operator thinking model and the outline of the developed model. In next, it describes the nuclear reactor plant operation system which has been developed based on this model. Finally, it has been confirmed that the method described in this paper is very effective in order to construct expert systems which replace the reactor operator's role with AI (artificial intelligence) systems. (author)

  19. Why operational risk modelling creates inverse incentives

    NARCIS (Netherlands)

    Doff, R.

    2015-01-01

    Operational risk modelling has become commonplace in large international banks and is gaining popularity in the insurance industry as well. This is partly due to financial regulation (Basel II, Solvency II). This article argues that operational risk modelling is fundamentally flawed, despite efforts

  20. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  1. An approach to modeling operator's cognitive behavior using artificial intelligence techniques in emergency operating event sequences

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Sur, Sang Moon; Lee, Yong Hee; Park, Young Taeck; Moon, Sang Joon

    1994-01-01

    Computer modeling of an operator's cognitive behavior is a promising approach for the purpose of human factors study and man-machine systems assessment. In this paper, the states of the art in modeling operator behavior and the current status in developing an operator's model (MINERVA - NPP) are presented. The model is constructed as a knowledge-based system of a blackboard framework and is simulated based on emergency operating procedures

  2. Modeling operators' emergency response time for chemical processing operations.

    Science.gov (United States)

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  3. Operations and Modeling Analysis

    Science.gov (United States)

    Ebeling, Charles

    2005-01-01

    The Reliability and Maintainability Analysis Tool (RMAT) provides NASA the capability to estimate reliability and maintainability (R&M) parameters and operational support requirements for proposed space vehicles based upon relationships established from both aircraft and Shuttle R&M data. RMAT has matured both in its underlying database and in its level of sophistication in extrapolating this historical data to satisfy proposed mission requirements, maintenance concepts and policies, and type of vehicle (i.e. ranging from aircraft like to shuttle like). However, a companion analyses tool, the Logistics Cost Model (LCM) has not reached the same level of maturity as RMAT due, in large part, to nonexistent or outdated cost estimating relationships and underlying cost databases, and it's almost exclusive dependence on Shuttle operations and logistics cost input parameters. As a result, the full capability of the RMAT/LCM suite of analysis tools to take a conceptual vehicle and derive its operations and support requirements along with the resulting operating and support costs has not been realized.

  4. Operator expansion in σ-model

    International Nuclear Information System (INIS)

    Terent'ev, M.V.

    1986-01-01

    The operator expansion is studied in two dimensional σ-model with O(N) symmetry group at large values of N for the Green function at x 2 → 0 (Here n(x) is the dynamical field of σ-model). As a preliminary step the renormalization scheme is formulated in framework of I/N expansion where the intermediate scale μ 2 is introdused and regions of large (p > μ) and small (p 2 )/N in composite operators (here f(μ 2 ) is the effective coupling constant at the point μ 2 ) and the corrections of order of m 2 x 2 f(μ 2 )/N in the coefficient functions (here m is the dynamical mass-scale factor of σ-model) decisively depend on the recipe of factorization of small and large momenta regions. Due to the analogy between σ-model and quantum chromodynamics (QCD) the obtained result indicates the theoretical limitations to the accuracy of sum rule method in QCD

  5. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  6. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  7. Comparing models of offensive cyber operations

    CSIR Research Space (South Africa)

    Grant, T

    2015-10-01

    Full Text Available would be needed by a Cyber Security Operations Centre in order to perform offensive cyber operations?". The analysis was performed, using as a springboard seven models of cyber-attack, and resulted in the development of what is described as a canonical...

  8. Operational risk quantification and modelling within Romanian insurance industry

    Directory of Open Access Journals (Sweden)

    Tudor Răzvan

    2017-07-01

    Full Text Available This paper aims at covering and describing the shortcomings of various models used to quantify and model the operational risk within insurance industry with a particular focus on Romanian specific regulation: Norm 6/2015 concerning the operational risk issued by IT systems. While most of the local insurers are focusing on implementing the standard model to compute the Operational Risk solvency capital required, the local regulator has issued a local norm that requires to identify and assess the IT based operational risks from an ISO 27001 perspective. The challenges raised by the correlations assumed in the Standard model are substantially increased by this new regulation that requires only the identification and quantification of the IT operational risks. The solvency capital requirement stipulated by the implementation of Solvency II doesn’t recommend a model or formula on how to integrate the newly identified risks in the Operational Risk capital requirements. In this context we are going to assess the academic and practitioner’s understanding in what concerns: The Frequency-Severity approach, Bayesian estimation techniques, Scenario Analysis and Risk Accounting based on risk units, and how they could support the modelling of operational risk that are IT based. Developing an internal model only for the operational risk capital requirement proved to be, so far, costly and not necessarily beneficial for the local insurers. As the IT component will play a key role in the future of the insurance industry, the result of this analysis will provide a specific approach in operational risk modelling that can be implemented in the context of Solvency II, in a particular situation when (internal or external operational risk databases are scarce or not available.

  9. An operator calculus for surface and volume modeling

    Science.gov (United States)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  10. Proposal for operator's mental model using the concept of multilevel flow modeling

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Takano, Kenichi; Sasou, Kunihide

    1995-01-01

    It is necessary to analyze an operator's thinking process and a operator team's intension forming process for preventing human errors in a highly advanced huge system like a nuclear power plant. Central Research Institute of Electric Power Industry is promoting a research project to establish human error prevention countermeasures by modeling the thinking and intension forming process. The important is the future prediction and the cause identification when abnormal situations occur in a nuclear power plant. The concept of Multilevel Flow Modeling (MFM) seems to be effective as an operator's mental model which performs the future prediction and the cause identification. MFM is a concept which qualitatively describes the plant functions by energy and mass flows and also describes the plant status by breaking down the targets in a hierarchical manner which a plant should achieve. In this paper, an operator's mental model using the concept of MFM was proposed and a nuclear power plant diagnosis support system using MFM was developed. The system evaluation test by personnel who have operational experience in nuclear power plants revealed that MFM was superior in the future prediction and the cause identification to a traditional nuclear power plant status display system which used mimics and trends. MFM proved to be useful as an operator's mental model by the test. (author)

  11. Multivariate operational risk: dependence modelling with Lévy copulas

    OpenAIRE

    Böcker, K. and Klüppelberg, C.

    2015-01-01

    Simultaneous modelling of operational risks occurring in different event type/business line cells poses the challenge for operational risk quantification. Invoking the new concept of L´evy copulas for dependence modelling yields simple approximations of high quality for multivariate operational VAR.

  12. Operator formulation of the droplet model

    International Nuclear Information System (INIS)

    Lee, B.W.

    1987-01-01

    We study in detail the implications of the operator formulation of the droplet model. The picture of high-energy scattering that emerges from this model attributed the interaction between two colliding particles at high energies to an instantaneous, multiple exchange between two extended charge distributions. Thus the study of charge correlation functions becomes the most important problem in the droplet model. We find that in order for the elastic cross section to have a finite limit at infinite energy, the charge must be a conserved one. In quantum electrodynamics the charge in question is the electric charge. In hadronic physics, we conjecture, it is the baryonic charge. Various arguments for and implications of this hypothesis are presented. We study formal properties of the charge correlation functions that follow from microcausality, T, C, P invariances, and charge conservation. Perturbation expansion of the correlation functions is studied, and their cluster properties are deduced. A cluster expansion of the high-energy T matrix is developed, and the exponentiation of the interaction potential in this scheme is noted. The operator droplet model is put to the test of reproducing the high-energy limit of elastic scattering quantum electrodynamics found by Cheng and Wu in perturbation theory. We find that the droplet model reproduces exactly the results of Cheng and Wu as to the impact factor. In fact, the ''impact picture'' of Cheng and Wu is completely equivalent to the droplet model in the operator version. An appraisal is made of the possible limitation of the model. (author). 13 refs

  13. Systems Integration Operations/Logistics Model (SOLMOD)

    International Nuclear Information System (INIS)

    Vogel, L.W.; Joy, D.S.

    1990-01-01

    SOLMOD is a discrete event simulation model written in FORTRAN 77 and operates in a VAX or PC environment. The model emulates the movement and interaction of equipment and radioactive waste as it is processed through the FWMS. SOLMOD can be used to measure the impacts of different operating schedules and rules, system configurations, reliability, availability, maintainability (RAM) considerations, and equipment and other resource availabilities on the performance of processes comprising the FWMS and how these factors combine to determine overall system performance. Model outputs are a series of measurements of the amount and characteristics of waste at selected points in the FWMS and the utilization of resources needed to transport and process the waste. The model results may be reported on a yearly, monthly, weekly, or daily basis to facilitate analysis. 3 refs., 3 figs., 2 tabs

  14. The DIAMOND Model of Peace Support Operations

    National Research Council Canada - National Science Library

    Bailey, Peter

    2005-01-01

    DIAMOND (Diplomatic And Military Operations in a Non-warfighting Domain) is a high-level stochastic simulation developed at Dstl as a key centerpiece within the Peace Support Operations (PSO) 'modelling jigsaw...

  15. Study on modeling of operator's learning mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seichi; Hasegawa, Naoko

    1998-01-01

    One effective method to analyze the causes of human errors is to model the behavior of human and to simulate it. The Central Research Institute of Electric Power Industry (CRIEPI) has developed an operator team behavior simulation system called SYBORG (Simulation System for the Behavior of an Operating Group) to analyze the human errors and to establish the countermeasures for them. As an operator behavior model which composes SYBORG has no learning mechanism and the knowledge of a plant is fixed, it cannot take suitable actions when unknown situations occur nor learn anything from the experience. However, considering actual operators, learning is an essential human factor to enhance their abilities to diagnose plant anomalies. In this paper, Q learning with 1/f fluctuation was proposed as a learning mechanism of an operator and simulation using the mechanism was conducted. The results showed the effectiveness of the learning mechanism. (author)

  16. Operation quality assessment model for video conference system

    Science.gov (United States)

    Du, Bangshi; Qi, Feng; Shao, Sujie; Wang, Ying; Li, Weijian

    2018-01-01

    Video conference system has become an important support platform for smart grid operation and management, its operation quality is gradually concerning grid enterprise. First, the evaluation indicator system covering network, business and operation maintenance aspects was established on basis of video conference system's operation statistics. Then, the operation quality assessment model combining genetic algorithm with regularized BP neural network was proposed, which outputs operation quality level of the system within a time period and provides company manager with some optimization advice. The simulation results show that the proposed evaluation model offers the advantages of fast convergence and high prediction accuracy in contrast with regularized BP neural network, and its generalization ability is superior to LM-BP neural network and Bayesian BP neural network.

  17. Model Based Autonomy for Robust Mars Operations

    Science.gov (United States)

    Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.

  18. Ex Vivo Model of Human Penile Transplantation and Rejection: Implications for Erectile Tissue Physiology.

    Science.gov (United States)

    Sopko, Nikolai A; Matsui, Hotaka; Lough, Denver M; Miller, Devin; Harris, Kelly; Kates, Max; Liu, Xiaopu; Billups, Kevin; Redett, Richard; Burnett, Arthur L; Brandacher, Gerald; Bivalacqua, Trinity J

    2017-04-01

    Penile transplantation is a potential treatment option for severe penile tissue loss. Models of human penile rejection are lacking. Evaluate effects of rejection and immunosuppression on cavernous tissue using a novel ex vivo mixed lymphocyte reaction (MLR) model. Cavernous tissue and peripheral blood mononuclear cells (PBMCs) from 10 patients undergoing penile prosthesis operations and PBMCs from a healthy volunteer were obtained. Ex vivo MLRs were prepared by culturing cavernous tissue for 48h in media alone, in media with autologous PBMCs, or in media with allogenic PBMCs to simulate control, autotransplant, and allogenic transplant conditions with or without 1μM cyclosporine A (CsA) or 20nM tacrolimus (FK506) treatment. Rejection was characterized by PBMC flow cytometry and gene expression transplant array. Cavernous tissues were evaluated by histomorphology and myography to assess contraction and relaxation. Data were analyzed using two-way analysis of variance and unpaired Student t test. Flow cytometry and tissue array demonstrated allogenic PBMC activation consistent with rejection. Rejection impaired cavernous tissue physiology and was associated with cellular infiltration and apoptosis. CsA prevented rejection but did not improve tissue relaxation. CsA treatment impaired relaxation in tissues cultured without PBMCs compared with media and FK506. Study limitations included the use of penile tissue with erectile dysfunction and lack of cross-matching data. This model could be used to investigate the effects of penile rejection and immunosuppression. Additional studies are needed to optimize immunosuppression to prevent rejection and maximize corporal tissue physiology. This report describes a novel ex vivo model of human penile transplantation rejection. Tissue rejection impaired erectile tissue physiology. This report suggests that cyclosporin A might hinder corporal physiology and that other immunosuppressant agents, such as FK506, might be better suited

  19. Renormalizations and operator expansion in sigma model

    International Nuclear Information System (INIS)

    Terentyev, M.V.

    1988-01-01

    The operator expansion (OPE) is studied for the Green function at x 2 → 0 (n(x) is the dynamical field ofσ-model) in the framework of the two-dimensional σ-model with the O(N) symmetry group at large N. As a preliminary step we formulate the renormalization scheme which permits introduction of an arbitrary intermediate scale μ 2 in the framework of 1/N expansion and discuss factorization (separation) of small (p μ) momentum region. It is shown that definition of composite local operators and coefficient functions figuring in OPE is unambiguous only in the leading order in 1/N expansion when dominant are the solutions with extremum of action. Corrections of order f(μ 2 )/N (here f(μ 2 ) is the effective interaction constant at the point μ 2 ) in composite operators and coefficient functions essentially depend on factorization method of high and low momentum regions. It is shown also that contributions to the power corrections of order m 2 x 2 f(μ 2 )/N in the Green function (here m is the dynamical mass-scale factor in σ-model) arise simultaneously from two sources: from the mean vacuum value of the composite operator n ∂ 2 n and from the hard particle contributions in the coefficient function of unite operator. Due to the analogy between σ-model and QCD the obtained result indicates theoretical limitations to the sum rule method in QCD. (author)

  20. An operator model-based filtering scheme

    International Nuclear Information System (INIS)

    Sawhney, R.S.; Dodds, H.L.; Schryer, J.C.

    1990-01-01

    This paper presents a diagnostic model developed at Oak Ridge National Laboratory (ORNL) for off-normal nuclear power plant events. The diagnostic model is intended to serve as an embedded module of a cognitive model of the human operator, one application of which could be to assist control room operators in correctly responding to off-normal events by providing a rapid and accurate assessment of alarm patterns and parameter trends. The sequential filter model is comprised of two distinct subsystems --- an alarm analysis followed by an analysis of interpreted plant signals. During the alarm analysis phase, the alarm pattern is evaluated to generate hypotheses of possible initiating events in order of likelihood of occurrence. Each hypothesis is further evaluated through analysis of the current trends of state variables in order to validate/reject (in the form of increased/decreased certainty factor) the given hypothesis. 7 refs., 4 figs

  1. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  2. The national operational environment model (NOEM)

    Science.gov (United States)

    Salerno, John J.; Romano, Brian; Geiler, Warren

    2011-06-01

    The National Operational Environment Model (NOEM) is a strategic analysis/assessment tool that provides insight into the complex state space (as a system) that is today's modern operational environment. The NOEM supports baseline forecasts by generating plausible futures based on the current state. It supports what-if analysis by forecasting ramifications of potential "Blue" actions on the environment. The NOEM also supports sensitivity analysis by identifying possible pressure (leverage) points in support of the Commander that resolves forecasted instabilities, and by ranking sensitivities in a list for each leverage point and response. The NOEM can be used to assist Decision Makers, Analysts and Researchers with understanding the inter-workings of a region or nation state, the consequences of implementing specific policies, and the ability to plug in new operational environment theories/models as they mature. The NOEM is built upon an open-source, license-free set of capabilities, and aims to provide support for pluggable modules that make up a given model. The NOEM currently has an extensive number of modules (e.g. economic, security & social well-being pieces such as critical infrastructure) completed along with a number of tools to exercise them. The focus this year is on modeling the social and behavioral aspects of a populace within their environment, primarily the formation of various interest groups, their beliefs, their requirements, their grievances, their affinities, and the likelihood of a wide range of their actions, depending on their perceived level of security and happiness. As such, several research efforts are currently underway to model human behavior from a group perspective, in the pursuit of eventual integration and balance of populace needs/demands within their respective operational environment and the capacity to meet those demands. In this paper we will provide an overview of the NOEM, the need for and a description of its main components

  3. Role of cognitive models of operators in the design, operation and licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1982-01-01

    Cognitive models of the behavior of nuclear power plant operators - that is, models developed in terms of human properties rather than external task characteristics - are assuming increasingly important roles in plant design, operation and licensing. This is partly due to an increased concern for human decision making during unfamiliar plant conditions, and partly due to problems that arise when modern information technology is used to support operators in complex situations. Some of the problems identified during work on interface design and risk analysis are described. First, the question of categories of models is raised. Next, the use of cognitive models for system design is discussed. The use of the available cognitive models for more effective operator training is also advocated. The need for using cognitive models in risk analysis is also emphasized. Finally, the sources of human performance data, that is, event reports, incident analysis, experiments, and training simulators are mentioned, and the need for a consistent framework for data analysis based on cognitive models is discussed

  4. Division Map Exercise (DIME 4.0). Volume 2. Dime Documentation/Model

    Science.gov (United States)

    1987-07-01

    DIRECT FIRE LOSSES Fre FEWRMR CACUCLATE DILECT LOSSES TO DIRECT FR FOCE at ISOS . rAiS R* (NTIRE FOCE oD m 0 1.iCALCUtAPE OIRECT ri OEt S Fri .IT- us- . S...protective fire range. 50% FOR CS .% ALLOCATION FOR FF NEXT 30 MINUTE BEGINS INTERVAL BATTLE TIME (MIN) 0 30 60 90 120 150 ISO RANGE TO ENEMY (KM) 4.0 3.5...J.I)=Systot(23J+31)*Arty_30min_wt(1.J+11)*Bifmsn(I)/(: -Bif msn(2)) 8577 END IF 8580 IF Rif _msn(2)>10 THEN 8583 R_mlrs_cap(J,I)=0 8586 ELSE 8589 R

  5. Role of conceptual models in nuclear power plant operation

    International Nuclear Information System (INIS)

    Williams, M.D.; Moran, T.P.; Brown, J.S.

    1982-01-01

    A crucial objective in plant operation (and perhaps licensing) ought to be to explicitly train operators to develop, perhaps with computer aids, robust conceptual models of the plants they control. The question is whether we are actually able to develop robust conceptual models and validate their robustness. Cognitive science is just beginning to come to grips with this problem. This paper describes some of the evolving technology for building conceptual models of physical mechanisms and some of the implications of such models in the context of nuclear power plant operation

  6. Relaxed memory models: an operational approach

    OpenAIRE

    Boudol , Gérard; Petri , Gustavo

    2009-01-01

    International audience; Memory models define an interface between programs written in some language and their implementation, determining which behaviour the memory (and thus a program) is allowed to have in a given model. A minimal guarantee memory models should provide to the programmer is that well-synchronized, that is, data-race free code has a standard semantics. Traditionally, memory models are defined axiomatically, setting constraints on the order in which memory operations are allow...

  7. An Economic Model of U.S. Airline Operating Expenses

    Science.gov (United States)

    Harris, Franklin D.

    2005-01-01

    This report presents a new economic model of operating expenses for 67 airlines. The model is based on data that the airlines reported to the United States Department of Transportation in 1999. The model incorporates expense-estimating equations that capture direct and indirect expenses of both passenger and cargo airlines. The variables and business factors included in the equations are detailed enough to calculate expenses at the flight equipment reporting level. Total operating expenses for a given airline are then obtained by summation over all aircraft operated by the airline. The model's accuracy is demonstrated by correlation with the DOT Form 41 data from which it was derived. Passenger airlines are more accurately modeled than cargo airlines. An appendix presents a concise summary of the expense estimating equations with explanatory notes. The equations include many operational and aircraft variables, which accommodate any changes that airline and aircraft manufacturers might make to lower expenses in the future. In 1999, total operating expenses of the 67 airlines included in this study amounted to slightly over $100.5 billion. The economic model reported herein estimates $109.3 billion.

  8. Use of an operational model evaluation system for model intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Foster, K. T., LLNL

    1998-03-01

    The Atmospheric Release Advisory Capability (ARAC) is a centralized emergency response system used to assess the impact from atmospheric releases of hazardous materials. As part of an on- going development program, new three-dimensional diagnostic windfield and Lagrangian particle dispersion models will soon replace ARAC`s current operational windfield and dispersion codes. A prototype model performance evaluation system has been implemented to facilitate the study of the capabilities and performance of early development versions of these new models relative to ARAC`s current operational codes. This system provides tools for both objective statistical analysis using common performance measures and for more subjective visualization of the temporal and spatial relationships of model results relative to field measurements. Supporting this system is a database of processed field experiment data (source terms and meteorological and tracer measurements) from over 100 individual tracer releases.

  9. Making Deformable Template Models Operational

    DEFF Research Database (Denmark)

    Fisker, Rune

    2000-01-01

    for estimation of the model parameters, which applies a combination of a maximum likelihood and minimum distance criterion. Another contribution is a very fast search based initialization algorithm using a filter interpretation of the likelihood model. These two methods can be applied to most deformable template......Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...

  10. Operator regularization in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Chowdhury, A.M.; McKeon, D.G.C.

    1987-01-01

    The technique of operator regularization is applied to the Weinberg-Salam model. By directly regulating operators that arise in the course of evaluating path integrals in the background-field formalism, we preserve all symmetries of the theory. An expansion due to Schwinger is employed to compute amplitudes perturbatively, thereby avoiding Feynman diagrams. No explicitly divergent quantities arise in this approach. The general features of the method are outlined with particular attention paid to the problem of simultaneously regulating functions of an operator A and inverse functions upon which A itself depends. Specific application is made to computation of the one-loop contribution to the muon-photon vertex in the Weinberg-Salam model in the limit of zero momentum transfer to the photon

  11. Modeling of HVAC operational faults in building performance simulation

    International Nuclear Information System (INIS)

    Zhang, Rongpeng; Hong, Tianzhen

    2017-01-01

    Highlights: •Discuss significance of capturing operational faults in existing buildings. •Develop a novel feature in EnergyPlus to model operational faults of HVAC systems. •Compare three approaches to faults modeling using EnergyPlus. •A case study demonstrates the use of the fault-modeling feature. •Future developments of new faults are discussed. -- Abstract: Operational faults are common in the heating, ventilating, and air conditioning (HVAC) systems of existing buildings, leading to a decrease in energy efficiency and occupant comfort. Various fault detection and diagnostic methods have been developed to identify and analyze HVAC operational faults at the component or subsystem level. However, current methods lack a holistic approach to predicting the overall impacts of faults at the building level—an approach that adequately addresses the coupling between various operational components, the synchronized effect between simultaneous faults, and the dynamic nature of fault severity. This study introduces the novel development of a fault-modeling feature in EnergyPlus which fills in the knowledge gap left by previous studies. This paper presents the design and implementation of the new feature in EnergyPlus and discusses in detail the fault-modeling challenges faced. The new fault-modeling feature enables EnergyPlus to quantify the impacts of faults on building energy use and occupant comfort, thus supporting the decision making of timely fault corrections. Including actual building operational faults in energy models also improves the accuracy of the baseline model, which is critical in the measurement and verification of retrofit or commissioning projects. As an example, EnergyPlus version 8.6 was used to investigate the impacts of a number of typical operational faults in an office building across several U.S. climate zones. The results demonstrate that the faults have significant impacts on building energy performance as well as on occupant

  12. Rotorwash Operational Footprint Modeling

    Science.gov (United States)

    2014-07-01

    I-13. Francis, J. K., and Gillespie, A., “Relating Gust Speed to Tree Damage in Hurricane Hugo , 1989,” Journal of Arboriculture, November 1993...statement has been Rotorwash Operational Footprint Modeling 72 found to be correct. In many parts of the United States, the requirements for hurricane ...On August 18, 1983, Hurricane Alicia struck downtown Houston, Texas. Researchers were allowed into downtown Houston the following day to help survey

  13. Categorical model of structural operational semantics for imperative language

    Directory of Open Access Journals (Sweden)

    William Steingartner

    2016-12-01

    Full Text Available Definition of programming languages consists of the formal definition of syntax and semantics. One of the most popular semantic methods used in various stages of software engineering is structural operational semantics. It describes program behavior in the form of state changes after execution of elementary steps of program. This feature makes structural operational semantics useful for implementation of programming languages and also for verification purposes. In our paper we present a new approach to structural operational semantics. We model behavior of programs in category of states, where objects are states, an abstraction of computer memory and morphisms model state changes, execution of a program in elementary steps. The advantage of using categorical model is its exact mathematical structure with many useful proved properties and its graphical illustration of program behavior as a path, i.e. a composition of morphisms. Our approach is able to accentuate dynamics of structural operational semantics. For simplicity, we assume that data are intuitively typed. Visualization and facility of our model is  not only  a  new model of structural operational semantics of imperative programming languages but it can also serve for education purposes.

  14. The Application of Architecture Frameworks to Modelling Exploration Operations Costs

    Science.gov (United States)

    Shishko, Robert

    2006-01-01

    Developments in architectural frameworks and system-of-systems thinking have provided useful constructs for systems engineering. DoDAF concepts, language, and formalisms, in particular, provide a natural way of conceptualizing an operations cost model applicable to NASA's space exploration vision. Not all DoDAF products have meaning or apply to a DoDAF inspired operations cost model, but this paper describes how such DoDAF concepts as nodes, systems, and operational activities relate to the development of a model to estimate exploration operations costs. The paper discusses the specific implementation to the Mission Operations Directorate (MOD) operational functions/activities currently being developed and presents an overview of how this powerful representation can apply to robotic space missions as well.

  15. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  16. Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay

    2014-01-01

    situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal......The aim of this paper is to explore the capability of representing operational knowledge by using Multilevel Flow Modelling ( MFM ) methodology. The paper demonstrate s how the operational knowledge can be inserted into the MFM models and be used to evaluate the plant state, identify the current...... systems. And the sub - systems’ functions will be decomposed into sub - models according to different operational situations. An operational model will be developed based on the operating procedure by using MFM symbols and this model can be used to implement coordination rules for organize the utilizati...

  17. Dynamic and adaptive policy models for coalition operations

    Science.gov (United States)

    Verma, Dinesh; Calo, Seraphin; Chakraborty, Supriyo; Bertino, Elisa; Williams, Chris; Tucker, Jeremy; Rivera, Brian; de Mel, Geeth R.

    2017-05-01

    It is envisioned that the success of future military operations depends on the better integration, organizationally and operationally, among allies, coalition members, inter-agency partners, and so forth. However, this leads to a challenging and complex environment where the heterogeneity and dynamism in the operating environment intertwines with the evolving situational factors that affect the decision-making life cycle of the war fighter. Therefore, the users in such environments need secure, accessible, and resilient information infrastructures where policy-based mechanisms adopt the behaviours of the systems to meet end user goals. By specifying and enforcing a policy based model and framework for operations and security which accommodates heterogeneous coalitions, high levels of agility can be enabled to allow rapid assembly and restructuring of system and information resources. However, current prevalent policy models (e.g., rule based event-condition-action model and its variants) are not sufficient to deal with the highly dynamic and plausibly non-deterministic nature of these environments. Therefore, to address the above challenges, in this paper, we present a new approach for policies which enables managed systems to take more autonomic decisions regarding their operations.

  18. Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2012-01-01

    Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.

  19. Generation of human auditory steady-state responses (SSRs). II: Addition of responses to individual stimuli.

    Science.gov (United States)

    Santarelli, R; Maurizi, M; Conti, G; Ottaviani, F; Paludetti, G; Pettorossi, V E

    1995-03-01

    In order to investigate the generation of the 40 Hz steady-state response (SSR), auditory potentials evoked by clicks were recorded in 16 healthy subjects in two stimulating conditions. Firstly, repetition rates of 7.9 and 40 Hz were used to obtain individual middle latency responses (MLRs) and 40 Hz-SSRs, respectively. In the second condition, eight click trains were presented at a 40 Hz repetition rate and an inter-train interval of 126 ms. We extracted from the whole train response: (1) the response-segment taking place after the last click of the train (last click response, LCR), (2) a modified LCR (mLCR) obtained by clearing the LCR from the amplitude enhancement due to the overlapping of the responses to the clicks preceding the last within the stimulus train. In comparison to MLRs, the most relevant feature of the evoked activity following the last click of the train (LCRs, mLCRs) was the appearance in the 50-110 ms latency range of one (in 11 subjects) or two (in 2 subjects) additional positive-negative deflections having the same periodicity as that of MLR waves. The grand average (GA) of the 40 Hz-SSRs was compared with three predictions synthesized by superimposing: (1) the GA of MLRs, (2) the GA of LCRs, (3) the GA of mLCRs. Both the MLR and mLCR predictions reproduced the recorded signal in amplitude while the LCR prediction amplitude resulted almost twice that of the 40 Hz-SSR. With regard to the phase, the MLR, LCR and mLCR closely predicted the recorded signal. Our findings confirm the effectiveness of the linear addition mechanism in the generation of the 40 Hz-SSR. However the responses to individual stimuli within the 40 Hz-SSR differ from MLRs because of additional periodic activity. These results suggest that phenomena related to the resonant frequency of the activated system may play a role in the mechanisms which interact to generate the 40 Hz-SSR.

  20. Neutron field control cybernetics model of RBMK reactor operator

    International Nuclear Information System (INIS)

    Polyakov, V.V.; Postnikov, V.V.; Sviridenkov, A.N.

    1992-01-01

    Results on parameter optimization for cybernetics model of RBMK reactor operator by power release control function are presented. Convolutions of various criteria applied previously in algorithms of the program 'Adviser to reactor operator' formed the basis of the model. 7 refs.; 4 figs

  1. Operations management research methodologies using quantitative modeling

    NARCIS (Netherlands)

    Bertrand, J.W.M.; Fransoo, J.C.

    2002-01-01

    Gives an overview of quantitative model-based research in operations management, focusing on research methodology. Distinguishes between empirical and axiomatic research, and furthermore between descriptive and normative research. Presents guidelines for doing quantitative model-based research in

  2. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    International Nuclear Information System (INIS)

    Berry, J.; Gallaher, B.N.

    2011-01-01

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  3. Model improves oil field operating cost estimates

    International Nuclear Information System (INIS)

    Glaeser, J.L.

    1996-01-01

    A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis

  4. Modeling for operational event risk assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.

    1997-01-01

    The U.S. Nuclear Regulatory Commission has been using risk models to evaluate the risk significance of operational events in U.S. commercial nuclear power plants for more seventeen years. During that time, the models have evolved in response to the advances in risk assessment technology and insights gained with experience. Evaluation techniques fall into two categories, initiating event assessments and condition assessments. The models used for these analyses have become uniquely specialized for just this purpose

  5. Operator modeling of a loss-of-pumping accident using MicroSAINT

    International Nuclear Information System (INIS)

    Olsen, L.M.

    1992-01-01

    The Savannah River Laboratory (SRL) human factors group has been developing methods for analyzing nuclear reactor operator actions during hypothetical design-basis accident scenarios. The SRL reactors operate at a lower temperature and pressure than power reactors resulting in accident sequences that differ from those of power reactors. Current methodology development is focused on modeling control room operator response times dictated by system event times specified in the Savannah River Site Reactor Safety Analysis Report (SAR). The modeling methods must be flexible enough to incorporate changes to hardware, procedures, or postulated system event times and permit timely evaluation. The initial model developed was for the loss-of-pumping accident (LOPA) because a significant number of operator actions are required to respond to this postulated event. Human factors engineers had been researching and testing a network modeling simulation language called MicroSAINT to simulate operators' personal and interpersonal actions relative to operating system events. The LOPA operator modeling project demonstrated the versatility and flexibility of MicroSAINT for modeling control room crew interactions

  6. Modelling of innovative SANEX process mal-operations

    International Nuclear Information System (INIS)

    McLachlan, F.; Taylor, R.; Whittaker, D.; Woodhead, D.; Geist, A.

    2016-01-01

    The innovative (i-) SANEX process for the separation of minor actinides from PUREX highly active raffinate is expected to employ a solvent phase comprising 0.2 M TODGA with 5 v/v% 1-octanol in an inert diluent. An initial extract / scrub section would be used to extract trivalent actinides and lanthanides from the feed whilst leaving other fission products in the aqueous phase, before the loaded solvent is contacted with a low acidity aqueous phase containing a sulphonated bis-triazinyl pyridine ligand (BTP) to effect a selective strip of the actinides, so yielding separate actinide (An) and lanthanide (Ln) product streams. This process has been demonstrated in lab scale trials at Juelich (FZJ). The SACSESS (Safety of Actinide Separation processes) project is focused on the evaluation and improvement of the safety of such future systems. A key element of this is the development of an understanding of the response of a process to upsets (mal-operations). It is only practical to study a small subset of possible mal-operations experimentally and consideration of the majority of mal-operations entails the use of a validated dynamic model of the process. Distribution algorithms for HNO_3, Am, Cm and the lanthanides have been developed and incorporated into a dynamic flowsheet model that has, so far, been configured to correspond to the extract-scrub section of the i-SANEX flowsheet trial undertaken at FZJ in 2013. Comparison is made between the steady state model results and experimental results. Results from modelling of low acidity and high temperature mal-operations are presented. (authors)

  7. Operator model-based design and evaluation of advanced systems

    International Nuclear Information System (INIS)

    Schryver, J.C.

    1988-01-01

    A multi-level operator modeling approach is recommended to provide broad support for the integrated design of advanced control and protection systems for new nuclear power plants. Preliminary design should address the symbiosis of automated systems and human operator by giving careful attention to the roles assigned to these two system elements. A conceptual model of the operator role is developed in the context of a command control-communication problem. According to this approach, joint responsibility can be realized in at least two ways: sharing or allocation. The inherent stabilities of different regions of the operator role space are considered

  8. Stochastic and simulation models of maritime intercept operations capabilities

    OpenAIRE

    Sato, Hiroyuki

    2005-01-01

    The research formulates and exercises stochastic and simulation models to assess the Maritime Intercept Operations (MIO) capabilities. The models focus on the surveillance operations of the Maritime Patrol Aircraft (MPA). The analysis using the models estimates the probability with which a terrorist vessel (Red) is detected, correctly classified, and escorted for intensive investigation and neutralization before it leaves an area of interest (AOI). The difficulty of obtaining adequate int...

  9. Multiple operating models for data linkage: A privacy positive

    Directory of Open Access Journals (Sweden)

    Katrina Irvine

    2017-04-01

    Our data linkage centre will implement new operating models with cascading levels of data handling on behalf of custodians. Sharing or publication of empirical evidence on timeframes, efficiency and quality can provide useful inputs in the design of new operating models and assist with the development of stakeholder and public confidence.

  10. Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Iosvany Recio Villa

    2018-04-01

    Full Text Available The water resources planning and management discipline recognizes the importance of a reservoir’s carryover storage. However, mathematical models for reservoir operation that include carryover storage are scarce. This paper presents a novel multiobjective optimization modeling framework that uses the constraint-ε method and genetic algorithms as optimization techniques for the operation of multipurpose simple reservoirs, including carryover storage. The carryover storage was conceived by modifying Kritsky and Menkel’s method for reservoir design at the operational stage. The main objective function minimizes the cost of the total annual water shortage for irrigation areas connected to a reservoir, while the secondary one maximizes its energy production. The model includes operational constraints for the reservoir, Kritsky and Menkel’s method, irrigation areas, and the hydropower plant. The study is applied to Carlos Manuel de Céspedes reservoir, establishing a 12-month planning horizon and an annual reliability of 75%. The results highly demonstrate the applicability of the model, obtaining monthly releases from the reservoir that include the carryover storage, degree of reservoir inflow regulation, water shortages in irrigation areas, and the energy generated by the hydroelectric plant. The main product is an operational graph that includes zones as well as rule and guide curves, which are used as triggers for long-term reservoir operation.

  11. Deterministic operations research models and methods in linear optimization

    CERN Document Server

    Rader, David J

    2013-01-01

    Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear

  12. Quark shell model using projection operators

    International Nuclear Information System (INIS)

    Ullah, N.

    1988-01-01

    Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)

  13. Analysis and Modeling of Ground Operations at Hub Airports

    Science.gov (United States)

    Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.

    2000-01-01

    Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.

  14. Multilevel flow models studio: human-centralized development for operation support system

    International Nuclear Information System (INIS)

    Zhou Yangping; Hidekazu Yoshikawa; Liu Jingquan; Yang Ming; Ouyang Jun

    2005-01-01

    Computerized Operation Support Systems (COSS), integrating Artificial Intelligence, Multimedia and Network Technology, are now being proposed for reducing operator's cognitive load for process operation. This study proposed a Human-Centralized Development (HCD) that COSS can be developed and maintained independently, conveniently and flexibly by operator and expert of industry system with little expertise on software development. A graphical interface system for HCD, Multilevel Flow Models Studio (MFMS), is proposed for development assistance of COSS. An Extensible Markup Language based file structure is designed to represent the Multilevel Flow Models (MFM) model for the target system. With a friendly graphical interface, MFMS mainly consists of two components: 1) an editor to intelligently assist user establish and maintain the MFM model; 2) an executor to implement the application for monitoring, diagnosis and operational instruction in terms of the established MFM model. A prototype MFMS system has been developed and applied to construct a trial operation support system for a Nuclear Power Plant simulated by RELAP5/MOD2. (authors)

  15. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  16. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  17. Quantitative Precipitation Estimation over Ocean Using Bayesian Approach from Microwave Observations during the Typhoon Season

    Directory of Open Access Journals (Sweden)

    Jen-Chi Hu

    2009-01-01

    Full Text Available We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI, with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR, the Goddard Profiling Algorithm (GPROF, and a multi-channel linear regression statistical method (MLRS. We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS error against rain gauge data for 16 typhoon over passes in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and ~2 mm hr-1, respectively. In particular, at heavy rain rates, our Bayesian retrievals out perform those retrieved from GPROF and MLRS. Over all, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Ac cu rate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons.

  18. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  19. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.H.J. [Center for Risk and Reliability, University of Maryland, College Park, MD 20742 (United States) and Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)]. E-mail: yhc@umd.edu; Mosleh, A. [Center for Risk and Reliability, University of Maryland, College Park, MD 20742 (United States)

    2007-08-15

    This is the fourth in a series of five papers describing the Information, Decision, and Action in Crew context (IDAC) operator response model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model has been developed to probabilistically predicts the responses of a nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper assesses the effects of the performance-influencing factors (PIFs) affecting the operators' problem-solving responses including information pre-processing (I), diagnosis and decision making (D), and action execution (A). Literature support and justifications are provided for the assessment on the influences of PIFs.

  20. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response

    International Nuclear Information System (INIS)

    Chang, Y.H.J.; Mosleh, A.

    2007-01-01

    This is the fourth in a series of five papers describing the Information, Decision, and Action in Crew context (IDAC) operator response model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model has been developed to probabilistically predicts the responses of a nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper assesses the effects of the performance-influencing factors (PIFs) affecting the operators' problem-solving responses including information pre-processing (I), diagnosis and decision making (D), and action execution (A). Literature support and justifications are provided for the assessment on the influences of PIFs

  1. Marine Vessel Models in Changing Operational Conditions - A Tutorial

    DEFF Research Database (Denmark)

    Perez, Tristan; Sørensen, Asgeir; Blanke, Mogens

    2006-01-01

    conditions (VOC). However, since marine systems operate in changing VOCs, there is a need to adapt the models. To date, there is no theory available to describe a general model valid across different VOCs due to the complexity of the hydrodynamic involved. It is believed that system identification could......This tutorial paper provides an introduction, from a systems perspective, to the topic of ship motion dynamics of surface ships. It presents a classification of parametric models currently used for monitoring and control of marine vessels. These models are valid for certain vessel operational...

  2. A toy model for higher spin Dirac operators

    International Nuclear Information System (INIS)

    Eelbode, D.; Van de Voorde, L.

    2010-01-01

    This paper deals with the higher spin Dirac operator Q 2,1 acting on functions taking values in an irreducible representation space for so(m) with highest weight (5/2, 3/2, 1/2,..., 1/2). . This operator acts as a toy model for generalizations of the classical Rarita-Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.

  3. Modeling and Simulation for Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  4. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  5. Bayesian network modeling of operator's state recognition process

    International Nuclear Information System (INIS)

    Hatakeyama, Naoki; Furuta, Kazuo

    2000-01-01

    Nowadays we are facing a difficult problem of establishing a good relation between humans and machines. To solve this problem, we suppose that machine system need to have a model of human behavior. In this study we model the state cognition process of a PWR plant operator as an example. We use a Bayesian network as an inference engine. We incorporate the knowledge hierarchy in the Bayesian network and confirm its validity using the example of PWR plant operator. (author)

  6. Koopman Operator Framework for Time Series Modeling and Analysis

    Science.gov (United States)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  7. Improving traffic signal management and operations : a basic service model.

    Science.gov (United States)

    2009-12-01

    This report provides a guide for achieving a basic service model for traffic signal management and : operations. The basic service model is based on simply stated and defensible operational objectives : that consider the staffing level, expertise and...

  8. Modelling the basic error tendencies of human operators

    Energy Technology Data Exchange (ETDEWEB)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance.

  9. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in total, simulate the general character of operator performance. (author)

  10. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, James

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance. (author)

  11. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  12. An Operational Model for the Prediction of Jet Blast

    Science.gov (United States)

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  13. Spectral decomposition of model operators in de Branges spaces

    International Nuclear Information System (INIS)

    Gubreev, Gennady M; Tarasenko, Anna A

    2011-01-01

    The paper is devoted to studying a class of completely continuous nonselfadjoint operators in de Branges spaces of entire functions. Among other results, a class of unconditional bases of de Branges spaces consisting of values of their reproducing kernels is constructed. The operators that are studied are model operators in the class of completely continuous non-dissipative operators with two-dimensional imaginary parts. Bibliography: 22 titles.

  14. Life Modeling for Nickel-Hydrogen Batteries in Geosynchronous Satellite Operation

    National Research Council Canada - National Science Library

    Zimmerman, A. H; Ang, V. J

    2005-01-01

    .... The model has been used to predict how properly designed and operated nickel-hydrogen battery lifetimes should depend on the operating environments and charge control methods typically used in GEO operation...

  15. Dynamic Computation of Change Operations in Version Management of Business Process Models

    Science.gov (United States)

    Küster, Jochen Malte; Gerth, Christian; Engels, Gregor

    Version management of business process models requires that changes can be resolved by applying change operations. In order to give a user maximal freedom concerning the application order of change operations, position parameters of change operations must be computed dynamically during change resolution. In such an approach, change operations with computed position parameters must be applicable on the model and dependencies and conflicts of change operations must be taken into account because otherwise invalid models can be constructed. In this paper, we study the concept of partially specified change operations where parameters are computed dynamically. We provide a formalization for partially specified change operations using graph transformation and provide a concept for their applicability. Based on this, we study potential dependencies and conflicts of change operations and show how these can be taken into account within change resolution. Using our approach, a user can resolve changes of business process models without being unnecessarily restricted to a certain order.

  16. Simulation of nuclear plant operation into a stochastic energy production model

    International Nuclear Information System (INIS)

    Pacheco, R.L.

    1983-04-01

    A simulation model of nuclear plant operation is developed to fit into a stochastic energy production model. In order to improve the stochastic model used, and also reduce its computational time burdened by the aggregation of the model of nuclear plant operation, a study of tail truncation of the unsupplied demand distribution function has been performed. (E.G.) [pt

  17. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  18. Aircraft operational reliability—A model-based approach and a case study

    International Nuclear Information System (INIS)

    Tiassou, Kossi; Kanoun, Karama; Kaâniche, Mohamed; Seguin, Christel; Papadopoulos, Chris

    2013-01-01

    The success of an aircraft mission is subject to the fulfillment of some operational requirements before and during each flight. As these requirements depend essentially on the aircraft system components and the mission profile, the effects of failures can be very severe if they are not anticipated. Hence, one should be able to assess the aircraft operational reliability with regard to its missions in order to be able to cope with failures. We address aircraft operational reliability modeling to support maintenance planning during the mission achievement. We develop a modeling approach, based on a meta-model that is used as a basis: (i) to structure the information needed to assess aircraft operational reliability and (ii) to build a stochastic model that can be tuned dynamically, in order to take into account the aircraft system operational state, a mission profile and the maintenance facilities available at the flight stop locations involved in the mission. The aim is to enable operational reliability assessment online. A case study, based on an aircraft subsystem, is considered for illustration using the Stochastic Activity Networks (SANs) formalism

  19. The use of flow models for design of plant operating procedures

    International Nuclear Information System (INIS)

    Lind, M.

    1982-03-01

    The report describe a systematic approach to the design of operating procedures or sequence automatics for process plant control. It is shown how flow models representing the topology of mass and energy flows on different levels of function provide plant information which is important for the considered design problem. The modelling methodology leads to the definition of three categories of control tasks. Two tasks relate to the regulation and control of changes of levels and flows of mass and energy in a system within a defined mode of operation. The third type relate to the control actions necessary for switching operations involved in changes of operating mode. These control tasks are identified for a given plant as part of the flow modelling activity. It is discussed how the flow model deal with the problem of assigning control task precedence in time eg. during start-up or shut-down operations. The method may be a basis for providing automated procedure support to the operator in unforeseen situations or may be a tool for control design. (auth.)

  20. Automated particulate sampler field test model operations guide

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  1. A flexible model for economic operational management of grid battery energy storage

    International Nuclear Information System (INIS)

    Fares, Robert L.; Webber, Michael E.

    2014-01-01

    To connect energy storage operational planning with real-time battery control, this paper integrates a dynamic battery model with an optimization program. First, we transform a behavioral circuit model designed to describe a variety of battery chemistries into a set of coupled nonlinear differential equations. Then, we discretize the differential equations to integrate the battery model with a GAMS (General Algebraic Modeling System) optimization program, which decides when the battery should charge and discharge to maximize its operating revenue. We demonstrate the capabilities of our model by applying it to lithium-ion (Li-ion) energy storage operating in Texas' restructured electricity market. By simulating 11 years of operation, we find that our model can robustly compute an optimal charge-discharge schedule that maximizes daily operating revenue without violating a battery's operating constraints. Furthermore, our results show there is significant variation in potential operating revenue from one day to the next. The revenue potential of Li-ion storage varies from approximately $0–1800/MWh of energy discharged, depending on the volatility of wholesale electricity prices during an operating day. Thus, it is important to consider the material degradation-related “cost” of performing a charge-discharge cycle in battery operational management, so that the battery only operates when revenue exceeds cost. - Highlights: • A flexible, dynamic battery model is integrated with an optimization program. • Electricity price data is used to simulate 11 years of Li-ion operation on the grid. • The optimization program robustly computes an optimal charge-discharge schedule. • Variation in daily Li-ion battery revenue potential from 2002 to 2012 is shown. • We find it is important to consider the cost of a grid duty cycle

  2. Nordic Model of Subregional Co-Operation

    Directory of Open Access Journals (Sweden)

    Grzela Joanna

    2017-12-01

    Full Text Available Nordic co-operation is renowned throughout the world and perceived as the collaboration of a group of countries which are similar in their views and activities. The main pillars of the Nordic model of co-operation are the tradition of constitutional principles, activity of public movements and organisations, freedom of speech, equality, solidarity, and respect for the natural environment. In connection with labour and entrepreneurship, these elements are the features of a society which favours efficiency, a sense of security and balance between an individual and a group. Currently, the collaboration is a complex process, including many national, governmental and institutional connections which form the “Nordic family”.

  3. Knowledge-enhanced network simulation modeling of the nuclear power plant operator

    International Nuclear Information System (INIS)

    Schryver, J.C.; Palko, L.E.

    1988-01-01

    Simulation models of the human operator of advanced control systems must provide an adequate account of the cognitive processes required to control these systems. The Integrated Reactor Operator/System (INTEROPS) prototype model was developed at Oak Ridge National Laboratory (ORNL) to demonstrate the feasibility of dynamically integrating a cognitive operator model and a continuous plant process model (ARIES-P) to provide predictions of the total response of a nuclear power plant during upset/emergency conditions. The model consists of a SAINT network of cognitive tasks enhanced with expertise provided by a knowledge-based fault diagnosis model. The INTEROPS prototype has been implemented in both closed and open loop modes. The prototype model is shown to be cognitively relevant by accounting for cognitive tunneling, confirmation bias, evidence chunking, intentional error, and forgetting

  4. Model of the naval base logistic interoperability within the multinational operations

    Directory of Open Access Journals (Sweden)

    Bohdan Pac

    2011-12-01

    Full Text Available The paper concerns the model of the naval base logistics interoperability within the multinational operations conducted at sea by NATO or EU nations. The model includes the set of logistic requirements that NATO and EU expect from the contributing nations within the area of the logistic support provided to the forces operating out of the home bases. Model may reflect the scheme configuration, the set of requirements and its mathematical description for the naval base supporting multinational forces within maritime operations.

  5. Equivalence of the super Lax and local Dunkl operators for Calogero-like models

    International Nuclear Information System (INIS)

    Neelov, A I

    2004-01-01

    Following Shastry and Sutherland I construct the super Lax operators for the Calogero model in the oscillator potential. These operators can be used for the derivation of the eigenfunctions and integrals of motion of the Calogero model and its supersymmetric version. They allow us to infer several relations involving the Lax matrices for this model in a fast way. It is shown that the super Lax operators for the Calogero and Sutherland models can be expressed in terms of the supercharges and so-called local Dunkl operators constructed in our recent paper with M Ioffe. Several important relations involving Lax matrices and Hamiltonians of the Calogero and Sutherland models are easily derived from the properties of Dunkl operators

  6. Fuzzy multiobjective models for optimal operation of a hydropower system

    Science.gov (United States)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  7. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Identification of human operator performance models utilizing time series analysis

    Science.gov (United States)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  9. Overall feature of EAST operation space by using simple Core-SOL-Divertor model

    International Nuclear Information System (INIS)

    Hiwatari, R.; Hatayama, A.; Zhu, S.; Takizuka, T.; Tomita, Y.

    2005-01-01

    We have developed a simple Core-SOL-Divertor (C-S-D) model to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operation space are also presented. As shown by this study for the EAST operation space, it is evident that the C-S-D model is a useful tool to understand qualitatively the overall features of the plasma operation space. (author)

  10. Practical applications of age-dependent reliability models and analysis of operational data

    Energy Technology Data Exchange (ETDEWEB)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L

    2005-07-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.

  11. Practical applications of age-dependent reliability models and analysis of operational data

    International Nuclear Information System (INIS)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L.

    2005-01-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems

  12. Inclusive zero-angle neutron spectra at the ISR and OPER-model

    International Nuclear Information System (INIS)

    Grigoryan, A.A.

    1977-01-01

    The invlusive zero-angle neutron spectra in pp-collisions measured at the ISR are compared with the OPER-model predictions. OPER-model rather well describes the experimental data. Some features of the spectra behaviour at fixed transverse momentum and large x are considered

  13. A simplified thermal model for a clothed human operator with thermoregulation

    Directory of Open Access Journals (Sweden)

    Zahid Akhtar khan

    2010-09-01

    Full Text Available This paper presents a simplified yet comprehensive mathematical model to predict steady state temperature distribution for various regions of male clothed human operators who are healthy, passive/active and lean/obese under the influence of different environmental conditions using thermoregulatory control concept. The present model is able to predict the core temperature, close to 37oC for a healthy, passive/active and lean/obese operator at normal ambient temperatures. It is observed that due to increase in body fat, BF the skin temperature, of the operator decreases by a small amount. However, effect of age of the operator on is found to be insignificant. The present model has been validated against the experimental data available in the literature.

  14. Upcrowding energy co-operatives - Evaluating the potential of crowdfunding for business model innovation of energy co-operatives.

    Science.gov (United States)

    Dilger, Mathias Georg; Jovanović, Tanja; Voigt, Kai-Ingo

    2017-08-01

    Practice and theory have proven the relevance of energy co-operatives for civic participation in the energy turnaround. However, due to a still low awareness and changing regulation, there seems an unexploited potential of utilizing the legal form 'co-operative' in this context. The aim of this study is therefore to investigate the crowdfunding implementation in the business model of energy co-operatives in order to cope with the mentioned challenges. Based on a theoretical framework, we derive a Business Model Innovation (BMI) through crowdfunding including synergies and differences. A qualitative study design, particularly a multiple-case study of energy co-operatives, was chosen to prove the BMI and to reveal barriers. The results show that although most co-operatives are not familiar with crowdfunding, there is strong potential in opening up predominantly local structures to a broader group of members. Building on this, equity-based crowdfunding is revealed to be suitable for energy co-operatives as BMI and to accompany other challenges in the same way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Running scenarios using the Waste Tank Safety and Operations Hanford Site model

    International Nuclear Information System (INIS)

    Stahlman, E.J.

    1995-11-01

    Management of the Waste Tank Safety and Operations (WTS ampersand O) at Hanford is a large and complex task encompassing 177 tanks and having a budget of over $500 million per year. To assist managers in this task, a model based on system dynamics was developed by the Massachusetts Institute of Technology. The model simulates the WTS ampersand O at the Hanford Tank Farms by modeling the planning, control, and flow of work conducted by Managers, Engineers, and Crafts. The model is described in Policy Analysis of Hanford Tank Farm Operations with System Dynamics Approach (Kwak 1995b) and Management Simulator for Hanford Tank Farm Operations (Kwak 1995a). This document provides guidance for users of the model in developing, running, and analyzing results of management scenarios. The reader is assumed to have an understanding of the model and its operation. Important parameters and variables in the model are described, and two scenarios are formulated as examples

  16. Standard model baryogenesis through four-fermion operators in braneworlds

    International Nuclear Information System (INIS)

    Chung, Daniel J.H.; Dent, Thomas

    2002-01-01

    We study a new baryogenesis scenario in a class of braneworld models with low fundamental scale, which typically have difficulty with baryogenesis. The scenario is characterized by its minimal nature: the field content is that of the standard model and all interactions consistent with the gauge symmetry are admitted. Baryon number is violated via a dimension-6 proton decay operator, suppressed today by the mechanism of quark-lepton separation in extra dimensions; we assume that this operator was unsuppressed in the early Universe due to a time-dependent quark-lepton separation. The source of CP violation is the CKM matrix, in combination with the dimension-6 operators. We find that almost independently of cosmology, sufficient baryogenesis is nearly impossible in such a scenario if the fundamental scale is above 100 TeV, as required by an unsuppressed neutron-antineutron oscillation operator. The only exception producing sufficient baryon asymmetry is a scenario involving out-of-equilibrium c quarks interacting with equilibrium b quarks

  17. Activating Global Operating Models: The bridge from organization design to performance

    Directory of Open Access Journals (Sweden)

    Amy Kates

    2015-07-01

    Full Text Available This article introduces the concept of activation and discusses its use in the implementation of global operating models by large multinational companies. We argue that five particular activators help set in motion the complex strategies and organizations required by global operating models.

  18. A practical model for sustainable operational performance

    International Nuclear Information System (INIS)

    Vlek, C.A.J.; Steg, E.M.; Feenstra, D.; Gerbens-Leenis, W.; Lindenberg, S.; Moll, H.; Schoot Uiterkamp, A.; Sijtsma, F.; Van Witteloostuijn, A.

    2002-01-01

    By means of a concrete model for sustainable operational performance enterprises can report uniformly on the sustainability of their contributions to the economy, welfare and the environment. The development and design of a three-dimensional monitoring system is presented and discussed [nl

  19. Operative and diagnostic hysteroscopy: A novel learning model combining new animal models and virtual reality simulation.

    Science.gov (United States)

    Bassil, Alfred; Rubod, Chrystèle; Borghesi, Yves; Kerbage, Yohan; Schreiber, Elie Servan; Azaïs, Henri; Garabedian, Charles

    2017-04-01

    Hysteroscopy is one of the most common gynaecological procedure. Training for diagnostic and operative hysteroscopy can be achieved through numerous previously described models like animal models or virtual reality simulation. We present our novel combined model associating virtual reality and bovine uteruses and bladders. End year residents in obstetrics and gynaecology attended a full day workshop. The workshop was divided in theoretical courses from senior surgeons and hands-on training in operative hysteroscopy and virtual reality Essure ® procedures using the EssureSim™ and Pelvicsim™ simulators with multiple scenarios. Theoretical and operative knowledge was evaluated before and after the workshop and General Points Averages (GPAs) were calculated and compared using a Student's T test. GPAs were significantly higher after the workshop was completed. The biggest difference was observed in operative knowledge (0,28 GPA before workshop versus 0,55 after workshop, pvirtual reality simulation is an efficient model not described before. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High-gradient operators in the psl(2|2 Gross–Neveu model

    Directory of Open Access Journals (Sweden)

    Alessandra Cagnazzo

    2015-03-01

    Full Text Available It has been observed more than 25 years ago that sigma model perturbation theory suffers from strongly RG-relevant high-gradient operators. The phenomenon was first seen in 1-loop calculations for the O(N vector model and it is known to persist at least to two loops. More recently, Ryu et al. suggested that a certain deformation of the psl(N|N WZNW-model at level k=1, or equivalently the psl(N|N  Gross–Neveu model, could be free of RG-relevant high-gradient operators and they tested their suggestion to leading order in perturbation theory. In this note we establish the absence of strongly RG-relevant high-gradient operators in the psl(2|2 Gross–Neveu model to all loops. In addition, we determine the spectrum for a large subsector of the model at infinite coupling and observe that all scaling weights become half-integer. Evidence for a conjectured relation with the CP1|2 sigma model is not found.

  1. Modeling of a dependence between human operators in advanced main control rooms

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol; Shin, Yeong Cheol

    2009-01-01

    For the human reliability analysis of main control room (MCR) operations, not only parameters such as the given situation and capability of the operators but also the dependence between the actions of the operators should be considered because MCR operations are team operations. The dependence between operators might be more prevalent in an advanced MCR in which operators share the same information using a computerized monitoring system or a computerized procedure system. Therefore, this work focused on the computerized operation environment of advanced MCRs and proposed a model to consider the dependence representing the recovery possibility of an operator error by another operator. The proposed model estimates human error probability values by considering adjustment values for a situation and dependence values for operators during the same operation using independent event trees. This work can be used to quantitatively calculate a more reliable operation failure probability for an advanced MCR. (author)

  2. Trajectory-based morphological operators: a model for efficient image processing.

    Science.gov (United States)

    Jimeno-Morenilla, Antonio; Pujol, Francisco A; Molina-Carmona, Rafael; Sánchez-Romero, José L; Pujol, Mar

    2014-01-01

    Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.

  3. Quantitative, steady-state properties of Catania's computational model of the operant reserve.

    Science.gov (United States)

    Berg, John P; McDowell, J J

    2011-05-01

    Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  5. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  6. Effective operator treatment of the Lipkin model

    International Nuclear Information System (INIS)

    Abraham, K.J.; Vary, J.P.

    2004-01-01

    We analyze the Lipkin model in the strong coupling limit using effective operator techniques. We present both analytical and numerical results for low energy effective Hamiltonians. We investigate the reliability of various approximations used to simplify the nuclear many body problem, such as the cluster approximation. We demonstrate, in explicit examples, certain limits to the validity of the cluster approximation but caution that these limits may be particular to this model where the interactions are of unlimited range

  7. Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...

  8. Wake meandering of a model wind turbine operating in two different regimes

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  9. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bonvini, Marco [Whisker Labs, Oakland, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Page, Janie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lin, Guanjing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hu, R. Lilly [Univ. of California, Berkeley, CA (United States)

    2017-08-11

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and building behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.

  10. Modeling the wind-fields of accidental releases with an operational regional forecast model

    International Nuclear Information System (INIS)

    Albritton, J.R.; Lee, R.L.; Sugiyama, G.

    1995-01-01

    The Atmospheric Release Advisory Capability (ARAC) is an operational emergency preparedness and response organization supported primarily by the Departments of Energy and Defense. ARAC can provide real-time assessments of atmospheric releases of radioactive materials at any location in the world. ARAC uses robust three-dimensional atmospheric transport and dispersion models, extensive geophysical and dose-factor databases, meteorological data-acquisition systems, and an experienced staff. Although it was originally conceived and developed as an emergency response and assessment service for nuclear accidents, the ARAC system has been adapted to also simulate non-radiological hazardous releases. For example, in 1991 ARAC responded to three major events: the oil fires in Kuwait, the eruption of Mt. Pinatubo in the Philippines, and the herbicide spill into the upper Sacramento River in California. ARAC's operational simulation system, includes two three-dimensional finite-difference models: a diagnostic wind-field scheme, and a Lagrangian particle-in-cell transport and dispersion scheme. The meteorological component of ARAC's real-time response system employs models using real-time data from all available stations near the accident site to generate a wind-field for input to the transport and dispersion model. Here we report on simulation studies of past and potential release sites to show that even in the absence of local meteorological observational data, readily available gridded analysis and forecast data and a prognostic model, the Navy Operational Regional Atmospheric Prediction System, applied at an appropriate grid resolution can successfully simulate complex local flows

  11. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  12. Operator realization of the SU(2) WZNW model

    International Nuclear Information System (INIS)

    Furlan, P.; Hadjiivanov, L.K.; Todorov, I.T.

    1996-01-01

    Decoupling the chiral dynamics in the canonical approach to the WZNW model requires an extended phase space that includes left and right monodromy variables M and M. Earlier work on the subject, which traced back the quantum group symmetry of the model to the Lie-Poisson symmetry of the chiral symplectic form, left some open questions: - How to reconcile the necessity to set MM -1 =1 (in order to recover the monodromy invariance of the local 2D group valued field g=uu) with the fact the M and M obey different exchange relations? - What is the status of the quantum symmetry in the 2D theory in which the chiral fields u(x-t) and u(x+t) commute? - Is there a consistent operator formalism in the chiral (and the extended 2D) theory in the continuum limit? We propose a constructive affirmative answer to these questions for G=SU(2) by presenting the quantum fields u and u as sums of products of chiral vertex operators and q-Bose creation and annihilation operators. (orig.)

  13. A Stochastic Operational Planning Model for Smart Power Systems

    Directory of Open Access Journals (Sweden)

    Sh. Jadid

    2014-12-01

    Full Text Available Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model

  14. Computer-Aided Transformation of PDE Models: Languages, Representations, and a Calculus of Operations

    Science.gov (United States)

    2016-01-05

    Computer-aided transformation of PDE models: languages, representations, and a calculus of operations A domain-specific embedded language called...languages, representations, and a calculus of operations Report Title A domain-specific embedded language called ibvp was developed to model initial...Computer-aided transformation of PDE models: languages, representations, and a calculus of operations 1 Vision and background Physical and engineered systems

  15. Hysteresis modeling based on saturation operator without constraints

    International Nuclear Information System (INIS)

    Park, Y.W.; Seok, Y.T.; Park, H.J.; Chung, J.Y.

    2007-01-01

    This paper proposes a simple way to model complex hysteresis in a magnetostrictive actuator by employing the saturation operators without constraints. Having no constraints causes a singularity problem, i.e. the inverse matrix cannot be obtained during calculating the weights. To overcome it, a pseudoinverse concept is introduced. Simulation results are compared with the experimental data, based on a Terfenol-D actuator. It is clear that the proposed model is much closer to the experimental data than the modified PI model. The relative error is calculated as 12% and less than 1% with the modified PI Model and proposed model, respectively

  16. Optimizing Biorefinery Design and Operations via Linear Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

    2017-03-28

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for

  17. Operations and support cost modeling using Markov chains

    Science.gov (United States)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  18. AN-type Dunkl operators and new spin Calogero-Sutherland models

    International Nuclear Information System (INIS)

    Finkel, F.; Gomez-Ullate, D.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Zhdanov, R.

    2001-01-01

    A new family of A N -type Dunkl operators preserving a polynomial subspace of finite dimension is constructed. Using a general quadratic combination of these operators and the usual Dunkl operators, several new families of exactly and quasi-exactly solvable quantum spin Calogero-Sutherland models are obtained. These include, in particular, three families of quasi-exactly solvable elliptic spin Hamiltonians. (orig.)

  19. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    Energy Technology Data Exchange (ETDEWEB)

    Nissley, Paul; Berry, Joanne [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  20. Transparent settlement model between mobile network operator and mobile voice over Internet protocol operator

    Directory of Open Access Journals (Sweden)

    Luzango Pangani Mfupe

    2014-12-01

    Full Text Available Advances in technology have enabled network-less mobile voice over internet protocol operator (MVoIPO to offer data services (i.e. voice, text and video to mobile network operator's (MNO's subscribers through an application enabled on subscriber's user equipment using MNO's packet-based cellular network infrastructure. However, this raises the problem of how to handle interconnection settlements between the two types of operators, particularly how to deal with users who now have the ability to make ‘free’ on-net MVoIP calls among themselves within the MNO's network. This study proposes a service level agreement-based transparent settlement model (TSM to solve this problem. The model is based on concepts of achievement and reward, not violation and punishment. The TSM calculates the MVoIPO's throughput distribution by monitoring the variations of peaks and troughs at the edge of a network. This facilitates the determination of conformance and non-conformance levels to the pre-set throughput thresholds and, subsequently, the issuing of compensation to the MVoIPO by the MNO as a result of generating an economically acceptable volume of data traffic.

  1. Modeling operational risks of the nuclear industry with Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Patricia [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial; Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: pwieland@cnen.gov.br; Lustosa, Leonardo J. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Industrial], e-mail: ljl@puc-rio.br

    2009-07-01

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  2. Modeling operational risks of the nuclear industry with Bayesian networks

    International Nuclear Information System (INIS)

    Wieland, Patricia; Lustosa, Leonardo J.

    2009-01-01

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  3. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  4. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  5. Relationship of Mobile Learning Readiness to Teacher Proficiency in Classroom Technology Integration

    Science.gov (United States)

    Christensen, Rhonda; Knezek, Gerald

    2016-01-01

    Mobile learning readiness as a new aspect of technology integration for classroom teachers is confirmed through the findings of this study to be significantly aligned with well-established measures based on older information technologies. The Mobile Learning Readiness Survey (MLRS) generally exhibits the desirable properties of step-wise increases…

  6. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    Science.gov (United States)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  7. Design and modeling of reservoir operation strategies for sediment management

    NARCIS (Netherlands)

    Sloff, C.J.; Omer, A.Y.A.; Heynert, K.V.; Mohamed, Y.A.

    2015-01-01

    Appropriate operation strategies that allow for sediment flushing and sluicing (sediment routing) can reduce rapid storage losses of (hydropower and water-supply) reservoirs. In this study we have shown, using field observations and computational models, that the efficiency of these operations

  8. Development of an inpatient operational pharmacy productivity model.

    Science.gov (United States)

    Naseman, Ryan W; Lopez, Ben R; Forrey, Ryan A; Weber, Robert J; Kipp, Kris M

    2015-02-01

    An innovative model for measuring the operational productivity of medication order management in inpatient settings is described. Order verification within a computerized prescriber order-entry system was chosen as the pharmacy workload driver. To account for inherent variability in the tasks involved in processing different types of orders, pharmaceutical products were grouped by class, and each class was assigned a time standard, or "medication complexity weight" reflecting the intensity of pharmacist and technician activities (verification of drug indication, verification of appropriate dosing, adverse-event prevention and monitoring, medication preparation, product checking, product delivery, returns processing, nurse/provider education, and problem-order resolution). The resulting "weighted verifications" (WV) model allows productivity monitoring by job function (pharmacist versus technician) to guide hiring and staffing decisions. A 9-month historical sample of verified medication orders was analyzed using the WV model, and the calculations were compared with values derived from two established models—one based on the Case Mix Index (CMI) and the other based on the proprietary Pharmacy Intensity Score (PIS). Evaluation of Pearson correlation coefficients indicated that values calculated using the WV model were highly correlated with those derived from the CMI-and PIS-based models (r = 0.845 and 0.886, respectively). Relative to the comparator models, the WV model offered the advantage of less period-to-period variability. The WV model yielded productivity data that correlated closely with values calculated using two validated workload management models. The model may be used as an alternative measure of pharmacy operational productivity. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  9. Sequence Tree Modeling for Combined Accident and Feed-and-Bleed Operation

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang Hyun Gook; Yoon, Ho Joon

    2016-01-01

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model can translate into a dynamic event tree model based on the sampling analysis results

  10. Sequence Tree Modeling for Combined Accident and Feed-and-Bleed Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Abu Dhabi (United Arab Emirates)

    2016-05-15

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model can translate into a dynamic event tree model based on the sampling analysis results.

  11. Optimal Operational Monetary Policy Rules in an Endogenous Growth Model: a calibrated analysis

    OpenAIRE

    Arato, Hiroki

    2009-01-01

    This paper constructs an endogenous growth New Keynesian model and considers growth and welfare effect of Taylor-type (operational) monetary policy rules. The Ramsey equilibrium and optimal operational monetary policy rule is also computed. In the calibrated model, the Ramseyoptimal volatility of inflation rate is smaller than that in standard exogenous growth New Keynesian model with physical capital accumulation. Optimal operational monetary policy rule makes nominal interest rate respond s...

  12. Lean waste classification model to support the sustainable operational practice

    Science.gov (United States)

    Sutrisno, A.; Vanany, I.; Gunawan, I.; Asjad, M.

    2018-04-01

    Driven by growing pressure for a more sustainable operational practice, improvement on the classification of non-value added (waste) is one of the prerequisites to realize sustainability of a firm. While the use of the 7 (seven) types of the Ohno model now becoming a versatile tool to reveal the lean waste occurrence. In many recent investigations, the use of the Seven Waste model of Ohno is insufficient to cope with the types of waste occurred in industrial practices at various application levels. Intended to a narrowing down this limitation, this paper presented an improved waste classification model based on survey to recent studies discussing on waste at various operational stages. Implications on the waste classification model to the body of knowledge and industrial practices are provided.

  13. Theory model and experiment research about the cognition reliability of nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; Zhao Bingquan

    2000-01-01

    In order to improve the reliability of NPP operation, the simulation research on the reliability of nuclear power plant operators is needed. Making use of simulator of nuclear power plant as research platform, and taking the present international reliability research model-human cognition reliability for reference, the part of the model is modified according to the actual status of Chinese nuclear power plant operators and the research model of Chinese nuclear power plant operators obtained based on two-parameter Weibull distribution. Experiments about the reliability of nuclear power plant operators are carried out using the two-parameter Weibull distribution research model. Compared with those in the world, the same results are achieved. The research would be beneficial to the operation safety of nuclear power plant

  14. Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation

    Energy Technology Data Exchange (ETDEWEB)

    Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H

    1979-11-01

    Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.

  15. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    Science.gov (United States)

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  16. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.

    1999-01-01

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  17. Model based decision support system of operating settings for MMAT nozzles

    Directory of Open Access Journals (Sweden)

    Fritz Bradley Keith

    2016-04-01

    Full Text Available Droplet size, which is affected by nozzle type, nozzle setups and operation, and spray solution, is one of the most critical factors influencing spray performance, environment pollution, food safety, and must be considered as part of any application scenario. Characterizing spray nozzles can be a timely and expensive proposition if the entire operational space (all combinations of spray pressure and orifice size, what influence flow rate is to be evaluated. This research proposes a structured, experimental design that allows for the development of computational models for droplet size based on any combination of a nozzle’s potential operational settings. The developed droplet size determination model can be used as Decision Support System (DSS for precise selection of sprayer working parameters to adapt to local field scenarios. Five nozzle types (designs were evaluated across their complete range of orifice size (flow rate* and spray pressures using a response surface experimental design. Several of the models showed high level fits of the modeled to the measured data while several did not as a result of the lack of significant effect from either orifice size (flow rate* or spray pressure. The computational models were integrated into a spreadsheet based user interface for ease of use. The proposed experimental design provides for efficient nozzle evaluations and development of computational models that allow for the determination of droplet size spectrum and spraying classification for any combination of a given nozzle’s operating settings. The proposed DSS will allow for the ready assessment and modification of a sprayers performance based on the operational settings, to ensure the application is made following recommendations in plant protection products (PPP labels.

  18. Operator realization of the SU(2) WZNW model

    International Nuclear Information System (INIS)

    Furlan, P.; Todorov, I.T.

    1995-12-01

    Decoupling the chiral dynamics in the canonical approach to the WZNW model requires an extended phase space that includes left and right monodromy variables M and M-bar. Earlier work on the subject, which traced back the quantum group symmetry of the model to the Lie-Poisson symmetry of the chiral symplectic form, left some open questions: How to reconcile the necessity to set M M-bar -1 = 1 (in order to recover the monodromy invariance of the local 2D group valued field g = uu-bar) with the fact the M and M-bar obey different exchange relations? What is the status of the quantum symmetry in the 2D theory in which the chiral fields u(x-t) and u-bar(x+t) commute? Is there a consistent operator formalism in the chiral (and the extended 2D) theory in the continuum limit? We propose a constructive affirmative answer to these questions for G = SU(2) by presenting the quantum field u and u-bar as sums of products of chiral vertex operators and q Bose creation and annihilation operators. (author). 17 refs

  19. An operations model of psychosocial structure and function and of psychotherapy.

    Science.gov (United States)

    Davidson, S

    2000-11-01

    Currently, personality theory and clinical psychology have a fairly substantial tradition of promoting a strongly scientific basis for clinical work and theorizing. However, an appropriate foundation model has been difficult to identify and establish. A theory of human operations, here proposed, may provide such an elementary model. The theory is rooted in the organizational and industrial field known as operations, which is a highly systematic, precise, flexible, scientific approach to the understanding and management of human goal-seeking action in the broadest sense. The proposed model includes the classical humanistic, clinical, and decision theoretic notions of values, cognition, emotions, ego, behavior, objectives, outcomes, feedback, and defenses. These notions are placed within an overall operations frame of reference and developed in such a manner that they can be used to assess human clinical problems and to design therapeutic interventions. The strengths and limitations of the model are discussed.

  20. A hypothesis generation model of initiating events for nuclear power plant operators

    International Nuclear Information System (INIS)

    Sawhney, R.S.; Dodds, H.L.; Schryver, J.C.; Knee, H.E.

    1989-01-01

    The goal of existing alarm-filtering models is to provide the operator with the most accurate assessment of patterns of annunciated alarms. Some models are based on event-tree analysis, such as DuPont's Diagnosis of Multiple Alarms. Other models focus on improving hypothesis generation by deemphasizing alarms not relevant to the current plant scenario. Many such models utilize the alarm filtering system as a basis of dynamic prioritization. The Lisp-based alarm analysis model presented in this paper was developed for the Advanced Controls Program at Oak Ridge National Laboratory to dynamically prioritize hypotheses via an AFS by incorporating an unannunciated alarm analysis with other plant-based concepts. The objective of this effort is to develop an alarm analysis model that would allow greater flexibility and more accurate hypothesis generation than the prototype fault diagnosis model utilized in the Integrated Reactor Operator/System (INTEROPS) model. INTEROPS is a time-based predictive model of the nuclear power plant operator, which utilizes alarm information in a manner similar to the human operator. This is achieved by recoding the knowledge base from the personal computer-based expert system shell to a common Lisp structure, providing the ability to easily modify both the manner in which the knowledge is structured as well as the logic by which the program performs fault diagnosis

  1. Designing visual displays and system models for safe reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  2. Snow model design for operational purposes

    Science.gov (United States)

    Kolberg, Sjur

    2017-04-01

    A parsimonious distributed energy balance snow model intended for operational use is evaluated using discharge, snow covered area and grain size; the latter two as observed from the MODIS sensor. The snow model is an improvement of the existing GamSnow model, which is a part of the Enki modelling framework. Core requirements for the new version have been: 1. Reduction of calibration freedom, motivated by previous experience of non-identifiable parameters in the existing version 2. Improvement of process representation based on recent advances in physically based snow modelling 3. Limiting the sensitivity to forcing data which are poorly known over the spatial domain of interest (often in mountainous areas) 4. Preference for observable states, and the ability to improve from updates. The albedo calculation is completely revised, now based on grain size through an emulation of the SNICAR model (Flanner and Zender, 2006; Gardener and Sharp, 2010). The number of calibration parameters in the albedo model is reduced from 6 to 2. The wind function governing turbulent energy fluxes has been reduced from 2 to 1 parameter. Following Raleigh et al (2011), snow surface radiant temperature is split from the top layer thermodynamic temperature, using bias-corrected wet-bulb temperature to model the former. Analyses are ongoing, and the poster will bring evaluation results from 16 years of MODIS observations and more than 25 catchments in southern Norway.

  3. Prospects and requirements for an operational modelling unit in flood crisis situations

    Directory of Open Access Journals (Sweden)

    Anders Katharina

    2016-01-01

    Full Text Available Dike failure events pose severe flood crisis situations on areas in the hinterland of dikes. In recent decades the importance of being prepared for dike breaches has been increasingly recognized. However, the pre-assessment of inundation resulting from dike breaches is possible only based on scenarios, which might not reflect the situation of a real event. This paper presents a setup and workflow that allows to model dike breachinduced inundation operationally, i.e. when an event is imminent or occurring. A comprehensive system setup of an operational modelling unit has been developed and implemented in the frame of a federal project in Saxony-Anhalt, Germany. The modelling unit setup comprises a powerful methodology of flood modelling and elaborated operational guidelines for crisis situations. Nevertheless, it is of fundamental importance that the modelling unit is instated prior to flood events as a permanent system. Moreover the unit needs to be fully integrated in flood crisis management. If these crucial requirements are met, a modelling unit is capable of fundamentally supporting flood management with operational prognoses of adequate quality even in the limited timeframe of crisis situations.

  4. Cognitive model of the power unit operator activity

    International Nuclear Information System (INIS)

    Chachko, S.A.

    1992-01-01

    Basic notions making it possible to study and simulate the peculiarities of man-operator activity, in particular his way of thiking, are considered. Special attention is paid to cognitive models based on concept of decisive role of knowledge (its acquisition, storage and application) in the man mental processes and activity. The models are based on three basic notions, which are the professional world image, activity strategy and spontaneous decisions

  5. A framework for modelling the behaviour of a process control operator under stress

    International Nuclear Information System (INIS)

    Kan, C-C.F.; Roberts, P.D.; Smith, I.C.

    1990-01-01

    This paper proposes the basis for a framework for modelling effects of stress on the behaviour of a process control plant operator. The qualitative effects of stress on the cognitive processing ability of the operator are discussed. Stress is thought to mainly decrease the reasoning ability of the operator. The operator will experience increased rigidity in problem solving and the narrowing of his attention and perceptual field. At the same time, the operator will be increasingly reluctant in admitting that wrong decisions have been committed. Furthermore, he will revert to skill-based behaviours. The direct consequence of stress on the decision making mechanism of the operator is the selection of inappropriate choice of action. A formal representation of decision errors is proposed and various techniques are suggested for representing various mechanisms for decision error making. The degree of experience possessed by the operator is also an important factor to the operator's tolerance of stress. The framework also allows the experience of the operator to be integrated into the model. Such an operator model can be linked to a plant simulator and the complete behaviour of the plant then be simulated

  6. A model to predict productivity of different chipping operations ...

    African Journals Online (AJOL)

    Additional international case studies from North America, South America, and central and northern Europe were used to test the accuracy of the model, in which 15 studies confirmed the model's validity and two failed to pass the test. Keywords: average piece size, chipper, power, sensitivity analysis, type of operation, unit ...

  7. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2015-01-01

    Full Text Available In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming, using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model’s input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators’ operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  8. A cost prediction model for machine operation in multi-field production systems

    Directory of Open Access Journals (Sweden)

    Alessandro Sopegno

    Full Text Available ABSTRACT Capacity planning in agricultural field operations needs to give consideration to the operational system design which involves the selection and dimensioning of production components, such as machinery and equipment. Capacity planning models currently onstream are generally based on average norm data and not on specific farm data which may vary from year to year. In this paper a model is presented for predicting the cost of in-field and transport operations for multiple-field and multiple-crop production systems. A case study from a real production system is presented in order to demonstrate the model’s functionalities and its sensitivity to parameters known to be somewhat imprecise. It was shown that the proposed model can provide operation cost predictions for complex cropping systems where labor and machinery are shared between the various operations which can be individually formulated for each individual crop. By so doing, the model can be used as a decision support system at the strategic level of management of agricultural production systems and specifically for the mid-term design process of systems in terms of labor/machinery and crop selection conforming to the criterion of profitability.

  9. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  10. Development of a subway operation incident delay model using accelerated failure time approaches.

    Science.gov (United States)

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  12. Contribution to multi-agents modeling of the operation of industrial processes: application to the operation of a pressurized water reactor under accidental situation

    International Nuclear Information System (INIS)

    Elias, P.

    1996-01-01

    This work is related to the CEA 'Escrime' project which concerns the reliability and functioning safety of nuclear reactors, and in particular the operation and supervision of nuclear installations. Its aim is the analysis and the formalizing of PWRs operation in order to define the collaboration and optimum sharing of tasks between human operators and automatized systems for an improved functioning safety. Chapter 1 describes the operation of nuclear reactors and the instrumentation and control activities. It focusses on the weaknesses of actual automatized systems and examines the interest of the multi-agents approach to build an improved automatized system. Chapter 2 presents the actual state of the art about multi-agent systems and about their application to reactor operation. Chapter 3 is devoted to the definition of the conceptual model of automatized systems developed in this work (distribution of operation activities, competition between agents, hierarchy, arbitration). Chapter 4 describes the computer model of the essential operating system elaborated according to the conceptual model defined above. Modeling is performed using Spirit and an application is described in chapter 5. (J.S.)

  13. A Model for Resource Allocation Using Operational Knowledge Assets

    Science.gov (United States)

    Andreou, Andreas N.; Bontis, Nick

    2007-01-01

    Purpose: The paper seeks to develop a business model that shows the impact of operational knowledge assets on intellectual capital (IC) components and business performance and use the model to show how knowledge assets can be prioritized in driving resource allocation decisions. Design/methodology/approach: Quantitative data were collected from 84…

  14. MAESTRO -- A Model and Expert System Tuning Resource for Operators

    International Nuclear Information System (INIS)

    Lager, D.L.; Brand, H.R.; Maurer, W.J.; Coffield, F.E.; Chambers, F.

    1989-01-01

    We have developed MAESTRO, a Model And Expert System Tuning Resource for Operators. It provides a unified software environment for optimizing the performance of large, complex machines, in particular the Advanced Test Accelerator and Experimental Test Accelerator at Lawrence Livermore National Laboratory. The system incorporates three approaches to tuning: a mouse-based manual interface to select and control magnets and to view displays of machine performance; an automation based on ''cloning the operator'' by implementing the strategies and reasoning used by the operator; an automation based on a simulator model which, when accurately matched to the machine, allows downloading of optimal sets of parameters and permits diagnosing errors in the beamline. The latter two approaches are based on the Artificial Intelligence technique known as Expert Systems. 4 refs., 4 figs

  15. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  16. MAESTRO - a model and expert system tuning resource for operators

    International Nuclear Information System (INIS)

    Lager, D.L.; Brand, H.R.; Maurer, W.J.; Coffield, F.; Chambers, F.

    1990-01-01

    We have developed MAESTRO, a model and expert system tuning resource for operators. It provides a unified software environment for optimizing the performance of large, complex machines, in particular the Advanced Test Accelerator and Experimental Test Accelerator at Lawrence Livermore National Laboratory. The system incorporates three approaches to tuning: a mouse-based manual interface to select and control magnets and to view displays of machine performance; an automation based on 'cloning the operator' by implementing the strategies and reasoning used by the operator; and an automation based on a simulator model which, when accurately matched to the machine, allows downloading of optimal sets of parameters and permits diagnosing errors in the beam line. The latter two approaches are based on the artificial-intelligence technique known as Expert Systems. (orig.)

  17. INTELLECTUAL MODEL FORMATION OF RAILWAY STATION WORK DURING THE TRAIN OPERATION EXECUTION

    Directory of Open Access Journals (Sweden)

    O. V. Lavrukhin

    2014-11-01

    Full Text Available Purpose. The aim of this research work is to develop an intelligent technology for determination of the optimal route of freight trains administration on the basis of the technical and technological parameters. This will allow receiving the operational informed decisions by the station duty officer regarding to the train operation execution within the railway station. Metodology. The main elements of the research are the technical and technological parameters of the train station during the train operation. The methods of neural networks in order to form the self-teaching automated system were put in the basis of the generated model of train operation execution. Findings. The presented model of train operation execution at the railway station is realized on the basis of artificial neural networks using learning algorithm with a «teacher» in Matlab environment. The Matlab is also used for the immediate implementation of the intelligent automated control system of the train operation designed for the integration into the automated workplace of the duty station officer. The developed system is also useful to integrate on workplace of the traffic controller. This proposal is viable in case of the availability of centralized traffic control on the separate section of railway track. Originality. The model of train station operation during the train operation execution with elements of artificial intelligence was formed. It allows providing informed decisions to the station duty officer concerning a choice of rational and a safe option of reception and non-stop run of the trains with the ability of self-learning and adaptation to changing conditions. This condition is achieved by the principles of the neural network functioning. Practical value. The model of the intelligent system management of the process control for determining the optimal route receptionfor different categories of trains was formed.In the operational mode it offers the possibility

  18. Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea

    Science.gov (United States)

    Kõuts, T.; Elken, J.; Raudsepp, U.

    An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to

  19. Facility Will Help Transition Models Into Operations

    Science.gov (United States)

    Kumar, Mohi

    2009-02-01

    The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.

  20. The development of a model of control room operator cognition

    International Nuclear Information System (INIS)

    Harrison, C. Felicity

    1998-01-01

    The nuclear generation station CRO is one of the main contributors to plant performance and safety. In the past, studies of operator behaviour have been made under emergency or abnormal situations, with little consideration being given to the more routine aspects of plant operation. One of the tasks of the operator is to detect the early signs of a problem, and to take steps to prevent a transition to an abnormal plant state. In order to do this CRO must determine that plant indications are no longer in the normal range, and take action to prevent a further move away from normal. This task is made more difficult by the extreme complexity of the control room, and by the may hindrances that the operator must face. It would therefore be of great benefit to understand CRO cognitive performance, especially under normal operating conditions. Through research carried out at several Canadian nuclear facilities we were able to develop a deeper understanding of CRO monitoring of highly automated systems during normal operations, and specifically to investigate the contributions of cognitive skills to monitoring performance. The consultants were asked to develop a deeper understanding of CRO monitoring during normal operations, and specifically to investigate the contributions of cognitive skills to monitoring performance. The overall objective of this research was to develop and validate a model of CRO monitoring. The findings of this research have practical implications for systems integration, training, and interface design. The result of this work was a model of operator monitoring activities. (author)

  1. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    Science.gov (United States)

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  2. Mathematical basis for the process of model simulation of drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Lipovetskiy, G M; Lebedinskiy, G L

    1979-01-01

    The authors describe the application of a method for the model simulation of drilling operations and for the solution of problems concerned with the planning and management of such operations. A description is offered for an approach to the simulator process when the drilling operations are part of a large system. An algorithm is provided for calculating complex events.

  3. The Role of a Mental Model in Learning to Operate a Device.

    Science.gov (United States)

    Kieras, David E.; Bovair, Susan

    1984-01-01

    Describes three studies concerned with learning to operate a control panel device and how this learning is affected by understanding a device model that describes its internal mechanism. Results indicate benefits of a device model depend on whether it supports direct inference of exact steps required to operate the device. (Author/MBR)

  4. The Impact of Acquisition Issues and Training on Test and Evaluation

    Science.gov (United States)

    2000-01-01

    feedback on the OT results before a milestone review and then delivering the OT report, with surprises, virtually at the review. Test Realism There...of the R3D/100 Chip Set and Simulation Heritage. MLRS WE’RE IN THE ARMY NOW TE 14(1 Video, 15 Mins) Cinematics - LTV Aerospace & Defense

  5. Operational characteristics of nuclear power plants - modelling of operational safety; Pogonske karakteristike nuklearnih elektrana - modelsko izucavanje pogonske sigurnosti

    Energy Technology Data Exchange (ETDEWEB)

    Studovic, M [Masinski fakultet, Beograd (Yugoslavia)

    1984-07-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  6. Modeling the Environmental Impact of Air Traffic Operations

    Science.gov (United States)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  7. VERIFICATION OF GEAR DYNAMIC MODEL IN DIFFERENT OPERATING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Grzegorz PERUŃ

    2014-09-01

    Full Text Available The article presents the results of verification of the drive system dynamic model with gear. Tests were carried out on the real object in different operating conditions. For the same assumed conditions were also carried out simulation studies. Comparison of the results obtained from those two series of tests helped determine the suitability of the model and verify the possibility of replacing experimental research by simulations with use of dynamic model.

  8. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  9. Structure of Pioncare covariant tensor operators in quantum mechanical models

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Klink, W.H.

    1988-01-01

    The structure of operators that transform covariantly in Poincare invariant quantum mechanical models is analyzed. These operators are shown to have an interaction dependence that comes from the geometry of the Poincare group. The operators can be expressed in terms of matrix elements in a complete set of eigenstates of the mass and spin operators associated with the dynamical representation of the Poincare group. The matrix elements are factored into geometrical coefficients (Clebsch--Gordan coefficients for the Poincare group) and invariant matrix elements. The geometrical coefficients are fixed by the transformation properties of the operator and the eigenvalue spectrum of the mass and spin. The invariant matrix elements, which distinguish between different operators with the same transformation properties, are given in terms of a set of invariant form factors. copyright 1988 Academic Press, Inc

  10. Modeling lift operations with SASmacr Simulation Studio

    Science.gov (United States)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  11. Computer-Aided Model Based Analysis for Design and Operation of a Copolymerization Process

    DEFF Research Database (Denmark)

    Lopez-Arenas, Maria Teresa; Sales-Cruz, Alfonso Mauricio; Gani, Rafiqul

    2006-01-01

    . This will allow analysis of the process behaviour, contribute to a better understanding of the polymerization process, help to avoid unsafe conditions of operation, and to develop operational and optimizing control strategies. In this work, through a computer-aided modeling system ICAS-MoT, two first......The advances in computer science and computational algorithms for process modelling, process simulation, numerical methods and design/synthesis algorithms, makes it advantageous and helpful to employ computer-aided modelling systems and tools for integrated process analysis. This is illustrated......-principles models have been investigated with respect to design and operational issues for solution copolymerization reactors in general, and for the methyl methacrylate/vinyl acetate system in particular. The Model 1 is taken from literature and is commonly used for low conversion region, while the Model 2 has...

  12. Methodology of synchronization among strategy and operation. A standards-based modeling approach

    Directory of Open Access Journals (Sweden)

    VICTOR EDWIN COLLAZOS

    2017-05-01

    Full Text Available Enterprise Architecture (EA has gained importance in recent years, mainly for its concept of “alignment” between the strategic and operational levels of organizations. Such alignment occurs when Information Technology (IT is applied correctly and timely, working in synergy and harmony with strategy and the operation to achieve mutually their own goals and satisfy the organizational needs.Both the strategic and operational levels have standards that help model elements necessary to obtain desired results. In this sense, BMM and BPMN were selected because both have the support of OMG and they are fairly well known for modelling the strategic level and operational level, respectively. In addition, i* modeling goal can be used for reducing the gap between these two standards. This proposal may help both the high-level design of the information system and to the appropriate identification of the business processes that will support it.This paper presents a methodology for aligning strategy and the operation based on standards and heuristics. We have made a classification for elements of the models and, for some specific cases, an extension of the heuristics associated between them. This allows us to propose methodology, which uses above-mentioned standards and combines mappings, transformations and actions to be considered in the alignment process.

  13. System Dynamics Modeling of Multipurpose Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Ebrahim Momeni

    2006-03-01

    Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also  prevent groundwater level drawdown in future.

  14. Modeling Battery Behavior on Sensory Operations for Context-Aware Smartphone Sensing

    Directory of Open Access Journals (Sweden)

    Ozgur Yurur

    2015-05-01

    Full Text Available Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM, under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  15. Modeling battery behavior on sensory operations for context-aware smartphone sensing.

    Science.gov (United States)

    Yurur, Ozgur; Liu, Chi Harold; Moreno, Wilfrido

    2015-05-26

    Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM), under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  16. The co-operative model as a means of stakeholder management: An exploratory qualitative analysis

    Directory of Open Access Journals (Sweden)

    Darrell Hammond

    2016-11-01

    Full Text Available The South African economy has for some time been characterised by high unemployment, income inequality and a skills mismatch, all of which have contributed to conflict between business, government and labour. The co-operative model of stakeholder management is examined as a possible mitigating organisational form in this high-conflict environment. International experience indicates some success with co-operative models but they are not easy to implement effectively and face severe obstacles. Trust and knowledge sharing are critical for enabling a co-operative model of stakeholder management, which requires strong governance and adherence to strict rules. The model must balance the tension between optimisation of governance structures and responsiveness to members' needs. Furthermore, support from social and political institutions is necessary. We find barriers to scalability which manifest in the lack of depth of business skills, negative perception of the co-operative model by external stakeholders, government ambivalence, and a lack of willingness on the part of workers to co-operate for mutual benefit.

  17. A Knowledge-Based Expert System Using MFM Model for Operator Supporting

    International Nuclear Information System (INIS)

    Mo, Kun; Seong, Poong Hyun

    2005-01-01

    In this paper, a knowledge-based expert system using MFM (Multi-level Flow Modeling) is proposed for enhancing the operators' ability to cope with various situations in nuclear power plant. There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to help the operator to assess the situations promptly and accurately, and to regulate their operations according to these situations. it is necessary to develop an expert systems to help the operator for the fault diagnosis, alarm analysis, and operation results estimation for each operation. Many kinds of operator supporting systems focusing on different functions have been developed. Most of them used various methodologies for single diagnosis function or operation permission function. The proposed system integrated functions of fault diagnosis, alarm analysis and operation results estimation by the MFM basic algorithm for the operator supporting

  18. A Coupled Snow Operations-Skier Demand Model for the Ontario (Canada) Ski Region

    Science.gov (United States)

    Pons, Marc; Scott, Daniel; Steiger, Robert; Rutty, Michelle; Johnson, Peter; Vilella, Marc

    2016-04-01

    The multi-billion dollar global ski industry is one of the tourism subsectors most directly impacted by climate variability and change. In the decades ahead, the scholarly literature consistently projects decreased reliability of natural snow cover, shortened and more variable ski seasons, as well as increased reliance on snowmaking with associated increases in operational costs. In order to develop the coupled snow, ski operations and demand model for the Ontario ski region (which represents approximately 18% of Canada's ski market), the research utilized multiple methods, including: a in situ survey of over 2400 skiers, daily operations data from ski resorts over the last 10 years, climate station data (1981-2013), climate change scenario ensemble (AR5 - RCP 8.5), an updated SkiSim model (building on Scott et al. 2003; Steiger 2010), and an agent-based model (building on Pons et al. 2014). Daily snow and ski operations for all ski areas in southern Ontario were modeled with the updated SkiSim model, which utilized current differential snowmaking capacity of individual resorts, as determined from daily ski area operations data. Snowmaking capacities and decision rules were informed by interviews with ski area managers and daily operations data. Model outputs were validated with local climate station and ski operations data. The coupled SkiSim-ABM model was run with historical weather data for seasons representative of an average winter for the 1981-2010 period, as well as an anomalously cold winter (2012-13) and the record warm winter in the region (2011-12). The impact on total skier visits and revenues, and the geographic and temporal distribution of skier visits were compared. The implications of further climate adaptation (i.e., improving the snowmaking capacity of all ski areas to the level of leading resorts in the region) were also explored. This research advances system modelling, especially improving the integration of snow and ski operations models with

  19. A Dynamic Operation Permission Technique Based on an MFM Model and Numerical Simulation

    International Nuclear Information System (INIS)

    Akio, Gofuku; Masahiro, Yonemura

    2011-01-01

    It is important to support operator activities to an abnormal plant situation where many counter actions are taken in relatively short time. The authors proposed a technique called dynamic operation permission to decrease human errors without eliminating creative idea of operators to cope with an abnormal plant situation by checking if the counter action taken is consistent with emergency operation procedure. If the counter action is inconsistent, a dynamic operation permission system warns it to operators. It also explains how and why the counter action is inconsistent and what influence will appear on the future plant behavior by a qualitative influence inference technique based on a model by the Mf (Multilevel Flow Modeling). However, the previous dynamic operation permission is not able to explain quantitative effects on plant future behavior. Moreover, many possible influence paths are derived because a qualitative reasoning does not give a solution when positive and negative influences are propagated to the same node. This study extends the dynamic operation permission by combining the qualitative reasoning and the numerical simulation technique. The qualitative reasoning based on an Mf model of plant derives all possible influence propagation paths. Then, a numerical simulation gives a prediction of plant future behavior in the case of taking a counter action. The influence propagation that does not coincide with the simulation results is excluded from possible influence paths. The extended technique is implemented in a dynamic operation permission system for an oil refinery plant. An MFM model and a static numerical simulator are developed. The results of dynamic operation permission for some abnormal plant situations show the improvement of the accuracy of dynamic operation permission and the quality of explanation for the effects of the counter action taken

  20. Operational freight carrier planning basic concepts, optimization models and advanced memetic algorithms

    CERN Document Server

    Schönberger, Jörn

    2005-01-01

    The modern freight carrier business requires a sophisticated automatic decision support in order to ensure the efficiency and reliability and therefore the survival of transport service providers. This book addresses these challenges and provides generic decision models for the short-term operations planning as well as advanced metaheuristics to obtain efficient operation plans. After a thorough analysis of the operations planning in the freight carrier business, decision models are derived. Their suitability is proven within a large number of numerical experiments, in which a new class of hybrid genetic search approaches demonstrate their appropriateness.

  1. Modeling Multioperator Multi-UAV Operator Attention Allocation Problem Based on Maximizing the Global Reward

    Directory of Open Access Journals (Sweden)

    Yuhang Wu

    2016-01-01

    Full Text Available This paper focuses on the attention allocation problem (AAP in modeling multioperator multi-UAV (MOMU, with the operator model and task properties taken into consideration. The model of MOMU operator AAP based on maximizing the global reward is established and used to allocate tasks to all operators as well as set work time and rest time to each task simultaneously for operators. The proposed model is validated in Matlab simulation environment, using the immune algorithm and dynamic programming algorithm to evaluate the performance of the model in terms of the reward value with regard to the work time, rest time, and task allocation. The result shows that the total reward of the proposed model is larger than the one obtained from previously published methods using local maximization and the total reward of our method has an exponent-like relation with the task arrival rate. The proposed model can improve the operators’ task processing efficiency in the MOMU command and control scenarios.

  2. Framework for modeling supervisory control behavior of operators of nuclear power plants

    International Nuclear Information System (INIS)

    Baron, S.; Feehrer, C.; Muralidharan, R.; Pew, R.; Horwitz, P.

    1982-01-01

    The importance of modeling the human-machine system has long been recognized, and many attempts have been made to estimate the operator's effect on system performance and reliability. The development of reliability models has been aimed at providing the means for exploring the physical consequences of specific classes of human error. However, the total impact of human performance on system operation and the adequacy of existing design and operating standards cannot be adequatly captured or assessed by simple error probabilities, or even by the combination of such probabilities. The behaviors of relevance are supervisory in nature, with a substantial cognitive component. The broad requirements for a model of human supervisory control are extensive and suggest that a highly sophisticated computer model will be needed. The purpose of this paper is to provide a brief overview of the approach employed in developing such supervisory control models; of some proposed specializations and extensions to adapt them for the nuclear power plant case; and of the potential utility of such a model

  3. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  4. Upper Rio Grande water operations model: A tool for enhanced system management

    Science.gov (United States)

    Gail Stockton; D. Michael Roark

    1999-01-01

    The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...

  5. A computational model for knowledge-driven monitoring of nuclear power plant operators based on information theory

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2006-01-01

    To develop operator behavior models such as IDAC, quantitative models for the cognitive activities of nuclear power plant (NPP) operators in abnormal situations are essential. Among them, only few quantitative models for the monitoring and detection have been developed. In this paper, we propose a computational model for the knowledge-driven monitoring, which is also known as model-driven monitoring, of NPP operators in abnormal situations, based on the information theory. The basic assumption of the proposed model is that the probability that an operator shifts his or her attention to an information source is proportional to the expected information from the information source. A small experiment performed to evaluate the feasibility of the proposed model shows that the predictions made by the proposed model have high correlations with the experimental results. Even though it has been argued that heuristics might play an important role on human reasoning, we believe that the proposed model can provide part of the mathematical basis for developing quantitative models for knowledge-driven monitoring of NPP operators when NPP operators are assumed to behave very logically

  6. A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Seong, Poong-Hyun

    2009-01-01

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, as failures of situation assessment may cause wrong decisions for process control and finally errors of commission in nuclear power plants. A few computational models that can be used to predict and quantify the situation awareness of operators have been suggested. However, these models do not sufficiently consider human characteristics for nuclear power plant operators. In this paper, we propose a computational model for situation assessment of nuclear power plant operators using a Bayesian network. This model incorporates human factors significantly affecting operators' situation assessment, such as attention, working memory decay, and mental model. As this proposed model provides quantitative results of situation assessment and diagnostic performance, we expect that this model can be used in the design and evaluation of human system interfaces as well as the prediction of situation awareness errors in the human reliability analysis.

  7. A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul [Instrumentation and Control/Human Factors Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: leehc@kaeri.re.kr; Seong, Poong-Hyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2009-11-15

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, as failures of situation assessment may cause wrong decisions for process control and finally errors of commission in nuclear power plants. A few computational models that can be used to predict and quantify the situation awareness of operators have been suggested. However, these models do not sufficiently consider human characteristics for nuclear power plant operators. In this paper, we propose a computational model for situation assessment of nuclear power plant operators using a Bayesian network. This model incorporates human factors significantly affecting operators' situation assessment, such as attention, working memory decay, and mental model. As this proposed model provides quantitative results of situation assessment and diagnostic performance, we expect that this model can be used in the design and evaluation of human system interfaces as well as the prediction of situation awareness errors in the human reliability analysis.

  8. PWR plant operator training used full scope simulator incorporated MAAP model

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Tabuchi, T.; Yamashita, T.; Komatsu, Y.; Tsubouchi, K.; Banka, T.; Mochizuki, T.; Nishimura, K.; Iizuka, H.

    2015-01-01

    NTC makes an effort with the understanding of plant behavior of core damage accident as part of our advanced training. For the Fukushima Daiichi Nuclear Power Station accident, we introduced the MAAP model into PWR operator training full scope simulator and also made the Severe Accident Visual Display unit. From 2014, we will introduce new training program for a core damage accident with PWR operator training full scope simulator incorporated the MAAP model and the Severe Accident Visual Display unit. (author)

  9. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.

    Science.gov (United States)

    Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E

    2015-05-01

    As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights

  10. Stability of the matrix model in operator interpretation

    Directory of Open Access Journals (Sweden)

    Katsuta Sakai

    2017-12-01

    Full Text Available The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.

  11. Objective ARX Model Order Selection for Multi-Channel Human Operator Identification

    NARCIS (Netherlands)

    Roggenkämper, N; Pool, D.M.; Drop, F.M.; van Paassen, M.M.; Mulder, M.

    2016-01-01

    In manual control, the human operator primarily responds to visual inputs but may elect to make use of other available feedback paths such as physical motion, adopting a multi-channel control strategy. Hu- man operator identification procedures generally require a priori selection of the model

  12. On the usability of quantitative modelling in operations strategy decission making

    NARCIS (Netherlands)

    Akkermans, H.A.; Bertrand, J.W.M.

    1997-01-01

    Quantitative modelling seems admirably suited to help managers in their strategic decision making on operations management issues, but in practice models are rarely used for this purpose. Investigates the reasons why, based on a detailed cross-case analysis of six cases of modelling-supported

  13. Operator-based linearization for efficient modeling of geothermal processes

    OpenAIRE

    Khait, M.; Voskov, D.V.

    2018-01-01

    Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical issue. Geothermal reservoir modeling requires the solution of governing equations describing the conservation of mass and energy. The robust, accurate and computationally efficient implementation of ...

  14. Modeling the design and operations of the federal radioactive waste management system

    International Nuclear Information System (INIS)

    Joy, D.S.; Nehls, J.W. Jr.; Harrison, I.G.; Miller, C.; Vogel, L.W.; Martin, J.D.; Capone, R.L.; Dougherty, L.

    1989-04-01

    Many configuration, transportation and operating alternatives are available to the Office of Civilian Radioactive Waste Management (OCRWM) in the design and operation of the Federal Radioactive Waste Management System (FWMS). Each alternative has different potential impacts on system throughput, efficiency and the thermal and radiological characteristics of the waste to be shipped, stored and emplaced. A need therefore exists for a quantitative means of assessing the ramifications of alternative system designs and operating strategies. We developed the Systems integration Operations/Logistics Model (SOLMOD). That model is used to replicate a user-specified system configuration and simulate the operation of that system -- from waste pickup at reactors to emplacement in a repository -- under a variety of operating strategies. The model can thus be used to assess system performance with or without Monitored Retrievable Storage (MRS), with or without consolidation at the repository, with varying shipping cask availability and so forth. This simulation capability is also intended to provide a tool for examining the impact of facility and equipment capacity and redundancy on overall waste processing capacity and system performance. SOLMOD can measure the impacts on system performance of certain operating contingencies. It can be used to test effects on transportation and waste pickup schedules resulting from a shut-down of one or more hot cells in the waste handling building at the repository or MRS. Simulation can also be used to study operating procedures and rules such as fuel pickup schedules, general freight vs. dedicated freight. 3 refs., 2 figs., 2 tabs

  15. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    Science.gov (United States)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  16. Towards assimilation of InSAR data in operational weather models

    Science.gov (United States)

    Mulder, Gert; van Leijen, Freek; Barkmeijer, Jan; de Haan, Siebren; Hanssen, Ramon

    2017-04-01

    InSAR signal delays due to the varying atmospheric refractivity are a potential data source to improve weather models [1]. Especially with the launch of the new Sentinel-1 satellites, which increases data coverage, latency and accessibility, it may become possible to operationalize the assimilation of differential integrated refractivity (DIR) values in numerical weather models. Although studies exist on comparison between InSAR data and weather models [2], the impact of assimilation of DIR values in an operational weather model has never been assessed. In this study we present different ways to assimilate DIR values in an operational weather model and show the first forecast results. There are different possibilities to assimilate InSAR-data in a weather model. For example, (i) absolute DIR values can be derived using additional GNSS zenith or slant delay values, (ii) DIR values can be converted to water vapor pressures, or (iii) water vapor pressures can be derived for different heights by combining GNSS and InSAR data. However, an increasing number of assumptions in these processing steps will increase the uncertainty in the final results. Therefore, we chose to insert the InSAR derived DIR values after minimal additional processing. In this study we use the HARMONIE model [3], which is a spectral, non-hydrostatic model with a resolution of about 2.5 km. Currently, this is the operational model in 11 European countries and based on the AROME model [4]. To assimilate the DIR values in the weather model we use a simple adjustment of the weather parameters over the full slant column to match the DIR values. This is a first step towards a more sophisticated approach based on the 3D-VAR or 4D-VAR schemes [5]. Where both assimilation schemes can correct for different weather parameters simultaneously, and 4D-VAR allow us to assimilate DIR values at the exact moment of satellite overpass instead of the start of the forecast window. The approach will be demonstrated

  17. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  18. Testing and Implementation of the Navy's Operational Circulation Model for the Mediterranean Sea

    Science.gov (United States)

    Farrar, P. D.; Mask, A. C.

    2012-04-01

    The US Naval Oceanographic Office (NAVOCEANO) has the responsibility for running ocean models in support of Navy operations. NAVOCEANO delivers Navy-relevant global, regional, and coastal ocean forecast products on a 24 hour/7 day a week schedule. In 2011, NAVOCEANO implemented an operational version of the RNCOM (Regional Navy Coastal Ocean Model) for the Mediterranean Sea (MedSea), replacing an older variation of the Princeton Ocean Model originally set up for this area back in the mid-1990's. RNCOM is a gridded model that assimilates both satellite data and in situ profile data in near real time. This 3km MedSea RNCOM is nested within a lower resolution global NCOM in the Atlantic at the 12.5 degree West longitude. Before being accepted as a source of operational products, a Navy ocean model must pass a series of validation tests and then once in service, its skill is monitored by software and regional specialists. This presentation will provide a brief summary of the initial evaluation results. Because of the oceanographic peculiarities of this basin, the MedSea implementation posed a set of new problems for an RNCOM operation. One problem was the present Navy satellite altimetry model assimilation techniques do not improve Mediterranean NCOM forecasts, so it has been turned off, pending improvements. Another problem was that since most in-situ observations were profiling floats with short five-day profiling intervals, there was a problem with temporal aliasing when comparing these observations to the NCOM predictions. Because of the time and spatial correlations in the MedSea and in the model, the observation/model comparisons would give an unrealistically optimistic estimate of model accuracy of the Mediterranean's temperature/salinity structure. Careful pre-selection of profiles for comparison during the evaluation stage, based on spatial distribution and novelty, was used to minimize this effect. NAVOCEANO's operational customers are interested primarily in

  19. Development of synchronous generator saturation model from steady-state operating data

    Energy Technology Data Exchange (ETDEWEB)

    Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)

    2010-11-15

    A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)

  20. Designing visual displays and system models for safe reactor operations

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving the design of visual displays and the user's prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator's perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors

  1. HLA-DP related suppression of mixed lymphocyte reaction with alloactivated lymphocytes

    DEFF Research Database (Denmark)

    Ødum, Niels; Hofmann, B; Jakobsen, B K

    1986-01-01

    We studied the influence of HLA class I and class II antigens on the suppression of the MLR induced by primed lymphocytes (PLs) alloactivated in vitro. The suppression of 14 different PLs of 83 MLRs was analyzed. The PLs were primed against (i) HLA-DP (SB) (ii) HLA-DR/DQ or (iii) both HLA-DP and ...

  2. HLA-DP related suppression of mixed lymphocyte reaction with alloactivated lymphocytes

    DEFF Research Database (Denmark)

    Ødum, Niels; Hofmann, B; Jakobsen, B K

    1986-01-01

    We studied the influence of HLA class I and class II antigens on the suppression of the MLR induced by primed lymphocytes (PLs) alloactivated in vitro. The suppression of 14 different PLs of 83 MLRs was analyzed. The PLs were primed against (i) HLA-DP (SB) (ii) HLA-DR/DQ or (iii) both HLA-DP and DR...

  3. Modeling decisions information fusion and aggregation operators

    CERN Document Server

    Torra, Vicenc

    2007-01-01

    Information fusion techniques and aggregation operators produce the most comprehensive, specific datum about an entity using data supplied from different sources, thus enabling us to reduce noise, increase accuracy, summarize and extract information, and make decisions. These techniques are applied in fields such as economics, biology and education, while in computer science they are particularly used in fields such as knowledge-based systems, robotics, and data mining. This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover the following topics in detail: synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals, indices and evaluation methods, model selection, and parameter extraction. The method...

  4. Teaching Model Innovation of Production Operation Management Engaging in ERP Sandbox Simulation

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2014-05-01

    Full Text Available In light of the course of production operation management status, this article proposes the innovation and reform of the teaching model from three aspects of from the curriculum syllabus reform, the simulation of typical teaching organization model, and the enterprise resource process (ERP sandbox application in the course practice. There are an exhaustive implementation procedure and a further discussion on the promotion outcome. The results indicate that the innovation of teaching model and case studying practice in production operation management based on ERP sandbox simulation is feasible.

  5. System Dynamics Modeling for Emergency Operating System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Eng, Ang Wei; Kim, Jong Hyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The purpose of this paper is to present a causal model which explain human error cause-effect relationships of emergency operating system (EOS) by using system dynamics (SD) approach. The causal model will further quantified by analyzes nuclear power plant incidents/accidents data in Korea for simulation modeling. Emergency Operating System (EOS) is generally defined as a system which consists personnel, human-machine interface and procedures; and how these components interact and coordinate to respond to an incident or accident. Understanding the behavior of EOS especially personnel behavior and the factors influencing it during accident will contribute in human reliability evaluation. Human Reliability Analysis (HRA) is a method which assesses how human decisions and actions affect to system risk and further used to reduce the human errors probability. There are many HRA method used performance influencing factors (PIFs) to identify the causes of human errors. However, these methods have several limitations. In HRA, PIFs are assumed independent each other and relationship between them are not been study. Through the SD simulation, users able to simulate various situation of nuclear power plant respond to emergency from human and organizational aspects. The simulation also provides users a comprehensive view on how to improve the safety in plants. This paper presents a causal model that explained cause-effect relationships of EOS human. Through SD simulation, users able to identify the main contribution of human error easily. Users can also use SD simulation to predict when and how a human error occurs over time. In future work, the SD model can be expanded more on low level factors. The relationship within low level factors can investigated by using correlation method and further included in the model. This can enables users to study more detailed human error cause-effect relationships and the behavior of EOS. Another improvement can be made is on EOS factors

  6. System Dynamics Modeling for Emergency Operating System Resilience

    International Nuclear Information System (INIS)

    Eng, Ang Wei; Kim, Jong Hyun

    2014-01-01

    The purpose of this paper is to present a causal model which explain human error cause-effect relationships of emergency operating system (EOS) by using system dynamics (SD) approach. The causal model will further quantified by analyzes nuclear power plant incidents/accidents data in Korea for simulation modeling. Emergency Operating System (EOS) is generally defined as a system which consists personnel, human-machine interface and procedures; and how these components interact and coordinate to respond to an incident or accident. Understanding the behavior of EOS especially personnel behavior and the factors influencing it during accident will contribute in human reliability evaluation. Human Reliability Analysis (HRA) is a method which assesses how human decisions and actions affect to system risk and further used to reduce the human errors probability. There are many HRA method used performance influencing factors (PIFs) to identify the causes of human errors. However, these methods have several limitations. In HRA, PIFs are assumed independent each other and relationship between them are not been study. Through the SD simulation, users able to simulate various situation of nuclear power plant respond to emergency from human and organizational aspects. The simulation also provides users a comprehensive view on how to improve the safety in plants. This paper presents a causal model that explained cause-effect relationships of EOS human. Through SD simulation, users able to identify the main contribution of human error easily. Users can also use SD simulation to predict when and how a human error occurs over time. In future work, the SD model can be expanded more on low level factors. The relationship within low level factors can investigated by using correlation method and further included in the model. This can enables users to study more detailed human error cause-effect relationships and the behavior of EOS. Another improvement can be made is on EOS factors

  7. Object-oriented process dose modeling for glovebox operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Fasel, J.H.; Kornreich, D.E.

    1999-01-01

    The Plutonium Facility at Los Alamos National Laboratory supports several defense and nondefense-related missions for the country by performing fabrication, surveillance, and research and development for materials and components that contain plutonium. Most operations occur in rooms with one or more arrays of gloveboxes connected to each other via trolley gloveboxes. Minimizing the effective dose equivalent (EDE) is a growing concern as a result of steadily declining allowable dose limits being imposed and a growing general awareness of safety in the workplace. In general, the authors discriminate three components of a worker's total EDE: the primary EDE, the secondary EDE, and background EDE. A particular background source of interest is the nuclear materials vault. The distinction between sources inside and outside of a particular room is arbitrary with the underlying assumption that building walls and floors provide significant shielding to justify including sources in other rooms in the background category. Los Alamos has developed the Process Modeling System (ProMoS) primarily for performing process analyses of nuclear operations. ProMoS is an object-oriented, discrete-event simulation package that has been used to analyze operations at Los Alamos and proposed facilities such as the new fabrication facilities for the Complex-21 effort. In the past, crude estimates of the process dose (the EDE received when a particular process occurred), room dose (the EDE received when a particular process occurred in a given room), and facility dose (the EDE received when a particular process occurred in the facility) were used to obtain an integrated EDE for a given process. Modifications to the ProMoS package were made to utilize secondary dose information to use dose modeling to enhance the process modeling efforts

  8. On the Use of Variability Operations in the V-Modell XT Software Process Line

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Méndez Fernández, Daniel; Ternité, Thomas

    2016-01-01

    . In this article, we present a study on the feasibility of variability operations to support the development of software process lines in the context of the V-Modell XT. We analyze which variability operations are defined and practically used. We provide an initial catalog of variability operations...... as an improvement proposal for other process models. Our findings show that 69 variability operation types are defined across several metamodel versions of which, however, 25 remain unused. The found variability operations allow for systematically modifying the content of process model elements and the process......Software process lines provide a systematic approach to develop and manage software processes. It defines a reference process containing general process assets, whereas a well-defined customization approach allows process engineers to create new process variants, e.g., by extending or modifying...

  9. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    Science.gov (United States)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  10. Using social network analysis and agent-based modelling to explore information flow using common operational pictures for maritime search and rescue operations.

    Science.gov (United States)

    Baber, C; Stanton, N A; Atkinson, J; McMaster, R; Houghton, R J

    2013-01-01

    The concept of common operational pictures (COPs) is explored through the application of social network analysis (SNA) and agent-based modelling to a generic search and rescue (SAR) scenario. Comparing the command structure that might arise from standard operating procedures with the sort of structure that might arise from examining information-in-common, using SNA, shows how one structure could be more amenable to 'command' with the other being more amenable to 'control' - which is potentially more suited to complex multi-agency operations. An agent-based model is developed to examine the impact of information sharing with different forms of COPs. It is shown that networks using common relevant operational pictures (which provide subsets of relevant information to groups of agents based on shared function) could result in better sharing of information and a more resilient structure than networks that use a COP. SNA and agent-based modelling are used to compare different forms of COPs for maritime SAR operations. Different forms of COP change the communications structures in the socio-technical systems in which they operate, which has implications for future design and development of a COP.

  11. Communicating Sustainability: An Operational Model for Evaluating Corporate Websites

    Directory of Open Access Journals (Sweden)

    Alfonso Siano

    2016-09-01

    Full Text Available The interest in corporate sustainability has increased rapidly in recent years and has encouraged organizations to adopt appropriate digital communication strategies, in which the corporate website plays a key role. Despite this growing attention in both the academic and business communities, models for the analysis and evaluation of online sustainability communication have not been developed to date. This paper aims to develop an operational model to identify and assess the requirements of sustainability communication in corporate websites. It has been developed from a literature review on corporate sustainability and digital communication and the analysis of the websites of the organizations included in the “Global CSR RepTrak 2015” by the Reputation Institute. The model identifies the core dimensions of online sustainability communication (orientation, structure, ergonomics, content—OSEC, sub-dimensions, such as stakeholder engagement and governance tools, communication principles, and measurable items (e.g., presence of the materiality matrix, interactive graphs. A pilot study on the websites of the energy and utilities companies included in the Dow Jones Sustainability World Index 2015 confirms the applicability of the OSEC framework. Thus, the model can provide managers and digital communication consultants with an operational tool that is useful for developing an industry ranking and assessing the best practices. The model can also help practitioners to identify corrective actions in the critical areas of digital sustainability communication and avoid greenwashing.

  12. Testing one model of family role in the development of formal operations

    Directory of Open Access Journals (Sweden)

    Stepanović Ivana

    2008-01-01

    Full Text Available Contemporary authors emphasise the importance of viewing the family as a specific educational context and of studying its role in the cognitive development. In this paper, we tested the model that postulates the way in which the different ways of parental mediation and various means of the family cultural-supportive system affect the development of formal operations. We assumed that the education of parents and financial status of the family form a wider context that influences the general dimensions of family interaction (emotional exchange and democratism, but also the cultural-pedagogical status of the family, and that their connection with formal operations is mediated by the above-mentioned variables. We expected the education of parents and general dimensions of family interaction to influence the parental mediation characteristic for the development of formal operations, operationalised by CSS scale, and to mediate, via this variable, the development of that form of thinking. The direct link with formal operations is postulated in the case of variables of cultural-pedagogical status and CSS scale. The sample consists of 305 pupils aged 15 to 19. The Structural Equation Modeling was used for testing the postulated model. The results show that there is a direct influence of cultural-pedagogical status and CSS scale on formal operations, but of mother's education as well. Some relations between other predictors were confirmed, and some not, which suggests that the proposed explanatory model must be revised to some degree.

  13. Verification of some numerical models for operationally predicting mesoscale winds aloft

    International Nuclear Information System (INIS)

    Cornett, J.S.; Randerson, D.

    1977-01-01

    Four numerical models are described for predicting mesoscale winds aloft for a 6 h period. These models are all tested statistically against persistence as the control forecast and against predictions made by operational forecasters. Mesoscale winds aloft data were used to initialize the models and to verify the predictions on an hourly basis. The model yielding the smallest root-mean-square vector errors (RMSVE's) was the one based on the most physics which included advection, ageostrophic acceleration, vertical mixing and friction. Horizontal advection was found to be the most important term in reducing the RMSVE's followed by ageostrophic acceleration, vertical advection, surface friction and vertical mixing. From a comparison of the mean absolute errors based on up to 72 independent wind-profile predictions made by operational forecasters, by the most complete model, and by persistence, we conclude that the model is the best wind predictor in the free air. In the boundary layer, the results tend to favor the forecaster for direction predictions. The speed predictions showed no overall superiority in any of these three models

  14. Virtual age model for equipment aging plant based on operation environment and service state

    International Nuclear Information System (INIS)

    Zhang Liming; Cai Qi; Zhao Xinwen; Chen Ling

    2010-01-01

    The accelerated life model based on the operation environment and service state was established by taking the virtual age as the equipment aging indices. The effect of different operation environments and service states on the reliability and virtual age under the continuum operation conditions and cycle operation conditions were analyzed, and the sensitivities of virtual age on operational environments and service states were studied. The results of the example application show that the effect of NPP equipment lifetime and the key parameters related to the reliability can be quantified by this model, and the result is in accordance with the reality.(authors)

  15. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  16. A Novel Stress-Diathesis Model to Predict Risk of Post-operative Delirium: Implications for Intra-operative Management

    Directory of Open Access Journals (Sweden)

    Renée El-Gabalawy

    2017-08-01

    Full Text Available Introduction: Risk assessment for post-operative delirium (POD is poorly developed. Improved metrics could greatly facilitate peri-operative care as costs associated with POD are staggering. In this preliminary study, we develop a novel stress-diathesis model based on comprehensive pre-operative psychiatric and neuropsychological testing, a blood oxygenation level-dependent (BOLD magnetic resonance imaging (MRI carbon dioxide (CO2 stress test, and high fidelity measures of intra-operative parameters that may interact facilitating POD.Methods: The study was approved by the ethics board at the University of Manitoba and registered at clinicaltrials.gov as NCT02126215. Twelve patients were studied. Pre-operative psychiatric symptom measures and neuropsychological testing preceded MRI featuring a BOLD MRI CO2 stress test whereby BOLD scans were conducted while exposing participants to a rigorously controlled CO2 stimulus. During surgery the patient had hemodynamics and end-tidal gases downloaded at 0.5 hz. Post-operatively, the presence of POD and POD severity was comprehensively assessed using the Confusion Assessment Measure –Severity (CAM-S scoring instrument on days 0 (surgery through post-operative day 5, and patients were followed up at least 1 month post-operatively.Results: Six of 12 patients had no evidence of POD (non-POD. Three patients had POD and 3 had clinically significant confusional states (referred as subthreshold POD; ST-POD (score ≥ 5/19 on the CAM-S. Average severity for delirium was 1.3 in the non-POD group, 3.2 in ST-POD, and 6.1 in POD (F-statistic = 15.4, p < 0.001. Depressive symptoms, and cognitive measures of semantic fluency and executive functioning/processing speed were significantly associated with POD. Second level analysis revealed an increased inverse BOLD responsiveness to CO2 pre-operatively in ST-POD and marked increase in the POD groups when compared to the non-POD group. An association was also noted for

  17. An expert system for modelling operators' behaviour in control of a steam generator

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Guida, G.; Pace, A.

    1987-01-01

    Modelling the mental processes of an operator in charge of controlling a complex industrial plant is a challenging issue currently tackled by several research projects both in the area of artificial intelligence and cognitive psychology. Progress in this field could greatly contribute not only to a deeper understanding of operator's behaviour, but also to the design of intelligent operator support systems. In this paper the authors report the preliminary results of an experimental research effort devoted to model the behaviour of a plant operator by means of Knowledge-based techniques. The main standpoints of their work is that the cognitive processes underlying operator's behaviour can be of three main different types, according to the actual situation where the operator works. In normal situations, or during training sessions, the operator is free to develop deep reasoning, using knowledge about plant structure and function and relying on the first physical principles that govern its behaviour

  18. Modelling and operation strategies of DLR's large scale thermocline test facility (TESIS)

    Science.gov (United States)

    Odenthal, Christian; Breidenbach, Nils; Bauer, Thomas

    2017-06-01

    In this work an overview of the TESIS:store thermocline test facility and its current construction status will be given. Based on this, the TESIS:store facility using sensible solid filler material is modelled with a fully transient model, implemented in MATLAB®. Results in terms of the impact of filler site and operation strategies will be presented. While low porosity and small particle diameters for the filler material are beneficial, operation strategy is one key element with potential for optimization. It is shown that plant operators have to ponder between utilization and exergetic efficiency. Different durations of the charging and discharging period enable further potential for optimizations.

  19. High-gradient operators in the psl(2 vertical stroke 2) Gross-Neveu model

    International Nuclear Information System (INIS)

    Cagnazzo, Alessandra; Schomerus, Volker; Tlapak, Vaclav

    2014-10-01

    It has been observed more than 25 years ago that sigma model perturbation theory suffers from strongly RG-relevant high-gradient operators. The phenomenon was first seen in 1-loop calculations for the O(N) vector model and it is known to persist at least to two loops. More recently, Ryu et al. suggested that a certain deformation of the psl(N vertical stroke N) WZNW-model at level k=1, or equivalently the psl(N vertical stroke N) Gross-Neveu model, could be free of RG-relevant high-gradient operators and they tested their suggestion to leading order in perturbation theory. In this note we establish the absence of strongly RG-relevant high-gradient operators in the psl(2 vertical stroke 2) Gross-Neveu model to all loops. In addition, we determine the spectrum for a large subsector of the model at infinite coupling and observe that all scaling weights become half-integer. Evidence for a conjectured relation with the CP 1 vertical stroke 2 sigma model is not found.

  20. Yanqing solar field: Dynamic optical model and operational safety analysis

    International Nuclear Information System (INIS)

    Zhao, Dongming; Wang, Zhifeng; Xu, Ershu; Zhu, Lingzhi; Lei, Dongqiang; Xu, Li; Yuan, Guofeng

    2017-01-01

    Highlights: • A dynamic optical model of the Yanqing solar field was built. • Tracking angle characteristics were studied with different SCA layouts and time. • The average energy flux was simulated across four clear days. • Influences of defocus angles for energy flux were analyzed. - Abstract: A dynamic optical model was established for the Yanqing solar field at the parabolic trough solar thermal power plant and a simulation was conducted on four separate days of clear weather (March 3rd, June 2nd, September 25th, December 17th). The solar collector assembly (SCA) was comprised of a North-South and East-West layout. The model consisted of the following modules: DNI, SCA operational, and SCA optical. The tracking angle characteristics were analyzed and the results showed that the East-West layout of the tracking system was the most viable. The average energy flux was simulated for a given time period and different SCA layouts, yielding an average flux of 6 kW/m 2 , which was then used as the design and operational standards of the Yanqing parabolic trough plant. The mass flow of North-South layout was relatively stable. The influences of the defocus angles on both the average energy flux and the circumferential flux distribution were also studied. The results provided a theoretical basis for the following components: solar field design, mass flow control of the heat transfer fluid, design and operation of the tracking system, operational safety of SCAs, and power production prediction in the Yanqing 1 MW parabolic trough plant.

  1. NATO Operational Record: Collective Analytical Exploitation to Inform Operational Analysis Models and Common Operational Planning Factors (Archives operationnelles de l’OTAN: Exploitation analytique collective visant a alimenter les modeles d’analyse operationnelle et les facteurs de planification operationnelle commune)

    Science.gov (United States)

    2014-05-01

    futures de l’OTAN est positivement influencée par l’analyse opérationnelle qui s’appuie sur les données quantitatives et qualitatives des dossiers des...operations is positively influenced by operational analysis that relies on quantitative and qualitative data of operational records from past and...and future NATO operations is positively influenced by operational analysis methods, models, and tools that rely on quantitative and qualitative data

  2. New spin Calogero-Sutherland models related to BN-type Dunkl operators

    International Nuclear Information System (INIS)

    Finkel, F.; Gomez-Ullate, D.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Zhdanov, R.

    2001-01-01

    We construct several new families of exactly and quasi-exactly solvable BC N -type Calogero-Sutherland models with internal degrees of freedom. Our approach is based on the introduction of a new family of Dunkl operators of B N type which, together with the original B N -type Dunkl operators, are shown to preserve certain polynomial subspaces of finite dimension. We prove that a wide class of quadratic combinations involving these three sets of Dunkl operators always yields a spin Calogero-Sutherland model, which is (quasi-)exactly solvable by construction. We show that all the spin Calogero-Sutherland models obtainable within this framework can be expressed in a unified way in terms of a Weierstrass ζ function with suitable half-periods. This provides a natural spin counterpart of the well-known general formula for a scalar completely integrable potential of BC N type due to Olshanetsky and Perelomov. As an illustration of our method, we exactly compute several energy levels and their corresponding wavefunctions of an elliptic quasi-exactly solvable potential for two and three particles of spin 1/2

  3. Operator-based linearization for efficient modeling of geothermal processes

    NARCIS (Netherlands)

    Khait, M.; Voskov, D.V.

    2018-01-01

    Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical

  4. Optimization of Operations Resources via Discrete Event Simulation Modeling

    Science.gov (United States)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  5. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents

    International Nuclear Information System (INIS)

    Chang, Y.H.J.; Mosleh, A.

    2007-01-01

    This is the third in a series of five papers describing the IDAC (Information, Decision, and Action in Crew context) model for human reliability analysis. An example application of this modeling technique is also discussed in this series. The model is developed to probabilistically predict the responses of the nuclear power plant control room operating crew in accident conditions. The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper discusses the modeling components and their process rules. An operator's problem-solving process is divided into three types: information pre-processing (I), diagnosis and decision-making (D), and action execution (A). Explicit and context-dependent behavior rules for each type of operator are developed in the form of tables, and logical or mathematical relations. These regulate the process and activities of each of the three types of response. The behavior rules are developed for three generic types of operator: Decision Maker, Action Taker, and Consultant. This paper also provides a simple approach to calculating normalized probabilities of alternative behaviors given a context

  6. Cost Model for Risk Assessment of Company Operation in Audit

    Directory of Open Access Journals (Sweden)

    S. V.

    2017-12-01

    Full Text Available This article explores the approach to assessing the risk of company activities termination by building a cost model. This model gives auditors information on managers’ understanding of factors influencing change in the value of assets and liabilities, and the methods to identify it in more effective and reliable ways. Based on this information, the auditor can assess the adequacy of use of the assumption on continuity of company operation by management personnel when preparing financial statements. Financial uncertainty entails real manifestations of factors creating risks of the occurrence of costs, revenue losses due their manifestations, which in the long run can be a reason for termination of company operation, and, therefore, need to be foreseen in the auditor’s assessment of the adequacy of use of the continuity assumption when preparing financial statements by company management. The purpose of the study is to explore and develop a methodology for use of cost models to assess the risk of termination of company operation in audit. The issue of methodology for assessing the audit risk through analyzing methods for company valuation has not been dealt with. The review of methodologies for assessing the risks of termination of company operation in course of audit gives grounds for the conclusion that use of cost models can be an effective methodology for identification and assessment of such risks. The analysis of the above methods gives understanding of the existing system for company valuation, integrated into the management system, and the consequences of its use, i. e. comparison of the asset price data with the accounting data and the market value of the asset data. Overvalued or undervalued company assets may be a sign of future sale or liquidation of a company, which may signal on high probability of termination of company operation. A wrong choice or application of valuation methods can be indicative of the risk of non

  7. Evaluation of OPPS model for plant operator's task simulation with Micro-SAINT

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1991-03-01

    The development of a computer simulation method for cognitive behavior of operators under emergency conditions in nuclear power plant are being conducted at Japan Atomic Energy Research Institute (JAERI). As one of activities in this project, the task network modeling and simulation method has been evaluated with reproduced OPPS model using Micro-SAINT which is a PC software for task network analysis. OPPS is an operator's task simulation model developed by Oak Ridge National Laboratory. Operator's tasks under the condition of failure open of a safety relief valve in a BWR power plant has been analyzed as a sample problem with Micro-SAINT version of OPPS for the evaluation of task network analysis method. Furthermore, the fundamental capabilities of Micro-SAINT has been evaluated, and the task network in OPPS model has been also examined. As the results of this study, it has been clarified that random seed numbers in Micro-SAINT affect the probabilistic branching ratio and the distribution of task execution time calculated by Monte Carlo simulations, and the expression of network for a repeated task in the OPPS model leads to incorrect standard deviation in the case that a task execution time has some distribution. (author)

  8. Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model.

    Science.gov (United States)

    Wachs, Juan P; Frenkel, Boaz; Dori, Dov

    2014-11-01

    Errors in the delivery of medical care are the principal cause of inpatient mortality and morbidity, accounting for around 98,000 deaths in the United States of America (USA) annually. Ineffective team communication, especially in the operation room (OR), is a major root of these errors. This miscommunication can be reduced by analyzing and constructing a conceptual model of communication and miscommunication in the OR. We introduce the principles underlying Object-Process Methodology (OPM)-based modeling of the intricate interactions between the surgeon and the surgical technician while handling surgical instruments in the OR. This model is a software- and hardware-independent description of the agents engaged in communication events, their physical activities, and their interactions. The model enables assessing whether the task-related objectives of the surgical procedure were achieved and completed successfully and what errors can occur during the communication. The facts used to construct the model were gathered from observations of various types of operations miscommunications in the operating room and its outcomes. The model takes advantage of the compact ontology of OPM, which is comprised of stateful objects - things that exist physically or informatically, and processes - things that transform objects by creating them, consuming them or changing their state. The modeled communication modalities are verbal and non-verbal, and errors are modeled as processes that deviate from the "sunny day" scenario. Using OPM refinement mechanism of in-zooming, key processes are drilled into and elaborated, along with the objects that are required as agents or instruments, or objects that these processes transform. The model was developed through an iterative process of observation, modeling, group discussions, and simplification. The model faithfully represents the processes related to tool handling that take place in an OR during an operation. The specification is at

  9. Ethical Issues in Engineering Models: An Operations Researcher?s Reflections

    OpenAIRE

    Kleijnen, J.

    2010-01-01

    This article starts with an overview of the author?s personal involvement?as an Operations Research consultant?in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers...

  10. Towards operational modeling and forecasting of the Iberian shelves ecosystem.

    Directory of Open Access Journals (Sweden)

    Martinho Marta-Almeida

    Full Text Available There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD. In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m(-3. Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.

  11. Creation and annihilation operators for SU(3) in an SO(6,2) model

    International Nuclear Information System (INIS)

    Bracken, A.J.; MacGibbon, J.H.

    1984-01-01

    Creation and annihilation operators are defined which are Wigner operators (tensor shift operators) for SU(3). While the annihilation operators are simply boson operators, the creation operators are cubic polynomials in boson operators. Together they generate under commutation the Lie algebra of SO(6,2). A model for SU(3) is defined. The different SU(3) irreducible representations appear explicitly as manifestly covariant, irreducible tensors, whose orthogonality and normalisation properties are examined. Other Wigner operators for SU(3) can be constructed simply as products of the new creation and annihilation operators, or sums of such products. (author)

  12. PSOLA: A Heuristic Land-Use Allocation Model Using Patch-Level Operations and Knowledge-Informed Rules.

    Directory of Open Access Journals (Sweden)

    Yaolin Liu

    Full Text Available Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders' preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning.

  13. A "Toy" Model for Operational Risk Quantification using Credibility Theory

    OpenAIRE

    Hans B\\"uhlmann; Pavel V. Shevchenko; Mario V. W\\"uthrich

    2009-01-01

    To meet the Basel II regulatory requirements for the Advanced Measurement Approaches in operational risk, the bank's internal model should make use of the internal data, relevant external data, scenario analysis and factors reflecting the business environment and internal control systems. One of the unresolved challenges in operational risk is combining of these data sources appropriately. In this paper we focus on quantification of the low frequency high impact losses exceeding some high thr...

  14. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  15. Adapting Modeling & SImulation for Network Enabled Operations

    Science.gov (United States)

    2011-03-01

    Awareness in Aerospace Operations ( AGARD - CP -478; pp. 5/1-5/8), Neuilly Sur Seine, France: NATO- AGARD . 243 ChApter 8 ShAping uk defenCe poliCy...Chapter 3 73 Increasing the Maturity of Command to Deal with Complex, Information Age Environments • Players could concentrate on their own areas; they...The results are shown in figure 4.16, which shows the fit for the first four serials. The model still explains 73 % of the vari- ability, down from 82

  16. "A model co-operative country": Irish-Finnish co-operative contacts at the turn of the twentieth century

    DEFF Research Database (Denmark)

    Hilson, Mary

    2017-01-01

    Agricultural co-operative societies were widely discussed across late nineteenth-century Europe as a potential solution to the problems of agricultural depression, land reform and rural poverty. In Finland, the agronomist Hannes Gebhard drew inspiration from examples across Europe in founding the...... that even before the First World War it was Finland, not Ireland, that had begun to be regarded as ‘a model co-operative country’....... between Irish and Finnish co-operators around the turn of the century, and examines the ways in which the parallels between the two countries were constructed and presented by those involved in these exchanges. I will also consider the reasons for the divergence in the development of cooperation, so...

  17. A cognitive model of human behaviour for simulating operators of complex plants

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Mancini, G.; Bersini, U.

    1988-01-01

    This paper discusses the need of a 'deterministic' representation of the operator's reasoning and sensory-motor behaviour in order to approach correctly the overall problem of Man-Machine Interaction (MMI). Such type of modelling represents a fundamental complement to the merely probabilistic quantification of operator performances for safety as well as for design purposes. A cognitive model, formally based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology, is then presented and briefly discussed, including the psychological criteria by which the content of operators' knowledge is exploited for instantiation of strategies during emergencies. Finally the potential applications of such methodology are reviewed identifying limits and advantages in comparison to more classical and mechanicistic approaches. (author)

  18. Simulation Model for Dynamic Operation of Double-Effect Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Ahmed Mojahid Sid Ahmed Mohammed Salih

    2014-07-01

    Full Text Available The development in the field of refrigeration and air conditioning systems driven by absorption cycles acquired a considerable importance recently. For commercial absorption chillers, an essential challenge for creating chiller model certainly is the shortage of components technical specifications. These kinds of specifications are usually proprietary for chillers producers. In this paper, a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations is presented. The chiller studied is Lithium bromide-water with capacity of 1250 RT (Refrigeration Tons. The governing equations of the dynamic operation of the chiller are developed. From available design information, the values of the overall heat transfer coefficients multiplied by the surface area are computed. The dynamic operation of the absorption chiller is simulated to study the performance of the system. The model is able to provide essential details of the temperature, concentration, and flow rate at each state point in the chiller.

  19. The Operational Planning Model of Transhipment Processes in the Port

    Directory of Open Access Journals (Sweden)

    Mia Jurjević

    2016-04-01

    Full Text Available Modelling of a traffic system refers to the efficiency of operations for establishing successful business performance by examining the possibilities for its improvement. The main purpose of each container terminal is to ensure continuity and dynamics of the flow of containers. The objective of this paper is to present a method for determining the amount of certain types of containers that can be transhipped at each berth, with the proper cargo handling, taking into account minimum total costs of transhipment. The mathematical model of planning the transhipment and transportation of containers at the terminal is presented. The optimal solution, obtained with the method of linear programming, represents a plan for container deployment that will ensure effective ongoing process of transhipment, providing the lowest transhipment costs. The proposed model, tested in the port of Rijeka, should be the basis for makingadequate business decisions in the operational planning of the container terminal.

  20. An information theory-based approach to modeling the information processing of NPP operators

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory

  1. Analysis of Operating Principles with S-system Models

    Science.gov (United States)

    Lee, Yun; Chen, Po-Wei; Voit, Eberhard O.

    2011-01-01

    Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation principles in complete generality, but the work here discusses the important situation where a biological system must shift operation from its normal steady state to a new steady state. This situation is quite common and includes many stress responses. We present two distinct methods for determining different solutions to this task of achieving a new target steady state. Both methods utilize the property of S-system models within Biochemical Systems Theory (BST) that steady-states can be explicitly represented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire admissible solution space. Operations on the basis of the solution space permit modest alterations of the transients toward the target steady state. The second method uses standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of functional effectiveness, which are specified beforehand. As an illustration, we use both methods to characterize alternative response patterns of yeast subjected to heat stress, and compare them with observations from the literature. PMID:21377479

  2. Preliminary Findings of the South Africa Power System Capacity Expansion and Operational Modelling Study: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Timothy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chartan, Erol Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brinkman, Gregory L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Wind and solar power contract prices have recently become cheaper than many conventional new-build alternatives in South Africa and trends suggest a continued increase in the share of variable renewable energy (vRE) on South Africa's power system with coal technology seeing the greatest reduction in capacity, see 'Figure 6: Percentage share by Installed Capacity (MW)' in [1]. Hence it is essential to perform a state-of-the-art grid integration study examining the effects of these high penetrations of vRE on South Africa's power system. Under the 21st Century Power Partnership (21CPP), funded by the U.S. Department of Energy, the National Renewable Energy Laboratory (NREL) has significantly augmented existing models of the South African power system to investigate future vRE scenarios. NREL, in collaboration with Eskom's Planning Department, further developed, tested and ran a combined capacity expansion and operational model of the South African power system including spatially disaggregated detail and geographical representation of system resources. New software to visualize and interpret modelling outputs has been developed, and scenario analysis of stepwise vRE build targets reveals new insight into associated planning and operational impacts and costs. The model, built using PLEXOS, is split into two components, firstly a capacity expansion model and secondly a unit commitment and economic dispatch model. The capacity expansion model optimizes new generation decisions to achieve the lowest cost, with a full understanding of capital cost and an approximated understanding of operational costs. The operational model has a greater set of detailed operational constraints and is run at daily resolutions. Both are run from 2017 through 2050. This investigation suggests that running both models in tandem may be the most effective means to plan the least cost South African power system as build plans seen to be more expensive than optimal by the

  3. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  4. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  5. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    Science.gov (United States)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  6. A method for aggregating external operating conditions in multi-generation system optimization models

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Münster, Marie; Ensinas, Adriano Viana

    2016-01-01

    This paper presents a novel, simple method for reducing external operating condition datasets to be used in multi-generation system optimization models. The method, called the Characteristic Operating Pattern (CHOP) method, is a visually-based aggregation method that clusters reference data based...... on parameter values rather than time of occurrence, thereby preserving important information on short-term relations between the relevant operating parameters. This is opposed to commonly used methods where data are averaged over chronological periods (months or years), and extreme conditions are hidden...... in the averaged values. The CHOP method is tested in a case study where the operation of a fictive Danish combined heat and power plant is optimized over a historical 5-year period. The optimization model is solved using the full external operating condition dataset, a reduced dataset obtained using the CHOP...

  7. Pre-operative simulation of periacetabular osteotomy via a three-dimensional model constructed from salt

    Directory of Open Access Journals (Sweden)

    Fukushima Kensuke

    2017-01-01

    Full Text Available Introduction: Periacetabular osteotomy (PAO is an effective joint-preserving procedure for young adults with developmental dysplasia of the hip. Although PAO provides excellent radiographic and clinical results, it is a technically demanding procedure with a distinct learning curve that requires careful 3D planning and, above all, has a number of potential complications. We therefore developed a pre-operative simulation method for PAO via creation of a new full-scale model. Methods: The model was prepared from the patient’s Digital Imaging and Communications in Medicine (DICOM formatted data from computed tomography (CT, for construction and assembly using 3D printing technology. A major feature of our model is that it is constructed from salt. In contrast to conventional models, our model provides a more accurate representation, at a lower manufacturing cost, and requires a shorter production time. Furthermore, our model realized simulated operation normally with using a chisel and drill without easy breakage or fissure. We were able to easily simulate the line of osteotomy and confirm acetabular version and coverage after moving to the osteotomized fragment. Additionally, this model allowed a dynamic assessment that avoided anterior impingement following the osteotomy. Results: Our models clearly reflected the anatomical shape of the patient’s hip. Our models allowed for surgical simulation, making realistic use of the chisel and drill. Our method of pre-operative simulation for PAO allowed for the assessment of accurate osteotomy line, determination of the position of the osteotomized fragment, and prevented anterior impingement after the operation. Conclusion: Our method of pre-operative simulation might improve the safety, accuracy, and results of PAO.

  8. EDM - A model for optimising the short-term power operation of a complex hydroelectric network

    International Nuclear Information System (INIS)

    Tremblay, M.; Guillaud, C.

    1996-01-01

    In order to optimize the short-term power operation of a complex hydroelectric network, a new model called EDM was added to PROSPER, a water management analysis system developed by SNC-Lavalin. PROSPER is now divided into three parts: an optimization model (DDDP), a simulation model (ESOLIN), and an economic dispatch model (EDM) for the short-term operation. The operation of the KSEB hydroelectric system (located in southern India) with PROSPER was described. The long-term analysis with monthly time steps is assisted by the DDDP, and the daily analysis with hourly or half-hourly time steps is performed with the EDM model. 3 figs

  9. Hypothetical operation model for the multi-bed system of the Tritium plant based on the scheduling approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Uk, E-mail: eslee@dongguk.edu [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of); Chang, Min Ho; Yun, Sei-Hun [National Fusion Research Institute, 169-148-gil Kwahak-ro, Yusong-gu, Daejon 34133 (Korea, Republic of); Lee, Euy Soo [Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, In-Beum [Department of Chemical Engineering and Graduate School of Engineering Mastership, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of); Lee, Kun-Hong [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784 (Korea, Republic of)

    2016-11-01

    Highlights: • We introduce a mathematical model for the multi-bed storage system in the tritium plant. • We obtain details of operation by solving the model. • The model assesses diverse operation scenarios with respect to risk. - Abstract: In this paper, we describe our hypothetical operation model (HOM) for the multi-bed system of the storage and delivery system (SDS) of the ITER tritium plant. The multi-bed system consists of multiple getter beds (i.e., for batch operation) and buffer vessels (i.e., for continuous operation). Our newly developed HOM is formulated as a mixed-integer linear programming (MILP) model and has been extensively investigated to optimize chemical and petrochemical production planning and scheduling. Our model determines the timing, duration, and size of tasks corresponding to each set of equipment. Further, inventory levels for each set of equipment are calculated. Our proposed model considers the operation of one cycle of one set of getter beds and is implemented and assessed as a case study problem.

  10. Addressing drug adherence using an operations management model.

    Science.gov (United States)

    Nunlee, Martin; Bones, Michelle

    2014-01-01

    OBJECTIVE To provide a model that enables health systems and pharmacy benefit managers to provide medications reliably and test for reliability and validity in the analysis of adherence to drug therapy of chronic disease. SUMMARY The quantifiable model described here can be used in conjunction with behavioral designs of drug adherence assessments. The model identifies variables that can be reproduced and expanded across the management of chronic diseases with drug therapy. By creating a reorder point system for reordering medications, the model uses a methodology commonly seen in operations research. The design includes a safety stock of medication and current supply of medication, which increases the likelihood that patients will have a continuous supply of medications, thereby positively affecting adherence by removing barriers. CONCLUSION This method identifies an adherence model that quantifies variables related to recommendations from health care providers; it can assist health care and service delivery systems in making decisions that influence adherence based on the expected order cycle days and the expected daily quantity of medication administered. This model addresses the possession of medication as a barrier to adherence.

  11. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  12. A Review of Quantitative Situation Assessment Models for Nuclear Power Plant Operators

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Seong, Poong Hyun

    2009-01-01

    Situation assessment is the process of developing situation awareness and situation awareness is defined as 'the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning and the projection of their status in the near future.' Situation awareness is an important element influencing human actions because human decision making is based on the result of situation assessment or situation awareness. There are many models for situation awareness and those models can be categorized into qualitative or quantitative. As the effects of some input factors on situation awareness can be investigated through the quantitative models, the quantitative models are more useful for the design of operator interfaces, automation strategies, training program, and so on, than the qualitative models. This study presents the review of two quantitative models of situation assessment (SA) for nuclear power plant operators

  13. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  14. Geometrical aspects of operator ordering terms in gauge invariant quantum models

    International Nuclear Information System (INIS)

    Houston, P.J.

    1990-01-01

    Finite-dimensional quantum models with both boson and fermion degrees of freedom, and which have a gauge invariance, are studied here as simple versions of gauge invariant quantum field theories. The configuration space of these finite-dimensional models has the structure of a principal fibre bundle and has defined on it a metric which is invariant under the action of the bundle or gauge group. When the gauge-dependent degrees of freedom are removed, thereby defining the quantum models on the base of the principal fibre bundle, extra operator ordering terms arise. By making use of dimensional reduction methods in removing the gauge dependence, expressions are obtained here for the operator ordering terms which show clearly their dependence on the geometry of the principal fibre bundle structure. (author)

  15. Time Series Modeling of Human Operator Dynamics in Manual Control Tasks

    Science.gov (United States)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.

  16. An Effect of the Co-Operative Network Model for Students' Quality in Thai Primary Schools

    Science.gov (United States)

    Khanthaphum, Udomsin; Tesaputa, Kowat; Weangsamoot, Visoot

    2016-01-01

    This research aimed: 1) to study the current and desirable states of the co-operative network in developing the learners' quality in Thai primary schools, 2) to develop a model of the co-operative network in developing the learners' quality, and 3) to examine the results of implementation of the co-operative network model in the primary school.…

  17. Model validity and frequency band selection in operational modal analysis

    Science.gov (United States)

    Au, Siu-Kui

    2016-12-01

    Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.

  18. Island operation - modelling of a small hydro power system

    Energy Technology Data Exchange (ETDEWEB)

    Skarp, Stefan

    2000-02-01

    Simulation is a useful tool for investigating a system behaviour. It is a way to examine operating situations without having to perform them in reality. If someone for example wants to test an operating situation where the system possibly will demolish, a computer simulation could be a both cheaper and safer way than to do the test in reality. This master thesis performs and analyses a simulation, modelling an electronic power system. The system consists of a minor hydro power station, a wood refining industry, and interconnecting power system components. In the simulation situation the system works in a so called island operation. The thesis aims at making a capacity analysis of the current system. Above all, the goal is to find restrictions in load power profile of the consumer, under given circumstances. The computer software used in simulations is Matlab and its additional program PSB (Power System Blockset). The work has been carried out in co-operation with the power supplier Skellefteaa Kraft, where the problem formulation of this master thesis was founded.

  19. Knowledge model of trainee for training support system of plant operation

    Energy Technology Data Exchange (ETDEWEB)

    Furuhama, Yutaka; Furuta, Kazuo; Kondo, Shunsuke [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    We have already proposed a knowledge model of a trainee, which model consists of two layers: hierarchical function and qualitative structure. We developed a method to generate normative operator knowledge based on this knowledge model structure, and to identify trainee`s intention by means of truth maintenance. The methods were tested by cognitive experiment using a prototype of training support system. (author)

  20. Operator models for delivering municipal solid waste management services in developing countries. Part A: The evidence base.

    Science.gov (United States)

    Wilson, David C; Kanjogera, Jennifer Bangirana; Soós, Reka; Briciu, Cosmin; Smith, Stephen R; Whiteman, Andrew D; Spies, Sandra; Oelz, Barbara

    2017-08-01

    This article presents the evidence base for 'operator models' - that is, how to deliver a sustainable service through the interaction of the 'client', 'revenue collector' and 'operator' functions - for municipal solid waste management in emerging and developing countries. The companion article addresses a selection of locally appropriate operator models. The evidence shows that no 'standard' operator model is effective in all developing countries and circumstances. Each city uses a mix of different operator models; 134 cases showed on average 2.5 models per city, each applying to different elements of municipal solid waste management - that is, street sweeping, primary collection, secondary collection, transfer, recycling, resource recovery and disposal or a combination. Operator models were analysed in detail for 28 case studies; the article summarises evidence across all elements and in more detail for waste collection. Operators fall into three main groups: The public sector, formal private sector, and micro-service providers including micro-, community-based and informal enterprises. Micro-service providers emerge as a common group; they are effective in expanding primary collection service coverage into poor- or peri-urban neighbourhoods and in delivering recycling. Both public and private sector operators can deliver effective services in the appropriate situation; what matters more is a strong client organisation responsible for municipal solid waste management within the municipality, with stable political and financial backing and capacity to manage service delivery. Revenue collection is also integral to operator models: Generally the municipality pays the operator from direct charges and/or indirect taxes, rather than the operator collecting fees directly from the service user.

  1. Modeling Methodologies for Representing Urban Cultural Geographies in Stability Operations

    National Research Council Canada - National Science Library

    Ferris, Todd P

    2008-01-01

    ... 2.0.0, in an effort to provide modeling methodologies for a single simulation tool capable of exploring the complex world of urban cultural geographies undergoing Stability Operations in an irregular warfare (IW) environment...

  2. Modeling the Operation of a Platoon of Amphibious Vehicles for Support of Operational Test and Evaluation (OT&E)

    National Research Council Canada - National Science Library

    Gaver, Donald

    2001-01-01

    ...) of the Marine Corps' prospective Advanced Amphibious Assault Vehicle (AAAV). The model's emphasis is on suitability issues such as Operational Availability in an on-land (after ocean transit) mission region...

  3. Stochastic Modelling of Linear Programming Application to Brewing Operational Systems

    Directory of Open Access Journals (Sweden)

    Akanbi O.P.

    2014-07-01

    Full Text Available System where a large number of interrelated operations exist, technically-based operational mechanism is always required to achieve potential. An intuitive solution, which is common practice in most of the breweries, perhaps may not uncover the optimal solution, as there is hardly any guarantee to satisfy the best policy application. There is always high foreign exchange involved in procurement of imported raw materials and thus increases the cost of production, abandonment and poor utilization of available locally-sourced raw materials. This study focuses on the approaches which highlight the steps and mechanisms involved in optimizing the wort extract by the use of different types of adjuncts and formulating wort production models which are useful in proffering expected solutions. Optimization techniques, the generalized models and an overview of typical brewing processes were considered.

  4. Data Envelopment Analysis (DEA) Model in Operation Management

    Science.gov (United States)

    Malik, Meilisa; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    Quality management is an effective system in operation management to develops, maintains, and improves quality from groups of companies that allow marketing, production, and service at the most economycal level as well as ensuring customer satisfication. Many companies are practicing quality management to improve their bussiness performance. One of performance measurement is through measurement of efficiency. One of the tools can be used to assess efficiency of companies performance is Data Envelopment Analysis (DEA). The aim of this paper is using Data Envelopment Analysis (DEA) model to assess efficiency of quality management. In this paper will be explained CCR, BCC, and SBM models to assess efficiency of quality management.

  5. Conformal operator product expansion in the Yukawa model

    International Nuclear Information System (INIS)

    Prati, M.C.

    1983-01-01

    Conformal techniques are applied to the Yukawa model, as an example of a theory with spinor fields. It is written the partial-wave analysis of the 4-point function of two scalars and two spinors in the channel phi psi → phi psi in terms of spinor tensor representations of the conformal group. Using this conformal expansion, it is diagonalized the Bethe-Salpeter equation, which is reduced to algebraic relations among the partial waves. It is shown that in the γ 5 -invariant model, but not in the general case, it is possible to derive dynamically from the expansions of the 4-point function the vacuum operator product phi psi>

  6. Assessment of Multiple Launch Rocket System (MLRS) Training Strategy

    Science.gov (United States)

    1992-04-01

    Unclassified Unclassified Unlimited NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) i Precribed by AN % Std Z39-18296-102? ARI Research Report 1614 13...Chiefs reported that they can get to be monotonous for the troops and produce " burn out"(9o 12 14)* 33 Post Number 2 reported success with Best-by

  7. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Chew, S.P.; Dunnett, S.J. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom); Andrews, J.D. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom)], E-mail: j.d.andrews@lboro.ac.uk

    2008-07-15

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.

  8. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    International Nuclear Information System (INIS)

    Chew, S.P.; Dunnett, S.J.; Andrews, J.D.

    2008-01-01

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically

  9. Operator models for delivering municipal solid waste management services in developing countries: Part B: Decision support.

    Science.gov (United States)

    Soós, Reka; Whiteman, Andrew D; Wilson, David C; Briciu, Cosmin; Nürnberger, Sofia; Oelz, Barbara; Gunsilius, Ellen; Schwehn, Ekkehard

    2017-08-01

    This is the second of two papers reporting the results of a major study considering 'operator models' for municipal solid waste management (MSWM) in emerging and developing countries. Part A documents the evidence base, while Part B presents a four-step decision support system for selecting an appropriate operator model in a particular local situation. Step 1 focuses on understanding local problems and framework conditions; Step 2 on formulating and prioritising local objectives; and Step 3 on assessing capacities and conditions, and thus identifying strengths and weaknesses, which underpin selection of the operator model. Step 4A addresses three generic questions, including public versus private operation, inter-municipal co-operation and integration of services. For steps 1-4A, checklists have been developed as decision support tools. Step 4B helps choose locally appropriate models from an evidence-based set of 42 common operator models ( coms); decision support tools here are a detailed catalogue of the coms, setting out advantages and disadvantages of each, and a decision-making flowchart. The decision-making process is iterative, repeating steps 2-4 as required. The advantages of a more formal process include avoiding pre-selection of a particular com known to and favoured by one decision maker, and also its assistance in identifying the possible weaknesses and aspects to consider in the selection and design of operator models. To make the best of whichever operator models are selected, key issues which need to be addressed include the capacity of the public authority as 'client', management in general and financial management in particular.

  10. The master T-operator for the Gaudin model and the KP hierarchy

    International Nuclear Information System (INIS)

    Alexandrov, Alexander; Leurent, Sebastien; Tsuboi, Zengo; Zabrodin, Anton

    2014-01-01

    Following the approach of [1], we construct the master T-operator for the quantum Gaudin model with twisted boundary conditions and show that it satisfies the bilinear identity and Hirota equations for the classical KP hierarchy. We also characterize the class of solutions to the KP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum Gaudin model and the classical Calogero–Moser system of particles

  11. An improved cellular automata model for train operation simulation with dynamic acceleration

    Science.gov (United States)

    Li, Wen-Jun; Nie, Lei

    2018-03-01

    Urban rail transit plays an important role in the urban public traffic because of its advantages of fast speed, large transport capacity, high safety, reliability and low pollution. This study proposes an improved cellular automaton (CA) model by considering the dynamic characteristic of the train acceleration to analyze the energy consumption and train running time. Constructing an effective model for calculating energy consumption to aid train operation improvement is the basis for studying and analyzing energy-saving measures for urban rail transit system operation.

  12. Design, Operation and Control Modelling of SOFC/GT Hybrid Systems

    OpenAIRE

    Stiller, Christoph

    2006-01-01

    This thesis focuses on modelling-based design, operation and control of solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid systems. Fuel cells are a promising approach to high-efficiency power generation, as they directly convert chemical energy to electric work. High-temperature fuel cells such as the SOFC can be integrated in gas turbine processes, which further increases the electrical efficiency to values up to 70%. However, there are a number of obstacles for safe operation of such...

  13. Updating of states in operational hydrological models

    Science.gov (United States)

    Bruland, O.; Kolberg, S.; Engeland, K.; Gragne, A. S.; Liston, G.; Sand, K.; Tøfte, L.; Alfredsen, K.

    2012-04-01

    Operationally the main purpose of hydrological models is to provide runoff forecasts. The quality of the model state and the accuracy of the weather forecast together with the model quality define the runoff forecast quality. Input and model errors accumulate over time and may leave the model in a poor state. Usually model states can be related to observable conditions in the catchment. Updating of these states, knowing their relation to observable catchment conditions, influence directly the forecast quality. Norway is internationally in the forefront in hydropower scheduling both on short and long terms. The inflow forecasts are fundamental to this scheduling. Their quality directly influence the producers profit as they optimize hydropower production to market demand and at the same time minimize spill of water and maximize available hydraulic head. The quality of the inflow forecasts strongly depends on the quality of the models applied and the quality of the information they use. In this project the focus has been to improve the quality of the model states which the forecast is based upon. Runoff and snow storage are two observable quantities that reflect the model state and are used in this project for updating. Generally the methods used can be divided in three groups: The first re-estimates the forcing data in the updating period; the second alters the weights in the forecast ensemble; and the third directly changes the model states. The uncertainty related to the forcing data through the updating period is due to both uncertainty in the actual observation and to how well the gauging stations represent the catchment both in respect to temperatures and precipitation. The project looks at methodologies that automatically re-estimates the forcing data and tests the result against observed response. Model uncertainty is reflected in a joint distribution of model parameters estimated using the Dream algorithm.

  14. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2012-01-01

    Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

  15. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  16. Twist operator correlation functions in O(n) loop models

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Cardy, John

    2009-01-01

    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n = 0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null states, we derive a new explicit result for the probabilities that an SLE 8/3 winds in various ways about two points in the upper half-plane, e.g. that the SLE passes to the left of both points. The collection of c = 0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We argue that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules

  17. A simple rule based model for scheduling farm management operations in SWAT

    Science.gov (United States)

    Schürz, Christoph; Mehdi, Bano; Schulz, Karsten

    2016-04-01

    For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the

  18. Operational experience with model-based steering in the SLC linac

    International Nuclear Information System (INIS)

    Thompson, K.A.; Himel, T.; Moore, S.; Sanchez-Chopitea, L.; Shoaee, H.

    1989-03-01

    Operational experience with model-driven steering in the linac of the Stanford Linear Collider is discussed. Important issues include two-beam steering, sensitivity of algorithms to faulty components, sources of disagreement with the model, and the effects of the finite resolution of beam position monitors. Methods developed to make the steering algorithms more robust in the presence of such complications are also presented. 5 refs., 1 fig

  19. Analysis of operational events by ATHEANA framework for human factor modelling

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constntinescu, Cristina; Doca, Cezar; Guzun, Basarab

    2007-01-01

    In the area of human reliability assessment, the experts recognise the fact that the current methods have not represented correctly the role of human in prevention, initiating and mitigating the accidents in nuclear power plants. The nature of this deficiency appears because the current methods used in modelling of human factor have not taken into account the human performance and reliability such as it has been observed in the operational events. ATHEANA - A Technique for Human Error ANAlysis - is a new methodology for human analysis that has included the specific data of operational events and also psychological models for human behaviour. This method has included new elements such as the unsafe action and error mechanisms. In this paper we present the application of ATHEANA framework in the analysis of operational events that appeared in different nuclear power plants during 1979-2002. The analysis of operational events has consisted of: - identification of the unsafe actions; - including the unsafe actions into a category, omission ar commission; - establishing the type of error corresponding to the unsafe action: slip, lapse, mistake and circumvention; - establishing the influence of performance by shaping the factors and some corrective actions. (authors)

  20. The development of human behavior analysis techniques - A study on knowledge representation methods for operator cognitive model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Young Tack [Soongsil University, Seoul (Korea, Republic of)

    1996-07-01

    The main objective of this project is modeling of human operator in a main control room of Nuclear Power Plant. For this purpose, we carried out research on knowledge representation and inference method based on Rasmussen`s decision ladder structure. And we have developed SACOM(Simulation= Analyzer with a Cognitive Operator Model) using G2 shell on Sun workstations. SACOM consists of Operator Model, Interaction Analyzer, Situation Generator. Cognitive model aims to build a more detailed model of human operators in an effective way. SACOM is designed to model knowledge-based behavior of human operators more easily. The followings are main research topics carried out this year. First, in order to model knowledge-based behavior of human operators, more detailed scenarios are constructed. And, knowledge representation and inference methods are developed to support the scenarios. Second, meta knowledge structures are studied to support human operators 4 types of diagnoses. This work includes a study on meta and scheduler knowledge structures for generate-and-test, topographic, decision tree and case-based approaches. Third, domain knowledge structure are improved to support meta knowledge. Especially, domain knowledge structures are developed to model topographic diagnosis model. Fourth, more applicable interaction analyzer and situation generator are designed and implemented. The new version is implemented in G2 on Sun workstations. 35 refs., 49 figs. (author)

  1. Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency

    International Nuclear Information System (INIS)

    Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock

    2016-01-01

    Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.

  2. A Three-Phase Microgrid Restoration Model Considering Unbalanced Operation of Distributed Generation

    International Nuclear Information System (INIS)

    Wang, Zeyu; Wang, Jianhui; Chen, Chen

    2016-01-01

    Recent severe outages highlight the urgency of improving grid resiliency in the U.S. Microgrid formation schemes are proposed to restore critical loads after outages occur. Most distribution networks have unbalanced configurations that are not represented in sufficient detail by single-phase models. This study provides a microgrid formation plan that adopts a three-phase network model to represent unbalanced distribution networks. The problem formulation has a quadratic objective function with mixed-integer linear constraints. The three-phase network model enables us to examine the three-phase power outputs of distributed generators (DGs), preventing unbalanced operation that might trip DGs. Because the DG unbalanced operation constraint is non-convex, an iterative process is presented that checks whether the unbalanced operation limits for DGs are satisfied after each iteration of optimization. We also develop a relatively conservative linear approximation on the unbalanced operation constraint to handle larger networks. Compared with the iterative solution process, the conservative linear approximation is able to accelerate the solution process at the cost of sacrificing optimality to a limited extent. Simulation in the IEEE 34 node and IEEE 123 test feeders indicate that the proposed method yields more practical microgrid formations results. In addition, this paper explores the coordinated operation of DGs and energy storage (ES) installations. The unbalanced three-phase outputs of ESs combined with the relatively balanced outputs of DGs could supply unbalanced loads. In conclusion, the case study also validates the DG-ES coordination.

  3. Fires involving radioactive materials : transference model; operative recommendations

    International Nuclear Information System (INIS)

    Rodriguez, C.E.; Puntarulo, L.J.; Canibano, J.A.

    1988-01-01

    In all aspects related to the nuclear activity, the occurrence of an explosion, fire or burst type accident, with or without victims, is directly related to the characteristics of the site. The present work analyses the different parameters involved, describing a transference model and recommendations for evaluation and control of the radiological risk for firemen. Special emphasis is placed on the measurement of the variables existing in this kind of operations

  4. Expert System Models for Forecasting Forklifts Engagement in a Warehouse Loading Operation: A Case Study

    Directory of Open Access Journals (Sweden)

    Dejan Mirčetić

    2016-08-01

    Full Text Available The paper focuses on the problem of forklifts engagement in warehouse loading operations. Two expert system (ES models are created using several machine learning (ML models. Models try to mimic expert decisions while determining the forklifts engagement in the loading operation. Different ML models are evaluated and adaptive neuro fuzzy inference system (ANFIS and classification and regression trees (CART are chosen as the ones which have shown best results for the research purpose. As a case study, a central warehouse of a beverage company was used. In a beverage distribution chain, the proper engagement of forklifts in a loading operation is crucial for maintaining the defined customer service level. The created ES models represent a new approach for the rationalization of the forklifts usage, particularly for solving the problem of the forklifts engagement incargo loading. They are simple, easy to understand, reliable, and practically applicable tool for deciding on the engagement of the forklifts in a loading operation.

  5. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    Science.gov (United States)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  6. A concessionaire model for food and beverage operations in South African National Parks

    Directory of Open Access Journals (Sweden)

    T Taylor

    2014-01-01

    Full Text Available In recent years, protected areas have come under pressure due to the budget cuts of government. As a result, national parks have had to devise strategies by means of which they are able to generate additional revenue, in order to remain competitive. Such a strategy is the introduction of public-private partnerships, which allows the private sector to operate certain lodging facilities, restaurants and shops within parks. SANParks introduced their commercialization strategy in 2000 and overall it has been a success. However, despite earning much needed revenue; there are many complaints and overall dissatisfaction from tourists with restaurant and shop facilities operated by concessionaires in SANParks. A survey capturing more than 5000 questionnaires was conducted to explore SANParks concessionaires in terms of food and beverages to identify factors relating to the consumption of food and beverages by tourists. The data was analysed to provide information needed to construct a model for concessionaire food and beverage operations in SANParks. Data provided a demographic profile of respondents, factor analysis provided food consumption factors and lastly structural equation modelling which provided goodness of fit indices for the concessionaire model. The purpose of this study was to construct a model for concessionaire food and beverage operations at SANParks.

  7. Systemic model for the aid for operating of the reactor Siloe

    International Nuclear Information System (INIS)

    Royer, J.C.; Moulin, V.; Monge, F.

    1995-01-01

    The Service of the Reactor Siloe (CEA/DRN/DRE/SRS), fully aware of the abilities and knowledge of his teams in the field of research reactor operating, has undertaken a project of knowledge engineering in this domain. The following aims have been defined: knowledge capitalization for the installation in order to insure its perenniality and valorization, elaboration of a project for the aid of the reactor operators. This article deals with the different actions by the SRS to reach the aims: realization of a technical model for the operation of the Siloe reactor, development of a knowledge-based system for the aid for operating. These actions based on a knowledge engineering methodology, SAGACE, and using industrial tools will lead to an amelioration of the security and the operating of the Siloe reactor. (authors). 13 refs., 7 figs

  8. An operator basis for the Standard Model with an added scalar singlet

    Energy Technology Data Exchange (ETDEWEB)

    Gripaios, Ben [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Sutherland, Dave [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Kavli Institute for Theoretical Physics, UCSB Kohn Hall, Santa Barbara CA (United States)

    2016-08-17

    Motivated by the possible di-gamma resonance at 750 GeV, we present a basis of effective operators for the Standard Model plus a scalar singlet at dimensions 5, 6, and 7. We point out that an earlier list at dimensions 5 and 6 contains two redundant operators at dimension 5.

  9. MATHEMATICAL MODELS OF PROCESSES AND SYSTEMS OF TECHNICAL OPERATION FOR ONBOARD COMPLEXES AND FUNCTIONAL SYSTEMS OF AVIONICS

    Directory of Open Access Journals (Sweden)

    Sergey Viktorovich Kuznetsov

    2017-01-01

    Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of

  10. NOAA Operational Model Archive Distribution System (NOMADS): High Availability Applications for Reliable Real Time Access to Operational Model Data

    Science.gov (United States)

    Alpert, J. C.; Wang, J.

    2009-12-01

    To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including

  11. A hybrid spatiotemporal drought forecasting model for operational use

    Science.gov (United States)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  12. A Scalable Version of the Navy Operational Global Atmospheric Prediction System Spectral Forecast Model

    Directory of Open Access Journals (Sweden)

    Thomas E. Rosmond

    2000-01-01

    Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.

  13. Modeling and validating the grabbing forces of hydraulic log grapples used in forest operations

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux; Lihai Wang

    2003-01-01

    The grabbing forces of log grapples were modeled and analyzed mathematically under operating conditions when grabbing logs from compact log piles and from bunch-like log piles. The grabbing forces are closely related to the structural parameters of the grapple, the weight of the grapple, and the weight of the log grabbed. An operational model grapple was designed and...

  14. Numerical modelling of multi-vane expander operating conditions in ORC system

    Science.gov (United States)

    Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr

    2017-11-01

    Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  15. The systems integration operations/logistics model as a decision-support tool

    International Nuclear Information System (INIS)

    Miller, C.; Vogel, L.W.; Joy, D.S.

    1989-01-01

    Congress has enacted legislation specifying Yucca Mountain, Nevada, for characterization as the candidate site for the disposal of spent fuel and high-level wastes and has authorized a monitored retrievable storage (MRS) facility if one is warranted. Nevertheless, the exact configuration of the facilities making up the Federal Waste Management System (FWMS) was not specified. This has left the Office of Civilian Radioactive Waste Management (OCRWM) the responsibility for assuring the design of a safe and reliable disposal system. In order to assist in the analysis of potential configuration alternatives, operating strategies, and other factors for the FWMS and its various elements, a decision-support tool known as the systems integration operations/logistics model (SOLMOD) was developed. SOLMOD is a discrete event simulation model that emulates the movement and interaction of equipment and radioactive waste as it is processed through the FWMS - from pickup at reactor pools to emplacement. The model can be used to measure the impacts of different operating schedules and rules, system configurations, and equipment and other resource availabilities on the performance of processes comprising the FWMS and how these factors combine to determine overall system performance. SOLMOD can assist in identifying bottlenecks and can be used to assess capacity utilization of specific equipment and staff as well as overall system resilience

  16. Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2013-01-01

    We calculate the order \\lambda, \\lambda^2 and \\lambda y^2 terms of the 59 x 59 one-loop anomalous dimension matrix of dimension-six operators, where \\lambda and y are the Standard Model Higgs self-coupling and a generic Yukawa coupling, respectively. The dimension-six operators modify the running of the Standard Model parameters themselves, and we compute the complete one-loop result for this. We discuss how there is mixing between operators for which no direct one-particle-irreducible diagram exists, due to operator replacements by the equations of motion.

  17. Advanced autonomous model-based operation of industrial process systems (Autoprofit) : technological developments and future perspectives

    NARCIS (Netherlands)

    Ozkan, L.; Bombois, X.J.A.; Ludlage, J.H.A.; Rojas, C.R.; Hjalmarsson, H.; Moden, P.E.; Lundh, M.; Backx, A.C.P.M.; Van den Hof, P.M.J.

    2016-01-01

    Model-based operation support technology such as Model Predictive Control (MPC) is a proven and accepted technology for multivariable and constrained large scale control problems in process industry. Despite the growing number of successful implementations, the low level of operational efficiency of

  18. A survey on the technologies and cases for the cognitive models of nuclear power plant operators

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Chun, Se Woo; Seo, Sang Moon; Lee, Hyun Chul

    1993-04-01

    To enhance the safety and availability of nuclear power plants, it is necessary to develop the methodologies which can systematically analyze the interrelationships between plant operators and main process systems. Operator congnitive models enable to provide an explicit method to analyze how operator's congitive behavior reacts to the behavior of system changes. However, because no adequate model has been developed up to now, it is difficult to take an effective approach for the review, assessment and improvement of human factors. In this study, we have surveyed the techniques and the cases of operator model development, aiming to develop an operator's model as one of human engineering application methodologies. We have analyzed the cognitive characteristics of decision-making, which is one of the principal factors for modeling, and reviewed the methodologies and implementation thechniques used in the cases of the model development. We investigated the tendencies of the model developments by reviewing ten cases and especially CES, INTEROPS and COSIMO models which have been developed or are under development in nuclear fields. Also, we summarized the cognitive characteristics to be considered in the modeling for the purpose of modeling operator's decision-making. For modeling methodologies, we found a trend of the modeling that is software simulations based on the artificial intelligence technologies, especially focused in knowledge representation methods. Based on the results of our survey, we proposed a development approach and several urgent research subjects. We suggested the development simulation tools which can be applicable to the review, assessment and improvement of human factors, by implementing them as softwares using expert system development tools. The results of this study have been applied to our long-term project named 'The Development of Human Engineering Technologies.' (Author)

  19. QEDMOD: Fortran program for calculating the model Lamb-shift operator

    Science.gov (United States)

    Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.

    2018-02-01

    We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.

  20. Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions

    International Nuclear Information System (INIS)

    Mafakheri, Fereshteh; Nasiri, Fuzhan

    2014-01-01

    Reducing dependency on fossil fuels and mitigating their environmental impacts are among the most promising aspects of utilizing renewable energy sources. The availability of various biomass resources has made it an appealing source of renewable energy. Given the variability of supply and sources of biomass, supply chains play an important role in the efficient provisioning of biomass resources for energy production. This paper provides a comprehensive review and classification of the excising literature in modeling of biomass supply chain operations while linking them to the wider strategic challenges and issues with the design, planning and management of biomass supply chains. On that basis, we will present an analysis of the existing gaps and the potential future directions for research in modeling of biomass supply chain operations. - Highlights: • An extensive review of biomass supply chain operations management models presented in the literature is provided. • The models are classified in line with biomass supply chain activities from harvesting to conversion. • The issues surrounding biomass supply chains are investigated manifesting the need to novel modeling approaches. • Our gap analysis has identified a number of existing shortcomings and opportunities for future research

  1. Modelling Vessel Traffic Service to understand resilience in everyday operations

    International Nuclear Information System (INIS)

    Praetorius, Gesa; Hollnagel, Erik; Dahlman, Joakim

    2015-01-01

    Vessel Traffic Service (VTS) is a service to promote traffic fluency and safety in the entrance to ports. This article's purpose has been to explore everyday operations of the VTS system to gain insights in how it contributes to safe and efficient traffic movements. Interviews, focus groups and an observation have been conducted to collect data about everyday operations, as well as to grasp how the VTS system adapts to changing operational conditions. The results show that work within the VTS domain is highly complex and that the two systems modelled realise their services vastly differently, which in turn affects the systems' ability to monitor, respond and anticipate. This is of great importance to consider whenever changes are planned and implemented within the VTS domain. Only if everyday operations are properly analysed and understood, it can be estimated how alterations to technology and organisation will affect the overall system performance

  2. Architecture-based Model for Preventive and Operative Crisis Management

    National Research Council Canada - National Science Library

    Jungert, Erland; Derefeldt, Gunilla; Hallberg, Jonas; Hallberg, Niklas; Hunstad, Amund; Thuren, Ronny

    2004-01-01

    .... A system that should support activities of this type must not only have a high capacity, with respect to the dataflow, but also have suitable tools for decision support. To overcome these problems, an architecture for preventive and operative crisis management is proposed. The architecture is based on models for command and control, but also for risk analysis.

  3. A simple operational gas release and swelling model. Pt. 1

    International Nuclear Information System (INIS)

    Wood, M.H.; Matthews, J.R.

    1980-01-01

    A new and simple model of fission gas release and swelling has been developed for oxide nuclear fuel under operational conditions. The model, which is to be incorporated into a fuel element behaviour code, is physically based and applicable to fuel at both thermal and fast reactor ratings. In this paper we present that part of the model describing the behaviour of intragranular gas: a future paper will detail the treatment of the grain boundary gas. The results of model calculations are compared with recent experimental observations of intragranular bubble concentrations and sizes, and gas release from fuel irradiated under isothermal conditions. Good agreement is found between experiment and theory. (orig.)

  4. Data-Driven Modeling of Target Human Behavior in Military Operations

    Science.gov (United States)

    2014-03-12

    Military Operations Elizabeth Mezzacappa, Ph.D. Gordon Cooke, MEME Gladstone Reid, MSBMS Robert DeMarco, MSBMS Charles Sheridan BA John...stress, and human behavior modeling and simulation issues. GORDON COOKE, MEME , is a Principal Investigator at the TBRL. He was also a Chief

  5. Form factors of descendant operators: reduction to perturbed M(2,2s+1) models

    International Nuclear Information System (INIS)

    Lashkevich, Michael; Pugai, Yaroslav

    2015-01-01

    In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ 13 -perturbation of minimal conformal models of the M(2,2s+1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T ±2k , Θ ±(2k−2) , which correspond to the spin ±(2k−1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T 2k T −2l , which generalize the famous TT̄ operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.

  6. A practical guide for operational validation of discrete simulation models

    Directory of Open Access Journals (Sweden)

    Fabiano Leal

    2011-04-01

    Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions

  7. Constrained model predictive control for load-following operation of APR reactors

    International Nuclear Information System (INIS)

    Kim, Jae Hwan; Lee, Sim Won; Kim, Ju Hyun; Na, Man Gyun; Yu, Keuk Jong; Kim, Han Gon

    2012-01-01

    The load-following operation of APR+ reactor is needed to control the power effectively using the control rods and to restrain the reactivity control from using the boric acid for flexibility of plant operation. Usually, the reason why the disproportion of axial flux distribution occurs during load-following operation is xenon-induced oscillation. The xenon has a very high absorption cross-section and makes the impact on the reactor delayed by the iodine precursor. The power maneuvering using automatically load-following operation has advantage in terms of safety and economic operation of the reactor, so the controller has to be designed efficiently. Therefore, an advanced control method that meets the conditions such as automatic control, flexibility, safety, and convenience is necessary to load-following operation of APR+ reactor. In this paper, the constrained model predictive control (MPC) method is applied to design APR reactor's automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control. Some controllers use only the current tracking command, but MPC considers future commands in addition to the current tracking command. So, MPC can achieve better tracking performance than others. Furthermore, an MPC is to used in many industrial process control systems. The basic concept of the MPC is to solve an optimization problem for a finite future time interval at present time and to implement the first optimal control input as the current control input. The KISPAC-1D code, which models the APR+ nuclear power plants, is interfaced to the proposed controller to verify the tracking performance of the reactor power level and ASI. It is known that the proposed controller exhibits very fast tracking responses

  8. MODELLING OF DECISION MAKING OF UNMANNED AERIAL VEHICLE'S OPERATOR IN EMERGENCY SITUATIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: lack of recommendation action algorithm of UAV operator in emergency situations; decomposition of the process of decision making (DM by UAV’s Operator in emergency situations; development of the structure of distributed decision support system (DDSS for remotely piloted aircraft; development of a database of local decision support system (DSS operators Remotely Piloted Aircraft Systems (RPAS; working-out of models DM by UAV’s Operator. Methods: Algoritm of actions of UAV operator by Wald criterion, Laplace criterion, Hurwitz criterion. Results: The program "UAV_AS" that gives to UAV operator recommendations on how to act in case of emergency. Discussion: The article deals with the problem of Unmanned Aerial Vehicles (UAV flights for decision of different tasks in emergency situation. Based on statistical data it was analyzing the types of emergencies for unmanned aircraft. Defined sequence of actions UAV operator and in case of emergencies.

  9. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    Science.gov (United States)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  10. Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments

    International Nuclear Information System (INIS)

    Kara, Tolgay; Eker, Ilyas

    2004-01-01

    Modeling and identification of mechanical systems constitute an essential stage in practical control design and applications. Controllers commanding systems that operate at varying conditions or require high precision operation raise the need for a nonlinear approach in modeling and identification. Most mechanical systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behavior in certain regions of operation. For a multi-mass rotational system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the system operation when the rotation changes direction. The paper presents nonlinear modeling and identification of a DC motor rotating in two directions together with real time experiments. Linear and nonlinear models for the system are obtained for identification purposes, and the major nonlinearities in the system, such as Coulomb friction and dead zone, are investigated and integrated in the nonlinear model. The Hammerstein nonlinear system approach is used for identification of the nonlinear system model. Online identification of the linear and nonlinear system models is performed using the recursive least squares method. Results of the real time experiments are graphically and numerically presented, and the advantages of the nonlinear identification approach are revealed

  11. Structure of conceptual models in the senior operating staff of nuclear power plants

    Directory of Open Access Journals (Sweden)

    Oboznov A. A.

    2017-09-01

    Full Text Available Background. The relationships between conceptual model structures and an operator’s professional efficiency are of direct practical importance, particularly in the case of large-scale industrial complexes combining several human-machine systems. A typical example is the power unit of a nuclear power plant (NPP. Objective and methods. The purpose of this study was to explore the conceptual models of senior reactor operators (SROs of NPPs. The study involved 64 men working as SRO at five NPPs in Russia. The methods included: structured interviews, expert estimations, multidimensional scaling (ALSCAL, the K-means clustering algorithm, and frequency analysis. The procedure was as follows: 32 key characteristics of the power unit were defined, including shift operators’ jobs and duties, technical subsystems, types of equipment, and the crucial power unit parameters. The participants were offered a 32×32 matrix for pair-wise estimation of the strength of the links between these key characteristics on a seven-point scale (496 links in total. Results. A general scheme of key characteristics in the conceptual models was defined. is scheme was displayed in the operators regardless of their employment history. Within the scheme, however, two types of conceptual models were identified, which could be distinguished by the relative number of strong links between the key characteristics. With respect to intersystem links including key characteristics of the reactor and turbine NPP departments, this number was significantly higher in models of Type 1 than in those of Type 2. A positive correlation between the number of these links and the professional efficiency indicators was also established. Operators with Type 1 models were able to more predictably represent the power unit operation. Conclusion. The main role in creating predictable and efficient conceptual models was played by strong intersystem links in mental representations of workflow.

  12. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  13. Testing an integrated model of operations capabilities An empirical study of Australian airlines

    NARCIS (Netherlands)

    Nand, Alka Ashwini; Singh, Prakash J.; Power, Damien

    2013-01-01

    Purpose - The purpose of this paper is to test the integrated model of operations strategy as proposed by Schmenner and Swink to explain whether firms trade-off or accumulate capabilities, taking into account their positions relative to their asset and operating frontiers.

  14. Automatic Power Control for Daily Load-following Operation using Model Predictive Control Method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [KH, Daejeon (Korea, Republic of)

    2009-10-15

    Under the circumstances that nuclear power occupies more than 50%, nuclear power plants are required to be operated on load-following operation in order to make the effective management of electric grid system and enhanced responsiveness to rapid changes in power demand. Conventional reactors such as the OPR1000 and APR1400 have a regulating system that controls the average temperature of the reactor core relation to the reference temperature. This conventional method has the advantages of proven technology and ease of implementation. However, this method is unsuitable for controlling the axial power shape, particularly the load following operation. Accordingly, this paper reports on the development of a model predictive control method which is able to control the reactor power and the axial shape index. The purpose of this study is to analyze the behavior of nuclear reactor power and the axial power shape by using a model predictive control method when the power is increased and decreased for a daily load following operation. The study confirms that deviations in the axial shape index (ASI) are within the operating limit.

  15. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. An adaptive simulation model for analysis of nuclear material shipping operations

    International Nuclear Information System (INIS)

    Boerigter, S.T.; Sena, D.J.; Fasel, J.H.

    1998-01-01

    Los Alamos has developed an advanced simulation environment designed specifically for nuclear materials operations. This process-level simulation package, the Process Modeling System (ProMoS), is based on high-fidelity material balance criteria and contains intrinsic mechanisms for waste and recycle flows, contaminant estimation and tracking, and material-constrained operations. Recent development efforts have focused on coupling complex personnel interactions, personnel exposure calculations, and stochastic process-personnel performance criteria to the material-balance simulation. This combination of capabilities allows for more realistic simulation of nuclear material handling operations where complex personnel interactions are required. They have used ProMoS to assess fissile material shipping performance characteristics at the Los Alamos National Laboratory plutonium facility (TA-55). Nuclear material shipping operations are ubiquitous in the DOE complex and require the largest suite of varied personnel interacting in a well-timed manner to accomplish the task. They have developed a baseline simulation of the present operations and have estimated the operational impacts and requirement of the pit production mission at TA-55 as a result of the SSM-PEIS. Potential bottlenecks have been explored and mechanisms for increasing operational efficiency are identified

  17. Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2014-01-01

    We calculate the complete order y^2 and y^4 terms of the 59 x 59 one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory, where y is a generic Yukawa coupling. These terms, together with the terms of order lambda, lambda^2 and lambda y^2 depending on the Standard Model Higgs self-coupling lambda which were calculated in a previous work, yield the complete one-loop anomalous dimension matrix in the limit of vanishing gauge couplings. The Yukawa contributions result in non-trivial flavor mixing in the various operator sectors of the Standard Model effective theory.

  18. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  19. Introduction of hypermatrix and operator notation into a discrete mathematics simulation model of malignant tumour response to therapeutic schemes in vivo. Some operator properties.

    Science.gov (United States)

    Stamatakos, Georgios S; Dionysiou, Dimitra D

    2009-10-21

    The tremendous rate of accumulation of experimental and clinical knowledge pertaining to cancer dictates the development of a theoretical framework for the meaningful integration of such knowledge at all levels of biocomplexity. In this context our research group has developed and partly validated a number of spatiotemporal simulation models of in vivo tumour growth and in particular tumour response to several therapeutic schemes. Most of the modeling modules have been based on discrete mathematics and therefore have been formulated in terms of rather complex algorithms (e.g. in pseudocode and actual computer code). However, such lengthy algorithmic descriptions, although sufficient from the mathematical point of view, may render it difficult for an interested reader to readily identify the sequence of the very basic simulation operations that lie at the heart of the entire model. In order to both alleviate this problem and at the same time provide a bridge to symbolic mathematics, we propose the introduction of the notion of hypermatrix in conjunction with that of a discrete operator into the already developed models. Using a radiotherapy response simulation example we demonstrate how the entire model can be considered as the sequential application of a number of discrete operators to a hypermatrix corresponding to the dynamics of the anatomic area of interest. Subsequently, we investigate the operators' commutativity and outline the "summarize and jump" strategy aiming at efficiently and realistically address multilevel biological problems such as cancer. In order to clarify the actual effect of the composite discrete operator we present further simulation results which are in agreement with the outcome of the clinical study RTOG 83-02, thus strengthening the reliability of the model developed.

  20. A Nonparametric Operational Risk Modeling Approach Based on Cornish-Fisher Expansion

    Directory of Open Access Journals (Sweden)

    Xiaoqian Zhu

    2014-01-01

    Full Text Available It is generally accepted that the choice of severity distribution in loss distribution approach has a significant effect on the operational risk capital estimation. However, the usually used parametric approaches with predefined distribution assumption might be not able to fit the severity distribution accurately. The objective of this paper is to propose a nonparametric operational risk modeling approach based on Cornish-Fisher expansion. In this approach, the samples of severity are generated by Cornish-Fisher expansion and then used in the Monte Carlo simulation to sketch the annual operational loss distribution. In the experiment, the proposed approach is employed to calculate the operational risk capital charge for the overall Chinese banking. The experiment dataset is the most comprehensive operational risk dataset in China as far as we know. The results show that the proposed approach is able to use the information of high order moments and might be more effective and stable than the usually used parametric approach.

  1. Activation of the operational ecohydrodynamic model (3D CEMBS - the ecosystem module

    Directory of Open Access Journals (Sweden)

    Jaromir Jakacki

    2013-08-01

    Full Text Available The paper describes the ecohydrodynamic predictive model - the ecosystem module - for assessing the state of the Baltic marine environment and the Baltic ecosystem. The Baltic Sea model 3D CEMBS (the Coupled Ecosystem Model of the Baltic Sea is based on the Community Earth System Model, which was adopted for the Baltic Sea as a coupled sea-ice-ecosystem model. The 3D CEMBS model uses: (i hydrodynamic equations describing water movement, (ii thermodynamic equations, (iii equations describing the concentration distribution of chemical variables in the sea, and (iv equations describing the exchange of matter between individual groups of organisms and their environment that make allowance for the kinetics of biochemical processes. The ecosystem model consists of 11 main components: three classes of phytoplankton (small phytoplankton, large phytoplankton represented mainly by diatoms and summer species, mostly cyanobacteria expressed in units of carbon and chlorophyll a as separate variables, zooplankton, pelagic detritus, dissolved oxygen and nutrients (nitrate, ammonium, phosphate and silicate. In operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM are used. All model forecasts are available on the website http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php. The results presented in this paper show that the 3D CEMBS model is operating correctly.

  2. Application of online modeling to the operation of SLC

    International Nuclear Information System (INIS)

    Woodley, M.D.; Sanchez-Chopitea, L.; Shoaee, H.

    1987-02-01

    Online computer models of first order beam optics have been developed for the commissioning, control and operation of the entire SLC including Damping Rings, Linac, Positron Return Line and Collider Arcs. A generalized online environment utilizing these models provides the capability for interactive selection of a desired optics configuration and for the study of its properties. Automated procedures have been developed which calculate and load beamline component set-points and which can scale magnet strengths to achieve desired beam properties for any Linac energy profile. Graphic displays facilitate comparison of design, desired and actual optical characteristics of the beamlines. Measured beam properties, such as beam emittance and dispersion, can be incorporated interactively into the models and used for beamline matching and optimization of injection and extraction efficiencies and beam transmission. The online optics modeling facility also serves as the foundation for many model-driven applications such as autosteering, calculation of beam launch parameters, emittance measurement and dispersion correction

  3. Application of online modeling to the operation of SLC

    International Nuclear Information System (INIS)

    Woodley, M.D.; Sanchez-Chopitea, L.; Shoaee, H.

    1987-01-01

    Online computer models of first order beam optics have been developed for the commissioning, control and operation of the entire SLC including Damping Rings, Linac, Positron Return Line and Collider Arcs. A generalized online environment utilizing these models provides the capability for interactive selection of a desire optics configuration and for the study of its properties. Automated procedures have been developed which calculate and load beamline component set-points and which can scale magnet strengths to achieve desired beam properties for any Linac energy profile. Graphic displays facilitate comparison of design, desired and actual optical characteristics of the beamlines. Measured beam properties, such as beam emittance and dispersion, can be incorporated interactively into the models and used for beam matching and optimization of injection and extraction efficiencies and beam transmissions. The online optics modeling facility also serves as the foundation for many model-driven applications such as autosteering, calculation of beam launch parameters, emittance measurement and dispersion correction

  4. Hadron matrix elements of quark operators in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1979-07-01

    General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.

  5. Numerical modelling of multi-vane expander operating conditions in ORC system

    Directory of Open Access Journals (Sweden)

    Rak Józef

    2017-01-01

    Full Text Available Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  6. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India)

    DEFF Research Database (Denmark)

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S.

    2016-01-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur...... concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data...

  7. Ethical issues in engineering models: an operations researcher's reflections.

    Science.gov (United States)

    Kleijnen, J

    2011-09-01

    This article starts with an overview of the author's personal involvement--as an Operations Research consultant--in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models' assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model's multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling.

  8. Classification of effective operators for interactions between the Standard Model and dark matter

    International Nuclear Information System (INIS)

    Duch, M.; Grzadkowski, B.; Wudka, J.

    2015-01-01

    We construct a basis for effective operators responsible for interactions between the Standard Model and a dark sector composed of particles with spin ≤1. Redundant operators are eliminated using dim-4 equations of motion. We consider simple scenarios where the dark matter components are stabilized against decay by ℤ_2 symmetries. We determine operators which are loop-generated within an underlying theory and those that are potentially tree-level generated.

  9. A new harvest operation cost model to evaluate forest harvest layout alternatives

    Science.gov (United States)

    Mark M. Clark; Russell D. Meller; Timothy P. McDonald; Chao Chi Ting

    1997-01-01

    The authors develop a new model for harvest operation costs that can be used to evaluate stands for potential harvest. The model is based on felling, extraction, and access costs, and is unique in its consideration of the interaction between harvest area shapes and access roads. The scientists illustrate the model and evaluate the impact of stand size, volume, and road...

  10. MODELING OF BEHAVIORAL ACTIVITY OF AIR NAVIGATION SYSTEM'S HUMAN-OPERATOR IN FLIGHT EMERGENCIES

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2012-09-01

    Full Text Available  The Air Navigation System is presented as a complex socio-technical system. The influence on decision-making by Air Navigation System's human-operator of the professional factors as well as the factors of non-professional nature has been defined. Logic determined and stochastic models of decision-making by the Air Navigation System's human-operator in flight emergencies have been developed. The scenarios of developing a flight situation in case of selecting either the positive or negative pole in accordance with the reflexive theory have been obtained. The informational support system of the operator in the unusual situations on the basis of Neural Network model of evaluating the efficiency of the potential alternative of flight completion has been built.

  11. Corrections to the neutrinoless double-β-decay operator in the shell model

    Science.gov (United States)

    Engel, Jonathan; Hagen, Gaute

    2009-06-01

    We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double-β decay of Se82. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian for recent shell-model calculations of double-β decay. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.

  12. Dynamic occupational risk model for offshore operations in harsh environments

    International Nuclear Information System (INIS)

    Song, Guozheng; Khan, Faisal; Wang, Hangzhou; Leighton, Shelly; Yuan, Zhi; Liu, Hanwen

    2016-01-01

    The expansion of offshore oil exploitation into remote areas (e.g., Arctic) with harsh environments has significantly increased occupational risks. Among occupational accidents, slips, trips and falls from height (STFs) account for a significant portion. Thus, a dynamic risk assessment of the three main occupational accidents is meaningful to decrease offshore occupational risks. Bow-tie Models (BTs) were established in this study for the risk analysis of STFs considering extreme environmental factors. To relax the limitations of BTs, Bayesian networks (BNs) were developed based on BTs to dynamically assess risks of STFs. The occurrence and consequence probabilities of STFs were respectively calculated using BTs and BNs, and the obtained probabilities verified BNs' rationality and advantage. Furthermore, the probability adaptation for STFs was accomplished in a specific scenario with BNs. Finally, posterior probabilities of basic events were achieved through diagnostic analysis, and critical basic events were analyzed based on their posterior likelihood to cause occupational accidents. The highlight is systematically analyzing STF accidents for offshore operations and dynamically assessing their risks considering the harsh environmental factors. This study can guide the allocation of prevention resources and benefit the safety management of offshore operations. - Highlights: • A novel dynamic risk model for occupational accidents. • First time consideration of harsh environment in occupational accident modeling. • A Bayesian network based model for risk management strategies.

  13. Operational modeling of dose and noise for computed tomography in a pediatric hospital

    International Nuclear Information System (INIS)

    Miller Clemente, Rafael A.; Perez Diaz, Marlen; Mora Reyes, Yudel; Rodriguez Garlobo, Maikel; Castillo Salazar, Rafael

    2008-01-01

    Noise becomes a critical factor in Computed Tomography (CT) because most detailed applications on soft tissue show a low contrast nature. Noise establishes an inferior limit to the contrast detectable by the observer. Various pixel noise models had been devised taking into account operational parameters on Single and Multi Detector Slice CT. The aim of this work was to obtain a predictive operational model for image noise addressed to pediatric protocols, taking into account scanning factors with a Single Slice CT unit dedicated to pediatric applications. A multiple linear regression model is proposed to predict noise in images of uniform phantoms equivalent to head and abdomen. A model for reported volumetric Computed Tomography Dose Index (CTDI VOL ) was obtained too for tradeoffs analysis approaching optimization purposes in pediatric applications. Eight independent variables were considered: phantom diameter, reconstruction mode, tube current, tube kVp, collimation, Field of View (FOV), reconstruction filter, and post processing filter. Results show good agreement with measurements, with adjusted coefficients of multiple determination of 0.936 and 0.744 for noise and CTDI VOL models respectively. Tube current, object diameter, collimation and reconstruction filters were the most influencing variables. The model application contributes to identify each factor's influence enhancing the operational possibilities approaching optimization of noise and dose tradeoffs. Acceptable noise levels and optimization strategies can be devised from models obtained towards lower tube current values combined with greater slice thickness and kVp taking into account the doses to pediatric patients. (author)

  14. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    CERN Document Server

    Akerlund, Oscar

    2016-01-01

    Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  15. Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    Science.gov (United States)

    Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.

    2010-01-01

    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand

  16. Stochastic Optimization Model to STudy the Operational Impacts of High Wind Penetrations in Ireland

    DEFF Research Database (Denmark)

    Meibom, Peter; Barth, R.; Hasche, B.

    2011-01-01

    A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental...... change relative to day-ahead unit commitment approaches. The need for reserves dependent on forecast horizon and share of wind power has been estimated with a statistical model combining load and wind power forecast errors with scenarios of forced outages. The model is used to study operational impacts...

  17. Pseudo-invariant Eigen-Operator Method for Solving Field-Intensity-Dependent Jaynes-Cummings Model

    International Nuclear Information System (INIS)

    Yu Taxi; Fan Hongyi

    2010-01-01

    By using the pseudo invariant eigen-operator method we analyze the field-intensity-dependent Jaynes-Gumming (JC) model. The pseudo-invariant eigen-operator is found in terms of the supersymmetric generators. The energy-level gap of this JC Hamiltonian is derived. This approach seems concise. (general)

  18. Your Lung Operation: After Your Operation

    Medline Plus

    Full Text Available ... Liability Surgeons as Advocates Surgeons and Bundled Payment Models Surgeons as Institutional Employees Our Changing Health Care ... Lung Operation After Your Operation Your Discharge and Recovery Complete Video After Your Operation Guidance for after ...

  19. Application of Goal Tree-Success Tree model as the knowledge-base of operator advisory systems

    International Nuclear Information System (INIS)

    Kim, I.S.; Modarres, M.

    1987-01-01

    The most important portion of an expert system development is the articulation of knowledge by the expert and its satisfactory formulation in a suitable knowledge representation scheme for mechanization by a computer. A 'deep knowledge' approach called Goal Tree-Success Tree model is devised to represent complex dynamic domain knowledge. This approach can hierarchically model the underlying principles of a given process domain (for example nuclear power plant operations domain). The Goal Tree-Success Tree can then be used to represent the knowledge-base and provide means of selecting an efficient search routine in the inference engine of an expert system. A prototype expert system has been developed to demonstrate the method. This expert system models the operation of a typical system used in the pressurized water reactors. The expert system is modeled for real-time operations if an interface between plant parameters and the expert system is established. The real-time operation provides an ability to quickly remedy minor disturbances that can quickly lead to a system malfunction or trip. A description of both the Goal Tree-Success Tree model and the prototype expert system is presented. (orig.)

  20. Cognitive models and computer aids for nuclear plant control room operators

    International Nuclear Information System (INIS)

    Sheridan, T.B.

    1982-01-01

    This paper reviews what is usually meant by a cognitive model of a control room operator in a nuclear power plant. It emphasizes the idea of internal (that is, mental) representation of external events and the use of such representation for the cognitive steps of attending, recognizing or learning, assessing and deciding. As computers play an increasingly important role in nuclear power plants, especially as cognitive aids to human supervisors of highly automated control systems, it is important that the software and computer interface characteristics be compatible with the operator's internal model. Specific examples discussed in this paper are in the monitoring and prediction of the plant state and in the detection and diagnosis of failures. Current trends in SPDS (safety parameter display system) and failure detection/location systems will be discussed in this regard

  1. Conceptual Model Development of Sustainability Practices: The Case of Port Operations for Collaboration and Governance

    Directory of Open Access Journals (Sweden)

    Dalwon Kang

    2017-12-01

    Full Text Available Sustainability practices in port operations are critical issue to achieve port sustainability involving economic, social and environmental issues. To assist ports to successfully implant sustainability practices into their operations, this paper conceptualized the structure of sustainability practices in international port operations, by clustering the relevant issues, empirically. Using 203 samples collected from port stakeholders in the major ports in Northeast Asia, multi-measurement items were analyzed on exploratory factor analysis in SPSS 21. Results generated a structure that consists of five sub-dimensions conceptualizing sustainability practices in the context of port operations. As operative practices to accommodate current and future demands in a port, the five-factor model clustering the relevant issues incorporate environmental technologies, process and quality improvement, monitoring and upgrading, communication and cooperation, and active participation. Providing useful insights for strategic agenda to assist ports to incorporate sustainability practices in their operations, the five-factor model offer both a descriptive and diagnostic management tool for future improvement in port operations.

  2. Modeling operator actions during a small break loss-of-coolant accident in a Babcock and Wilcox nuclear power plant

    International Nuclear Information System (INIS)

    Ghan, L.S.; Ortiz, M.G.

    1991-01-01

    A small break loss-of-accident (SBLOCA) in a typical Babcock and Wilcox (B ampersand W) nuclear power plant was modeled using RELAP5/MOD3. This work was performed as part of the United States Regulatory Commission's (USNRC) Code, Scaling, Applicability and Uncertainty (CSAU) study. The break was initiated by severing one high pressure injection (HPI) line at the cold leg. Thus, the small break was further aggravated by reduced HPI flow. Comparisons between scoping runs with minimal operator action, and full operator action, clearly showed that the operator plays a key role in recovering the plant. Operator actions were modeled based on the emergency operating procedures (EOPs) and the Technical Bases Document for the EOPs. The sequence of operator actions modeled here is only one of several possibilities. Different sequences of operator actions are possible for a given accident because of the subjective decisions the operator must make when determining the status of the plant, hence, which branch of the EOP to follow. To assess the credibility of the modeled operator actions, these actions and results of the simulated accident scenario were presented to operator examiners who are familiar with B ampersand W nuclear power plants. They agreed that, in general, the modeled operator actions conform to the requirements set forth in the EOPs and are therefore plausible. This paper presents the method for modeling the operator actions and discusses the simulated accident scenario from the viewpoint of operator actions

  3. Water operator partnerships as a model to achieve the Millenium ...

    African Journals Online (AJOL)

    In the void left by the declining popularity of public-private partnerships, the concept of 'water operator partnerships' (WOPs) has increasingly been promoted as an alternative for improving water services provision in developing countries. This paper assesses the potential of such partnerships as a 'model' for contributing to ...

  4. Control software architecture and operating modes of the Model M-2 maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures.

  5. Control software architecture and operating modes of the Model M-2 maintenance system

    International Nuclear Information System (INIS)

    Satterlee, P.E. Jr.; Martin, H.L.; Herndon, J.N.

    1984-04-01

    The Model M-2 maintenance system is the first completely digitally controlled servomanipulator. The M-2 system allows dexterous operations to be performed remotely using bilateral force-reflecting master/slave techniques, and its integrated operator interface takes advantage of touch-screen-driven menus to allow selection of all possible operating modes. The control system hardware for this system has been described previously. This paper describes the architecture of the overall control system. The system's various modes of operation are identified, the software implementation of each is described, system diagnostic routines are described, and highlights of the computer-augmented operator interface are discussed. 3 references, 5 figures

  6. Pharmaceutical supply chain models: A synthesis from a systems view of operations research

    Directory of Open Access Journals (Sweden)

    Ettore Settanni

    Full Text Available This research evaluates reconfiguration opportunities in Pharmaceutical Supply Chains (PSC resulting from technology interventions in manufacturing, and new, more patient-centric delivery models. A critical synthesis of the academic and practice literature is used to identify, conceptualise, analyse and categorise PSC models. From a theoretical perspective, a systems view of operations research is adopted to provide insights on a broader range of OR activities, from conceptual to mathematical modelling and model solving, up to implementation.The research demonstrates that: 1 current definitions of the PSC are largely production-centric and fail to capture patient consumption, and hence healthcare outcomes; 2 most PSC mathematical models lack adequate conceptualisation of the structure and behaviour of the supply chain, and the boundary conditions that need to be considered for a given problem; 3 models do not adequately specify current unit operations or future production technology options, and are therefore unable to address the critical questions around alternative product or process technologies; 4 economic evaluations are limited to direct costing, rather than systemic approaches such as supply chain costing and total cost of ownership.While current models of the PSC may help with the optimisation of specific unit operations, their theoretical benefits could be offset by the dynamics of complex upstream (supply and downstream (distribution and healthcare delivery systems. To overcome these limitations, this research provides initial directions towards an integrated systems approach to PSC modelling. This perspective involves problem conceptualisation and boundary definition; design, formulation and solution of mathematical models, through to practical implementation of identified solutions. For both academics and practitioners, research findings suggest a systems approach to PSC modelling can provide improved conceptualisation and

  7. Modeling needs assessment for Hanford Tank Farm Operations. Vadose Zone Characterization Project at the Hanford Tank Farms

    International Nuclear Information System (INIS)

    1996-04-01

    This report presents the results of a modeling-needs assessment conducted for Tank Farm Operations at the Hanford Site. The goal of this project is to integrate geophysical logging and subsurface transport modeling into a broader decision-based framework that will be made available to guide Tank Farm Operations in implementing future modeling studies. In support of this goal, previous subsurface transport modeling studies were reviewed, and stakeholder surveys and interviews were completed (1) to identify regulatory, stakeholder, and Native American concerns and the impacts of these concerns on Tank Farm Operations, (2) to identify technical constraints that impact site characterization and modeling efforts, and (3) to assess how subsurface transport modeling can best be used to support regulatory, stakeholder, Native American, and Tank Farm Operations needs. This report is organized into six sections. Following an introduction, Section 2.0 discusses background issues that relate to Tank Farm Operations. Section 3.0 summarizes the technical approach used to appraise the status of modeling and supporting characterization. Section 4.0 presents a detailed description of how the technical approach was implemented. Section 5.0 identifies findings and observations that relate to implementation of numerical modeling, and Section 6.0 presents recommendations for future activities

  8. Operator content of the critical Potts model in d dimensions and logarithmic correlations

    International Nuclear Information System (INIS)

    Vasseur, Romain; Jacobsen, Jesper Lykke

    2014-01-01

    Using the symmetric group S Q symmetry of the Q-state Potts model, we classify the (scalar) operator content of its underlying field theory in arbitrary dimension. In addition to the usual identity, energy and magnetization operators, we find fields that generalize the N-cluster operators well-known in two dimensions, together with their subleading counterparts. We give the explicit form of all these operators – up to non-universal constants – both on the lattice and in the continuum limit for the Landau theory. We compute exactly their two- and three-point correlation functions on an arbitrary graph in terms of simple probabilities, and give the general form of these correlation functions in the continuum limit at the critical point. Specializing to integer values of the parameter Q, we argue that the analytic continuation of the S Q symmetry yields logarithmic correlations at the critical point in arbitrary dimension, thus implying a mixing of some scaling fields by the scale transformation generator. All these logarithmic correlation functions are given a clear geometrical meaning, which can be checked in numerical simulations. Several physical examples are discussed, including bond percolation, spanning trees and forests, resistor networks and the Ising model. We also briefly address the generalization of our approach to the O(n) model

  9. Background Concentrations for Use in the Operational Street Pollution Model (OSPM)

    DEFF Research Database (Denmark)

    Jensen, S. S.

    A background model has been developed for application in the Operational Street Pollution Model (OSPM) in context of long-term exposure modelling. The back ground model is based on a semi-empirical method founded on a few monitor stations that estimates standardised one hour time-series of urban...... and rural back ground concentrations of NO2, NOx, O3 and CO for different geographic regions in Denmark. The annual mean of selected monitor stations is used as a reference year and the development in estimated traffic emissions as an index is used to establish a historic trend. As an exception ozone trends...

  10. Classification of NLO operators for composite Higgs models

    Science.gov (United States)

    Alanne, Tommi; Bizot, Nicolas; Cacciapaglia, Giacomo; Sannino, Francesco

    2018-04-01

    We provide a general classification of template operators, up to next-to-leading order, that appear in chiral perturbation theories based on the two flavor patterns of spontaneous symmetry breaking SU (NF)/Sp (NF) and SU (NF)/SO (NF). All possible explicit-breaking sources parametrized by spurions transforming in the fundamental and in the two-index representations of the flavor symmetry are included. While our general framework can be applied to any model of strong dynamics, we specialize to composite-Higgs models, where the main explicit breaking sources are a current mass, the gauging of flavor symmetries, and the Yukawa couplings (for the top). For the top, we consider both bilinear couplings and linear ones à la partial compositeness. Our templates provide a basis for lattice calculations in specific models. As a special example, we consider the SU (4 )/Sp (4 )≅SO (6 )/SO (5 ) pattern which corresponds to the minimal fundamental composite-Higgs model. We further revisit issues related to the misalignment of the vacuum. In particular, we shed light on the physical properties of the singlet η , showing that it cannot develop a vacuum expectation value without explicit C P violation in the underlying theory.

  11. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    Science.gov (United States)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  12. Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system

    International Nuclear Information System (INIS)

    Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.

    2014-01-01

    This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation

  13. Image segmentation of overlapping leaves based on Chan–Vese model and Sobel operator

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2018-03-01

    Full Text Available To improve the segmentation precision of overlapping crop leaves, this paper presents an effective image segmentation method based on the Chan–Vese model and Sobel operator. The approach consists of three stages. First, a feature that identifies hues with relatively high levels of green is used to extract the region of leaves and remove the background. Second, the Chan–Vese model and improved Sobel operator are implemented to extract the leaf contours and detect the edges, respectively. Third, a target leaf with a complex background and overlapping is extracted by combining the results obtained by the Chan–Vese model and Sobel operator. To verify the effectiveness of the proposed algorithm, a segmentation experiment was performed on 30 images of cucumber leaf. The mean error rate of the proposed method is 0.0428, which is a decrease of 6.54% compared with the mean error rate of the level set method. Experimental results show that the proposed method can accurately extract the target leaf from cucumber leaf images with complex backgrounds and overlapping regions.

  14. Economical analyses of build-operate-transfer model in establishing alternative power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yumurtaci, Zehra [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)]. E-mail: zyumur@yildiz.edu.tr; Erdem, Hasan Hueseyin [Yildiz Technical University, Department of Mechanical Engineering, Y.T.U. Mak. Fak. Mak. Muh. Bolumu, Besiktas, 34349 Istanbul (Turkey)

    2007-01-15

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model.

  15. Economical analyses of build-operate-transfer model in establishing alternative power plants

    International Nuclear Information System (INIS)

    Yumurtaci, Zehra; Erdem, Hasan Hueseyin

    2007-01-01

    The most widely employed method to meet the increasing electricity demand is building new power plants. The most important issue in building new power plants is to find financial funds. Various models are employed, especially in developing countries, in order to overcome this problem and to find a financial source. One of these models is the build-operate-transfer (BOT) model. In this model, the investor raises all the funds for mandatory expenses and provides financing, builds the plant and, after a certain plant operation period, transfers the plant to the national power organization. In this model, the object is to decrease the burden of power plants on the state budget. The most important issue in the BOT model is the dependence of the unit electricity cost on the transfer period. In this study, the model giving the unit electricity cost depending on the transfer of the plants established according to the BOT model, has been discussed. Unit electricity investment cost and unit electricity cost in relation to transfer period for plant types have been determined. Furthermore, unit electricity cost change depending on load factor, which is one of the parameters affecting annual electricity production, has been determined, and the results have been analyzed. This method can be employed for comparing the production costs of different plants that are planned to be established according to the BOT model, or it can be employed to determine the appropriateness of the BOT model

  16. Operating of mobile machine units system using the model of multicomponent complex movement

    OpenAIRE

    A. Lebedev; R. Kaidalov; N. Artiomov; M. Shulyak; M. Podrigalo; D. Abramov; D. Klets

    2015-01-01

    To solve the problems of mobile machine units system operating it is proposed using complex multi-component (composite) movement physical models. Implementation of the proposed method is possible by creating of automatic operating systems of fuel supply to the engines using linear accelerometers. Some examples to illustrate the proposed method are offered.

  17. Baseline groundwater model update for p-area groundwater operable unit, NBN

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-09-01

    This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.

  18. A Linkage Model of Supply Chain Operation and Financial Performance for Economic Sustainability of Firm

    Directory of Open Access Journals (Sweden)

    Suk Ho Jin

    2017-01-01

    Full Text Available Although several studies have explored the relationship between the operation and performance of a supply chain (SC, a general SC model cannot deliver the expected financial results at a company-wide level. In this paper, we argue that this cannot guarantee the maximization of a firm’s overall value because short-term financial performance metrics do not reflect the risk to businesses and the invested capital. Owing to the varying natures of risk and the capital invested, firms with multiple divisions should assess each division separately, and the results can be compared for decisions concerning the allocation of the firm’s capital and resources to maximize the overall value of its businesses. We propose a linkage model to consider operational activities and financial performance simultaneously in a firm’s supply chain model. To exhibit the superiority of the proposed model that connects SC operation and financial indicators, we first compare the differences between models for maximizing profit and enterprise-wise economic value added (EVA as objective functions. To examine uncertainty in the operational and financial parameters of the SC, the results of sensitivity analyses are then reported. Experimental results showed that our model, using the EVA approach, is more effective and superior in terms of maximizing the firm’s overall value from the long-term perspective while satisfying the target values for financial ratios set by the firm’s executives and shareholders for all periods, unlike the results of the general model.

  19. Influence of magnetic field on swap operation in Heisenberg XXZ model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.c [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2009-05-01

    Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.

  20. Influence of magnetic field on swap operation in Heisenberg XXZ model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2009-01-01

    Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.

  1. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  2. Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)

    2001-01-01

    This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.

  3. Singular Spectrum Near a Singular Point of Friedrichs Model Operators of Absolute Type

    International Nuclear Information System (INIS)

    Iakovlev, Serguei I.

    2006-01-01

    In L 2 (R) we consider a family of self adjoint operators of the Friedrichs model: A m =|t| m +V. Here |t| m is the operator of multiplication by the corresponding function of the independent variable t element of R, and (perturbation) is a trace-class integral operator with a continuous Hermitian kernel ν(t,x) satisfying some smoothness condition. These absolute type operators have one singular point of order m>0. Conditions on the kernel ν(t,x) are found guaranteeing the absence of the point spectrum and the singular continuous one of such operators near the origin. These conditions are actually necessary and sufficient. They depend on the finiteness of the rank of a perturbation operator and on the order of singularity. The sharpness of these conditions is confirmed by counterexamples

  4. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-of-charge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  5. OPERATING OF MOBILE MACHINE UNITS SYSTEM USING THE MODEL OF MULTICOMPONENT COMPLEX MOVEMENT

    Directory of Open Access Journals (Sweden)

    A. Lebedev

    2015-07-01

    Full Text Available To solve the problems of mobile machine units system operating it is proposed using complex multi-component (composite movement physical models. Implementation of the proposed method is possible by creating of automatic operating systems of fuel supply to the engines using linear accelerometers. Some examples to illustrate the proposed method are offered.

  6. Modeling motive activation in the Operant Motives Test

    DEFF Research Database (Denmark)

    Runge, J. Malte; Lang, Jonas W. B.; Engeser, Stefan

    2016-01-01

    The Operant Motive Test (OMT) is a picture-based procedure that asks respondents to generate imaginative verbal behavior that is later coded for the presence of affiliation, power, and achievement-related motive content by trained coders. The OMT uses a larger number of pictures and asks...... on the dynamic model were .52, .62, and .73 for the affiliation, achievement, and power motive in the OMT, respectively. The second contribution of this article is a tutorial and R code that allows researchers to directly apply the dynamic Thurstonian IRT model to their data. The future use of the OMT...... respondents to provide more brief answers than earlier and more traditional picture-based implicit motive measures and has therefore become a frequently used measurement instrument in both research and practice. This article focuses on the psychometric response mechanism in the OMT and builds on recent...

  7. Operational modal analysis modeling, Bayesian inference, uncertainty laws

    CERN Document Server

    Au, Siu-Kui

    2017-01-01

    This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic pro...

  8. Energy Storage in Power System Operation: The Power Nodes Modeling Framework

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2010-01-01

    for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization......In this paper, a novel concept for the description of energy storage in power systems with dispatchable and non-dispatchable generators and loads is presented. It is based on a system-perspective consideration of energy storage, generation and consumption. This means that grid-relevant aspects...

  9. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    Science.gov (United States)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating

  10. Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam

    DEFF Research Database (Denmark)

    Ngo, Long le; Madsen, Henrik; Rosbjerg, Dan

    2007-01-01

    Hoa Binh, the largest reservoir in Vietnam, plays an important role in flood control for the Red River delta and hydropower generation. Due to its multi-purpose character, conflicts and disputes in operating the reservoir have been ongoing since its construction, particularly in the flood season....... This paper proposes to optimise the control strategies for the Hoa Binh reservoir operation by applying a combination of simulation and optimisation models. The control strategies are set up in the MIKE 11 simulation model to guide the releases of the reservoir system according to the current storage level......, the hydro-meteorological conditions, and the time of the year. A heuristic global optimisation tool, the shuffled complex evolution (SCE) algorithm, is adopted for optimising the reservoir operation. The optimisation puts focus on the trade-off between flood control and hydropower generation for the Hoa...

  11. Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle

    Directory of Open Access Journals (Sweden)

    Si Huang

    2017-01-01

    Full Text Available Liquid ring pump is widely applied in many industry fields due to the advantages of isothermal compression process, simple structure, and liquid-sealing. Based on the actual operating cycle of “suction-compression-discharge-expansion,” a universal theoretical model for performance of liquid ring pump was established in this study, to solve the problem that the theoretical models deviated from the actual performance in operating cycle. With the major geometric parameters and operating conditions of a liquid ring pump, the performance parameters such as the actual capacity for suction and discharge, shaft power, and global efficiency can be conveniently predicted by the proposed theoretical model, without the limitation of empiric range, performance data, or the detailed 3D geometry of pumps. The proposed theoretical model was verified by experimental performances of liquid ring pumps and could provide a feasible tool for the application of liquid ring pump.

  12. The reference model of supply chain operational controlling in value management

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available The systemic approach of the controlling function to supporting the operations management results from its complex analysis of the supply chain business and operating results and from influencing the operations management factors - products, processes and resources that determine the achieved result (revenues, costs, profitability and assets turnover as well as the return on invested capital. All product features which stand for customer value and its competitiveness are the basis for designing, planning and controlling the interconnected processes responsible for manufacturing and delivery of products. The effectiveness of methods applied in developing products, processes and resources depends on the precise analysis and appraisal of the operating conditions that justify their application. Supporting the operations management, focused on the product value and improving the company's financial result, apart from financial, technical and economic analyses requires transferring the product value to activities control methods and to developing the resources in the product supply chain already at the stage of planning. As a result of an analysis of requirements supporting the development of processes and resources in the supply chain, a reference model of operational controlling in product value management was developed. The multicriterion selection and appropriate application of material flow management methods in the supply chain is each time preceded by an operating and financial analysis as well as by an appraisal of operating conditions that influence the choice of control methods.

  13. A model of the operator cognitive behaviors during the steam generator tube rupture accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Mun, J. H.; Kang, C. S.

    1996-01-01

    An integrated framework of modeling the human operator cognitive behavior during nuclear power plant accident scenarios is presented. It incorporates both plant and operator models. The basic structure of the operator model is similar to that of existing cognitive models, however, this model differs from those existing ones largely in two aspects. First, using frame and membership function, the pattern matching behavior, which is identified as the dominant cognitive process of operators responding to an accident sequence, is explicitly implemented in this model. Second, the non-task-related human cognitive activities like effects of stress and cognitive biases such as confirmation bias and availability bias, are also considered. A computer code, OPEC is assembled to simulate this framework and is actually applied to an SGTR sequence, and the resultant simulated behaviors of operator are obtained. 28 refs., 4 figs., 6 tabs. (author)

  14. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    Science.gov (United States)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  15. The Value of SysML Modeling During System Operations: A Case Study

    Science.gov (United States)

    Dutenhoffer, Chelsea; Tirona, Joseph

    2013-01-01

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  16. Experience of Hungarian model project: 'Strengthening training for operational safety at Paks NPP'

    International Nuclear Information System (INIS)

    Kiss, I.

    1998-01-01

    Training of Operational Safety at Paks NPP is described including all the features of the project including namely: description of Paks NPP, its properties and performances; reasons for establishing Hungarian Model Project, its main goals, mentioning Hungarian and IAEA experts involved in the Project, its organization, operation, budget, current status together with its short term and long term impact

  17. AN OPERATIONAL MANAGEMENT MODEL FOR A COAL MINING PRODUCTION UNIT

    Directory of Open Access Journals (Sweden)

    R. Visser

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The coal mining industry faces increased pressure for higher quality coal at lower cost and increased volumes. To satisfy these requirements the industry needs technically skilled first line supervisors with operational management skills. Most first line supervisors possess the necessary technical, but not the required operational management skills. Various operational management philosophies, describing world-class operational management practices exist; however, it is not possible to implement these philosophies as-is in a mining environment due to the various differences between manufacturing and mining. The solution is to provide an operational management model, adapted from these philosophies, to first line supervisors in the coal mining industry.

    AFRIKAANSE OPSOMMING: Die steenkoolmynbedryf ervaar groeiende druk van die mark vir hoër gehalte steenkool, laer koste en verhoogde volumes. Om hierdie behoefte te bevredig benodig die myn tegniesgeskoolde eerstelyntoesighouers met bedryfsbestuursvaardighede. Ongelukkig beskik die meeste toesighouers wel oor die nodige tegniese kennis, maar nie die nodige bedryfsbestuursvaardighede nie. Daar bestaan verskeie bedryfsbestuursfilosofieë wat wêreldklas bedryfsbestuurspraktyke omskryf. Dit is egter nie moontlik om die filisofieë net so in die mynbedryf te implimenteer nie a.g.v. die verskille tussen vervaardiging en mynbou. Die oplossing is om ‘n bedryfsbestuurmodel wat op hierdie filosofieë geskoei is, aan eerstelyntoesighouers in die steenkoolbedryf te verskaf.

  18. [THE ALTERNATIVE MODEL IN TRAINING FOR OPERATION MANAGEMENT ON LUMBAR SPINE].

    Science.gov (United States)

    Zakondyrin, D E

    2015-01-01

    The authors proposed to use a lumbar part of calf carcass as a new biological model for training of basic practical skills in order to perform the neurosurgical operative interventions on the spine. The proximity of anatomico-surgical parameters of given model and human cavader lumbar spine was estimated. The study proved the possibility of use of lumbar part of calf carcass for training techniques of transpedicular fixation and microdiskectomy in lumbar part.

  19. Making the error-controlling algorithm of observable operator models constructive.

    Science.gov (United States)

    Zhao, Ming-Jie; Jaeger, Herbert; Thon, Michael

    2009-12-01

    Observable operator models (OOMs) are a class of models for stochastic processes that properly subsumes the class that can be modeled by finite-dimensional hidden Markov models (HMMs). One of the main advantages of OOMs over HMMs is that they admit asymptotically correct learning algorithms. A series of learning algorithms has been developed, with increasing computational and statistical efficiency, whose recent culmination was the error-controlling (EC) algorithm developed by the first author. The EC algorithm is an iterative, asymptotically correct algorithm that yields (and minimizes) an assured upper bound on the modeling error. The run time is faster by at least one order of magnitude than EM-based HMM learning algorithms and yields significantly more accurate models than the latter. Here we present a significant improvement of the EC algorithm: the constructive error-controlling (CEC) algorithm. CEC inherits from EC the main idea of minimizing an upper bound on the modeling error but is constructive where EC needs iterations. As a consequence, we obtain further gains in learning speed without loss in modeling accuracy.

  20. Pyrometer model based on sensor physical structure and thermal operation

    International Nuclear Information System (INIS)

    Sebastian, Eduardo; Armiens, Carlos; Gomez-Elvira, Javier

    2010-01-01

    This paper proposes a new simplified thermal model for pyrometers, which takes into account both their internal and external physical structure and operation. The model is experimentally tested on the REMS GTS, an instrument for measuring ground temperature, which is part of the payload of the NASA MSL mission to Mars. The proposed model is based on an energy balance equation that represents the heat fluxes exchanged between sensor elements through radiation, conduction and convection. Despite being mathematically more complex than the more commonly used model, the proposed model makes it possible to design a methodology to compensate the effects of sensor spatial thermal gradients. The paper includes a practical methodology for identifying model constants, which is part of the GTS instrument calibration plan and uses a differential approach to avoid setup errors. Experimental results of the model identification methodology and a target temperature measurement performance after identification has been made are reported. Results demonstrate the good behaviour of the model, with errors below 0.15 deg. C in target temperature estimates.

  1. Evaluation of Design Models of Process Equipment for Use in PRIDE: Remote Operability and Maintainability

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kim, Sung Hyun; Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Han, Jong Hui; Cho, Il Je; Lee, Han Soo

    2012-01-01

    Process equipment for pyroprocessing are being developed at KAERI (Korea Atomic Energy Research Institute). Those equipment should be operated and maintained in a fully remote manner in the argon gas filled cell of PRIDE (PyRoprocess Integrated inactive DEmonstration facility) at KAERI because direct human access to the in-cell is not possible during an operation due to the high toxicity of the argon gas. To make such process equipment remotely operable and maintainable, their design developments have been tested and evaluated in a simulator before they are constructed. A simulator as a means of evaluating the remote operability and maintainability of the design models of process equipment for pyroprocessing is described, and results of the design models tested and evaluated in a simulator are presented

  2. A computational model for evaluating the effects of cognitive factors on situation assessment of nuclear power plant operators

    International Nuclear Information System (INIS)

    Lee, Hyun Chul

    2010-02-01

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, as failures of situation assessment may cause wrong decisions for process control and finally errors of commission in nuclear power plants. A few computational models that can be used to predict and quantify the situation awareness of operators have been suggested. However, these models do not sufficiently consider human characteristics for nuclear power plant operators. In this thesis, a computational model for situation assessment of nuclear power plant operators using a Bayesian network is proposed. This model incorporates human factors significantly affecting operators' situation assessment, such as attention, working memory decay, and mental model. It is assumed that both the salience level and the information value of information sources are the most significant factors that decide which information sources operators heed. The perception index (PI) is defined as the geometric mean of the salience level and the information value of information sources in this study. The attention allocation rule in the proposed model is defined to direct the operator's attention to the information source with the largest PI value at that moment. There are two approaches for incorporating a mental model of nuclear power plant operators into a Bayesian network: the deterministic rules and the probabilistic rules. The proposed model adopted the probabilistic rules because the deterministic rules are a special case of the probabilistic rules and the probabilistic rules can describe various skill levels of operators. Two working memory decay mechanisms have been suggested: a power law and an exponential law. The proposed model assumes that the situation awareness stored in the working memory decays exponentially because the exponential decay formulas are more popular and require just one

  3. A computational model for evaluating the effects of cognitive factors on situation assessment of nuclear power plant operators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul

    2010-02-15

    Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, as failures of situation assessment may cause wrong decisions for process control and finally errors of commission in nuclear power plants. A few computational models that can be used to predict and quantify the situation awareness of operators have been suggested. However, these models do not sufficiently consider human characteristics for nuclear power plant operators. In this thesis, a computational model for situation assessment of nuclear power plant operators using a Bayesian network is proposed. This model incorporates human factors significantly affecting operators' situation assessment, such as attention, working memory decay, and mental model. It is assumed that both the salience level and the information value of information sources are the most significant factors that decide which information sources operators heed. The perception index (PI) is defined as the geometric mean of the salience level and the information value of information sources in this study. The attention allocation rule in the proposed model is defined to direct the operator's attention to the information source with the largest PI value at that moment. There are two approaches for incorporating a mental model of nuclear power plant operators into a Bayesian network: the deterministic rules and the probabilistic rules. The proposed model adopted the probabilistic rules because the deterministic rules are a special case of the probabilistic rules and the probabilistic rules can describe various skill levels of operators. Two working memory decay mechanisms have been suggested: a power law and an exponential law. The proposed model assumes that the situation awareness stored in the working memory decays exponentially because the exponential decay formulas are more popular and require

  4. Study on Developing Degradation Model for Nuclear Power Plants With Ageing Elements Affected on Operation Parameter

    International Nuclear Information System (INIS)

    Choi, Yong Won; Lim, Sung Won; Lee, Un Chul; Kim, Man Woong; Kim, Kab; Ryu, Yong Ho

    2009-01-01

    As a part of development the evaluation system of safety margin effects for degradation of CANDU reactors, it is required that the degradation model represents the distribution of each ageing factor's value during operating year. Unfortunately, it is not easy to make an explicit relation between the RELAP-CANDU parameters and ageing mechanism because of insufficient data and lack of applicable models. So, operating parameter related with ageing is used for range determination of ageing factor. Then, relation between operating parameter and ageing elements is analyzed and ageing constant values for degradation model are determined. Also the other ageing factor is derived for more accurate ageing analysis

  5. Dynamic emulation modelling for the optimal operation of water systems: an overview

    Science.gov (United States)

    Castelletti, A.; Galelli, S.; Giuliani, M.

    2014-12-01

    Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.

  6. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    Science.gov (United States)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  7. Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology

    International Nuclear Information System (INIS)

    Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali

    2015-01-01

    Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters

  8. Modelling the operation of precipitator with vortex effect

    International Nuclear Information System (INIS)

    Eysseric-Emile, C.

    1994-01-01

    In the Purex process which is implemented for the processing of irradiated fuels to eliminate fission products and to recover and valorise uranium and plutonium under the form of end products, a precipitation operation occurs to prepare the plutonium oxalate. This research thesis aims at analysing hydrodynamic characteristics of a specific apparatus used for this precipitation, the precipitator with vortex effect. In a first part, the author presents the problems associated with precipitation operations, their implementation in the processing of irradiated fuels, and compares the considered precipitator with other devices used for the precipitation of radioactive compounds. He proposes a review of literature on the vortex effect in agitated vessel, highlights the key parameter (the forced vortex radius), and reports some preliminary measurements performed on the precipitator. The author then reports the study of liquid phase flows in the precipitator, measurements of rate of suspension, and the study of micro-mixing with reactants. He finally reports attempts to validate trends noticed during flow analysis and a first simple modelling of the precipitator [fr

  9. Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems[Dissertation 3713

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, Ch.

    2007-03-15

    Hydropower represented in 1999 19% of the world electricity production and the absolute production is expected to grow considerably during the next 30 years. Francis turbines play a major role in the hydroelectric production due to their extended range of application. Due to the deregulated energy market, hydroelectric power plants are increasingly subjecting to off design operation, start-up and shutdown and new control strategies. Consequently, the operation of Francis turbine power plants leads to transients phenomena, risk of resonance or instabilities. The understanding of these propagation phenomena is therefore paramount. This work is a contribution to the hydroacoustic modelling of Francis turbine power plants for the investigation of the aforementioned problematic. The first part of the document presents the modelling of the dynamic behavior and the transient analysis of hydroelectric power plants. Therefore, the one-dimensional model of an elementary pipe is derived from the governing equations, i.e. momentum and continuity equations. The use of appropriate numerical schemes leads to a discrete model of the pipe consisting of a T-shaped equivalent electrical circuit. The accuracy in the frequency domain of the discrete model of the pipe is determined by comparison with the analytical solution of the governing equations. The modelling approach is extended to hydraulic components such as valve, surge tanks, surge shaft, air vessels, cavitation development, etc. Then, the modelling of the Francis, Pelton and Kaplan turbines for transient analysis purposes is presented. This modelling is based on the use of the static characteristic of the turbines. The hydraulic components models are implemented in the EPFL software SIMSEN developed for the simulation of electrical installations. After validation of the hydraulic models, transient phenomena in hydroelectric power plants are investigated. It appears that standard separate studies of either the hydraulic or of

  10. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    Science.gov (United States)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  11. Simulation-optimization model of reservoir operation based on target storage curves

    Directory of Open Access Journals (Sweden)

    Hong-bin Fang

    2014-10-01

    Full Text Available This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.

  12. A quantitative approach to modeling the information processing of NPP operators under input information overload

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task under input information overload. We primarily develop the information processing model having multiple stages, which contains information flow. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory. We also investigate the applicability of this approach to quantifying the information reduction of operators under the input information overload

  13. Neuro-fuzzy models for systems identification applied to the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Alves, Antonio Carlos Pinto Dias

    2000-09-01

    A nuclear power plant has a myriad of complex system and sub-systems that, working cooperatively, make the control of the whole plant. Nevertheless their operation be automatic most of the time, the integral understanding of their internal- logic can be away of the comprehension of even experienced operators because of the poor interpretability those controls offer. This difficulty does not happens only in nuclear power plants but in almost every a little more complex control system. Neuro-fuzzy models have been used for the last years in a attempt of suppress these difficulties because of their ability of modelling in linguist form even a system which behavior is extremely complex. This is a very intuitive human form of interpretation and neuro-fuzzy model are gathering increasing acceptance. Unfortunately, neuro-fuzzy models can grow up to become of hard interpretation because of the complexity of the systems under modelling. In general, that growing occurs in function of redundant rules or rules that cover a very little domain of the problem. This work presents an identification method for neuro-fuzzy models that not only allows models grow in function of the existent complexity but that beforehand they try to self-adapt to avoid the inclusion of new rules. This form of construction allowed to arrive to highly interpretative neuro-fuzzy models even of very complex systems. The use of this kind of technique in modelling the control of the pressurizer of a PWR nuclear power plant allowed verify its validity and how neuro-fuzzy models so built can be useful in understanding the automatic operation of a nuclear power plant. (author)

  14. Metric versus observable operator representation, higher spin models

    Science.gov (United States)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  15. The Regional Special Operations Headquarters: Franchising the NATO Model as a Hedge in Lean Times

    Science.gov (United States)

    2012-04-01

    1 AIR FORCE FELLOWS AIR UNIVERSITY THE REGIONAL SPECIAL OPERATIONS HEADQUARTERS: FRANCHISING THE NATO MODEL AS A HEDGE IN LEAN...Headquarters: Franchising The NATO Model As A Hedge In Lean Times 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...it is not copyrighted, but is the property of the United States government. 3 The Regional Special Operations Headquarters: Franchising the

  16. Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation

    International Nuclear Information System (INIS)

    Dang Xuanju; Tan Yonghong

    2005-01-01

    A new neural networks dynamic hysteresis model for piezoceramic actuator is proposed by combining the Preisach model with diagonal recurrent neural networks. The Preisach model is based on elementary rate-independent operators and is not suitable for modeling piezoceramic actuator across a wide frequency band because of the rate-dependent hysteresis characteristic of the piezoceramic actuator. The structure of the developed model is based on the structure of the Preisach model, in which the rate-independent relay hysteresis operators (cells) are replaced by the rate-dependent hysteresis operators of first-order differential equation. The diagonal recurrent neural networks being modified by an adjustable factor can be used to model the hysteresis behavior of the pizeoceramic actuator because its structure is similar to the structure of the modified Preisach model. Therefore, the proposed model not only possesses that of the Preisach model, but also can be used for describing its dynamic hysteresis behavior. Through the experimental results of both the approximation and the prediction, the effectiveness of the neural networks dynamic hysteresis model for the piezoceramic actuator is demonstrated

  17. The design and implementation of an operational model evaluation system. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Foster, K.T.

    1995-06-01

    The complete evaluation of an atmospheric transport and diffusion model typically includes a study of the model`s operational performance. Such a study very often attempts to compare the model`s calculations of an atmospheric pollutant`s temporal and spatial distribution with field experiment measurements. However, these comparisons tend to use data from a small number of experiments and are very often limited to producing the commonly quoted statistics based on the differences between model calculations and the experimental measurements (fractional bias, fractional scatter, etc.). This paper presents initial efforts to develop a model evaluation system geared for both the objective statistical analysis and the subjective visualization of the interrelationships between a model`s calculations and the appropriate field measurement data.

  18. Integration of field data into operational snowmelt-runoff models

    International Nuclear Information System (INIS)

    Brandt, M.; Bergström, S.

    1994-01-01

    Conceptual runoff models have become standard tools for operational hydrological forecasting in Scandinavia. These models are normally based on observations from the national climatological networks, but in mountainous areas the stations are few and sometimes not representative. Due to the great economic importance of good hydrological forecasts for the hydro-power industry attempts have been made to improve the model simulations by support from field observations of the snowpack. The snowpack has been mapped by several methods; airborne gamma-spectrometry, airborne georadars, satellites and by conventional snow courses. The studies cover more than ten years of work in Sweden. The conclusion is that field observations of the snow cover have a potential for improvement of the forecasts of inflow to the reservoirs in the mountainous part of the country, where the climatological data coverages is poor. This is pronounced during years with unusual snow distribution. The potential for model improvement is smaller in the climatologically more homogeneous forested lowlands, where the climatological network is denser. The costs of introduction of airborne observations into the modelling procedure are high and can only be justified in areas of great hydropower potential. (author)

  19. Using model based systems engineering for the development of the Large Synoptic Survey Telescope's operational plan

    Science.gov (United States)

    Selvy, Brian M.; Claver, Charles; Willman, Beth; Petravick, Don; Johnson, Margaret; Reil, Kevin; Marshall, Stuart; Thomas, Sandrine; Lotz, Paul; Schumacher, German; Lim, Kian-Tat; Jenness, Tim; Jacoby, Suzanne; Emmons, Ben; Axelrod, Tim

    2016-08-01

    We† provide an overview of the Model Based Systems Engineering (MBSE) language, tool, and methodology being used in our development of the Operational Plan for Large Synoptic Survey Telescope (LSST) operations. LSST's Systems Engineering (SE) team is using a model-based approach to operational plan development to: 1) capture the topdown stakeholders' needs and functional allocations defining the scope, required tasks, and personnel needed for operations, and 2) capture the bottom-up operations and maintenance activities required to conduct the LSST survey across its distributed operations sites for the full ten year survey duration. To accomplish these complimentary goals and ensure that they result in self-consistent results, we have developed a holistic approach using the Sparx Enterprise Architect modeling tool and Systems Modeling Language (SysML). This approach utilizes SysML Use Cases, Actors, associated relationships, and Activity Diagrams to document and refine all of the major operations and maintenance activities that will be required to successfully operate the observatory and meet stakeholder expectations. We have developed several customized extensions of the SysML language including the creation of a custom stereotyped Use Case element with unique tagged values, as well as unique association connectors and Actor stereotypes. We demonstrate this customized MBSE methodology enables us to define: 1) the rolls each human Actor must take on to successfully carry out the activities associated with the Use Cases; 2) the skills each Actor must possess; 3) the functional allocation of all required stakeholder activities and Use Cases to organizational entities tasked with carrying them out; and 4) the organization structure required to successfully execute the operational survey. Our approach allows for continual refinement utilizing the systems engineering spiral method to expose finer levels of detail as necessary. For example, the bottom-up, Use Case

  20. Functional Fault Model Development Process to Support Design Analysis and Operational Assessment

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Hemminger, Joseph A.

    2016-01-01

    A functional fault model (FFM) is an abstract representation of the failure space of a given system. As such, it simulates the propagation of failure effects along paths between the origin of the system failure modes and points within the system capable of observing the failure effects. As a result, FFMs may be used to diagnose the presence of failures in the modeled system. FFMs necessarily contain a significant amount of information about the design, operations, and failure modes and effects. One of the important benefits of FFMs is that they may be qualitative, rather than quantitative and, as a result, may be implemented early in the design process when there is more potential to positively impact the system design. FFMs may therefore be developed and matured throughout the monitored system's design process and may subsequently be used to provide real-time diagnostic assessments that support system operations. This paper provides an overview of a generalized NASA process that is being used to develop and apply FFMs. FFM technology has been evolving for more than 25 years. The FFM development process presented in this paper was refined during NASA's Ares I, Space Launch System, and Ground Systems Development and Operations programs (i.e., from about 2007 to the present). Process refinement took place as new modeling, analysis, and verification tools were created to enhance FFM capabilities. In this paper, standard elements of a model development process (i.e., knowledge acquisition, conceptual design, implementation & verification, and application) are described within the context of FFMs. Further, newer tools and analytical capabilities that may benefit the broader systems engineering process are identified and briefly described. The discussion is intended as a high-level guide for future FFM modelers.

  1. Warehouse operations planning model for Bausch & Lomb

    NARCIS (Netherlands)

    Atilgan, Ceren

    2009-01-01

    Operations planning is a major part of the Sales& Operations Planning (S&OP) process. It provides an overview on the operations capacity requirements by considering the supply and demand plan. However, Bausch& Lomb does not have a structured operations planning process for their warehouse

  2. Method for identifying process reuse opportunities to enhance the operating model

    CSIR Research Space (South Africa)

    De Vries, M

    2011-12-01

    Full Text Available the volatility of strategy and suggests the use of an operating model (OM), which is a commitment to a way of doing business. The OM creates a company-wide vision for process standardization and data centralization and guides decisions about how a company...

  3. The IDA cognitive model for the analysis of nuclear power plant operator response under accident conditions. Part I: problem solving and decision making model

    International Nuclear Information System (INIS)

    Smidts, C.; Shen, S.H.; Mosleh, A.

    1997-01-01

    This paper is the first of a series of papers describing IDA which is a cognitive model for analysing the behaviour of nuclear power plant operators under accident conditions. The domain of applicability of the model is a relatively constrained environment where behaviour is significantly influenced by high levels of training and explicit requirement to follow written procedures. IDA consists of a model for individual operator behaviour and a model for control room operating crew expanded from the individual model. The model and its derivatives such as an error taxonomy and data collection approach has been designed with ultimate objective of becoming a quantitative method for human reliability analysis (HRA) in probabilistic risk assessment (PRA). The present paper gives a description of the main components of IDA such as memory structure, goals, and problem solving and decision making strategies. It also identifies factors that are at the origin of transitions between goals or between strategies. These factors cover the effects of external conditions and psychological state of the operator. The description is generic at first and then made specific to the nuclear power plant environment and more precisely to abnormal conditions

  4. Condition Monitoring Of Operating Pipelines With Operational Modal Analysis Application

    Directory of Open Access Journals (Sweden)

    Mironov Aleksey

    2015-12-01

    Full Text Available In the petroleum, natural gas and petrochemical industries, great attention is being paid to safety, reliability and maintainability of equipment. There are a number of technologies to monitor, control, and maintain gas, oil, water, and sewer pipelines. The paper focuses on operational modal analysis (OMA application for condition monitoring of operating pipelines. Special focus is on the topicality of OMA for definition of the dynamic features of the pipeline (frequencies and mode shapes in operation. The research was conducted using two operating laboratory models imitated a part of the operating pipeline. The results of finite-element modeling, identification of pipe natural modes and its modification under the influence of virtual failure are discussed. The work considers the results of experimental research of dynamic behavior of the operating pipe models using one of OMA techniques and comparing dynamic properties with the modeled data. The study results demonstrate sensitivity of modal shape parameters to modification of operating pipeline technical state. Two strategies of pipeline repair – with continuously condition-based monitoring with proposed technology and without such monitoring, was discussed. Markov chain reliability models for each strategy were analyzed and reliability improvement factor for proposed technology of monitoring in compare with traditional one was evaluated. It is resumed about ability of operating pipeline condition monitoring by measuring dynamic deformations of the operating pipe and OMA techniques application for dynamic properties extraction.

  5. Physics-based distributed snow models in the operational arena: Current and future challenges

    Science.gov (United States)

    Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.

    2017-12-01

    The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.

  6. Modeling and Simulation of Operator Training Simulator for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Satya Murty, S.A.V.

    2013-01-01

    Summary: • Modeling and Development of Neutronics, Primary & Secondary, SGDHR, Core Temperature Monitoring, Steam Water, Electrical and Fuel Handling are completed. Models have been Integrated ,Tested and ported. • Integrated performance testing under Steady State condition has been completed. • Bench Mark transients and checking of related system dynamics is completed. • Verification and Validation of all the process models has been completed by the Design Experts. • Presently, System Familiarization Training for the operators using KALBR-SIM is in progress

  7. Classical mapping for Hubbard operators: Application to the double-Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-05-28

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  8. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub

    International Nuclear Information System (INIS)

    Ma, Tengfei; Wu, Junyong; Hao, Liangliang

    2017-01-01

    Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.

  9. Introduction of Hypermatrix and Operator Notation into a Discrete Mathematics Simulation Model of Malignant Tumour Response to Therapeutic Schemes In Vivo. Some Operator Properties

    Directory of Open Access Journals (Sweden)

    Georgios S. Stamatakos

    2009-10-01

    Full Text Available The tremendous rate of accumulation of experimental and clinical knowledge pertaining to cancer dictates the development of a theoretical framework for the meaningful integration of such knowledge at all levels of biocomplexity. In this context our research group has developed and partly validated a number of spatiotemporal simulation models of in vivo tumour growth and in particular tumour response to several therapeutic schemes. Most of the modeling modules have been based on discrete mathematics and therefore have been formulated in terms of rather complex algorithms (e.g. in pseudocode and actual computer code. However, such lengthy algorithmic descriptions, although sufficient from the mathematical point of view, may render it difficult for an interested reader to readily identify the sequence of the very basic simulation operations that lie at the heart of the entire model. In order to both alleviate this problem and at the same time provide a bridge to symbolic mathematics, we propose the introduction of the notion of hypermatrix in conjunction with that of a discrete operator into the already developed models. Using a radiotherapy response simulation example we demonstrate how the entire model can be considered as the sequential application of a number of discrete operators to a hypermatrix corresponding to the dynamics of the anatomic area of interest. Subsequently, we investigate the operators’ commutativity and outline the “summarize and jump” strategy aiming at efficiently and realistically address multilevel biological problems such as cancer. In order to clarify the actual effect of the composite discrete operator we present further simulation results which are in agreement with the outcome of the clinical study RTOG 83–02, thus strengthening the reliability of the model developed.

  10. A posteriori error analysis of multiscale operator decomposition methods for multiphysics models

    International Nuclear Information System (INIS)

    Estep, D; Carey, V; Tavener, S; Ginting, V; Wildey, T

    2008-01-01

    Multiphysics, multiscale models present significant challenges in computing accurate solutions and for estimating the error in information computed from numerical solutions. In this paper, we describe recent advances in extending the techniques of a posteriori error analysis to multiscale operator decomposition solution methods. While the particulars of the analysis vary considerably with the problem, several key ideas underlie a general approach being developed to treat operator decomposition multiscale methods. We explain these ideas in the context of three specific examples

  11. Design study of pyrochemical process operation by using virtual engineering models

    International Nuclear Information System (INIS)

    Kakehi, I.; Tozawa, K.; Matsumoto, T.; Tanaka, K.

    2000-04-01

    This report describes accomplishment of simulations of Pyrochemical Process Operation by using virtual engineering models. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. This system is a batch treatment system of reprocessing and re-fabrication, which transports products of solid form from a process to next process. As a results, this system needs automated transport system for process operations by robotics. In this study, a simulation code system has been prepared, which provides virtual engineering environment to evaluate the pyrochemical process operation of a batch treatment system using handling robots. And the simulation study has been conducted to evaluate the required system functions, which are the function of handling robots, the interactions between robot and process equipment, and the time schedule of process, in the automated transport system by robotics. As a result of simulation of the process operation, which we have designed, the automated transport system by robotics of the pyrochemical process is realistic. And the issues for the system development have been pointed out. (author)

  12. Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations

    Science.gov (United States)

    Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...

  13. Assessing the ability of operational snow models to predict snowmelt runoff extremes (Invited)

    Science.gov (United States)

    Wood, A. W.; Restrepo, P. J.; Clark, M. P.

    2013-12-01

    In the western US, the snow accumulation and melt cycle of winter and spring plays a critical role in the region's water management strategies. Consequently, the ability to predict snowmelt runoff at time scales from days to seasons is a key input for decisions in reservoir management, whether for avoiding flood hazards or supporting environmental flows through the scheduling of releases in spring, or for allocating releases for multi-state water distribution in dry seasons of year (using reservoir systems to provide an invaluable buffer for many sectors against drought). Runoff forecasts thus have important benefits at both wet and dry extremes of the climatological spectrum. The importance of the prediction of the snow cycle motivates an assessment of the strengths and weaknesses of the US's central operational snow model, SNOW17, in contrast to process-modeling alternatives, as they relate to simulating observed snowmelt variability and extremes. To this end, we use a flexible modeling approach that enables an investigation of different choices in model structure, including model physics, parameterization and degree of spatiotemporal discretization. We draw from examples of recent extreme events in western US watersheds and an overall assessment of retrospective model performance to identify fruitful avenues for advancing the modeling basis for the operational prediction of snow-related runoff extremes.

  14. Application of Spatial Neural Network Model for Optimal Operation of Urban Drainage System

    Science.gov (United States)

    KIM, B. J.; Lee, J. Y.; KIM, H. I.; Son, A. L.; Han, K. Y.

    2017-12-01

    The significance of real-time operation of drainage pump and warning system for inundation becomes recently increased in order to coping with runoff by high intensity precipitation such as localized heavy rain that frequently and suddenly happen. However existing operation of drainage pump station has been made a decision according to opinion of manager based on stage because of not expecting exact time that peak discharge occur in pump station. Therefore the scale of pump station has been excessively estimated. Although it is necessary to perform quick and accurate inundation in analysis downtown area due to huge property damage from flood and typhoon, previous studies contained risk deducting incorrect result that differs from actual result owing to the diffusion aspect of flow by effect on building and road. The purpose of this study is to develop the data driven model for the real-time operation of drainage pump station and two-dimensional inundation analysis that are improved the problems of the existing hydrology and hydrological model. Neuro-Fuzzy system for real time prediction about stage was developed by estimating the type and number of membership function. Based on forecasting stage, it was decided when pump machine begin to work and how much water scoop up by using penalizing genetic algorithm. It is practicable to forecast stage, optimize pump operation and simulate inundation analysis in real time through the methodologies suggested in this study. This study can greatly contribute to the establishment of disaster information map that prevent and mitigate inundation in urban drainage area. The applicability of the development model for the five drainage pump stations in the Mapo drainage area was verified. It is considered to be able to effectively manage urban drainage facilities in the development of these operating rules. Keywords : Urban flooding; Geo-ANFIS method; Optimal operation; Drainage system; AcknowlegementThis research was supported by a

  15. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    Science.gov (United States)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  16. On the Development of an Operational SWAN Model for the Black Sea (poster)

    NARCIS (Netherlands)

    Akpinar, A.; Van Vledder, G.P.

    2013-01-01

    This poster describes the results of some studies performed on the development of an efficient and operational SWAN model for the Black Sea. This model will be used to study the wind-wave climate and wave energy potential in the region and will provide boundary conditions for coastal engineering and

  17. A study on discrete event dynamic model for nuclear operations of main feed water pump

    International Nuclear Information System (INIS)

    Bae, J. C.; Choi, J. I.

    2000-01-01

    A major objective of the study is to propose a supervisory control algorithm based on the discrete event dynamic system (DEDS) model and apply it to the automation of nuclear operations. The study is motivated by the suitability of the DEDS model for simulation of man-made control action and the potential of the DEDS based supervisory control algorithm for enhanced licensibility, when implemented in nuclear plants, through design transparency due to strong analytic backgrounds. The DEDS model can analytically show the robust stability of the proposed supervisory controller providing design transparency for enhanced licensibility when implemented in nuclear operations

  18. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents

    International Nuclear Information System (INIS)

    Chang, Y.H.J.; Mosleh, A.

    2007-01-01

    This is the last in a series of five papers that discuss the Information Decision and Action in Crew (IDAC) context for human reliability analysis (HRA) and example application. The model is developed to probabilistically predict the responses of the control room operating crew in nuclear power plants during an accident, for use in probabilistic risk assessments (PRA). The operator response spectrum includes cognitive, emotional, and physical activities during the course of an accident. This paper describes a dynamic PRA computer simulation program, accident dynamics simulator (ADS), developed in part to implement the IDAC model. This paper also provides a detailed example of implementing a simpler version of IDAC, compared with the IDAC model discussed in the first four papers of this series, to demonstrate the practicality of integrating a detailed cognitive HRA model within a dynamic PRA framework

  19. Development of an operator`s mental model acquisition system. 1. Estimation of a physical mental model acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Mitsuru; Mizoguchi, Riichirou [Inst. of Scientific and Industrial Research, Osaka Univ., Ibaraki (Japan); Yoshikawa, Shinji; Ozawa, Kenji

    1997-03-01

    This report describes a technical survey of acquisition method of an operator`s understanding for functions and structures of his target nuclear plant. This method is to play a key role in the information processing framework to support on-training operators in forming their knowledge of the nuclear plants. This kind of technical framework is aiming at enhancing human operator`s ability to cope with anomaly plant situations which are difficult to expect from preceding experiences or engineering surveillance. In these cases, cause identifications and responding operation selections are desired to made not only empirically but also based on thoughts about possible phenomena to take place within the nuclear plant. This report focuses on a particular element technique, defined as `explanation-based knowledge acquisition`, as the candidate technique to potentially be extended to meet the requirement written above, and discusses about applicability to the learning support system and about necessary improvements, to identify future technical developments. (author)

  20. A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions.

    Science.gov (United States)

    Johnson, Aaron W; Duda, Kevin R; Sheridan, Thomas B; Oman, Charles M

    2017-03-01

    This article describes a closed-loop, integrated human-vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment. Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator's estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness. We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator's estimates of system states. The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model's predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data. Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates. Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator's visual attention during control mode transitions can produce reallocations in situation awareness of certain states.

  1. Bus Operation Monitoring Oriented Public Transit Travel Index System and Calculation Models

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available This study proposed a two-dimensional index system which is concerned essentially with urban travel based on travel modes and user satisfaction. First, the public transit was taken as an example to describe the index system establishing process. In consideration of convenience, rapid, reliability, comfort, and safety, a bus service evaluation index system was established. The indicators include the N-minute coverage of bus stops, average travel speed, and fluctuation of travel time between stops and bus load factor which could intuitively describe the characteristics of public transport selected to calculate bus travel indexes. Then, combined with the basic indicators, the calculation models of Convenience Index (CI, Rapid Index (RI, Reliability Index (RBI, and Comfort Index (CTI were established based on the multisource data of public transit including the real-time bus GPS data and passenger IC card data. Finally, a case study of Beijing bus operation evaluation and analysis was conducted by taking real bus operation data including GPS data and passenger transaction recorder (IC card data. The results showed that the operation condition of the public transit was well reflected and scientifically classified by the bus travel index models.

  2. Modeling of behaviour of main type personnel in Kozloduy NPP during different operational conditions

    International Nuclear Information System (INIS)

    Hristova, R.; Kalchev, B.

    2000-01-01

    The subject of this article is the personnel behavior and initiating events modeling, based on the operational experience in the NPP 'Kozloduy' initiating events reports. The development of models on qualitative information is much more difficult comparing the quantitative modeling. The modelling process is based on the artificial intelligence theory and methods including knowledge base and inference machine in the frame of logical models and semantic networks. (author)

  3. Surrogate runner model for draft tube losses computation within a wide range of operating points

    International Nuclear Information System (INIS)

    Susan-Resiga, R; Ciocan, T; Muntean, S; De Colombel, T; Leroy, P

    2014-01-01

    We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet

  4. A Secure Operational Model for Mobile Payments

    Directory of Open Access Journals (Sweden)

    Tao-Ku Chang

    2014-01-01

    Full Text Available Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers’ security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service.

  5. The effect of dietary fatty acids on post-operative inflammatory response in a porcine model

    DEFF Research Database (Denmark)

    Langerhuus, Sine Nygaard; Jensen, Karin Hjelholt; Tønnesen, Else Kirstine

    2012-01-01

    ), sunflower oil (SO, n 28), or animal fat (AF, n 28) was evaluated with respect to post-operative responses in inflammatory markers in a porcine model on aortic vascular prosthetic graft infection. In the early post-operative period (0 necrosis factor...

  6. A model of individualized canonical microcircuits supporting cognitive operations.

    Directory of Open Access Journals (Sweden)

    Tim Kunze

    Full Text Available Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations.

  7. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Science.gov (United States)

    Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.

  8. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    Directory of Open Access Journals (Sweden)

    Christian Bongiorno

    Full Text Available We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i in the presence of perfect forecast ability of controllers, and (ii in the presence of some degree of uncertainty in flight trajectory forecast.

  9. Modelling of Operative Report Documents for Data Integration into an openEHR-Based Enterprise Data Warehouse.

    Science.gov (United States)

    Haarbrandt, Birger; Wilschko, Andreas; Marschollek, Michael

    2016-01-01

    In order to integrate operative report documents from two operating room management systems into a data warehouse, we investigated the application of the two-level modelling approach of openEHR to create a shared data model. Based on the systems' analyses, a template consisting of 13 archetypes has been developed. Of these 13 archetypes, 3 have been obtained from the international archetype repository of the openEHR foundation. The remaining 10 archetypes have been newly created. The template was evaluated by an application system expert and through conducting a first test mapping of real-world data from one of the systems. The evaluation showed that by using the two-level modelling approach of openEHR, we succeeded to represent an integrated and shared information model for operative report documents. More research is needed to learn about the limitations of this approach in other data integration scenarios.

  10. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Czech Academy of Sciences Publication Activity Database

    Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; Peuch, V.H.; PoupKou, A.; Kioutsioukis, I.; Finardi, S.; Sofiev, M.; Sokhi, R.; Lehtinen, K.E.J.; Karatzas, K.; San José, R.; Astitha, M.; Kallos, G.; Schaap, M.; Reimer, E.; Jakobs, H.; Eben, Kryštof

    2012-01-01

    Roč. 12, - (2012), s. 1-87 ISSN 1680-7316 Institutional research plan: CEZ:AV0Z10300504 Keywords : chemical weather * numerical models * operational forecasting * air Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 5.510, year: 2012

  11. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome.

    Science.gov (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D

    2018-03-14

    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  12. Modelling of the operational behaviour of passive autocatalytic recombiners

    International Nuclear Information System (INIS)

    Schwarz, Ulrich

    2011-01-01

    Due to severe accidents in nuclear power plants, a significant amount of hydrogen can be produced. In pressurized water reactors, a possible and wide-spread measurement is the use of auto-catalytic recombiners. There are numerous numerical models describing the operational behaviour of recombiners for containment codes. The numerical model REKO-DIREKT was developed at the Forschungszentrum Juelich. This model describes the chemical reaction on the catalytic sheets by a physical model, as opposed to the usual codes based on empirical correlations. Additionally, there have been experimental studies concerning the catalytic recombination of hydrogen since the 1990s. The aim of this work is the further development of the program REKO-DIREKT to an independent recombiner model for severe accident and containment codes. Therefore, the catalyst model already existed has been submitted by a parameter optimization with an experimental database expanded during this work. In addition, a chimney model has been implemented which allows the calculation of the free convection flow through the recombiner housing due to the exothermal reaction. This model has been tested by experimental data gained by a recently built test facility. The complete recombiner model REKO-DIREKT has been validated by data from literature. Another aim of this work is the derivation of the reaction kinetics for recombiner designs regarding future reactor concepts. Therefore, experimental studies both on single catalytic coated meshes as well as on two meshes installed in a row have been performed in laboratory scale. By means of the measured data, a theoretical approach for the determination of the reaction rate has been derived.

  13. Robust Models for Operator Workload Estimation

    Science.gov (United States)

    2015-03-01

    piloted aircraft (RPA) simultaneously, a vast improvement in resource utilization compared to existing operations that require several operators per...into distinct cognitive channels (visual, auditory, spatial, etc.) based on our ability to multitask effectively as long as no one channel is

  14. Causal reasoning and models of cognitive tasks for naval nuclear power plant operators

    International Nuclear Information System (INIS)

    Salazar-Ferrer, P.

    1995-06-01

    In complex industrial process control, causal reasoning appears as a major component in operators' cognitive tasks. It is tightly linked to diagnosis, prediction of normal and failure states, and explanation. This work provides a detailed review of literature in causal reasoning. A synthesis is proposed as a model of causal reasoning in process control. This model integrates distinct approaches in Cognitive Science: especially qualitative physics, Bayesian networks, knowledge-based systems, and cognitive psychology. Our model defines a framework for the analysis of causal human errors in simulated naval nuclear power plant fault management. Through the methodological framework of critical incident analysis we define a classification of errors and difficulties linked to causal reasoning. This classification is based on shallow characteristics of causal reasoning. As an origin of these errors, more elementary component activities in causal reasoning are identified. The applications cover the field of functional specification for man-machine interfaces, operators support systems design as well as nuclear safety. In addition of this study, we integrate the model of causal reasoning in a model of cognitive task in process control. (authors). 106 refs., 49 figs., 8 tabs

  15. Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2011-01-01

    The system-level consideration of inter- mittent renewable energy sources and small-scale en- ergy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Non-controllability and energy-constraints are still considered contingent cases...... in market-based operation. The design of operation strategies for up to 100 % renewable energy systems requires an explicit consideration of non-dispatchable generation and stor- age capacities, as well as the evaluation of operational performance in terms of energy eciency, reliability, environmental...... impact and cost. By abstracting from technology-dependent and physical unit properties, the modeling framework presented and extended in this pa- per allows the modeling of a technologically diverse unit portfolio with a unied approach, whilst establishing the feasibility of energy-storage consideration...

  16. Expected shortfall estimation for apparently infinite-mean models of operational risk

    NARCIS (Netherlands)

    Cirillo, P.; Taleb, Nassim Nicholas

    2016-01-01

    Statistical analyses on actual data depict operational risk as an extremely heavy-tailed phenomenon, able to generate losses so extreme as to suggest the use of infinite-mean models. But no loss can actually destroy more than the entire value of a bank or of a company, and this upper bound should be

  17. High Availability Applications for NOMADS at the NOAA Web Operations Center Aimed at Providing Reliable Real Time Access to Operational Model Data

    Science.gov (United States)

    Alpert, J. C.; Rutledge, G.; Wang, J.; Freeman, P.; Kang, C. Y.

    2009-05-01

    The NOAA Operational Modeling Archive Distribution System (NOMADS) is now delivering high availability services as part of NOAA's official real time data dissemination at its Web Operations Center (WOC). The WOC is a web service used by all organizational units in NOAA and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including metadata. Data sets served in this way with a high availability server offer vast possibilities for the creation of new products for value added retailers and the scientific community. New applications to access data and observations for verification of gridded model output, and progress toward integration with access to conventional and non-conventional observations will be discussed. We will demonstrate how users can use NOMADS services to repackage area subsets either using repackaging of GRIB2 files, or values selected by ensemble component, (forecast) time, vertical levels, global horizontal location, and by variable, virtually a 6- Dimensional analysis services across the internet.

  18. Model-based Assessment for Balancing Privacy Requirements and Operational Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Fabian [Salzburg Univ. (Austria); Engel, Dominik [Salzburg Univ. (Austria); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor [Univ. of Southern California, Los Angeles, CA (United States)

    2015-02-17

    The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increase of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and – if feasible – an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.

  19. A novel model for extending international co-operation in science and education

    NARCIS (Netherlands)

    de Boer, S.J.; Ji-zehn, Q.

    2004-01-01

    Journal of Zhejiang University SCIENCE (ISSN 1009-3095, Monthly) 2004 Vol. 5 No. 3 p.358-364 --------------------------------------------------------------------------------A novel model for extending international co-operation in science and educationDE BOER Sirp J.1, QIU Ji-zhen 2(1International

  20. A possible way for conservatism reduction at the modelling of WWER operational modes

    International Nuclear Information System (INIS)

    Shishkov, L. K.

    2010-01-01

    The paper discusses the way to ensure safety operation of the WWER by meet ing the technological Safety Criteria that are defined in the documents of the state level. That Safety Criteria are ensured by-turn by implementation of the design limits for the number of core parameters at normal operation. Verification of the Safety Criteria adherences for all design modes of NPP operation is conducted in assumption that all (if possible) core parameters that have the design limits reach these limiting values. Additionally, to take into account possible error of modeling, a reactor operates in conditions for the core parameters to not reach the limits with probability greater than 95%. This method is deliberately conservative and it may be substituted with 'probabilistic method'. Probabilistic method supposes the operational parameters are defined with accounting of the possible random deviation to ensure the probability of technological Safety Criteria to be met. (Author)

  1. Model-Based Design and Formal Verification Processes for Automated Waterway System Operations

    Directory of Open Access Journals (Sweden)

    Leonard Petnga

    2016-06-01

    Full Text Available Waterway and canal systems are particularly cost effective in the transport of bulk and containerized goods to support global trade. Yet, despite these benefits, they are among the most under-appreciated forms of transportation engineering systems. Looking ahead, the long-term view is not rosy. Failures, delays, incidents and accidents in aging waterway systems are doing little to attract the technical and economic assistance required for modernization and sustainability. In a step toward overcoming these challenges, this paper argues that programs for waterway and canal modernization and sustainability can benefit significantly from system thinking, supported by systems engineering techniques. We propose a multi-level multi-stage methodology for the model-based design, simulation and formal verification of automated waterway system operations. At the front-end of development, semi-formal modeling techniques are employed for the representation of project goals and scenarios, requirements and high-level models of behavior and structure. To assure the accuracy of engineering predictions and the correctness of operations, formal modeling techniques are used for the performance assessment and the formal verification of the correctness of functionality. The essential features of this methodology are highlighted in a case study examination of ship and lock-system behaviors in a two-stage lock system.

  2. A Survey of Recent Research on Optimization Models and Algorithms for Operations Management from the Process View

    Directory of Open Access Journals (Sweden)

    Hongying Fei

    2017-01-01

    Full Text Available Over the past decades, optimization in operations management has grown ever more popular not only in the academic literature but also in practice. However, the problems have varied a lot, and few literature reviews have provided an overview of the models and algorithms that are applied to the optimization in operations management. In this paper, we first classify crucial optimization areas of operations management from the process point of view and then analyze the current status and trends of the studies in those areas. The purpose of this study is to give an overview of optimization modelling and resolution approaches, which are applied to operations management.

  3. A clinical prediction model to assess the risk of operative delivery

    NARCIS (Netherlands)

    Schuit, E.; Kwee, A.; Westerhuis, M. E. M. H.; van Dessel, H. J. H. M.; Graziosi, G. C. M.; van Lith, J. M. M.; Nijhuis, J. G.; Oei, S. G.; Oosterbaan, H. P.; Schuitemaker, N. W. E.; Wouters, M. G. A. J.; Visser, G. H. A.; Mol, B. W. J.; Moons, K. G. M.; Groenwold, R. H. H.

    2012-01-01

    Please cite this paper as: Schuit E, Kwee A, Westerhuis M, Van Dessel H, Graziosi G, Van Lith J, Nijhuis J, Oei S, Oosterbaan H, Schuitemaker N, Wouters M, Visser G, Mol B, Moons K, Groenwold R. A clinical prediction model to assess the risk of operative delivery. BJOG 2012;119:915923. Objective To

  4. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  5. Fuzzy expert systems models for operations research and management science

    Science.gov (United States)

    Turksen, I. B.

    1993-12-01

    Fuzzy expert systems can be developed for the effective use of management within the domains of concern associated with Operations Research and Management Science. These models are designed with: (1) expressive powers of representation embedded in linguistic variables and their linguistic values in natural language expressions, and (2) improved methods of interference based on fuzzy logic which is a generalization of multi-valued logic with fuzzy quantifiers. The results of these fuzzy expert system models are either (1) approximately good in comparison with their classical counterparts, or (2) much better than their counterparts. Moreover, for fuzzy expert systems models, it is only necessary to obtain ordinal scale data. Whereas for their classical counterparts, it is generally required that data be at least on ratio and absolute scale in order to guarantee the additivity and multiplicativity assumptions.

  6. Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor

    Directory of Open Access Journals (Sweden)

    Curtisha D. Travis

    2013-08-01

    Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.

  7. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  8. Experimental Modeling of VHTR Plenum Flows during Normal Operation and Pressurized Conduction Cooldown

    Energy Technology Data Exchange (ETDEWEB)

    Glenn E McCreery; Keith G Condie

    2006-09-01

    The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.

  9. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Svetlana Strbac Savic

    2015-01-01

    Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

  10. A fast-running core prediction model based on neural networks for load-following operations in a soluble boron-free reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-wook [Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejon 305-600 (Korea, Republic of)], E-mail: Jinwook@kaeri.re.kr; Seong, Seung-Hwan [Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejon 305-600 (Korea, Republic of)], E-mail: shseong@kaeri.re.kr; Lee, Un-Chul [Department of Nuclear Engineering, Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2007-09-15

    A fast prediction model for load-following operations in a soluble boron-free reactor has been proposed, which can predict the core status when three or more control rod groups are moved at a time. This prediction model consists of two multilayer feedforward neural network models to retrieve the axial offset and the reactivity, and compensation models to compensate for the reactivity and axial offset arising from the xenon transient. The neural network training data were generated by taking various overlaps among the control rod groups into consideration for training the neural network models, and the accuracy of the constructed neural network models was verified. Validation results of predicting load following operations for a soluble boron-free reactor show that this model has a good capability to predict the positions of the control rods for sustaining the criticality of a core during load-following operations to ensure that the tolerable axial offset band is not exceeded and it can provide enough corresponding time for the operators to take the necessary actions to prevent a deviation from the tolerable operating band.

  11. A fast-running core prediction model based on neural networks for load-following operations in a soluble boron-free reactor

    International Nuclear Information System (INIS)

    Jang, Jin-wook; Seong, Seung-Hwan; Lee, Un-Chul

    2007-01-01

    A fast prediction model for load-following operations in a soluble boron-free reactor has been proposed, which can predict the core status when three or more control rod groups are moved at a time. This prediction model consists of two multilayer feedforward neural network models to retrieve the axial offset and the reactivity, and compensation models to compensate for the reactivity and axial offset arising from the xenon transient. The neural network training data were generated by taking various overlaps among the control rod groups into consideration for training the neural network models, and the accuracy of the constructed neural network models was verified. Validation results of predicting load following operations for a soluble boron-free reactor show that this model has a good capability to predict the positions of the control rods for sustaining the criticality of a core during load-following operations to ensure that the tolerable axial offset band is not exceeded and it can provide enough corresponding time for the operators to take the necessary actions to prevent a deviation from the tolerable operating band

  12. Remote Sensing-based Methodologies for Snow Model Adjustments in Operational Streamflow Prediction

    Science.gov (United States)

    Bender, S.; Miller, W. P.; Bernard, B.; Stokes, M.; Oaida, C. M.; Painter, T. H.

    2015-12-01

    Water management agencies rely on hydrologic forecasts issued by operational agencies such as NOAA's Colorado Basin River Forecast Center (CBRFC). The CBRFC has partnered with the Jet Propulsion Laboratory (JPL) under funding from NASA to incorporate research-oriented, remotely-sensed snow data into CBRFC operations and to improve the accuracy of CBRFC forecasts. The partnership has yielded valuable analysis of snow surface albedo as represented in JPL's MODIS Dust Radiative Forcing in Snow (MODDRFS) data, across the CBRFC's area of responsibility. When dust layers within a snowpack emerge, reducing the snow surface albedo, the snowmelt rate may accelerate. The CBRFC operational snow model (SNOW17) is a temperature-index model that lacks explicit representation of snowpack surface albedo. CBRFC forecasters monitor MODDRFS data for emerging dust layers and may manually adjust SNOW17 melt rates. A technique was needed for efficient and objective incorporation of the MODDRFS data into SNOW17. Initial development focused in Colorado, where dust-on-snow events frequently occur. CBRFC forecasters used retrospective JPL-CBRFC analysis and developed a quantitative relationship between MODDRFS data and mean areal temperature (MAT) data. The relationship was used to generate adjusted, MODDRFS-informed input for SNOW17. Impacts of the MODDRFS-SNOW17 MAT adjustment method on snowmelt-driven streamflow prediction varied spatially and with characteristics of the dust deposition events. The largest improvements occurred in southwestern Colorado, in years with intense dust deposition events. Application of the method in other regions of Colorado and in "low dust" years resulted in minimal impact. The MODDRFS-SNOW17 MAT technique will be implemented in CBRFC operations in late 2015, prior to spring 2016 runoff. Collaborative investigation of remote sensing-based adjustment methods for the CBRFC operational hydrologic forecasting environment will continue over the next several years.

  13. How operator admittance affects the response of a teleoperation system to assistive forces – A model analytic study and simulation

    International Nuclear Information System (INIS)

    Wildenbeest, J.G.W.; Abbink, D.A.; Boessenkool, H.; Heemskerk, C.J.M.; Koning, J.F.

    2013-01-01

    Highlights: ► We developed a computational model of a human operator controlling a teleoperation system based on feedforward control, while performing a free-space motion. ► We studied how assistive forces affect the response of the combined system of telemanipulator and operator, when operator admittance changes due to task instruction or arm configuration. ► Inappropriate assistive forces can lead to assistive forces that are either not perceived, or deflect the combined system; assistive forces should be tailored to operator admittance. ► It is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail. -- Abstract: Haptic shared control is a promising approach to increase the effectiveness of remote handling operations. While in haptic shared control the operator is continuously guided with assistive forces, the operator's response to forces is not fully understood. This study describes the development of a computational model of a human operator controlling a teleoperation system based on feedforward control. In a simulation, the operator's response to repulsive forces in free-space motions was modeled for two degrees of freedom, for two operator endpoint admittances (estimated by means of closed-loop identification techniques). The simulation results show that similar repulsive forces lead to substantial discrepancies in response when admittance settings mismatch; wrongly estimated operator admittances can lead to assistive forces that are either not perceived, or deflect the combined system of human operator and telemanipulator. It is concluded that assistive forces should be tailored to the arm configuration and the type of task performed. In order to utilize haptic shared control to its full potential, it is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail

  14. How operator admittance affects the response of a teleoperation system to assistive forces – A model analytic study and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wildenbeest, J.G.W., E-mail: j.g.w.wildenbeest@tudelft.nl [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2626 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Abbink, D.A. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2626 CD Delft (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute of Fundamental Energy Research), Association EUROTOM-FOM, Partner in the Trilateral Eurogio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); FOM Institute DIFFER (Dutch Institute of Fundamental Energy Research), Association EUROTOM-FOM, Partner in the Trilateral Eurogio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2013-10-15

    Highlights: ► We developed a computational model of a human operator controlling a teleoperation system based on feedforward control, while performing a free-space motion. ► We studied how assistive forces affect the response of the combined system of telemanipulator and operator, when operator admittance changes due to task instruction or arm configuration. ► Inappropriate assistive forces can lead to assistive forces that are either not perceived, or deflect the combined system; assistive forces should be tailored to operator admittance. ► It is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail. -- Abstract: Haptic shared control is a promising approach to increase the effectiveness of remote handling operations. While in haptic shared control the operator is continuously guided with assistive forces, the operator's response to forces is not fully understood. This study describes the development of a computational model of a human operator controlling a teleoperation system based on feedforward control. In a simulation, the operator's response to repulsive forces in free-space motions was modeled for two degrees of freedom, for two operator endpoint admittances (estimated by means of closed-loop identification techniques). The simulation results show that similar repulsive forces lead to substantial discrepancies in response when admittance settings mismatch; wrongly estimated operator admittances can lead to assistive forces that are either not perceived, or deflect the combined system of human operator and telemanipulator. It is concluded that assistive forces should be tailored to the arm configuration and the type of task performed. In order to utilize haptic shared control to its full potential, it is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail.

  15. Advanced Modeling of Ramp Operations including Departure Status at Secondary Airports, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses three modeling elements relevant to NASA's IADS research and ATD-2 project, two related to ramp operations at primary airports and one related...

  16. Operator-based metric for nuclear operations automation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, G.L.; Miao, A.X.; Kalkan, A. [Charles River Analytics Inc., Cambridge, MA (United States)] [and others

    1995-04-01

    Continuing advances in real-time computational capabilities will support enhanced levels of smart automation and AI-based decision-aiding systems in the nuclear power plant (NPP) control room of the future. To support development of these aids, we describe in this paper a research tool, and more specifically, a quantitative metric, to assess the impact of proposed automation/aiding concepts in a manner that can account for a number of interlinked factors in the control room environment. In particular, we describe a cognitive operator/plant model that serves as a framework for integrating the operator`s information-processing capabilities with his procedural knowledge, to provide insight as to how situations are assessed by the operator, decisions made, procedures executed, and communications conducted. Our focus is on the situation assessment (SA) behavior of the operator, the development of a quantitative metric reflecting overall operator awareness, and the use of this metric in evaluating automation/aiding options. We describe the results of a model-based simulation of a selected emergency scenario, and metric-based evaluation of a range of contemplated NPP control room automation/aiding options. The results demonstrate the feasibility of model-based analysis of contemplated control room enhancements, and highlight the need for empirical validation.

  17. First operation experiences with ITER-FEAT model pump

    International Nuclear Information System (INIS)

    Mack, A.; Day, Chr.; Haas, H.; Murdoch, D.K.; Boissin, J.C.; Schummer, P.

    2001-01-01

    Design and manufacturing of the model cryopump for ITER-FEAT have been finished. After acceptance tests at the contractor's premises the pump was installed in the TIMO-facility which was prepared for testing the pump under ITER-FEAT relevant operating conditions. The procedures for the final acceptance tests are described. Travelling time, positioning accuracy and leak rate of the main valve are within the requirements. The heat loads to the 5 and 80 K circuits are a factor two better than the designed values. The maximum pumping speeds for H 2 , D 2 , He, Ne were measured. The value of 58 m 3 /s for D 2 is well above the contractual required value of 40 m 3 /s

  18. Renormalization Group Equations of d=6 Operators in the Standard Model Effective Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The one-loop renormalization group equations for the Standard Model (SM) Effective Field Theory (EFT) including dimension-six operators are calculated. The complete 2499 × 2499 one-loop anomalous dimension matrix of the d=6 Lagrangian is obtained, as well as the contribution of d=6 operators to the running of the parameters of the renormalizable SM Lagrangian. The presence of higher-dimension operators has implications for the flavor problem of the SM. An approximate holomorphy of the one-loop anomalous dimension matrix is found, even though the SM EFT is not a supersymmetric theory.

  19. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  20. Linear programming models with planned lead times for supply chain operations planning

    NARCIS (Netherlands)

    Spitter, J.M.; Hurkens, C.A.J.; Kok, de A.G.; Lenstra, J.K.; Negenman, E.G.

    2005-01-01

    This paper contributes to the development of models for capacity constrained Supply Chain Operations Planning (SCOP). We focus on production environments with arbitrary supply chain structures. The demand for the end items is assumed to be exogenously determined. We solve the SCOP problem with