2007-01-01
Counterintelligence; Civilian Internees CIA Central Intelligence Agency CIAP Command Intelligence Architecture Plan CID Criminal Investigation...MILGP Military Group (assigned to American Embassy in host nation) MIO Maritime Intercept Operations MIW Mine Warfare MLRS
Simulacija rafala višecevnog bacača raketa / MLRS salvo simulation
Marko S. Holclajtner
2010-04-01
Full Text Available U radu je predstavljena procedura za efikasno simuliranje rafala višecevnog bacača raketa i uticaja rakete na ostale delove sistema. Analizirano je ponašanje rakete u odnosu na referentnu idealnu trajektoriju, koju generiše idealna raketa. Kvalitet rafalne vatre je rasturanje padnih tačaka na cilju što je mera preciznosti i tačnosti. U radu je razmatran samo uticaj preciznosti, tj. rasturanja raketa, pri čemu se smatra da je greška tačnosti zanemarljiva. Na taj način identifikuju se sopstveni (municijski uticaji na fenomen rasturanja trajektorija. Rasturanje na cilju upoređeno je sa rasturanjem na kraju aktivne faze u takozvanim estimatorskim koordinatama (detektorskoj ravni i biće utvrđena njihova korelacija. / This paper presents a procedure for an efficient simulation of MLRS barrage fire as well as of the effects of rocket parameters. The rocket behavior will be analyzed with reference to an ideal trajectory generated by an ideal rocket. The quality of MLRS fire is expressed through dispersion of impact points in the target area thus representing precision and accuracy. This work assumes absolutely correct accuracy and concentrates primarily on the effects of precision i. e. on the dispersion of rockets. Other types of effects on rocket dispersion, such as those of atmosphere, launching, etc. are neglected. The ammunition effects on the trajectory dispersion will be thus identified. The dispersion in the target area will be correlated with the dispersion of trajectory points at the end of the active (rocket motor burn out phase.
Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2010-01-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...
2017-04-27
Energy Operation Model (EOM) simulates the operation of the electric grid at the zonal scale, including inter-zonal transmission constraints. It generates the production cost, power generation by plant and category, fuel usage, and locational marginal price (LMP) with a flexible way to constrain the power production by environmental constraints, e.g. heat waves, drought conditions). Different from commercial software such as PROMOD IV where generator capacity and heat rate efficiency can only be adjusted on a monthly basis, EOM calculates capacity impacts and plant efficiencies based on hourly ambient conditions (air temperature and humidity) and cooling water availability for thermal plants. What is missing is a hydro power dispatch.
Gabriela ANGHELACHE
2011-06-01
Full Text Available Losses resulting from operational risk events from a complex interaction between organizational factors, personal and market participants that do not fit a simple classification scheme. Taking into account past losses (ex. Barings, Daiwa, etc. we can say that operational risk is a major financial losses in the banking sector, although until recently have been underestimated, considering that they are generally minor, note setting survival of a bank.
Academic Education Chain Operation Model
Ruskov, Petko; Ruskov, Andrey
2007-01-01
This paper presents an approach for modelling the educational processes as a value added chain. It is an attempt to use a business approach to interpret and compile existing business and educational processes towards reference models and suggest an Academic Education Chain Operation Model. The model
Modelling of Batch Process Operations
2011-01-01
Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...
Making Deformable Template Models Operational
Fisker, Rune
2000-01-01
Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization...... published during the Ph.D. project. To put these articles into the general context of deformable template models and to pass on an overview of the deformable template model literature, the thesis starts with a compact survey of the deformable template model literature with special focus on representation....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...
Lunar Landing Operational Risk Model
Mattenberger, Chris; Putney, Blake; Rust, Randy; Derkowski, Brian
2010-01-01
Characterizing the risk of spacecraft goes beyond simply modeling equipment reliability. Some portions of the mission require complex interactions between system elements that can lead to failure without an actual hardware fault. Landing risk is currently the least characterized aspect of the Altair lunar lander and appears to result from complex temporal interactions between pilot, sensors, surface characteristics and vehicle capabilities rather than hardware failures. The Lunar Landing Operational Risk Model (LLORM) seeks to provide rapid and flexible quantitative insight into the risks driving the landing event and to gauge sensitivities of the vehicle to changes in system configuration and mission operations. The LLORM takes a Monte Carlo based approach to estimate the operational risk of the Lunar Landing Event and calculates estimates of the risk of Loss of Mission (LOM) - Abort Required and is Successful, Loss of Crew (LOC) - Vehicle Crashes or Cannot Reach Orbit, and Success. The LLORM is meant to be used during the conceptual design phase to inform decision makers transparently of the reliability impacts of design decisions, to identify areas of the design which may require additional robustness, and to aid in the development and flow-down of requirements.
Comparing models of offensive cyber operations
Grant, T
2015-10-01
Full Text Available was performed, using as a springboard seven models of cyber- attack, and resulted in the development of what is described as a canonical model. Keywords: Offensive cyber operations; Process models; Rational reconstructions; Canonical models; Structured...
Modeling human operator involvement in robotic systems
Wewerinke, P.H.
1991-01-01
A modeling approach is presented to describe complex manned robotic systems. The robotic system is modeled as a (highly) nonlinear, possibly time-varying dynamic system including any time delays in terms of optimal estimation, control and decision theory. The role of the human operator(s) is modeled
ROTI-OPERATIONAL INSTRUCTIONAL MODEL
H. Barker,
2012-02-01
Full Text Available The instructional model presented here is a combination of systems used by the United States Navy and R. F. Mager's Criteria Referenced Instruction Model for Analysis Design and Implementation. The author has taken what he believes is the best components from each system and established a working model.
Modeling Operating Modes during Plant Life Cycle
Jørgensen, Sten Bay; Lind, Morten
2012-01-01
Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelate...
Modeling and simulation with operator scaling
Cohen, Serge; Rosinski, Jan
2009-01-01
Self-similar processes are useful in modeling diverse phenomena that exhibit scaling properties. Operator scaling allows a different scale factor in each coordinate. This paper develops practical methods for modeling and simulating stochastic processes with operator scaling. A simulation method for operator stable Levy processes is developed, based on a series representation, along with a Gaussian approximation of the small jumps. Several examples are given to illustrate practical applications. A classification of operator stable Levy processes in two dimensions is provided according to their exponents and symmetry groups. We conclude with some remarks and extensions to general operator self-similar processes.
Following an Optimal Batch Bioreactor Operations Model
Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.;
2012-01-01
The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed-b...
Why operational risk modelling creates inverse incentives
Doff, R.
2015-01-01
Operational risk modelling has become commonplace in large international banks and is gaining popularity in the insurance industry as well. This is partly due to financial regulation (Basel II, Solvency II). This article argues that operational risk modelling is fundamentally flawed, despite efforts
Operator algebra of orbifold models
Dijkgraaf, R.; Vafa, C.; Verlinde, E.; Verlinde, H.
1989-07-01
We analyze the chiral properties of (orbifold) conformal field theories which are obtained from a given conformal field theory by modding out by a finite symmetry group. For a class of orbifolds, we derive the fusion rules by studying the modular transformation properties of the one-loop characters. The results are illustrated with explicit calculations of toroidal and c=1 models.
Operational Models of Infrastructure Resilience
2015-01-01
following the loss of these components. Although our exposition sometimes personifies the attacker, we emphasize that our purpose is simply to discover...following a catastrophic event.” Reed et al.(67) present resilience scoring met- rics and build on the work of Haimes(58) in using input-output...to simplify exposition —we have included much more complicated investment considerations in other such models), where it “costs” one unit of de- fense
Comparing models of offensive cyber operations
Grant, T
2012-03-01
Full Text Available (CSIR), Pretoria, South Africa tj.grant@nlda.nl iburke@csir.co.za rvhheerden@csir.co.za Abstract: Cyber operations denote the response of governments and organisations to cyber crime, terrorism, and warfare. To date, cyber operations have been.... This could include responding to an (impending) attack by counter-attacking or by proactively neutralizing the source of an impending attack. A good starting point to improving understanding would be to model the offensive cyber operations process...
Stochastic Modelling and Analysis of Warehouse Operations
Y. Gong (Yeming)
2009-01-01
textabstractThis thesis has studied stochastic models and analysis of warehouse operations. After an overview of stochastic research in warehouse operations, we explore the following topics. Firstly, we search optimal batch sizes in a parallel-aisle warehouse with online order arrivals. We employ a
Modeling Control Situations in Power System Operations
Saleem, Arshad; Lind, Morten; Singh, Sri Niwas
2010-01-01
Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...... for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system...
Modeling Control Situations in Power System Operations
Saleem, Arshad; Lind, Morten; Singh, Sri Niwas
2010-01-01
Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...... for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system...
Vertex operators in solvable lattice models
Foda, O E; Miwa, T; Miki, K; Nakayashiki, A; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Miki, Kei; Nakayashiki, Atsushi
1994-01-01
We formulate the basic properties of q-vertex operators in the context of the Andrews-Baxter-Forrester (ABF) series, as an example of face-interaction models, derive the q-difference equations satisfied by their correlation functions, and establish their connection with representation theory. We also discuss the q-difference equations of the Kashiwara-Miwa (KM) series, as an example of edge-interaction models. Next, the Ising model--the simplest special case of both ABF and KM series--is studied in more detail using the Jordan-Wigner fermions. In particular, all matrix elements of vertex operators are calculated.
CORSICA modelling of ITER hybrid operation scenarios
Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.
2016-12-01
The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.
MODELING OPERANT BEHAVIOR IN THE PARKINSONIAN RAT
Avila, Irene; Reilly, Mark P; Sanabria, Federico; Posadas-Sánchez, Diana; Chavez, Claudia L.; Banerjee, Nikhil; Killeen, Peter; Castañeda, Edward
2008-01-01
Mathematical principles of reinforcement (MPR; Killeen, 1994) is a quantitative model of operant behavior that contains 3 parameters representing motor capacity (δ), motivation (a), and short term memory (λ). The present study applied MPR to characterize the effects of bilateral infusions of 6-OHDA into the substantia nigra pars compacta in the rat, a model of Parkinson’s disease. Rats were trained to lever press under a 5-component fixed ratio (5, 15, 30, 60, and 100) schedule of food reinfo...
Operation and modeling of the MOS transistor
Tsividis, Yannis
2011-01-01
Operation and Modeling of the MOS Transistor has become a standard in academia and industry. Extensively revised and updated, the third edition of this highly acclaimed text provides a thorough treatment of the MOS transistor - the key element of modern microelectronic chips.
Business Intelligence Modeling in Launch Operations
Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.
2005-01-01
This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce
Business intelligence modeling in launch operations
Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.
2005-05-01
The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined
The national operational environment model (NOEM)
Salerno, John J.; Romano, Brian; Geiler, Warren
2011-06-01
The National Operational Environment Model (NOEM) is a strategic analysis/assessment tool that provides insight into the complex state space (as a system) that is today's modern operational environment. The NOEM supports baseline forecasts by generating plausible futures based on the current state. It supports what-if analysis by forecasting ramifications of potential "Blue" actions on the environment. The NOEM also supports sensitivity analysis by identifying possible pressure (leverage) points in support of the Commander that resolves forecasted instabilities, and by ranking sensitivities in a list for each leverage point and response. The NOEM can be used to assist Decision Makers, Analysts and Researchers with understanding the inter-workings of a region or nation state, the consequences of implementing specific policies, and the ability to plug in new operational environment theories/models as they mature. The NOEM is built upon an open-source, license-free set of capabilities, and aims to provide support for pluggable modules that make up a given model. The NOEM currently has an extensive number of modules (e.g. economic, security & social well-being pieces such as critical infrastructure) completed along with a number of tools to exercise them. The focus this year is on modeling the social and behavioral aspects of a populace within their environment, primarily the formation of various interest groups, their beliefs, their requirements, their grievances, their affinities, and the likelihood of a wide range of their actions, depending on their perceived level of security and happiness. As such, several research efforts are currently underway to model human behavior from a group perspective, in the pursuit of eventual integration and balance of populace needs/demands within their respective operational environment and the capacity to meet those demands. In this paper we will provide an overview of the NOEM, the need for and a description of its main components
Robust Boolean Operation for Sculptured Models
无
2000-01-01
To enhance the ability of current modeling system, an uniformed representation is designed to represent wire-frame, solid, surface models. We present an algorithm for Boolean operation between the models under this representation. Accuracy, efficiency and robustness are the main consideration. The geometric information is represented with trimmed parametric patches and trimmed parametric splines. The topological information is represented with an extended half-edge data structure. In the process of intersection calculation, hierarchy intersection method is applied for unified classification. Tracing the intersection curve to overcome degenerate cases that occur frequently in practice. The algorithm has been implemented as the modeling kernel of a feature based modeling system named GS-CAD98, which was developed on Windows/NT platform.
Disease prediction models and operational readiness.
Courtney D Corley
Full Text Available The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011. We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4, spatial (26, ecological niche (28, diagnostic or clinical (6, spread or response (9, and reviews (3. The model parameters (e.g., etiology, climatic, spatial, cultural and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological were recorded and reviewed. A component of this review is the identification of verification and validation (V&V methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology
Disease Prediction Models and Operational Readiness
Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey M.; Noonan, Christine F.; Rabinowitz, Peter M.; Lancaster, Mary J.
2014-03-19
INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNL’s IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers and the
Modeling decisions information fusion and aggregation operators
Torra, Vicenc
2007-01-01
Information fusion techniques and aggregation operators produce the most comprehensive, specific datum about an entity using data supplied from different sources, thus enabling us to reduce noise, increase accuracy, summarize and extract information, and make decisions. These techniques are applied in fields such as economics, biology and education, while in computer science they are particularly used in fields such as knowledge-based systems, robotics, and data mining. This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover the following topics in detail: synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals, indices and evaluation methods, model selection, and parameter extraction. The method...
Operational modal analysis by updating autoregressive model
Vu, V. H.; Thomas, M.; Lakis, A. A.; Marcouiller, L.
2011-04-01
This paper presents improvements of a multivariable autoregressive (AR) model for applications in operational modal analysis considering simultaneously the temporal response data of multi-channel measurements. The parameters are estimated by using the least squares method via the implementation of the QR factorization. A new noise rate-based factor called the Noise rate Order Factor (NOF) is introduced for use in the effective selection of model order and noise rate estimation. For the selection of structural modes, an orderwise criterion called the Order Modal Assurance Criterion (OMAC) is used, based on the correlation of mode shapes computed from two successive orders. Specifically, the algorithm is updated with respect to model order from a small value to produce a cost-effective computation. Furthermore, the confidence intervals of each natural frequency, damping ratio and mode shapes are also computed and evaluated with respect to model order and noise rate. This method is thus very effective for identifying the modal parameters in case of ambient vibrations dealing with modern output-only modal analysis. Simulations and discussions on a steel plate structure are presented, and the experimental results show good agreement with the finite element analysis.
Use of an operational model evaluation system for model intercomparison
Foster, K. T., LLNL
1998-03-01
The Atmospheric Release Advisory Capability (ARAC) is a centralized emergency response system used to assess the impact from atmospheric releases of hazardous materials. As part of an on- going development program, new three-dimensional diagnostic windfield and Lagrangian particle dispersion models will soon replace ARAC`s current operational windfield and dispersion codes. A prototype model performance evaluation system has been implemented to facilitate the study of the capabilities and performance of early development versions of these new models relative to ARAC`s current operational codes. This system provides tools for both objective statistical analysis using common performance measures and for more subjective visualization of the temporal and spatial relationships of model results relative to field measurements. Supporting this system is a database of processed field experiment data (source terms and meteorological and tracer measurements) from over 100 individual tracer releases.
A secure operational model for mobile payments.
Chang, Tao-Ku
2014-01-01
Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers' security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service.
A Secure Operational Model for Mobile Payments
Tao-Ku Chang
2014-01-01
Full Text Available Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers’ security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service.
Modeling and Design of Container Terminal Operations
D. Roy (Debjit); M.B.M. de Koster (René)
2014-01-01
textabstractDesign of container terminal operations is complex because multiple factors affect the operational perfor- mance. These factors include: topological constraints, a large number of design parameters and settings, and stochastic interactions that interplay among the quayside, vehicle trans
Developing Operator Models for UAV Search Scheduling
Bertuccelli, L.F.; Beckers, N.W.M.; Cummings, M.L.
2010-01-01
With the increased use of Unmanned Aerial Vehicles (UAVs), it is envisioned that UAV operators will become high level mission supervisors, responsible for information management and task planning. In the context of search missions, operators supervising a large number of UAVs can become overwhelmed
Operational, regional-scale, chemical weather forecasting models in Europe
Kukkonen, J.; Balk, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; Peuch, V.H.; Poupkou, A.; Kioutsioukis, I.; Finardi, S.; Sofiev, M.; Sokhi, R.; Lehtinen, K.; Karatzas, K.; San José, R.; Astitha, M.; Kallos, G.; Schaap, M.; Reimer, E.; Jakobs, H.; Eben, K.
2011-01-01
Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed
Modelling Metrics for Mine Counter Measure Operations
2014-08-01
Refs [22][25]) that was initially developed at DRDC Atlantic and was recently upgraded at DRDC CORA under the Technology Investment Fund (TIF) project...and Yip H. Autonomous underwater vehicles conducting mine countermeasure operations, DRDC CORA TM 2008-42, Oct 08, 54 pages. [14] Nguyen, B. U. and...Contract Report, Jun 06. 46 DRDC-RDDC-2014-R58 List of symbols/abbreviations/acronyms/initialisms CAF Canadian Forces CORA Centre for Operational
Modeling the Coordinated Operation between Bus Rapid Transit and Bus
Jiaqing Wu; Rui Song; Youan Wang; Feng Chen; Shubin Li
2015-01-01
The coordination between bus rapid transit (BRT) and feeder bus service is helpful in improving the operational efficiency and service level of urban public transport system. Therefore, a coordinated operation model of BRT and bus is intended to develop in this paper. The total costs are formulated and optimized by genetic algorithm. Moreover, the skip-stop BRT operation is considered when building the coordinated operation model. A case of the existing bus network in Beijing is studied, the ...
Modeling the Coordinated Operation between Bus Rapid Transit and Bus
Jiaqing Wu
2015-01-01
Full Text Available The coordination between bus rapid transit (BRT and feeder bus service is helpful in improving the operational efficiency and service level of urban public transport system. Therefore, a coordinated operation model of BRT and bus is intended to develop in this paper. The total costs are formulated and optimized by genetic algorithm. Moreover, the skip-stop BRT operation is considered when building the coordinated operation model. A case of the existing bus network in Beijing is studied, the proposed coordinated operation model of BRT and bus is applied, and the optimized headway and costs are obtained. The results show that the coordinated operation model could effectively decrease the total costs of the transit system and the transfer time of passengers. The results also suggest that the coordination between the skip-stop BRT and bus during peak hour is more effective than non-coordination operation.
Data Scaling for Operational Risk Modelling
H.S. Na; L. Couto Miranda; J.H. van den Berg (Jan); M. Leipoldt
2006-01-01
textabstractIn 2004, the Basel Committee on Banking Supervision defined Operational Risk (OR) as the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. After publication of the new capital accord containing this dfinition, statistical
Data Scaling for Operational Risk Modelling
H.S. Na; L. Couto Miranda; J.H. van den Berg (Jan); M. Leipoldt
2006-01-01
textabstractIn 2004, the Basel Committee on Banking Supervision defined Operational Risk (OR) as the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. After publication of the new capital accord containing this dfinition, statistical pro
Vector operations for modelling data-conversion procedures
Rivkin, M.N.
1992-03-01
This article presents a set of vector operations that permit effective modelling of operations from extended relational algebra for implementations of variable-construction procedures in data-conversion processors. Vector operations are classified, and test results are given for the ARIUS UP and other popular database management systems for PC`s. 10 refs., 5 figs.
Coalition Modeling in Humanitarian Assistance Operations
2006-03-01
Generally, the high cost of military operations, reduced military budgets after the cold war, global economies, and the need for international legitimacy...addition, there has been a global increase in civil/ethnic strife which cause complex emergency (Lynch: 4). Furthermore, since these emergencies generally...notional scenario has been scaled back for demonstration purposes. These scenarios are solved using Xpress by Dash Optimization which is a commercial
Pseudo-Differential Operators and Integrable Models
Sedra, M B
2009-01-01
The importance of the theory of pseudo-differential operators in the study of non linear integrable systems is point out. Principally, the algebra $\\Xi $ of nonlinear (local and nonlocal) differential operators, acting on the ring of analytic functions $u_{s}(x, t)$, is studied. It is shown in particular that this space splits into several classes of subalgebras $\\Sigma_{jr}, j=0,\\pm 1, r=\\pm 1$ completely specified by the quantum numbers: $s$ and $(p,q)$ describing respectively the conformal weight (or spin) and the lowest and highest degrees. The algebra ${\\huge \\Sigma}_{++}$ (and its dual $\\Sigma_{--}$) of local (pure nonlocal) differential operators is important in the sense that it gives rise to the explicit form of the second hamiltonian structure of the KdV system and that we call also the Gelfand-Dickey Poisson bracket. This is explicitly done in several previous studies, see for the moment \\cite{4, 5, 14}. Some results concerning the KdV and Boussinesq hierarchies are derived explicitly.
Integration of Dynamic Models in Range Operations
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
Mapping Relational Operations onto Hypergraph Model
2010-10-01
. However, the hypergraph model is non-tabular; thus, loses the simplicity of the relational model. In this study, we consider the means to convert a relational model into a hypergraph model in two layers. At the bottom layer, each relational tuple can be considered as a star graph centered where the primary key node is surrounded by non-primary key attributes. At the top layer, each tuple is a hypernode, and a relation is a set of hypernodes. We presented a reference implementation of relational operators (project, rename, select, inner join, natural join, left join, right join, outer join and Cartesian join on a hypergraph model. Using a simple example, we demonstrate that a relation and relational operators can be implemented on this hypergraph model.
An operator calculus for surface and volume modeling
Gordon, W. J.
1984-01-01
The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.
Organizational effectiveness of coalition operations' headquarters : A theoretical model
Vogler-Bisig, E.; Blais, A.R.; Hof, T.; Tresch, T.S.; Seiler, S.; Yanakiev, Y.
2012-01-01
Purpose - This article describes a theoretical model that allows understanding, explaining, and measuring the perceived organizational effectiveness of multinational coalition operations' headquarters. Design/methodology/approach - The proposed model is based on subject matter experts' opinions and
Modeling and optimization of laser cutting operations
Gadallah Mohamed Hassan
2015-01-01
Full Text Available Laser beam cutting is one important nontraditional machining process. This paper optimizes the parameters of laser beam cutting parameters of stainless steel (316L considering the effect of input parameters such as power, oxygen pressure, frequency and cutting speed. Statistical design of experiments is carried in three different levels and process responses such as average kerf taper (Ta, surface roughness (Ra and heat affected zones are measured accordingly. A response surface model is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27OA are employed to search for an optimal combination to achieve desired process yield. Response Surface Models (RSMs are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective optimization problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA and optimized using Matlab developed environment. Optimum solutions are compared with Taguchi Methodology results. As such, practicing engineers have means to model, analyze and optimize nontraditional machining processes. Validation experiments are carried to verify the developed models with success.
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
Nonlinear Model Identification from Operating Records.
1980-11-01
34, Submitted July 1979 to Proc. IEEE. [13] Wellstead , P., "Model Order Identification Using an Auxillary System," Proc. IEEE, vol. 123, No. 12, December...C and Systems, Nov. 1979 . I I ~I lt( -~ I -l.. .... .. . ... . .. . . , _. . - -"
Theoretical model of smooth disk operation
Krauze, K.
1985-02-01
Aes a theoretical model is analyzed for coal cutting by disk cutters mounted on a helical cutting drum of a shearer loader. The model is based on the assumption that failure of coal cohesion is caused by crushing and separation of coal grains from a coal face and that coal cutting resistance depends on its contact strength as well as cutting depth and cutting angle. 1 reference.
贺军义; 芮筱亭; 王国平; 杨富峰; 展志焕
2013-01-01
为了对定向器振动进行有效控制，提高多管火箭射击精度，以多管火箭发射动力学与控制理论为依据，研究并设计了定向器振动脉冲推力控制方案；基于PXI总线技术，设计并实现了定向器X/Y/Z三方向共128路脉冲点火控制系统。系统主要由中心控制模块、多路通信模块、三方向数字控制输出模块组成；该控制系统具有多路数据通信、三方向多路脉冲点火指令形成和控制输出功能。物理仿真结果表明，该控制器可很好地完成定向器姿态信号的实时采集处理和三方向多路脉冲点火控制任务，为利用脉冲推力控制定向器振动，提高多管火箭射击精度奠定了现实基础。%To control the vibration of launch guider effectively and improve firing precision of Multiple Launch Rocket System (MLRS),the vibration of launch guider controlled plan by using plush thrust force is researched and designed based on the firing dynamics theory and the control theory;the pulse firing controlled system with 128 channels in three direction (X/Y/Z) is designed and actualized based on PXIbus. The system is composed of the center control module, the communication module with multi-channels and the digital output in three direction control module mainly. Data received from measuring devices by many channels at the same time,the pulse firing commands generated and output in three direction can be controlled by the control system. The physical simulative results shows that the control system can receive and dispose the data for orientation of launch guider in many channels and control the pulse firing and output with many channels in three direction. So the system is very important to realize the technology for improving the firing precision of MLRS by controlling the vibration of launcher guider by using plush thrust force.
Cardiac modeling using active appearance models and morphological operators
Pfeifer, Bernhard; Hanser, Friedrich; Seger, Michael; Hintermueller, Christoph; Modre-Osprian, Robert; Fischer, Gerald; Muehlthaler, Hannes; Trieb, Thomas; Tilg, Bernhard
2005-04-01
We present an approach for fast reconstructing of cardiac myocardium and blood masses of a patient's heart from morphological image data, acquired either MRI or CT, in order to estimate numerically the spread of electrical excitation in the patient's atria and ventricles. The approach can be divided into two main steps. During the first step the ventricular and atrial blood masses are extracted employing Active Appearance Models (AAM). The left and right ventricular blood masses are segmented automatically after providing the positions of the apex cordis and the base of the heart. Because of the complex geometry of the atria the segmentation process of the atrial blood masses requires more information as the ventricular blood mass segmentation process of the ventricles. We divided, for this reason, the left and right atrium into three divisions of appearance. This proved sufficient for the 2D AAM model to extract the target blood masses. The base of the heart, the left upper and left lower pulmonary vein from its first up to its last appearance in the image stack, and the right upper and lower pulmonary vein have to be marked. After separating the volume data into these divisions the 2D AAM search procedure extracts the blood masses which are the main input for the second and last step in the myocardium extraction pipeline. This step uses morphologically-based operations in order to extract the ventricular and atrial myocardium either directly by detecting the myocardium in the volume block or by reconstructing the myocardium using mean model information, in case the algorithm fails to detect the myocardium.
Modeling of useful operating life of radioelectronics
Nevlyudova V. V.
2014-08-01
Full Text Available The author considers the possibility of using the laws of nonequilibrium thermodynamics to determine the relationship between controlled parameters of radioelectronics and the displayed environment, as well as the construction of a deterministic model of the processes of manufacturing defects development. This possibility is based on the observed patterns of change in the amount of content area, in accordance with the principles of behavior of the thermodynamic parameters characterizing the state of the real environment (entropy, the quantity of heat, etc.. The equation for the evolution of the technical state of radioelectronics is based on the deterministic kinetic model of the processes occurring in the multi-component environment, and on the observation model, which takes into account the errors caused by external influences instability and uncertainty.
Yin Luo
2012-01-01
Full Text Available Traditional pump scheduling models neglect the operation reliability which directly relates with the unscheduled maintenance cost and the wear cost during the operation. Just for this, based on the assumption that the vibration directly relates with the operation reliability and the degree of wear, it could express the operation reliability as the normalization of the vibration level. The characteristic of the vibration with the operation point was studied, it could be concluded that idealized flow versus vibration plot should be a distinct bathtub shape. There is a narrow sweet spot (80 to 100 percent BEP to obtain low vibration levels in this shape, and the vibration also follows similar law with the square of the rotation speed without resonance phenomena. Then, the operation reliability could be modeled as the function of the capacity and rotation speed of the pump and add this function to the traditional model to form the new. And contrast with the tradition method, the result shown that the new model could fix the result produced by the traditional, make the pump operate in low vibration, then the operation reliability could increase and the maintenance cost could decrease.
Shuttle operations simulation model programmers'/users' manual
Porter, D. G.
1972-01-01
The prospective user of the shuttle operations simulation (SOS) model is given sufficient information to enable him to perform simulation studies of the space shuttle launch-to-launch operations cycle. The procedures used for modifying the SOS model to meet user requirements are described. The various control card sequences required to execute the SOS model are given. The report is written for users with varying computer simulation experience. A description of the components of the SOS model is included that presents both an explanation of the logic involved in the simulation of the shuttle operations cycle and a description of the routines used to support the actual simulation.
Operational Plan Ontology Model for Interconnection and Interoperability
Long, F.; Sun, Y. K.; Shi, H. Q.
2017-03-01
Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.
The operator algebra of orbifold models
Dijkgraaf, Robbert; Vafa, Cumrun; Verlinde, Erik; Verlinde, Herman
1989-09-01
We analyze the chiral properties of (orbifold) conformal field theories which are obtained from a given conformal field theory by modding out by a finite symmetry group. For a class of orbifolds, we derive the fusion rules by studying the modular transformation properties of the one-loop characters. The results are illustrated with explicit calculations of toroidal and c=1 models.
Background Error Correlation Modeling with Diffusion Operators
2013-01-01
functions defined on the orthogonal curvilin- ear grid of the Navy Coastal Ocean Model (NCOM) [28] set up in the Monterrey Bay (Fig. 4). The number N...H2 = [1 1; 1−1], the HMs with order N = 2n, n= 1,2... can be easily constructed. HMs with N = 12,20 were constructed ” manually ” more than a century
Launch and Landing Effects Ground Operations (LLEGO) Model
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
Modeling and Simulation of Shuttle Launch and Range Operations
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.
Seong, Min-Gyu; Suh, Myoung-Seok; Kim, Chansoo
2017-08-01
This study focuses on an objective comparison of eight ensemble methods using the same data, training period, training method, and validation period. The eight ensemble methods are: BMA (Bayesian Model Averaging), HMR (Homogeneous Multiple Regression), EMOS (Ensemble Model Output Statistics), HMR+ with positive coefficients, EMOS+ with positive coefficients, PEA_ROC (Performance-based Ensemble Averaging using ROot mean square error and temporal Correlation coefficient), WEA_Tay (Weighted Ensemble Averaging based on Taylor's skill score), and MME (Multi-Model Ensemble). Forty-five years (1961-2005) of data from 14 CMIP5 models and APHRODITE (Asian Precipitation- Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) data were used to compare the performance of the eight ensemble methods. Although some models underestimated the variability of monthly mean temperature (MMT), most of the models effectively simulated the spatial distribution of MMT. Regardless of training periods and the number of ensemble members, the prediction skills of BMA and the four multiple linear regressions (MLR) were superior to the other ensemble methods (PEA_ROC, WEA_Tay, MME) in terms of deterministic prediction. In terms of probabilistic prediction, the four MLRs showed better prediction skills than BMA. However, the differences among the four MLRs and BMA were not significant. This resulted from the similarity of BMA weights and regression coefficients. Furthermore, prediction skills of the four MLRs were very similar. Overall, the four MLRs showed the best prediction skills among the eight ensemble methods. However, more comprehensive work is needed to select the best ensemble method among the numerous ensemble methods.
Designing visual displays and system models for safe reactor operations
Brown-VanHoozer, S.A.
1995-12-31
The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.
On the Spectrum of a Model Operator in Fock Space
Rasulov, Tulkin H; Hasanov, Mahir
2008-01-01
A model operator $H$ associated to a system describing four particles in interaction, without conservation of the number of particles, is considered. We describe the essential spectrum of $H$ by the spectrum of the channel operators and prove the Hunziker-van Winter-Zhislin (HWZ) theorem for the operator $H.$ We also give some variational principles for boundaries of the essential spectrum and interior eigenvalues.
Simulation Modeling of a Facility Layout in Operations Management Classes
Yazici, Hulya Julie
2006-01-01
Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…
Cognitive-Operative Model of Intelligent Learning Systems Behavior
Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; Mora-Torres, Martha; de Arriaga, Fernando; Escarela-Perez, Rafael
2010-01-01
In this paper behavior during the teaching-learning process is modeled by means of a fuzzy cognitive map. The elements used to model such behavior are part of a generic didactic model, which emphasizes the use of cognitive and operative strategies as part of the student-tutor interaction. Examples of possible initial scenarios for the…
Cognitive-Operative Model of Intelligent Learning Systems Behavior
Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; Mora-Torres, Martha; de Arriaga, Fernando; Escarela-Perez, Rafael
2010-01-01
In this paper behavior during the teaching-learning process is modeled by means of a fuzzy cognitive map. The elements used to model such behavior are part of a generic didactic model, which emphasizes the use of cognitive and operative strategies as part of the student-tutor interaction. Examples of possible initial scenarios for the…
Simulation Modeling of a Facility Layout in Operations Management Classes
Yazici, Hulya Julie
2006-01-01
Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…
Quantitative modelling in design and operation of food supply systems
Beek, van P.
2004-01-01
During the last two decades food supply systems not only got interest of food technologists but also from the field of Operations Research and Management Science. Operations Research (OR) is concerned with quantitative modelling and can be used to get insight into the optimal configuration and opera
Models for estimation of land remote sensing satellites operational efficiency
Kurenkov, Vladimir I.; Kucherov, Alexander S.
2017-01-01
The paper deals with the problem of estimation of land remote sensing satellites operational efficiency. Appropriate mathematical models have been developed. Some results obtained with the help of the software worked out in Delphi programming support environment are presented.
Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory
Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...
Advancing reservoir operation description in physically based hydrological models
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir
Fuzzy Control Strategies in Human Operator and Sport Modeling
Ivancevic, Tijana T; Markovic, Sasa
2009-01-01
The motivation behind mathematically modeling the human operator is to help explain the response characteristics of the complex dynamical system including the human manual controller. In this paper, we present two different fuzzy logic strategies for human operator and sport modeling: fixed fuzzy-logic inference control and adaptive fuzzy-logic control, including neuro-fuzzy-fractal control. As an application of the presented fuzzy strategies, we present a fuzzy-control based tennis simulator.
Operational research models in warehouse design and planning
Geraldes, Carla A. S.; Carvalho, Sameiro; Pereira, Guilherme
2010-01-01
The design and operation of a warehouse involve many challenging decision problems. In this paper, a literature review on warehousing models is presented. Authors start with a hierarchy of decision problems encountered in setting up warehouse design and planning processes. Next, some operational research decision models and solution algorithms supporting decision making at each discussed level are presented. The aim is to link academic researchers and warehouse practitioners, explaining what ...
Marine Vessel Models in Changing Operational Conditions - A Tutorial
Perez, Tristan; Sørensen, Asgeir; Blanke, Mogens
2006-01-01
conditions (VOC). However, since marine systems operate in changing VOCs, there is a need to adapt the models. To date, there is no theory available to describe a general model valid across different VOCs due to the complexity of the hydrodynamic involved. It is believed that system identification could......This tutorial paper provides an introduction, from a systems perspective, to the topic of ship motion dynamics of surface ships. It presents a classification of parametric models currently used for monitoring and control of marine vessels. These models are valid for certain vessel operational...
Ding, J; Ding, Jintai; Feigin, Boris
1996-01-01
We construct a commutative current operator $\\bar x^+(z)$ inside $U_q(\\hat{\\frak sl}(2))$. With this operator and the condition of quantum integrability on the quantum current of $U_q(\\hat{\\frak sl}(2))$, we derive the quantization of the semi-infinite construction of integrable modules of The quantization of the functional models for $\\hat{\\frak sl}(2)$ are also given.
Transformer real-time reliability model based on operating conditions
HE Jian; CHENG Lin; SUN Yuan-zhang
2007-01-01
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on operating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are obtained by using operational reliability evaluation.
Modeling and simulation of longwall scraper conveyor considering operational faults
Cenacewicz, Krzysztof; Katunin, Andrzej
2016-06-01
The paper provides a description of analytical model of a longwall scraper conveyor, including its electrical, mechanical, measurement and control actuating systems, as well as presentation of its implementation in the form of computer simulator in the Matlab®/Simulink® environment. Using this simulator eight scenarios typical of usual operational conditions of an underground scraper conveyor can be generated. Moreover, the simulator provides a possibility of modeling various operational faults and taking into consideration a measurement noise generated by transducers. The analysis of various combinations of scenarios of operation and faults with description is presented. The simulator developed may find potential application in benchmarking of diagnostic systems, testing of algorithms of operational control or can be used for supporting the modeling of real processes occurring in similar systems.
Mitchell, Christine M.
1990-01-01
The design, implementation, and empirical evaluation of task-analytic models and intelligent aids for operators in the control of complex dynamic systems, specifically aerospace systems, are studied. Three related activities are included: (1) the models of operator decision making in complex and predominantly automated space systems were used and developed; (2) the Operator Function Model (OFM) was used to represent operator activities; and (3) Operator Function Model Expert System (OFMspert), a stand-alone knowledge-based system was developed, that interacts with a human operator in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an architecture for an operator's assistant that uses the OFM as its system and operator knowledge base and a blackboard paradigm of problem solving to dynamically generate expectations about upcoming operator activities and interpreting actual operator actions. An experiment validated the OFMspert's intent inferencing capability and showed that it inferred the intentions of operators in ways comparable to both a human expert and operators themselves. OFMspert was also augmented with control capabilities. An interface allowed the operator to interact with OFMspert, delegating as much or as little control responsibility as the operator chose. With its design based on the OFM, OFMspert's control capabilities were available at multiple levels of abstraction and allowed the operator a great deal of discretion over the amount and level of delegated control. An experiment showed that overall system performance was comparable for teams consisting of two human operators versus a human operator and OFMspert team.
An Economic Model of U.S. Airline Operating Expenses
Harris, Franklin D.
2005-01-01
This report presents a new economic model of operating expenses for 67 airlines. The model is based on data that the airlines reported to the United States Department of Transportation in 1999. The model incorporates expense-estimating equations that capture direct and indirect expenses of both passenger and cargo airlines. The variables and business factors included in the equations are detailed enough to calculate expenses at the flight equipment reporting level. Total operating expenses for a given airline are then obtained by summation over all aircraft operated by the airline. The model's accuracy is demonstrated by correlation with the DOT Form 41 data from which it was derived. Passenger airlines are more accurately modeled than cargo airlines. An appendix presents a concise summary of the expense estimating equations with explanatory notes. The equations include many operational and aircraft variables, which accommodate any changes that airline and aircraft manufacturers might make to lower expenses in the future. In 1999, total operating expenses of the 67 airlines included in this study amounted to slightly over $100.5 billion. The economic model reported herein estimates $109.3 billion.
Ergonomics applications of a mechanical model of the human operator in power hand tool operation.
Lin, Jia-Hua; Radwin, Robert; Nembhard, David
2005-02-01
Applications of a new model for predicting power threaded-fastener-driving tool operator response and capacity to react against impulsive torque reaction forces are explored for use in tool selection and ergonomic workplace design. The model is based on a mechanical analog of the human operator, with parameters dependent on work location (horizontal and vertical distances); work orientation (horizontal and vertical); and tool shape (in-line, pistol grip, and right angle); and is stratified by gender. This model enables prediction of group means and variances of handle displacement and force for a given tool configuration. Response percentiles can be ascertained for specific tool operations. For example, a sample pistol grip nutrunner used on a horizontal surface at 30 cm in front of the ankles and 140 cm above the floor results in a predicted mean handle reaction displacement of 39.0 (SD=28.1) mm for males. Consequently 63%of the male users exceed a 30 mm handle displacement limit. When a right angle tool of similar torque output is used instead, the model predicted that only 4.6%of the male tool users exceed a 30 mm handle displacement. A method is described for interpolating individual subject model parameters at any given work location using linear combinations in relation to the range of modeled factors. Additional examples pertinent to ergonomic workstation design and tool selection are provided to demonstrate how the model can be used to aid tool selection and workstation design.
Estimation of pump operational state with model-based methods
Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina [Institute of Energy Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Kestilae, Juha [ABB Drives, P.O. Box 184, FI-00381 Helsinki (Finland)
2010-06-15
Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently. (author)
Categorical model of structural operational semantics for imperative language
William Steingartner
2016-12-01
Full Text Available Definition of programming languages consists of the formal definition of syntax and semantics. One of the most popular semantic methods used in various stages of software engineering is structural operational semantics. It describes program behavior in the form of state changes after execution of elementary steps of program. This feature makes structural operational semantics useful for implementation of programming languages and also for verification purposes. In our paper we present a new approach to structural operational semantics. We model behavior of programs in category of states, where objects are states, an abstraction of computer memory and morphisms model state changes, execution of a program in elementary steps. The advantage of using categorical model is its exact mathematical structure with many useful proved properties and its graphical illustration of program behavior as a path, i.e. a composition of morphisms. Our approach is able to accentuate dynamics of structural operational semantics. For simplicity, we assume that data are intuitively typed. Visualization and facility of our model is not only a new model of structural operational semantics of imperative programming languages but it can also serve for education purposes.
Dimension Seven Operators in Standard Model with Right handed Neutrinos
Bhattacharya, Subhaditya
2015-01-01
In this article, we evaluate all the dimension seven operators involving Standard Model (SM) fields and SM gauge symmetry including right handed neutrinos. We also indicate those operators potentially tree generated (PTG) and those which will be loop generated (LG), so that we know where to look for new physics (NP) contributions in observable effects. We indicate limits on NP scale from the current data to each of the PTG operators without right handed neutrinos. We also calculate the reach of NP scale from two of the operators which produce same sign dilepton at the upgraded Large Hadron Collider (LHC). Our list seems to be consistent with earlier efforts where operators of same dimension have been worked out without right handed neutrinos.
Quantum dimensions from local operator excitations in the Ising model
Caputa, Pawel
2016-01-01
We compare the time evolution of entanglement measures after local operator excitation in the critical Ising model with predictions from conformal field theory. For the spin operator and its descendants we find that Renyi entropies of a block of spins increase by a constant that matches the logarithm of the quantum dimension of the conformal family. However, for the energy operator we find a small constant contribution that differs from the conformal field theory answer equal to zero. We argue that the mismatch is caused by the subtleties in the identification between the local operators in conformal field theory and their lattice counterpart. Our results indicate that evolution of entanglement measures in locally excited states not only constraints this identification, but also can be used to extract non-trivial data about the conformal field theory that governs the critical point. We generalize our analysis to the Ising model away from the critical point, states with multiple local excitations, as well as t...
1986-01-01
Research Note 86-06 THE COMPUTER-AIDED ANALYTIC PROCESS MODEL : OPERATIONS HANDBOOK FOR THE ANALYTIC PROCESS MODEL DE ONSTRATION PACKAGE Ronald G...ic Process Model ; Operations Handbook; Tutorial; Apple; Systems Taxonomy Mod--l; Training System; Bradl1ey infantry Fighting * Vehicle; BIFV...8217. . . . . . . .. . . . . . . . . . . . . . . . * - ~ . - - * m- .. . . . . . . item 20. Abstract -continued companion volume-- "The Analytic Process Model for
VERIFICATION OF GEAR DYNAMIC MODEL IN DIFFERENT OPERATING CONDITIONS
Grzegorz PERUŃ
2014-09-01
Full Text Available The article presents the results of verification of the drive system dynamic model with gear. Tests were carried out on the real object in different operating conditions. For the same assumed conditions were also carried out simulation studies. Comparison of the results obtained from those two series of tests helped determine the suitability of the model and verify the possibility of replacing experimental research by simulations with use of dynamic model.
Q-operators in the six-vertex model
Vladimir V. Mangazeev
2014-09-01
Here we use a different strategy and construct Q-operators as integral operators with factorized kernels based on the original Baxter's method used in the solution of the eight-vertex model. We compare this approach with the method developed in [1] and find the explicit connection between two constructions. We also discuss a reduction to the case of finite-dimensional representations with (half-integer spins.
Model of environmental life cycle assessment for coal mining operations
Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu
2016-08-15
This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of
Hill, D.C. [University Coll. of North Wales, Menai Bridge (United Kingdom). School of Ocean Science; Infield, D.G. [Loughborough Univ. of Technology (United Kingdom). Dept. of Electronic and Electrical Engineering
1995-11-01
A load forecasting technique, based upon an autoregressive (AR) method is presented. Its use for short term load forecasting is assessed by direct comparison with real forecasts made by human operators of the Lerwick power station on the Shetland Islands. A substantial improvement in load prediction, as measured by a reduction of RMS error, is demonstrated. Shetland has a total installed capacity of about 68 MW, and an average load (1990) of around 20 MW. Although the operators could forecast the load for a few distinct hours better than the AR method, results from simulations of the scheduling and operation of the generating plant show that the AR forecasts provide increased overall system performance. A detailed model of the island power system, which includes plant scheduling, was run using the AR and Lerwick operators` forecasts as input to the scheduling routine. A reduction in plant cycling, underloading and fuel consumption was obtained using the AR forecasts rather than the operators` forecasts in simulations over a 28 day study period. It is concluded that the load forecasting method presented could be of benefit to the operators of such mesoscale power systems. (author)
Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling
Yaghoobi, Mehrdad; Gribonval, Remi; Davies, Mike E
2012-01-01
We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical lear...
Model of environmental life cycle assessment for coal mining operations.
Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian
2016-08-15
This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment.
Neural Networks for Hydrological Modeling Tool for Operational Purposes
Bhatt, Divya; Jain, Ashu
2010-05-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models
Dynamic and adaptive policy models for coalition operations
Verma, Dinesh; Calo, Seraphin; Chakraborty, Supriyo; Bertino, Elisa; Williams, Chris; Tucker, Jeremy; Rivera, Brian; de Mel, Geeth R.
2017-05-01
It is envisioned that the success of future military operations depends on the better integration, organizationally and operationally, among allies, coalition members, inter-agency partners, and so forth. However, this leads to a challenging and complex environment where the heterogeneity and dynamism in the operating environment intertwines with the evolving situational factors that affect the decision-making life cycle of the war fighter. Therefore, the users in such environments need secure, accessible, and resilient information infrastructures where policy-based mechanisms adopt the behaviours of the systems to meet end user goals. By specifying and enforcing a policy based model and framework for operations and security which accommodates heterogeneous coalitions, high levels of agility can be enabled to allow rapid assembly and restructuring of system and information resources. However, current prevalent policy models (e.g., rule based event-condition-action model and its variants) are not sufficient to deal with the highly dynamic and plausibly non-deterministic nature of these environments. Therefore, to address the above challenges, in this paper, we present a new approach for policies which enables managed systems to take more autonomic decisions regarding their operations.
A spatial operator algebra for manipulator modeling and control
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Comparison of operation optimization methods in energy system modelling
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2013-01-01
, possibilities for decoupling production constraints may be valuable. Introduction of heat pumps in the district heating network may pose this ability. In order to evaluate if the introduction of heat pumps is economically viable, we develop calculation methods for the operation patterns of each of the used...... energy technologies. In the paper, three frequently used operation optimization methods are examined with respect to their impact on operation management of the combined technologies. One of the investigated approaches utilises linear programming for optimisation, one uses linear programming with binary...... operation constraints, while the third approach uses nonlinear programming. In the present case the non-linearity occurs in the boiler efficiency of power plants and the cv-value of an extraction plant. The linear programming model is used as a benchmark, as this type is frequently used, and has the lowest...
Automated particulate sampler field test model operations guide
Bowyer, S.M.; Miley, H.S.
1996-10-01
The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.
Mathematical modelling of unglazed solar collectors under extreme operating conditions
Bunea, M.; Perers, Bengt; Eicher, S.
2015-01-01
average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...
Simulation Modeling and Analysis of Operator-Machine Ratio
无
2007-01-01
Based on a simulation model of a semiconductor manufacturer, operator-machine ratio (OMR) analysis is made using work study and time study. Through sensitivity analysis, it is found that labor utilization decreases with the increase of lot size.Meanwhile, it is able to identify that the OMR for this company should be improved from 1∶3 to 1∶5. An application result shows that the proposed model can effectively improve the OMR by 33%.
Computational Modeling in Support of the National Ignition Facilty Operations
Shaw, M J; Haynam, C A; Williams, W H
2001-01-01
Numerical simulation of the National Ignition Facility (NIF) laser performance and automated control of the laser setup process are crucial to the project's success. These functions will be performed by two closely coupled computer code: the virtual beamline (VBL) and the laser performance operations model (LPOM).
Computational Modeling in Support of National Ignition Facility Operations
Shaw, M J; Sacks, R A; Haynam, C A; Williams, W H
2001-10-23
Numerical simulation of the National Ignition Facility (NIF) laser performance and automated control of laser setup process are crucial to the project's success. These functions will be performed by two closely coupled computer codes: the virtual beamline (VBL) and the laser operations performance model (LPOM).
Modeling of reservoir operation in UNH global hydrological model
Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik
2015-04-01
Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large
Quantum dimensions from local operator excitations in the Ising model
Caputa, Paweł; Rams, Marek M.
2017-02-01
We compare the time evolution of entanglement measures after local operator excitation in the critical Ising model with predictions from conformal field theory. For the spin operator and its descendants we find that Rényi entropies of a block of spins increase by a constant that matches the logarithm of the quantum dimension of the conformal family. However, for the energy operator we find a small constant contribution that differs from the conformal field theory answer equal to zero. We argue that the mismatch is caused by the subtleties in the identification between the local operators in conformal field theory and their lattice counterpart. Our results indicate that evolution of entanglement measures in locally excited states not only constraints this identification, but also can be used to extract non-trivial data about the conformal field theory that governs the critical point. We generalize our analysis to the Ising model away from the critical point, states with multiple local excitations, as well as the evolution of the relative entropy after local operator excitation and discuss universal features that emerge from numerics.
Operational ocean models in the Adriatic Sea: a skill assessment
J. Chiggiato
2008-02-01
Full Text Available In the framework of the Mediterranean Forecasting System (MFS project, the performance of regional numerical ocean forecasting systems is assessed by means of model-model and model-data comparison. Three different operational systems considered in this study are: the Adriatic REGional Model (AREG; the Adriatic Regional Ocean Modelling System (AdriaROMS and the Mediterranean Forecasting System General Circulation Model (MFS-GCM. AREG and AdriaROMS are regional implementations (with some dedicated variations of POM and ROMS, respectively, while MFS-GCM is an OPA based system. The assessment is done through standard scores. In situ and remote sensing data are used to evaluate the system performance. In particular, a set of CTD measurements collected in the whole western Adriatic during January 2006 and one year of satellite derived sea surface temperature measurements (SST allow to asses a full three-dimensional picture of the operational forecasting systems quality during January 2006 and to draw some preliminary considerations on the temporal fluctuation of scores estimated on surface quantities between summer 2005 and summer 2006.
The regional systems share a negative bias in simulated temperature and salinity. Nonetheless, they outperform the MFS-GCM in the shallowest locations. Results on amplitude and phase errors are improved in areas shallower than 50 m, while degraded in deeper locations, where major models deficiencies are related to vertical mixing overestimation. In a basin-wide overview, the two regional models show differences in the local displacement of errors. In addition, in locations where the regional models are mutually correlated, the aggregated mean squared error was found to be smaller, that is a useful outcome of having several operational systems in the same region.
Object-oriented model of railway stations operation
D.M. Kozachenko
2013-08-01
Full Text Available Purpose. The purpose of this article is improvement of the railway stations functional model; it leads to time expenditure cut for formalization technological processes of their work through the use of standard elements of technology. Methodology. Some technological operations, executives and technology objects are considered as main elements of the railway station functioning. Queuing techniques were used as the methods of research, simulation, finite state machines and object-oriented analysis. Findings. Formal data structures were developed as the result of research that can allow simulating the operation of the railway station with any degree of detail. In accordance with the principles of object-oriented approach in the developed model, separate elements of station technology are presented jointly with a description of their behavior. The proposed model is implemented as a software package. Originality. Functional model of railway stations was improved through the application of object-oriented approach to data management. It allow to create libraries of elementary technological processes and reduce time expenditure for formalization the technology of stations work. Practical value. Using of software package that it was developed on the base of proposed model will reduce time expenditure of technologists in order to obtain technical and operational assessment of projected and existing rail stations.
A consistent collinear triad approximation for operational wave models
Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.
2016-08-01
In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.
Modeling the Environmental Impact of Air Traffic Operations
Chen, Neil
2011-01-01
There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.
Operational ocean models in the Adriatic Sea: a skill assessment
J. Chiggiato
2006-12-01
Full Text Available In the framework of the Mediterranean Forecasting System project (MFS sub-regional and regional numerical ocean forecasting systems performance are assessed by mean of model-model and model-data comparison. Three different operational systems have been considered in this study: the Adriatic REGional Model (AREG; the AdriaROMS and the Mediterranean Forecasting System general circulation model (MFS model. AREG and AdriaROMS are regional implementations (with some dedicated variations of POM (Blumberg and Mellor, 1987 and ROMS (Shchepetkin and McWilliams, 2005 respectively, while MFS model is based on OPA (Madec et al., 1998 code. The assessment has been done by means of standard scores. The data used for operational systems assessment derive from in-situ and remote sensing measurements. In particular a set of CTDs covering the whole western Adriatic, collected in January 2006, one year of SST from space born sensors and six months of buoy data. This allowed to have a full three-dimensional picture of the operational forecasting systems quality during January 2006 and some preliminary considerations on the temporal fluctuation of scores estimated on surface (or near surface quantities between summer 2005 and summer 2006. In general, the regional models are found to be colder and fresher than observations. They eventually outperform the large scale model in the shallowest locations, as expected. Results on amplitude and phase errors are also much better in locations shallower than 50 m, while degraded in deeper locations, where the models tend to have a higher homogeneity along the vertical column compared to observations. In a basin-wide overview, the two regional models show some dissimilarities in the local displacement of errors, something suggested by the full three-dimensional picture depicted using CTDs, but also confirmed by the comparison with SSTs. In locations where the regional models are mutually correlated, the aggregated mean
Quantum hidden Markov models based on transition operation matrices
Cholewa, Michał; Gawron, Piotr; Głomb, Przemysław; Kurzyk, Dariusz
2017-04-01
In this work, we extend the idea of quantum Markov chains (Gudder in J Math Phys 49(7):072105 [3]) in order to propose quantum hidden Markov models (QHMMs). For that, we use the notions of transition operation matrices and vector states, which are an extension of classical stochastic matrices and probability distributions. Our main result is the Mealy QHMM formulation and proofs of algorithms needed for application of this model: Forward for general case and Vitterbi for a restricted class of QHMMs. We show the relations of the proposed model to other quantum HMM propositions and present an example of application.
eWaterCycle: A global operational hydrological forecasting model
van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin
2015-04-01
Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and
Sérgio Roberto da Silva
2016-06-01
Full Text Available Colombia has been one of the first countries to introduce electronic billing process on a voluntary basis, from a traditional to a digital version. In this context, the article analyzes the electronic billing process implemented in Colombia and the advantages. Methodological research is applied, qualitative, descriptive and documentary; where the regulatory framework and the conceptualization of the model is identified; the process of adoption of electronic billing is analyzed, and finally the advantages and disadvantages of its implementation is analyzed. The findings indicate that the model applied in Colombia to issue an electronic billing in sending and receiving process, is not complex, but it requires a small adequate infrastructure and trained personnel to reach all sectors, especially the micro and business which is the largest business network in the country.
Towards operational modeling and forecasting of the Iberian shelves ecosystem.
Martinho Marta-Almeida
Full Text Available There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD. In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m(-3. Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.
operational modelling and forecasting of the Iberian shelves ecosystem
Marta-Almeida, M.; Reboreda, R.; Rocha, C.; Dubert, J.; Nolasco, R.; Cordeiro, N.; Luna, T.; Rocha, A.; Silva, J. Lencart e.; Queiroga, H.; Peliz, A.; Ruiz-Villarreal, M.
2012-04-01
There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a NPZD biogeochemical module. In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmolN m-3). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.
DISTRIBUTED PROCESSING TRADE-OFF MODEL FOR ELECTRIC UTILITY OPERATION
Klein, S. A.
1994-01-01
The Distributed processing Trade-off Model for Electric Utility Operation is based upon a study performed for the California Institute of Technology's Jet Propulsion Laboratory. This study presented a technique that addresses the question of trade-offs between expanding a communications network or expanding the capacity of distributed computers in an electric utility Energy Management System (EMS). The technique resulted in the development of a quantitative assessment model that is presented in a Lotus 1-2-3 worksheet environment. The model gives EMS planners a macroscopic tool for evaluating distributed processing architectures and the major technical and economic tradeoffs as well as interactions within these architectures. The model inputs (which may be varied according to application and need) include geographic parameters, data flow and processing workload parameters, operator staffing parameters, and technology/economic parameters. The model's outputs are total cost in various categories, a number of intermediate cost and technical calculation results, as well as graphical presentation of Costs vs. Percent Distribution for various parameters. The model has been implemented on an IBM PC using the LOTUS 1-2-3 spreadsheet environment and was developed in 1986. Also included with the spreadsheet model are a number of representative but hypothetical utility system examples.
Luzango Pangani Mfupe
2014-12-01
Full Text Available Advances in technology have enabled network-less mobile voice over internet protocol operator (MVoIPO to offer data services (i.e. voice, text and video to mobile network operator's (MNO's subscribers through an application enabled on subscriber's user equipment using MNO's packet-based cellular network infrastructure. However, this raises the problem of how to handle interconnection settlements between the two types of operators, particularly how to deal with users who now have the ability to make ‘free’ on-net MVoIP calls among themselves within the MNO's network. This study proposes a service level agreement-based transparent settlement model (TSM to solve this problem. The model is based on concepts of achievement and reward, not violation and punishment. The TSM calculates the MVoIPO's throughput distribution by monitoring the variations of peaks and troughs at the edge of a network. This facilitates the determination of conformance and non-conformance levels to the pre-set throughput thresholds and, subsequently, the issuing of compensation to the MVoIPO by the MNO as a result of generating an economically acceptable volume of data traffic.
Ethical issues in engineering models: an operations researcher's reflections.
Kleijnen, J
2011-09-01
This article starts with an overview of the author's personal involvement--as an Operations Research consultant--in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models' assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model's multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling.
Operational Space Weather Models: Trials, Tribulations and Rewards
Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.
2009-12-01
There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of
Operations and support cost modeling using Markov chains
Unal, Resit
1989-01-01
Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.
Optimizing Biorefinery Design and Operations via Linear Programming Models
Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric
2017-03-28
The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for
Globally nilpotent differential operators and the square Ising model
Bostan, A [INRIA Rocquencourt, Domaine de Voluceau, BP 105 78153 Le Chesnay Cedex (France); Boukraa, S [LPTHIRM and Departement d' Aeronautique, Universite de Blida (Algeria); Hassani, S; Zenine, N [Centre de Recherche Nucleaire d' Alger, 2 Bd. Frantz Fanon, BP 399, 16000 Alger (Algeria); Maillard, J-M [LPTMC, CNRS, Universite de Paris, Tour 24, 4eme etage, Case 121, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Weil, J-A [LACO, XLIM, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France)], E-mail: alin.bostan@inria.fr, E-mail: boukraa@mail.univ-blida.dz, E-mail: maillard@lptmc.jussieu.fr, E-mail: jacques-arthur.weil@unilim.fr, E-mail: njzenine@yahoo.com
2009-03-27
We recall various multiple integrals with one parameter, related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their {lambda}-extensions. The univariate analytic functions defined by these integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations, as well as their Russian-doll and direct sum structures. These differential operators are selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. We also display miscellaneous examples of globally nilpotent operators emerging from enumerative combinatorics problems for which no integral representation is yet known. Focusing on the factorized parts of all these operators, we find out that the global nilpotence of the factors (resp. p-curvature nullity) corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, curves of genus five, six,..., and even a remarkable weight-1 modular form emerging in the three-particle contribution {chi}{sup (3)} of the magnetic susceptibility of the square Ising model. Noticeably, this associated weight-1 modular form is also seen in the factors of the differential operator for another n-fold integral of the Ising class, {phi}{sup (3)}{sub H}, for the staircase polygons counting, and in Apery's study of {zeta}(3). G-functions naturally occur as solutions of globally nilpotent operators. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or {infinity}) that correspond to the confluence of singularities in the scaling limit
A model technology transfer program for independent operators
Schoeling, L.G.
1996-08-01
In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.
Assessment of Quantitative Precipitation Forecasts from Operational NWP Models (Invited)
Sapiano, M. R.
2010-12-01
Previous work has shown that satellite and numerical model estimates of precipitation have complimentary strengths, with satellites having greater skill at detecting convective precipitation events and model estimates having greater skill at detecting stratiform precipitation. This is due in part to the challenges associated with retrieving stratiform precipitation from satellites and the difficulty in resolving sub-grid scale processes in models. These complimentary strengths can be exploited to obtain new merged satellite/model datasets, and several such datasets have been constructed using reanalysis data. Whilst reanalysis data are stable in a climate sense, they also have relatively coarse resolution compared to the satellite estimates (many of which are now commonly available at quarter degree resolution) and they necessarily use fixed forecast systems that are not state-of-the-art. An alternative to reanalysis data is to use Operational Numerical Weather Prediction (NWP) model estimates, which routinely produce precipitation with higher resolution and using the most modern techniques. Such estimates have not been combined with satellite precipitation and their relative skill has not been sufficiently assessed beyond model validation. The aim of this work is to assess the information content of the models relative to satellite estimates with the goal of improving techniques for merging these data types. To that end, several operational NWP precipitation forecasts have been compared to satellite and in situ data and their relative skill in forecasting precipitation has been assessed. In particular, the relationship between precipitation forecast skill and other model variables will be explored to see if these other model variables can be used to estimate the skill of the model at a particular time. Such relationships would be provide a basis for determining weights and errors of any merged products.
Model for Determining Fixed Costs for the Winter Service Operation
Matija Glad
2006-07-01
Full Text Available From the season 2005!06 a new dynamic model for the operationof the Winter Service in the Republic of Croatia will beused. The old model was based on three levels of readiness, andthe roads were categorised primarily according to their administrativedistribution. The new dynamic model has three levelsof readiness, while the first level is further divided into two servicelevels. The road is classified to a certain readiness and servicelevel according to the traffic, climate and economic conditions.The new model splits the cost structure into fixed and variablecosts. The investor wants to keep the fixed costs at a minimal/eve~ which will guarantee proper readiness for quick intervention.The investor wants to ensure a technological infrastructurefor quality cleaning of roads is created. The capitalcompanies want larger fixed costs to ensure certain profit, anddefined fixed costs enable them to asses the profitability of theWinter Service operation. Such structure fonils the followingrelationship: in mild winters the capital companies "profit" andthe investor "loses", and vice versa for cold winters. Mathematically,such relationship should be treated as a finite strategictwo-player game.This paper will show the model needed to forecast fixedcosts in the new dynamic model for operation of Winter Ser·vice, through consideration of connection of linear programmingand the matrix game theory, to study the problem in parallel,from the standpoint of both players.
A comprehensive operational semantics of the SCOOP programming model
Morandi, Benjamin; Meyer, Bertrand
2011-01-01
Operational semantics has established itself as a flexible but rigorous means to describe the meaning of programming languages. Oftentimes, it is felt necessary to keep a semantics small, for example to facilitate its use for model checking by avoiding state space explosion. However, omitting many details in a semantics typically makes results valid for a limited core language only, leaving a wide gap towards any real implementation. In this paper we present a full-fledged semantics of the concurrent object-oriented programming language SCOOP (Simple Concurrent Object-Oriented Programming). The semantics has been found detailed enough to guide an implementation of the SCOOP compiler and runtime system, and to detect and correct a variety of errors and ambiguities in the original informal specification and prototype implementation. In our formal specification, we use abstract data types with preconditions and axioms to describe the state, and introduce a number of special run-time operations to model the runti...
WEB-BASED VIRTUAL CNC MACHINE MODELING AND OPERATION
无
2007-01-01
A CNC simulation system based on internet for operation training of manufacturing facility and manufacturing process simulation is proposed. Firstly, the system framework and a rapid modeling method of CNC machine tool are studied under the virtual environment based on PolyTrans and CAD software. Then, a new method is proposed to enhance and expand the interactive ability of virtual reality modeling language(VRML) by attaining communication among VRML, JavaApplet, JavaScript and Html so as to realize the virtual operation for CNC machine tool. Moreover, the algorithm of material removed simulation based on VRML Z-map is presented. The advantages of this algorithm include less memory requirement and much higher computation. Lastly, the CNC milling machine is taken as an illustrative example for the prototype development in order to validate the feasibility of the proposed approach.
Assessment model of dam operation risk based on monitoring data
无
2007-01-01
Although the dams produce remarkable social and economic benefits,the threat made by unsafe dams to the life and property of people who live in the lower river area is un-negligible.Based on the monitoring data which reflect the safety condition of dams,the risk degree concept is proposed and the analysis system and model for evaluating risk degree (rate) are established in this paper by combining the reliability theory and field monitoring data.The analysis method for risk degree is presented based on Bayesian approach.A five-grade risk degree system for dam operation risk and corresponding risk degree is put forward according to the safety condition of dams.The operation risks of four cascade dams on some river are analyzed by the model and approach presented here and the result is adopted by the owner.
Optimization of Operations Resources via Discrete Event Simulation Modeling
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
Simulation of primary static recrystallization with cellular operator model
Mukhopadhyay, Prantik
2005-01-01
1. Based on the modified cellular automata approach of Reher [60] a cellular operator model has been developed that is capable of accounting for spatial and temporal inhomogeneity on a finer scale. For this a scalable subgrid automaton is introduced that allows for a high spatial resolution on demand and still high computational efficiency. The scalable subgrid permits to track the minute changes of growth front during recrystallization owing to local variations of boundary mobility and net d...
Modeling operation mode of pellet boilers for residential heating
Petrocelli, D.; Lezzi, A. M.
2014-11-01
In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.
Dunkl operator, integrability, and pairwise scattering in rational Calogero model
Karakhanyan, David
2017-05-01
The integrability of the Calogero model can be expressed as zero curvature condition using Dunkl operators. The corresponding flat connections are non-local gauge transformations, which map the Calogero wave functions to symmetrized wave functions of the set of N free particles, i.e. it relates the corresponding scattering matrices to each other. The integrability of the Calogero model implies that any k-particle scattering is reduced to successive pairwise scatterings. The consistency condition of this requirement is expressed by the analog of the Yang-Baxter relation.
Weather modeling and forecasting of PV systems operation
Paulescu, Marius; Gravila, Paul; Badescu, Viorel
2012-01-01
In the past decade, there has been a substantial increase of grid-feeding photovoltaic applications, thus raising the importance of solar electricity in the energy mix. This trend is expected to continue and may even increase. Apart from the high initial investment cost, the fluctuating nature of the solar resource raises particular insertion problems in electrical networks. Proper grid managing demands short- and long-time forecasting of solar power plant output. Weather modeling and forecasting of PV systems operation is focused on this issue. Models for predicting the state of the sky, nowc
Operational dynamic modeling transcending quantum and classical mechanics.
Bondar, Denys I; Cabrera, Renan; Lompay, Robert R; Ivanov, Misha Yu; Rabitz, Herschel A
2012-11-09
We introduce a general and systematic theoretical framework for operational dynamic modeling (ODM) by combining a kinematic description of a model with the evolution of the dynamical average values. The kinematics includes the algebra of the observables and their defined averages. The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory. The generality of ODM should provide a basis for formulating novel theories.
Model Predictive Control for the Operation of Building Cooling Systems
Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip
2010-06-29
A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.
Communicating Sustainability: An Operational Model for Evaluating Corporate Websites
Alfonso Siano
2016-09-01
Full Text Available The interest in corporate sustainability has increased rapidly in recent years and has encouraged organizations to adopt appropriate digital communication strategies, in which the corporate website plays a key role. Despite this growing attention in both the academic and business communities, models for the analysis and evaluation of online sustainability communication have not been developed to date. This paper aims to develop an operational model to identify and assess the requirements of sustainability communication in corporate websites. It has been developed from a literature review on corporate sustainability and digital communication and the analysis of the websites of the organizations included in the “Global CSR RepTrak 2015” by the Reputation Institute. The model identifies the core dimensions of online sustainability communication (orientation, structure, ergonomics, content—OSEC, sub-dimensions, such as stakeholder engagement and governance tools, communication principles, and measurable items (e.g., presence of the materiality matrix, interactive graphs. A pilot study on the websites of the energy and utilities companies included in the Dow Jones Sustainability World Index 2015 confirms the applicability of the OSEC framework. Thus, the model can provide managers and digital communication consultants with an operational tool that is useful for developing an industry ranking and assessing the best practices. The model can also help practitioners to identify corrective actions in the critical areas of digital sustainability communication and avoid greenwashing.
Model validity and frequency band selection in operational modal analysis
Au, Siu-Kui
2016-12-01
Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.
New Calculations in Dirac Gaugino Models: Operators, Expansions, and Effects
Carpenter, Linda M
2015-01-01
In this work we calculate important one loop SUSY-breaking parameters in models with Dirac gauginos, which are implied by the existence of heavy messenger fields. We find that these SUSY-breaking effects are all related by a small number of parameters, thus the general theory is tightly predictive. In order to make the most accurate analyses of one loop effects, we introduce calculations using an expansion in SUSY breaking messenger mass, rather than relying on postulating the forms of effective operators. We use this expansion to calculate one loop contributions to gaugino masses, non-holomorphic SM adjoint masses, new A-like and B-like terms, and linear terms. We also test the Higgs potential in such models, and calculate one loop contributions to the Higgs mass in certain limits of R-symmetric models, finding a very large contribution in many regions of the $\\mu$-less MSSM, where Higgs fields couple to standard model adjoint fields.
Addressing the Challenges of Distributed Hydrologic Modeling for Operational Forecasting
Butts, M. B.; Yamagata, K.; Kobor, J.; Fontenot, E.
2008-05-01
Operational forecasting systems must provide reliable, accurate and timely flood forecasts for a range of catchments from small rapidly responding mountain catchments and urban areas to large, complex but more slowly responding fluvial systems. Flood forecasting systems have evolved from simple forecasting for flood mitigation to real-time decision support systems for real-time reservoir operations for water supply, navigation, hydropower, for managing environmental flows and habitat protection, cooling water and water quality forecasting. These different requirements lead to a number of challenges in applying distributed modelling in an operational context. These challenges include, the often short time available for forecasting that requires a trade-off between model complexity and accuracy on the one hand and on the other hand the need for efficient calculations to reduce the computation times. Limitations in the data available in real-time require modelling tools that can not only operate on a minimum of data but also take advantage of new data sources such as weather radar, satellite remote sensing, wireless sensors etc. Finally, models must not only accurately predict flood peaks but also forecast low flows and surface water-groundwater interactions, water quality, water temperature, optimal reservoir levels, and inundated areas. This paper shows how these challenges are being addressed in a number of case studies. The central strategy has been to develop a flexible modelling framework that can be adapted to different data sources, different levels of complexity and spatial distribution and different modelling objectives. The resulting framework allows amongst other things, optimal use of grid-based precipitation fields from weather radar and numerical weather models, direct integration of satellite remote sensing, a unique capability to treat a range of new forecasting problems such as flooding conditioned by surface water-groundwater interactions. Results
Maples, A. L.
1981-01-01
The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.
Island operation - modelling of a small hydro power system
Skarp, Stefan
2000-02-01
Simulation is a useful tool for investigating a system behaviour. It is a way to examine operating situations without having to perform them in reality. If someone for example wants to test an operating situation where the system possibly will demolish, a computer simulation could be a both cheaper and safer way than to do the test in reality. This master thesis performs and analyses a simulation, modelling an electronic power system. The system consists of a minor hydro power station, a wood refining industry, and interconnecting power system components. In the simulation situation the system works in a so called island operation. The thesis aims at making a capacity analysis of the current system. Above all, the goal is to find restrictions in load power profile of the consumer, under given circumstances. The computer software used in simulations is Matlab and its additional program PSB (Power System Blockset). The work has been carried out in co-operation with the power supplier Skellefteaa Kraft, where the problem formulation of this master thesis was founded.
Energy balance model of a SOFC cogenerator operated with biogas
Van herle, Jan; Maréchal, F.; Leuenberger, S.; Favrat, D.
A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a software package allowing to vary system operating parameters like the fuel inlet composition, reforming technology, stack temperature and stack current (or fuel conversion). For system reforming simplicity, a base case parameter set was defined as the fuel inlet of 60% CH 4:40% CO 2 mixed with air in a 1:1 ratio, together with 800 °C operating temperature and 80% fuel conversion. A model stack, consisting of 100 series elements of anode supported electrolyte cells of 100 cm 2 each, was calculated to deliver 3.1 kW el and 5.16 kW th from an input of 1.5 N m 3/h of biogas (8.95 kW LHV), corresponding to 33.8 and 57.6% electrical and thermal efficiencies (Lower Heating Values (LHVs)), respectively. The incidence on the efficiencies of the model system was examined by the variation of a number of parameters such as the CO 2 content in the biogas, the amount of air addition to the biogas stream, the addition of steam to the fuel inlet, the air excess ratio λ and the stack operating temperature, and the results discussed.
Groundwater flow modelling of the excavation and operational phases - Laxemar
Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))
2010-12-15
As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled
Ice-ocean-ecosystem operational model of the Baltic Sea
Janecki, M.; Dzierzbicka-Glowacka, L.; Jakacki, J.; Nowicki, A.
2012-04-01
3D-CEMBS is a fully coupled model adopted for the Baltic Sea and have been developed within the grant, wchich is supported by the Polish State Committee of Scientific Reasearch. The model is based on CESM1.0 (Community Earth System Model), in our configuration it consists of two active components (ocean and ice) driven by central coupler (CPL7). Ocean (POP version 2.1) and ice models (CICE model, version 4.0) are forced by atmospheric and land data models. Atmospheric data sets are provided by ICM-UM model from University of Warsaw. Additionally land model provides runoff of the Baltic Sea (currently 78 rivers). Ecosystem model is based on an intermediate complexity marine ecosystem model for the global domain (J.K. Moore et. al., 2002) and consists of 11 main components: zooplankton, small phytoplankton, diatoms, cyanobacteria, two detrital classes, dissolved oxygen and the nutrients nitrate, ammonium, phosphate and silicate. The model is configured at two horizontal resolutions, approximately 9km and 2km (1/12° and 1/48° respectively). The model bathymetry is represented as 21 vertical levels and the thickness of the first four layers were chosen to be five metres. 3D-CEMBS model grid is based on stereographic coordinates, but equator of these coordinates is in the centre of the Baltic Sea (rotated stereographic coordinates) and we can assume that shape of the cells are square and they are identical. Currently model works in a operational state. The model creates 48-hour forecasts every 6 hours (or when new atmospheric dataset is available). Prognostic variables such as temperature, salinity, ice cover, currents, sea surface height and phytoplankton concentration are presented online on a the website and are available for registered users. Also time series for any location are accessible. This work was carried out in support of grant No NN305 111636 and No NN306 353239 - the Polish state Committee of Scientific Research. The partial support for this study was
Using Model-Based Reasoning for Autonomous Instrument Operation
Johnson, Mike; Rilee, M.; Truszkowski, W.; Powers, Edward I. (Technical Monitor)
2000-01-01
of environmental hazards, frame the problem of constructing autonomous science instruments. we are developing a model of the Low Energy Neutral Atom instrument (LENA) that is currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. LENA is a particle detector that uses high voltage electrostatic optics and time-of-flight mass spectrometry to image neutral atom emissions from the denser regions of the Earth's magnetosphere. As with most spacecraft borne science instruments, phenomena in addition to neutral atoms are detected by LENA. Solar radiation and energetic particles from Earth's radiation belts are of particular concern because they may help generate currents that may compromise LENA's long term performance. An explicit model of the instrument response has been constructed and is currently in use on board IMAGE to dynamically adapt LENA to the presence or absence of energetic background radiations. The components of LENA are common in space science instrumentation, and lessons learned by modelling this system may be applied to other instruments. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. Our future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
MODELLING AND EVALUATION OF OPERATIONAL COMPETITIVENESS OF MANUFACTURING ENTERPRISES
YANG LIU
2009-12-01
Full Text Available This paper is aiming to connect previous research in global competitiveness analysis. Research is based on doing numerous case studies and creating analytical models to evaluate the overall competitiveness, which is a novel concept by integrating the evaluation of manufacturing strategy and transformational leadership including technology level together. The empirical studies are focused to case companies in China especially Chinese State-Owned Manufacturing Enterprise (CSOME. The main emphasises of this research are manufacturing strategy and transformational leadership for CSOME. We have brought the influence of “China effect” to study how it will impact the operational competitiveness of CSOME on top of their manufacturing strategy and transformational leadership.
Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model
Rowe, J. N.; Noonan, C. H.; Garrick, J.
1996-01-01
The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.
Operational Testing of Satellite based Hydrological Model (SHM)
Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.
2017-04-01
Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow
Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators
Smith, R. C.
1997-01-01
A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.
Learning obstacle avoidance with an operant behavior model.
Gutnisky, D A; Zanutto, B S
2004-01-01
Artificial intelligence researchers have been attracted by the idea of having robots learn how to accomplish a task, rather than being told explicitly. Reinforcement learning has been proposed as an appealing framework to be used in controlling mobile agents. Robot learning research, as well as research in biological systems, face many similar problems in order to display high flexibility in performing a variety of tasks. In this work, the controlling of a vehicle in an avoidance task by a previously developed operant learning model (a form of animal learning) is studied. An environment in which a mobile robot with proximity sensors has to minimize the punishment for colliding against obstacles is simulated. The results were compared with the Q-Learning algorithm, and the proposed model had better performance. In this way a new artificial intelligence agent inspired by neurobiology, psychology, and ethology research is proposed.
Operational modal analysis modeling, Bayesian inference, uncertainty laws
Au, Siu-Kui
2017-01-01
This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic pro...
New calculations in Dirac gaugino models: operators, expansions, and effects
Carpenter, Linda M.; Goodman, Jessica
2015-07-01
In this work we calculate important one loop SUSY-breaking parameters in models with Dirac gauginos, which are implied by the existence of heavy messenger fields. We find that these SUSY-breaking effects are all related by a small number of parameters, thus the general theory is tightly predictive. In order to make the most accurate analyses of one loop effects, we introduce calculations using an expansion in SUSY breaking messenger mass, rather than relying on postulating the forms of effective operators. We use this expansion to calculate one loop contributions to gaugino masses, non-holomorphic SM adjoint masses, new A-like and B-like terms, and linear terms. We also test the Higgs potential in such models, and calculate one loop contributions to the Higgs mass in certain limits of R-symmetric models, finding a very large contribution in many regions of the [InlineMediaObject not available: see fulltext.], where Higgs fields couple to standard model adjoint fields.
Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model
Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2015-12-01
Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version
Chiral condensate in the Schwinger model with matrix product operators
Banuls, Mari Carmen [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [Tsukuba Univ. (Japan). Center for Computational Sciences
2016-03-15
Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
Groundwater flow modelling of the excavation and operational phases - Forsmark
Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))
2010-07-15
As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.
Chiral condensate in the Schwinger model with Matrix Product Operators
Bañuls, Mari Carmen; Jansen, Karl; Saito, Hana
2016-01-01
Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chir...
Chiral condensate in the Schwinger model with matrix product operators
Bañuls, Mari Carmen; Cichy, Krzysztof; Jansen, Karl; Saito, Hana
2016-05-01
Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Thermal evolution of the Schwinger model with Matrix Product Operators
Bañuls, M C; Cirac, J I; Jansen, K; Saito, H
2015-01-01
We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
Thermal evolution of the Schwinger model with matrix product operators
Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC); Jansen, K.; Saito, H. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC)
2015-10-15
We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
Modeling motive activation in the Operant Motives Test
Runge, J. Malte; Lang, Jonas W. B.; Engeser, Stefan
2016-01-01
The Operant Motive Test (OMT) is a picture-based procedure that asks respondents to generate imaginative verbal behavior that is later coded for the presence of affiliation, power, and achievement-related motive content by trained coders. The OMT uses a larger number of pictures and asks...... respondents to provide more brief answers than earlier and more traditional picture-based implicit motive measures and has therefore become a frequently used measurement instrument in both research and practice. This article focuses on the psychometric response mechanism in the OMT and builds on recent...... measures (Lang, 2014) and reports the first analysis of which we are aware that applies this model to OMT data (N = 633) and studies dynamic motive activation in the OMT. Results of this analysis yielded evidence for dynamic motive activation in the OMT and showed that simulated IRT reliabilities based...
Bassil, Alfred; Rubod, Chrystèle; Borghesi, Yves; Kerbage, Yohan; Schreiber, Elie Servan; Azaïs, Henri; Garabedian, Charles
2017-04-01
Hysteroscopy is one of the most common gynaecological procedure. Training for diagnostic and operative hysteroscopy can be achieved through numerous previously described models like animal models or virtual reality simulation. We present our novel combined model associating virtual reality and bovine uteruses and bladders. End year residents in obstetrics and gynaecology attended a full day workshop. The workshop was divided in theoretical courses from senior surgeons and hands-on training in operative hysteroscopy and virtual reality Essure(®) procedures using the EssureSim™ and Pelvicsim™ simulators with multiple scenarios. Theoretical and operative knowledge was evaluated before and after the workshop and General Points Averages (GPAs) were calculated and compared using a Student's T test. GPAs were significantly higher after the workshop was completed. The biggest difference was observed in operative knowledge (0,28 GPA before workshop versus 0,55 after workshop, pTeaching operative and diagnostic hysteroscopy is essential. Managing this training through a full day workshop using a combined animal model and virtual reality simulation is an efficient model not described before. Copyright © 2017 Elsevier B.V. All rights reserved.
Realistic modeling of clinical laboratory operation by computer simulation.
Vogt, W; Braun, S L; Hanssmann, F; Liebl, F; Berchtold, G; Blaschke, H; Eckert, M; Hoffmann, G E; Klose, S
1994-06-01
An important objective of laboratory management is to adjust the laboratory's capability to the needs of patients' care as well as economy. The consequences of management may be changes in laboratory organization, equipment, or personnel planning. At present only one's individual experience can be used for making such decisions. We have investigated whether the techniques of operations research could be transferred to a clinical laboratory and whether an adequate simulation model of the laboratory could be realized. First we listed and documented the system design and the process flow for each single laboratory request. These input data were linked by the simulation model (programming language SIMSCRIPT II.5). The output data (turnaround times, utilization rates, and analysis of queue length) were validated by comparison with the current performance data obtained by tracking specimen flow. Congruence of the data was excellent (within +/- 4%). In planning experiments we could study the consequences of changes in order entry, staffing, and equipment on turnaround times, utilization, and queue lengths. We conclude that simulation can be a valuable tool for better management decisions.
Jones, Patricia S.; Mitchell, Christine M.; Rubin, Kenneth S.
1988-01-01
The authors proposes an architecture for an expert system that can function as an operator's associate in the supervisory control of a complex dynamic system. Called OFMspert (operator function model (OFM) expert system), the architecture uses the operator function modeling methodology as the basis for the design. The authors put emphasis on the understanding capabilities, i.e., the intent referencing property, of an operator's associate. The authors define the generic structure of OFMspert, particularly those features that support intent inferencing. They also describe the implementation and validation of OFMspert in GT-MSOCC (Georgia Tech-Multisatellite Operations Control Center), a laboratory domain designed to support research in human-computer interaction and decision aiding in complex, dynamic systems.
Remote Sensing and Modeling for Improving Operational Aquatic Plant Management
Bubenheim, Dave
2016-01-01
The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.
Modeling Operating Modes for the Monju Nuclear Power Plant
Lind, Morten; Yoshikawa, H.; Jørgensen, Sten Bay
2012-01-01
The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...... for the Japanese fast breeder reactor plant MONJU....
Modeling Operating Modes for the Monju Nuclear Power Plant
Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay
2012-01-01
The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition in...
Modeling Operating Modes for the Monju Nuclear Power Plant
Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay
2012-01-01
The specification of supervision and control tasks in complex processes requires definition of plant states on various levels of abstraction related to plant operation in start-up, normal operation and shut-down. Modes of plant operation are often specified in relation to a plant decomposition...... of the process plant, its function and its structural elements. The paper explains how the means-end concepts of MFM can be used to provide formalized definitions of plant operation modes. The paper will introduce the mode types defined by MFM and show how selected operation modes can be represented...
陈建彬; 吕小强
2011-01-01
Aiming at the fact that the energy and mass exchange phenomena exist between barrel and gas-operated device of the automatic weapon, for describing its interior ballistics and dynamic characteristics of the gas-operated device accurately, a new variable-mass thermodynamics model is built. It is used to calculate the automatic mechanism velocity of a certain automatic weapon, the calculation results coincide with the experimental results better, and thus the model is validated. The influences of structure parameters on gas-operated device＇ s dynamic characteristics are discussed. It shows that the model is valuable for design and accurate performance prediction of gas-operated automatic weapon.
Alpert, J. C.; Wang, J.
2009-12-01
To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including
2013-03-01
CALIBRATION AND EXTENSION OF A DISCRETE EVENT OPERATIONS SIMULATION MODELING MULTIPLE UN-MANNED AERIAL VEHICLES...DISCRETE EVENT OPERATIONS SIMULATION MODELING MULTIPLE UN-MANNED AERIAL VEHICLES CONTROLLED BY A SINGLE OPERATOR THESIS Presented to the...ENV-13-M-34 CALIBRATION AND EXTENSION OF A DISCRETE EVENT OPERATIONS SIMULATION MODELING MULTIPLE UN-MANNED AERIAL VEHICLES CONTROLLED BY
Artificial Systems and Models for Risk Covering Operations
Laurenţiu Mihai Treapăt
2017-04-01
Full Text Available Mainly, this paper focuses on the roles of artificial intelligence based systems and especially on risk-covering operations. In this context, the paper comes with theoretical explanations on real-life based examples and applications. From a general perspective, the paper enriches its value with a wide discussion on the related subject. The paper aims to revise the volatilities’ estimation models and the correlations between the various time series and also by presenting the Risk Metrics methodology, as explained is a case study. The advantages that the VaR estimation offers, consist of its ability to quantitatively and numerically express the risk level of a portfolio, at a certain moment in time and also the risk of on open position (in titles, in FX, commodities or granted loans, belonging to an economic agent or even individual; hence, its role in a more efficient capital allocation, in the assumed risk delimitation, and also as a performance measurement instrument. In this paper and the study case that completes our work, we aim to prove how we can prevent considerable losses and even bankruptcies if VaR is known and applied accordingly. For this reason, the universities inRomaniashould include or increase their curricula with the study of the VaR model as an artificial intelligence tool. The simplicity of the presented case study, most probably, is the strongest argument of the current work because it can be understood also by the readers that are not necessarily very experienced in the risk management field.
Modeling and Control for Islanding Operation of Active Distribution Systems
Cha, Seung-Tae; Wu, Qiuwei; Saleem, Arshad
2011-01-01
Along with the increasing penetration of distributed generation (DG) in distribution systems, there are more resources for system operators to improve the operation and control of the whole system and enhance the reliability of electricity supply to customers. The distribution systems with DG...... are able to operate in is-landing operation mode intentionally or unintentionally. In order to smooth the transition from grid connected operation to islanding operation for distribution systems with DG, a multi-agent based controller is proposed to utilize different re-sources in the distribution systems...... to stabilize the frequency. Different agents are defined to represent different resources in the distribution systems. A test platform with a real time digital simulator (RTDS), an OPen Connectivity (OPC) protocol server and the multi-agent based intelligent controller is established to test the proposed multi...
Model Structure Analysis of Model-based Operation of Petroleum Reservoirs
Van Doren, J.F.M.
2010-01-01
The demand for petroleum is expected to increase in the coming decades, while the production of petroleum from subsurface reservoirs is becoming increasingly complex. To meet the demand petroleum reservoirs should be operated more efficiently. Physics-based petroleum reservoir models that describe t
Model Structure Analysis of Model-based Operation of Petroleum Reservoirs
Van Doren, J.F.M.
2010-01-01
The demand for petroleum is expected to increase in the coming decades, while the production of petroleum from subsurface reservoirs is becoming increasingly complex. To meet the demand petroleum reservoirs should be operated more efficiently. Physics-based petroleum reservoir models that describe
JELO: A Model of Joint Expeditionary Logistics Operations
2004-10-01
copy Office of the Chief of Naval Operations N42 2000 Navy Pentagon Washington, D.C. 20350-2000 12. Captain James Stewart ............................................................................ electronic
Linte, Cristian A.; Wierzbicki, Marcin; Moore, John; Wedlake, Christopher; Wiles, Andrew D.; Bainbridge, Daniel; Guiraudon, Gérard M.; Jones, Douglas L.; Peters, Terry M.
2008-03-01
As part of an ongoing theme in our laboratory on reducing morbidity during minimally-invasive intracardiac procedures, we developed a computer-assisted intervention system that provides safe access inside the beating heart and sufficient visualization to deliver therapy to intracardiac targets while maintaining the efficacy of the procedure. Integrating pre-operative information, 2D trans-esophageal ultrasound for real-time intra-operative imaging, and surgical tool tracking using the NDI Aurora magnetic tracking system in an augmented virtual environment, our system allows the surgeons to navigate instruments inside the heart in spite of the lack of direct target visualization. This work focuses on further enhancing intracardiac visualization and navigation by supplying the surgeons with detailed 3D dynamic cardiac models constructed from high-resolution pre-operative MR data and overlaid onto the intra-operative imaging environment. Here we report our experience during an in vivo porcine study. A feature-based registration technique previously explored and validated in our laboratory was employed for the pre-operative to intra-operative mapping. This registration method is suitable for in vivo interventional applications as it involves the selection of easily identifiable landmarks, while ensuring a good alignment of the pre-operative and intra-operative surgical targets. The resulting augmented reality environment fuses the pre-operative cardiac model with the intra-operative real-time US images with approximately 5 mm accuracy for structures located in the vicinity of the valvular region. Therefore, we strongly believe that our augmented virtual environment significantly enhances intracardiac navigation of surgical instruments, while on-target detailed manipulations are performed under real-time US guidance.
Operator function modeling: An approach to cognitive task analysis in supervisory control systems
Mitchell, Christine M.
1987-01-01
In a study of models of operators in complex, automated space systems, an operator function model (OFM) methodology was extended to represent cognitive as well as manual operator activities. Development continued on a software tool called OFMdraw, which facilitates construction of an OFM by permitting construction of a heterarchic network of nodes and arcs. Emphasis was placed on development of OFMspert, an expert system designed both to model human operation and to assist real human operators. The system uses a blackboard method of problem solving to make an on-line representation of operator intentions, called ACTIN (actions interpreter).
Jorgensen, PET
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
Incorporating Worker-Specific Factors in Operations Management Models
J.A. Larco Martinelli (Jose)
2010-01-01
textabstractTo add value, manufacturing and service operations depend on workers to do the job. As a result, the performance of these operations is ultimately dependent on the performance of individual workers. Simultaneously, workers are major stakeholders of the firm. Workers spend a considerabl
Ikeda, Mitsuru; Mizoguchi, Riichirou [Inst. of Scientific and Industrial Research, Osaka Univ., Ibaraki (Japan); Yoshikawa, Shinji; Ozawa, Kenji
1997-03-01
This report describes a technical survey of acquisition method of an operator`s understanding for functions and structures of his target nuclear plant. This method is to play a key role in the information processing framework to support on-training operators in forming their knowledge of the nuclear plants. This kind of technical framework is aiming at enhancing human operator`s ability to cope with anomaly plant situations which are difficult to expect from preceding experiences or engineering surveillance. In these cases, cause identifications and responding operation selections are desired to made not only empirically but also based on thoughts about possible phenomena to take place within the nuclear plant. This report focuses on a particular element technique, defined as `explanation-based knowledge acquisition`, as the candidate technique to potentially be extended to meet the requirement written above, and discusses about applicability to the learning support system and about necessary improvements, to identify future technical developments. (author)
Collective operations in a file system based execution model
Shinde, Pravin; Van Hensbergen, Eric
2013-02-19
A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.
Technology Reference Model (TRM) Reports: Technology/Operating System Report
Department of Veterans Affairs — The One VA Enterprise Architecture (OneVA EA) is a comprehensive picture of the Department of Veterans Affairs' (VA) operations, capabilities and services and the...
The UNIX Operating System: A Model for Software Design.
Kernighan, Brian W.; Morgan, Samuel P.
1982-01-01
Describes UNIX time-sharing operating system, including the program environment, software development tools, flexibility and ease of change, portability and other advantages, and five applications and three nonapplications of the system. (JN)
A review of operational, regional-scale, chemical weather forecasting models in Europe
Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; Peuch, V.-H.; Poupkou, A.; Kioutsioukis, I.; Finardi, S.; Sofiev, M.; Sokhi, R.; Lehtinen, K.E.J.; Karatzas, K.; San José, R.; Astitha, M.; Kallos, G.; Schaap, M.; Reimer, E.; Jakobs, H.; Eben, K.
2012-01-01
Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
An experimental study of a VVER reactor's steam generator model operating in the condensing mode
Morozov, A. V.; Remizov, O. V.
2012-05-01
Results obtained from an experimental study of a VVER reactor's steam generator model operating in the condensing mode are presented. The obtained empirical dependence for calculating the power of heat exchangers operating in the steam condensation mode is presented.
Dilger, Mathias Georg; Jovanović, Tanja; Voigt, Kai-Ingo
2017-08-01
Practice and theory have proven the relevance of energy co-operatives for civic participation in the energy turnaround. However, due to a still low awareness and changing regulation, there seems an unexploited potential of utilizing the legal form 'co-operative' in this context. The aim of this study is therefore to investigate the crowdfunding implementation in the business model of energy co-operatives in order to cope with the mentioned challenges. Based on a theoretical framework, we derive a Business Model Innovation (BMI) through crowdfunding including synergies and differences. A qualitative study design, particularly a multiple-case study of energy co-operatives, was chosen to prove the BMI and to reveal barriers. The results show that although most co-operatives are not familiar with crowdfunding, there is strong potential in opening up predominantly local structures to a broader group of members. Building on this, equity-based crowdfunding is revealed to be suitable for energy co-operatives as BMI and to accompany other challenges in the same way. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis Methods and Models for Small Unit Operations
2006-07-01
methods are called for. TNO report I TNO-DV 2006 A228 9 /22 Efect Figure I Effect Based Operations framework. In practice, Figure 1 is useful when trying to...11, 111, IV, V Re-establishing communications Transport support (drivers, vehicles) Support to crowd and Riot Control (CRC) operations Support to... communicate opponent opponent intel gewonnen Verkennings- Reconnaissance Waarnemen terrein Observe terrain Inlichtingen over Gathered intel on patrouille
A knowledge based model of electric utility operations. Final report
NONE
1993-08-11
This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.
Analyzing Differences in Operational Disease Definitions Using Ontological Modeling
Peelen, Linda; Klein, Michel; Schlobach, Stefan; Keizer, de, Rob J.W.; Peek, Niels
2007-01-01
In medicine, there are many diseases which cannot be precisely characterized but are considered as natural kinds. In the communication between health care professionals, this is generally not problematic. In biomedical research, however, crisp definitions are required to unambiguously distinguish patients with and without the disease. In practice, this results in different operational definitions being in use for a single disease. This paper presents an approach to compare different operation...
Analyzing Differences in Operational Disease Definitions Using Ontological Modeling
Peelen, Linda; Klein, Michel; Schlobach, Stefan; Keizer, de, M.; Peek,Niels
2007-01-01
In medicine, there are many diseases which cannot be precisely characterized but are considered as natural kinds. In the communication between health care professionals, this is generally not problematic. In biomedical research, however, crisp definitions are required to unambiguously distinguish patients with and without the disease. In practice, this results in different operational definitions being in use for a single disease. This paper presents an approach to compare different operation...
Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion
Luis Rabelo
2012-01-01
Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.
Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices
Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael
2012-01-01
Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.
Operation of the computer model for microenvironment atomic oxygen exposure
Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.
1995-01-01
A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.
Hydraulic modelling of drinking water treatment plant operations
L. C. Rietveld; Borger, K.J.; Van Schagen, K.M.; Mesman, G.A.M.; G. I. M. Worm
2008-01-01
For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a un...
Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling
Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay
2014-01-01
situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal......The aim of this paper is to explore the capability of representing operational knowledge by using Multilevel Flow Modelling ( MFM ) methodology. The paper demonstrate s how the operational knowledge can be inserted into the MFM models and be used to evaluate the plant state, identify the current...... systems. And the sub - systems’ functions will be decomposed into sub - models according to different operational situations. An operational model will be developed based on the operating procedure by using MFM symbols and this model can be used to implement coordination rules for organize the utilizati...
Renée El-Gabalawy
2017-08-01
Full Text Available Introduction: Risk assessment for post-operative delirium (POD is poorly developed. Improved metrics could greatly facilitate peri-operative care as costs associated with POD are staggering. In this preliminary study, we develop a novel stress-diathesis model based on comprehensive pre-operative psychiatric and neuropsychological testing, a blood oxygenation level-dependent (BOLD magnetic resonance imaging (MRI carbon dioxide (CO2 stress test, and high fidelity measures of intra-operative parameters that may interact facilitating POD.Methods: The study was approved by the ethics board at the University of Manitoba and registered at clinicaltrials.gov as NCT02126215. Twelve patients were studied. Pre-operative psychiatric symptom measures and neuropsychological testing preceded MRI featuring a BOLD MRI CO2 stress test whereby BOLD scans were conducted while exposing participants to a rigorously controlled CO2 stimulus. During surgery the patient had hemodynamics and end-tidal gases downloaded at 0.5 hz. Post-operatively, the presence of POD and POD severity was comprehensively assessed using the Confusion Assessment Measure –Severity (CAM-S scoring instrument on days 0 (surgery through post-operative day 5, and patients were followed up at least 1 month post-operatively.Results: Six of 12 patients had no evidence of POD (non-POD. Three patients had POD and 3 had clinically significant confusional states (referred as subthreshold POD; ST-POD (score ≥ 5/19 on the CAM-S. Average severity for delirium was 1.3 in the non-POD group, 3.2 in ST-POD, and 6.1 in POD (F-statistic = 15.4, p < 0.001. Depressive symptoms, and cognitive measures of semantic fluency and executive functioning/processing speed were significantly associated with POD. Second level analysis revealed an increased inverse BOLD responsiveness to CO2 pre-operatively in ST-POD and marked increase in the POD groups when compared to the non-POD group. An association was also noted for
Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S.
2016-01-01
Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur...... is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI...
2016-01-05
Computer-aided transformation of PDE models: languages, representations, and a calculus of operations A domain-specific embedded language called...languages, representations, and a calculus of operations Report Title A domain-specific embedded language called ibvp was developed to model initial...Computer-aided transformation of PDE models: languages, representations, and a calculus of operations 1 Vision and background Physical and engineered systems
A Dynamic Pricing Model for Coordinated Sales and Operations
M. Fleischmann (Moritz); J.M. Hall (Joseph); D.F. Pyke (David)
2005-01-01
textabstractRecent years have seen advances in research and management practice in the area of pricing, and particularly in dynamic pricing and revenue management. At the same time, researchers and managers have made dramatic improvements in operations and supply chain management. The interactions b
Evaluation of computer flow modelling in operating theatres
Lemaire, A.D.; Ham, P.J.; Luscuere, P.G.
1996-01-01
Nowadays most Operating Theatres (OT's) in the Netherlands have a certain standard configuration to guarantee good control of airflows and by doing so keep the risk of infections from airborne contaminants low. It is, however, the question if this risk is low enougii. A correct answer can only be fo
Modeling of operating history of the research nuclear reactor
Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.
2016-06-01
The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.
Interagency Cooperation: A Regional Model for Overseas Operations
1995-03-01
for Kurd refugees during Operation Provide Comfort. 2. Major Miguel I. Becerril , USA, Manager, Theater Deployment Program, "FACT SI-I~.P.T...Statement before the Senate Armed Services Committee, Washington, 2 March 1994, 14. 5. Becerril . 6. Colonel Norman R. Flemens, USA, Force, Deputy Director
Steam boilers: process models for improved operation and design
Ahnert, F.
2007-01-01
Biomass combustion can be an economic way to contribute to the reduction of CO2 emissions, which are a main suspect of the so-called greenhouse effect. In order to promote a widespread utilization of biomass combustion, operational problems like fuel treatment, slagging, fouling and corrosion have
Modelling and operation of reactors for enzymatic biodiesel production
Price, Jason Anthony
to increase profits while reducing operating cost, as well as meeting government and regulatory pressures for processes to be environmentally friendly and sustainable. Current applications of biocatalysts, more specifically, enzymes for large scale bulk production of chemicals have been successfully applied...
Modeling and Management of Variation in the Operating Theatre
P.S. Stepaniak (Pieter)
2010-01-01
textabstractAfter having worked in the profit industry, I continued my career in 2004 as a manager of operating rooms (ORs) in a large general teaching hospital in Rotterdam. My experiences in industry management taught me to work efficiently, effectively and to excel in service to every customer an
Steam boilers: process models for improved operation and design
Ahnert, F.
2007-01-01
Biomass combustion can be an economic way to contribute to the reduction of CO2 emissions, which are a main suspect of the so-called greenhouse effect. In order to promote a widespread utilization of biomass combustion, operational problems like fuel treatment, slagging, fouling and corrosion have t
International Training for Peace Support Operations: Models, Assessments, and Implications
2002-03-01
UN Operating Techniques • Political Education and Law • Fighting Irregular Forces (supplementary instruction may be required) Focus shift to...Methodology • Political Education and Law • Selecting Commanders and Personnel • Personnel Welfare Platoon Commanders Course Complementary...checkpoints, patrolling, observation posts, and force protection • Political Education (Discussion of mandates and ROE) • Fighting
Model-based Optimization of Oil Recovery: Robust Operational Strategies
Van Essen, G.M.
2015-01-01
The process of depleting an oil reservoir can be poured into an optimal control problem with the objective to maximize economic performance over the life of the ﬁeld. Despite its large potential, life-cycle optimization has not yet found its way into operational environments. The objective of this t
Achieving a System Operational Availability Requirement (ASOAR) Model
1992-07-01
ASOAR requires only system and end item level input data, not Line Replaceable Unit (LRU) Input data. ASOAR usage provides concepts for major logistics...the Corp/Theater ADP Service Center II (CTASC II) to a systen operational availabilty goal. The CTASC II system configuration had many redundant types
Simplified models for estimating isothermal operating characteristics of food extruders.
Levine, L; Rockwood, J
1985-09-01
A model of isothermal food extruder performance is described. Inferences about alternative extruder screw designs and their performance are drawn from the model. The model suggests that thread depth or diameter compression screws are superior in performance to a pitch compression screw. The advantage gained from using diameter compression screws is paid for with significantly higher rates of energy dissipation. The use of the model to characterize screws having both a compression zone and metering zone is described.
Information theory-based approach for modeling the cognitive behavior of NPP operators
Kim, Jong Hyun; Seong, Poong Hyun [KAIST, Taejon (Korea, Republic of)
2001-10-01
An NPP system consists of three important components: the machine system, operators, and MMI. Through the MMI, operators monitor and control the plant system. The cognitive model of NPP operators has become a target of modeling by cognitive engineers due to their work environment: complex, uncertain, and safe critical. We suggested the contextual model for the cognitive behavior of NPP operator and the mathematical fundamentals based on information theory which can quantify the model. The demerit of the methodology using the information theory is that it cannot evaluate the correctness and quality of information. Therefore, the validation through the experiment is needed.
Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators
Lehman, Landon
2014-01-01
We present a complete list of the independent dimension-7 operators that are constructed using the Standard Model degrees of freedom and are invariant under the Standard Model gauge group. This list contains only 20 independent operators; far fewer than the 63 operators available at dimension 6. All of these dimension-7 operators contain fermions and violate lepton number, and 7 of the 20 violate baryon number as well. This result extends the Standard Model Effective Field Theory (SMEFT) and allows a more detailed exploration of the structure and properties of possible deformations from the Standard Model Lagrangian.
Extending the standard model effective field theory with the complete set of dimension-7 operators
Lehman, Landon
2014-12-01
We present a complete list of the independent dimension-7 operators that are constructed using the standard model degrees of freedom and are invariant under the standard model gauge group. This list contains only 20 independent operators, far fewer than the 63 operators available at dimension 6. All of these dimension-7 operators contain fermions and violate lepton number, and 7 of the 20 violate baryon number as well. This result extends the standard model effective field theory and allows a more detailed exploration of the structure and properties of possible deformations from the standard model Lagrangian.
Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation
Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip;
2008-01-01
Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...
Quantitative, steady-state properties of Catania's computational model of the operant reserve.
Berg, John P; McDowell, J J
2011-05-01
Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior.
TECHNOLOGICAL PROCESS MODELING AIMING TO IMPROVE ITS OPERATIONS MANAGEMENT
Ivan Mihajlović
2011-11-01
Full Text Available This paper presents the modeling procedure of one real technological system. In this study, thecopper extraction from the copper flotation waste generated at the Bor Copper Mine (Serbia, werethe object of modeling. Sufficient data base for statistical modeling was constructed using theorthogonal factorial design of the experiments. Mathematical model of investigated system wasdeveloped using the combination of linear and multiple linear statistical analysis approach. Thepurpose of such a model is obtaining optimal states of the system that enable efficient operationsmanagement. Besides technological and economical, ecological parameters of the process wereconsidered as crucial input variables.
Establishment and evaluation of operation function model for cascade hydropower station
Chang-ming JI
2010-12-01
Full Text Available Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hydropower stations on the Jinshajiang-Yangtze River system, the modeled long-term electric generation is shown to have high precision and provide benefits. Through comparison with optimal operation, the simulation results show that the operation function proposed retains the characteristics of optimal operation. Also, the inadequacies and attribution of the algorithm are discussed based on case study, providing decision support and reference information for research on large-scale cascade operation work.
2011-12-28
... G280 Airplane, Operation Without Normal Electrical Power AGENCY: Federal Aviation Administration (FAA... associated with operation without normal electrical power. The applicable airworthiness regulations do not... Model G280 will have a novel or unusual design feature associated with operation without...
Information Flow Model of Human Extravehicular Activity Operations
Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.
2014-01-01
Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.
Computerized operating cost model for industrial steam generation
Powers, T.D.
1983-02-01
Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.
Intelligent decision-making models for production and retail operations
Guo, Zhaoxia
2016-01-01
This book provides an overview of intelligent decision-making techniques and discusses their application in production and retail operations. Manufacturing and retail enterprises have stringent standards for using advanced and reliable techniques to improve decision-making processes, since these processes have significant effects on the performance of relevant operations and the entire supply chain. In recent years, researchers have been increasingly focusing attention on using intelligent techniques to solve various decision-making problems. The opening chapters provide an introduction to several commonly used intelligent techniques, such as genetic algorithm, harmony search, neural network and extreme learning machine. The book then explores the use of these techniques for handling various production and retail decision-making problems, such as production planning and scheduling, assembly line balancing, and sales forecasting.
Modelling Reliability-adaptive Multi-system Operation
Uwe K. Rakowsky
2006-01-01
This contribution discusses the concept of Reliability-Adaptive Systems (RAS) to multi-system operation. A fleet of independently operating systems and a single maintenance unit are considered. It is the objective in this paper to increase overall performance or workload respectively by avoiding delay due to busy maintenance units. This is achieved by concerted and coordinated derating of individual system performance, which increases reliability. Quantification is carried out by way of a convolution-based approach. The approach is tailored to fleets of ships, aeroplanes, spacecraft, and vehicles (trains, trams, buses, cars, trucks, etc.) - Finally, the effectiveness of derating is validated using different criteria. The RAS concept makes sense if average system output loss due to lowered performance level (yielding longer time to failure) is smaller than average loss due to waiting for maintenance in a non-adaptive case.
Cyber physical modeling of distributed resources for distribution system operations
Chatzivasileiadis, Spyros; Bonvini, Marco; Matanza, Javier; Yin, Rongxin; LIU, ZHENHUA; Nouidui, Thierry; Kara, Emre C.; Parmar, Rajiv; Lorenzetti, David; Wetter, Michael; Kiliccote, Sila
2015-01-01
Co-simulation platforms are necessary to study the interactions of complex systems integrated in future smart grids. The Virtual Grid Integration Laboratory (VirGIL) is a modular co-simulation platform designed to study interactions between demand response strategies, building comfort, communication networks, and power system operation. This paper presents the coupling of power systems, buildings, communications and control under a master algorithm. There are two objectives. First, to use a m...
Modeling the Effects of Cyber Operations on Kinetic Battles
2014-06-01
representation. This approach restricts us to a very specific range, but may help to gain insight. We represent blue color when Blue force wins, and...red color when Red force wins. The parameters are fixed as Table 3 except two analyzed ones, which are specified in the figure. The parameters are... candle light at night. But, as was stated before, anything electronic or related to electronics can be affected by a cyber operation. Cyber Forces A
Operational results from a physical power prediction model
Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)
1999-03-01
This paper will describe a prediction system which predicts the expected power output of a number of wind farms. The system is automatic and operates on-line. The paper will quantify the accuracy of the predictions and will also give examples of the performance for specific storm events. An actual implementation of the system will be described and the robustness demonstrated. (au) 11 refs.
Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.
Deng, Li; Wang, Guohua; Chen, Bo
2015-01-01
In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.
Hydraulic modelling of drinking water treatment plant operations
K. J. Borger
2008-10-01
Full Text Available For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a unit is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes. Using this library, a hydraulic model was set up and validated for the drinking water treatment plant Harderbroek.
Santillana, Mauricio; Zhang, Lin; Yantosca, Robert
2016-01-01
We present upper bounds for the numerical errors introduced when using operator splitting methods to integrate transport and non-linear chemistry processes in global chemical transport models (CTM). We show that (a) operator splitting strategies that evaluate the stiff non-linear chemistry operator at the end of the time step are more accurate, and (b) the results of numerical simulations that use different operator splitting strategies differ by at most 10%, in a prototype one-dimensional non-linear chemistry-transport model. We find similar upper bounds in operator splitting numerical errors in global CTM simulations.
The Main Issues to Address in Modeling Plasma Spray Torch Operation
Chazelas, C.; Trelles, J. P.; Vardelle, A.
2017-01-01
The modeling of plasma torch operation has advanced greatly in the last 15 years due to a better understanding of the underlying physics, development of commercial, open-source computational fluid dynamics softwares, and access to high performance and cloud computing. However, the operation mode of the electric arc in plasma torches is controlled by dynamic, thermal, electromagnetic, acoustic and chemical phenomena that take place at different scales and whose interactions are not completely understood yet. Even though no single model of plasma torch operation fully addresses these phenomena, most of these models are useful tools for parametric studies, if their use is reinforced by knowledge of torch operation and the model predictions are validated against experimental data. To increase the level of predictability of the current models, several further steps are needed. This study examines the issues remaining to be addressed in the modeling of plasma spray torch operation and the current critical aspects of these.
Operation of the computer model for microenvironment solar exposure
Gillis, J. R.; Bourassa, R. J.; Gruenbaum, P. E.
1995-01-01
A computer model for microenvironmental solar exposure was developed to predict solar exposure to satellite surfaces which may shadow or reflect on one another. This document describes the technical features of the model as well as instructions for the installation and use of the program.
Modeling contractor and company employee behavior in high hazard operation
Lin, P.H.; Hanea, D.; Ale, B.J.M.
2013-01-01
The recent blow-out and subsequent environmental disaster in the Gulf of Mexico have highlighted a number of serious problems in scientific thinking about safety. Risk models have generally concentrated on technical failures, which are easier to model and for which there are more concrete data. Howe
Modeling contractor and company employee behavior in high hazard operation
Lin, P.H.; Hanea, D.; Ale, B.J.M.
2013-01-01
The recent blow-out and subsequent environmental disaster in the Gulf of Mexico have highlighted a number of serious problems in scientific thinking about safety. Risk models have generally concentrated on technical failures, which are easier to model and for which there are more concrete data. Howe
Immunity modeling of the lm2902 operational amplifier
Op 't Land, Sjoerd; Lafon, Fr´ed´eric; de Daran, Francois; Leferink, Frank Bernardus Johannes; Drissi, M'hamed; Ramdani, Mohamed
2010-01-01
Component models that predict functional failure are necessary for predicting the immunity of systems to electromagnetic interference (EMI). A method to extract these models using measurements on integrated circuits (ICs) already exists. This measurement method for ICs with single-ended connections
Modeling contractor and company employee behavior in high hazard operation
Lin, P.H.; Hanea, D.; Ale, B.J.M.
2013-01-01
The recent blow-out and subsequent environmental disaster in the Gulf of Mexico have highlighted a number of serious problems in scientific thinking about safety. Risk models have generally concentrated on technical failures, which are easier to model and for which there are more concrete data.
Model-based design and analysis of glucose isomerization process operation
Papadakis, Emmanouil; Pedersen, Sven; Kumar Tula, Anjan
2017-01-01
reactor is developed. Next, model analysis, model identification and model validation based on available reactor operational data are performed. The reactor model is found to describe accurately important phenomena, such as, reaction kinetics, enzyme decay and internal diffusion of the substrate......The application of model-based methods for design and analysis of operational improvements of an industrial glucose isomerization (GI) process is highlighted. First, a multi-scale mathematical model representing important phenomena encountered in the reaction system of a glucose isomerization...... in the enzymatic pellet as a function of the temperature, thereby confirming that the model is ready for use in design-analysis studies. Operation of the GI process is then analyzed in a single reactor and based on this, the reactor model is used as a building block to represent the operation of a GI reactor plant...
The Calculation Model for Operation Cost of Coal Resources Development Based on ANN
刘海滨
2004-01-01
On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.
Wilson, fixed point and Neuberger's lattice Dirac operator for the Schwinger model
Farchioni, F.; Hip, I.; Lang, C. B.
1998-12-01
We perform a comparison between different lattice regularizations of the Dirac operator for massless fermions in the framework of the single and two flavor Schwinger model. We consider a) the Wilson-Dirac operator at the critical value of the hopping parameter; b) Neuberger's overlap operator; c) the fixed point operator. We test chiral properties of the spectrum, dispersion relations and rotational invariance of the mesonic bound state propagators.
Linking Geomechanical Models with Observations of Microseismicity during CCS Operations
Verdon, J.; Kendall, J.; White, D.
2012-12-01
During CO2 injection for the purposes of carbon capture and storage (CCS), injection-induced fracturing of the overburden represents a key risk to storage integrity. Fractures in a caprock provide a pathway along which buoyant CO2 can rise and escape the storage zone. Therefore the ability to link field-scale geomechanical models with field geophysical observations is of paramount importance to guarantee secure CO2 storage. Accurate location of microseismic events identifies where brittle failure has occurred on fracture planes. This is a manifestation of the deformation induced by CO2 injection. As the pore pressure is increased during injection, effective stress is decreased, leading to inflation of the reservoir and deformation of surrounding rocks, which creates microseismicity. The deformation induced by injection can be simulated using finite-element mechanical models. Such a model can be used to predict when and where microseismicity is expected to occur. However, typical elements in a field scale mechanical models have decameter scales, while the rupture size for microseismic events are typically of the order of 1 square meter. This means that mapping modeled stress changes to predictions of microseismic activity can be challenging. Where larger scale faults have been identified, they can be included explicitly in the geomechanical model. Where movement is simulated along these discrete features, it can be assumed that microseismicity will occur. However, microseismic events typically occur on fracture networks that are too small to be simulated explicitly in a field-scale model. Therefore, the likelihood of microseismicity occurring must be estimated within a finite element that does not contain explicitly modeled discontinuities. This can be done in a number of ways, including the utilization of measures such as closeness on the stress state to predetermined failure criteria, either for planes with a defined orientation (the Mohr-Coulomb criteria) for
Semi-stationary subdivision operators in geometric modeling
无
2002-01-01
Based on the view of operator, a novel uniform subdivision construction method is proposed for free form curve and surface design. This method can give an appropriate manner of parameter change in the subdivision iteration with fewer parameters and better shape control, such as building local revolving surfaces. The convergent property of order 2 subdivision surface is elegantly analyzed using computing techniques of matrix. This method is promised to be valuable in Computer Aided Design and computer graphics, due to the simplicity both in mathematical theory and practical implementation, the similarity to the B-spline curve and surface, G1 continuity, the affine invariability and local flexible control.
Dynamic Bayesian modeling for risk prediction in credit operations
Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andres
2015-01-01
Our goal is to do risk prediction in credit operations, and as data is collected continuously and reported on a monthly basis, this gives rise to a streaming data classification problem. Our analysis reveals some practical problems that have not previously been thoroughly analyzed in the context...... of streaming data analysis: the class labels are not immediately available and the relevant predictive features and entities under study (in this case the set of customers) may vary over time. In order to address these problems, we propose to use a dynamic classifier with a wrapper feature subset selection...
M. Mahdavi (Mahdi)
2015-01-01
markdownabstract__Abstract__ The PhD research has two objectives: - To develop generally applicable operational models which allow developing the evidence base for health service operations in provider networks. - To contribute to the evidence base by validating the model through application to hea
Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan
2011-01-01
A generic multi-dimensional modeling framework for studying batch cooling crystallization processes under generated operational policies is presented. The generic nature of the modeling allows the study of a wide range of chemical systems under different operational scenarios, enabling thereby, t...
Alternative Models of Service, Centralized Machine Operations. Phase II Report. Volume II.
Technology Management Corp., Alexandria, VA.
A study was conducted to determine if the centralization of playback machine operations for the national free library program would be feasible, economical, and desirable. An alternative model of playback machine services was constructed and compared with existing network operations considering both cost and service. The alternative model was…
Towards a Comprehensive Model of Stereotypy: Integrating Operant and Neurobiological Interpretations
Lanovaz, Marc J.
2011-01-01
The predominant models on the emergence and maintenance of stereotypy in individuals with developmental disabilities are based on operant and neurobiological interpretations of the behavior. Although the proponents of the two models maintain largely independent lines of research, operant and neurobiological interpretations of stereotypy are not…
Activating Global Operating Models: The bridge from organization design to performance
Amy Kates
2015-07-01
Full Text Available This article introduces the concept of activation and discusses its use in the implementation of global operating models by large multinational companies. We argue that five particular activators help set in motion the complex strategies and organizations required by global operating models.
Schoeling, L.G.
1993-09-01
This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.
Light Models of Civilian Support in Blue-Red Operations
2012-06-01
Population 3 2 Civilian Support Social – Cognitive Constructs Perceptions Disposition Moral disengagement Personality Beliefs Grievance How is a...RELEASE Vulnerability Sacrifice Anger Commitment Model Civilian Support 4 3 Perceptions Disposition Moral disengagement Personality Beliefs Grievance • A
Operators for reclassification queries in a temporal multidimensional model
Francisco Moreno
2011-05-01
Full Text Available Data warehouse dimensions are usually considered to be static because their schema and data tend not to change; however, both dimension schema and dimension data can change. This paper focuses on a type of dimension data change called reclassificationwhich occurs when a member of a certain level becomes a member of a higher level in the same dimension, e.g. when a product changes category (it is reclassified. This type of change gives rise to the notion of classification period and to a type of query that can be useful for decision-support. For example, What were total chess-set sales during first classification period in Toy category? A set of operators has been proposed to facilitate formulating this type of query and it is shown how to incorporate them in SQL, a familiar database developer language. Our operators’ expressivity is also shown because formulating such queries without using these operators usually leads to complex and non-intuitive solutions.
Environmental Management Model for Road Maintenance Operation Involving Community Participation
Triyono, A. R. H.; Setyawan, A.; Sobriyah; Setiono, P.
2017-07-01
Public expectations of Central Java, which is very high on demand fulfillment, especially road infrastructure as outlined in the number of complaints and community expectations tweeter, Short Mail Massage (SMS), e-mail and public reports from various media, Highways Department of Central Java province requires development model of environmental management in the implementation of a routine way by involving the community in order to fulfill the conditions of a representative, may serve road users safely and comfortably. This study used survey method with SEM analysis and SWOT with Latent Independent Variable (X), namely; Public Participation in the regulation, development, construction and supervision of road (PSM); Public behavior in the utilization of the road (PMJ) Provincial Road Service (PJP); Safety in the Provincial Road (KJP); Integrated Management System (SMT) and latent dependent variable (Y) routine maintenance of the provincial road that is integrated with the environmental management system and involve the participation of the community (MML). The result showed the implementation of routine maintenance of road conditions in Central Java province has yet to implement an environmental management by involving the community; Therefore developed environmental management model with the results of H1: Community Participation (PSM) has positive influence on the Model of Environmental Management (MML); H2: Behavior Society in Jalan Utilization (PMJ) positive effect on Model Environmental Management (MML); H3: Provincial Road Service (PJP) positive effect on Model Environmental Management (MML); H4: Safety in the Provincial Road (KJP) positive effect on Model Environmental Management (MML); H5: Integrated Management System (SMT) has positive influence on the Model of Environmental Management (MML). From the analysis obtained formulation model describing the relationship / influence of the independent variables PSM, PMJ, PJP, KJP, and SMT on the dependent variable
Accurate wind farm development and operation. Advanced wake modelling
Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))
2013-11-15
The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.
NEW MODEL OF A SOLAR WIND AIRPLANE FOR GEOMATIC OPERATIONS
A. Achachi
2015-08-01
Full Text Available The ability for an aircraft to fly during a much extended period of time has become a key issue and a target of research, both in the domain of civilian aviation and unmanned aerial vehicles. This paper describes a new design and evaluating of solar wind aircraft with the objective to assess the impact of a new system design on overall flight crew performance. The required endurance is in the range of some hours in the case of law enforcement, border surveillance, forest fire fighting or power line inspection. However, other applications at high altitudes, such as geomatic operations for delivering geographic information, weather research and forecast, environmental monitoring, would require remaining airborne during days, weeks or even months. The design of GNSS non precision approach procedure for different airports is based on geomatic data.
Friction Model for FEM Simulation of Sheet Metal Forming Operations
Keum, Y. T.; Wagoner, R. H.; Lee, J. K.
2004-06-01
In order to find the effect of frictional characteristics, lubricant viscosity, tool geometry, and forming speed on the sheet metal forming, a friction tester was designed and manufactured. Friction tests were performed using drawing oils, various tool radii and forming speeds for aluminum alloy sheets, galvanized steels sheets and cold rolled steel sheets. From the experimental observation, the mathematical friction model considering lubricant viscosity, sheet surface roughness and hardness, punch corner radii, and punch speed is developed. By comparing the punch load found by FEM using the proposed friction model with that of experimental measurement when the steel sheets are formed in 2-D geometry in dry and lubricating conditions, the validity and accuracy of the mathematical friction model are demonstrated.
Effective Operators Within the Ab Initio No-Core Shell Model
Stetcu, I; Barrett, B R; Navratil, P; Vary, J P
2004-11-30
We implement an effective operator formalism for general one- and two-body operators, obtaining results consistent with the no-core shell model (NCSM) wave functions. The Argonne V8' nucleon-nucleon potential was used in order to obtain realistic wave functions for {sup 4}He, {sup 6}Li and {sup 12}C. In the NCSM formalism, we compute electromagnetic properties using the two-body cluster approximation for the effective operators and obtain results which are sensitive to the range of the bare operator. To illuminate the dependence on the range, we employ a Gaussian two-body operator of variable range, finding weak renormalization of long range operators (e.g., quadrupole) in a fixed model space. This is understood in terms of the two-body cluster approximation which accounts mainly for short-range correlations. Consequently, short range operators, such as the relative kinetic energy, will be well renormalized in the two-body cluster approximation.
Molecular Modeling of Estrogen Receptor Using Molecular Operating Environment
Roy, Urmi; Luck, Linda A.
2007-01-01
Molecular modeling is pervasive in the pharmaceutical industry that employs many of our students from Biology, Chemistry and the interdisciplinary majors. To expose our students to this important aspect of their education we have incorporated a set of tutorials in our Biochemistry class. The present article describes one of our tutorials where…
Practice what you preach: Microfinance business models and operational efficiency
Bos, J.W.B.; Millone, M.M.
2013-01-01
The microfinance sector is an example of a sector in which firms with different business models coexist. Next to pure for-profit microfinance institutions (MFIs), the sector has room for non-profit organizations, and includes 'social' for-profit firms that aim to maximize a double bot- tom line and
Operational Model for Career Development and Vocational Preparation. Final Report.
Upton, Anne L.; Barrett, Samuel L.
Three California State Department units (vocational education, pupil personnel services, and career education) and two school districts (Fremont Unified and Huntington Beach Union High) established a consortium to develop demonstration sites for model career development and vocational preparation systems and staff development programs. The…
Maximizing the Effectiveness of Leadership Inservice Education: An Operational Model.
Sommerville, Joseph C.
This paper includes a functional model for upgrading the effectiveness of inservice training for school administrators. It is based on the writer's contention that most inservice programs for administrators do not relate to the leadership concerns of each participant, skills developed in those programs often are not applied to the participant's…
An Examination of Operational Availability in Life Cycle Cost Models
1983-09-01
Systems. Kenneth E. Marks, H. Garrison Massey, and Brent D. Bradley. Rand No. R-2287-AF. Santa Monica CA: The Rand Corporation, October 1978. AD...AFB OH, September 1982. AD A123045. Bryan, Noreen S.; Jacqueline J. Rosen; and Nancey T. Marland. "A New Life Cycle Cost Model: Flexible, Interactive
Behavior modeling through CHAOS for simulation of dismounted soldier operations
Ubink, E.; Aldershoff, F.; Lotens, W.A.; Woering, A.
2003-01-01
One of the major challenges in human behavior modeling for military applications is dealing with all factors that can influence behavior and performance. In a military context, behavior and performance are influenced by the task at hand, the internal (cognitive and physiological) and external
An extensive catalog of operators for the coupled evolution of metamodels and models
Herrmannnsdoerfer, M.; Vermolen, S.D.; Wachsmuth, G.
2010-01-01
Modeling languages and thus their metamodels are subject to change. When a metamodel is evolved, existing models may no longer conform to it. Manual migration of these models in response to metamodel evolution is tedious and error-prone. To significantly automate model migration, operator-based
Operational advances in ring current modeling using RAM-SCB
Welling, Daniel T [Los Alamos National Laboratory; Jordanova, Vania K [Los Alamos National Laboratory; Zaharia, Sorin G [Los Alamos National Laboratory; Morley, Steven K [Los Alamos National Laboratory
2010-12-03
The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) combines a kinetic model of the ring current with a force-balanced model of the magnetospheric magnetic field to create an inner magnetospheric model that is magnetically self consistent. RAM-SCB produces a wealth of outputs that are valuable to space weather applications. For example, the anisotropic particle distribution of the KeV-energy population calculated by the code is key for predicting surface charging on spacecraft. Furthermore, radiation belt codes stand to benefit substantially from RAM-SCB calculated magnetic field values and plasma wave growth rates - both important for determining the evolution of relativistic electron populations. RAM-SCB is undergoing development to bring these benefits to the space weather community. Data-model validation efforts are underway to assess the performance of the system. 'Virtual Satellite' capability has been added to yield satellite-specific particle distribution and magnetic field output. The code's outer boundary is being expanded to 10 Earth Radii to encompass previously neglected geosynchronous orbits and allow the code to be driven completely by either empirical or first-principles based inputs. These advances are culminating towards a new, real-time version of the code, rtRAM-SCB, that can monitor the inner magnetosphere conditions on both a global and spacecraft-specific level. This paper summarizes these new features as well as the benefits they provide the space weather community.
Form factors of descendant operators: Resonance identities in the sinh-Gordon model
Lashkevich, Michael
2014-01-01
We study the space of local operators in the sinh-Gordon model in the framework of the bootstrap form factor approach. Our final goal is to identify the operators obtained by solving bootstrap equations with those defined in terms of the Lagrangian field. Here we try to identify operators at some very particular points, where the phenomenon of operator resonance takes place. The operator resonance phenomenon being perturbative, nevertheless, results in exact identities between some local operators. By applying an algebraic approach developed earlier for form factors we derive an infinite set of identities between particular descendant and exponential operators in the sinh-Gordon theory, which generalize the quantum equation of motion. We identify the corresponding descendant operators by comparing them with the result of perturbation theory.
Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole
2016-06-01
Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.
Operational cooling tower model (CTTOOL V1.0)
Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-01-01
Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).
Hydraulic modelling of drinking water treatment plant operations
L. C. Rietveld
2009-06-01
Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.
Model operator approach to the Lamb shift calculations in relativistic many-electron atoms
Shabaev, V M; Yerokhin, V A
2013-01-01
A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined using the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.
Modeling to Evaluate Coordination and Flexibility in Aluminum Recycling Operations
Brommer, Tracey; Olivetti, Elsa; Fjeldbo, Snorre; Kirchain, Randolph
Reprocessing of aluminum production byproducts or dross for use in secondary production presents a particular challenge to the aluminum industry. While use of these non-traditional secondary materials is of interest due to their reduced energy and economic burden over virgin counterparts, these materials necessitate the use of particular furnaces, specialized handling and processing conditions. Therefore, to make use of them firms may pursue use of an intermediate recycling facility that can reprocess the secondary materials into a liquid product. After reprocessing downstream aluminum remelters could incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges result because of the energy cost to maintain the liquid. Further coordination challenges result from the need to establish long term recycling production plans in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses?
The Challenges of Modeling and Analyzing Stability Operations
2009-02-17
to be skeptical of systems analyses, computer models, game theories, or doctrines that suggest otherwise.”38 James Clancy and Chuck Crossett expressed...frameworks’ is provided by Clancy and Crossett in which they describe the divergent opinions of ‘technologists’ over ‘strategist’ relating to the... Crossett noted that “the analysts of World War II faced a similar challenge [of] having to create a mathematical underpinning for the physical effects
Applying OWA operator to model group behaviors in uncertain QFD
2013-01-01
It is a crucial step to derive the priority order of design requirements (DRs) from customer requirements (CRs) in quality function deployment (QFD). However, it is not straightforward to prioritize DRs due to two types of uncertainties: human subjective perception and user variability. This paper proposes an OWA based group decision-making approach to uncertain QFD with an application to a flexible manufacturing system design. The proposed model performs computations solely based on the orde...
Cut-HDMR-based fully equivalent operational model for analysis of unreinforced masonry structures
D Mukherjee; B N Rao; A M Prasad
2012-10-01
Mesoscale models are highly competent for understanding behaviour of unreinforced masonry structures. Their only limitation is large computational expense. Fully Equivalent Operational Model forms an equivalent mathematical model to represent a particular phenomenon where explicit relationship between inputs and outputs are unknown. This paper explores the ability of a major variant of High Dimensional Model Representation (HDMR) technique, namely Cut-HDMR, to construct the most efﬁcient Fully Equivalent Operational Model for nonlinear ﬁnite element analysis of mesoscale model of an unreinforced masonry structure. Conclusions are reached on various aspects such as, suitability of interpolation schemes and order of Cut-HDMR approximation.
LIU Hu; TIAN Yongliang; ZHANG Chaoying; YIN Jiao; SUN Yijie
2012-01-01
In order to take requirements for commercial operations or military missions into better consideration in new flight vehicle design,a tri-hierarchical task classification model of "design for operation" is proposed,which takes basic man-object interaction task,complex collaborative operation and large-scale joint operation into account.The corresponding general architecture of evaluation criteria is also depicted.Then a virtual simulation-based approach to implement the evaluations at three hierarchy levels is mainly analyzed with a detailed example,which validates the feasibility and effectiveness of evaluation architecture.Finally,extending the virtual simulation architecture from design to operation training is discussed.
An optimization model for the operations of steam production in industrial boilers
Rocco,Cleber Damião; Morabito, Reinaldo
2012-01-01
In this study, a mixed integer linear programming model is presented to support some of the key decisions in the steam production system with industrial boilers. The model approaches the fuel management decisions (fuel replenishment and its inventory control), boiler operational decisions (start-up, warm-up, and shutdown operations), and which boiler should produce steam. The model adjustments and its validation were carried out through a case study in a large food industry. In face of the go...
A statistical model of operational impacts on the framework of the bridge crane
Antsev, V. Yu; Tolokonnikov, A. S.; Gorynin, A. D.; Reutov, A. A.
2017-02-01
The technical regulations of the Customs Union demands implementation of the risk analysis of the bridge cranes operation at their design stage. The statistical model has been developed for performance of random calculations of risks, allowing us to model possible operational influences on the bridge crane metal structure in their various combination. The statistical model is practically actualized in the software product automated calculation of risks of failure occurrence of bridge cranes.
Aithal, Sreeramana
2016-01-01
Studying the implications of a business model, choosing success strategies, developing viable operational concepts or evolving a functional system, it is important to analyse it in all dimensions. For this purpose, various analysing techniques/frameworks are used. This paper is a discussion on how to use an innovative analysing framework called ABCD model on a given business model, or on a business strategy or a operational concept/idea or business system. Based on four constructs Advantages,...
Remesat, D.
2008-07-01
Although hydrotreating has become a large part of refining operations for sour crudes, refiners rarely achieve their run lengths and crude throughput objectives for vacuum gas oil (VGO) hydrotreaters. This shortfall in performance can be attributed to crude flow changes, feed compositional changes, sulphur and metals changes, or hydrogen partial pressure changes, all of which reduce the effectiveness of the catalysts that remove sulphur from the crude oil streams. Although some proprietary steady state models exist to indicate performance enhancement during operation, they have not been widely used and it is not certain whether they would be effective in simulating the process with disturbances over the run length of the process. This study used publicly unattainable data gathered from 14 operating hydrotreaters and developed a lumped parameter dynamic model, using both Excel and HYSYS software, for industrial refinery/upgrader VGO hydrotreaters. The model takes proprietary and public steady state hydrotreater models and successfully applies it to a commercial dynamic simulation package. The model tracks changes in intrinsic reaction rate based on catalyst deactivation, wetting efficiency, feed properties and operating conditions to determine operating temperature, outlet sulphur composition and chemical hydrogen consumed. The model simulates local disturbances, and represents the start, middle and end operating zones during hydrotreater run length. This correlative, partially predictive model demonstrates the economic benefits of increasing hydrogen to improve the operation of a hydrotreater by increasing run length and/or improving crude processing.
Theoretical Models and Operational Frameworks in Public Health Ethics
Petrini, Carlo
2010-01-01
The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441
Theoretical Models and Operational Frameworks in Public Health Ethics
Carlo Petrini
2010-01-01
Full Text Available The article is divided into three sections: (i an overview of the main ethical models in public health (theoretical foundations; (ii a summary of several published frameworks for public health ethics (practical frameworks; and (iii a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided.
Force Allocation Modeling in Support of Contingency Operations - Demonstration Study.
2007-11-02
a in task t for mission m • Capu = total number of units of type u available for assignment • Cu = cost for each unit u deployed The model to...x^ < Capu for each unit u (3.3) m x^ > 0 integer for each (u, m) pair (3.4) (3.1) represents the objective of minimizing system cost. We...scenario s • Ratsm = minimum requirement of action a in task t for mission m, scenario s 14 • Capu = total number of units of type u available for
Development of a Generalized Explanatory Base Operating Support (GEBOS) Model
1980-01-01
included by a module that specified the order in which unit capabilities would be decremented. The model would reduce mission capabilities in order of the...6 62559. -O 81949. -;i0 1062509. 4 �. z i, 167011. -:80 3554. 500 41727.50 36798. 7!171. 6 ’C P ADM?1 59. 37 0. :8 ADMIIISTPATION 600 " FPSO ...output of.the linear program module is stored in the data set "BOSLST." The linear programming problem as described in "BOSTMP" has the following
Modeling Truncated Loss Data of Operational Risk in E-banking
Maryam Pirouz
2013-11-01
Full Text Available Operational risk is an important risk component for financial institutions, especially in E-banking. Large amount of capital that are assigned to decrease this risk are evidence to this subject. One of the most important factors for modeling operational risk to estimate capital charge is loss data collections of banks. But sometimes for reasons like decreasing the costs, banks save only the losses above some determined thresholds at their database. For achieving accurate capital charge, this threshold should be considered in determining capital charge. This paper focuses on modeling truncated loss data above some given threshold. We discuss several statistical methods for modeling truncated data, and suggest the best one for modeling truncated loss data. We have tested our suggested model for some operational loss data samples. Our results indicate that our approach can be useful for increasing accuracy of estimating operational risk capital charge in E- banking.
Dejan Mirčetić
2016-08-01
Full Text Available The paper focuses on the problem of forklifts engagement in warehouse loading operations. Two expert system (ES models are created using several machine learning (ML models. Models try to mimic expert decisions while determining the forklifts engagement in the loading operation. Different ML models are evaluated and adaptive neuro fuzzy inference system (ANFIS and classification and regression trees (CART are chosen as the ones which have shown best results for the research purpose. As a case study, a central warehouse of a beverage company was used. In a beverage distribution chain, the proper engagement of forklifts in a loading operation is crucial for maintaining the defined customer service level. The created ES models represent a new approach for the rationalization of the forklifts usage, particularly for solving the problem of the forklifts engagement incargo loading. They are simple, easy to understand, reliable, and practically applicable tool for deciding on the engagement of the forklifts in a loading operation.
Model prediction of the operating behavior of a circulating fluidized bed boiler
王勤辉; 骆仲泱; 倪明江; 岑可法
2002-01-01
An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.
Model prediction of the operating behavior of a circulating fluidized bed boiler
王勤辉; 骆仲泱; 倪明江; 岑可法
2002-01-01
An improved mathematical model for a circulating fluidized bed (CFB) boiler baaed on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler.The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.
Computer-Aided Model Based Analysis for Design and Operation of a Copolymerization Process
Lopez-Arenas, Maria Teresa; Sales-Cruz, Alfonso Mauricio; Gani, Rafiqul
2006-01-01
The advances in computer science and computational algorithms for process modelling, process simulation, numerical methods and design/synthesis algorithms, makes it advantageous and helpful to employ computer-aided modelling systems and tools for integrated process analysis. This is illustrated....... This will allow analysis of the process behaviour, contribute to a better understanding of the polymerization process, help to avoid unsafe conditions of operation, and to develop operational and optimizing control strategies. In this work, through a computer-aided modeling system ICAS-MoT, two first......, the process design and conditions of operation on the polymer grade and the production rate....
OMEGA: The operational multiscale environment model with grid adaptivity
Bacon, D.P.
1995-07-01
This review talk describes the OMEGA code, used for weather simulation and the modeling of aerosol transport through the atmosphere. Omega employs a 3D mesh of wedge shaped elements (triangles when viewed from above) that adapt with time. Because wedges are laid out in layers of triangular elements, the scheme can utilize structured storage and differencing techniques along the elevation coordinate, and is thus a hybrid of structured and unstructured methods. The utility of adaptive gridding in this moded, near geographic features such as coastlines, where material properties change discontinuously, is illustrated. Temporal adaptivity was used additionally to track moving internal fronts, such as clouds of aerosol contaminants. The author also discusses limitations specific to this problem, including manipulation of huge data bases and fixed turn-around times. In practice, the latter requires a carefully tuned optimization between accuracy and computation speed.
Driver Model of a Powered Wheelchair Operation as a Tool of Theoretical Analyses
Ito, Takuma; Inoue, Takenobu; Shino, Motoki; Kamata, Minoru
This paper describes the construction of a driver model of a powered wheelchair operation for the understanding of the characteristics of the driver. The main targets of existing researches about driver models are the operation of the automobiles and motorcycles, not a low-speed vehicle such as powered wheelchairs. Therefore, we started by verifying the possibility of modeling the turning operation at a corner of a corridor. At first, we conducted an experiment on a daily powered wheelchair user by using his vehicle. High reproducibility of driving and the driving characteristics for the construction of a driver model were both confirmed from the result of the experiment. Next, experiments with driving simulators were conducted for the collection of quantitative driving data. The parameters of the proposed driver model were identified from experimental results. From the simulations with the proposed driver model and identified parameters, the characteristics of the proposed driver model were analyzed.
An information theory-based approach to modeling the information processing of NPP operators
Kim, Jong Hyun; Seong, Poong Hyun [Korea Advanced Institute, Taejon (Korea, Republic of)
2002-08-01
This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory.
Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nicholson, Andrew D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ayaz-Maierhafer, Birsen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-01-01
This report summarizes the findings of a two year effort to systematically assess neutron and gamma backgrounds relevant to operational modeling and detection technology implementation. The first year effort focused on reviewing the origins of background sources and their impact on measured rates in operational scenarios of interest. The second year has focused on the assessment of detector and algorithm performance as they pertain to operational requirements against the various background sources and background levels.
On the Use of Variability Operations in the V-Modell XT Software Process Line
Kuhrmann, Marco; Méndez Fernández, Daniel; Ternité, Thomas
2016-01-01
. In this article, we present a study on the feasibility of variability operations to support the development of software process lines in the context of the V-Modell XT. We analyze which variability operations are defined and practically used. We provide an initial catalog of variability operations......Software process lines provide a systematic approach to develop and manage software processes. It defines a reference process containing general process assets, whereas a well-defined customization approach allows process engineers to create new process variants, e.g., by extending or modifying...... as an improvement proposal for other process models. Our findings show that 69 variability operation types are defined across several metamodel versions of which, however, 25 remain unused. The found variability operations allow for systematically modifying the content of process model elements and the process...
River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998
Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.
2001-01-01
The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake
DNA for crime investigation: European co-operation model.
Fiodorova, Anna
2014-01-01
The article presents DNA related data exchange mechanism established within the framework of the European Union for the transnational crime investigation. First of all, it provides with the comprehensive overview of legal and practical state of play, pointing out that approved legal basis seeks to ensure legality and reliability in this area by establishing information exchange purposes and competent authorities involved, setting up technical requirements for the DNA analysis and DNA data bases, laying down provisions on accreditation of forensic service providers, foreseeing at least minimum common data protection requirements. Secondly, it reveals that despite being the most exhaustive international regulation on DNA related data exchange among law enforcement and judicial authorities it misses effective data protection mechanism, does not harmonize neither backgrounds for DNA collection in criminal process in general nor storage requirements and that results the variation in categories of subjects related to the crime investigation and included in data bases of different Member States. These gaps make the use of data collected and stored in another Member State vulnerable from the perspective of different rules on evidences' legality within the criminal process. The article also reveals the model's weakness in terms of assessment of its efficiency as statistics gathered for the time being show only number of coincidences (hits) of searched DNA profiles, but not the impact on crime investigation and its results.
The closures of (U+K)-orbits of essentially normal triangular operator models
无
2010-01-01
The (U + K)-orbit of a bounded linear operator T acting on a Hilbert space H is defined as (U + K)(T)={R-1 T R:R is invertible of the form unitary plus compact on H}.In this paper,we first characterize the closure of the (U + K)-orbit of an essentially normal triangular operator T satisfying H={ker(T-λI):λ∈ρ F (T)} and σ p (T*)=ф.After that,we establish certain essentially normal triangular operator models with the form of the direct sums of triangular operators,adjoint of triangular operators and normal operators,show that such operator models generate the same closed (U + K)-orbit if they have the same spectral picture,and describe the closures of the (U + K)-orbits of these operator models.These generalize some known results on the closures of (U + K)-orbits of essentially normal operators,and provide more positive cases to an open conjecture raised by Marcoux as Question 2 in his article "A survey of (U + K)-orbits".
Surveillance system and method having an operating mode partitioned fault classification model
Bickford, Randall L. (Inventor)
2005-01-01
A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.
Some insights in novel risk modeling of liquefied natural gas carrier maintenance operations
Nwaoha, T. C.; John, Andrew
2016-06-01
This study discusses the analysis of various modeling approaches and maintenance techniques applicable to the Liquefied Natural Gas (LNG) carrier operations in the maritime environment. Various novel modeling techniques are discussed; including genetic algorithms, fuzzy logic and evidential reasoning. We also identify the usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling.
2011-02-14
..., 2006. The Gulfstream Model GVI airplane will be an all-new, two- engine jet transport airplane with an... traditional designs, the GVI must be designed for operation with the normal sources of engine and auxiliary...; Operation Without Normal Electric Power AGENCY: Federal Aviation Administration (FAA), DOT. ACTION:...
Jiawang XU; Xiaoyuan HUANG; Nina YAN
2007-01-01
A multi-objective robust operation model is proposed in this paper for an electronic market enabled supply chain consisting of multi-supplier and multi-customer with uncertain demands.Suppliers in this supply chain provide many kinds of products to different customers directly or through electronic market.Uncertain demands are described as a scenario set with certain probability; the supply chain operation model is constructed by using the robust optimization method based on scenario analyses.The operation model we proposed is a multi-objective programming problem satisfying several conflict objectives,such as meeting the demands of all customers,minimizing the system cost,the availabilities of suppliers' capacities not below a certain level,and robustness of decision to uncertain demands.The results of numerical examples proved that the solution of the model is most conservative; however,it can ensure the robustness of the operation of the supply chain effectively.
Flexible Power System Operations Simulation Model for Assessing Wind Integration: Preprint
Ela, E.; Milligan, M.; O' Malley, M.
2011-03-01
In this paper a model was developed to mimic operator behavior using a combination of security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control programs.
MATHEMATICAL MODELING AND INTENSIFICATION OF CONDENSATION GRAVITY FINE AIR FILTER OPERATION
V. V. Shitov
2011-04-01
Full Text Available Problem statement. A problem of mathematical modeling and intensification of operation of the flow thermal diffusion chamber of the condensation gravity filter as one of the most efficient air filter is solved.Results and conclusions. This paper presents an example of the practical application of the model of heat and mass exchange in the thermodiffusion chamber as the main operating element of condensation gravity filter for high-performance air purification due to the generation of supersaturation fields with controlled properties. A criterion for quantitative assessment of purification efficiency in the form of breakthrough function is developed. The typical results of numerical modeling of the operation of the condensation gravity-type filter are presented for the most common case in practice. The possibility of intensification of the filter operation either at the stage of use or at the stage of design is shown based on the proposed approach, obtained models, and calculations.
Flexible Power System Operations Simulation Model for Assessing Wind Integration: Preprint
Ela, E.; Milligan, M.; O' Malley, M.
2011-03-01
In this paper a model was developed to mimic operator behavior using a combination of security-constrained unit commitment, security-constrained economic dispatch, and automatic generation control programs.
Operator Alertness/Workload Assessment Using Stochastic Model-Based Analysis of Myoelectric Signals.
1985-11-01
BASED ANALYSIS OF MYOELECTRIC SIGNALS A. Madni C. Conaway S. Otsubo Y. Chu D" O~~r ’: Prepared For: E - AIR FORCE OFFICE OF SCIENTIFIC RESEARCH...November 1985 Phase II Interim Report For: so OPERATOR ALERTNESS/WORKLOAD ASSESSMENT USING STOCHASTIC MODEL-BASED ANALYSIS OF MYOELECTRIC SIGNALS A...TITLE (Include Security ClasSification) Operator Alterness/Workload Assessment Using Stochastic Model-Based Analysis of Myoelectric Signals 112
The Regional Special Operations Headquarters: Franchising the NATO Model as a Hedge in Lean Times
2012-04-01
1 AIR FORCE FELLOWS AIR UNIVERSITY THE REGIONAL SPECIAL OPERATIONS HEADQUARTERS: FRANCHISING THE NATO MODEL AS A HEDGE IN LEAN...Headquarters: Franchising The NATO Model As A Hedge In Lean Times 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...it is not copyrighted, but is the property of the United States government. 3 The Regional Special Operations Headquarters: Franchising the
OPSMODEL, an or-orbit operations simulation modeling tool for Space Station
Davis, William T.; Wright, Robert L.
1988-01-01
The 'OPSMODEL' operations-analysis and planning tool simulates on-orbit crew operations for the NASA Space Station, furnishing a quantitative measure of the effectiveness of crew activities in various alternative Station configurations while supporting engineering and cost analyses. OPSMODEL is entirely data-driven; the top-down modeling structure of the software allows the user to control both the content and the complexity level of model definition during data base population. Illustrative simulation samples are given.
Man-hour Estimation Model based on Standard Operation Unit for Flexible Manufacturing System
Ye Zhenggeng
2017-01-01
Full Text Available In flexible manufacturing system, the estimation of man-hour is a difficult problem because of its production-diversity. To explore a more effective method, this paper tried to estimate man-hour from the perspective of operation`s character by establishing standard operation unit (SOU in this paper. A method of parameterizing the SOU is proposed, and a new man-hour estimation model is established on the basis of SOU. At last, this paper verified the effectiveness of this method by the operation of large-scale welding parts.
Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations
Seah, Chin; Sierhuis, Maarten; Clancey, William J.
2005-01-01
A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.
Artificial Immune Systems Metaphor for Agent Based Modeling of Crisis Response Operations
Khalil, Khaled M; Nazmy, Taymour T; Salem, Abdel-Badeeh M
2010-01-01
Crisis response requires information intensive efforts utilized for reducing uncertainty, calculating and comparing costs and benefits, and managing resources in a fashion beyond those regularly available to handle routine problems. This paper presents an Artificial Immune Systems (AIS) metaphor for agent based modeling of crisis response operations. The presented model proposes integration of hybrid set of aspects (multi-agent systems, built-in defensive model of AIS, situation management, and intensity-based learning) for crisis response operations. In addition, the proposed response model is applied on the spread of pandemic influenza in Egypt as a case study.
Progress toward the Determination of Complete Vertex Operators for The IIB Matrix Model
Kitazawa, Y; Saito, O; Kitazawa, Yoshihisa; Mizoguchi, Shun'ya; Saito, Osamu
2006-01-01
We report on progress in determining the complete form of vertex operators for the IIB matrix model. The exact expressions are obtained for those emitting massless IIB supergravity fields up to sixth order in the light-cone superfield, in which the conjugate gravitino and conjugate two-form vertex operators are newly determined. We also provide a consistency check by computing the kinematical factor of a four-point graviton amplitude in a D-instanton background. We conjecture that the low-energy effective action of the IIB matrix model at large N is given by tree-level supergravity coupled to the vertex operators.
Mielke, R.; Stoughton, J.; Som, S.; Obando, R.; Malekpour, M.; Mandala, B.
1990-01-01
A functional description of the ATAMM Multicomputer Operating System is presented. ATAMM (Algorithm to Architecture Mapping Model) is a marked graph model which describes the implementation of large grained, decomposed algorithms on data flow architectures. AMOS, the ATAMM Multicomputer Operating System, is an operating system which implements the ATAMM rules. A first generation version of AMOS which was developed for the Advanced Development Module (ADM) is described. A second generation version of AMOS being developed for the Generic VHSIC Spaceborne Computer (GVSC) is also presented.
Decision-oriented Usability Evaluation of an Operation Interface： Model and Application
LI Xiao-jun; SUN Lin-yan; LI Min
2012-01-01
To support multi-factor decision problems about usability evaluation, especially when studies fall short of comparable objects, a fuzzy synthetic evaluation model is explored in this paper. Grey relational analysis （GRA） is brought in the model to calculate weight vectors of the usability factors. And membership functions of a remark vector are constructed in the context of use of the operation interface. The present method is applied in usability evaluation of operation interface and is proved to be effective. The comprehensive usability gradation of the operation interface to good is 0. 616 4 that meets the requirements in practice.
Modelling and operation strategies of DLR's large scale thermocline test facility (TESIS)
Odenthal, Christian; Breidenbach, Nils; Bauer, Thomas
2017-06-01
In this work an overview of the TESIS:store thermocline test facility and its current construction status will be given. Based on this, the TESIS:store facility using sensible solid filler material is modelled with a fully transient model, implemented in MATLAB®. Results in terms of the impact of filler site and operation strategies will be presented. While low porosity and small particle diameters for the filler material are beneficial, operation strategy is one key element with potential for optimization. It is shown that plant operators have to ponder between utilization and exergetic efficiency. Different durations of the charging and discharging period enable further potential for optimizations.
Schönberger, Jörn
2005-01-01
The modern freight carrier business requires a sophisticated automatic decision support in order to ensure the efficiency and reliability and therefore the survival of transport service providers. This book addresses these challenges and provides generic decision models for the short-term operations planning as well as advanced metaheuristics to obtain efficient operation plans. After a thorough analysis of the operations planning in the freight carrier business, decision models are derived. Their suitability is proven within a large number of numerical experiments, in which a new class of hybrid genetic search approaches demonstrate their appropriateness.
Trajectory-Based Morphological Operators: A Model for Efficient Image Processing
Jimeno-Morenilla, Antonio; Pujol, Francisco A.; Molina-Carmona, Rafael; Sánchez-Romero, José L.; Pujol, Mar
2014-01-01
Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images. PMID:24892091
Lythcke-Jørgensen, Christoffer Ernst; Münster, Marie; Ensinas, Adriano Viana
2016-01-01
This paper presents a novel, simple method for reducing external operating condition datasets to be used in multi-generation system optimization models. The method, called the Characteristic Operating Pattern (CHOP) method, is a visually-based aggregation method that clusters reference data based...... on parameter values rather than time of occurrence, thereby preserving important information on short-term relations between the relevant operating parameters. This is opposed to commonly used methods where data are averaged over chronological periods (months or years), and extreme conditions are hidden...... in the averaged values. The CHOP method is tested in a case study where the operation of a fictive Danish combined heat and power plant is optimized over a historical 5-year period. The optimization model is solved using the full external operating condition dataset, a reduced dataset obtained using the CHOP...
Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources
Hui Li
2016-10-01
Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.
Remer, D. S.
1977-01-01
A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
Lehman, Landon
2015-01-01
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we find an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically generate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For ...
Remer, D. S.
1977-01-01
A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.
Selvy, Brian M.; Claver, Charles; Willman, Beth; Petravick, Don; Johnson, Margaret; Reil, Kevin; Marshall, Stuart; Thomas, Sandrine; Lotz, Paul; Schumacher, German; Lim, Kian-Tat; Jenness, Tim; Jacoby, Suzanne; Emmons, Ben; Axelrod, Tim
2016-08-01
We† provide an overview of the Model Based Systems Engineering (MBSE) language, tool, and methodology being used in our development of the Operational Plan for Large Synoptic Survey Telescope (LSST) operations. LSST's Systems Engineering (SE) team is using a model-based approach to operational plan development to: 1) capture the topdown stakeholders' needs and functional allocations defining the scope, required tasks, and personnel needed for operations, and 2) capture the bottom-up operations and maintenance activities required to conduct the LSST survey across its distributed operations sites for the full ten year survey duration. To accomplish these complimentary goals and ensure that they result in self-consistent results, we have developed a holistic approach using the Sparx Enterprise Architect modeling tool and Systems Modeling Language (SysML). This approach utilizes SysML Use Cases, Actors, associated relationships, and Activity Diagrams to document and refine all of the major operations and maintenance activities that will be required to successfully operate the observatory and meet stakeholder expectations. We have developed several customized extensions of the SysML language including the creation of a custom stereotyped Use Case element with unique tagged values, as well as unique association connectors and Actor stereotypes. We demonstrate this customized MBSE methodology enables us to define: 1) the rolls each human Actor must take on to successfully carry out the activities associated with the Use Cases; 2) the skills each Actor must possess; 3) the functional allocation of all required stakeholder activities and Use Cases to organizational entities tasked with carrying them out; and 4) the organization structure required to successfully execute the operational survey. Our approach allows for continual refinement utilizing the systems engineering spiral method to expose finer levels of detail as necessary. For example, the bottom-up, Use Case
Operator functional state estimation based on EEG-data-driven fuzzy model.
Zhang, Jianhua; Yin, Zhong; Yang, Shaozeng; Wang, Rubin
2016-10-01
This paper proposed a max-min-entropy-based fuzzy partition method for fuzzy model based estimation of human operator functional state (OFS). The optimal number of fuzzy partitions for each I/O variable of fuzzy model is determined by using the entropy criterion. The fuzzy models were constructed by using Wang-Mendel method. The OFS estimation results showed the practical usefulness of the proposed fuzzy modeling approach.
2015-03-01
goal programming model , and we used Excel/ VBA to create an auto- matic, user-friendly interface with the decision maker for model input and analysis of...ARL-TR-7229•MAR 2015 US Army Research Laboratory Multicriteria Cost Assessment and Logistics Modeling for Military Humanitarian Assistance and...Cost Assessment and Logistics Modeling for Military Humanitarian Assistance and Disaster Relief Aerial Delivery Operations by Nathaniel Bastian
1995-05-01
A HYBRID ANALYTICAL/ SIMULATION MODELING APPROACH FOR PLANNING AND OPTIMIZING MASS TACTICAL AIRBORNE OPERATIONS by DAVID DOUGLAS BRIGGS M.S.B.A...COVERED MAY 1995 TECHNICAL REPORT THESIS 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS A HYBRID ANALYTICAL SIMULATION MODELING APPROACH FOR PLANNING AND...are present. Thus, simulation modeling presents itself as an excellent alternate tool for planning because it allows for the modeling of highly complex
A simplified thermal model for a clothed human operator with thermoregulation
Zahid Akhtar khan
2010-09-01
Full Text Available This paper presents a simplified yet comprehensive mathematical model to predict steady state temperature distribution for various regions of male clothed human operators who are healthy, passive/active and lean/obese under the influence of different environmental conditions using thermoregulatory control concept. The present model is able to predict the core temperature, close to 37oC for a healthy, passive/active and lean/obese operator at normal ambient temperatures. It is observed that due to increase in body fat, BF the skin temperature, of the operator decreases by a small amount. However, effect of age of the operator on is found to be insignificant. The present model has been validated against the experimental data available in the literature.
Effective Interactions and Operators in Nuclei within the No-Core Shell Model
Barrett, B; Navratil, P; Stetcu, I; Vary, J
2005-09-14
We review the application of effective operator formalism to the ab initio no core shell model (NCSM). For short-range operators, such as the nucleon-nucleon potential, the unitary-transformation method works extremely well at the two-body cluster approximation and good results are obtained for the binding energies and excitation spectra of light nuclei (A {<=} 16). However, for long-range operators, such as the radius or the quadrupole moment, performing this unitary transformation at the two-body cluster level, does not include the higher-order correlations needed to renormalize these long-range operators adequately. Usually, such correlations can be obtained either by increasing the order of the cluster approximation, or by increasing the model space. We will discuss the difficulties of these approaches as well as alternate possible solutions for including higher-order correlations in small model spaces.
Modelling complete particle-size distributions from operator estimates of particle-size
Roberson, Sam; Weltje, Gert Jan
2014-05-01
Estimates of particle-size made by operators in the field and laboratory represent a vast and relatively untapped data archive. The wide spatial distribution of particle-size estimates makes them ideal for constructing geological models and soil maps. This study uses a large data set from the Netherlands (n = 4837) containing both operator estimates of particle size and complete particle-size distributions measured by laser granulometry. This study introduces a logit-based constrained-cubic-spline (CCS) algorithm to interpolate complete particle-size distributions from operator estimates. The CCS model is compared to four other models: (i) a linear interpolation; (ii) a log-hyperbolic interpolation; (iii) an empirical logistic function; and (iv) an empirical arctan function. Operator estimates were found to be both inaccurate and imprecise; only 14% of samples were successfully classified using the Dutch classification scheme for fine sediment. Operator estimates of sediment particle-size encompass the same range of values as particle-size distributions measured by laser analysis. However, the distributions measured by laser analysis show that most of the sand percentage values lie between zero and one, so the majority of the variability in the data is lost because operator estimates are made to the nearest 1% at best, and more frequently to the nearest 5%. A method for constructing complete particle-size distributions from operator estimates of sediment texture using a logit constrained cubit spline (CCS) interpolation algorithm is presented. This model and four other previously published methods are compared to establish the best approach to modelling particle-size distributions. The logit-CCS model is the most accurate method, although both logit-linear and log-linear interpolation models provide reasonable alternatives. Models based on empirical distribution functions are less accurate than interpolation algorithms for modelling particle-size distributions in
PIV study of the wake of a model wind turbine transitioning between operating set points
Houck, Dan; Cowen, Edwin (Todd)
2016-11-01
Wind turbines are ideally operated at their most efficient tip speed ratio for a given wind speed. There is increasing interest, however, in operating turbines at other set points to increase the overall power production of a wind farm. Specifically, Goit and Meyers (2015) used LES to examine a wind farm optimized by unsteady operation of its turbines. In this study, the wake of a model wind turbine is measured in a water channel using PIV. We measure the wake response to a change in operational set point of the model turbine, e.g., from low to high tip speed ratio or vice versa, to examine how it might influence a downwind turbine. A modified torque transducer after Kang et al. (2010) is used to calibrate in situ voltage measurements of the model turbine's generator operating across a resistance to the torque on the generator. Changes in operational set point are made by changing the resistance or the flow speed, which change the rotation rate measured by an encoder. Single camera PIV on vertical planes reveals statistics of the wake at various distances downstream as the turbine transitions from one set point to another. From these measurements, we infer how the unsteady operation of a turbine may affect the performance of a downwind turbine as its incoming flow. National Science Foundation and the Atkinson Center for a Sustainable Future.
Practical applications of age-dependent reliability models and analysis of operational data
Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L
2005-07-01
The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.
A review of operational, regional-scale, chemical weather forecasting models in Europe
J. Kukkonen
2012-01-01
Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.
On the Development of an Operational SWAN Model for the Black Sea (poster)
Akpinar, A.; Van Vledder, G.P.
2013-01-01
This poster describes the results of some studies performed on the development of an efficient and operational SWAN model for the Black Sea. This model will be used to study the wind-wave climate and wave energy potential in the region and will provide boundary conditions for coastal engineering and
A 3D model for PEM fuel cells operated on reformate
Zhou, Tianhong; Liu, Hongtan
A three-dimensional mathematical model for PEM fuel cells operated on reformate is developed based on our previous established fuel cell model [Int. J. Transport Phenomena 3 (2001) 177], by incorporating the adsorption and oxidation kinetics of CO on platinum surface proposed by Springer et al. [Proceedings of the Electrochemical Society, Montreal, Canada, 1997; J. Electrochem. Soc. 148 (2001) A11]. This model is capable of studying the effect of CO poisoning as well as the hydrogen dilution effect by inert gases. The adsorption and oxidation kinetics of CO on a platinum surface are incorporated in the source terms of the species equations; thus, the basic form of the mathematical equations are the same as those used for PEM fuel cells operated on pure hydrogen. With this model, we can obtain detailed information on the CO poisoning and variation of CO and hydrogen concentrations inside the anode. The results from this 3D model reveal many new phenomena that cannot be obtained from previous 1D or 2D models. Results of the effects of various operating and design parameters, such as anode flow rate, gas diffuser porosity, gas diffuser thickness, and the width of the collector plate shoulder, are also presented. The modeling results demonstrate the value of this model as a design and optimization tool for the anode of PEM fuel cells operating on reformate.
Battino, Rubin
1983-01-01
Describes the design, construction, and use of oversize lecture-demonstration atomic/molecular models. These models appeal to both concrete and formal operational students. Also describes construction and use of an "spdf" sandwich board and an experiment using attribute blocks. (JN)
Construction of the Model of the Lambda Calculus System with Algebraic Operators
陆汝占; 张政; 等
1991-01-01
A lambda system with algebraic operators,Lambda-plus system,is introduced.After giving the definitions of the system,we present a sufficient condition for formulating a model of the system.Finally,a model of such system is constructed.
Supersoft SUSY models and the 750 GeV diphoton excess, beyond effective operators
Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica
2016-07-01
We propose that the sbino, the scalar partner of a Dirac bino, can explain the 750 GeV diphoton excess observed by the ATLAS and CMS Collaborations. We first argue for the existence of couplings between sbino to pairs of Standard Model gauge bosons using effective operator analysis. We then analyze the minimal completion of the effective operator model in which the sbino couples to pairs of gauge bosons through loops of heavy sfermions, with the sfermion-bino coupling originating from scalar potential D-terms. We find that the sbino model may be fit the 750 GeV excess by considering gluon fusion processes with decay to diphotons.
Energy Storage in Power System Operation: The Power Nodes Modeling Framework
Heussen, Kai; Koch, Stephan; Ulbig, Andreas
2010-01-01
such as power rating, ramprate constraints, eciencies, and storage capacity are modeled, while the individual physical properties of the interconnected units are not taken into account. This allows the modeling of a physically very diverse unit portfolio with a single approach. The concept can be used...... for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization...
Sediment Transport Model For Storm Sewer Networks Towards The Operational Risks
I. RÁTKY
2016-11-01
Full Text Available Sediment transport in sewer networks can be critical in economical and safety point of view. To improve the operation of the sewer networks we are presenting a model, which is capable of numerical simulations of the sediment transport in storm water network. The developed model is calculating the change of the particle distribution of the sediment fractions including the effects of settling and mixing up processes. The results of the model calculations in a simplified network are also presented. We are also planning to apply the developed sediment transport module by coupling to a hydrodynamic simulation for practical tasks supporting the design and operation of sewers networks.
A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation
Liu, Guodong [ORNL; Starke, Michael R [ORNL; Zhang, Xiaohu [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)
2016-01-01
This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.
Vahid Hassani
2012-01-01
Full Text Available One of the major problems occurring in many technical applications is the presence of the hysteretic behavior in sensors and actuators, which causes a nonlinear relationship between input and output variables in such devices. Since the nonlinear phenomenon of hysteresis degrades the performance of the piezoelectric materials and piezoelectric drive mechanisms, for example, in positioning control framework, it has to be characterized in order to mitigate the effect of the nonlinearity in the devices. This paper is aimed to characterize and model the hysteresis in typical piezoelectric actuators under load-free and preloaded circumstances incorporating the inertial effect of the system. For this purpose, the piezoelectric actuator is modeled as a mass-spring-damper system, which is expressed in terms of a stop operator as one of the essential yet efficient hysteresis operators in the Prandtl-Ishlinskii (PI model. The reason of utilizing the stop operator in this study is for the sake of control purposes, as the stop operator plays as the inverse of the play operator in the PI model and can be used in a feed-forward controller scheme to suppress the effect of hysteresis in general control framework. The results reveal that this model exhibits better correspondence to the measurement output compared to that of the classical PI model.
Dynamic WTA optimization model of air defense operation of warships' formation
Li Jinjun; Cong Rong; Xiong Jiguang
2006-01-01
WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon systems affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C3I system of warships' formation.
Using Petri Nets For Resource Management Modeling In The Operating Systems
Adalat Karimov
2012-01-01
Full Text Available Nowadays, with advances in computer science and increase in processor speed, modeling methods have found extensive applications in industrial fields. Petri Nets are one of these modeling methods. Petri Nets are based on graph theory and are applied specifically for concurrent and asynchronous applications. As executable models, they are capable of graphical description of complicated systems. On the other hand, development of hardware and other peripheral computer resources and development of various computer software systems call for efficient and powerful operating systems, so that users can use the software and hardware items in an effective manner. The purpose of this article is to study the application of Petri Nets for modeling resource management in operating systems with the aim of optimal utilization of resources and Deadlock Avoidance in the Operating Systems.
Hutchings, Nicholas John; Reinds, G J; Leip, A
2012-01-01
Complex dynamic models of carbon and nitrogen are often used to investigate the consequences of climate change on agricultural production and greenhouse gas emissions from agriculture. These models require high temporal resolution input data regarding the timing of field operations. This paper de...
1986-01-01
The Analytic Process Model for System Design and Measurement: A Computer-Aided Tool for Analyzing Training Systems and Other Human-Machine Systems. A...separate companion volume--The Computer-Aided Analytic Process Model : Operations Handbook for the APM Demonstration Package is also available under
Modelling and Control of Blowing-Venting Operations in Manned Submarines
Font, Roberto; Murillo, Jose Alberto; Periago, Francisco
2011-01-01
Motivated by the study of the potential use of blowing and venting operations of ballast tanks in manned submarines as an alternative control system for manoeuvring, we first propose a mathematical model for these operations. This model extends previous works where only blowing is considered. Then, the model is applied to the control of an emergency manoeuvre by using only blowing and venting. To this end, we formulate a suitable constrained, nonlinear, optimal control problem where controls are linked to the variable aperture of blowing and venting valves of each of the tanks. The state law is composed of a system of nonlinear differential equations where the equations modelling blowing and venting processes are coupled with the Feldman, {\\it variable mass}, coefficient based hydrodynamic model for the equations of motion. In a second part, we carry out a rigorous mathematical analysis of the model: existence of a solution for both the state law and the optimal control problem is proved. Finally, we address ...
Use of Dynamic Models and Operational Architecture to Solve Complex Navy Challenges
Grande, Darby; Black, J. Todd; Freeman, Jared; Sorber, TIm; Serfaty, Daniel
2010-01-01
The United States Navy established 8 Maritime Operations Centers (MOC) to enhance the command and control of forces at the operational level of warfare. Each MOC is a headquarters manned by qualified joint operational-level staffs, and enabled by globally interoperable C41 systems. To assess and refine MOC staffing, equipment, and schedules, a dynamic software model was developed. The model leverages pre-existing operational process architecture, joint military task lists that define activities and their precedence relations, as well as Navy documents that specify manning and roles per activity. The software model serves as a "computational wind-tunnel" in which to test a MOC on a mission, and to refine its structure, staffing, processes, and schedules. More generally, the model supports resource allocation decisions concerning Doctrine, Organization, Training, Material, Leadership, Personnel and Facilities (DOTMLPF) at MOCs around the world. A rapid prototype effort efficiently produced this software in less than five months, using an integrated process team consisting of MOC military and civilian staff, modeling experts, and software developers. The work reported here was conducted for Commander, United States Fleet Forces Command in Norfolk, Virginia, code N5-0LW (Operational Level of War) that facilitates the identification, consolidation, and prioritization of MOC capabilities requirements, and implementation and delivery of MOC solutions.
The co-operative model as a means of stakeholder management: An exploratory qualitative analysis
Darrell Hammond
2016-11-01
Full Text Available The South African economy has for some time been characterised by high unemployment, income inequality and a skills mismatch, all of which have contributed to conflict between business, government and labour. The co-operative model of stakeholder management is examined as a possible mitigating organisational form in this high-conflict environment. International experience indicates some success with co-operative models but they are not easy to implement effectively and face severe obstacles. Trust and knowledge sharing are critical for enabling a co-operative model of stakeholder management, which requires strong governance and adherence to strict rules. The model must balance the tension between optimisation of governance structures and responsiveness to members' needs. Furthermore, support from social and political institutions is necessary. We find barriers to scalability which manifest in the lack of depth of business skills, negative perception of the co-operative model by external stakeholders, government ambivalence, and a lack of willingness on the part of workers to co-operate for mutual benefit.
Vehicle-Scheduling Model for Operation Based on Single-Depot
Jing Teng
2015-01-01
Full Text Available Centralized assigning of bus running between multiple lines can save operation cost of transit agency. As more big transit terminals can serve for multiple bus lines being established, coordinating the operation of these lines’ vehicles becomes more economical and perspective. This paper proposed a vehicle-scheduling model for multiple lines which share vehicle resource together and service based on the same terminal. The optimization goal is to minimize the number of vehicles while considering reducing the invalid operation time under the constraint of timetable schemes and matching time for vehicle crossing two lines. A case in Ningbo city, China, was conducted to compare the performance of the cross-line schedules with the original schedules assigning vehicles within respective lines. The optimized schedules can reduce 7.14% vehicles in need while meeting the timetable schemes of all bus lines, which indicated that the proposed model is suitable for operation practice.
Model of operating and balancing assembly line in a mass customization environment
Wei Dong; Jin Ye; Wang Rong; Wang Zheng
2003-01-01
The successful implementation of mass customization lies on reengineering technology and management methods to organize the production. Especially in assembly phase, various product con figurations, due-time penalties and order-driven strategy challenge the traditional operation and man agement of assembly lines. The business features and the operation pattern of assembly line based on mass customization are analyzed. And the research emphatically studies various technologic factors to improve customer satisfaction and their corresponding implement methods in operating assembly line.In addition, the models are proposed for operating assembly line under dynamic process environment in mass customization. A genetic approach is developed to provide the optimal solution to the models.The effectiveness of the proposed approach is evaluated with an industrial application.
Modeling the dispersion phenomenon in batch transfer operations by the theory of structured mixture
Oliveira, J.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica], e-mail: jorge@mec.uff.br
2010-10-15
This paper investigates the design of a model based on the theory of structured mixture that retains the character of one-dimensional models from the literature, simultaneously being able to estimate the mixing volume with consistency. The determination of the mixing volume in batch transfer operations based on this novel approach can facilitate the understanding of which parameters affect their growth, and even the optimization of multi product pipeline operations, in order to reduce the mixing volume. Among other things, the proposed study can generate considerable indirect economic impacts, by providing transported goods with higher quality control, and enabling more efficient planning of the pipeline operations with regard to implementation of pumping stops, thereby providing operational flexibility and reliability. (author)
Zolotarev, Vladimir A.
2009-04-01
Functional models are constructed for commutative systems \\{A_1,A_2\\} of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that \\xi_1A_1+\\xi_2A_2 is not a dissipative operator for any \\xi_1, \\xi_2\\in\\mathbb{R}). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators \\{A_1,A_2\\} for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and \\widetilde E(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.
Yuhang Wu
2016-01-01
Full Text Available This paper focuses on the attention allocation problem (AAP in modeling multioperator multi-UAV (MOMU, with the operator model and task properties taken into consideration. The model of MOMU operator AAP based on maximizing the global reward is established and used to allocate tasks to all operators as well as set work time and rest time to each task simultaneously for operators. The proposed model is validated in Matlab simulation environment, using the immune algorithm and dynamic programming algorithm to evaluate the performance of the model in terms of the reward value with regard to the work time, rest time, and task allocation. The result shows that the total reward of the proposed model is larger than the one obtained from previously published methods using local maximization and the total reward of our method has an exponent-like relation with the task arrival rate. The proposed model can improve the operators’ task processing efficiency in the MOMU command and control scenarios.
Artificial Immune Systems Metaphor for Agent Based Modeling of Crisis Response Operations
Khalil, Khaled M.; Abdel-Aziz, M.; Nazmy, Taymour T.; Salem, Abdel-Badeeh M.
2010-01-01
Crisis response requires information intensive efforts utilized for reducing uncertainty, calculating and comparing costs and benefits, and managing resources in a fashion beyond those regularly available to handle routine problems. This paper presents an Artificial Immune Systems (AIS) metaphor for agent based modeling of crisis response operations. The presented model proposes integration of hybrid set of aspects (multi-agent systems, built-in defensive model of AIS, situation management, a...
A Library on the Robot Operating System (ROS) for Model Predictive Control implementation
Diaz Martinez, Rene Alexander
2014-01-01
Model Predictive Control is a receding horizon control technique that is based on making predictions in the future for a determined number of steps, using a model of the system to be controlled. This thesis report is centered around Model Predictive Control (MPC) and its application. In this thesis, there are two main goals: firstly, is the development of a software structure that uses the properties of Object Oriented Programming (OOP) and the Robot Operative System (ROS) to ease the use of ...
Mathematical Model of Bridge-Linked Photovoltaic Arrays Operating Under Irregular Conditions
Juan D. Bastidas-Rodríguez; Carlos A. Ramos-Paja; Luz A. Trejos-Grisales
2013-01-01
This paper presents a mathematical procedure to model a photovoltaic array (N rows and M columns) in bridge-linked configuration operating under regular and irregular conditions. The proposed procedure uses the ideal single-diode model representation for each photovoltaic module and the Shockley equation to represent each bypass diode. To pose the system of NxM non-linear equations required to obtain the voltages of each module of the array, the proposed model apply the Kirchhoff current law ...
Adly, A.A. [Electrical Power and Machines Department, Faculty of Engineering, Cairo University, Giza 12211 (Egypt)], E-mail: adlyamr@gmail.com; Abd-El-Hafiz, S.K. [Department of Engineering Mathematics, Faculty of Engineering, Cairo University, Giza 12211 (Egypt)], E-mail: salwahafiz@link.net
2008-02-01
Magnetic materials exhibiting gigantic magnetostriction are currently being used in various actuator devices and vibration damping applications. Recently, a new family of efficient Preisach-type vector hysteresis models having coupled elementary operators has been introduced. The purpose of this paper is to extend the applicability of those recently introduced models to magnetostriction simulation. Details of the model, its identification, and experimental testing are presented in the paper.
A Coupled Snow Operations-Skier Demand Model for the Ontario (Canada) Ski Region
Pons, Marc; Scott, Daniel; Steiger, Robert; Rutty, Michelle; Johnson, Peter; Vilella, Marc
2016-04-01
The multi-billion dollar global ski industry is one of the tourism subsectors most directly impacted by climate variability and change. In the decades ahead, the scholarly literature consistently projects decreased reliability of natural snow cover, shortened and more variable ski seasons, as well as increased reliance on snowmaking with associated increases in operational costs. In order to develop the coupled snow, ski operations and demand model for the Ontario ski region (which represents approximately 18% of Canada's ski market), the research utilized multiple methods, including: a in situ survey of over 2400 skiers, daily operations data from ski resorts over the last 10 years, climate station data (1981-2013), climate change scenario ensemble (AR5 - RCP 8.5), an updated SkiSim model (building on Scott et al. 2003; Steiger 2010), and an agent-based model (building on Pons et al. 2014). Daily snow and ski operations for all ski areas in southern Ontario were modeled with the updated SkiSim model, which utilized current differential snowmaking capacity of individual resorts, as determined from daily ski area operations data. Snowmaking capacities and decision rules were informed by interviews with ski area managers and daily operations data. Model outputs were validated with local climate station and ski operations data. The coupled SkiSim-ABM model was run with historical weather data for seasons representative of an average winter for the 1981-2010 period, as well as an anomalously cold winter (2012-13) and the record warm winter in the region (2011-12). The impact on total skier visits and revenues, and the geographic and temporal distribution of skier visits were compared. The implications of further climate adaptation (i.e., improving the snowmaking capacity of all ski areas to the level of leading resorts in the region) were also explored. This research advances system modelling, especially improving the integration of snow and ski operations models with
A Reprocessing Model for Complete Execution of RFID Access Operations on Tag Memory
Wooseok Ryu; Bonghee Hong; Joonho Kwon; Ge Yu
2012-01-01
This paper investigates the problem of inconsistent states of radio frequency identification (RFID) tag data caused by incomplete execution of read/write operations during access to RFID tag memory.Passive RFID tags require RF communication to access memory data.This study is motivated by the volatility of RF communication,where instability is caused by intermittent connections and uncertain communication.If a given tag disappears from the communication area of the reader during the reading or writing of tag data,the operation is incomplete,resulting in an inconsistent state of tag data.To avoid this inconsistency,it is necessary to ensure that any operations on tag memory are completed.In this paper,we propose an asynchronous reprocessing model for finalizing any incomplete execution of read/write operations to remove inconsistent states.The basic idea is to resume incomplete operations autonomously by detecting a tag's re-observation from any reader.To achieve this,we present a concurrency control mechanism based on continuous query processing that enables the suspended tag operations to be re-executed.The performance study shows that our model improves the number of successful operations considerably in addition to suppressing inconsistent data access completely.
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
Fukushima Kensuke
2017-01-01
Full Text Available Introduction: Periacetabular osteotomy (PAO is an effective joint-preserving procedure for young adults with developmental dysplasia of the hip. Although PAO provides excellent radiographic and clinical results, it is a technically demanding procedure with a distinct learning curve that requires careful 3D planning and, above all, has a number of potential complications. We therefore developed a pre-operative simulation method for PAO via creation of a new full-scale model. Methods: The model was prepared from the patient’s Digital Imaging and Communications in Medicine (DICOM formatted data from computed tomography (CT, for construction and assembly using 3D printing technology. A major feature of our model is that it is constructed from salt. In contrast to conventional models, our model provides a more accurate representation, at a lower manufacturing cost, and requires a shorter production time. Furthermore, our model realized simulated operation normally with using a chisel and drill without easy breakage or fissure. We were able to easily simulate the line of osteotomy and confirm acetabular version and coverage after moving to the osteotomized fragment. Additionally, this model allowed a dynamic assessment that avoided anterior impingement following the osteotomy. Results: Our models clearly reflected the anatomical shape of the patient’s hip. Our models allowed for surgical simulation, making realistic use of the chisel and drill. Our method of pre-operative simulation for PAO allowed for the assessment of accurate osteotomy line, determination of the position of the osteotomized fragment, and prevented anterior impingement after the operation. Conclusion: Our method of pre-operative simulation might improve the safety, accuracy, and results of PAO.
Fukushima, Kensuke; Takahira, Naonobu; Uchiyama, Katsufumi; Moriya, Mitsutoshi; Takaso, Masashi
2017-01-01
Introduction: Periacetabular osteotomy (PAO) is an effective joint-preserving procedure for young adults with developmental dysplasia of the hip. Although PAO provides excellent radiographic and clinical results, it is a technically demanding procedure with a distinct learning curve that requires careful 3D planning and, above all, has a number of potential complications. We therefore developed a pre-operative simulation method for PAO via creation of a new full-scale model. Methods: The model was prepared from the patient’s Digital Imaging and Communications in Medicine (DICOM) formatted data from computed tomography (CT), for construction and assembly using 3D printing technology. A major feature of our model is that it is constructed from salt. In contrast to conventional models, our model provides a more accurate representation, at a lower manufacturing cost, and requires a shorter production time. Furthermore, our model realized simulated operation normally with using a chisel and drill without easy breakage or fissure. We were able to easily simulate the line of osteotomy and confirm acetabular version and coverage after moving to the osteotomized fragment. Additionally, this model allowed a dynamic assessment that avoided anterior impingement following the osteotomy. Results: Our models clearly reflected the anatomical shape of the patient’s hip. Our models allowed for surgical simulation, making realistic use of the chisel and drill. Our method of pre-operative simulation for PAO allowed for the assessment of accurate osteotomy line, determination of the position of the osteotomized fragment, and prevented anterior impingement after the operation. Conclusion: Our method of pre-operative simulation might improve the safety, accuracy, and results of PAO. PMID:28186873
INTELLECTUAL MODEL FORMATION OF RAILWAY STATION WORK DURING THE TRAIN OPERATION EXECUTION
O. V. Lavrukhin
2014-11-01
Full Text Available Purpose. The aim of this research work is to develop an intelligent technology for determination of the optimal route of freight trains administration on the basis of the technical and technological parameters. This will allow receiving the operational informed decisions by the station duty officer regarding to the train operation execution within the railway station. Metodology. The main elements of the research are the technical and technological parameters of the train station during the train operation. The methods of neural networks in order to form the self-teaching automated system were put in the basis of the generated model of train operation execution. Findings. The presented model of train operation execution at the railway station is realized on the basis of artificial neural networks using learning algorithm with a «teacher» in Matlab environment. The Matlab is also used for the immediate implementation of the intelligent automated control system of the train operation designed for the integration into the automated workplace of the duty station officer. The developed system is also useful to integrate on workplace of the traffic controller. This proposal is viable in case of the availability of centralized traffic control on the separate section of railway track. Originality. The model of train station operation during the train operation execution with elements of artificial intelligence was formed. It allows providing informed decisions to the station duty officer concerning a choice of rational and a safe option of reception and non-stop run of the trains with the ability of self-learning and adaptation to changing conditions. This condition is achieved by the principles of the neural network functioning. Practical value. The model of the intelligent system management of the process control for determining the optimal route receptionfor different categories of trains was formed.In the operational mode it offers the possibility
The reference model of supply chain operational controlling in value management
2010-03-01
Full Text Available The systemic approach of the controlling function to supporting the operations management results from its complex analysis of the supply chain business and operating results and from influencing the operations management factors - products, processes and resources that determine the achieved result (revenues, costs, profitability and assets turnover as well as the return on invested capital. All product features which stand for customer value and its competitiveness are the basis for designing, planning and controlling the interconnected processes responsible for manufacturing and delivery of products. The effectiveness of methods applied in developing products, processes and resources depends on the precise analysis and appraisal of the operating conditions that justify their application. Supporting the operations management, focused on the product value and improving the company's financial result, apart from financial, technical and economic analyses requires transferring the product value to activities control methods and to developing the resources in the product supply chain already at the stage of planning. As a result of an analysis of requirements supporting the development of processes and resources in the supply chain, a reference model of operational controlling in product value management was developed. The multicriterion selection and appropriate application of material flow management methods in the supply chain is each time preceded by an operating and financial analysis as well as by an appraisal of operating conditions that influence the choice of control methods.
A multi-state model for wind farms considering operational outage probability
Cheng, Lin; Liu, Manjun; Sun, Yuanzhang;
2013-01-01
power penetration levels. Therefore, a more comprehensive analysis toward WECS as well as an appropriate reliability assessment model are essential for maintaining the reliable operation of power systems. In this paper, the impact of wind turbine outage probability on system reliability is firstly......As one of the most important renewable energy resources, wind power has drawn much attention in recent years. The stochastic characteristics of wind speed lead to generation output uncertainties of wind energy conversion system (WECS) and affect power system reliability, especially at high wind...... developed by considering the following factors: running time, operating environment, operating conditions, and wind speed fluctuations. A multi-state model for wind farms is also established. Numerical results illustrate that the proposed model can be well applied to power system reliability assessment...
Trueman, R C; Dunnett, S B; Brooks, S P
2012-06-01
Huntington's disease is the result of an expanded CAG repeat in the gene that codes for the protein huntingtin and results in a progressive sequelae of motor, cognitive and psychiatric symptoms. The development of genetically modified rodent models of Huntington's disease has led to the need for sensitive behavioural phenotyping. Operant tests for rodents have been developed that can determine the functional deficits in these genetically modified models, from motor, cognitive and emotional domains. The current review discusses tests that employ operant equipment, an automated and highly flexible method for testing rodents. Different operant paradigms are examined in relation to their relevance to Huntington's disease symptomology, as well as summarising research to date on genetic models with these tests.
E. A. Echiegu
2014-01-01
Full Text Available A two-culture dynamic model which incorporated the effects of diurnally cyclic temperature was developed and used to predict the dynamic response of anaerobic reactors operated on dairy manure under two diurnally cyclic temperature ranges of 20-40Â°C and 15-25Â°C which represent the summer and winter in Nigeria. The digesters were operated at various hydraulic retention times and solid concentrations and some useful kinetic parameters were determined. The model predicted biogas production, volatile solid reduction, methane yield and treatment efficiency with reasonable accuracy (R^{2} = 0.70 to 0.90. The model, however, under-predicted the cell mass concentration in the reactor probably because the Volatile Suspended Solid (VSS, which was used as the estimator of the actual cell mass concentration in the reactor, was not a good indicator of the active cell mass concentration in anaerobic reactors operating on dairy manure.
Surrogate runner model for draft tube losses computation within a wide range of operating points
Susan-Resiga, R.; Muntean, S.; Ciocan, T.; de Colombel, T.; Leroy, P.
2014-03-01
We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet.
A dynamic programming model for optimal planning of aquifer storage and recovery facility operations
Uddameri, V.
2007-01-01
Aquifer storage recovery (ASR) is an innovative technology with the potential to augment dwindling water resources in regions experiencing rapid growth and development. Planning and design of ASR systems requires quantifying how much water should be stored and appropriate times for storage and withdrawals within a planning period. A monthly scale planning model has been developed in this study to derive optimal (least cost) long-term policies for operating ASR systems and is solved using a recursive deterministic dynamic programming approach. The outputs of the model include annual costs of operation, the amount of water to be imported each month as well as the schedule for storage and extraction. A case study modeled after a proposed ASR system for Mustang Island and Padre Island service areas of the city of Corpus Christi is used to illustrate the utility of the developed model. The results indicate that for the assumed baseline demands, the ASR system is to be kept operational for a period of 4 months starting from May through August. Model sensitivity analysis indicated that increased seasonal shortages can be met using ASR with little additional costs. For the assumed cost structure, a 16% shortage increased the costs by 1.6%. However, the operation time of ASR increased from 4 to 8 months. The developed dynamic programming model is a useful tool to assess the feasibility of evaluating the use of ASR systems during regional-scale water resources planning endeavors.
Methodology of synchronization among strategy and operation. A standards-based modeling approach
VICTOR EDWIN COLLAZOS
2017-05-01
Full Text Available Enterprise Architecture (EA has gained importance in recent years, mainly for its concept of “alignment” between the strategic and operational levels of organizations. Such alignment occurs when Information Technology (IT is applied correctly and timely, working in synergy and harmony with strategy and the operation to achieve mutually their own goals and satisfy the organizational needs.Both the strategic and operational levels have standards that help model elements necessary to obtain desired results. In this sense, BMM and BPMN were selected because both have the support of OMG and they are fairly well known for modelling the strategic level and operational level, respectively. In addition, i* modeling goal can be used for reducing the gap between these two standards. This proposal may help both the high-level design of the information system and to the appropriate identification of the business processes that will support it.This paper presents a methodology for aligning strategy and the operation based on standards and heuristics. We have made a classification for elements of the models and, for some specific cases, an extension of the heuristics associated between them. This allows us to propose methodology, which uses above-mentioned standards and combines mappings, transformations and actions to be considered in the alignment process.
Characteristic operator functions for quantum input-plant-output models and coherent control
Gough, John E.
2015-01-01
We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.
A cost prediction model for machine operation in multi-field production systems
Alessandro Sopegno
Full Text Available ABSTRACT Capacity planning in agricultural field operations needs to give consideration to the operational system design which involves the selection and dimensioning of production components, such as machinery and equipment. Capacity planning models currently onstream are generally based on average norm data and not on specific farm data which may vary from year to year. In this paper a model is presented for predicting the cost of in-field and transport operations for multiple-field and multiple-crop production systems. A case study from a real production system is presented in order to demonstrate the model’s functionalities and its sensitivity to parameters known to be somewhat imprecise. It was shown that the proposed model can provide operation cost predictions for complex cropping systems where labor and machinery are shared between the various operations which can be individually formulated for each individual crop. By so doing, the model can be used as a decision support system at the strategic level of management of agricultural production systems and specifically for the mid-term design process of systems in terms of labor/machinery and crop selection conforming to the criterion of profitability.
Hanasaki, N.; Masaki, Y.; Mateo, C.; Kanae, S.; Oki, T.
2013-12-01
More than 45000 large dams have been constructed all over the world, and their total storage capacity exceeds 7000 km3 which corresponds to approximately 20% of the total annual global river discharge. Explicit incorporation of reservoir operation is indispensable for global-/macro-scale hydrological models, since their storage capacity and potential of altering flow regime are too large to neglect. Our presentation consists of three parts. In the first part, the H08 model, a global hydrological model with reservoir operation scheme is introduced. The H08 model includes an algorithm to estimate reservoir operating rules of individual reservoirs. This enables us to apply the model to the regions and periods with no recorded reservoir operation. The key concepts and challenges of the model are discussed. In the second part, the role of reservoirs in water scarcity is globally assessed. In many parts of the world, local people are suffered from temporal variability in precipitation and river flow. The contribution of reservoirs to water scarcity alleviation is quantitatively and globally assessed. The assessment is extended to the future periods utilizing the latest climate and socio-economic scenarios. In the last part, a regional model application is introduced. The Chao Phraya River in Thailand was suffered from a severe flood in 2011. Vast area was inundated for months and the economic damages reached 40 billion USD. The Chao Phraya River has two major reservoirs and their role is crucial for both water use and flood control. The H08 model is substantially enhanced and applied to the basin to reproduce the 2011 floods. The tradeoff between water use and flood control was investigated by changing reservoir operation options.
Davids, Femke; den Toom, Matthijs
2016-04-01
This paper investigates the performance of complementary NWP models for hydrologic forecasting for the river Rhine, a large river catchment in Central Europe. An operational forecasting system, RWsOS-Rivieren, produces daily forecasts of discharges and water levels at the Water Management Centre Netherlands. A combination of HBV (rainfall-runoff) and SOBEK (hydrodynamic routing) models is used to produce simulations and forecasts for the catchment. Data assimilation is applied both to the model state of SOBEK and to model outputs. The primary function of the operational forecasting system is to provide reliable and accurate forecasts during periods of high water. The secondary main function is producing daily predictions for water management and water transport in The Netherlands. In addition, predicting water levels during drought periods is becoming increasingly important as well. At this moment several complementary deterministic and ensemble NWP models are used to provide the forecasters with predictions with varied initial conditions, such as ICON, ICON-EU Nest, ECMWF-DET, ECMWF-EPS, HiRLAM, COSMO-LEPS and GLAMEPS. ICON and ICON-EU have recently replaced DWD-GME and DWD COSMO-EU. These models provide weather forecasts with different lengths of lead times and also different periods of operational usage. A direct and quantitative comparison is therefore challenging. Nevertheless, it is important to investigate the suitability of the different NWP models for certain lead times and certain weather situations to help support the hydrological forecasters make an informed forecast during an operational crisis. A hindcast study will investigate the performance of these models in the operational system for different lead times and focusing on periods of both high and low water for Lobith, the location of entry of the river Rhine into The Netherlands.
A mathematical model for optimized operation and control in a CDQ-Boiler system
De Wang; Tao Yang; Zhi Wen; Junxiao Feng; Ning Kong; Qin Wang; Weimin Wang
2005-01-01
Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for optimized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in tum, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been successfully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.
Aggett, Graeme; Spies, Ryan; Szfranski, Bill; Hahn, Claudia; Weil, Page
2016-04-01
An adequate forecasting model may not perform well if it is inadequately calibrated. Model calibration is often constrained by the lack of adequate calibration data, especially for small river basins with high spatial rainfall variability. Rainfall/snow station networks may not be dense enough to accurately estimate the catchment rainfall/SWE. High discharges during flood events are subject to significant error due to flow gauging difficulty. Dynamic changes in catchment conditions (e.g., urbanization; losses in karstic systems) invariably introduce non-homogeneity in the water level and flow data. This presentation will highlight some of the challenges in reliable calibration of National Weather Service (i.e. US) operational flood forecast models, emphasizing the various challenges in different physiographic/climatic domains. It will also highlight the benefit of using various data visualization techniques to transfer information about model calibration to operational forecasters so they may understand the influence of the calibration on model performance under various conditions.
OMNIITOX - operational life-cycle impact assessment models and information tools for practitioners
Molander, S; Lidholm, Peter; Schowanek, Diederik
2004-01-01
of this case study-driven project are briefly presented and put in relation to the aims of contributing to an operational life cycle-impact assessment (LCIA) model for impacts of toxicants. The present situation has been characterised by methodological difficulties, both regarding choice......This article is the preamble to a set of articles describing initial results from an on-going European Commission funded, 5th Framework project called OMNIITOX, Operational Models aNd Information tools for Industrial applications of eco/TOXicological impact assessments. The different parts...... of the characterisation model(s) and limited input data on chemical properties, which often has resulted in the omission of toxicants from the LCIA, or at best focus on well characterised chemicals. The project addresses both problems and integrates models, as well as data, in an information system – the OMNIITOX IS...
Predictive modeling of human operator cognitive state via sparse and robust support vector machines.
Zhang, Jian-Hua; Qin, Pan-Pan; Raisch, Jörg; Wang, Ru-Bin
2013-10-01
The accurate prediction of the temporal variations in human operator cognitive state (HCS) is of great practical importance in many real-world safety-critical situations. However, since the relationship between the HCS and electrophysiological responses of the operator is basically unknown, complicated and uncertain, only data-based modeling method can be employed. This paper is aimed at constructing a data-driven computationally intelligent model, based on multiple psychophysiological and performance measures, to accurately estimate the HCS in the context of a safety-critical human-machine system. The advanced least squares support vector machines (LS-SVM), whose parameters are optimized by grid search and cross-validation techniques, are adopted for the purpose of predictive modeling of the HCS. The sparse and weighted LS-SVM (WLS-SVM) were proposed by Suykens et al. to overcome the deficiency of the standard LS-SVM in lacking sparseness and robustness. This paper adopted those two improved LS-SVM algorithms to model the HCS based solely on a set of physiological and operator performance data. The results showed that the sparse LS-SVM can obtain HCS models with sparseness with almost no loss of modeling accuracy, while the WLS-SVM leads to models which are robust in case of noisy training data. Both intelligent system modeling approaches are shown to be capable of capturing the temporal fluctuation trends of the HCS because of their superior generalization performance.
An integrated framework for gas turbine based power plant operational modeling and optimization
Zhao, Yongjun
The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the profitability in the dynamic electric power market. New methodologies for gas turbine power plant operational modeling and optimization are needed for power plant operation to enhance operational decision making, and therefore to maximize power plant profitability by reducing operations and maintenance cost and increasing revenue. In this study, a profit based, lifecycle oriented, and unit specific methodology for gas turbine based power plant operational modeling was developed, with the power plant performance, reliability, maintenance, and market dynamics considered simultaneously. The generic methodology is applicable for a variety of optimization problems, and several applications were implemented using this method. A multiple time-scale method was developed for gas turbine power plants long term generation scheduling. This multiple time-scale approach allows combining the detailed granularity of the day-to-day operations with global (seasonal) trends, while keeping the resulting optimization model relatively compact. Using the multiple time-scale optimization method, a profit based outage planning method was developed, and the key factors for this profit based approach include power plant aging, performance degradation, reliability degradation, and, importantly, the energy market dynamics. Also a novel approach for gas turbine based power plant sequential preventive maintenance scheduling was introduced, and a profit based sequential preventive maintenance scheduling was developed for more effective maintenance scheduling. Methods to evaluate the impact of upgrade packages on gas turbine power plant performance, reliability, and economics were developed, and TIES methodology was applied for effective evaluation and selection of gas turbine power plant upgrade packages.
Model of the co-operative trade alliance for independent retail networks in Czech Republic
Marek Záboj
2011-01-01
Full Text Available The main objective of the contribution is proposal of the model of co-operative trade alliance for independent trade alliances with fast-moving consumer goods (FMCG in Czech Republic. Reason of the choice of this topic is sustain of variety of retail formats in Czech market in connection with position small and medium sized trade firms in comparison with transnational trade chains. Independent trade firms face to much bigger competitors operating supermarkets and hypermarkets, namely not even in size of sales area, width and depth of the assortment but also in possibility of negotiation of more profitable trade conditions with their suppliers. Effort of these independent trade firms, which operate mostly just in local or maximally regional market, is then mutual co-operation in form of consumer co-operatives, associations, alliances and networks. These groupings then mainly through common trade negotiation and purchase get for much more advantageous delivery and payment conditions from their suppliers. Besides they can participate in mutual financing of using of promotion instruments. Partial aim of the paper is investigation of opinion and willingness of Czech trade alliances with FMCG to utilize the opportunity of mutual co-operation in common trade alliance. Next partial goal is identification of the factors affecting formation of joint co-operative grouping and its structure, eventually definition of entry conditions which should be fulfilled by individual members.The system approach will be used to realize the given objective. This approach appears as the most suitable in consideration of anticipated structure and character of supposed model. The result will be then proposal of model of mutual co-operation between individual trade alliances.
Process data: a means to measure operational performance and implement advanced analytical models.
Santibañez, Pablo; Chow, Vincent S; French, John; Puterman, Martin L; Tyldesley, Scott
2009-01-01
We present the case of an ambulatory clinic in which an operational review was conducted to identify opportunities for efficiency in appointment scheduling and capacity allocation. We required process data to compare that which was planned to that which actually happened and to develop advanced analytical models. Similar to other health care studies, these data proved to be limited or non-existent. Consequently we had to conduct a time-consuming collection of operational metrics. We make recommendations for the perpetual collection of process data for modeling and simulation.
Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior
Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.
2006-05-01
Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.
Campuzano, Francisco; Brito, David; Juliano, Manuela; Fernandes, Rodrigo; Neves, Ramiro
2015-04-01
In the Iberian Peninsula, most of the largest rivers discharge on the Atlantic coast draining almost two thirds of the territory. It is an important source of nutrients and sediments to these coastal areas. Rivers discharges in the Atlantic area when compared with the ones in the Mediterranean side present the particularity that their water before is released into the ocean is previously mixed in their estuaries in a different ratio depending of the estuarine residence time and the discharged flow. In order to evaluate the relative importance of the inland waters in the circulation patterns of Western Iberia, the rivers discharges were implemented in the PCOMS model application (Portuguese Coast Operational Modelling System). To reproduce the water continuum including the different spatial and temporal scales, a methodology consisting in a system of integrated models using the Mohid model was designed. At the watershed level, the Mohid Land model calculated operationally water flow and properties, including nutrients, for the main river catchments of Western Iberian with a 2 km horizontal resolution. Downstream, several operational hydrodynamic and biological estuarine applications used those outcomes as model inputs, filling the gaps in the observation network. From the estuarine models, the tidally modulated water and properties fluxes to the coast were obtained. These fluxes were finally imposed in the Portuguese Coast Operational Modelling System (PCOMS), a fully 3D baroclinic hydrodynamic and ecological regional model that covers the Iberian Atlantic front. The fate of the rivers discharges were analysed by integrating model results in boxes, comparing the climatologies obtained with and without rivers and the rivers area of influence was obtained by lagrangian tracers simulations.
Activation of the operational ecohydrodynamic model (3D CEMBS - the ecosystem module
Jaromir Jakacki
2013-08-01
Full Text Available The paper describes the ecohydrodynamic predictive model - the ecosystem module - for assessing the state of the Baltic marine environment and the Baltic ecosystem. The Baltic Sea model 3D CEMBS (the Coupled Ecosystem Model of the Baltic Sea is based on the Community Earth System Model, which was adopted for the Baltic Sea as a coupled sea-ice-ecosystem model. The 3D CEMBS model uses: (i hydrodynamic equations describing water movement, (ii thermodynamic equations, (iii equations describing the concentration distribution of chemical variables in the sea, and (iv equations describing the exchange of matter between individual groups of organisms and their environment that make allowance for the kinetics of biochemical processes. The ecosystem model consists of 11 main components: three classes of phytoplankton (small phytoplankton, large phytoplankton represented mainly by diatoms and summer species, mostly cyanobacteria expressed in units of carbon and chlorophyll a as separate variables, zooplankton, pelagic detritus, dissolved oxygen and nutrients (nitrate, ammonium, phosphate and silicate. In operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM are used. All model forecasts are available on the website http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php. The results presented in this paper show that the 3D CEMBS model is operating correctly.
Modeling Battery Behavior on Sensory Operations for Context-Aware Smartphone Sensing
Ozgur Yurur
2015-05-01
Full Text Available Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM, under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.
Modeling battery behavior on sensory operations for context-aware smartphone sensing.
Yurur, Ozgur; Liu, Chi Harold; Moreno, Wilfrido
2015-05-26
Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM), under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.
Hypovigilance Detection for UCAV Operators Based on a Hidden Markov Model
Yerim Choi
2014-01-01
Full Text Available With the advance of military technology, the number of unmanned combat aerial vehicles (UCAVs has rapidly increased. However, it has been reported that the accident rate of UCAVs is much higher than that of manned combat aerial vehicles. One of the main reasons for the high accident rate of UCAVs is the hypovigilance problem which refers to the decrease in vigilance levels of UCAV operators while maneuvering. In this paper, we propose hypovigilance detection models for UCAV operators based on EEG signal to minimize the number of occurrences of hypovigilance. To enable detection, we have applied hidden Markov models (HMMs, two of which are used to indicate the operators’ dual states, normal vigilance and hypovigilance, and, for each operator, the HMMs are trained as a detection model. To evaluate the efficacy and effectiveness of the proposed models, we conducted two experiments on the real-world data obtained by using EEG-signal acquisition devices, and they yielded satisfactory results. By utilizing the proposed detection models, the problem of hypovigilance of UCAV operators and the problem of high accident rate of UCAVs can be addressed.
Chungjo Jung
2015-04-01
Full Text Available From a military standpoint, a river is an area that should be avoided in a potential engagement because of lack of cover and the necessity of dividing the unit while crossing. Thus, a key point of a river-crossing operation is speed. Many efforts have been made to enable faster river crossing by improvement of tactics, techniques, and procedures (TTP. However, improvements in TTP are evaluated by modelling and simulation much less frequently than are the toe-to-toe engagements between two opposing forces, and to our knowledge, this is the first simulation model of brigade-level river crossing with engineering details. This study presents a simulation model of the river-crossing operation, applies real world parameters, and evaluates which tactics are preferable in a particular operational environments. This analysis has led to new operational methods of river crossing that have been suggested by experienced subject-matter experts. For instance, the current Republic of Korea Army Field Manual dictates to rotate river-crossing rafts in all situations, but our experiment suggests that no rotation is preferable when the width of river is less than 400 m based on the statistical analyses, which includes the regression-based meta-modelling and the ANOVA, of our simulation model that embodies the engineering details of river-crossing equipment.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.135-143, DOI:http://dx.doi.org/10.14429/dsj.65.8141
Glocer, A.; Rastätter, L.; Kuznetsova, M.; Pulkkinen, A.; Singer, H. J.; Balch, C.; Weimer, D.; Welling, D.; Wiltberger, M.; Raeder, J.; Weigel, R. S.; McCollough, J.; Wing, S.
2016-07-01
We present the latest result of a community-wide space weather model validation effort coordinated among the Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), model developers, and the broader science community. Validation of geospace models is a critical activity for both building confidence in the science results produced by the models and in assessing the suitability of the models for transition to operations. Indeed, a primary motivation of this work is supporting NOAA/SWPC's effort to select a model or models to be transitioned into operations. Our validation efforts focus on the ability of the models to reproduce a regional index of geomagnetic disturbance, the local K-index. Our analysis includes six events representing a range of geomagnetic activity conditions and six geomagnetic observatories representing midlatitude and high-latitude locations. Contingency tables, skill scores, and distribution metrics are used for the quantitative analysis of model performance. We consider model performance on an event-by-event basis, aggregated over events, at specific station locations, and separated into high-latitude and midlatitude domains. A summary of results is presented in this report, and an online tool for detailed analysis is available at the CCMC.
New geometric design consistency model based on operating speed profiles for road safety evaluation.
Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo
2013-12-01
To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.
Testing and Implementation of the Navy's Operational Circulation Model for the Mediterranean Sea
Farrar, P. D.; Mask, A. C.
2012-04-01
The US Naval Oceanographic Office (NAVOCEANO) has the responsibility for running ocean models in support of Navy operations. NAVOCEANO delivers Navy-relevant global, regional, and coastal ocean forecast products on a 24 hour/7 day a week schedule. In 2011, NAVOCEANO implemented an operational version of the RNCOM (Regional Navy Coastal Ocean Model) for the Mediterranean Sea (MedSea), replacing an older variation of the Princeton Ocean Model originally set up for this area back in the mid-1990's. RNCOM is a gridded model that assimilates both satellite data and in situ profile data in near real time. This 3km MedSea RNCOM is nested within a lower resolution global NCOM in the Atlantic at the 12.5 degree West longitude. Before being accepted as a source of operational products, a Navy ocean model must pass a series of validation tests and then once in service, its skill is monitored by software and regional specialists. This presentation will provide a brief summary of the initial evaluation results. Because of the oceanographic peculiarities of this basin, the MedSea implementation posed a set of new problems for an RNCOM operation. One problem was the present Navy satellite altimetry model assimilation techniques do not improve Mediterranean NCOM forecasts, so it has been turned off, pending improvements. Another problem was that since most in-situ observations were profiling floats with short five-day profiling intervals, there was a problem with temporal aliasing when comparing these observations to the NCOM predictions. Because of the time and spatial correlations in the MedSea and in the model, the observation/model comparisons would give an unrealistically optimistic estimate of model accuracy of the Mediterranean's temperature/salinity structure. Careful pre-selection of profiles for comparison during the evaluation stage, based on spatial distribution and novelty, was used to minimize this effect. NAVOCEANO's operational customers are interested primarily in
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating
Thomas E. Rosmond
2000-01-01
Full Text Available The Navy Operational Global Atmospheric Prediction System (NOGAPS includes a state-of-the-art spectral forecast model similar to models run at several major operational numerical weather prediction (NWP centers around the world. The model, developed by the Naval Research Laboratory (NRL in Monterey, California, has run operational at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC since 1982, and most recently is being run on a Cray C90 in a multi-tasked configuration. Typically the multi-tasked code runs on 10 to 15 processors with overall parallel efficiency of about 90%. resolution is T159L30, but other operational and research applications run at significantly lower resolutions. A scalable NOGAPS forecast model has been developed by NRL in anticipation of a FNMOC C90 replacement in about 2001, as well as for current NOGAPS research requirements to run on DOD High-Performance Computing (HPC scalable systems. The model is designed to run with message passing (MPI. Model design criteria include bit reproducibility for different processor numbers and reasonably efficient performance on fully shared memory, distributed memory, and distributed shared memory systems for a wide range of model resolutions. Results for a wide range of processor numbers, model resolutions, and different vendor architectures are presented. Single node performance has been disappointing on RISC based systems, at least compared to vector processor performance. This is a common complaint, and will require careful re-examination of traditional numerical weather prediction (NWP model software design and data organization to fully exploit future scalable architectures.
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric; Niswonger, Richard; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones
Xin Li
2016-06-01
Full Text Available This study addresses efforts to comb the Analytic Hierarchy Process (AHP with Data Envelopment Analysis (DEA to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with a hierarchical AHP structure to: 1 normalize the scales of different evaluation indicators, 2 construct the matrix of pair-wise comparisons with fuzzy set, and 3 optimize the weight of each criterion with a non-linear programming model. With introduction of cone-based constraints, the new system offers accounting advantages in the interaction among indicators when evaluating the performance of transit operators. To illustrate the applicability of the proposed approach, a real case in Nanjing City, the capital of China's Jiangsu Province, has been selected to assess the efficiencies of seven bus companies based on 2009 and 2010 datasets. A comparison between conventional DEA and enhanced DEA was also conducted to clarify the new system's superiority. Results reveal that the proposed model is more applicable in evaluating transit operator's efficiency thus encouraging a boarder range of applications.
Activation of the operational ecohydrodynamic model (3-D CEMBS – the hydrodynamic part
L. Dzierzbicka-Głowacka
2012-07-01
Full Text Available The paper presents a description of the hydrodynamic part of the coupled ice-ocean model that also includes ecosystem predictive model for evaluation of the condition of the marine environment and the Baltic ecosystem, as well as a preliminary empirical verification of the operational hydrodynamic model based on the POP code in order to determine the consistence between the results obtained from the model and experimental results for the sea surface temperature.
The current Baltic Sea model is based on the Community Earth System Model (CESM from NCAR – National Center for Atmospheric Research. CESM was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0 and the Parallel Ocean Program (POP, version 2.1. The models are coupled through the coupler (CPL7, which is based on the Model Coupling Toolkit (MCT routines. The current horizontal resolution is about 2 km (1/48 degrees. The ocean model has 21 vertical levels. The driver time step is 1440 s and it is also coupling the time step. The ocean model time step is about 480 s (8 min. Currently, the model is forced by fields from the European Center for Medium Weather Forecast. In the operational mode, 48-h atmospheric forecasts are used, which are supplied by the UM model of the Interdisciplinary Centre for Mathematical and Computational Modelling of the Warsaw University. The model of the marine ecosystem is the right tool for monitoring the state and bioproductivity of the marine ecosystem and forecasting the physical and ecological changes in the studied basin.
Lasowski, Ophir
2010-01-01
The aim of this work is to develop an alternative evolutionary approach to assessing the performance of co-operative organizations. The focus of investigation is turned to the co-operative organization as a group of members in a market environment containing non-members. Significant unique features of the co-operative organization is illustrated at first. After reviewing historical aspects of evolution theories and their positioning in biology, economic and social sciences, alternative notion...
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
Lehman, Landon; Martin, Adam [Department of Physics, University of Notre Dame,Nieuwland Science Hall, Notre Dame, IN 46556 (United States)
2016-02-12
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N{sub f}=1 operators.
An adaptive simulation model for analysis of nuclear material shipping operations
Boerigter, S.T.; Sena, D.J.; Fasel, J.H.
1998-12-31
Los Alamos has developed an advanced simulation environment designed specifically for nuclear materials operations. This process-level simulation package, the Process Modeling System (ProMoS), is based on high-fidelity material balance criteria and contains intrinsic mechanisms for waste and recycle flows, contaminant estimation and tracking, and material-constrained operations. Recent development efforts have focused on coupling complex personnel interactions, personnel exposure calculations, and stochastic process-personnel performance criteria to the material-balance simulation. This combination of capabilities allows for more realistic simulation of nuclear material handling operations where complex personnel interactions are required. They have used ProMoS to assess fissile material shipping performance characteristics at the Los Alamos National Laboratory plutonium facility (TA-55). Nuclear material shipping operations are ubiquitous in the DOE complex and require the largest suite of varied personnel interacting in a well-timed manner to accomplish the task. They have developed a baseline simulation of the present operations and have estimated the operational impacts and requirement of the pit production mission at TA-55 as a result of the SSM-PEIS. Potential bottlenecks have been explored and mechanisms for increasing operational efficiency are identified.
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
Lehman, Landon; Martin, Adam
2016-02-01
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N f = 1 operators.
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
Background Concentrations for Use in the Operational Street Pollution Model (OSPM)
Jensen, S. S.
A background model has been developed for application in the Operational Street Pollution Model (OSPM) in context of long-term exposure modelling. The back ground model is based on a semi-empirical method founded on a few monitor stations that estimates standardised one hour time-series of urban...... are based on measurements. The temporal variation is represented as indices for the monthly variation and the monthly diurnal variation. In this way concentration levels can be estimated on an hourly basis from 1960-95....
Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design
Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)
2001-01-01
This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
More efficient operation of coal fired power plants using nonlinear models
Bulsari, A.; Wemberg, A.; Anttila, A.; Multas, A. [Nonlinear Solution Oy, Turku (Finland)
2010-07-15
Abstract: Coal fired power plants should be operated in such a way that the emissions are kept clearly below desired limits and the combustion efficiency is as high as can be achieved. This requires a lot of quantitative knowledge of the effects of the process variables and fuel characteristics on the emissions and efficiency. Mathematical models can be developed with different approaches. Physical models are too slow to be used for on-line process guidance, and require too many assumptions and simplifications. It is feasible to develop empirical or semi-empirical models from normal production data of the power plant. This technical communication explains with an example of a coal fired power plant how nonlinear models are an effective means of determining the best operating conditions at any given load for a given type of coal.
Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions
Schrage, Dean S.
1991-01-01
An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
Development of synchronous generator saturation model from steady-state operating data
Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)
2010-11-15
A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)
Mohd Norhasni Mohd Asaad
2014-02-01
Full Text Available Abstract. Market globalization, competitive product and services, high economic crises are the most critical factors that influence the success of the manufacturing companies in global market. Therefore it is critical to the manufacturing companies to be efficient in production and lean tool may used to achieve that. The most frequently used is the Total Preventive Maintenance (TPM, even though there are many studies have been conducted in relation to the TPM but there is limited research in investigating the effects of the TPM on operational performance. However, the result of the studies was not consistent, where TPM practice may have positive and negative impact on operational performance. Among the reason is the culture of the organization that influenced the implementation of TPM and operational performance. Due to that this study attempts to investigate the influence of organizational culture on the TPM implementation and operational performance. Rasch model is used in this study due to its ability in interpreting and analyzing the ability of respondents in performing the difficult items. The online questionnaires were distributed to 63 randomly selected automotive companies located at Northern Region of Malaysia. Results of the study revealed that the organizational culture has influenced on the successful implementation of TPM and operational performance. Therefore by the implementation of TPM in outstanding organizational culture can improve operational performance. Keyword: Total Preventive Maintenance (TPM, Lean manufacturing, Operational performance, Organizational culture, Rasch modeldoi:10.12695/ajtm.2013.6.2.2How to cite this article:Mohd Asaad, M.N and Yusoff, R.Z. (2013. Organizational Culture Influence On Total Productive Maintenance (TPM and Operational Performance Using RASCH Model Analysis . The Asian Journal of Technology Management 6 (2: 72-81. Print ISSN: 1978-6956; Online ISSN: 2089-791X. doi:10.12695/ajtm
Model based decision support system of operating settings for MMAT nozzles
Fritz Bradley Keith
2016-04-01
Full Text Available Droplet size, which is affected by nozzle type, nozzle setups and operation, and spray solution, is one of the most critical factors influencing spray performance, environment pollution, food safety, and must be considered as part of any application scenario. Characterizing spray nozzles can be a timely and expensive proposition if the entire operational space (all combinations of spray pressure and orifice size, what influence flow rate is to be evaluated. This research proposes a structured, experimental design that allows for the development of computational models for droplet size based on any combination of a nozzle’s potential operational settings. The developed droplet size determination model can be used as Decision Support System (DSS for precise selection of sprayer working parameters to adapt to local field scenarios. Five nozzle types (designs were evaluated across their complete range of orifice size (flow rate* and spray pressures using a response surface experimental design. Several of the models showed high level fits of the modeled to the measured data while several did not as a result of the lack of significant effect from either orifice size (flow rate* or spray pressure. The computational models were integrated into a spreadsheet based user interface for ease of use. The proposed experimental design provides for efficient nozzle evaluations and development of computational models that allow for the determination of droplet size spectrum and spraying classification for any combination of a given nozzle’s operating settings. The proposed DSS will allow for the ready assessment and modification of a sprayers performance based on the operational settings, to ensure the application is made following recommendations in plant protection products (PPP labels.
Cheng Chin; Michael Lau
2012-01-01
In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle (ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.
Simulation and optimisation modelling approach for operation of the Hoa Binh Reservoir, Vietnam
Ngo, Long le; Madsen, Henrik; Rosbjerg, Dan
2007-01-01
Hoa Binh, the largest reservoir in Vietnam, plays an important role in flood control for the Red River delta and hydropower generation. Due to its multi-purpose character, conflicts and disputes in operating the reservoir have been ongoing since its construction, particularly in the flood season......, the hydro-meteorological conditions, and the time of the year. A heuristic global optimisation tool, the shuffled complex evolution (SCE) algorithm, is adopted for optimising the reservoir operation. The optimisation puts focus on the trade-off between flood control and hydropower generation for the Hoa....... This paper proposes to optimise the control strategies for the Hoa Binh reservoir operation by applying a combination of simulation and optimisation models. The control strategies are set up in the MIKE 11 simulation model to guide the releases of the reservoir system according to the current storage level...
Holonomy Spin Foam Models: Boundary Hilbert spaces and Time Evolution Operators
Dittrich, Bianca; Kaminski, Wojciech
2012-01-01
In this and the companion paper a novel holonomy formulation of so called Spin Foam models of lattice gauge gravity are explored. After giving a natural basis for the space of simplicity constraints we define a universal boundary Hilbert space, on which the imposition of different forms of the simplicity constraints can be studied. We detail under which conditions this Hilbert space can be mapped to a Hilbert space of projected spin networks or an ordinary spin network space. These considerations allow to derive the general form of the transfer operators which generates discrete time evolution. We will describe the transfer operators for some current models on the different boundary Hilbert spaces and highlight the role of the simplicity constraints determining the concrete form of the time evolution operators.
无
2006-01-01
The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed convex subset of n-dimensional Euclidean space and it is not a compact convex set in general, that is, the value region of projective operator is probably unbounded. It was proved that the network has a global solution and its solution trajectory converges to some equilibrium set whenever objective function satisfies some conditions. After that, the model was applied to continuously differentiable optimization and nonlinear or implicit complementarity problems. In addition, simulation experiments confirm the efficiency of the RNN.
Vadim E. Seleznev
2011-01-01
Full Text Available The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions.
Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor
Curtisha D. Travis
2013-08-01
Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.
Community Coordinated Modeling Center: Addressing Needs of Operational Space Weather Forecasting
Kuznetsova, M.; Maddox, M.; Pulkkinen, A.; Hesse, M.; Rastaetter, L.; Macneice, P.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Zheng, Y.; Mullinix, R.
2012-01-01
Models are key elements of space weather forecasting. The Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) hosts a broad range of state-of-the-art space weather models and enables access to complex models through an unmatched automated web-based runs-on-request system. Model output comparisons with observational data carried out by a large number of CCMC users open an unprecedented mechanism for extensive model testing and broad community feedback on model performance. The CCMC also evaluates model's prediction ability as an unbiased broker and supports operational model selections. The CCMC is organizing and leading a series of community-wide projects aiming to evaluate the current state of space weather modeling, to address challenges of model-data comparisons, and to define metrics for various user s needs and requirements. Many of CCMC models are continuously running in real-time. Over the years the CCMC acquired the unique experience in developing and maintaining real-time systems. CCMC staff expertise and trusted relations with model owners enable to keep up to date with rapid advances in model development. The information gleaned from the real-time calculations is tailored to specific mission needs. Model forecasts combined with data streams from NASA and other missions are integrated into an innovative configurable data analysis and dissemination system (http://iswa.gsfc.nasa.gov) that is accessible world-wide. The talk will review the latest progress and discuss opportunities for addressing operational space weather needs in innovative and collaborative ways.
BAROTE, L.; MARINESCU, C.
2012-01-01
This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG), driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropri...
Borlawsky, Tara; LaFountain, Jeanne; Petty, Lynda; Saltz, Joel H; Payne, Philip R O
2008-11-06
Workflow analysis is frequently performed in the context of operations research and process optimization. In order to develop a data-driven workflow model that can be employed to assess opportunities to improve the efficiency of perioperative care teams at The Ohio State University Medical Center (OSUMC), we have developed a method for integrating standard workflow modeling formalisms, such as UML activity diagrams with data-centric annotations derived from our existing data warehouse.
Trujillo Rodríguez, César Leonardo; VELASCO DE LA FUENTE, DAVID; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; Ortega, Rubén
2011-01-01
This paper presents the modeling and control of a push-pull converter integrated into a two-stage photovoltaic microinverter operating in island mode without backup energy storage components (batteries). A push-pull small signal model is presented, from which they are derived all transfer functions needed to implement the controllers that regulate the output current, input voltage and output voltage interacting with the MPPT algorithm. A significant contribution of the paper is the proposal o...
A model of the response of thermoplastic composites to bend-forming operations
Talbott, M.F.
1991-01-01
The model discussed in this dissertation describes the response of a thermoplastic composite laminate made from unidirection prepreg tape to operations which bend it into an arbitrarily complex singly-curved shape. It predicts, for any such bending, the extent of relative ply sliding and the stresses and strains which arise. The model contains several options for the process definition: for different locations along the laminate, the user may specify the curvatures, the perpendicular forces imposed, or the vertical displacements.
J. N. Kolesnik
2005-01-01
Full Text Available Mathematical model of power consumption for technologically completed and non-completed oil pipe-line sections with poor operational stability has been developed on the basis of daily indices concerning oil transportation regimes. The model permits to take into account tendencies in power consumption under various time prediction cycles and ranges of oil freight turnover, changes in the bulk and characteristics of the transported oil, configuration and design parameters of oil pipe-line.
Baseline groundwater model update for p-area groundwater operable unit, NBN
Ross, J. [Savannah River Site (SRS), Aiken, SC (United States); Amidon, M. [Savannah River Site (SRS), Aiken, SC (United States)
2015-09-01
This report documents the development of a numerical groundwater flow and transport model of the hydrogeologic system of the P-Area Reactor Groundwater Operable Unit at the Savannah River Site (SRS) (Figure 1-1). The P-Area model provides a tool to aid in understanding the hydrologic and geochemical processes that control the development and migration of the current tritium, tetrachloroethene (PCE), and trichloroethene (TCE) plumes in this region.
Modelling human and organizational behaviour in a high-risk operation
Sillem, S.; Lin, P.H.; Ale, B.J.M.; Hudson, P.T.W.
2012-01-01
A core part of the risk modelling program for the Oil and Gas industry being carried out at Delft University of Technology is the influence of humans, within an organisation, as well as the technical factors. Specific attention is given to the incentive structure of operators, staff and managers, wh
Data-Driven Modeling of Target Human Behavior in Military Operations
2014-03-12
Military Operations Elizabeth Mezzacappa, Ph.D. Gordon Cooke, MEME Gladstone Reid, MSBMS Robert DeMarco, MSBMS Charles Sheridan BA John...stress, and human behavior modeling and simulation issues. GORDON COOKE, MEME , is a Principal Investigator at the TBRL. He was also a Chief
2006-01-01
METHOD 2.1 Building the model Using existing task analyses of navy sonar systems (Matthews, Greenley and Webb, 1991) and with the assistance of...Critical Operator Tasks. DRDC Toronto Report # CR-2003-131 Matthews, M.L., Greenley , M. and Webb, R.D.G (1991). Presentation of Information from Towed
Janic, M.
2009-01-01
This paper develops an analytical model for the assessment of the cost performance of a given logistics network operating under regular and irregular (disruptive) conditions. In addition, the paper aims to carry out a sensitivity analysis of this cost with respect to changes of the most influencing
75 FR 8467 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model ATP Airplanes
2010-02-25
... (Operations) Limited Model ATP Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... tasks were introduced by Service Bulletin (SB) ATP-51-002 * * *. As it was determined that these... environmental inspections for the fuselage. These additional tasks were introduced by Service Bulletin (SB)...
Fatigue Load Modeling and Control for Wind Turbines based on Hysteresis Operators
Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen
2015-01-01
method based on hysteresis operators, which can be used in control loops. Furthermore, we propose a model predictive control (MPC) strategy that incorporates the online fatigue estimation through the objective function, where the ultimate goal in mind is to reduce the fatigue load of the wind turbine...
Switching the Liverpool Telescope from a full-service operating model to self-service
Smith, R. J.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Moss, C. M.; Steele, I. A.
2010-07-01
The Liverpool Telescope has undergone a major revision of operations model, improving the facility's flexibility and rapid response to targets of opportunity. We switched from a "full service" model where observers submitted requests to the Support Astronomer for checking and uploading into the scheduler database to a direct access model where observers personally load sequences directly into the database at any time, including during the night. A new data model describing the observing specifications has been developed over two years for the back-end operations infrastructure and has been invisible to users until early 2010 when the new graphical user interface was deployed to all observers. The development project has been a success, defined as providing new flexible operating modes to users without incurring any downtime at the change over or interruption to the ongoing monitoring projects in which the observatory specializes. Devolving responsibility for data entry to users does not necessarily simplify the role of observatory staff. Ceding that absolute hands-on control by experienced staff complicates the support task because staff no longer have advance personal knowledge of everything the telescope is doing. In certain cases software utilities and controls can be developed to simplify tasks for both observers and operations staff.
Dorneanu, B.
2011-01-01
During the last decades, models have become widely used for supporting a broad range of chemical engineering activities, such as product and process design and development, process monitoring and control, real time optimization of plant operation or supply chain management. Although tremendous
Method for identifying process reuse opportunities to enhance the operating model
De Vries, M
2011-12-01
Full Text Available the volatility of strategy and suggests the use of an operating model (OM), which is a commitment to a way of doing business. The OM creates a company-wide vision for process standardization and data centralization and guides decisions about how a company...
Baxter, Douglas A.; Byrne, John H.
2006-01-01
Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…
Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
R. Fernandes; F. Braunschweig; Lourenço, F.; R. Neves
2015-01-01
The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable shoreline risk levels from ships has b...
Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
R. Fernandes; F. Braunschweig; Lourenço, F.; R. Neves
2016-01-01
The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable individual vessel accident risk levels and shoreline cont...
Lanser, D.; Verwer, J.G.
1998-01-01
Operator or time splitting is often used in the numerical solution of initial boundary value problems for differential equations. It is, for example, standard practice in computational air pollution modelling where we encounter systems of three-dimensional, time-dependent partial differential equati
Model reduction for nonlinear systems based on the differential eigenstructure of Hankel operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.
2001-01-01
This paper offers a new input-normal output-diagonal realization and model reduction procedure for nonlinear systems based on the differential eigenstructure of Hankel operators. Firstly, we refer to the preliminary results on input-normal realizations with original singular value functions and the
Janic, M.
2009-01-01
This paper develops an analytical model for the assessment of the cost performance of a given logistics network operating under regular and irregular (disruptive) conditions. In addition, the paper aims to carry out a sensitivity analysis of this cost with respect to changes of the most influencing
Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto
2012-01-01
data from different authors for downdraft, fluidized-bed gasifiers and different biomasses, showing good agreement between reported data and modeled values. In addition, it has been used to evaluate the influence of different operating parameters [equivalence ratio (ER), air preheating, steam injection...
An operational model for the West Iberian coast: products and services
Mateus, M.; Riflet, G.; Chambel, P.; Fernandes, L.; Fernandes, R.; Juliano, M.; Campuzano, F.; de Pablo, H.; Neves, R.
2012-08-01
This paper presents the structure and application of a regional scale operational modelling tool for the West Iberian coast, and discusses its potential for products and services for both scientific and coastal management activities. The forecasting suite includes nested hydrodynamic models forced with up-to-date meteorological forecast data and large-scale model results. The present status of the system and its recent upgrades are reviewed, offering a general description of the main components of the system: the forcing data, the circulation model, the model outputs and the validation methodology of model results. Seasonal differences in temperature, salinity and current velocity fields are illustrated and show satisfactory reproduction of the top and deep layer thermodynamics. The system provides boundary forcing for a number of local-scale model applications via downscaling of the solution and enables potential products and services from which civil society will benefit.
1983-04-01
land treatment equations is necessary to develop the user -supplied PARAM and INPUT files and to interpret the model results. A schematic of the system...land treatment equations and is supplied and named by the user . A total of 160 parameter values must be specified. The file must consist of 26 lines...7 AD-A134 461 OPTIMIZATION MODEL FOR LAND TREATMENT PLANNING DESIN 1/AND OPERATION PART 3..U) COLD REGIONS RESEARCH ANDENGINEERING LAB HANOVER NH J A
Operant alcohol self-administration in dependent rats: focus on the vapor model.
Vendruscolo, Leandro F; Roberts, Amanda J
2014-05-01
Alcoholism (alcohol dependence) is characterized by a compulsion to seek and ingest alcohol (ethanol), loss of control over intake, and the emergence of a negative emotional state during withdrawal. Animal models are critical in promoting our knowledge of the neurobiological mechanisms underlying alcohol dependence. Here, we review the studies involving operant alcohol self-administration in rat models of alcohol dependence and withdrawal with the focus on the alcohol vapor model. In 1996, the first articles were published reporting that rats made dependent on alcohol by exposure to alcohol vapors displayed increased operant alcohol self-administration during acute withdrawal compared with nondependent rats (i.e., not exposed to alcohol vapors). Since then, it has been repeatedly demonstrated that this model reliably produces physical and motivational symptoms of alcohol dependence. The functional roles of various systems implicated in stress and reward, including opioids, dopamine, corticotropin-releasing factor (CRF), glucocorticoids, neuropeptide Y (NPY), γ-aminobutyric acid (GABA), norepinephrine, and cannabinoids, have been investigated in the context of alcohol dependence. The combination of models of alcohol withdrawal and dependence with operant self-administration constitutes an excellent tool to investigate the neurobiology of alcoholism. In fact, this work has helped lay the groundwork for several ongoing clinical trials for alcohol dependence. Advantages and limitations of this model are discussed, with an emphasis on what future directions of great importance could be.
Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.
2017-07-01
Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.
Model regularization for seismic traveltime tomography with an edge-preserving smoothing operator
Zhang, Xiong; Zhang, Jie
2017-03-01
The solutions of the seismic first-arrival traveltime tomography are generally non-unique, and the Tikhonov model regularization for the inversion is commonly used to stabilize the inversion. However, the Tikhonov regularization for traveltime tomography often produces a low-resolution velocity model. To sharpen the velocity edges for the traveltime tomographic results and fit data at the same time, we should apply the edge-preserving concepts to regularize the inversion. In this study, we develop a new model regularization method by introducing an edge-preserving smoothing operator to detect the model edges in traveltime tomography. This edge-preserving smoothing operator is previously used in processing seismic images for enhancing resolution. We design three synthetic velocity models with sharp interfaces and with or without velocity gradients to study the performance of the regularization method with the edge-preserving smoothing operator. The new edge-preserving regularization not only sharpens the model edges but also maintains the smoothness of the velocity gradient in the layer.
Operational snow mapping with simplified data assimilation using the seNorge snow model
Saloranta, Tuomo M.
2016-07-01
Frequently updated maps of snow conditions are useful for many applications, e.g., for avalanche and flood forecasting services, hydropower energy situation analysis, as well as for the general public. Numerical snow models are often applied in snow map production for operational hydrological services. However, inaccuracies in the simulated snow maps due to model uncertainties and the lack of suitable data assimilation techniques to correct them in near-real time may often reduce the usefulness of the snow maps in operational use. In this paper the revised seNorge snow model (v.1.1.1) for snow mapping is described, and a simplified data assimilation procedure is introduced to correct detected snow model biases in near real-time. The data assimilation procedure is theoretically based on the Bayesian updating paradigm and is meant to be pragmatic with modest computational and input data requirements. Moreover, it is flexible and can utilize both point-based snow depth and satellite-based areal snow-covered area observations, which are generally the most common data-sources of snow observations. The model and analysis codes as well as the "R" statistical software are freely available. All these features should help to lower the challenges and hurdles hampering the application of data-assimilation techniques in operational hydrological modeling. The steps of the data assimilation procedure (evaluation, sensitivity analysis, optimization) and their contribution to significantly increased accuracy of the snow maps are demonstrated with a case from eastern Norway in winter 2013/2014.
Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.
Quadros, William Roshan; Owen, Steven James
2010-04-01
We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant feature and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.
2016-06-01
Modeling Relevant to Safe Operations of U.S. Navy Vessels in Arctic Conditions.” The program manager was Dr. Paul Hess in Code 331, Structural...of Ice–Structure Interaction. Engineering Fracture Mechanics 68:1923–60. Jordaan, I. J., M. A. Maes, P. W. Brown, and I. P. Hermans . 1993
Handy, B.J.; Greene, J.C. [NNC Solutions Ltd, Warrington (United Kingdom)
2004-09-01
NNC limited provides an ion exchange resin technology facility, which includes a resin testing service. A range of ion exchange resin properties is measured and this includes ion exchange capacity, resin bead particle sizes and anion kinetic performance in terms of mass transfer coefficients. It has long been considered by the authors that the experimental data for resins taken from operating condensate polishing plant (CPP) could be used to predict the expected plant performance. This has now been realised with the development of a mathematical model which predicts CPP behaviour using appropriate experimentally derived parameters and plant design data. Modelling methods for the separate anion and cation components of a mixed bed were initially developed before the mixed bed as a whole was addressed. Initially, an analytical approach was adopted, which proved successful for simple cases. For more complex examples a numerical approach was developed and found to be more suitable. The paper describes the development of anion and cation bed models, and a mixed bed model. In the latter model, the anion and cation components modelled earlier are combined, and used to model simultaneously typical concentrations of ammonia, sodium, chloride and sulphate. Examples of operation are given, and observations and points of interest are discussed with respect to the calculated concentration profiles. The experimental behaviour of a number of resin samples taken from operating plant was examined in a purpose-built ultrapure water recirculation loop equipped with a range of analytical instruments. This has permitted the observed experimental results to be compared with model predictions. The next stage of the model development is to identify plants suitable for testing the model against real plant performance and the authors are now seeking to identify plant managers interested in collaborating in this venture. (orig.)
2010-05-21
....- Action Work hours labor rate Parts airplane registered Fleet cost per hour airplanes ALS Revision... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in... revisions to certain operator maintenance documents to include new inspections. Compliance with these...
Tanskanen, A.
2010-07-01
Electricity distribution network operation (NO) models are challenged as they are expected to continue to undergo changes during the coming decades in the fairly developed and regulated Nordic electricity market. Network asset managers are to adapt to competitive technoeconomical business models regarding the operation of increasingly intelligent distribution networks. Factors driving the changes for new business models within network operation include: increased investments in distributed automation (DA), regulative frameworks for annual profit limits and quality through outage cost, increasing end-customer demands, climatic changes and increasing use of data system tools, such as Distribution Management System (DMS). The doctoral thesis addresses the questions a) whether there exist conditions and qualifications for competitive markets within electricity distribution network operation and b) if so, identification of limitations and required business mechanisms. This doctoral thesis aims to provide an analytical business framework, primarily for electric utilities, for evaluation and development purposes of dedicated network operation models to meet future market dynamics within network operation. In the thesis, the generic build-up of a business model has been addressed through the use of the strategic business hierarchy levels of mission, vision and strategy for definition of the strategic direction of the business followed by the planning, management and process execution levels of enterprise strategy execution. Research questions within electricity distribution network operation are addressed at the specified hierarchy levels. The results of the research represent interdisciplinary findings in the areas of electrical engineering and production economics. The main scientific contributions include further development of the extended transaction cost economics (TCE) for government decisions within electricity networks and validation of the usability of the
A simple quasi-dynamic model of a district heating system used for operational optimization
Boehm, Benny
1998-12-01
Equivalent models of DH (District Heating) systems are being developed and verified. The models will be used for operational optimization of DH systems. By nature this requires transient models of the DH network, however, some insight can be gained even from a steady state model of the DH network demonstrating the importance of the many parameters which are needed in the models. The temperature level as well as the line heat demand is low in Danish DH systems compared to many foreign DH systems. It has been advocated that the supply temperature should always be kept as low as possible in order to minimize the operational costs. However, this is not true in all cases as the optimum operational strategy will minimize the sum of the heat loss cost and the pumping cost. Thus in case of high line heat demands the supply temperature should not always be kept as low as possible. It has been shown that a simple model, i.e. one pipe - one bypass - one house, can be used for operational optimization, both in the steady state and in the transient case. What remains to be shown is how well this simple model can represent a whole district heating system. The optimization was carried out with matlab routines and with the high number of simulations performed, the computing time is rather long. Even, though much work has already been done, it is still not perfectly clear which demands must be put on simulation and optimization time steps in order to achieve a reliable solution without too much computational effort. (LN)
Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models
Garrappa, Roberto
2016-09-01
Several classes of differential and integral operators of non integer order have been proposed in the past to model systems exhibiting anomalous and hereditary properties. A wide range of complex and heterogeneous systems are described in terms of laws of Havriliak-Negami type involving a special fractional relaxation whose behavior in the time-domain can not be represented by any of the existing operators. In this work we introduce new integral and differential operators for the description of Havriliak-Negami models in the time-domain. In particular we propose a formulation of Grünwald-Letnikov type which turns out to be effective not only to provide a theoretical characterization of the operators associated to Havriliak-Negami systems but also for computational purposes. We study some properties of the new operators and, by means of some numerical experiments, we present their use in practical computation and we show the superiority with respect to the few other approaches previously proposed in literature.
Dynamic emulation modelling for the optimal operation of water systems: an overview
Castelletti, A.; Galelli, S.; Giuliani, M.
2014-12-01
Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.
Development and Operation of Space-Based Disease Early Warning Models
John, M. M.
2010-12-01
Millions of people die every year from preventable diseases such as malaria and cholera. Pandemics put the entire world population at risk and have the potential to kill thousands and cripple the global economy. In light of these dangers, it is fortunate that the data and imagery gathered by remote sensing satellites can be used to develop models that predict areas at risk for outbreaks. These warnings can help decision makers to distribute preventative medicine and other forms of aid to save lives. There are already many Earth observing satellites in orbit with the ability to provide data and imagery. Researchers have created a number of models based on this information, and some are being used in real-life situations. These capabilities should be further developed and supported by governments and international organizations to benefit as many people as possible. To understand the benefits and challenges of disease early warning models, it is useful to understand how they are developed. A number of steps must occur for satellite data and imagery to be used to prevent disease outbreaks; each requires a variety of inputs and may include a range of experts and stakeholders. This paper discusses the inputs, outputs, and basic processes involved in each of six main steps to developing models, including: identifying and validating links between a disease and environmental factors, creating and validating a software model to predict outbreaks, transitioning a model to operational use, using a model operationally, and taking action on the data provided by the model. The paper briefly overviews past research regarding the link between remote sensing data and disease, and identifies ongoing research in academic centers around the world. The activities of three currently operational models are discussed, including the U.S. Department of Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS), NASA carries out its Malaria Modeling and Surveillance
The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System
Proctor, Fred H.
1998-01-01
Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.
Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.
2009-01-01
In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.
Ghahramani, M; Dean, C B; Spinelli, J J
2001-07-15
Typical analyses of lifetime data treat the time to death or failure as the response variable and use a variety of modelling strategies such as proportional hazards or fully parametric, to investigate the relationship between the response and covariates. In certain circumstances it may be more natural to view the distribution of the response variable as consisting of two or more parts since the survival curve appears segmented. This article addresses such a scenario and we propose a model for simultaneously investigating the effects of covariates over the two segments. The model is an analogue of that proposed by Lambert for zero-inflated Poisson regression. The application is central to the model development and is concerned with survival after coronary artery bypass surgery. Here operative mortality, defined as death within 30 days after surgery, and long-term mortality, are viewed as distinct outcomes. For the application considered, the survivor function displays much steeper descent during the first 30 days after surgery, that is, for operative mortality, than after this period. An investigation of the effects of covariates on operative and long-term mortality after coronary artery bypass surgery illustrates the usefulness of the proposed model.
Nikolić Radovan H.
2014-01-01
Full Text Available This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathematical model can be used successfully for modeling of cooling of cutting tools. [Projekat Ministarstva nauke Republike Srbije, br. TR32036
Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models
Ruiz-Torres, Alex J.; McCleskey, Carey
2000-01-01
The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.
Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)
1995-01-01
A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.
Simulation Model for Dynamic Operation of Double-Effect Absorption Chillers
Ahmed Mojahid Sid Ahmed Mohammed Salih
2014-07-01
Full Text Available The development in the field of refrigeration and air conditioning systems driven by absorption cycles acquired a considerable importance recently. For commercial absorption chillers, an essential challenge for creating chiller model certainly is the shortage of components technical specifications. These kinds of specifications are usually proprietary for chillers producers. In this paper, a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations is presented. The chiller studied is Lithium bromide-water with capacity of 1250 RT (Refrigeration Tons. The governing equations of the dynamic operation of the chiller are developed. From available design information, the values of the overall heat transfer coefficients multiplied by the surface area are computed. The dynamic operation of the absorption chiller is simulated to study the performance of the system. The model is able to provide essential details of the temperature, concentration, and flow rate at each state point in the chiller.
A Delay Model of Multiple-Valued Logic Circuits Consisting of Min, Max, and Literal Operations
Takagi, Noboru
Delay models for binary logic circuits have been proposed and clarified their mathematical properties. Kleene's ternary logic is one of the simplest delay models to express transient behavior of binary logic circuits. Goto first applied Kleene's ternary logic to hazard detection of binary logic circuits in 1948. Besides Kleene's ternary logic, there are many delay models of binary logic circuits, Lewis's 5-valued logic etc. On the other hand, multiple-valued logic circuits recently play an important role for realizing digital circuits. This is because, for example, they can reduce the size of a chip dramatically. Though multiple-valued logic circuits become more important, there are few discussions on delay models of multiple-valued logic circuits. Then, in this paper, we introduce a delay model of multiple-valued logic circuits, which are constructed by Min, Max, and Literal operations. We then show some of the mathematical properties of our delay model.
Vargas-Magaña, Rosa; Panayotaros, Panayotis
2015-11-01
We study the problem of wave propagation in a long-wave asymptotic regime over variable bottom of an ideal irrotational fluid in the framework of the Hamiltonian formulation in which the non-local Dirichlet-Neumann (DtN) operator appears explicitly in the Hamiltonian. We propose a non-local Hamiltonian model for bidirectional wave propagation in shallow water that involves pseudodifferential operators that approximate the DtN operator for variable depth. These models generalize the Boussinesq system as they include the exact dispersion relation in the case of constant depth. We present results for the normal modes and eigenfrequencies of the linearized problem. We see that variable topography introduces effects such as steepening of normal modes with increasing variation of depth, as well as amplitude modulation of the normal modes in certain wavelength ranges. Numerical integration shows that the constant depth nonlocal Boussinesq model with quadratic nonlinearity can capture the evolution obtained with higher order approximations of the DtN operator. In the case of variable depth we observe certain oscillations in width of the crest and also some interesting textures in the evolution of wave crests during the passage from obstacles.
Form factors of descendant operators: Reduction to perturbed $M(2,2s+1)$ models
Lashkevich, Michael
2014-01-01
In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the $\\Phi_{13}$\\=/perturbation of minimal conformal models of the $M(2,2s+1)$ series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents $T_{\\pm2k}$, $\\Theta_{\\pm(2k-2)}$, which correspond to the spin $\\pm(2k-1)$ integrals of motion, for any positive integer~$k$. Furthermore, we obtain all form factors of the operators $T_{2k}T_{-2l}$, which generalize the famous $T\\bar T$ operator. The construction is analytic in the $s$ parameter and, therefore, makes sense in the sine-Gordon theory.
Vinod Kumar
2015-09-01
Full Text Available Trim cutting operation in wire electrical discharge machining (WEDM is considered as a probable solution to improve surface characteristics and geometrical accuracy by removing very small amount of work materials from the surface obtained after a rough cutting operation. In this study, an attempt has been made to model the surface roughness and dimensional shift in trim cutting operations in WEDM process through response surface methodology (RSM. Four process parameters; namely pulse-on time (Ton, servo voltage (SV, wire depth (Wd and Dielectric flow rate (FR have been considered as input parameters in trim cutting operations for modelling. Desirability function has been employed to optimize multi performance characteristics. Increasing the value of Ton, Wd and FR increases the surface roughness and dimensional shift but increasing SV decreases both surface roughness and dimensional shift. Quadratic models have been proposed for both the performance characteristics. In present experimentation, thickness of recast layer was observed in the range of 6μm to 12μm for low to high value of discharge parameters.
Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine
Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.
2010-10-01
Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.
Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine
Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.
2010-10-01
Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.
Form factors of descendant operators: reduction to perturbed M(2,2s+1) models
Lashkevich, Michael [Landau Institute for Theoretical Physics,1a prospekt Akademika Semenova, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology,9 Institutsky per., 141707 Dolgoprudny (Russian Federation); Kharkevich Institute for Information Transmission Problems,19 Bolshoy Karetny per., 127994 Moscow (Russian Federation); Pugai, Yaroslav [Landau Institute for Theoretical Physics,1a prospekt Akademika Semenova, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology,9 Institutsky per., 141707 Dolgoprudny (Russian Federation)
2015-04-23
In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ{sub 13}-perturbation of minimal conformal models of the M(2,2s+1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T{sub ±2k}, Θ{sub ±(2k−2)}, which correspond to the spin ±(2k−1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T{sub 2k}T{sub −2l}, which generalize the famous TT̄ operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.
Operator content of the critical Potts model in d dimensions and logarithmic correlations
Vasseur, Romain, E-mail: rvasseur@berkeley.edu [Department of Physics, University of California, Berkeley, Berkeley, CA 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jacobsen, Jesper Lykke [LPTENS, 24 rue Lhomond, 75231 Paris (France); Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France)
2014-03-15
Using the symmetric group S{sub Q} symmetry of the Q-state Potts model, we classify the (scalar) operator content of its underlying field theory in arbitrary dimension. In addition to the usual identity, energy and magnetization operators, we find fields that generalize the N-cluster operators well-known in two dimensions, together with their subleading counterparts. We give the explicit form of all these operators – up to non-universal constants – both on the lattice and in the continuum limit for the Landau theory. We compute exactly their two- and three-point correlation functions on an arbitrary graph in terms of simple probabilities, and give the general form of these correlation functions in the continuum limit at the critical point. Specializing to integer values of the parameter Q, we argue that the analytic continuation of the S{sub Q} symmetry yields logarithmic correlations at the critical point in arbitrary dimension, thus implying a mixing of some scaling fields by the scale transformation generator. All these logarithmic correlation functions are given a clear geometrical meaning, which can be checked in numerical simulations. Several physical examples are discussed, including bond percolation, spanning trees and forests, resistor networks and the Ising model. We also briefly address the generalization of our approach to the O(n) model.
Supersoft SUSY Models and the 750 GeV Diphoton Excess, Beyond Effective Operators
Carpenter, Linda M; Goodman, Jessica
2015-01-01
We propose that the sbino, the scalar partner of a Dirac bino can explain the 750 GeV diphoton excess observed by ATLAS and LHC . We analyze a model in which the sbino couples to pairs of Standard Model (SM) gauge bosons. We analyze an effective operator model, as well as a completion in which the sbino couples to pairs of gauge bosons through loops of heavy sfermions. We find that the sbino may be given an appreciable decay width through tree level coupling in the Higgs sector. We find that we may fit the 750 GeV excess by considering gluon fusion processes with decay to diphotons.
An averaging battery model for a lead-acid battery operating in an electric car
Bozek, J. M.
1979-01-01
A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.
Lithium-ion battery dynamic model for wide range of operating conditions
Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef
2017-01-01
In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-ofcharge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...
A discrete-time model for binary detection with rectangular hysteresis operators
Korman, Can E.
2006-02-01
The operation of a nonlinear binary detector with hysteresis is investigated. Prior models developed for continuous time inputs are extended for the computationally more efficient discrete-time inputs. The input to the rectangular hysteresis detector is modeled to be a binary signal in the presence of additive independent identically distributed noise. The rectangular hysteresis loop models one of a number of rate independent repeaters in an optical communication link. The link is terminated by a binary discriminator that is tuned to a particular bit duration. The study shows that key calculations to compute the bit error probability can be performed by employing the formalism of discrete Markov chains.
Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation
Effendy Mohammad
2016-01-01
Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation
Operation, Modeling and Analysis of the Reverse Water Gas Shift Process
Whitlow, Jonathan E.
2001-01-01
The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.
Meeting the challenges of bringing a new base facility operation model to Gemini Observatory
Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot
2016-08-01
The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].
West, Graeme M., E-mail: graeme.west@strath.ac.uk; Wallace, Christopher J.; McArthur, Stephen D.J.
2014-06-01
Highlights: • Combining laboratory model outputs with operational data. • Isolation of single component from noisy data. • Better understanding of the health of graphite cores. • Extended plant operation through leveraging existing data sources. - Abstract: Installation of new monitoring equipment in Nuclear Power Plants (NPPs) is often difficult and expensive and therefore maximizing the information that can be extracted from existing monitoring equipment is highly desirable. This paper describes the process of combining models derived from laboratory experimentation with current operational plant data to infer an underlying measure of health. A demonstration of this process is provided where the fuel channel bore profile, a measure of core health, is inferred from data gathered during the refuelling process of an Advanced Gas-cooled Reactor (AGR) nuclear power plant core. Laboratory simulation was used to generate a model of an interaction between the fuel assembly and the core. This model is used to isolate a single frictional component from a noisy input signal and use this friction component as a measure of health to assess the current condition of the graphite bricks that comprise the core. In addition, the model is used to generate an expected refuelling response (the noisy input signal) for a given set of channel bore diameter measurements for either insertion of new fuel or removal of spent fuel, providing validation of the model. This benefit of this work is that it provides a greater understanding of the health of the graphite core, which is important for continued and extended operation of the AGR plants in the UK.
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Weimerskirch, Henri
2010-06-01
We present a new approach to modeling two-sex populations, using periodic, nonlinear two-sex matrix models. The models project the population growth rate, the population structure, and any ratio of interest (e.g., operational sex ratio). The periodic formulation permits inclusion of highly seasonal behavioral events. A periodic product of the seasonal matrices describes annual population dynamics. The model is nonlinear because mating probability depends on the structure of the population. To study how the vital rates influence population growth rate, population structure, and operational sex ratio, we used sensitivity analysis of frequency-dependent nonlinear models. In nonlinear two-sex models the vital rates affect growth rate directly and also indirectly through effects on the population structure. The indirect effects can sometimes overwhelm the direct effects and are revealed only by nonlinear analysis. We find that the sensitivity of the population growth rate to female survival is negative for the emperor penguin, a species with highly seasonal breeding behavior. This result could not occur in linear models because changes in population structure have no effect on per capita reproduction. Our approach is applicable to ecological and evolutionary studies of any species in which males and females interact in a seasonal environment.
Broström, G.; Carrasco, A.; Hole, L. R.; Dick, S.; Janssen, F.; Mattsson, J.; Berger, S.
2011-11-01
Oil spill modeling is considered to be an important part of a decision support system (DeSS) for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution), the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.
G. Broström
2011-11-01
Full Text Available Oil spill modeling is considered to be an important part of a decision support system (DeSS for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution, the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Zhu, Zhifan; Jung, Yoon C.; Jeong, Myeongsook; Kim, Hyounkyong; Oh, Eunmi; Hong, Sungkwon; Lee, Junwon
2016-01-01
integrated into NASA's Airspace Technology Demonstration-2 (ATD-2) project for technology demonstration of Integrated Arrival-Departure-Surface (IADS) operations at CLT. This study is a part of the international research collaboration between KAIA (Korea Agency for Infrastructure Technology Advancement), KARI (Korea Aerospace Research Institute) and NASA, which is being conducted to validate the effectiveness of SARDA concept as a controller decision support tool for departure and surface management of ICN. This paper presents the preliminary results of the collaboration effort. It includes investigation of the operational environment of ICN, data analysis for identification of the operational characteristics of the airport, construction and verification of airport simulation model using Surface Operations Simulator and Scheduler (SOSS), NASA's fast-time simulation tool.
FOGCAST: Probabilistic fog forecasting based on operational (high-resolution) NWP models
Masbou, M.; Hacker, M.; Bentzien, S.
2013-12-01
The presence of fog and low clouds in the lower atmosphere can have a critical impact on both airborne and ground transports and is often connected with serious accidents. The improvement of localization, duration and variations in visibility therefore holds an immense operational value. Fog is generally a small scale phenomenon and mostly affected by local advective transport, radiation, turbulent mixing at the surface as well as its microphysical structure. Sophisticated three-dimensional fog models, based on advanced microphysical parameterization schemes and high vertical resolution, have been already developed and give promising results. Nevertheless, the computational time is beyond the range of an operational setup. Therefore, mesoscale numerical weather prediction models are generally used for forecasting all kinds of weather situations. In spite of numerous improvements, a large uncertainty of small scale weather events inherent in deterministic prediction cannot be evaluated adequately. Probabilistic guidance is necessary to assess these uncertainties and give reliable forecasts. In this study, fog forecasts are obtained by a diagnosis scheme similar to Fog Stability Index (FSI) based on COSMO-DE model outputs. COSMO-DE I the German-focused high-resolution operational weather prediction model of the German Meteorological Service. The FSI and the respective fog occurrence probability is optimized and calibrated with statistical postprocessing in terms of logistic regression. In a second step, the predictor number of the FOGCAST model has been optimized by use of the LASSO-method (Least Absolute Shrinkage and Selection Operator). The results will present objective out-of-sample verification based on the Brier score and is performed for station data over Germany. Furthermore, the probabilistic fog forecast approach, FOGCAST, serves as a benchmark for the evaluation of more sophisticated 3D fog models. Several versions have been set up based on different
Gubreev, Gennady M; Latushkin, Yurii D
2011-04-30
We consider unbounded continuously invertible operators A, A{sub 0} on a Hilbert space H such that the operator A{sup -1}-A{sup -1}{sub 0} has finite rank. Assuming that {sigma}(A{sub 0})= nothing and the semigroup V{sub +}(t):= exp{l_brace}iA{sub 0}t{r_brace}, t{>=}0, is of class C{sub 0}, we state criteria under which the semigroups U{sub {+-}}(t):= exp{l_brace}{+-}iAt{r_brace}, t{>=}0, are also of class C{sub 0}. We give applications to the theory of mean-periodic functions. The investigation is based on functional models of non-selfadjoint operators and on the technique of matrix Muckenhoupt weights.
The effect of dietary fatty acids on post-operative inflammatory response in a porcine model
Langerhuus, Sine Nygaard; Jensen, Karin Hjelholt; Tønnesen, Else Kirstine
2012-01-01
The potential anti-inflammatory effects of dietary fish oil (FO) have been studied in numerous clinical trials. However, variation in lifestyle and morbidity among patients can be difficult to control. In the present study, the impact of a 3-week dietary pre-treatment with 10% (w/w) FO (n 28......), sunflower oil (SO, n 28), or animal fat (AF, n 28) was evaluated with respect to post-operative responses in inflammatory markers in a porcine model on aortic vascular prosthetic graft infection. In the early post-operative period (0 ...-operative response in a number of inflammatory markers was affected by FO, and this was most apparent compared with SO....
Bradney, D. R.; Evans, S. P.; Salles Pereira Da Costa, M.; Clausen, P. D.
2016-09-01
Small horizontal-axis wind turbines are likely to operate in a broad range of operating flow conditions, often in highly turbulent flow, due, in part, to their varied site placements. This paper compares the computational simulations of the performance of a 5 kW horizontal-axis wind turbine to detailed field measurements, with a particular focus on the impact of unsteady operating conditions on the drivetrain performance and generator output. Results indicate that the current Blade Element Momentum Theory based aerodynamic models under-predict the effect of high turbine yaw on the rotor torque, leading to a difference between predicted and measured shaft speed and power production. Furthermore, the results show discrepancies between the predicted instantaneous turbine yaw performance and measurements.
On Spectra of Linearized Operators for Keller-Segel Models of Chemotaxis
Dejak, S I; Ovchinnikov, Yu N; Sigal, I M
2011-01-01
We consider the phenomenon of collapse in the critical Keller-Segel equation (KS) which models chemotactic aggregation of micro-organisms underlying many social activities, e.g. fruiting body development and biofilm formation. Also KS describes the collapse of a gas of self-gravitating Brownian particles. We find the fluctuation spectrum around the collapsing family of steady states for these equations, which is instrumental in derivation of the critical collapse law. To this end we develop a rigorous version of the method of matched asymptotics for the spectral analysis of a class of second order differential operators containing the linearized Keller-Segel operators (and as we argue linearized operators appearing in nonlinear evolution problems). We explain how the results we obtain are used to derive the critical collapse law, as well as for proving its stability.
Dimension-seven operators in the standard model with right handed neutrinos
Bhattacharya, Subhaditya; Wudka, José
2016-09-01
In this article, we consider the standard model extended by a number of (light) right-handed neutrinos, and assume the presence of some heavy physics that cannot be directly produced, but can be probed by its low-energy effective interactions. Within this scenario, we obtain all the gauge-invariant dimension-7 effective operators, and determine whether each of the operators can be generated at tree level by the heavy physics, or whether it is necessarily loop generated. We then use the tree-generated operators, including those containing right-handed neutrinos, to put limits on the scale of new physics Λ using low-energy measurements. We also study the production of same-sign dileptons at the Large Hadron Collider and determine the constraints on the heavy physics that can be derived from existing data, as well as the reach in probing Λ expected from future runs of this collider.
Thekdi, Shital A; Santos, Joost R
2016-05-01
Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management.
Barnes, M; Dorland, W; Ernst, D R; Hammett, G W; Ricci, P; Rogers, B N; Schekochihin, A A; Tatsuno, T
2008-01-01
A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-Theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.
Mohamed Adil
2014-10-01
Full Text Available Public sector procurement should be a transparent and fair process. Strict legal requirements are enforced on public sector procurement to make it a standardised process. To make fair decisions on selecting suppliers, a practical method which adheres to legal requirements is important. The research that is the base for this paper aimed at identifying a suitable Multi-Criteria Decision Analysis (MCDA method for the specific legal and functional needs of the Maldivian Public Sector. To identify such operational requirements, a set of focus group interviews were conducted in the Maldives with public officials responsible for procurement decision making. Based on the operational requirements identified through focus groups, criteria-based evaluation is done on published MCDA methods to identify the suitable methods for e-procurement decision making. This paper describes the identification of the operational requirements and the results of the evaluation to select suitable decision models for the Maldivian context.
Availability modeling approach for future circular colliders based on the LHC operation experience
Niemi, Arto; Apollonio, Andrea; Gutleber, Johannes; Sollander, Peter; Penttinen, Jussi-Pekka; Virtanen, Seppo
2016-12-01
Reaching the challenging integrated luminosity production goals of a future circular hadron collider (FCC-hh) and high luminosity LHC (HL-LHC) requires a thorough understanding of today's most powerful high energy physics research infrastructure, the LHC accelerator complex at CERN. FCC-hh, a 4 times larger collider ring aims at delivering 10 - 20 ab-1 of integrated luminosity at 7 times higher collision energy. Since the identification of the key factors that impact availability and cost is far from obvious, a dedicated activity has been launched in the frame of the future circular collider study to develop models to study possible ways to optimize accelerator availability. This paper introduces the FCC reliability and availability study, which takes a fresh new look at assessing and modeling reliability and availability of particle accelerator infrastructures. The paper presents a probabilistic approach for Monte Carlo simulation of the machine operational cycle, schedule and availability for physics. The approach is based on best-practice, industrially applied reliability analysis methods. It relies on failure rate and repair time distributions to calculate impacts on availability. The main source of information for the study is coming from CERN accelerator operation and maintenance data. Recent improvements in LHC failure tracking help improving the accuracy of modeling of LHC performance. The model accuracy and prediction capabilities are discussed by comparing obtained results with past LHC operational data.
A novel model for extending international co-operation in science and education
DE BOER Sirp J.; QIU Ji-zhen(邱济真)
2004-01-01
In September 1994 the University of Twente, the Netherlands, and Zhejiang University, China, decided to cooperate in the field of science, education and management. After several visits of delegations from both sides it was considered worthwhile to explore further opportunities for mutual cooperation. The directors of international cooperation on each side jointly commissioned a project to investigate the potential in a systematic way and to establish further contacts where appropriate. This paper reports on the results of the research cum matching project.To reveal promising matches between multiple departments of both academic institutions a matching model for universities was designed. The study was carried out along two parallel lines. In the research line the theoretical framework was developed into a model for international university co-operation. Moreover, an analysis was carried out on internal, external and cultural aspects resulting in a set of thirty four influencing factors.In the matching line a total of seventy interviews were held in order to identify promising matches between units at both universities. This line resulted in eleven promising matches for further co-operation.The novel model appeared useful in analyzing the variety of factors and in developing matches between both universities. In the further implementation of the model the issues of "level of co-operation" and "top-down versus bottom-up" need to be addressed in more detail.
Analysis of an operator-differential model for magnetostrictive energy harvesting
Davino, D.; Krejčí, P.; Pimenov, A.; Rachinskii, D.; Visone, C.
2016-10-01
We present a model of, and analysis of an optimization problem for, a magnetostrictive harvesting device which converts mechanical energy of the repetitive process such as vibrations of the smart material to electrical energy that is then supplied to an electric load. The model combines a lumped differential equation for a simple electronic circuit with an operator model for the complex constitutive law of the magnetostrictive material. The operator based on the formalism of the phenomenological Preisach model describes nonlinear saturation effects and hysteresis losses typical of magnetostrictive materials in a thermodynamically consistent fashion. We prove well-posedness of the full operator-differential system and establish global asymptotic stability of the periodic regime under periodic mechanical forcing that represents mechanical vibrations due to varying environmental conditions. Then we show the existence of an optimal solution for the problem of maximization of the output power with respect to a set of controllable parameters (for the periodically forced system). Analytical results are illustrated with numerical examples of an optimal solution.
Miholca CONSTANTIN
2008-07-01
Full Text Available The paper presents a method of mathematical modelling of a solar converter using the results of full-scale testing. The advantages of analytical modelling method applied to photovoltaic systems are also presented; this is because the model parameters are directly measurable by data acquisition from the photovoltaic field consisting of photovoltaic cells type Z - (mono-crystalline photovoltaic. The model parameter also includes both the photovoltaic cell characteristics as a device (forming the photovoltaic field and the temperature influence on the photovoltaic field performance. The results of the photovoltaic model numerical simulation (PV to the major parameters conversion variation can also be used to design and assess the performance of low and medium - power photovoltaic systems operating in single regime (to supply the home appliances.
The Construction and Competitiveness of Operation Model of Agricultural Industrial Cluster
2011-01-01
Through reviewing the viewpoints of former scholars, the connotation and features of supply chain of agricultural industrial cluster are introduced. The agricultural industrial cluster model constituted by core network and supporting network is constructed. Three operation models of this kind of supply chain is described: the model takes wholesale market of agricultural products as the core; the model take pillar industries of agricultural industrialization as core; model takes the chains of retail enterprises as core. The competitiveness of agricultural industrial cluster is researched. The research assumes that the competiveness of supply chain of agricultural industrial cluster is mainly represented to make the agricultural industrial cluster to acquire more capabilities in terms of innovation and knowledge sharing capability, resource allocation capability, agile market adaptability and distinct value creation capability.
Water Resources Operation and Management Model and Its Simulation Process Research
MA Bin; XIE Jian-cang; ZHANG Yong-jin; SUN Yi; WANG Ni
2001-01-01
Based on the status quantity of water resources in Xi′an region, a commentary on many math models is given for water resources operation and management, and the visual model is provided to solve practical problems. In this model, the information for decision is visible in GIS (Geographic Information Systems) and topological figures. With object orientation methods, the objects are described in proprieties,methods, relations and time periods. The simulation process of the model is developed with Delphi and MapInfo, and the real decision scheme could be examined and practice decision process can be simulated from which. Decision analysis conducted from visual conditions is believable. The exploration to visual model is a beginning of practice research, much more study of which still needs to do.
High performance algorithms in the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system
Coats, C.J. Jr. [MCNC Environmental Programs, Research Triangle Park, NC (United States)
1996-12-31
As part of MCNC`s Environmental Decision Support System (EDSS) project, the author has constructed the area-source and point source (exclusive of plume rise) emissions model components of a new emissions model--the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System using the new paradigm. As of this August 1995 writing, the author is working on a generalized-vertical-coordinate formulation of plume rise (so that the model can be used for multiple AQMs--UAM, ROM, RADM, RAMS, and his own EDSS AQMs), and plan to start work soon on the mobile and biogenic emissions components. The initial prototype takes the same input files as EPS, but has extensions such as time zone support for each source to support regional modeling. For each category of emissions, SMOKE splits into specific components.
Research on Hydrodynamics Model Test for Deepsea Open-Framed Remotely Operated Vehicle
FAN Shi-bo; LIAN Lian; REN Ping
2012-01-01
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm.The scaled model of ROV was constructed by 1∶ 1.6.Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test.And dynamics model was derived as a set of equations,describing nonlinear and coupled 5-DOF spatial motions.Rotation control motion was simulated to verify spatial model proposed.Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment,and accomplish some more challengeable and practical missions.
Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela
2015-05-17
The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of
Brito, David; Campuzano, F. J.; Sobrinho, J.; Fernandes, R.; Neves, R.
2015-12-01
River discharges and loads are essential inputs to coastal seas, and thus for coastal seas modelling, and their properties are the result of all activities and policies carried inland. For these reasons main rivers were object of intense monitoring programs having been generated some important amount of historical data. Due to the decline in the Portuguese hydrometric network and in order to quantify and forecast surface water streamflow and nutrients to coastal areas, the MOHID Land model was applied to the Western Iberia Region with a 2 km horizontal resolution and to the Iberian Peninsula with 10 km horizontal resolution. The domains were populated with land use and soil properties and forced with existing meteorological models. This approach also permits to understand how the flows and loads are generated and to forecast their values which are of utmost importance to perform coastal ocean and estuarine forecasts. The final purpose of the implementation is to obtain fresh water quantity and quality that could be used to support management decisions in the watershed, reservoirs and also to estuaries and coastal areas. A process oriented model as MOHID Land is essential to perform this type of simulations, as the model is independent of the number of river catchments. In this work, the Mohid Land model equations and parameterisations were described and an innovative methodology for watershed modelling is presented and validated for a large international river, the Tagus River, and the largest national river of Portugal, the Mondego River. Precipitation, streamflow and nutrients modelling results for these two rivers were compared with observations near their coastal outlet in order to evaluate the model capacity to represent the main watershed trends. Finally, an annual budget of fresh water and nutrient transported by the main twenty five rivers discharging in the Portuguese coast is presented.