Modeling microscale heat transfer using Calore.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley
2005-09-01
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.
Microscale Heat Conduction Models and Doppler Feedback
Energy Technology Data Exchange (ETDEWEB)
Hawari, Ayman I. [North Carolina State Univ., Raleigh, NC (United States); Ougouag, Abderrafi [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-01-22
The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.
Microscale and nanoscale heat transfer fundamentals and engineering applications
Sobhan, CB
2008-01-01
Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Macro- to microscale heat transfer the lagging behavior
Tzou, D Y
2014-01-01
Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behav
Microscale heat transfer in a free jet against a plane surface
Shu, Jian-Jun
2014-01-01
A new two-layer model has been proposed to study microscale heat transfer associated with a developing flow boundary layer. As an example, a cold, microscale film of liquid impinging on an isothermal hot, horizontal surface has been investigated. The boundary layer is divided into two regions: a micro layer at microscale away from the surface and a macro layer at macroscale away from the surface. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for microscale film flow. The approximate solution may provide a valuable basis for assessing microscale flow and heat transfer in more complex settings.
Modeling of micro-scale thermoacoustics
Offner, Avshalom; Ramon, Guy Z.
2016-05-01
Thermoacoustic phenomena, that is, onset of self-sustained oscillations or time-averaged fluxes in a sound wave, may be harnessed as efficient and robust heat transfer devices. Specifically, miniaturization of such devices holds great promise for cooling of electronics. At the required small dimensions, it is expected that non-negligible slip effects exist at the solid surface of the "stack"-a porous matrix, which is used for maintaining the correct temporal phasing of the heat transfer between the solid and oscillating gas. Here, we develop theoretical models for thermoacoustic engines and heat pumps that account for slip, within the standing-wave approximation. Stability curves for engines with both no-slip and slip boundary conditions were calculated; the slip boundary condition curve exhibits a lower temperature difference compared with the no slip curve for resonance frequencies that characterize micro-scale devices. Maximum achievable temperature differences across the stack of a heat pump were also calculated. For this case, slip conditions are detrimental and such a heat pump would maintain a lower temperature difference compared to larger devices, where slip effects are negligible.
Modeling of micro-scale thermoacoustics
Energy Technology Data Exchange (ETDEWEB)
Offner, Avshalom [The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Ramon, Guy Z., E-mail: ramong@technion.ac.il [Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)
2016-05-02
Thermoacoustic phenomena, that is, onset of self-sustained oscillations or time-averaged fluxes in a sound wave, may be harnessed as efficient and robust heat transfer devices. Specifically, miniaturization of such devices holds great promise for cooling of electronics. At the required small dimensions, it is expected that non-negligible slip effects exist at the solid surface of the “stack”-a porous matrix, which is used for maintaining the correct temporal phasing of the heat transfer between the solid and oscillating gas. Here, we develop theoretical models for thermoacoustic engines and heat pumps that account for slip, within the standing-wave approximation. Stability curves for engines with both no-slip and slip boundary conditions were calculated; the slip boundary condition curve exhibits a lower temperature difference compared with the no slip curve for resonance frequencies that characterize micro-scale devices. Maximum achievable temperature differences across the stack of a heat pump were also calculated. For this case, slip conditions are detrimental and such a heat pump would maintain a lower temperature difference compared to larger devices, where slip effects are negligible.
Microscale Waste Heat Driven Cooling System
2012-05-02
to the Inter-Agency Power Group Mechanical Working Group Meeting 2012 about the ammonia-water absorption chiller technology demonstrator developed by...Development and Engineering Center is provided. 15. SUBJECT TERMS absorption ; heat actuated cooling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...for a Sustainable Future Sustainable Products for a Sustainable Future Acknowledgments US Army - CERDEC Smaller Lighter Co-Generation & Absorption
Kim, J.; Bae, S. W.; Whitten, M. W.; Mullen, J. D.; Quine, R. W.; Kalkur, T. S.
1999-01-01
Two systems have been developed to study boiling heat transfer on the microscale. The first system utilizes a 32 x 32 array of diodes to measure the local temperature fluctuations during boiling on a silicon wafer heated from below. The second system utilizes an array of 96 microscale heaters each maintained at constant surface temperature using electronic feedback loops. The power required to keep each heater at constant temperature is measured, enabling the local heat transfer coefficient to be determined. Both of these systems as well as some preliminary results are discussed.
Lin, Shih-Lung; Lin, Jehnming
2007-02-01
The characteristics of the supersonic flow of the laser heating technique for producing micro-scale metallic particles were investigated in this study. A numerical model was established to predict the flow fields and particle trajectories leaving a spray nozzle with shock wave effects. The compressible flow of the shock waves and the trajectories of particles in diameters of 1-20 μm were simulated and compared with the flow visualization. In the experiment, a pulsed Nd-YAG laser was used as heat source on a carbon steel target within the nozzle, and the carbon steel particles were ejected by high-pressure air. The result shows that the shock wave structures were generated at various entrance pressures, and there is a significant increase in the amount of carbon steel particles and the spraying angles by increasing the entrance air pressure.
Characterizing the effects of scale and heating rate on micro-scale explosive ignition criteria.
Energy Technology Data Exchange (ETDEWEB)
Hafenrichter, Everett Shingo; Pahl, Robert J.
2005-01-01
Laser diode ignition experiments were conducted in an effort to characterize the effects of scale and heating rate on micro-scale explosive ignition criteria. Over forty experiments were conducted with various laser power densities and laser spot sizes. In addition, relatively simple analytical and numerical calculations were performed to assist with interpretation of the experimental data and characterization of the explosive ignition criteria.
Influence of microscale in snow distributed modelling in semiarid regions
Pimentel Leiva, Rafael
2015-01-01
This work focuses on the importance of the microscale snow distribution in the modelling of the snow dynamics in semiarid regions. Snow over these areas has particular features that further complicate its measuring, monitoring and modelling (e.g. several snowmelt cycles throughout the year and a very heterogeneous distribution). Most extended GIS-based calculation of snowmelt/accumulation models must deal with non-negligible scales effects below the cell size, which may result ...
Microscale electromagnetic heating in heterogeneous energetic materials based on X-ray CT imaging
Kort-Kamp, W J M; Ionita, A; Glover, B B; Duque, A L Higginbotham; Perry, W L; Patterson, B M; Dalvit, D A R; Moore, D S
2015-01-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on X-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations, to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder meso-structures, and compare the heating rate for various binder systems.
Genetic Algorithm Based Microscale Vehicle Emissions Modelling
Directory of Open Access Journals (Sweden)
Sicong Zhu
2015-01-01
Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.
Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage
Energy Technology Data Exchange (ETDEWEB)
Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)
2015-09-30
The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).
An experimental study on micro-scale flow boiling heat transfer
Energy Technology Data Exchange (ETDEWEB)
Tibirica, Cristiano Bigonha; Ribatski, Gherhardt [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica
2009-07-01
In this paper, new experimental flow boiling heat transfer results in micro-scale tubes are presented. The experimental data were obtained in a horizontal 2.32 mm I.D. stainless steel tube with heating length of 464 mm, R134a as working fluid, mass velocities ranging from 50 to 600 kg/m{sup 2}s, heat flux from 5 to 55 kW/m{sup 2}, exit saturation temperatures of 22, 31 and 41 deg C, and vapor qualities from 0.05 to 0.98. Flow pattern characterization was also performed from images obtained by high speed filming. Heat transfer coefficient results from 2 to 14 kW/m{sup 2}K were measured. It was found that the heat transfer coefficient is a strong function of the saturation pressure, heat flux, mass velocity and vapor quality. The experimental data were compared against the following micro-scale flow boiling predictive methods from the literature: Saitoh et al., Kandlikar, Zhang et al. and Thome et al. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Though not satisfactory, Saitoh et al. worked the best and was able of capturing most of the experimental heat transfer trends. (author)
Modeling of microscale variations in methane fluxes
Energy Technology Data Exchange (ETDEWEB)
Kettunen, A.
2002-07-01
The current study analyzes the different modes of variation in methane fluxes from different microsites of a boreal mire. The results emphasize the importance of microsite characteristics, water table and vegetation cover for methane fluxes. Water level affects the moisture and oxygen profiles in peat matrix which are reflected to methane production and oxidation rates and the corresponding microbial populations. Vascular plants promote methane production by providing substrates in the form of root exudates and fine root litter, enhance methane oxidation by transporting oxygen to water saturated peat layers and accelerate methane transport by liberating methane from peat to the atmosphere via the aerenchymous tissue. The model presented in this study connects the methane fluxes to the seasonal photosynthetic cycle of plants at the microsite level while the thermal and hydrological conditions in peat are used as an operational framework. Overall, the model dynamically combines the microbial processes in peat to changing environmental factors in the level of peatland ecosystem. Sensitivity analysis of the model reveals the importance of substrate supply to methane fluxes. Furthermore, the model outcome is sensitive to increased capability of the vascular plants to transport oxygen downwards. Lack of oxygen and partly methane keep methane oxidation at a very low level. Any changes in model parameters or environmental conditions that compensate for these lacks have a remarkable decreasing effect on simulated flux. Simulated methane flux decreases considerably if the duration of simulated dry period increases, threshold for a dramatic change lying between 4 and 6 weeks of drought. Increase in air temperature enhances methane flux especially if the effect of increased temperature on gross primary production is taken into account. (orig.)
Dutz, Silvio; Hergt, Rudolf
2013-12-01
In this review article we present basic principles of magnetically induced heat generation of magnetic nanoparticles for application in magnetic particle hyperthermia. After explanation of heating mechanisms, the role of particle-particle as well as particle-tissue interactions is discussed with respect to achievable heating power of the particles inside the tumour. On the basis of heat transfer theory at the micro-scale, the balance between generated and dissipated heat inside the tumour and the resulting damaging effects for biological tissue is examined. The heating behaviour as a function of tumour size is examined in combination with feasible field strength and frequency. Numerical calculations and experimental investigations are used to show the lower tumour size limit for tumour heating to therapeutically suitable temperatures. In summary, this article illuminates practical aspects, limitations, and the state of the art for the application of magnetic heating in magnetic particle hyperthermia as thermal treatment of small tumours.
Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.
2017-01-01
Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.
Microscale flow and heat transfer between rotating disks
Energy Technology Data Exchange (ETDEWEB)
Jiji, Latif M., E-mail: jiji@ccny.cuny.ed [Department of Mechanical Engineering, City College of the City University of New York, New York, NY 10031 (United States); Ganatos, Peter, E-mail: ganatos@ccny.cuny.ed [Department of Mechanical Engineering, City College of the City University of New York, New York, NY 10031 (United States)
2010-08-15
In this paper we consider steady laminar flow and heat transfer generated by two infinite parallel disks separated by a gas-filled micro-gap {delta}. One disk rotates with angular velocity {Omega} and the second with angular velocity s{Omega}. The analysis takes into consideration velocity slip, temperature jump, rarefaction and dissipation. A solution based on similarity transformation is obtained and used to examine the effects of the governing parameters on the velocity field, temperature distribution, disks' torque and power, and Nusselt number. The solution requires numerical integration of the resulting coupled ordinary non-linear differential equations. An exact analytical solution is obtained for the limiting case of small Reynolds numbers.
A Microscale Model for Ausferritic Transformation of Austempered Ductile Irons
Boccardo, Adrián D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.
2017-01-01
This paper presents a new metallurgical model for the ausferritic transformation of ductile cast iron. The model allows predicting the evolution of phases in terms of the chemical composition, austenitization and austempering temperatures, graphite nodule count, and distribution of graphite nodule size. The ferrite evolution is predicted according to the displacive growth mechanism. A representative volume element is employed at the microscale to consider the phase distributions, the inhomogeneous austenite carbon content, and the nucleation of ferrite subunits at the graphite nodule surface and at the tips of existing ferrite subunits. The performance of the model is evaluated by comparison with experimental results. The results indicate that the increment of the ausferritic transformation rate, which is caused by increments of austempering temperature and graphite nodule count, is adequately represented by this model.
Micro-scale heat-exchangers for Joule-Thomson cooling.
Energy Technology Data Exchange (ETDEWEB)
Gross, Andrew John
2014-01-01
This project focused on developing a micro-scale counter flow heat exchangers for Joule-Thomson cooling with the potential for both chip and wafer scale integration. This project is differentiated from previous work by focusing on planar, thin film micromachining instead of bulk materials. A process will be developed for fabricating all the devices mentioned above, allowing for highly integrated micro heat exchangers. The use of thin film dielectrics provides thermal isolation, increasing efficiency of the coolers compared to designs based on bulk materials, and it will allow for wafer-scale fabrication and integration. The process is intended to implement a CFHX as part of a Joule-Thomson cooling system for applications with heat loads less than 1mW. This report presents simulation results and investigation of a fabrication process for such devices.
Shen, C H; Gau, C
2004-07-30
The design and fabrication for a thermal chip with an array of temperature sensors and heaters for study of micro-jet impingement cooling heat transfer process are presented. This thermal chip can minimize the heat loss from the system to the ambient and provide a uniform heat flux along the wall, thus local heat transfer processes along the wall can be measured and obtained. The fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. In addition, micro-jet impingement cooling experiments are performed to obtain the micro-scale local heat transfer Nusselt number along the wall. Flow visualization for the micro-impinging jet is also made. The experimental results indicate that both the micro-scale impinging jet flow structure and the heat transfer process along the wall is significantly different from the case of large-scale jet impingement cooling process.
Mack, Simone; Hussein, Mohamed A.; Becker, Thomas
2011-12-01
Foam materials are multicomponent and multiphase systems, where under the influence of heat several temperature-dependent processes occur. In cereal-based foams these processes include protein denaturation, starch gelatinization, phase changes such as water evaporation, and structural changes covering bubble expansion and coalescence. This research focuses on modeling heat transfer processes in cereal foams under thermal treatment from a microstructural point of view. The complex thermo-fluidic processes inside the foam are considered for the solid and the gaseous phase, respectively. Additionally, the microstructural foam characteristics are modified to establish their effect on the overall heat transfer rate, and the micro-scale dynamics are introduced by means of lattice Boltzmann methods (LBM). The objective of this study is to deliver sophisticated insight into the impact of structural properties, due to the fact that optimized parameters would help to improve the bakery industry by means of reduction in baking time, energy, and costs. The results show that altering the porosity and/or the interconnectivity of gas pores in bread crumb influences the overall heat transfer. In comparison to foams having a porosity of 55% and discrete pores, the impact of coalescence exhibits a reduction of baking time of about 2 min. Increasing the porosity about 20% results in reducing the baking time about 7 min.
Thermodynamics at the microscale: from effective heating to the Brownian Carnot engine
Dinis, L.; Martínez, I. A.; Roldán, É.; Parrondo, J. M. R.; Rica, R. A.
2016-05-01
We review a series of experimental studies of the thermodynamics of nonequilibrium processes at the microscale. In particular, in these experiments we studied the fluctuations of the thermodynamic properties of a single optically-trapped microparticle immersed in water and in the presence of external random forces. In equilibrium, the fluctuations of the position of the particle can be described by an effective temperature that can be tuned up to thousands of Kelvin. Isothermal and non-isothermal thermodynamic processes that also involve changes in a control parameter were implemented by controlling the effective temperature of the particle and the stiffness of the optical trap. Since truly adiabatic processes are unfeasible in colloidal systems, mean adiabatic protocols where no average heat is exchanged between the particle and the environment are discussed and implemented. By concatenating isothermal and adiabatic protocols, it is shown how a single-particle Carnot engine can be constructed. Finally, we provide an in-depth study of the fluctuations of the energetics and the efficiency of the cycle.
Offner, Avshalom; Ramon, Guy Z.
2016-11-01
Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
Multiscale modeling of microscale fiber reinforced composites with nano-engineered interphases
Kundalwalal, S I; Wardle, B L
2015-01-01
This study is focused on the mechanical properties and stress transfer behavior of multiscale composite containing nano- and micro-scale fillers. A novel concept has been proposed to exploit the remarkable mechanical properties of carbon nanotubes (CNTs) to improve the stress transfer through the interphases, enabling their additional functionalities not available otherwise at the microscale. The distinctive feature of construction of this composite is such that CNTs are dispersed around the microscale fiber to modify fiber-matrix interfacial adhesion. Accordingly, models are developed for hybrid composites. First, molecular dynamics simulations in conjunction with the Mori-Tanaka method are used to determine the effective elastic properties of nano-engineered interphase layer comprised of CNT bundles and epoxy. Subsequently, a micromechanical pull-out model is developed for the resulting multiscale composite and its stress transfer behavior is studied for different orientations of CNT bundles. The current pu...
Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun
2016-04-01
Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.
Slip-model Performance for Underexpanded Micro-scale Rocket Nozzle Flows
Institute of Scientific and Technical Information of China (English)
José A. Morí(n)igo; José Hermida Quesada; Francisco Caballero Requena
2007-01-01
In aerospace Micro-ElectroMechanical Systems (MEMS), the characteristic length scale of the flow approaches the molecular mean free path, thus invalidating the continuum description and enforcing the use of particle methods, like the Direct Simulation Monte Carlo (DSMC), to deal with the non-equilibrium regions. Within the slip-regime (0.01＜Kn＜～0.1) both approaches, continuum and particle-based, seem to behave well in terms of accuracy. The present study summarizes the implementation and results obtained with a 2nd-order slip boundary condition in a Navier-Stokes solver to address the rarefaction near the nozzle walls. Its assessment and application to a cold-gas micro-scale conical nozzle of 300μm throat diameter, discharging into the low-pressure freestream,constitutes the major aim of the work. The slip-model incorporates the velocity slip with thermal creep and temperature jump, thus permitting to deal with non-isothermal flows as well. Results show that the gas experiences an intense rarefaction in the lip vicinity, pointing to the limits of model validity. Furthermore, a strong Mach deceleration is observed, attributed to the rather thick subsonic boundary layer and supersonic bulk heating caused by the viscous dissipation, in contrast with the expansion to occur in large rocket nozzles during underexpanded operation.
Institute of Scientific and Technical Information of China (English)
Wei-zhong Dai; Raja Nassar
2003-01-01
Heat transport at the microscale is of vital importance in microtechnology applications.The heat transport equation is different from the traditional heat transport equation sincea second order derivative of temperature with respect to time and a third-order mixedderivative of temperature with respect to space and time are introduced. In this study,we develop a hybrid finite element-finite difference (FE-FD) scheme with two levels intime for the three dimensional heat transport equation in a cylindrical thin film with sub-microscale thickness. It is shown that the scheme is unconditionally stable. The scheme isthen employed to obtain the temperature rise in a sub-microscale cylindrical gold film. Themethod can be applied to obtain the temperature rise in any thin films with sub-microscalethickness, where the geometry in the planar direction is arbitrary.
Zhou, Chuanle; Birner, S.; Tang, Yang; Heinselman, K.; Grayson, M.
2013-05-01
Whereas thermoelectric performance is normally limited by the figure of merit ZT, transverse thermoelectrics can achieve arbitrarily large temperature differences in a single leg even with inferior ZT by being geometrically tapered. We introduce a band-engineered transverse thermoelectric with p-type Seebeck in one direction and n-type orthogonal, resulting in off-diagonal terms that drive heat flow transverse to electrical current. Such materials are advantageous for microscale devices and cryogenic temperatures—exactly the regimes where standard longitudinal thermoelectrics fail. InAs/GaSb type II superlattices are shown to have the appropriate band structure for use as a transverse thermoelectric.
Cora, Ömer N.; Usta, Yusuf; Koç, Muammer
2009-04-01
Integrated and compact products necessitate the use of advanced thermal management systems with reduced footprint and cost as well as increased efficiency. Micro-scale, porous and modulated (i.e. channels, pyramids, etc) surfaces offer increased surface area for a given volume and lead to two-phase heat transfer conditions with efficiency enhancements up to 300%. Such surfaces made of copper powders were demonstrated to be quite effective by several researchers after they were produced in controlled lab environments. Similar surfaces made of high temperature resistant materials such as stainless steel, nickel and titanium can also be used in fuel processor, SOFC and PEM fuel cell applications as bipolar/interconnect plates. However, their fabrication under mass-production conditions for marketable and cost-effective products requires well-established process parameters. In this study, warm compaction of copper powders onto thin copper solid substrates was experimented with under different compaction pressure (15-50 MPa), temperature (350-500 °C) and surface geometry (flat, large and small channeled) parameters using a design of experiment (DOE) approach to determine the proper process conditions. Porosity and bonding strength of compacted samples were measured to characterize their feasibility for compact and/or micro-scale heat/mass transfer applications. Results showed that a minimum 350 °C temperature and 15 MPa pressure level is necessary to obtain sound porous and micro-channeled surface layers. It was also found that at higher pressure levels (50 MPa), fabrication of micro-scale surface structures is highly repeatable with enhanced bonding strength characteristics. DOE findings will be used to establish proper process conditions to produce such porous surfaces using a continuous roll compaction process in the future.
DEFF Research Database (Denmark)
Mortensen, Niels Gylling; Yang, Z.; Hansen, Jens Carsten
As part of the “Meso-Scale and Micro-Scale Modelling in China” project, also known as the CMA component of the Sino-Danish Wind Energy Development Programme (WED), microscale modelling and analyses have been carried out for 12 meteorological stations in NE China. Wind speed and direction data from...... constructed from Google Earth satellite imagery. The maps have been compared to Chinese topographical maps and adjusted accordingly. Summaries are given of the data measured at the 12 masts for the reference period 2009. The main result of the microscale modelling is an observational wind atlas for NE China...
Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model
Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen
2016-01-01
To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293
Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model
Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen
2016-09-01
To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results.
Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen
2015-10-01
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance.
Mesoscale to microscale wind farm flow modeling and evaluation
DEFF Research Database (Denmark)
Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick
2017-01-01
of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research...... design tools and meteorological models. The challenge is how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental...... requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so...
Energy Technology Data Exchange (ETDEWEB)
Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)
2012-01-01
A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.
Modelling of a CFD Microscale Model and Its Application in Wind Energy Resource Assessment
Directory of Open Access Journals (Sweden)
Yue Jie-shun
2016-01-01
Full Text Available The prediction of a wind farm near the wind turbines has a significant effect on the safety as well as economy of wind power generation. To assess the wind resource distribution within a complex terrain, a computational fluid dynamics (CFD based wind farm forecast microscale model is developed. The model uses the Reynolds Averaged Navier-Stokes (RANS model to characterize the turbulence. By using the results of Weather Research and Forecasting (WRF mesoscale weather forecast model as the input of the CFD model, a coupled model of CFD-WRF is established. A special method is used for the treatment of the information interchange on the lateral boundary between two models. This established coupled model is applied in predicting the wind farm near a wind turbine in Hong Gang-zi, Jilin, China. The results from this simulation are compared to real measured data. On this basis, the accuracy and efficiency of turbulence characterization schemes are discussed. It indicates that this coupling system is easy to implement and can make these two separate models work in parallel. The CFD model coupled with WRF has the advantage of high accuracy and fast speed, which makes it valid for the wind power generation.
Empirical slip and viscosity model performance for microscale gas flows.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Boyd, Iain D. (University of Michigan, Ann Arbor, MI); McNenly, Matthew J. (University of Michigan, Ann Arbor, MI)
2004-07-01
For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L{sub 2} error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger.
Solidification analysis of micro-scale metallic particles in the laser supersonic heating technique
Lin, Shih-Lung; Lin, Jehnming
2004-04-01
In this paper, the authors analysed the solidification phenomenon in the laser supersonic heating technique used for producing metallic particles. A mathematical model was established to predict the velocity, temperature and solidification situation of metallic particles leaving a spray nozzle. The numerical analysis method was used to simulate the flow field structure of shock waves and to proceed with related experiment. In the experiment, a pulsed Nd-YAG laser was used as the heat source on a carbon steel target within the nozzle, and carbon steel particles were ejected by high pressure air. The solidification problem of carbon steel particles with radii of 1-50 µm in the compressible flow field was calculated and compared with experimental results. The result shows that the shock wave flow fields are generated at different entrance pressures (3-7 bar), and there is no significant difference in the radii of carbon steel particles produced by a fixed laser energy; however, in the flow field without the shock wave effect, the cooling effect is less evident in the solidification process.
Rule, T. D.; Kim, J.; Kalkur, T. S.
1998-01-01
Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.
A Microscale Model for Combined CO2 Diffusion and Photosynthesis in Leaves
Ho, Quang Tri; Verboven, Pieter; Yin, Xinyou; Struik, Paul C.; Nicolaï, Bart M.
2012-01-01
Transport of CO2 in leaves was investigated by combining a 2-D, microscale CO2 transport model with photosynthesis kinetics in wheat (Triticum aestivum L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO2. The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO2 levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO2 concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO2 diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure. PMID:23144870
Modeling wall effects in a micro-scale shock tube using hybrid MD-DSMC algorithm
Watvisave, D. S.; Puranik, B. P.; Bhandarkar, U. V.
2016-07-01
Wall effects in a micro-scale shock tube are investigated using the Direct Simulation Monte Carlo method as well as a hybrid Molecular Dynamics-Direct Simulation Monte Carlo algorithm. In the Direct Simulation Monte Carlo simulations, the Cercignani-Lampis-Lord model of gas-surface interactions is employed to incorporate the wall effects, and it is shown that the shock attenuation is significantly affected by the choice of the values of tangential momentum accommodation coefficient. A loosely coupled Molecular Dynamics-Direct Simulation Monte Carlo approach is then employed to demonstrate incomplete accommodation in micro-scale shock tube flows. This approach uses fixed values of the accommodation coefficients in the gas-surface interaction model, with their values determined from a separate dynamically similar Molecular Dynamics simulation. Finally, a completely coupled Molecular Dynamics-Direct Simulation Monte Carlo algorithm is used, wherein the bulk of the flow is modeled using Direct Simulation Monte Carlo, while the interaction of gas molecules with the shock tube walls is modeled using Molecular Dynamics. The two regions are separate and coupled both ways using buffer zones and a bootstrap coupling algorithm that accounts for the mismatch of the number of molecules in both regions. It is shown that the hybrid method captures the effect of local properties that cannot be captured using a single value of accommodation coefficient for the entire domain.
Bigham, Sajjad; Moghaddam, Saeed
2015-12-01
For nearly two decades, the microchannel flow boiling heat transfer process has been the subject of numerous studies. A plethora of experimental studies have been conducted to decipher the underlying physics of the process, and different hypotheses have been presented to describe its microscopic details. Despite these efforts, the underlying assumptions of the existing hypothesis have remained largely unexamined. Here, using data at the microscopic level provided by a unique measurement approach, we deconstruct the boiling heat transfer process into a set of basic mechanisms and explain their role in the overall surface heat transfer. We then show how this knowledge allows to relate the bubble growth and flow dynamics to the surface heat flux.
2010-05-11
oil based suspension in the miniaturized tests. 45 5. Endnotes 1 Incropera ...Microchannels,” Proceedings of ASME Thermal Engineering Summer Heat Transfer Conference. 10 Incropera , F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A.S...Pogrebnyak,, 2002, “Effect of coarse particles on the heat transfer in a particle-laden turbulent boundary layer,” Int. J. Multiph. Flow, 28,12. Incropera
A particle based model to simulate microscale morphological changes of plant tissues during drying.
Karunasena, H C P; Senadeera, W; Brown, R J; Gu, Y T
2014-08-07
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Coupled Macro and Micro-Scale Modeling of Polyurethane Foaming Processes
Directory of Open Access Journals (Sweden)
Stephanie Geier
2014-09-01
Full Text Available Polyurethane foam is used for manufacturing different kinds of products, such as refrigerators, car dashboards or steering wheels. First, we developed a macro-scale simulation tool that is able to predict foam flow in such complex molds. Depending on the location within a product, final properties of polyurethane foams may vary significantly. These properties (e.g. thermal conductivity or impact strength are strongly dependent on local foam structure. Modeling complex geometries like refrigerators completely on bubble scale is neither possible nor would it be efficient. The computational effort would be enormous. Therefore, we developed a micro-scale model describing bubble growth and the evolution of the foam microstructure in polyurethane foams considering a limited number of bubbles in a representative volume. Finally, we coupled our macro and micro-scale simulation approaches. For that purpose, we introduced tracer particles into our mold filling simulations. We are able to record information about density and temperature changes or varying flow conditions along particle trajectories. This information is then used to set up corresponding simulations on bubble scale. Through this coupling, a basis for studying the evolution of the local foam microstructure in complex geometries is provided.
Coupled Macro and Micro-Scale Modeling of Polyurethane Foaming Processes
Directory of Open Access Journals (Sweden)
Stephanie Geier
2014-12-01
Full Text Available Polyurethane foam is used for manufacturing different kinds of products, such as refrigerators, car dashboards or steering wheels. First, we developed a macro-scale simulation tool that is able to predict foam flow in such complex molds. Depending on the location within a product, final properties of polyurethane foams may vary significantly. These properties (e.g. thermal conductivity or impact strength are strongly dependent on local foam structure. Modeling complex geometries like refrigerators completely on bubble scale is neither possible nor would it be efficient. The computational effort would be enormous. Therefore, we developed a micro-scale model describing bubble growth and the evolution of the foam microstructure in polyurethane foams considering a limited number of bubbles in a representative volume. Finally, we coupled our macro and micro-scale simulation approaches. For that purpose, we introduced tracer particles into our mold filling simulations. We are able to record information about density and temperature changes or varying flow conditions along particle trajectories. This information is then used to set up corresponding simulations on bubble scale. Through this coupling, a basis for studying the evolution of the local foam microstructure in complex geometries is provided.
Analysis of the three dimensional heat conduction in nano- or microscale
Heidari, H.; Zwart, Heiko J.; Malek, Alaeddin
The Dual-Phase-Lagging (DPL) equation is formulated as an abstract differential equation. In the absence of a heat source term the DPL equation with homogeneous boundary conditions generates a contraction semigroup. The exact expression of the semigroup is achieved. It is proved that the associated
Analysis of the three dimensional heat conduction in nano- or microscale
Heidari, H.; Zwart, Heiko J.; Malek, Alaeddin
2010-01-01
The Dual-Phase-Lagging (DPL) equation is formulated as an abstract differential equation. In the absence of a heat source term the DPL equation with homogeneous boundary conditions generates a contraction semigroup. The exact expression of the semigroup is achieved. It is proved that the associated
Efficient protocols for Stirling heat engines at the micro-scale
Muratore-Ginanneschi, Paolo; Schwieger, Kay
2015-10-01
We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.
Strain Sensor of Carbon Nanotubes in Microscale: From Model to Metrology
Directory of Open Access Journals (Sweden)
Wei Qiu
2014-01-01
Full Text Available A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.
Strain sensor of carbon nanotubes in microscale: from model to metrology.
Qiu, Wei; Li, Shi-Lei; Deng, Wei-Lin; Gao, Di; Kang, Yi-Lan
2014-01-01
A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.
From micro-scale 3D simulations to macro-scale model of periodic porous media
Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca
2015-04-01
In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a
Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader
2015-11-01
This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.
Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng
2016-08-01
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi
2016-08-01
The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.
Steady-State Microscale Pumping Using the Marangoni Effect: A Model Problem
Debar, Michael; Liepmann, Dorian
2000-11-01
A bubble in an infinite medium under a temperature gradient produces a net flow in the bubble’s frame of reference under certain conditions. Varying the surface tension at an interface between two fluids results in an interfacial velocity. In low Reynolds’ number flows, the interface generates a shear flow where velocity decreases as 1/r, causing a net fluid motion similar to that of a low Re dipole. A model problem (in which both the Reynolds and Peclet numbet are small) demonstrates a microscale pump powered by a thermal gradient. The Reynolds number constraint reduces the magnitude of the non-linear term in the Navier-Stokes and energy equations, while the low Peclet number implies a dominance of conduction over convection, de-coupling the two equations. An exact solution for a bubble in an infinite medium is presented and analyzed. The non-dimensional solution is examined for the case of air and water, and performance criteria are predicted. Physical limitations of the model are explored.
Understanding Deep Bed Filtration by Direct Micro-scale Particulate Flow Modelling
Mirabolghasemi, M.; Prodanovic, M.
2013-12-01
Filtration of suspensions through porous beds occurs in a variety of applications such as drilling mud infiltration into rock formations and waste water treatment. Accurate modelling of filtration through porous media on macroscopic scale often requires a precise estimate of the filtration coefficient, which reflects the fraction of particles that get retained in the filter medium. A large number of deep bed filtration models assume a constant entrapment rate without taking into account the rate of particle release back into the flow. In addition, the available models often assume instantaneous entrapment, which ignores particle rolling. These assumptions lead to an almost static description of filtration phenomenon, which is in fact highly dynamic in nature. In this study we used a micro-scale simulation approach to understand the filtration of suspensions through a sphere pack. We applied a semi-coupled CFD-DEM method to directly model the fluid and particulate flow through the extracted pore space. The accuracy of the geometrical description of the flow domain was tested by calculating its porosity and permeability and comparing those to measured values. The results of the simulation provide the distribution of particle and fluid velocities throughout the filtration process. These velocity distributions show that under our simulation conditions, a significant portion of particles travel with a velocity 4 to 5 orders of magnitude slower than the average fluid velocity, which indicates that particle rolling is not negligible. Based on these results we propose a modified definition of filtration coefficient and estimate its values. Overall, this study provides an improved insight into deep bed filtration and reveals the absence of a granular phase flow equation in the existing deep bed filtration formulation. Finally, while we worked with sphere packing for this initial study, the simulation can take any pore space described by a binary (segmented) image and is
Bandhauer, Todd Matthew
microchannels inserted into the interior of the cell that contain a liquid-vapor phase change fluid for heat removal at the source of heat generation. Although there have been prior investigations of phase change at the microscales, fluid flow for pure refrigerants at low mass fluxes (G test section geometry (3.175 mm x 160 mm) is investigated using a surrogate heat source. Heat inputs were varied over a wide range of values representative of battery operating conditions (120 test section outlet quality from these experiments are utilized to accurately calculate the two-phase frictional pressure drop in the test section, which is the dominant flow loss in the passive system in most cases. The two-phase frictional pressure drop model is used to predict the performance of a simplified passive internal cooling system. This thermal-hydraulic performance model is coupled to the electrochemical-thermal model for performance assessment of two-scaled up HEV battery packs (9.6 kWh based on 8 Ah and 20 Ah cells) subjected to an aggressive highway dynamic simulation. This assessment is used to compare the impact of air, liquid, and edge external cooling on battery performance. The results show that edge cooling causes large thermal gradients inside the cells, leading to non-uniform cycling. Air cooling also causes unacceptable temperature rise, while liquid cooling is sufficient only for the pack based on the thinner 8 Ah cell. In contrast, internally cooled cells reduce peak temperature without imposing significant thermal gradients. As a result, packs with internal cooling can be cycled more aggressively, leading to higher charge and discharge energy extraction densities in spite of the volume increase due to 160 microm channels inserted into the 284.5 microm unit cell. Furthermore, the saturation temperature of the phase change fluid can be optimized to balance capacity fade and energy extraction at elevated temperatures. At a saturation temperature of 34°C, the energy extraction
Modeling the Travel Behavior Impacts of Micro-Scale Land Use and Socio-Economic Factors
Directory of Open Access Journals (Sweden)
Houshmand Ebrahimpour Masoumi
2013-06-01
Full Text Available The effects of neighborhood-level land use characteristics on urban travel behavior of Iranian cities are under-researched. The present paper examines such influences in a microscopic scale. In this study the role of socio-economic factors is also studies and compared to that of urban form. Two case-study neighborhoods in west of Tehran are selected and considered, first of which is a centralized and compact neighborhood and the other is a sprawled and centerless one. A Multinomial Logit Regression model is developed to consider the effects of socio-economic and land use factors on urban travel pattern. In addition, to consider the effective factors, cross-sectional comparison between the influences of local accessibility and attractiveness of the neighborhood centers of the two case-study areas are undertaken. Also the causality relationships are considered according to the findings of the survey. The findings indicate significant effects of age and household income as socio-economic factors on transportation mode choice in neighborhoods with central structure. One the other hand, no meaningful association between socio-economic or land use variables are resulted by the model for the sprawled case. The most effective land use concept in micro-scale is considered to be satisfaction of entertainment facilities of the neighborhood. Also the descriptive findings show that the centralized neighborhood that gives more local accessibility to shops and retail generates less shopping trips. In considering the causal relations, the study shows that providing neighborhood infrastructures that increase or ease the accessibility to neighborhood amenities can lead to higher shares of sustainable transportation modes like walking, biking, or public transportation use.
Urban micro-scale flood risk estimation with parsimonious hydraulic modelling and census data
Directory of Open Access Journals (Sweden)
C. Arrighi
2013-05-01
Full Text Available The adoption of 2007/60/EC Directive requires European countries to implement flood hazard and flood risk maps by the end of 2013. Flood risk is the product of flood hazard, vulnerability and exposure, all three to be estimated with comparable level of accuracy. The route to flood risk assessment is consequently much more than hydraulic modelling of inundation, that is hazard mapping. While hazard maps have already been implemented in many countries, quantitative damage and risk maps are still at a preliminary level. A parsimonious quasi-2-D hydraulic model is here adopted, having many advantages in terms of easy set-up. It is here evaluated as being accurate in flood depth estimation in urban areas with a high-resolution and up-to-date Digital Surface Model (DSM. The accuracy, estimated by comparison with marble-plate records of a historic flood in the city of Florence, is characterized in the downtown's most flooded area by a bias of a very few centimetres and a determination coefficient of 0.73. The average risk is found to be about 14 € m−2 yr−1, corresponding to about 8.3% of residents' income. The spatial distribution of estimated risk highlights a complex interaction between the flood pattern and the building characteristics. As a final example application, the estimated risk values have been used to compare different retrofitting measures. Proceeding through the risk estimation steps, a new micro-scale potential damage assessment method is proposed. This is based on the georeferenced census system as the optimal compromise between spatial detail and open availability of socio-economic data. The results of flood risk assessment at the census section scale resolve most of the risk spatial variability, and they can be easily aggregated to whatever upper scale is needed given that they are geographically defined as contiguous polygons. Damage is calculated through stage–damage curves, starting from census data on building type and
Singh, Bhupinder; Singh, Maniratan; Garg, Harry; Kaur, Inderpreet; Suryavanshi, Suman; Kumar, Hemant
2016-09-01
The existing heat transfer technologies suffer from numerous limitations and are poor in high performance and high heat dissipation. Liquid cooling using microchannels and nanofluids work with the increased surface area and minimum thermal resistance. Many researchers showed that nanofluids, particularly with carbon based materials, enhance heat transfer rate. In today era, in the case of microelectronics, small miniaturized heat sinks with high heat transfer are being developed, called micro-channel heat sinks (MCHS). The proposed work is concerned about the heat transfer behavior of aqueous suspensions of CNT nanofluids flowing through the triangular shaped microchannel. Significant enhancement of the convective heat transfer is observed and the enhancement depends on the flow conditions i.e. nusselt number, microchannel channel length, nanoparticles concentration. Particle re-arrangement, shear induced thermal conduction enhancement, reduction of thermal boundary layer due to the presence of nanoparticles, as well as the very high aspect ratio of CNT nanofluids are proposed to be possible mechanisms. Results show that thermal boundary layers distorted due to use of carbon based nanofluids and heat transfer coefficient increases about three times as compared to water.
Microscale Digital Vacuum Electronic Gates
Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.
National Aeronautics and Space Administration — It is proposed to develop compact and lightweight ceramic heat exchangers and chemical reactors suitable for high temperature processes. These devices will have...
Reimus, P. W.
2010-12-01
A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. If flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems, so simple systems that lack the
Heat sink analytical modelling
Guitart Corominas, Joaquim
2010-01-01
Electronics has leaded most technological advances of the past 60 years. There are technologies with domains particularly developed for electronics such as material science, electromagnetism, system dynamics and also heat transfer. The relation to heat transfer is because the heat generation of electronics devices. Commonly, these devices need additional cooling in order to avoid extreme temperatures inside it. Heat sinks allow this supplementary cooling, so they are omnipresent i...
Cheng, K. X.; Goh, A. L.; Hadi, M.; Ooi, K. T.
2017-03-01
Microchannel for macro geometry application is gaining popularity particularly in aerospace, biomedical and photovoltaic. A novel method of employing microchannel in macro geometry at lower cost using conventional machining methods has been developed. A solid cylinder on outer diameter 19.4 mm is placed concentrically into a copper pipe of inner diameter 20 mm, forming an annular microchannel with 300 μm gap. This study takes a step further by introducing surface profile of different heights on the surface of solid cylinder and investigating the effect on two main design objectives- increasing heat removal capability at same pumping power and reducing pumping power for the same heat removal duty. Four surface profiles -parallel fins as well as fins with height of 0.1, 0.2 and 0.3 mm, were investigated experimentally at constant heat flux at Reynolds number from 690 to 4600. The amount of fluid in the microchannel, channel length of 30 mm, bifurcating angle of 75 degrees and mean hydraulic diameter of 600 μm are kept as constant parameters. A plain insert is used as benchmark for comparison of enhancement. In this study, insert with fins of 0.3 mm attains the highest enhancement of 43 percent increment in heat transfer as compared to plain insert using the same pumping power. While keeping the heat removal duty constant, the same insert is able to perform the duty using less than 50 percent the pumping power required by the plain insert at low Reynolds numbers.
Cluster banding heat source model
Institute of Scientific and Technical Information of China (English)
Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan
2006-01-01
Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.
Numerical modeling of microwave heating
Directory of Open Access Journals (Sweden)
Shukla A.K.
2010-01-01
Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.
Lin, Ching-Long; Chai, Tianfeng
2001-06-01
In the digital information era one of the challenges is to extract useful information from accessible data. In this paper, we will present a four-dimensional variational data assimilation (4DVAR) technique and apply it to retrieving micro-scale turbulent structures in a convective boundary layer from high-resolution Doppler lidar radial velocity data. The 4DVAR is based on the calculus of variations and optimal control theories to recover complete data by assimilating limited data into a dynamic model. Several features are implemented into the 4DVAR model, e.g. a surface flux model, a buffer zone and smoothness constraints. The surface flux model provides appropriate momentum and temperature fluxes to the 4DVAR. The buffer zone is found to improve retrieval quality by reducing the effect of lateral boundary conditions. A generic algorithm is proposed to estimate weights of the smoothness constraints. The approach of identical twin experiments is first used to assess the performance of the model and its sensitivity to observational errors. The 4DVAR is then applied to real lidar data and reveals a micro-front like structure passing through the boundary layer.
Meli, Mattia; Palmqvist, Annemette; Forbes, Valery E
2014-07-01
The authors implemented a fractal algorithm in a spatially explicit individual-based model to generate landscapes with different microscale patterns of habitat fragmentation and disturbance events and studied their effects on population dynamics of the collembolan Folsomia candida. Among human activities that may cause habitat destruction, the present study focused on agricultural practices. Soil organisms living in a cultivated field are subjected to habitat loss and fragmentation as well as disturbance events generated by the application of agrochemicals and related activities. In addition, they are exposed to natural stressors, which might influence the effects of chemicals on populations. The authors designed simulation experiments that incorporate these 3 factors and investigated their effects on populations of F. candida in the presence or absence of behavioral avoidance of contaminated habitat. Simulation results show that spatial autocorrelation of contamination has different effects on population growth and equilibrium size according to the percentage of clean habitat. This pattern changes when avoidance behavior is excluded from the model, as does population recovery after a series of disturbance events. The model suggests that a combination of heterogeneous contamination and multiple stressors can lead to unexpected effects of toxicants at the population level. Individual-based models can help to understand these effects and therefore add ecological realism to environmental risk assessment of chemicals and can help to explore the effects of different risk management options.
Raziperchikolaee, S.; Alvarado, V.; Yin, S.
2014-09-01
Studying rock joint deformation including both slippage and opening mechanisms provides an opportunity to investigate the connection between the permeability and seismic source mechanisms. A microscale fluid flow-geomechanics-seismicity model was built to evaluate the transport response and failure mechanism of microcracks developed along a joint in Berea sandstone samples during deformation. The modeling method considers comprehensive grain-cement interactions. Fluid flow behavior is obtained through a realistic network model of the pore space in the compacted assembly. The geometric description of the complex pore structure is characterized to predict permeability of the rock sample as a function of rock deformation by using a dynamic pore network model. As a result of microcracks development, forces and displacements in grains involved in bond breakage are measured to determine seismic moment tensor. Shear and nonshear displacements are applied to the joint samples to investigate their effects on permeability evolution and failure mechanism of microcracks during joint deformation. In addition, the effect of joint roughness is analyzed by performing numerical compression tests. We also investigate how confining pressure affects volumetric deformation leading to opening or closure of developed microcracks and permeability changes of samples with joints.
Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M
2016-05-01
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Micro-scale modelling of energy fluxes over a small Fluxnet forest site in Denmark
DEFF Research Database (Denmark)
Sogachev, Andrey; Dellwik, Ebba; Boegh, Eva
2012-01-01
the information about spatial distribution of latent and sensible heat vertical fluxes in the whole ABL. Topography and forest edge effects result in vertical turbulent fluxes that deviate significantly from the original sources producing apparent local energy imbalance, when advection is not considered. A closer...
Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S
2016-05-01
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures.
Qiu, Charmaine; Gao, Hui; Fan, Dimin; Jin, Yan; Wang, Lian-Ping
2008-11-01
Adequate understanding of the mechanism of colloid retention by soil porous media is essential to the prediction and monitoring of the transport of contaminants by groundwater in the subsurface environment. Preliminary studies reveal that pore-scale processes are governed by colloid-grain and colloid-colloid interactions. In this talk, we focus on the assessment of their effects using a computational approach. First, micro-scale viscous flow in a model porous medium, i.e., a square channel filled with spherical grains, is simulated by simultaneously applying a mesoscopic lattice Boltzmann equation and a Navier-Stokes based hybrid approach, for rigorous cross-validation of the simulated flow. Lagrangian tacking of individual colloids is then conducted by solving colloids equation of motion including local hydrodynamic effects and physicochemical forces. Analysis of colloid transport will encompass effects of flow straining, depth-dependent spatial distribution, and retention of colloids under different solution ionic strengths, flow speeds, and packing configurations. Comparison with parallel experimental results using confocal microscopy will be briefly discussed.
Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse
2016-08-01
Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the
Duraisamy, V. J.; Dupont, E.; Carissimo, B.
2014-12-01
The main objective of this research work is to develop and evaluate several coupling methods between operational Numerical Weather Prediction (NWP) model and Computational Fluid Dynamics (CFD) model and data assimilate the field measurements into the CFD model. To address the problem of high spatial variation of the topography on the domain lateral boundaries between NWP and CFD domain boundaries, 3 methods - translation, extrapolation and Cressman interpolation are used to impose the NWP model data on the CFD domain lateral boundaries. Newtonian relaxation data assimilation technique is used to incorporate the field measurement data into the CFD simulations. These techniques are studied in a complex site located in southern France. Comparison of wind profiles between the CFD simulation, measurements and CFD simulation with data assimilation are discussed. This combination of state-of-the-art techniques in NWP, CFD, and field data assimilation will provide the basis of a more accurate wind resource assessment method.
Colosqui, Carlos E.; Kavousanakis, Michail E.; Papathanasiou, Athanasios G.; Kevrekidis, Ioannis G.
2012-01-01
We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibriu...
A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells
Directory of Open Access Journals (Sweden)
Shixue Liu
2009-06-01
Full Text Available A two dimensional numerical model of a solid oxide fuel cell (SOFC with electrode functional layers is presented. The model incorporates the partial differential equations for mass transport, electric conduction and electrochemical reactions in the electrode functional layers, the anode support layer, the cathode current collection layer and at the electrode/electrolyte interfaces. A dusty gas model is used in modeling the gas transport in porous electrodes. The model is capable of providing results in good agreement with the experimental I-V relationship. Numerical examples are presented to illustrate the applications of this numerical model as a tool for the design and optimization of SOFCs. For a stack assembly of a pitch width of 2 mm and an interconnect-electrode contact resistance of 0.025 Ωcm2, a typical SOFC stack cell should consist of a rib width of 0.9 mm, a cathode current collection layer thickness of 200–300 μm, a cathode functional layer thickness of 20–40 μm, and an anode functional layer thickness of 10–20 μm in order to achieve optimal performance.
Microscale technologies for cell engineering
Gaharwar, Akhilesh
2016-01-01
This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...
Analytical heat and fluid flow in microchannels and microsystems
Cotta, Renato M; Naveira-Cotta, Carolina P
2016-01-01
This book focuses on the modeling and analysis of heat and fluid flow in microchannels and micro-systems, compiling a number of analytical and hybrid numerical-analytical solutions for models that account for the relevant micro-scale effects, with the corresponding experimental analysis validation when applicable. The volume stands as the only available compilation of easy to use analytically-based solutions for micro-scale heat and fluid flow problems, that systematically incorporates the most relevant micro-scale effects into the mathematical models, followed by their physical interpretation on the micro-system behavior.
Modelling of structure and mechanics of materials from microscale to product
Energy Technology Data Exchange (ETDEWEB)
Carstensen, J.V.; Leffers, T.; Lorentzen, T.; Pedersen, O.B.; Soerensen, B.F.; Winther, G. [eds.
1998-12-31
The theme of this symposium is the relation between the processing, structure and mechanical behaviour of materials and its expression in analytical and numerical models. Structure-property relations inevitably involve different length scales. Ultimately the scales range from the macroscopic to the atomic level corresponding to the ultimate resolution of the characterisation methods. The technologically interesting properties of many new materials are determined by structural features of nanometer size. Also, the size of modern industrial components ranges down to dimensions comparable with the scale of materials microstructures. The symposium focuses on attempts to establish connections between the various length scales. Research along these lines involves four different disciplines: materials processing, materials mechanics, materials science and materials physics. Traditionally, there are gaps between the various disciplines, particularly between the continuum models of materials processing and materials mechanics and the atomic models of materials physics. It is our ambition that the symposium will contribute to the narrowing of these gaps. (au)
Colosqui, Carlos E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G
2012-01-01
We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which...
Micro-Scale Experiments and Models for Composite Materials with Materials Research
DEFF Research Database (Denmark)
Zike, Sanita
Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...
Dry deposition model for a microscale aerosol dispersion solver based on the moment method
Šíp, Viktor
2016-01-01
A dry deposition model suitable for use in the moment method has been developed. Contributions from five main processes driving the deposition - Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation - are included in the model. The deposition model was employed in the moment method solver implemented in the OpenFOAM framework. Applicability of the developed expression and the moment method solver was tested on two example problems of particle dispersion in the presence of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a hedgerow in 3D. Comparison with the sectional method showed that the moment method using the developed deposition model is able to reproduce the shape of the particle size distribution well. The relative difference in terms of the third moment of the distribution was below 10\\% in both tested cases, and decreased away from the vegetation. Main source of this difference is a known overprediction of the impaction efficiency. When ...
Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes
Menon, Suresh
1998-01-01
Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies
A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries
Energy Technology Data Exchange (ETDEWEB)
Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F; Schwartz, P O
2004-11-18
We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.
Colosqui, Carlos E; Kavousanakis, Michail E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G
2013-01-01
We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo-potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled fluid-solid interface is diffuse, represented by a wall probability function that ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e., a given static contact angle) of the solid substrate.
Mobility of Nanoscale and Microscale iron for groundwater remediation: experiments and modelling
Tosco, T.; Gastone, F.; Sethi, R.
2012-12-01
Colloidal suspensions of zerovalent iron micro- and nanoparticles (MZVI and NZVI) have been studied in recent years for in-situ groundwater remediation. Thanks to their small size, MZVI and NZVI can be dispersed in aqueous suspensions and directly injected into the subsurface, for a targeted treatment of contamination plumes and even sources. However, colloidal dispersions of such particles are not stable in pure water, due to fast aggregation (for NZVI) and gravitational sedimentation (for MZVI). Viscous, environmentally friendly fluids (guar gum and xanthan gum solutions), which exhibit shear thinning rheological properties, were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1-3). The present work reports laboratory tests and numerical modelling concerning the mobility of MZVI and NZVI viscous suspensions in porous media. The efficacy of xanthan and guar gum was investigated in column transport tests, performed injecting highly concentrated iron suspensions (20 g/L), dispersed in xanthan gum (3g/L) and guar gum (3-6 g/l) solutions. Particle breakthrough curves and concentration profiles were monitored by magnetic susceptibility measurements. Pressure drop at column ends was also continuously monitored. The tests proved that green polymers can greatly improve both colloidal stability and mobility of the particles. Their use is fundamental in particular for MZVI, which cannot be transported nor even dispersed in pure water. A numerical model for NZVI and NZVI transport in porous media was then developed (E-MNM1D, Enhanced Micro-and Nanoparticle transport Model in porous media in 1D geometry) (4). Due to the high concentration of the particles and to the non-Newtonian rheology of the carrier fluid, hydrodynamic parameters, fluid properties and concentration of deposed and suspended particles are mutually influenced. The rheological properties of the suspensions are accounted for through a variable
Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging
Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen
2017-02-01
Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.
Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging
Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen
2017-07-01
Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.
Nedrow, Jessie R; Josefsson, Anders; Park, Sunju; Bäck, Tom; Hobbs, Robert F; Brayton, Cory; Bruchertseifer, Frank; Morgenstern, Alfred; Sgouros, George
2017-12-01
Studies combining immune checkpoint inhibitors with external beam radiation have shown a therapeutic advantage over each modality alone. The purpose of these works is to evaluate the potential of targeted delivery of high LET radiation to the tumor microenvironment via an immune checkpoint inhibitor. The impact of protein concentration on the distribution of (111)In-DTPA-anti-PD-L1-BC, an (111)In-antibody conjugate targeted to PD-L1, was evaluated in an immunocompetent mouse model of breast cancer. (225)Ac-DOTA-anti-PD-L1-BC was evaluated by both macroscale (ex vivo biodistribution) and microscale (alpha-camera images at a protein concentration determined by the (111)In data. The evaluation of (111)In-DTPA-anti-PD-L1-BC at 1, 3, and 10 mg/kg highlighted the impact of protein concentration on the distribution of the labeled antibody, particularly in the blood, spleen, thymus, and tumor. Alpha-camera images for the microscale distribution of (225)Ac-DOTA-anti-PD-L1-BC showed a uniform distribution in the liver while highly non-uniform distributions were obtained in the thymus, spleen, kidney, and tumor. At an antibody dose of 3 mg/kg, the liver was dose-limiting with an absorbed dose of 738 mGy/kBq; based upon blood activity concentration measurements, the marrow absorbed dose was 29 mGy/kBq. These studies demonstrate that (225)Ac-DOTA-anti-PD-L1-BC is capable of delivering high LET radiation to PD-L1 tumors. The use of a surrogate SPECT agent, (111)In-DTPA-anti-PD-L1-BC, is beneficial in optimizing the dose delivered to the tumor sites. Furthermore, an accounting of the microscale distribution of the antibody in preclinical studies was essential to the proper interpretation of organ absorbed doses and their likely relation to biologic effect.
Sample extraction and injection with a microscale preconcentrator.
Energy Technology Data Exchange (ETDEWEB)
Robinson, Alex Lockwood (Advanced Sensor Technologies, Albuquerque, NM); Chan, Helena Kai Lun
2007-09-01
This report details the development of a microfabricated preconcentrator that functions as a fully integrated chemical extractor-injector for a microscale gas chromatograph (GC). The device enables parts-per-billion detection and quantitative analysis of volatile organic compounds (VOCs) in indoor air with size and power advantages over macro-scale systems. The 44 mm{sup 3} preconcentrator extracts VOCs using highly adsorptive, granular forms of graphitized carbon black and carbon molecular sieves. The micron-sized silicon cavities have integrated heating and temperature sensing allowing low power, yet rapid heating to thermally desorb the collected VOCs (GC injection). The keys to device construction are a new adsorbent-solvent filling technique and solvent-tolerant wafer-level silicon-gold eutectic bonding technology. The product is the first granular adsorbent preconcentrator integrated at the wafer level. Other advantages include exhaustive VOC extraction and injection peak widths an order of magnitude narrower than predecessor prototypes. A mass transfer model, the first for any microscale preconcentrator, is developed to describe both adsorption and desorption behaviors. The physically intuitive model uses implicit and explicit finite differences to numerically solve the required partial differential equations. The model is applied to the adsorption and desorption of decane at various concentrations to extract Langmuir adsorption isotherm parameters from effluent curve measurements where properties are unknown a priori.
Song, Zeming; Lv, Cheng; Liang, Mengbing; Sanphuang, Varittha; Wu, Kedi; Chen, Bin; Zhao, Zhi; Bai, Jing; Wang, Xu; Volakis, John L; Wang, Liping; He, Ximin; Yao, Yu; Tongay, Sefaattin; Jiang, Hanqing
2016-10-01
A new methodology to create 3D origami patterns out of Si nanomembranes using pre-stretched and pre-patterned polydimethylsiloxane substrates is reported. It is shown this approach is able to mimic paper-based origami patterns. The combination of origami-based microscale 3D architectures and stretchable devices will lead to a breakthrough on reconfigurable systems.
Energy Technology Data Exchange (ETDEWEB)
Lopez, S.D.; Luepkes, C. [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany); Schluenzen, K.H. [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany); Meteorological Inst., Univ. of Hamburg (Germany)
2005-12-01
A non-hydrostatic micro-scale model (MITRAS) is used to simulate the flow field over a beam. The model is run with a constant grid size of 1/5 times the beam height representing a relatively coarse resolution. Different types of k-{epsilon} closures are used, the standard-k-{epsilon}-closure and modified ones. A comparison of model results (mean values, turbulent kinetic energy and momentum fluxes) with wind tunnel data confirms the finding of earlier studies performed with models of higher resolution, that the standard-k-{epsilon}-closure overestimates the turbulent kinetic energy at stagnation points. The comparison with wind tunnel data reveals that the momentum fluxes are overestimated at stagnation points as well. A modification of the standard-k-{epsilon}-closure is introduced that reduces both, the modelled momentum fluxes and the turbulent kinetic energy at stagnation points. (orig.)
Comparison of Frictional Heating Models
Energy Technology Data Exchange (ETDEWEB)
Davies, Nicholas R [ORNL; Blau, Peter Julian [ORNL
2013-10-01
The purpose of this work was to compare the predicted temperature rises using four well-known models for frictional heating under a few selected conditions in which similar variable inputs are provided to each model. Classic papers by Archard, Kuhlmann-Wilsdorf, Lim and Ashby, and Rabinowicz have been examined, and a spreadsheet (Excel ) was developed to facilitate the calculations. This report may be used in conjunction with that spreadsheet. It explains the background, assumptions, and rationale used for the calculations. Calculated flash temperatures for selected material combinations, under a range of applied loads and sliding speeds, are tabulated. The materials include AISI 52100 bearing steel, CDA 932 bronze, NBD 200 silicon nitride, Ti-6Al-4V alloy, and carbon-graphite material. Due to the assumptions made by the different models, and the direct way in which certain assumed quantities, like heat sink distances or asperity dimensions, enter into the calculations, frictional hearing results may differ significantly; however, they can be similar in certain cases in light of certain assumptions that are shared between the models.
Energy Technology Data Exchange (ETDEWEB)
Siranosian, Antranik Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schembri, Philip Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-04-20
The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferred from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso
Mathematical model of induction heating
Rak, Josef
2017-07-01
One of mathematical models of induction heating can be described by a parabolic differential equation with the specific Joule looses in the body. Advantage of this method is that the detailed knowledge of the 3D-magnetic field is not necessary and move of the body or the inductor can be easily implemented. The specific Joule looses can computed by solving the Fredholm integral equation of the second kind for the eddy current of density by the Nyström method with the singularity subtraction.
A heat transfer model of a horizontal ground heat exchanger
Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.
2016-04-01
Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.
Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G
2016-10-01
A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used.
Microscale Gas-Surface Interactions
Trott, W. M.; Rader, D. J.; Gallis, M. A.; Torczynski, J. R.
2004-11-01
In gas-filled microsystems, noncontinuum phenomena such as velocity slip and temperature jump become increasingly important as devices become smaller or packaging pressures are reduced. These phenomena are governed by the interaction of gas molecules with the adjacent solid surfaces. Experiments are performed to quantify the interaction of common gases (e.g., nitrogen, argon, helium) with solids of interest for microsystems (e.g., stainless steel, aluminum, gold, silicon dioxide, silicon). The gas is confined between two parallel plates at unequal temperatures, and the gas-phase heat flux is inferred from temperature measurements (radiation is accounted for). For comparison purposes, heat-flux values are also inferred from electron-beam-fluorescence measurements of the gas-phase density gradient. Heat-flux values at several pressures allow the accommodation coefficient to be determined. As well as being useful in its own right, this type of information enables molecular gas dynamics simulations of microscale gas flow using Bird's Direct Simulation Monte Carlo (DSMC) method. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Diagboya, Paul N; Olu-Owolabi, Bamidele I; Adebowale, Kayode O
2014-12-15
Mesoporous silica SBA-15 meets most criteria for selection of water treatment adsorbents such as high specific surface area, large pore-size, chemical inertness, repertory of surface functional groups, good thermal stability, selectivity, regenerability, and low cost of manufacture. However, its use for water treatment is still largely unexplored. SBA-15 and its functionalized derivatives of aminopropyltriethoxysilane (SA) and tripolyphosphate (ST) were synthesized, characterized, and used to investigate pentachlorophenol (PCP) removal from aqueous solutions. Functionalization improved SBA-15 capacity for PCP removal from solution in accordance with the trend SBA-15 SBA-15, but the functionalized SBA-15 materials showed higher hysteresis. The results imply that functionalized SBA-15 sorbents are promising materials for microscale scavenging of PCP in solution.
DEFF Research Database (Denmark)
Chen, B. H.; Micheletti, M.; Baganz, F.;
2009-01-01
design. It incorporates a model driven approach to the experimental design that minimises the number of experiments to be performed, while still generating accurate values of kinetic parameters. The approach has been illustrated with the transketolase mediated asymmetric synthesis of L...... experimental design.]it comparison with conventional methodology, the modelling approach enabled a nearly 4-fold decrease in the number of experiments while the microwell experimentation enabled a 45-fold decrease in material requirements and a significant increase in experimental throughput. The approach......Reliable models of enzyme kinetics are required for the effective design of bioconversion processes. Kinetic expressions of the enzyme-catalysed reaction rate however, are frequently complex and establishing accurate values of kinetic parameters normally requires a large number of experiments...
A Heat Dynamic Model for Intelligent Heating of Buildings
DEFF Research Database (Denmark)
Thavlov, Anders; Bindner, Henrik W.
2015-01-01
This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heati...
Photosynthesis at the Microscale
2013-03-25
To) 02-08-2011 to 30-09-2012 4. TITLE AND SUBTITLE Photosynthesis at the Microscale 5a. CONTRACT NUMBER W9132T-11-2-0026 5b. GRANT NUMBER 5c...have been relatively few reports on homogeneous catalysis of light -driven hydrogen production by transition metal complexes before 2000.8 In most...was found to be necessary to inhibit ligand dissociation and to replace any hydrogenated ligand formed by side reactions . It was found that
Business models of heat entrepreneurship in Finland
Energy Technology Data Exchange (ETDEWEB)
Okkonen, Lasse [North Karelia University of Applied Sciences, Yliopistokatu 6, FI-80100 Joensuu (Finland); Suhonen, Niko [University of Eastern Finland, Department of Law, P.O. Box 111, FI-80101 Joensuu (Finland)
2010-07-15
This paper presents the business models of small-scale heat energy production in Finland. Firstly, the development of heat entrepreneurship in the country is presented, including the remarkable growth of small and medium size enterprises (SMEs) in the last 15 years. Secondly, the concept of business model (business architecture of product/service flows and earning logics) is modified to the framework of wood heat production. The business model concept, and its sub-concepts, is applied in a brief review of current heat energy businesses in Finland. We arrive at a business model of heat entrepreneurships that are public companies/utilities, public-private partnerships, private companies and cooperatives, Energy Saving Company (ESCO), network model of large enterprise and franchising. Descriptive cases of these models are presented. Finally, the paper concludes with a discussion on the applicability of the business models in different operational environments and geographical contexts. (author)
Dynamic Heat Transfer Model of Refrigerated Foodstuff
DEFF Research Database (Denmark)
Cai, Junping; Risum, Jørgen; Thybo, Claus
2006-01-01
their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...
Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie
2016-04-01
At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these
New models for droplet heating and evaporation
Sazhin, Sergei S.
2013-02-01
A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.
Modelling of Ammonia Heat Pump Desuperheaters
DEFF Research Database (Denmark)
Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix
2015-01-01
This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method...... is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...
Indian Academy of Sciences (India)
HARI MOHAN KUSHWAHA; SANTOSH K SAHU
2016-06-01
This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity slip, temperature jump, asymmetric heat flux ratio and viscous dissipation on the heat transfer performance is analyzed. Closed form expressions are obtained for the temperature distribution and Nusselt number. Present predictions are verified for the cases that neglect the viscous heating and microscale effects. The effect of asymmetric heat flux ratio with and without viscous dissipation on Nusselt number for both macroscale and microscale is highlighted. The heat transfer characteristics are found to depend on various modeling parameters, namely, modified Brinkman number, Knudsen number and heat flux ratio
"Evolution Canyon," a potential microscale monitor of global warming across life.
Nevo, Eviatar
2012-02-21
Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.
Heating, ventilation and air conditioning system modelling
Energy Technology Data Exchange (ETDEWEB)
Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)
2011-03-15
Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)
Simplified models for heat transfer in rooms
Graca, Guilherme C. C. Carrilho Da
Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex
Institute of Scientific and Technical Information of China (English)
宁静红; 刘圣春; 叶庆银
2013-01-01
By analyzing the microscale characteristics of natural refrigerant R 290 vapor dropwise condensation heat transfer , the following conclusions are obtained .At a certain subcooling degree , droplet radius and fractal dimension , the thermal resistance of single droplet conductivity increases with the increase of contact angle , the thermal resistance of promoting layer has the smallest value at the contact angle of 90°, the thermal resistance of vapor-liquid interface decreases with the increase of contact angle , the total thermal resistance of single droplet decreases first and then increases with the increase of contact angle , namely has proved the existence of the optimum contact angle , and at this optimum contact angle , the total thermal resistance of single droplet has a smallest value, the heat transfer capacity of single droplet and the heat flux of heat transfer surface have the largest value .Also, with the increase of droplet radius , the optimum contact angle decreases .Moreover , with the increase of subcooling degree and fractal dimension , the nucleation density of dropwise condensation increases on the heat transfer surface , so the heat flux en-hances .At certain subcooling degree , with the increase of droplet radius , the distribution density of condensation droplet re-duces, however, with the increase of fractal dimension , the distribution density of condensation droplet increases .At a certain fractal dimension and subcooling degree , with the reduceing of droplet radius , the heat flux of heat transfer surface increases .%通过对自然工质R290蒸气珠状凝结传热过程的微尺度特性分析得出，在一定的过冷度、液珠半径和分形维数下，液珠的导热热阻随接触角的增大而增大，促进层的热阻在接触角为90°时最小，气液界面的热阻随着接触角的增大而减小，单个液珠的总传热热阻随着接触角的增大呈现出先减小后增大的变化规律，即存在最佳接
Modeling of heat explosion with convection.
Belk, Michael; Volpert, Vitaly
2004-06-01
The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.
Demand modelling for central heating systems
Energy Technology Data Exchange (ETDEWEB)
Heller, A.
2000-07-01
Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems
Coupled Seepage and Heat Transfer Intake Model
Institute of Scientific and Technical Information of China (English)
WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan
2009-01-01
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
Computational model of miniature pulsating heat pipes.
Energy Technology Data Exchange (ETDEWEB)
Martinez, Mario J.; Givler, Richard C.
2013-01-01
The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.
Computational model of miniature pulsating heat pipes
Energy Technology Data Exchange (ETDEWEB)
Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-01-01
The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.
Mathematical Modeling of Spiral Heat Exchanger
Directory of Open Access Journals (Sweden)
Probal Guha , Vaishnavi Unde
2014-04-01
Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model
Modeling Classical Heat Conduction in FLAG
Energy Technology Data Exchange (ETDEWEB)
Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendon, Raymond Cori [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-12
The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.
Jiang, N; Shelley, J D; Smith, Robin
2014-01-01
The retrofit of heat exchanger networks requires detailed models of the heat exchangers for the detailed assessment of network performance. Network retrofit options include heat transfer enhancement. There is thus a requirement for detailed models of heat exchanger performance, including heat transfer enhancement, suitable for inclusion in network retrofit optimization algorithms. Such models must be robust, computationally efficient and accurate enough to reflect the heat transfer and pressu...
Modelling Heat Exchangers for Domestic Boilers
Directory of Open Access Journals (Sweden)
S. F. C. F. Teixeira
2000-01-01
Full Text Available In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimensionless numbers (Fourier, Biot and geometric ratios which are found to be representative for this particular geometry. Furthermore, the effect of thermal gradients along the fin surface upon the fin efficiency is investigated. Based on a differential model for the heat balances, design charts have been developed for the thermal analysis of heat exchangers.
Model-Free Adaptive Heating Process Control
Ivana LUKÁČOVÁ; Piteľ, Ján
2009-01-01
The aim of this paper is to analyze the dynamic behaviour of a Model-Free Adaptive (MFA) heating process control. The MFA controller is designed as three layer neural network with proportional element. The method of backward propagation of errors was used for neural network training. Visualization and training of the artificial neural network was executed by Netlab in Matlab environment. Simulation of the MFA heating process control with outdoor temperature compensation has proved better resu...
VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS
Energy Technology Data Exchange (ETDEWEB)
Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)
2015-05-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
In-Cylinder Heat Transfer Modelling
Directory of Open Access Journals (Sweden)
Žák Zdeněk
2016-12-01
Full Text Available The goal of the paper is to discuss specific features of the in-cylinder heat transfer calculation based on widely used empirical formulas. The potential of in-house codes compared with commercially available software packages is presented. The principles of user models in the GT-SUITE environment are also explained. The results of calibrated models are briefly discussed.
Ho, Q.T.; Berghuijs, H.N.C.; Watté, R.; Verboven, P.; Herremans, E.; Yin, X.; Retta, M.A.; Aernouts, B.; Saeys, W.; Helfen, L.; Farquhar, G.D.; Struik, P.C.; Nicolai, B.
2016-01-01
We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography,
Heat Pump Clothes Dryer Model Development
Energy Technology Data Exchange (ETDEWEB)
Shen, Bo [ORNL
2016-01-01
A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.
DEFF Research Database (Denmark)
Badger, Jake; Frank, Helmut; Hahmann, Andrea N.
2014-01-01
This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...... turbine site. The method is divided into two parts: 1) preprocessing, in which the configurations for the mesoscale model simulations are determined, and 2) postprocessing, in which the data from the mesoscale simulations are prepared for wind energy application. Results from idealized mesoscale modeling...... experiments for a challenging wind farm site in northern Spain are presented to support the preprocessing method. Comparisons of modeling results with measurements from the same wind farm site are presented to support the postprocessing method. The crucial element in postprocessing is the bridging...
Ho, Quang Tri; Berghuijs, Herman N C; Watté, Rodrigo; Verboven, Pieter; Herremans, Els; Yin, Xinyou; Retta, Moges A; Aernouts, Ben; Saeys, Wouter; Helfen, Lukas; Farquhar, Graham D; Struik, Paul C; Nicolaï, Bart M
2016-01-01
We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties. The combination of the 3-D microstructure of leaf tissue and chloroplast movement induced by changes in light intensity affects the simulated CO2 transport within the leaf. The model predicts extensive reassimilation of CO2 produced by respiration and photorespiration. Simulations also suggest that carbonic anhydrase could enhance photosynthesis at low CO2 levels but had little impact on photosynthesis at high CO2 levels. The model confirms that scaling of photosynthetic capacity with absorbed light would improve efficiency of CO2 fixation in the leaf, especially at low light intensity.
Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models
Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000
2009-01-01
Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...
Lee, H.; Zehe, E.; Sivapalan, M.
2007-02-01
Predictions of catchment hydrology have been performed generally using either physically based, distributed models or conceptual lumped or semi-distributed models. In recognition of the disadvantages of using either of these modeling approaches, namely, detailed data requirements in the case of distributed modeling, and lack of physical basis of conceptual/lumped model parameters, Reggiani et al. (1998, 1999) derived, from first principles and in a general manner, the balance equations for mass, momentum and energy at what they called the Representative Elementary Watershed (or REW) scale. However, the mass balance equations of the REW approach include mass exchange flux terms which must be defined externally before their application to real catchments. Developing physically reasonable "closure relations" for these mass exchange flux terms is a crucial pre-requisite for the success of the REW approach. As a guidance to the development of closure relations expressing mass exchange fluxes as functions of relevant state variables in a physically reasonable way, and in the process effectively parameterizing the effects of sub-grid or sub-REW heterogeneity of catchment physiographic properties on these mass exchange fluxes, this paper considers four different approaches, namely the field experimental approach, a theoretical/analytical approach, a numerical approach, and a hybrid approach combining one or more of the above. Based on the concept of the scaleway (Vogel and Roth, 2003) and the disaggregation-aggregation approach (Viney and Sivapalan, 2004), and using the data set from Weiherbach catchment in Germany, closure relations for infiltration, exfiltration and groundwater recharge were derived analytically, or on theoretical grounds, while numerical experiments with a detailed fine-scale, distributed model, CATFLOW, were used to obtain the closure relationship for seepage outflow. The detailed model, CATFLOW, was also used to derive REW scale pressure-saturation (i
Directory of Open Access Journals (Sweden)
H. Lee
2007-01-01
Full Text Available Predictions of catchment hydrology have been performed generally using either physically based, distributed models or conceptual lumped or semi-distributed models. In recognition of the disadvantages of using either of these modeling approaches, namely, detailed data requirements in the case of distributed modeling, and lack of physical basis of conceptual/lumped model parameters, Reggiani et al. (1998, 1999 derived, from first principles and in a general manner, the balance equations for mass, momentum and energy at what they called the Representative Elementary Watershed (or REW scale. However, the mass balance equations of the REW approach include mass exchange flux terms which must be defined externally before their application to real catchments. Developing physically reasonable "closure relations" for these mass exchange flux terms is a crucial pre-requisite for the success of the REW approach. As a guidance to the development of closure relations expressing mass exchange fluxes as functions of relevant state variables in a physically reasonable way, and in the process effectively parameterizing the effects of sub-grid or sub-REW heterogeneity of catchment physiographic properties on these mass exchange fluxes, this paper considers four different approaches, namely the field experimental approach, a theoretical/analytical approach, a numerical approach, and a hybrid approach combining one or more of the above. Based on the concept of the scaleway (Vogel and Roth, 2003 and the disaggregation-aggregation approach (Viney and Sivapalan, 2004, and using the data set from Weiherbach catchment in Germany, closure relations for infiltration, exfiltration and groundwater recharge were derived analytically, or on theoretical grounds, while numerical experiments with a detailed fine-scale, distributed model, CATFLOW, were used to obtain the closure relationship for seepage outflow. The detailed model, CATFLOW, was also used to derive REW scale
Multidimensional numerical modeling of heat exchangers
Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.
A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).
Directory of Open Access Journals (Sweden)
Rybiński Witold
2016-09-01
Full Text Available The paper presents four 1-dimensional models of thermal resistance of walls in a heat exchanger with rectangular minichannels. The first model is the simplest one, with a single wall separating two fluids. The second model of the so called equivalent wall takes into account total volume of intermediate walls between layers of minichannels and of side walls of minichannels. The next two more complicated models take separately into account thermal resistance of these walls. In these two models side walls are treated as fins. The results of models comparison are presented. It is shown that thermal resistance may be neglected for metal walls but it should be taken into account for the walls made of plastics. For the case of non-neglected wall thermal resistance the optimum wall thickness was derived. Minichannel heat exchangers made of plastic are larger than those built of metal, but are significantly cheaper. It makes possible to use of such exchangers in inexpensive microscale ORC installations.
A multi-scale model for electrokinetic transport in networks of micro-scale and nano-scale pores
Alizadeh, Shima
2016-01-01
We present an efficient and robust numerical model for simulation of electrokinetic phenomena in porous networks over a wide range of applications including energy conversion, desalination, and lab-on-a-chip systems. Coupling between fluid flow and ion transport in these networks is governed by the Poisson-Nernst-Planck-Stokes equations. These equations describe a wide range of transport phenomena that can interact in complex and highly nonlinear ways in networks involving multiple pores with variable properties. Capturing these phenomena by direct simulation of the governing equations in multiple dimensions is prohibitively expensive. We present here a reduced order computational model that treats a network of many pores via solutions to 1D equations. Assuming that each pore in the network is long and thin, we derive a 1D model describing the transport in pore's longitudinal direction. We take into account the non-uniformity of potential and ion concentration profiles across the pore cross-section in the for...
Heat treatment modelling using strongly continuous semigroups.
Malek, Alaeddin; Abbasi, Ghasem
2015-07-01
In this paper, mathematical simulation of bioheat transfer phenomenon within the living tissue is studied using the thermal wave model. Three different sources that have therapeutic applications in laser surgery, cornea laser heating and cancer hyperthermia are used. Spatial and transient heating source, on the skin surface and inside biological body, are considered by using step heating, sinusoidal and constant heating. Mathematical simulations describe a non-Fourier process. Exact solution for the corresponding non-Fourier bioheat transfer model that has time lag in its heat flux is proposed using strongly continuous semigroup theory in conjunction with variational methods. The abstract differential equation, infinitesimal generator and corresponding strongly continuous semigroup are proposed. It is proved that related semigroup is a contraction semigroup and is exponentially stable. Mathematical simulations are done for skin burning and thermal therapy in 10 different models and the related solutions are depicted. Unlike numerical solutions, which suffer from uncertain physical results, proposed analytical solutions do not have unwanted numerical oscillations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
H. Lee
2006-07-01
Full Text Available Predictions of catchment hydrology have been performed generally using either physically based, distributed models or conceptual lumped or semi-distributed models. In recognition of the disadvantages of using either of these modeling approaches, namely, detailed data requirements in the case of distributed modeling, and lack of physical basis of conceptual/lumped model parameters, Reggiani et al. (1998, 1999 derived, from first principles and in a general manner, the balance equations for mass, momentum and energy at what they called the Representative Elementary Watershed (or REW scale. However, the mass balance equations of the REW approach include mass exchange flux terms which must be defined externally before their application to real catchments. Developing physically reasonable "closure relations'' for these mass exchange flux terms is a crucial pre-requisite for the success of the REW approach. As a guidance to the development of closure relations expressing mass exchange fluxes as functions of relevant state variables in a physically reasonable way, and in the process effectively parameterizing the effects of sub-grid or sub-REW heterogeneity of catchment physiographic properties on these mass exchange fluxes, this paper considers four different approaches, namely the field experimental approach, a theoretical/analytical approach, a numerical approach, and a hybrid approach combining one or more of the above. Based on the concept of the scaleway (Vogel and Roth, 2003 and the disaggregation-aggregation approach (Viney and Sivapalan, 2004, and using the data set from Weiherbach catchment in Germany, closure relations for infiltration, exfiltration and groundwater recharge were derived analytically, or on theoretical grounds, while numerical experiments with a detailed fine-scale, distributed model, CATFLOW, were used to obtain the closure relationship for seepage outflow. The detailed model, CATFLOW, was also used to derive REW
Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems
Directory of Open Access Journals (Sweden)
Gornov V.F.
2016-01-01
Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.
Priyadarshi, Anupam; Mandal, Sandip; Smith, S Lan; Yamazaki, Hidekatsu
2017-01-07
We develop moment closure approximations to represent micro-scale spatial variability in the concentrations of nutrients (N), phytoplankton (P) and zooplankton (Z) in an NPZ model, which we apply to examine the impact of different levels of micro-scale variability on both ecosystem dynamics and trophic transfer. Accounting explicitly for both the mean-field and fluctuating components of each prognostic variable in the NPZ model yields different dynamics for the mean-field concentrations, as well as lower phytoplankton biomass and greater zooplankton biomass, compared to the conventional NPZ model without micro-scale variability. The biomass of zooplankton consistently increases with increasing total micro-scale variability, and a minimum threshold of such variability is required for the existence of stable steady state solutions in the NPZ closure model. Compared to the conventional NPZ model, the domain of parameter space over which stable solutions exist is larger than for the NPZ closure model, and this stable domain widens with increasing total variability. The latter result suggests that natural systems with greater micro-scale variability may have the potential to sustain greater biodiversity. We find that with the NPZ closure model: (1) the stability domains increases with micro-scale variability, (2) increase of the level of total micro-scale variability enhances trophic transfer, i.e. increases the biomass of zooplankton, and (3) the coefficient of variation (CVP) of phytoplankton increases with micro-scale variability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mazzuca, Enrico; Aliverti, Andrea; Miserocchi, Giuseppe
2016-07-01
A computational model of a morphologically-based alveolar capillary unit (ACU) in the rabbit is developed to relate lung fluid balance to mechanical forces between capillary surface and interstitium during development of interstitial edema. We hypothesize that positive values of interstitial liquid pressure Pliq impact on capillary transmural pressure and on blood flow. ACU blood flow, capillary recruitment and filtration are computed by modulating vascular and interstitial pressures. Model results are compared with experimental data of Pliq increasing from ~-10 (control) up to ~4cmH2O in two conditions, hypoxia and collagenase injection. For hypoxia exposure, fitting data requires a linear increase in hydraulic conductivity Lp and capillary pressure PC, that fulfils the need of increase in oxygen delivery. For severe fragmentation of capillary endothelial barrier (collagenase injection), fitting requires a rapid increase in both hydraulic and protein permeability, causing ACU de-recruitment, followed by an increase in PC as a late response to restore blood flow. In conclusion, the model allows to describe the lung adaptive response to edemagenic perturbations; the increase in Pliq, related to the low interstitial compliance, provides an efficient control of extravascular water, by limiting microvascular filtration.
Viscoelastic Models of Tidally Heated Exomoons
Dobos, Vera
2015-01-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
Lockerby, Duncan A.; Duque-Daza, Carlos A.; Borg, Matthew K.; Reese, Jason M.
2012-05-01
In this paper we describe a numerical method for the efficient time-accurate coupling of hybrid continuum/molecular micro gas flow solvers. Hybrid approaches are commonly used when non-equilibrium effects in the flow field are spatially localized; in these regions a more accurate, but typically more expensive, solution procedure is adopted. Although this can greatly increase efficiency in steady flows, in unsteady flows the evolution of the solution as a whole is restricted by the maximum time step allowed by the molecular-based/kinetic model; numerically speaking, this is a stiff problem. In the method presented in this paper we exploit time-scale separation, when it exists, to partially decouple the temporal evolution of the two parts of the hybrid model. This affords major computational savings. The method is a modified/extended version of the seamless heterogeneous multiscale method (SHMM). Our approach allows multiple micro steps (molecular steps) before coupling with the macro (continuum) solver: we call this a multi-step SHMM. This maintains the main advantages of SHMM (computational speed-up and flexible application) while improving on accuracy and greatly reducing the number of continuum computations and instances of coupling required. The improved accuracy of the multi-step SHMM is demonstrated for two canonical one-dimensional transient flows (oscillatory Poiseuille and oscillatory Couette flow) and for rarefied-gas oscillatory Poiseuille flow.
Bearon, R N; Croze, O A
2012-01-01
There is much current interest in modelling suspensions of algae and other micro-organisms for biotechnological exploitation, and many bioreactors are of tubular design. Using generalized Taylor dispersion theory, we develop a population-level swimming-advection-diffusion model for suspensions of micro-organisms in a vertical pipe flow. In particular, a combination of gravitational and viscous torques acting on individual cells can affect their swimming behaviour, which is termed gyrotaxis. This typically leads to local cell drift and diffusion in a suspension of cells. In a flow in a pipe, small amounts of radial drift across streamlines can have a major impact on the effective axial drift and diffusion of the cells. We present a Galerkin method to calculate the local mean swimming velocity and diffusion tensor based on local shear for arbitrary flow rates. This method is validated with asymptotic results obtained in the limits of weak and strong shear. We solve the resultant swimming-advection-diffusion equ...
Newton, W G; Mezzacappa, A
2006-01-01
First results from a fully self-consistent, temperature-dependent equation of state that spans the whole density range of neutron stars and supernova cores are presented. The equation of state (EoS) is calculated using a mean-field Hartree-Fock method in three dimensions (3D). The nuclear interaction is represented by the phenomenological Skyrme model in this work, but the EoS can be obtained in our framework for any suitable form of the nucleon-nucleon effective interaction. The scheme we employ naturally allows effects such as (i) neutron drip, which results in an external neutron gas, (ii) the variety of exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii) the subsequent dissolution of these nuclei into nuclear matter. In this way, the equation of state is calculated across phase transitions without recourse to interpolation techniques between density regimes described by different physical models. EoS tables are calculated in the wide range of densities, temperature and proton/neut...
Characterization and modeling of the heat source
Energy Technology Data Exchange (ETDEWEB)
Glickstein, S.S.; Friedman, E.
1993-10-01
A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.
MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE
Institute of Scientific and Technical Information of China (English)
Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei
2004-01-01
The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Arguelles-Vivas, F.J.; Babadagli, T. [University of Alberta (Canada)
2011-07-01
One of the good examples of a non-isothermal, gravity dominated recovery application is the steam assisted gravity drainage (SAGD) process. It is usually observed that this process yields lower recovery than expected in field applications. To avoid this problem, a detailed understanding of the problem at the pore scale is necessary to account for the residual oil saturation in the swept zone. Uncertainty still exists as to the extent of the impact of pore scale mechanisms on the process of non-isothermal gravity drainage dominated heavy oil recovery. This paper presents experimental and analytical modeling of gravity drainage dominated heavy oil recovery. A single capillary tube is used to mimic an elementary volume in the swept area. Two and three-phase flow displacements were carried out in a capillary tube under isothermal and non-isothermal conditions. The analytical calculations suggest that, at low capillary numbers, temperature does not have a significant impact on the residual saturation of processed or crude oil.
An analytical model for annular flow boiling heat transfer in microchannel heat sinks
Energy Technology Data Exchange (ETDEWEB)
Megahed, A.; Hassan, I. [Concordia University, Montreal, QC (Canada). Dept. of Mechanical and Industrial Engineering
2009-07-01
An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)
Modelling heating effects in cryocooled protein crystals
Nicholson, J; Fayz, K; Fell, B; Garman, E
2001-01-01
With the application of intense X-ray beams from third generation synchrotron sources, damage to cryocooled macromolecular crystals is being observed more commonly . In order to fully utilize synchrotron facilities now available for studying biological crystals, it is essential to understand the processes involved in radiation damage and beam heating so that, if possible, action can be taken to slow the rate of damage. Finite Element Analysis (FEA) has been applied to model the heating effects of X-rays on cryocooled protein crystals, and to compare the relative cooling efficiencies of nitrogen and helium.
Modeling of Dielectric Heating within Lyophilization Process
Directory of Open Access Journals (Sweden)
Jan Kyncl
2014-01-01
Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.
Heat flux modulation in domino dynamo model
Reshetnyak, Maxim
2012-01-01
Using domino dynamo model we show how variations of the heat flux at the core-mantle boundary change frequency of geomagnetic field reversals. In fact, we are able to demonstrate effect known from the modern 3D planetary dynamo models using ensemble of the interacting spins, which obey equations of the Langevin-type with a random force. We also consider applications to the giant- planets and offer explanations of some specific episodes of the geomagnetic field in the past.
基于MSDM方法的粒子-固壁侵蚀效应研究%Study of particle impact erosion based on micro-scale dynamic model
Institute of Scientific and Technical Information of China (English)
傅德彬; 姜毅
2009-01-01
为研究导弹发射过程中发动机喷出的高温高速粒子对发射装置壁面的冲刷和侵蚀作用,利用MSDM(微尺度动力学模型)方法,建立了粒子对固壁材料的冲刷侵蚀模型,对粒子入射速度、入射角度、粒子尺寸及固壁材料特性等影响侵蚀效应的因素进行了研究,获得了粒子入射条件、固壁材料特性与侵蚀效应的相互关系.用MSDM方法将粒子和固壁离散为具有一定连接关系的微团质点,并利用材料属性和牛顿运动关系确定了微团间的相互作用和运动过程.研究表明,该方法在分析粒子-材料侵蚀方面具有一定效果.%In order to study the particle impact erosion of the particles with high velocity and high temperature exhausted from the nozzle during the missile launching on the wall of launch equipment, a computational approach called Micro-Scale Dynamical Model (MSDM) was used to analyze the factors of erosion, such as the impact velocity, impact angle, particle diameter, material of the wall. In this model, the particle and wall are discretized and represented using a lot of particle cells with adjacent relationship. The interaction between a pair of adjacent cells is dependent on mechanical properties of the material. The motion and trajectory of a cell are determined by Newton's law of motion. The study shows that this approach has some function for particle impact erosion simulation.
Heat transfer model for quenching by submerging
Energy Technology Data Exchange (ETDEWEB)
Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)
2011-05-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
2013-09-01
separated liquid phases, of different compositions, in mutual equilibrium. This is possible only if the overall Gibbs free energy of the two separated phases...distribution is unlimited. enthalpy, v the velocity, k the conductivity. Since the Gibbs free energy (g) can be expressed as g = φg11 + (1− φ)g22 +RT...phases (a) 0 5 10 15 20 25 30 35 100 150 200 250 300 350 400 450 500 550 600 Frame A re a [µ m 2 ] area phase 1 area phase 2 area fase (b) Figure
A simplified heat pump model for use in solar plus heat pump system simulation studies
Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter
2012-01-01
Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...
Heat transfer modeling an inductive approach
Sidebotham, George
2015-01-01
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...
Conry, Patrick; Sharma, Ashish; Leo, Laura; Fernando, H. J. S.; Potosnak, Mark; Hellmann, Jessica
2013-11-01
The modeling of urban heat island (UHI) requires a multi-scale approach as it involves numerous physical phenomena spanning a range of scales. We have performed a comprehensive study of Chicago's UHI via coupling of mesoscale Weather Research and Forecasting (WRF) and micro-scale ENVI-met models. The application of the latter model to a Lincoln Park neighborhood and a parallel observational campaign will be the primary focus of this presentation. ENVI-met employs a computational fluid dynamics model to represent heterogeneity of urban areas, providing fine resolution output of UHI dynamics. In the field campaign, two stations located on rooftops of DePaul University buildings were each equipped with a sonic anemometer and vertical array of thermocouples, allowing investigations of spatial variability of flow, turbulent fluxes, and temperature profiles in an urban roughness sublayer. One of these was located above a rooftop garden and the other above a conventional rooftop. Downscaled output from the WRF model or a set of observational data served as initial and boundary conditions for the ENVI-met model. The model's predicative capabilities were assessed through comparison with another set of observational data, and dynamical causes for the model's poor behavior were identified. Funded by NSF Grant No. 0934592 and ND-ECI.
Heat Transfer Model for Hot Air Balloons
Llado-Gambin, Adriana
A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.
Directory of Open Access Journals (Sweden)
Lenhard Richard
2012-04-01
Full Text Available In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057, whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3.
Seidel, Susanne A. I.; Dijkman, Patricia M.; Wendy A Lea; van den Bogaart, Geert; Jerabek-Willemsen, Moran; Lazic, Ana; Joseph, Jeremiah S.; Srinivasan, Prakash; Baaske, Philipp; Simeonov, Anton; Katritch, Ilia; Melo, Fernando A.; Ladbury, John E; Schreiber, Gideon; Watts, Anthony
2012-01-01
Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the...
An Efficient Microscale Procedure for the Synthesis of Aspirin
Pandita, Sangeeta; Goyal, Samta
1998-06-01
The synthesis of aspirin is a part of many undergraduate organic synthesis labs and is frequently used in qualitative organic analysis laboratory for the identification of salicylic acid. We have found that aspirin can be synthesized on microscale by a simple and efficient procedure that eliminates the heating step employed in literature procedures and gives a pure, ferric-negative product (no purple color with alcoholic ferric chloride solution).
Design, testing, and simulation of microscale gas chromatography columns
Energy Technology Data Exchange (ETDEWEB)
Hudson, M.L.; Kottenstette, R.; Matzke, C.M.; Frye-Mason, G.C.; Shollenberger, K.A.; Adkins, D.R.; Wong, C.C.
1998-08-01
A microscale gas chromatography column is one component in a microscale chemistry laboratory for detecting chemical agents. Several columns were fabricated using the Bosch etch process which allows deep, high aspect ratio channels of rectangular cross-section. A design tool, based on analytical models, was developed to evaluate the effects of operating conditions and column specifications on separation resolution and time. The effects of slip flow, channel configuration, and cross-sectional shape were included to evaluate the differences between conventional round, straight columns and the microscale rectangular, spiral columns. Experimental data were obtained and compared with the predicted flowrates and theoretical number of plates. The design tool was then employed to select more optimum channel dimensions and operating conditions for high resolution separations.
Nanoflare heating model for collisionless solar corona
Indian Academy of Sciences (India)
U L VISAKH KUMAR; BILIN SUSAN VARGHESE; P J KURIAN
2017-02-01
The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of600 s in the solar corona, producing nanoflares in the energy range $10^{21}–10^{23}$ erg/s which matches with Yohkoh X-ray observations.
Nanoflare heating model for collisionless solar corona
Visakh Kumar, U. L.; Varghese, Bilin Susan; Kurian, P. J.
2017-02-01
The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of 600 s in the solar corona, producing nanoflares in the energy range 10 21-10 23 erg /s which matches with Yohkoh X-ray observations.
Vertical eddy heat fluxes from model simulations
Stone, Peter H.; Yao, Mao-Sung
1991-01-01
Vertical eddy fluxes of heat are calculated from simulations with a variety of climate models, ranging from three-dimensional GCMs to a one-dimensional radiative-convective model. The models' total eddy flux in the lower troposphere is found to agree well with Hantel's analysis from observations, but in the mid and upper troposphere the models' values are systematically 30 percent to 50 percent smaller than Hantel's. The models nevertheless give very good results for the global temperature profile, and the reason for the discrepancy is unclear. The model results show that the manner in which the vertical eddy flux is carried is very sensitive to the parameterization of moist convection. When a moist adiabatic adjustment scheme with a critical value for the relative humidity of 100 percent is used, the vertical transports by large-scale eddies and small-scale convection on a global basis are equal: but when a penetrative convection scheme is used, the large-scale flux on a global basis is only about one-fifth to one-fourth the small-scale flux. Comparison of the model results with observations indicates that the results with the latter scheme are more realistic. However, even in this case, in mid and high latitudes the large and small-scale vertical eddy fluxes of heat are comparable in magnitude above the planetary boundary layer.
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the
Modeling a Cold Crucible Induction Heated Melter
Energy Technology Data Exchange (ETDEWEB)
Grant L. Hawkes
2003-06-01
FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power.
Modeling a Cold Crucible Induction Heated Melter
Energy Technology Data Exchange (ETDEWEB)
Hawkes, G.L.
2003-05-09
FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled with mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
Heat-pump-assisted dryer: Pt. 1; Mathematical model
Energy Technology Data Exchange (ETDEWEB)
Pendyala, V.R.; Devotta, S.; Patwardhan, V.S. (National Chemical Lab., Poona (India))
1990-07-01
A mathematical model for an integrated heat-pump-assisted dryer has been developed. The dryer has been modelled considering the heat transfer and simultaneous heat and mass transfer zones. The heat-pump heat exchangers have been modelled by writing the enthalpy balance for differential lengths considering the various zones on the air and working-fluid sides. The compressor has been described by the polytropic compression equation. The model has been used for simulating an existing system using R11 to study the effect of approach velocity of air to the evaporator and of the suction superheat on the specific energy consumption of the heat pump assisted dryer. (author).
Microscale Insight into Microbial Seed Banks
Locey, Kenneth J.; Fisk, Melany C.; Lennon, J. T.
2017-01-01
Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs. PMID:28119666
A simplified heat pump model for use in solar plus heat pump system simulation studies
DEFF Research Database (Denmark)
Perers, Bengt; Andersen, Elsa; Nordman, Roger
2012-01-01
Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....
A simplified heat pump model for use in solar plus heat pump system simulation studies
DEFF Research Database (Denmark)
Perers, Bengt; Andersen, Elsa; Nordman, Roger
2012-01-01
Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....
Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre
2015-01-01
The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.
Verification of Conjugate Heat Transfer Models in a Closed Volume with Radiative Heat Source
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2016-01-01
Full Text Available The results of verification of mathematical model of convective-conductive heat transfer in a closed volume with a thermally conductive enclosing structures are presented. Experiments were carried out to determine the temperature of floor premises in the working conditions of radiant heating systems. Comparison of mathematical modelling of temperature fields and experiments showed their good agreement. It is concluded that the mathematical model of conjugate heat transfers in the air cavity with a heat-conducting and heat-retaining walls correspond to the real process of formation of temperature fields in premises with gas infrared heaters system.
Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit
Energy Technology Data Exchange (ETDEWEB)
Hakala, L.; Pesola, A.; Vanhanen, J.
2012-12-15
Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland
Developing and modelling of ohmic heating for solid food products
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Frosch, Stina
such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been......Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...
Microscale Immune Studies Laboratory.
Energy Technology Data Exchange (ETDEWEB)
Poschet, Jens Fredrich; Carroll-Portillo, Amanda; Wu, Meiye; Manginell, Ronald Paul; Herr, Amy Elizabeth; Martino, Anthony A.; Perroud, Thomas D.; Branda, Catherine; Srivastava, Nimisha; Sinclair, Michael B.; Moorman, Matthew Wallace; Apblett, Christopher Alan; Sale, Kenneth L.; James, Conrad D.; Carles, Elizabeth L.; Lidke, Diane S. (University of New Mexico, Albuquerque, NM); Van Benthem, Mark Hilary; Rebeil, Roberto; Kaiser, Julie; Seaman, William (University of California, San Francisco, CA); Rempe, Susan; Brozik, Susan Marie; Jones, Howland D. T.; Gemperline, Paul (East Carolina University, Greenville, NC); Throckmorton, Daniel J.; Misra, Milind; Murton, Jaclyn K.; Carson, Bryan D.; Zhang, Zhaoduo; Plimpton, Steven James; Renzi, Ronald F.; Lane, Todd W.; Ndiaye-Dulac, Elsa; Singh, Anup K.; Haaland, David Michael; Faulon, Jean-Loup Michel; Davis, Ryan W.; Ricken, James Bryce; Branda, Steven S.; Patel, Kamlesh D.; Joo, Jaewook; Kubiak, Glenn D.; Brennan, James S.; Martin, Shawn Bryan; Brasier, Allan (University of Texas Mecial Branch, Galveston, TX)
2009-01-01
The overarching goal is to develop novel technologies to elucidate molecular mechanisms of the innate immune response in host cells to pathogens such as bacteria and viruses including the mechanisms used by pathogens to subvert/suppress/obfuscate the immune response to cause their harmful effects. Innate immunity is our first line of defense against a pathogenic bacteria or virus. A comprehensive 'system-level' understanding of innate immunity pathways such as toll-like receptor (TLR) pathways is the key to deciphering mechanisms of pathogenesis and can lead to improvements in early diagnosis or developing improved therapeutics. Current methods for studying signaling focus on measurements of a limited number of components in a pathway and hence, fail to provide a systems-level understanding. We have developed a systems biology approach to decipher TLR4 pathways in macrophage cell lines in response to exposure to pathogenic bacteria and their lipopolysaccharide (LPS). Our approach integrates biological reagents, a microfluidic cell handling and analysis platform, high-resolution imaging and computational modeling to provide spatially- and temporally-resolved measurement of TLR-network components. The Integrated microfluidic platform is capable of imaging single cells to obtain dynamic translocation data as well as high-throughput acquisition of quantitative protein expression and phosphorylation information of selected cell populations. The platform consists of multiple modules such as single-cell array, cell sorter, and phosphoflow chip to provide confocal imaging, cell sorting, flow cytomtery and phosphorylation assays. The single-cell array module contains fluidic constrictions designed to trap and hold single host cells. Up to 100 single cells can be trapped and monitored for hours, enabling detailed statistically-significant measurements. The module was used to analyze translocation behavior of transcription factor NF-kB in macrophages upon activation
Microscale Immune Studies Laboratory.
Energy Technology Data Exchange (ETDEWEB)
Poschet, Jens Fredrich; Carroll-Portillo, Amanda; Wu, Meiye; Manginell, Ronald Paul; Herr, Amy Elizabeth; Martino, Anthony A.; Perroud, Thomas D.; Branda, Catherine; Srivastava, Nimisha; Sinclair, Michael B.; Moorman, Matthew Wallace; Apblett, Christopher Alan; Sale, Kenneth L.; James, Conrad D.; Carles, Elizabeth L.; Lidke, Diane S. (University of New Mexico, Albuquerque, NM); Van Benthem, Mark Hilary; Rebeil, Roberto; Kaiser, Julie; Seaman, William (University of California, San Francisco, CA); Rempe, Susan; Brozik, Susan Marie; Jones, Howland D. T.; Gemperline, Paul (East Carolina University, Greenville, NC); Throckmorton, Daniel J.; Misra, Milind; Murton, Jaclyn K.; Carson, Bryan D.; Zhang, Zhaoduo; Plimpton, Steven James; Renzi, Ronald F.; Lane, Todd W.; Ndiaye-Dulac, Elsa; Singh, Anup K.; Haaland, David Michael; Faulon, Jean-Loup Michel; Davis, Ryan W.; Ricken, James Bryce; Branda, Steven S.; Patel, Kamlesh D.; Joo, Jaewook; Kubiak, Glenn D.; Brennan, James S.; Martin, Shawn Bryan; Brasier, Allan (University of Texas Mecial Branch, Galveston, TX)
2009-01-01
The overarching goal is to develop novel technologies to elucidate molecular mechanisms of the innate immune response in host cells to pathogens such as bacteria and viruses including the mechanisms used by pathogens to subvert/suppress/obfuscate the immune response to cause their harmful effects. Innate immunity is our first line of defense against a pathogenic bacteria or virus. A comprehensive 'system-level' understanding of innate immunity pathways such as toll-like receptor (TLR) pathways is the key to deciphering mechanisms of pathogenesis and can lead to improvements in early diagnosis or developing improved therapeutics. Current methods for studying signaling focus on measurements of a limited number of components in a pathway and hence, fail to provide a systems-level understanding. We have developed a systems biology approach to decipher TLR4 pathways in macrophage cell lines in response to exposure to pathogenic bacteria and their lipopolysaccharide (LPS). Our approach integrates biological reagents, a microfluidic cell handling and analysis platform, high-resolution imaging and computational modeling to provide spatially- and temporally-resolved measurement of TLR-network components. The Integrated microfluidic platform is capable of imaging single cells to obtain dynamic translocation data as well as high-throughput acquisition of quantitative protein expression and phosphorylation information of selected cell populations. The platform consists of multiple modules such as single-cell array, cell sorter, and phosphoflow chip to provide confocal imaging, cell sorting, flow cytomtery and phosphorylation assays. The single-cell array module contains fluidic constrictions designed to trap and hold single host cells. Up to 100 single cells can be trapped and monitored for hours, enabling detailed statistically-significant measurements. The module was used to analyze translocation behavior of transcription factor NF-kB in macrophages upon activation
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2015-01-01
finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...
Sari, I. M.
2017-02-01
Teacher plays a crucial role in Education. Helping students construct scientifically mental model is one of obligation of Physics Education Department of Teacher Education Institute that produce physics teacher. Excavating students’ mental model is necessary to be done in physics education. This research was first to identify 23 physics students’ mental model of heat and heat conduction. A series of semi-structured interviews was conducted to excavate the students’ understanding of heat and mental models on heat conduction. The students who involved in this study come from different level from sophomore to master degree in Physics Education Department. This study adopted a constant comparison method to obtain the patterns of the participants’ responses through the students’ writing, drawing and verbal utterances. The framework for assessing mental model and the instruments were adopted and adapted from Chiou and Anderson (2010). We also compared the students’ understanding of heat and mental models on heat conduction. The result shows that Heat is treated as Intrinsic property, material substances, and caloric flow. None of students expressed heat as transfer of thermal energy. Moreover, there are two kinds of students’ fundamental component of mental model in heat conduction were found: medium and molecules. Students understanding of heat and fundamental components of mental model in heat conduction are not resulted from running mental model.
Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders
Falakzaadeh, F.; Mehryar, R.
2017-01-01
To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.
Shalaginova, Z. I.
2016-03-01
The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data
Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model.
Kumar, Ajay; Kumar, Sushil; Katiyar, V K; Telles, Shirley
2017-05-01
The paper reports a numerical study of phase change heat transfer process in lung cancer undergoing cryosurgery. A two dimensional hyperbolic bio-heat model with non-ideal property of tissue, blood perfusion and metabolism is used to analyze the problem. The governing equations are solved by finite difference method based on enthalpy formulation. Effects of relaxation time of heat flux in hyperbolic model on freezing process have been examined. A comparative investigation of two different models (hyperbolic and parabolic bio-heat models) is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling of Heating During Food Processing
Zheleva, Ivanka; Kamburova, Veselka
Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.
Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies
Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne
2016-07-01
Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.
Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak
2014-01-01
During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.
Mathematical Modeling of Spiral Heat Exchanger
Probal Guha , Vaishnavi Unde
2014-01-01
Compact Heat Exchangers (CHEs) are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat ...
A diffusion model for drying of a heat sensitive solid under multiple heat input modes.
Sun, Lan; Islam, Md Raisul; Ho, J C; Mujumdar, A S
2005-09-01
To obtain optimal drying kinetics as well as quality of the dried product in a batch dryer, the energy required may be supplied by combining different modes of heat transfer. In this work, using potato slice as a model heat sensitive drying object, experimental studies were conducted using a batch heat pump dryer designed to permit simultaneous application of conduction and radiation heat. Four heat input schemes were compared: pure convection, radiation-coupled convection, conduction-coupled convection and radiation-conduction-coupled convection. A two-dimensional drying model was developed assuming the drying rate to be controlled by liquid water diffusion. Both drying rates and temperatures within the slab during drying under all these four heat input schemes showed good accord with measurements. Radiation-coupled convection is the recommended heat transfer scheme from the viewpoint of high drying rate and low energy consumption.
Herman, Cila; Chen, Yuwen
2006-08-01
A simplified model of heat transfer was developed to investigate the thermal behavior of heat exchangers and stack plates of thermoacoustic devices. The model took advantage of previous results describing the thermal behavior of the thermoacoustic core and heat transfer in oscillating flow to study the performance of heat exchangers attached to the core. The configuration considered is a flat tube (with a working fluid flowing in the tube) of the thickness of the stack plate attached to both ends of the stack plate. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, transport fluids in the heat exchangers, stack plate and the thermoacoustic working fluid were organized into dimensionless groups that allowed accounting for their impact on the performance of the heat exchangers. Two types of thermal boundary conditions were considered: constant temperature and constant heat flux along the heat exchanger tubes. Numerical simulations were carried out with the model introduced in the paper. The temperature distributions and heat fluxes near the edge of the stack plate were found to be nonlinear. The influence of system parameters on the thermal performance of the heat exchangers was analyzed.
Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...
Mathematical modeling of heat transfer in production premises heated by gas infrared emitters
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2017-01-01
Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.
Modeling terahertz heating effects on water
DEFF Research Database (Denmark)
Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd;
2010-01-01
We apply Kirchhoff’s heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused...... down to a spot with a diameter of 0.5 mm, we find that the steadystate temperature increase per milliwatt of transmitted power is 1.8◦C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample...... temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads...
Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.
Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans
2009-11-01
We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.
Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.
2013-01-01
To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna
Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger
DEFF Research Database (Denmark)
Friis, Alan; Szabo, Peter; Karlson, Torben
2002-01-01
A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...
Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.
2013-01-01
To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna
A heterogeneous model for heat transfer in packed beds
Wijngaarden, R.J.; Westerterp, K.R.
1993-01-01
If transient heat transfer occurs in a packed bed or a reaction is carried out on the pellets, the heterogeneity of the bed is essential because of the heat flow between pellets and gas. Global heat parameters for the packed bed, such as λeff and αw, are usually derived from homogeneous models. Ther
A heat dissipating model for water cooling garments
Directory of Open Access Journals (Sweden)
Yang Kai
2013-01-01
Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.
Heat source models in simulation of heat flow in friction stir welding
DEFF Research Database (Denmark)
Schmidt, Henrik Nikolaj Blich; Hattel, Jesper
2004-01-01
. The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number......The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...
Heat Source Models in Simulation of Heat Flow in Friction Stir Welding
DEFF Research Database (Denmark)
Schmidt, Henrik Nikolaj Blich; Hattel, Jesper
2004-01-01
. The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...
Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency......In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....
Cerium anomaly at microscale in fossils.
Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc
2015-09-01
Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.
Sensitivity Analysis of the Gap Heat Transfer Model in BISON.
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)
2014-10-01
This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.
An Analytical Model of Joule Heating in Piezoresistive Microcantilevers
Chongdu Cho; Mohd Zahid Ansari
2010-01-01
The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The c...
Agent-based modelling of heating system adoption in Norway
Energy Technology Data Exchange (ETDEWEB)
Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.
2010-07-01
Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)
MODEL OF HEAT SIMULATOR FOR DATA CENTERS
Directory of Open Access Journals (Sweden)
Jan Novotný
2016-08-01
Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.
Present-day heat flow model of Mars
Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier
2017-04-01
Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m-2, with an average value of 19 mW m-2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.
Present-day heat flow model of Mars.
Parro, Laura M; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier
2017-04-03
Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m(-2), with an average value of 19 mW m(-2). Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.
Absorption Cycle Heat Pump Model for Control Design
DEFF Research Database (Denmark)
Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard
2015-01-01
Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... on an actual heat pump located at a larger district heating plant. The model is implemented in Modelica and is based on energy and mass balances, together with thermodynamic property functions for LiBr and water and staggered grid representations for heat exchangers. Model parameters have been fitted...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....
Multilevel Flow Modeling of Domestic Heating Systems
DEFF Research Database (Denmark)
Hu, Junjie; Lind, Morten; You, Shi
2012-01-01
of complementing this reasoning methodology. Domestic heating systems, as the main resource to meet the thermal requirements of end-users, have different implementations in Europe in order to achieve various degrees of controllability and heating efficiencies. As all the heating systems serve the same basic needs...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...
Effects of microscale inertia on dynamic ductile crack growth
Jacques, N.; Mercier, S.; Molinari, A.
2012-04-01
The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.
Energy Technology Data Exchange (ETDEWEB)
Leth-Miller, R.; Jensen, A.D.; Glarborg, P.; Jensen, L.M.; Hansen, P.B.; Joergensen, S.B
2003-11-28
The heat capacity and heat of fusion were measured for a number of minerals using differential scanning calorimetry (DSC). The DSC measurements showed that the heat of fusion for the minerals is very low compared to the heat of fusion for pure crystalline phases reported elsewhere. A model for the melting behaviour of mineral materials in terms of melting interval, heat capacities and heat of fusion has been developed. The only model input is the chemical composition of the mineral material. The model was developed to be implemented in a detailed model of a cupola furnace, thus the focus for the development was not only precision but also to obtain a model that was continuous and differentiable. The model is based on several different submodels that each covers a part of the heating and melting of rocks. Each submodel is based on large amounts of empirical data. Comparison of the model and the DSC measurements showed reasonable agreement for the model to be used when a fast estimate is needed and experimental data is not available.
Modeling of Strip Heating Process in Vertical Continuous Annealing Furnace
Institute of Scientific and Technical Information of China (English)
WAN Fei; WANG Yong-qin; QIN Shu-ren
2012-01-01
The mechanism for heat transfer of radiation is usually adopted to heat strip in vertical continuous annealing furnace. The rate of heat transfer among strip and other objects can be hugely affected by the parameters of strip speed, geometry factors and radiating characteristic of surfaces of strip, radiating tubes and walls of furnace. A model including all parameters is proposed for calculating the heat transfer coefficient, predicting the strip tempera- ture and boundary temperature of strip through analyzing these parameters. The boundary temperature is a important datum and different from average arithmetic value of temperature of strip and temperature in furnace. Also, the model can be used to analyze the relation for temperature of strip and heat transfer coefficient, total heat transfer quantity and heating time. The model is built by using the radiating heat transfer rate, the Newtonrs law of cooling, and lumped system analysis. The results of calculation are compared to the data from production line. The comparisons indicate that the model can well predict the heating process. The model is already applied for process control in pro- duction line. Also, this research will provide a new method for analyzing the radiation heat transfer.
Numerical Modelling of Indution Heating - Fundamentals
DEFF Research Database (Denmark)
Zhang, Wenqi
Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...
Numerical Modelling of Indution Heating - Fundamentals
DEFF Research Database (Denmark)
Zhang, Wenqi
Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...
Modelling heat transfer in heterogeneous media using fractional calculus.
Sierociuk, Dominik; Dzielinski, Andrzej; Sarwas, Grzegorz; Petras, Ivo; Podlubny, Igor; Skovranek, Tomas
2013-05-13
This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.
OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING
Directory of Open Access Journals (Sweden)
Sona Benesova
2013-05-01
Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.
OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING
Directory of Open Access Journals (Sweden)
Soňa Benešová
2013-09-01
Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.
Computer modeling of heat treating austenitic and nickel based alloys
Glickstein, S. S.; Friedman, E.; Berman, R. M.
1982-05-01
The adequacy of the heat treating process depends upon the thermal cycle experienced by the material during heat treating in the furnace and quenching. While thermocouples placed at the surface of the material during heat treating can assure the adequacy of the process for the material at the surface, assurance that inner regions of the material are experiencing the proper temperature transient is not guaranteed. To assess present process standards for heat treating 17-4 PH stainless steel and air quenching Inoconel X after solution treatment, computer models of the heat transfer within the material were developed. Sensitivity studies were conducted to determine the effects of material bar diameter, peak temperature, material properties, heat transfer coefficients, and neighboring bar stock. The computer modeling provided an easy and inexpensive technique for determining the adequacy of present heat treating process standards and for ensuring that future standards will provide the desired requirements. Details of these sensitivity studies are presented.
Mathematical Model of Moving Heat-Transfer Agents
Directory of Open Access Journals (Sweden)
R. I. Yesman
2010-01-01
Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.
Microscale technology and biocatalytic processes: Opportunities and challenges for synthesis
DEFF Research Database (Denmark)
Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona
2015-01-01
Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been ......, and the future outlook for the implementation of these key green engineering methods and the role of supporting tools such as mathematical models to establish sustainable production processes are discussed....
Renewable energy for passive house heating - Part II. Model
Energy Technology Data Exchange (ETDEWEB)
Badescu, V. [Candida Oancea Institute of Solar Energy, Faculty of Mechanical Engineering, Polytechnic University of Bucharest, Bucharest (Romania); Sicre, B. [Computational Physics, Technical University of Chemnitz, Institute of Physics, Chemnitz (Germany)
2003-07-01
The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat transfer through the high thermal inertia elements is analyzed by using a one-dimensional time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common-practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collector system provides thermal energy for space heating or domestic hot water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the
Renewable energy for passive house heating. Part 2. Model
Energy Technology Data Exchange (ETDEWEB)
Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics
2003-12-01
The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat-transfer through the high thermal inertia elements is analyzed by using a 1D time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collectors system provides thermal energy for space heating or hot domestic water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the wood to be
Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
2015-01-01
). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....
A micro-scale hot-surface device based on non-radiative carrier recombination
Kovalgin, Alexeij Y.; Holleman, J.; Iordache, G.
2004-01-01
This work employs the idea of making micro-scale hot-surface devices (e.g. sensors, flow meters, micro reactors, etc) based on generation of heat due to nonradiative recombination of carriers in a thin (13 nm) poly silicon surface layer. An important part of the device is a nano-scale (10-100 nm)
Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve
Directory of Open Access Journals (Sweden)
Zainal Nurul Amira
2017-01-01
Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.
The porosity in a fluidized bed heat transfer model
Visser, G; Visser, G.; Valk, M.
1993-01-01
A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi
Temperature fields in machining processes and heat transfer models
Energy Technology Data Exchange (ETDEWEB)
Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics
2002-07-01
This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)
The porosity in a fluidized bed heat transfer model
Visser, G.; Valk, M.
1993-01-01
A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi
Health Externalities and Heat savings in Energy System Modelling
DEFF Research Database (Denmark)
Zvingilaite, Erika
from the rest of the energy system. This PhD study contributes to the development in energy system modelling, by including heat saving options – insulation of walls, roofs and floors, replacing of windows and installing ventilation system with heat recovery – in the Danish heat and power sector...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...... and are popular as secondary heating technologies in Denmark, can cause indoor and outdoor air pollution locally. Hence, consumers can be exposed to their own air pollution, which can cause damage to their health. Such damage costs should be internalised in consumer decision making. The PhD study demonstrates...
Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace
Institute of Scientific and Technical Information of China (English)
KANG Jin-wu; HUANG Tian-you; PURUSHOTHAMAN Radhakrishnan; WANG Wei-wei; RONG Yi-ming
2004-01-01
Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the continuous furnace is formulated firstly. The heat balance in each zone is discussed and equations are given. Coupled with the model for heat transfer between workpieces and furnace and the heat transfer in the workload as well presented in the former developed CHT-bf for batch furnaces, a program CHT-cf for continuous furnaces was developed. The model deals with two typical movements of parts: continuous or step by step. The moving speed of parts and load pattern can be optimized based on the calculated temperature distributions and curves, especially, the fastest heated and slowest-heated temperature-distance profiles. A case study is carried out for the heat treatment of a kind of hook-shaped part. The calculated results are analyzed and in good agreement with the measured ones.
Modelling the heat dynamics of buildings using stochastic
DEFF Research Database (Denmark)
Andersen, Klaus Kaae; Madsen, Henrik
2000-01-01
This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...
Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons
Directory of Open Access Journals (Sweden)
A. V. Оvsiannik
2007-01-01
Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.
Modeling the Heating of Biological Tissue based on the Hyperbolic Heat Transfer Equation
Tung, M M; Molina, J A Lopez; Rivera, M J; Berjano, E J
2008-01-01
In modern surgery, a multitude of minimally intrusive operational techniques are used which are based on the punctual heating of target zones of human tissue via laser or radio-frequency currents. Traditionally, these processes are modeled by the bioheat equation introduced by Pennes, who considers Fourier's theory of heat conduction. We present an alternative and more realistic model established by the hyperbolic equation of heat transfer. To demonstrate some features and advantages of our proposed method, we apply the obtained results to different types of tissue heating with high energy fluxes, in particular radiofrequency heating and pulsed laser treatment of the cornea to correct refractive errors. Hopefully, the results of our approach help to refine surgical interventions in this novel field of medical treatment.
Thermal Indices and Thermophysiological Modeling for Heat Stress.
Havenith, George; Fiala, Dusan
2015-12-15
The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans.
Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe
Directory of Open Access Journals (Sweden)
S Boothaisong
2015-02-01
Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.
Microscale reservoir effects on microbial sulfur isotope fractionation
Louca, Stilianos; Crowe, Sean A.
2017-04-01
Microbial sulfate reduction can impart strong sulfur isotope fractionation by preferentially using the lighter 32SO42- over the heavier 34SO42-. The magnitude of fractionation depends on a number of factors, including ambient concentrations of sulfate and electron donors. Sulfur isotope compositions in sedimentary rocks thus facilitate reconstruction of past environmental conditions, such as seawater sulfate concentrations, primary productivity, organic carbon burial, and sulfur fluxes into or out of the ocean. Knowing the processes that regulate the magnitude of sulfur isotope fractionation is necessary for the correct interpretation of the geological record, but so far theoretical work has focused mostly on internal cellular processes. In sulfate-limited environments, like low sulfate lakes and the Archean ocean, microbial sulfate reduction can lead to sulfate depletion in the water column and an enrichment in isotopically heavy sulfate. This reservoir effect in turn mutes the fractionation expressed in the water column and ultimately preserved in sediments relative to the biologically induced fractionation. Here we use mathematical modeling to show that similar reservoir effects can also appear at the microscale in close proximity to sulfate-reducing cells. These microscale reservoir effects have the potential to modulate sulfur isotope fractionation to a considerable degree, especially at low (micromolar) sulfate concentrations. As a result, background sulfate concentrations, sulfate reduction rates, and extracellular ion diffusion rates can influence the fractionation expressed even if the physiologically induced fractionation is constant. This has implications for the interpretation of biogenic sulfur isotope fractionations expressed in the geological record, because the correct estimation of the environmental conditions that would promote these fractionations requires consideration of microscale reservoir effects. We discuss these implications, and
Model-based control of district heating supply temperature
Energy Technology Data Exchange (ETDEWEB)
Saarinen, Linn
2010-11-15
A model-based control strategy for the supply temperature to a district heating network was tested during three weeks at Idbaecken's CHP plant. The aim was to increase the electricity efficiency by a lower supply temperature, without risking the delivery reliability of heat to the district heating customers. Simulations and tests showed that at high loads, the mean supply temperature could be reduced by 4 deg C and the electricity production could be increased by 2.5%
Rapid PCR thermocycling using microscale thermal convection.
Muddu, Radha; Hassan, Yassin A; Ugaz, Victor M
2011-03-05
Many molecular biology assays depend in some way on the polymerase chain reaction (PCR) to amplify an initially dilute target DNA sample to a detectable concentration level. But the design of conventional PCR thermocycling hardware, predominantly based on massive metal heating blocks whose temperature is regulated by thermoelectric heaters, severely limits the achievable reaction speed(1). Considerable electrical power is also required to repeatedly heat and cool the reagent mixture, limiting the ability to deploy these instruments in a portable format. Thermal convection has emerged as a promising alternative thermocycling approach that has the potential to overcome these limitations(2-9). Convective flows are an everyday occurrence in a diverse array of settings ranging from the Earth's atmosphere, oceans, and interior, to decorative and colorful lava lamps. Fluid motion is initiated in the same way in each case: a buoyancy driven instability arises when a confined volume of fluid is subjected to a spatial temperature gradient. These same phenomena offer an attractive way to perform PCR thermocycling. By applying a static temperature gradient across an appropriately designed reactor geometry, a continuous circulatory flow can be established that will repeatedly transport PCR reagents through temperature zones associated with the denaturing, annealing, and extension stages of the reaction (Figure 1). Thermocycling can therefore be actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed temperatures, completely eliminating the need to repeatedly heat and cool the instrument. One of the main challenges facing design of convective thermocyclers is the need to precisely control the spatial velocity and temperature distributions within the reactor to ensure that the reagents sequentially occupy the correct temperature zones for a sufficient period of time(10,11). Here we describe results of our efforts to probe the full 3-D velocity and
Microscale diffusion analysis of gaseous radioactive effluents
Energy Technology Data Exchange (ETDEWEB)
Kim, Byung Woo; Chang, Kwang Phil; Jeong, Guy Soo; Lee, Kwang Hee; Choi, Yong Seok; An, Jin Young [Sungkyunkwan University, Seoul (Korea, Republic of)
1997-07-01
The state-of-the art review and relevant data bases have been made in this study. Microscale wind-field model has been made and applied to the site= of a target domestic plant - Younggwang units. Following researches have been made; - Review of modeling status in U.S.A., European countries, and Japan, those theoretical backgrounds, and experimental activities - Graphical display of topographical grid data in the surrounding with the Younggwang N.P.P. and basic investigation of the surrounding geography - Survey of site meteorological data of the Younggwang N.P.P.; precipitation distribution, yearly average wind direction and joint frequency, seasonal wind rose, distribution of seasonal sea and land breeze, joint frequency with respect to the atmospheric stability, mixing height - Presentation of a draft to update the existing Korea real-time dose assessment system, FADAS and to interface to the AWS(Automatic Weather System) of the Korea Meteorology Administration. - Establishment of nested-grid system with micro- and macro- scale cells around the Younggwang nuclear power plant -Consideration of solar radiation effect by using land-use map -Analysis of wind field in the region of 30 x 30 km n the Younggwang site (Author) 67 refs., 20 tabs., 28 figs.
Modeling of a heat sink and high heat flux vapor chamber
Vadnjal, Aleksander
An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media
Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks
DEFF Research Database (Denmark)
Callen, J.D.; Christiansen, J.P.; Cordey, J.G.;
1987-01-01
The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically i...
Improving Air-Conditioner and Heat Pump Modeling (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Winkler, J.
2012-03-01
A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.
Improving Air-Conditioner and Heat Pump Modeling
Energy Technology Data Exchange (ETDEWEB)
Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2012-03-02
This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.
Stochastic modelling of central heating systems
DEFF Research Database (Denmark)
Hansen, Lars Henrik
1997-01-01
and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...
Energy Technology Data Exchange (ETDEWEB)
Hedegaard, K.
2013-09-15
This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in
Temperature dependence of electronic heat capacity in Holstein model
Fialko, N S; Lakhno, V D
2015-01-01
The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T~0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface
Institute of Scientific and Technical Information of China (English)
2008-01-01
A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.
An Analytical Model of Joule Heating in Piezoresistive Microcantilevers
Directory of Open Access Journals (Sweden)
Chongdu Cho
2010-11-01
Full Text Available The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.
An analytical model of joule heating in piezoresistive microcantilevers.
Ansari, Mohd Zahid; Cho, Chongdu
2010-01-01
The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.
Induction and direct resistance heating theory and numerical modeling
Lupi, Sergio; Aliferov, Aleksandr
2015-01-01
This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.
Institute of Scientific and Technical Information of China (English)
张寅平; 胡先旭; 郝磬; 王馨
2003-01-01
This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.
Modeling of waste heat recovery by looped water-in-steel heat pipes
Energy Technology Data Exchange (ETDEWEB)
Akyurt, M.; Lamfon, N.J.; Najjar, Y.S.H.; Habeebullah, M.H.; Alp, T.Y. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering
1995-08-01
Modeling and simulation of a water-in-steel heat pipe heat recovery system is undertaken in this paper. The heat recovery system consists of a looped two-phase thermosyphon that receives heat from the stack of a gas turbine engine and delivers it to the generator of an NH{sub 3}-H{sub 2}O absorption chiller. Variations in the operating temperature as well as evaporator geometry are investigated, and the consequences on system effectiveness are studied. It is concluded that the model for the water-in-steel looped thermosyphon overcomes drawbacks of the water-in-copper thermosyphon, and that the steel system is simpler in design, lower in cost, and more competent in performance. (author)
Prediction of heat transfer to supercritical fluids by the use of Algebraic Heat Flux Models
Energy Technology Data Exchange (ETDEWEB)
Pucciarelli, Andrea, E-mail: andrea.pucciarelli@yahoo.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy); Sharabi, Medhat, E-mail: Medhat.Sharabi@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI, Switzerland and Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Ambrosini, Walter, E-mail: walter.ambrosini@ing.unipi.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy)
2016-02-15
Highlights: • The Algebraic Heat Flux Model is considered for modelling the turbulence heat flux. • A relation based on AHFM for determining Pr{sub tur} is proposed. • Results are compared with heat transfer to supercritical fluids experimental data. - Abstract: The paper discusses capabilities and limitations of Algebraic Heat Flux Models in predicting heat transfer to supercritical fluids. The model was implemented in a commercial code and used as a basis for obtaining an advanced definition of the turbulent Prandtl number and an improved estimate of the buoyancy production of turbulence kinetic energy. A comparison between the obtained results and experimental data available in literature is performed highlighting promising features, in particular when dealing with trans-pseudo-critical conditions. Experimental conditions using different fluids where analysed showing improvements with respect to two-equation turbulence models; a reference DNS calculation is considered as well for comparison. Calculated wall temperature values are in general well reproduced by the methodology and sensitivity analyses show that improvements may be obtained in future works by selecting case-specific AHFM parameters in association with different turbulence models.
Modelling heat transport through completely positive maps
Wichterich, H; Gemmer, J; Henrich, M J; Michel, M; Breuer, Heinz-Peter; Gemmer, Jochen; Henrich, Markus J.; Michel, Mathias; Wichterich, Hannu
2007-01-01
We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.
Directory of Open Access Journals (Sweden)
Huijun Feng, Lingen Chen, Fengrui Sun
2010-11-01
Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.
Modeling Io's Heat Flow: Constraints from Galileo PPR Data
Rathbun, J. A.; Spencer, J. R.; Tamppari, L. K.
2000-01-01
We attempt to improve on previous Io heat flow estimates by using higher resolution data from Galileo Photopolarimeter Radiometer (PPR) and improved thermophysical models of the surface, including finite thermal inertia, the pedestal effect, and disk-resolved radiance.
The optimization model of the heat conduction structure
Institute of Scientific and Technical Information of China (English)
Yongcun Zhang; Shutian Liu
2008-01-01
An optimization model considering a novel thermal performance index to be the objective function is proposed for minimizing the highest temperature in this paper. Firstly, the performance of the conventional heat conduction optimization model, with the dissipation of heat transport potential capacity as the objective function, is evaluated by a one-dimensional heat conduction problem in a planar plate exchanger. Then, a new thermal performance index, named the geometric average temperature, is introduced. The new heat conduction optimization model, with the geometric average temperature as the objective function, is developed and the corresponding finite element formula is presented. The results show that the geometric average temperature is an ideal thermal performance index and the solution of the new model is close to the theoretical optimal solution.
Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines
Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.
2014-01-01
This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco
Optimization of heat saving in buildings using unsteady heat transfer model
Directory of Open Access Journals (Sweden)
Dedinec Aleksandra
2015-01-01
Full Text Available Reducing the energy consumption growth rate is increasingly becoming one of the main challenges for ensuring sustainable development, particularly in the buildings as the largest end-use sector in many countries. Along this line, the aim of this paper is to analyse the possibilities for energy savings in the construction of new buildings and reconstruction of the existing ones developing a tool that, in terms of the available heating technologies and insulation, provides answer to the problem of optimal cost effective energy consumption. The tool is composed of an unsteady heat transfer model which is incorporated into a cost-effective energy saving optimization. The unsteady heat transfer model uses annual hourly meteorological data, chosen as typical for the last ten-year period, as well as thermo physical features of the layers of the building walls. The model is tested for the typical conditions in the city of Skopje, Macedonia. The results show that the most cost effective heating technology for the given conditions is the wood fired stove, followed by the inverter air-conditioner. The centralized district heating and the pellet fired stoves are the next options. The least cost effective option is the panel that uses electricity. In this paper, the optimal insulation thickness is presented for each type of heating technology.
Enthalpy model for heating, melting, and vaporization in laser ablation
Vasilios Alexiades; David Autrique
2010-01-01
Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...
Orion MPCV Continuum RCS Heating Augmentation Model Development
Hyatt, Andrew J.; White, Molly E.
2014-01-01
The reaction control system jets of the Orion Multi Purpose Crew Vehicle can have a significant impact on the magnitude and distribution of the surface heat flux on the leeside of the aft-body, when they are fired. Changes in surface heating are expressed in terms of augmentation factor over the baseline smooth body heating. Wind tunnel tests revealed heating augmentation factors as high as 13.0, 7.6, 2.8, and 5.8 for the roll, pitch down, pitch up, and yaw jets respectively. Heating augmentation factor models, based almost exclusively on data from a series of wind tunnel tests have been developed, for the purposes of thermal protection system design. The wind tunnel tests investigated several potential jet-to-freestream similarity parameters, and heating augmentation factors derived from the data showed correlation with the jet-to-freestream momentum ratio. However, this correlation was not utilized in the developed models. Instead augmentation factors were held constant throughout the potential trajectory space. This simplification was driven by the fact that ground to flight traceability and sting effects are not well understood. Given the sensitivity of the reaction control system jet heating augmentation to configuration, geometry, and orientation the focus in the present paper is on the methodology used to develop the models and the lessons learned from the data. The models that are outlined in the present work are specific to the aerothermal database used to design the thermal protection system for the Exploration Flight Test 1 vehicle.
Modeling of Methods to Control Heat-Consumption Efficiency
Tsynaeva, E. A.; Tsynaeva, A. A.
2016-11-01
In this work, consideration has been given to thermophysical processes in automated heat consumption control systems (AHCCSs) of buildings, flow diagrams of these systems, and mathematical models describing the thermophysical processes during the systems' operation; an analysis of adequacy of the mathematical models has been presented. A comparison has been made of the operating efficiency of the systems and the methods to control the efficiency. It has been determined that the operating efficiency of an AHCCS depends on its diagram and the temperature chart of central quality control (CQC) and also on the temperature of a low-grade heat source for the system with a heat pump.
MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS
Directory of Open Access Journals (Sweden)
S. S. Belimenko
2016-10-01
Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Calibrated Heat Flow Model for Determining the Heat Conduction Losses in Laser Cutting of CFRP
Mucha, P.; Weber, R.; Speker, N.; Berger, P.; Sommer, B.; Graf, T.
Laser machining has great potential regarding automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts, due to the nearly force and tool-wear free processing at high process speeds. The high vaporization temperatures and the large heat conductivity of the carbon fibers lead to a large heat transport into the sample. This causes the formation of a heat-affected zone and a decrease of the process speed. In the present paper,an analytical heat flow model was adapted in order to understand and investigate the heat conduction losses. Thermal sensors were embedded in samples at different distances from the kerf to fit the calculated to the measured temperatures. Heat conduction losses of up to 30% of the laser power were determined. Furthermore, the energy not absorbed by the sample, the energy for sublimating the composite material in the kerf, the energy for the formation of the HAZ, and the residual heat in the sample are compared in an energy balance.
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating
Directory of Open Access Journals (Sweden)
M. Carlini
2012-01-01
Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.
MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS
Directory of Open Access Journals (Sweden)
ZBARAZ L. I.
2016-08-01
Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.
EnergyPlus Air Source Integrated Heat Pump Model
Energy Technology Data Exchange (ETDEWEB)
Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division
2016-03-30
This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.
Microfluidics and microscale transport processes
Chakraborty, Suman
2012-01-01
With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing
Numerical Modeling of Electroacoustic Logging Including Joule Heating
Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.
It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.
Spray-Formed Tooling with Micro-Scale Features
Energy Technology Data Exchange (ETDEWEB)
Kevin McHugh
2010-06-01
Molds, dies, and related tooling are used to shape many of the plastic and metal components we use every day at home and work. Traditional mold-making practices are labor and capital equipment intensive, involving multiple machining, benching and heat treatment operations. Spray forming is an alternative method to manufacture molds and dies. The general concept is to atomize and deposit droplets of a tooling alloy onto a pattern to form a thick deposit while imaging the pattern’s shape, surface texture and details. Unlike conventional machining, this approach can be used to fabricate tooling with micro-scale surface features. This paper describes a research effort to spray form molds and dies that are used to image micro-scale surface textures into polymers. The goal of the study is to replicate textures that give rise to superhydrophobic behavior by mimicking the surface structure of highly water repellent biological materials such as the lotus leaf. Spray conditions leading to high transfer fidelity of features into the surface of molded polymers will be described. Improvements in water repellency of these materials was quantified by measuring the static contact angle of water droplets on flat and textured surfaces.
Three junction holographic micro-scale PV system
Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.
2016-09-01
In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.
A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS
Directory of Open Access Journals (Sweden)
Tufi Neder Meyer
1998-10-01
Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.
Pitfalls in modeling mantle convection with internal heat production
Korenaga, Jun
2017-05-01
The mantle of the Earth, and probably of other terrestrial planets as well, is heated from below and within. The heating mode of mantle convection is thus mixed heating, and it is also time dependent because the amount of heat-producing isotopes in the mantle is steadily decreasing by radioactive decay and because the basal heat flux originating in the cooling of the core can vary with time. This mode of transient mixed heating presents its own challenges to the study of mantle convection, but such difficulties are not always appreciated in the recent literature. The purpose of this tutorial is to clarify the issue of heating mode by explaining relevant concepts in a coherent manner, including the internal heating ratio, the Urey ratio, secular cooling, and the connection between the thermal budget of the Earth and the geochemical models of the Earth. The importance of such basic concepts will be explained with some illustrative examples in the context of the thermal evolution of the Earth, and a summary of common pitfalls will be provided, with a possible strategy for how to avoid them.
Verification and Validation of Heat Transfer Model of AGREE Code
Energy Technology Data Exchange (ETDEWEB)
Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)
2013-05-15
The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.
Modelling of heat and mass transfer processes in neonatology
Energy Technology Data Exchange (ETDEWEB)
Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes
Yang, Xin-She; Luan, Tao; Koziel, Slawomir
2014-01-01
Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.
Particle model for nonlocal heat transport in fusion plasmas.
Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R
2013-02-01
We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.
Modelling of heat and mass transfer processes in neonatology.
Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
An Energy Savings Model for the Heat Treatment of Castings
Energy Technology Data Exchange (ETDEWEB)
Y. Rong; R. Sisson; J. Morral; H. Brody
2006-12-31
An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.
Model of Carbon Wire Heating in Accelerator Beam
Sapinski, M
2008-01-01
A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.
Modelling floor heating systems using a validated two-dimensional ground coupled numerical model
DEFF Research Database (Denmark)
Weitzmann, Peter; Kragh, Jesper; Roots, Peter
2005-01-01
the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... and foundation on the performance of the floor heating sys-tem. The ground coupled floor heating model is validated against measurements from a single-family house. The simulation model is coupled to a whole-building energy simu-lation model with inclusion of heat losses and heat supply to the room above...
Directory of Open Access Journals (Sweden)
V. A. Lapin
2009-09-01
Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.
Microscale vortex laser with controlled topological charge
Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min
2016-12-01
A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).
Microscale out-of-plane anemometer
Liu, Chang (Inventor); Chen, Jack (Inventor)
2005-01-01
A microscale out-of-plane thermal sensor. A resistive heater is suspended over a substrate by supports raised with respect to the substrate to provide a clearance underneath the resistive heater for fluid flow. A preferred fabrication process for the thermal sensor uses surface micromachining and a three-dimensional assembly to raise the supports and lift the resistive heater over the substrate.
Microscale Group Test for Carbonyl Compounds.
Horak, V.; Klein, R. F. X.
1985-01-01
Procedures are provided for a test that (1) demonstrates principles of derivatization with 2,4-dinitrophenylhydrazine; (2) is a thin layer chromatography experiment that visually demonstrates separation of colored compounds of different polarities; and (3) introduces microscale experimentation to students in sophomore organic chemistry…
Thermal performance modeling of cross-flow heat exchangers
Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria
2014-01-01
This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges
Integrated modeling and heat treatment simulation of austempered ductile iron
Hepp, E.; Hurevich, V.; Schäfer, W.
2012-07-01
The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.
Critical review of wind tunnel modeling of atmospheric heat dissipation
Energy Technology Data Exchange (ETDEWEB)
Orgill, M.M.
1977-05-01
There is increasing concern by scientists that future proposed energy or power parks may significantly affect the environment by releasing large quantities of heat and water vapor to the atmosphere. A critical review is presented of the potential application of physical modeling (wind tunnels) to assess possible atmospheric effects from heat dissipation systems such as cooling towers. A short inventory of low-speed wind tunnel facilities is included in the review. The useful roles of wind tunnels are assessed and the state-of-the-art of physical modeling is briefly reviewed. Similarity criteria are summarized and present limitations in satisfying these criteria are considered. Current physical models are defined and limitations are discussed. Three experimental problems are discussed in which physical modeling may be able to provide data. These are: defining the critical atmospheric heat load; topographic and local circulation effects on thermal plumes; and plume rise and downstream effects.
Towards a Multi-Model Subseasonal Excessive Heat Outlook System
Vintzileos, A.
2015-12-01
We developed an experimental realtime subseasonal excessive heat outlook and monitoring system (SEHOMS) based on the detection of heat events in dynamical forecasts and reanalyses. Our definition of a heat event takes into account both the challenges of subseasonal forecasting and the effects of heat stress on human physiology e.g., the dependence of heat impacts on duration, geographical location and timing of the heat event. The prototype outlook system focuses on forecast lead time week-2 and uses the Global Ensemble Forecast System (GEFS) reforecast conducted at ESRL and the NCEP-GEFS operational realtime ensemble forecasts. The prototype monitoring system, on which we base forecast verification, provides a dual output. The first product uses the NCAR/NCEP reanalysis; the second monitoring product is based on the day-1 forecast from the GEFS reforecast and from the operational GEFS realtime forecast. In this presentation we first show results from the prototype forecasting and monitoring system. We then compare these results with forecasts from the SEHOMS in which we gradually add reforecasts obtained from the S2S database (NCEP - Climate forecast System and ECMWF models). Finally we discuss the possibility of expanding the SEHOMS to week-3 and week-4 based on results from the CFS, ECMWF model, and the North American Multi-Model Ensemble system (NMME).
Modelling the heat stress and the recovery of bacterial spores.
Mafart, P; Leguérinel, I
1997-07-22
After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.
Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits
DEFF Research Database (Denmark)
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2003-01-01
developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In generalMATLAB has proved to be very stable for these DAE systems. Experimental verication has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...
Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits
DEFF Research Database (Denmark)
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these DAE systems. Experimental verification has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...
Microscale mechanics for metal thin film delamination along ceramic substrates
Institute of Scientific and Technical Information of China (English)
魏悦广
2000-01-01
The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered. Two different f racture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films. A set of experiments have been done on the mechanism of copper films delaminating from silica substrates, based on which the peak interface separation stress and the micro-length scale of material, as well as the dislocation-free zone size are predicted.
Microscale mechanics for metal thin film delamination along ceramic substrates
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered.Two different fracture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films.A set of experiments have been done on the mechanism of copper films delaminating from silica substrates,based on which the peak interface separation stress and the micro-length scale of material,as well as the dislocation-free zone size are predicted.
A control model for district heating networks with storage
Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro
2014-01-01
In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and tem
A control model for district heating networks with storage
Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro
2014-01-01
In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and tem
A Rotating Plug Model of Friction Stir Welding Heat Transfer
Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.
2006-01-01
A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.
Model for electrical conductivity of muscle meat during Ohmic heating
Sman, van der R.G.M.
2017-01-01
A model is presented for predicting the electrical conductivity of muscle meat, which can be used for the evaluation of Ohmic heating. The model computes the conductivity as a function of composition, temperature and microstructure. The muscle meat is thought to be composed of protein, water, salt.
Computational Model of Heat Transfer on the ISS
Torian, John G.; Rischar, Michael L.
2008-01-01
SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.
A heat transfer model for slug flow boiling within microchannels
Magnini, Mirco; Thome, John
2016-11-01
We propose a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels, to update the widely used three-zone model for the design of multi-microchannel evaporators. The flow is modelled as the cyclic passage of a liquid slug, an elongated bubble which traps a thin liquid film against the channel wall, and a dry vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method considering bubble proximity effects, which may limit the radial extension of the film, is included. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies: 833 slug flow boiling data points covering R134a, R245fa and R236fa and channel diameters from 0.4 mm to 1 mm. The new model predicts more than 80% of the database to within +/- 30 % and it represents an important step toward a complete physics-based modelling of bubble dynamics and heat transfer within microchannels under evaporating flow conditions.
Modelling occupants’ heating set-point prefferences
DEFF Research Database (Denmark)
Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn
2011-01-01
consumption. Simultaneous measurement of the set-point of thermostatic radiator valves (trv), and indoor and outdoor environment characteristics was carried out in 15 dwellings in Denmark in 2008. Linear regression was used to infer a model of occupants’ interactions with trvs. This model could easily......Discrepancies between simulated and actual occupant behaviour can offset the actual energy consumption by several orders of magnitude compared to simulation results. Thus, there is a need to set up guidelines to increase the reliability of forecasts of environmental conditions and energy...
Heat transport modelling in EXTRAP T2R
Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.
2009-02-01
A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.
Mathematical modeling of heat transfer in plant community
Directory of Open Access Journals (Sweden)
Finnikov K.A.
2011-12-01
Full Text Available The conductive, convective and radiation heat exchange process in a natural system including plants aggregation, air lower layer and ground upper layer, is examined. The mathematical model of process is formulated in 1d unsteady approach. The numerical simulation of plants aggregation cooling is performed for the case of a radiation frost. It is found up that mutual influence of plants in an aggregation on the heat exchange with environment grows with the increase of plants size and plants number per ground area. The influence leads to that lower parts of plants are cooled slower, while upper parts are cooled faster. The estimations are made for the quantity of heat emitted in a thermogenic plant that is enough to prevent the plant cold stress. It is shown that in presence of enforced air flow the rate of plants cooling is noticeably lower, as well as the quantity of heat enough to prevent the plant cold stress.
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Leclerc, Eric; Hamon, Jeremy; Claude, Isabelle; Jellali, Rachid; Naudot, Marie; Bois, Frederic
2015-06-01
We have integrated in vitro and in silico information to investigate acetaminophen (APAP) and its metabolite N-acetyl-p-benzoquinone imine (NAPQI) toxicity in liver biochip. In previous works, we observed higher cytotoxicity of HepG2/C3a cultivated in biochips when exposed to 1 mM of APAP for 72 h as compared to Petri cultures. We complete our investigation with the present in silico approach to extend the mechanistic interpretation of the intracellular kinetics of the toxicity process. For that purpose, we propose a mathematical model based on the coupling of a drug pharmacokinetic model (PK) with a systemic biology model (SB) describing the reactive oxygen species (ROS) production by NAPQI and the subsequent glutathione (GSH) depletion. The SB model was parameterized using (i) transcriptomic data, (ii) qualitative results of time lapses ROS fluorescent curves for both control and 1-mM APAP-treated experiments, and (iii) additional GSH literature data. The PK model was parameterized (i) using the in vitro kinetic data (at 160 μM, 1 mM, 10 mM), (ii) using the parameters resulting from a physiologically based pharmacokinetic (PBPK) literature model for APAP, and (iii) by literature data describing NAPQI formation. The PK-SB model predicted a ROS increase and GSH depletion due to the NAPQI formation. The transition from a detoxification phase and NAPQI and ROS accumulation was predicted for a NAPQI concentration ranging between 0.025 and 0.25 μM in the cytosol. In parallel, we performed a dose response analysis in biochips that shows a reduction of the final hepatic cell number appeared in agreement with the time and doses associated with the switch of the NAPQI detoxification/accumulation. As a result, we were able to correlate in vitro extracellular APAP exposures with an intracellular in silico ROS accumulation using an integration of a coupled mathematical and experimental liver on chip approach.
Radiative heating in global climate models
Energy Technology Data Exchange (ETDEWEB)
Baer, F.; Arsky, N.; Rocque, K. [Univ. of Maryland, College Park, MD (United States)
1996-04-01
LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.
Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation▿
Corradini, Maria G.; Peleg, Micha
2009-01-01
The Weibullian-log logistic (WeLL) inactivation model was modified to account for heat adaptation by introducing a logistic adaptation factor, which rendered its “rate parameter” a function of both temperature and heating rate. The resulting model is consistent with the observation that adaptation is primarily noticeable in slow heat processes in which the cells are exposed to sublethal temperatures for a sufficiently long time. Dynamic survival patterns generated with the proposed model were in general agreement with those of Escherichia coli and Listeria monocytogenes as reported in the literature. Although the modified model's rate equation has a cumbersome appearance, especially for thermal processes having a variable heating rate, it can be solved numerically with commercial mathematical software. The dynamic model has five survival/adaptation parameters whose determination will require a large experimental database. However, with assumed or estimated parameter values, the model can simulate survival patterns of adapting pathogens in cooked foods that can be used in risk assessment and the establishment of safe preparation conditions. PMID:19201963
Enthalpy model for heating, melting, and vaporization in laser ablation
Directory of Open Access Journals (Sweden)
Vasilios Alexiades
2010-09-01
Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.
DEFF Research Database (Denmark)
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...
Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface
Institute of Scientific and Technical Information of China (English)
QUAN ZhenHua; CHEN YongChang; MA ChongFang
2008-01-01
A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.
Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery
Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.
2010-09-01
Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.
Non-local model analysis of heat pulse propagation
Energy Technology Data Exchange (ETDEWEB)
Iwasaki, Takuya [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi
1998-10-01
A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)
Energy Technology Data Exchange (ETDEWEB)
Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)
2015-09-21
We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.
Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka
2016-05-01
The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy
Directory of Open Access Journals (Sweden)
J. Morikawa
2012-01-01
Full Text Available The emissivity corrected thermal imaging combined with a real-time direct imposed-signal system on the freezing of biological cells is presented, which makes it possible to visualize the exothermic latent heat at a minus temperature. The applicability of the uncooled micro bolometer (thermal detector to the micro-scale thermal analysis on the phase transitions of organic and polymeric materials is discussed in comparison with the photon detector, equipped with the optics originally designed.
A heat transfer model for biological wastewater treatment system
Lin, S. H.
A heat transfer model for predicting the water temperature of aeration tank in a biological wastewater treatment plant is presented. The heat transfer mechanisms involved in the development of the heat transfer model include heat gains from solar radiation and biochemical reaction and heat losses from evaporation, aeration, wind blowing and conduction through tank walls. Several empirical correlations were adopted and appropriate assumptions made to facilitate the model development. Experiments were conducted in the biological wastewater treatment plant of a chemical fiber company over a year's period. The operational, weather and temperature data were registered. The daily water temperature data were averaged over a month period and compared with the theoretical prediction. Excellent agreement has been obtained between the predicted and measured temperatures, verifying the proposed heat transfer model. Zusammenfassung Es wird ein Wärmeübergangsmodell zur Berechnung der Wassertemperatur im Belüftungstank einer Anlage zur biologischen Abwasserbehandlung vorgestellt. Die in das Modell eingehenden Wärmeübergangsmechanismen umfassen: solare Wärmeeinstrahlung, biochemische Reaktion, Wärmeverluste durch Verdampfung, Belüftung, Windeinfluß und Leitung durch die Behälterwände. Mehrere empirische Beziehungen sowie vertretbare Annahmen tragen zur Modellvereinfachung bei. An der biologischen Abwasser-Kläranlage einer Chemiefaserfirma wurden ein Jahr lang Experimente durchgeführt und dabei Betriebs-, Wetter- und Temperaturdaten aufgezeichnet. Die täglichen Wassertemperaturen, gemittelt über einen Monat, zeigten ausgezeichnete Übereinstimmung mit den theoretischen Vorausberechnungen und bestätigten so die Brauchbarkeit des vorgeschlagenen Wärmeübergangsmodells.
Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube
Directory of Open Access Journals (Sweden)
Rahbar Nader
2015-01-01
Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.
Interfacial Fluid Mechanics A Mathematical Modeling Approach
Ajaev, Vladimir S
2012-01-01
Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also: Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...
A probabilistic model of a porous heat exchanger
Agrawal, O. P.; Lin, X. A.
1995-01-01
This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
Full Eulerian lattice Boltzmann model for conjugate heat transfer.
Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong
2015-12-01
In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results.
Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer
Directory of Open Access Journals (Sweden)
Michael Z. Podowski
2009-01-01
Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.
Model for heat-up of structures in VICTORIA
Energy Technology Data Exchange (ETDEWEB)
Bixler, N.E.
1993-12-01
VICTORIA is a mechanistic computer code that treats fission product behavior in the reactor coolant system during a severe accident. During an accident, fission products that deposit on structural surfaces produce heat loads that can cause fission products to revaporize and possibly cause structures, such as a pipe, to fail. This mechanism had been lacking from the VICTORIA model. This report describes the structural heat-up model that has recently been implemented in the code. A sample problem shows that revaporization of fission products can occur as structures heat up due to radioactive decay. In the sample problem, the mass of deposited fission products reaches a maximum, then diminishes. Similarly, temperatures of the deposited film and adjoining structure reach a maximum, then diminish.
Heat string model of bi-dimensional dc Glidarc
Pellerin, S.; Richard, F.; Chapelle, J.; Cormier, J.-M.; Musiol, K.
2000-10-01
The gliding arc discharge (`Glidarc') is the subject of renewed interest in application to a variety of chemical reactions. The gliding arc creates a weakly ionized gas `string' between two horn-shaped electrodes. In this paper, we present a simple model for a bi-dimensional dc Glidarc working in air, in which the conducting zone of the discharge that is heated by the Joule effect is considered as a hot wire cooled by an air flow. Inside this wire, the heat transfer results from thermal conduction. The exchange of heat between the hot wire and the air flow is assured by convection and depends on the wire radius and the relative velocity of the arc with respect to the gas flow. The model correctly describes experimental results and allows us to predict the working parameters of the Glidarc in different experimental situations.
Heating model for metals irradiated by a subpicosecond laser pulse
Chimier, B.; Tikhonchuk, V. T.; Hallo, L.
2007-05-01
We propose a model describing the heating and ablation of a metallic target irradiated by a subpicosecond laser pulse. It takes into account the temperature equilibration between the electrons and ions and the density variation of the target material during the heating process. A simple analytical equation of state is developed, which allows one to calculate the total pressure in the heated layer for different electron and ion temperatures. The thermodynamic behavior of a nonequilibrium system is discussed, and nonequilibrium spinodals and cohesion limits are introduced. The model is applied for a description of the thermal ablation process driven by a sub-ps laser pulse. Aluminum and copper targets are considered, and it is shown that the dominant ablation process is due to breaking the nonequilibrium cohesion limit. The numerical results are in good agreement with recent experimental data.
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2015-01-01
Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.
Induction Heating Process: 3D Modeling and Optimisation
Naar, R.; Bay, F.
2011-05-01
An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First
Io Volcanism: Modeling Vapor And Heat Transport
Allen, Daniel R.; Howell, R. R.
2010-10-01
Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.
Modeling heat and mass transfer in the heat treatment step of yerba maté processing
Directory of Open Access Journals (Sweden)
J. M. Peralta
2007-03-01
Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.
TOUGH2. Unsaturated Groundwater and Heat Transport Model
Energy Technology Data Exchange (ETDEWEB)
Pruess, K. [Lawrence Berkeley National Lab., CA (United States)
1991-05-01
TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.
Micro-scale thermal imaging of advanced organic and polymeric materials
Morikawa, Junko
2012-10-01
Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.
Physical and numerical modeling of Joule-heated melters
Energy Technology Data Exchange (ETDEWEB)
Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.
Wafer integrated micro-scale concentrating photovoltaics
Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun
2017-09-01
Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.
Modeling of well drilling heating on crude oil using microwave
Muntini, Melania Suweni; Pramono, Yono Hadi; Yustiana
2016-03-01
As the world's oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.
Explicit Numerical Modeling of Heat Transfer in Glacial Channels
Jarosch, A. H.; Zwinger, T.
2015-12-01
Turbulent flow and heat transfer of water in englacial channels is explicitly modelelled and the numerical results are compared to the most commonly used heat transfer parameterization in glaciology, i.e. the Dittus-Boelter equation. The three-dimensional flow is simulated by solving the incompressible Navier-Stokes equations utilizing a variational multiscale method (VMS) turbulence model and the finite-element method (i.e. Elmer-FEM software), which also solves the heat equation. By studying a wide range of key parameters of the system, e.g. channel diameter, Reynolds number, water flux, water temperature and Darcy-Weisbach wall roughness (which is explicitly represented on the wall geometry), it is found that the Dittus-Boelter equation is inadequate for glaciological applications and a new, highly suitable heat transfer parameterization for englacial/subglacial channels will be presented. This new parameterization utilizes a standard combination of dimensionless numbers describing the flow and channel (i.e. Reynolds number, Prandtl number and Darcy-Weisbach roughness) to predict a suitable Nusselt number describing the effective heat transfer and thus can be readily used in existing englacial/subglacial hydrology models.
Modeling of well drilling heating on crude oil using microwave
Energy Technology Data Exchange (ETDEWEB)
Muntini, Melania Suweni, E-mail: melania@physics.its.ac.id; Pramono, Yono Hadi; Yustiana [Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya Kampus ITS, Sukolilo, Surabaya 60111 (Indonesia)
2016-03-11
As the world’s oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.
Heat Transfer Modeling of Phase Change Materials in Multiple Plates Heat Exchanger
Directory of Open Access Journals (Sweden)
M. Alipanah
2013-12-01
Full Text Available Nowadays, given the increasing importance of energy sources, the possibility of energy storage in the heat exchangers through the Phase Change Materials (PCM and releasing it when needed have been extremely essential. This study seeks to model the domestic water heat system in which the paraffin is as the phase change material and it stores the solar energy. The behavior of a PCM plate was studied by writing the governing equations and solving them as the one-dimensional, implicit method and through numerical calculation of the method equations. Given the confirmed accuracy of performed modeling by the results of similar studies for the complete melting and solidification of PCM, the application of this system seems appropriate for the solar domestic water heaters.
Modelization of coupled heat transfer inside a cylindrical glass block
Energy Technology Data Exchange (ETDEWEB)
Tanguier, J.L.; Kheiri, A.; Kleinclauss, J. [Faculte des Sciences, 54 - Vandoeuvre-les-Nancy (France)
1995-01-01
Modelization of coupled heat transfer inside a cylindrical glass block. In crystal industry, the furnaces used to warm up glass before forming are supplied with 4 bar pressure gas. They are noisy, polluting and high consumers of energy. To limit these effects and improve the energetic performances, an electrical infrared furnace is studied. To perfect it, it is necessary to identify the mechanisms of heat transfer which govern the evolution of the temperature into a cylindrical semitransparent media. After a long and thorough bibliography relative to the thermo-optical properties of crystal, the measurement of the field of temperature into the cylindrical block during the phases of working is led into the factory. To do this, it was necessary to adapt a reliable technical measurement device adjusted to industrial surrounding. A fundamental analysis of the results allows us to propose a model of the coupled heat transfer (radiation, conduction and convection) inside glass and between glass and its surroundings. The model is built on brightness and it is based on a triple discretization: temporal, spectral and zonal. This model provides the spectral distribution of the infrared radiation and the electrical power necessary to obtain a good heating of the crystal according to the manufactory charges. The first tests made with the experimental furnace, built by us, show that it is possible to warm up glass with infrared radiation and that this proceeding reduces the energy consumption and the nuisances. (authors). 19 refs., 7 figs.
A Modeling Framework for Conventional and Heat Integrated Distillation Columns
DEFF Research Database (Denmark)
Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens
2013-01-01
In this paper, a generic, modular model framework for describing fluid separation by distillation is presented. At present, the framework is able to describe a conventional distillation column and a heat-integrated distillation column, but due to a modular structure the database can be further ex...
Specific heat of the simple-cubic Ising model
Feng, X.; Blöte, H.W.J.
2010-01-01
We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions
Model-based analysis and simulation of regenerative heat wheel
DEFF Research Database (Denmark)
Wu, Zhuang; Melnik, Roderick V. N.; Borup, F.
2006-01-01
of mathematical models for the thermal analysis of the fluid and wheel matrix. The effect of heat conduction in the direction of the fluid flow is taken into account and the influence of variations in rotating speed of the wheel as well as other characteristics (ambient temperature, airflow and geometric size...
Modeling Heat and Mass Transfer from Fabric-Covered Cylinders
Directory of Open Access Journals (Sweden)
Phillip Gibson
2009-03-01
Full Text Available Fabric-covered cylinders are convenient analogs forclothing systems. The geometry is well defined andincludes many of the effects that are important ingarments. Fabric-covered cylinder models are usedin conjunction with laboratory measurements ofmaterial properties to calculate heat and mass transferproperties of clothing under specific conditions ofenvironmental wind speed, temperature, and relativehumidity.
A Revised CFB Wall-to-suspension Heat Transfer Model
Institute of Scientific and Technical Information of China (English)
SU Ya-xin
2005-01-01
Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.
Large scale solar district heating. Evaluation, modelling and designing - Appendices
Energy Technology Data Exchange (ETDEWEB)
Heller, A.
2000-07-01
The appendices present the following: A) Cad-drawing of the Marstal CSHP design. B) Key values - large-scale solar heating in Denmark. C) Monitoring - a system description. D) WMO-classification of pyranometers (solarimeters). E) The computer simulation model in TRNSYS. F) Selected papers from the author. (EHS)
Comparison of performance of simulation models for floor heating
DEFF Research Database (Denmark)
Weitzmann, Peter; Svendsen, Svend
2005-01-01
only the floor construction, the differences can be directly compared. In this comparison, a two-dimensional model of a slab-on-grade floor including foundation is used as reference. The other models include a one-dimensional model and a thermal network model including the linear thermal transmittance......This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...... of the foundation. The result can be also be found in the energy consumption of the building, since up to half the energy consumption is lost through the ground. Looking at the different implementations it is also found, that including a 1m ground volume below the floor construction under a one-dimensional model...
Modelling of boiler heating surfaces and evaporator circuits
DEFF Research Database (Denmark)
Sørensen, K.; Condra, T.; Houbak, Niels
2002-01-01
the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned......Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....
Modelling of Boiler Heating Surfaces and Evaporator Circuits
DEFF Research Database (Denmark)
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2002-01-01
the circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equation systems (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these relatively stiff equation systems. Experimental verication is planned......Dynamic models for simulating boiler performance have been developed. Models for the ue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate...... at a full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....
New shear-free relativistic models with heat flow
Msomi, A M; Maharaj, S D
2013-01-01
We study shear-free spherically symmetric relativistic models with heat flow. Our analysis is based on Lie's theory of extended groups applied to the governing field equations. In particular, we generate a five-parameter family of transformations which enables us to map existing solutions to new solutions. All known solutions of Einstein equations with heat flow can therefore produce infinite families of new solutions. In addition, we provide two new classes of solutions utilising the Lie infinitesimal generators. These solutions generate an infinite class of solutions given any one of the two unknown metric functions.
Specific heat of a non-local attractive Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Calegari, E.J., E-mail: eleonir@ufsm.br [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Lobo, C.O. [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Magalhaes, S.G. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210, 346, Niterói, Rio de Janeiro (Brazil); Chaves, C.M.; Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)
2013-10-01
The specific heat C(T) of an attractive (interaction G<0) non-local Hubbard model is investigated within a two-pole approximation that leads to a set of correlation functions, which play an important role as a source of anomalies as the pseudogap. For a giving range of G and n{sub T} (where n{sub T}=n{sub ↑}+n{sub ↓}), the specific heat as a function of the temperature presents a two peak structure. Nevertehelesss, the presence of a pseudogap eliminates the two peak structure. The effects of the second nearest-neighbor hopping on C(T) are also investigated.
Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries
DEFF Research Database (Denmark)
Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef
2017-01-01
Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....
Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard
2013-10-01
A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation.
Direct containment heating models in the CONTAIN code
Energy Technology Data Exchange (ETDEWEB)
Washington, K.E.; Williams, D.C.
1995-08-01
The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.
Modeling of Unsteady Heat Transfer in Flame-Wall Interaction
Wu, Hao; Ihme, Matthias
2013-11-01
An extension of the flamelet/progress variable model is developed to include wall-heat loss effects due to convective heat-transfer. The model introduces a source term in the unsteady flamelet equations, which is modeled based on a modified temperature boundary condition of the counter-flow diffusion flame configuration. The thermochemical composition of the resulting non-adiabatic flamelet structure forms a three-dimensional manifold, which is parameterized in terms of mixture fraction, temperature, and scalar dissipation rate. The performance of the model is evaluated in an a priori study of a H2/O2 diffusion flame that is stabilized at an inert isothermal wall. Comparisons with DNS-data show that the developed non-adiabatic flamelet model accurately represents conditional and unconditional results for temperature, chemical composition, and wall heat transfer. Following this a priori investigation, the model is applied in LES of a coaxial H2/O2 rocket injector, and simulation results from this a posteriori analysis will be compared with experimental data.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
A non-equilibrium model for soil heating and moisture transport during extreme surface heating
Directory of Open Access Journals (Sweden)
W. J. Massman
2015-03-01
Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous
Hill, Reghan J.
2010-01-01
A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly dispersed with a low solid volume fraction. Bulk membrane characteristics and performance are calcula...
DEFF Research Database (Denmark)
Hedegaard, Karsten; Balyk, Olexandr
2013-01-01
options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...
Collective ordering of microscale matters in natural analogy.
Ahn, Sungsook; Lee, Sang Joon
2015-06-01
Collective interaction occurs in many natural and artificial matters in broad scales. In a biological system, collective spatial organization of live individuals in a colony is important for their viability determination. Interactive motions between a single individual and an agglomerate are critical for whole procedure of the collective behaviors, but few has been clarified for these intermediate range behaviors. Here, collective interactions of microscale matters are investigated with human cells, plant seeds and artificial microspheres in terms of commonly occurring spatial arrangements. Human cancer cells are inherently attractive to form an agglomerate by cohesive motion, while plant chia seeds are repulsive by excreting mucilage. Microsphere model is employed to investigate the dynamic assembly equilibrated by an attraction and repulsion. There is a fundamental analogy in terms of an onset of regular pattern formation even without physical contact of individuals. The collective interactions are suggested to start before the individual components become physically agglomerated. This study contributes to fundamental understanding on the microscale particulate matters and natural pattern formation which are further useful for various applications both in academic and industrial areas.
Negative specific heat in a thermodynamic model of multifragmentation
Das, C B; Mekjian, A Z
2003-01-01
We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. In this model $c_v$ is always positive but for finite nuclei $c_p$ can be negative for some temperatures and pressures. Furthermore, negative values of $c_p$ can be obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative values for $c_p$ can persist for systems as large as 200 paticles but this depends upon parameters used in the model calculation. As expected, negative specific heats are absent in the thermodynamic limit.
Ozen, Sükrü; Helhel, Selçuk; Cerezci, Osman
2008-02-01
Thermal analyses of biological tissues exposed to microwaves were studied by using thermal wave model of bio-heat transfer (TWMBT). As a model, skin stratified as three layers with various thermal physical properties were simulated and thermal wave model of bio-heat transfer equations were solved by using finite difference method. Finally, the thermal variations were simulated in the cross section of the model. Comparative studies on the traditional Pennes' equations and thermal wave model of bio-heat transfer were performed and evaluated. Furthermore, temperature variations in the skin exposed to microwave were predicted depending on blood perfusion rate, thermal conductivity, frequency and power density of microwave, and exposure time. Thermal wave model of bio-heat transfer gives lower heat rise predictions than that of Pennes' equation, initially. When it approaches to steady state, it overlaps with the Pennes' equation.
A concept of multi-scale modeling for radiative heat transfer in particle polydispersions
Liu, L H
2003-01-01
To take the local thermal nonequilibrium between particles and the nonuniformity of temperature within a single particle into account, a concept of multi-scale modeling of radiative transfer is presented. Particles are considered to interact with thermal radiation on both micro-scale of a single particle and meso-scale of a particle cell to produce radiative source term at the local or meso-scale level of a particle cell for the modeling of radiative transfer at macro-scale of overall particle system. The accurate modeling of radiative transfer in particle polydispersions are related to the modeling of radiative transfer in following three different scales: macro-scale of the overall particle system, meso-scale of particle cell, and micro-scale of single particle. Two examples are taken to show the necessity of multi-scale modeling for radiative transfer in particle polydispersions. The results show that omitting local thermal nonequilibrium and nonuniformity will result in errors for the solution of radiativ...
Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities
Energy Technology Data Exchange (ETDEWEB)
Lee, S.Y.
1999-01-13
The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.
Optimising Gas Quenching Technology through Modelling of Heat Transfer
Institute of Scientific and Technical Information of China (English)
Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang
2004-01-01
Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.
MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB
Directory of Open Access Journals (Sweden)
MD AZREE OTHUMAN MYDIN
2013-06-01
Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.
Optimising Gas Quenching Technology through Modelling of Heat Transfer
Institute of Scientific and Technical Information of China (English)
FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang
2004-01-01
Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.
Directory of Open Access Journals (Sweden)
Dario Ambrosini
2014-10-01
Full Text Available Urban morphology and increasing building density play a key role in the overall use of energy and promotion of environmental sustainability. The urban environment causes a local increase of temperature, a phenomenon known as Urban Heat Island (UHI. The purpose of this work is the study of the possible formation of an UHI and the evaluation of its magnitude, in the context of a small city, carried out with the ENVI-met® software. For this purpose, a simulation was needed, and this simulation is preparatory for a monitoring campaign on site, which will be held in the immediate future. ENVI-met® simulates the temporal evolution of several thermodynamics parameters on a micro-scale range, creating a 3D, non-hydrostatic model of the interactions between building-atmosphere-vegetation. The weather conditions applied simulate a typical Italian summer heat wave. Three different case-studies have been analyzed: Base Case, Cool Case and Green Case. Analysis of the actual state in the Base Case shows how even in an area with average building density, such as the old town center of a small city, fully developed UHI may rise with strong thermal gradients between built areas and open zones with plenty of vegetation. These gradients arise in a really tiny space (few hundreds of meters, showing that the influence of urban geometry can be decisive in the characterization of local microclimate. Simulations, carried out considering the application of green or cool roofs, showed small relevant effects as they become evident only in large areas heavily built up (metropolis subject to more intense climate conditions.
Energy Technology Data Exchange (ETDEWEB)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others
1995-09-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.
RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL
2010-08-01
This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.
A discrete impulsive model for random heating and Brownian motion
Ramshaw, John D.
2010-01-01
The energy of a mechanical system subjected to a random force with zero mean increases irreversibly and diverges with time in the absence of friction or dissipation. This random heating effect is usually encountered in phenomenological theories formulated in terms of stochastic differential equations, the epitome of which is the Langevin equation of Brownian motion. We discuss a simple discrete impulsive model that captures the essence of random heating and Brownian motion. The model may be regarded as a discrete analog of the Langevin equation, although it is developed ab initio. Its analysis requires only simple algebraic manipulations and elementary averaging concepts, but no stochastic differential equations (or even calculus). The irreversibility in the model is shown to be a consequence of a natural causal stochastic condition that is closely analogous to Boltzmann's molecular chaos hypothesis in the kinetic theory of gases. The model provides a simple introduction to several ostensibly more advanced topics, including random heating, molecular chaos, irreversibility, Brownian motion, the Langevin equation, and fluctuation-dissipation theorems.
On the Einstein-Stern model of rotational heat capacities
DEFF Research Database (Denmark)
Dahl, Jens Peder
1998-01-01
The Einstein-Stern model for the rotational contribution to the heat capacity of a diatomic gas has recently been resuscitated. In this communication, we show that the apparent success of the model is illusory, because it is based on what has turned out to be an unfortunate comparison with experi...... with experiment. We also take exception to the possibility of assigning any meaning to the rotational zero-point energy introduced by the model. (C) 1998 American Institute of Physics. [S0021-9606(98)02448-9]....
Asymptotic heat transfer model in thin liquid films
Chhay, Marx; Gisclon, Marguerite; Ruyer-Quil, Christian
2015-01-01
In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided against the resolution of the full Fourier equations in a steady state frame.
Multivariate Statistical Modelling of Drought and Heat Wave Events
Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele
2016-04-01
Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A
Chen, Jiliang; Jiang, Fangming
2016-02-01
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.
Modelling of Heat Loss in Closed Vessels during propellant Burning
Directory of Open Access Journals (Sweden)
U.P. KulKarni
2000-10-01
Full Text Available Closed vessel technique is essentially used to determine the force constant, vivacity and the burning rate of gun propellants. In fact, it is the only method to find out these three parameters experimentally. It is a well-known fact that however small the propellant burning time may be, there will be heat loss to the walls of the vessel due to conduction, convection, radiation and also due to the expansion of the vessel. This fact necessitates applying correction to the observed maximum pressure in the experiment. An analysis is presented in this paper as to how this heat loss can be modelled along with discussion about other models reported in this field.
Research Spotlight: Improved model reproduces the 2003 European heat wave
Schultz, Colin
2011-04-01
In August 2003, record-breaking temperatures raged across much of Europe. In France, maximum temperatures of 37°C (99°F) persisted for 9 days straight, the longest such stretch since 1873. About 40,000 deaths (14,000 in France alone) were attributed to the extreme heat and low humidity. Various climate conditions must come into alignment to produce extreme weather like the 2003 heat wave, and despite a concerted effort, forecasting models have so far been unable to accurately reproduce the event—including the modern European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble modeling system for seasonal forecasts, which went into operation in 2007. (Geophysical Research Letters, doi:10.1029/2010GL046455, 2011)
Tool Steel Heat Treatment Optimization Using Neural Network Modeling
Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz
2016-11-01
Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.
Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.
2017-05-01
The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
Microscale Fracture of Composite Materials for Wind Turbine Blades
DEFF Research Database (Denmark)
Martyniuk, Karolina
materials models can be developed if the understanding of the microscale damage- the first stage of material failure- is increased. Therefore it is important to characterize materials’ microstructures and micro-cracks initiation and propagation.The microstructure of fibre reinforced composite materials...... which are the most extensively used in the rotor blades, has been shown to play an important role on the overall response of the material. The properties of a fibre/matrix interface have been found to have a significant influence on the macroscopic behavior of composites. Therefore, the characterization......Due to the increase in wind turbines size it is essential that weight savings due to design changes do not compromise the reliability of the rotor blades. The reliability can be increased by improving design rules and the material models that describe the materials properties. More reliable...
The new RETScreen model for combined heat and power
Energy Technology Data Exchange (ETDEWEB)
Ziegler, U. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory
2004-07-01
RETScreen{sup R} is unique renewable energy awareness, decision-support and capacity building computer program designed to evaluate the energy performance, cost and viability of potential renewable energy technologies (RETs). The program has recently included a combined heat and power (CHP) model which includes the energy analysis for reciprocating engines, gas turbines, gas turbine combined cycle, fuel cells, steam turbines, microturbines, and geothermal energy. It was developed at the RETScreen International Renewable Energy Decision Support Centre at CANMET (Canada Centre for Mineral and Energy Technology). The tool consists of a standardised and integrated renewable energy analysis software that can be used worldwide to evaluate the energy production, life-cycle costs and greenhouse gas emission reductions for various types of RETs, and then compare them with those of conventional energy sources. Global climate change mitigation depends on widespread use of RETs around the world to meet the commitments of the Kyoto Protocol for cleaner air. The use of this computer program can help reduce the cost of pre-feasibility studies by providing information to help make better decisions about the technical and economic viability of potential projects. The CHP model considers landfill gas, biomass, bagasse, biodiesel, hydrogen, natural gas, petroleum, coal and municipal wastes. The model can be used for heating only, power only, cooling only, combined heat and power, single or multiple buildings, district energy or industrial processes. 22 figs.
Modeling operation mode of pellet boilers for residential heating
Petrocelli, D.; Lezzi, A. M.
2014-11-01
In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.
Mathematical Model of ComputerHeat Treatment and Its Simulation
Institute of Scientific and Technical Information of China (English)
PanJiansheng; ZhangWeimin; TianDong; GuJianfeng; HuMingjuan
2004-01-01
Computer simulation on heat treatment is the foundation of intelligent heat treatment. The simulations of temperature field,phase transformation, stress/strain complicate quenching operation were realized by using the model of three dimensional non-linear finite element method and the treatment methods of abruptly changing interface conditions. The simulation results basically fit those measured in experiments. The intelligent sealed multipurpose furnace production line has been developed based on the combination of computer simulation on gaseous carburizing and computer control technology. More than 3000 batches of workpieces have been processed on this production line, and all are up to standard. The application of computer simulation technology can significantly improve the loading ability and reliability of nitriding and carburizing workpieces, reduce heat treatment distortion, and shorten carburizing duration. It is recommended that the reliable product design without redundancy should be performed with the combination of the CAD of mechanical products, the CAE of materials selection and heat treatment, and the dynamic evaluation technology of product reliability.
Energy Technology Data Exchange (ETDEWEB)
Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)
2016-11-15
Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained
Nanoscale and microscale phenomena fundamentals and applications
Khandekar, Sameer
2015-01-01
The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.
Method for fabricating a microscale anemometer
Liu, Chang (Inventor); Chen, Jack (Inventor)
2008-01-01
Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.
Microscale autonomous sensor and communications module
Okandan, Murat; Nielson, Gregory N
2014-03-25
Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.
Spectral Imaging at the Microscale and Beyond
Directory of Open Access Journals (Sweden)
François Paquet-Mercier
2014-05-01
Full Text Available Here we give context to the special issue “Spectral Imaging at the Microscale and Beyond” in Sensors. We start with an introduction and motivation for the need for spectral imaging and then present important definitions and background concepts. Following this, we review new developments and applications in environmental monitoring, biomaterials, microfluidics, nanomaterials, healthcare, agriculture and food science, with a special focus on the articles published in the special issue. Some concluding remarks put the presented developments in context vis-à-vis the future of spectral imaging.
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Multilinear Model of Heat Exchanger with Hammerstein Structure
Directory of Open Access Journals (Sweden)
Dragan Pršić
2016-01-01
Full Text Available The multilinear model control design approach is based on the approximation of the nonlinear model of the system by a set of linear models. The paper presents the method of creation of a bank of linear models of the two-pass shell and tube heat exchanger. The nonlinear model is assumed to have a Hammerstein structure. The set of linear models is formed by decomposition of the nonlinear steady-state characteristic by using the modified Included Angle Dividing method. Two modifications of this method are proposed. The first one refers to the addition to the algorithm for decomposition, which reduces the number of linear segments. The second one refers to determination of the threshold value. The dependence between decomposition of the nonlinear characteristic and the linear dynamics of the closed-loop system is established. The decoupling process is more formal and it can be easily implemented by using software tools. Due to its simplicity, the method is particularly suitable in complex systems, such as heat exchanger networks.
DEFF Research Database (Denmark)
Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.
2015-01-01
In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed that the ......In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...
Energy Technology Data Exchange (ETDEWEB)
Jiji, Latif M. [City Coll. of City Univ. of New York, NY (United States). Dept. of Mechanical Engineering
2009-07-01
This textbook presents the classical topics of conduction heat transfer and extends the coverage to include chapters on perturbation methods, heat transfer in living tissue, and microscale conduction. This makes the book unique among the many published textbook on conduction heat transfer. Other noteworthy features of the book are: The material is organized to provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Mathematical techniques are presented in a clear and simplified fashion to be used as instruments in obtaining solutions. The simplicity of one-dimensional conduction is used to drill students in the role of boundary conditions and to explore a variety of physical conditions that are of practical interest. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Students are trained to follow a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. Solutions to all examples and end-of-chapter problems follow an orderly problems solving approach. (orig.)
A Summary of Interfacial Heat Transfer Models and Correlations
Energy Technology Data Exchange (ETDEWEB)
Bae, Sung Won; Cho, Hyung Kyu; Lee, Young Jin; Kim, Hee Chul; Jung, Young Jong; Kim, K. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-10-15
A long term project has been launched in October 2006 to develop a plant safety analysis code. 5 organizations are joining together for the harmonious coworking to build up the code. In this project, KAERI takes the charge of the building up the physical models and correlations about the transport phenomena. The momentum and energy transfer terms as well as the mass are surveyed from the RELAP5/MOD3, RELAP5-3D, CATHARE, and TRAC-M does. Also the recent papers are surveyed. Among these resources, most of the CATHARE models are based on their own experiment and test results. Thus, the CATHARE models are only used as the comparison purposes. In this paper, a summary of the models and the correlations about the interfacial heat transfer are represented. These surveyed models and correlations will be tested numerically and one correlation is selected finally.
Analytical Heat Transfer Modeling of a New Radiation Calorimeter
Ndong, Elysée Obame; Aitken, Frédéric
2016-01-01
This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from -50 {\\deg}C to 150 {\\deg}C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ~1 mW. From these results the calorimeter has been successfully implemented and patented.
A meshless method for modeling convective heat transfer
Energy Technology Data Exchange (ETDEWEB)
Carrington, David B [Los Alamos National Laboratory
2010-01-01
A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.
Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle
Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.
2015-12-01
This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.
A propagating heat wave model of skin electroporation.
Pliquett, Uwe; Gusbeth, Ch; Nuccitelli, Richard
2008-03-21
The main barrier to transdermal drug delivery in human skin is the stratum corneum. Pulsed electric fields (PEFs) of sufficient amplitude can create new aqueous pathways across this barrier and enhance drug delivery through the skin. Here, we describe a model of pore formation between adjacent corneocytes that predicts the following sequence of events: (1) the PEF rapidly charges the stratum corneum near the electrode until the transepidermal potential difference is large enough to drive water into a small region of the stratum corneum, creating new aqueous pathways. (2) PEFs then drive a high current density through this newly created electropore to generate Joule heating that warms the pore perimeter. (3) This temperature rise at the perimeter increases the probability of further electroporation there as the local sphingolipids reach their phase transition temperature. (4) This heat-generated wave of further electroporation propagates outward until the surface area of the pore becomes so large that the reduced current density no longer generates sufficient heat to reach the phase transition temperature of the sphingolipids. (5) Cooling and partial recovery occurs after the field pulse. This process yields large, high permeability regions in the stratum corneum at which molecules can more readily cross this skin barrier. We present a model for this process that predicts that the initial radius of the first aqueous pathway is approximately 5nm for a transdermal voltage of 60V at room temperature.
DEVELOPMENT OF MATHEMATICAL MODEL OF THE HEATING SYSTEM OF THE MULTI-STORIED HOUSE
Directory of Open Access Journals (Sweden)
Postolatii V.M.
2009-08-01
Full Text Available The mathematical model of a heating system of the multi-storied house is developed, allowing solving a problem of distribution between apartments of heat of the centralized heat supply. It is taken into account own independently developed heat, which is determinate by means of individual counters of gas and the electric power. Basic feature of model is the opportunity of the account of mutual heat exchange between apartments.
MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II
Directory of Open Access Journals (Sweden)
Sit M.L.
2011-08-01
Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.
MICRO-SCALE ENERGY DIRECTORS FOR ULTRASONIC WELDING
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a replication tool (1) for producing a part (4) with a microscale textured replica surface (5a, 5b, 5c, 5d). The replication tool (1) comprises a tool surface (2a, 2b) defining a general shape of the item (4). The tool surface (2a, 2b) comprises a microscale structured ma...
Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets
Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.
2007-01-01
Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.
Large scale solar district heating. Evaluation, modelling and designing
Energy Technology Data Exchange (ETDEWEB)
Heller, A.
2000-07-01
The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application
Transient heat conduction in a pebble fuel applying fractional model
Energy Technology Data Exchange (ETDEWEB)
Gomez A, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: gepe@xanum.uam.mx
2009-10-15
In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)
Microbial metabolomics in open microscale platforms
Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin
2016-01-01
The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393
Bojko, Marian; Kocich, Radim
2016-06-01
Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.
Aptamer Binding Studies Using MicroScale Thermophoresis.
Breitsprecher, Dennis; Schlinck, Nina; Witte, David; Duhr, Stefan; Baaske, Philipp; Schubert, Thomas
2016-01-01
The characterization and development of highly specific aptamers requires the analysis of the interaction strength between aptamer and target. MicroScale Thermophoresis (MST) is a rapid and precise method to quantify biomolecular interactions in solution at microliter scale. The basis of this technology is a physical effect referred to as thermophoresis, which describes the directed movement of molecules through temperature gradients. The thermophoretic properties of a molecule depend on its size, charge, and hydration shell. Since at least one of these parameters is altered upon binding of a ligand, this method can be used to analyze virtually any biomolecular interaction in any buffer or complex bioliquid. This section provides a detailed protocol describing how MST is used to obtain quantitative binding parameters for aptamer-target interactions. The two DNA-aptamers HD1 and HD22, which are targeted against human thrombin, are used as model systems to demonstrate a rapid and straightforward screening approach to determine optimal buffer conditions.
Modelling of Split Condenser Heat Pump with Limited Set of Plate Heat Exchanger Dimensions
DEFF Research Database (Denmark)
Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix
2017-01-01
This paper presents a numerical study of optimal plate dimensions in a split condenser heat pump (SCHP), using ammonia as refrigerant. The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated...... in parallel to different temperature levels, whereas only one stream is heated in a THP. The length/width ratio of the plate heat exchangers on the high pressure side of a SCHP was investigated to find the optimal plate dimensions with respect to minimum area of the heat exchangers. The total heat exchanger...... area was found to decrease with an increasing length/width ratio of the plates. The marginal change in heat exchanger area was shown to be less significant for heat exchangers with high length/width ratios. In practice only a limited number of plate dimensions are available and feasible...
Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki
2012-11-01
Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.
Alfven Wave Solar Model: Part 1, Coronal Heating
van der Holst, Bart; Meng, Xing; Jin, Meng; Manchester, Ward B; Toth, Gabor; Gombosi, Tamas I
2013-01-01
We present the new Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagat...
Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling
Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.
2012-12-01
We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples
Modeling the Effect of Wider Canyons on Urban Heating
Directory of Open Access Journals (Sweden)
Rizwan Ahmed Memon
2011-04-01
Full Text Available The k-? turbulence model is adopted in this study to simulate the impact of street canyon AR (Aspect Ratios on heating within street canyon. The two-dimensional model was validated for RANS (Reynolds Averaged Navier Stokes and energy transport equations. The validation process confirms that the results of the model for airtemperature and wind speed could be trusted. The application of the said model is carried out to ideal street canyons of ARs (ratio of building-height-to-street-width from 0.4 to 2 with the same boundary conditions. Notably, street canyon aspect ratio was calculated by varying the street width while keeping the building height constant. Results show that the weighted-average-air-temperature within AR 0.4 was around 0.8% (i.e. 2.4K higher than that within AR 2.0. Conversely, there was strong correlation (i.e., R2>0.9 between air temperature within the street canyon and street canyon AR. Results demonstrate stronger influence of vertical velocity on heating within street canyon. Evidently, increased vertical velocity decreased the temperatures. Conversely, temperatures were higher along the leeward side of the canyon in lower ARs.
Heat transfer modeling of double-side arc welding
Sun Jun Sheng; Zhang Yan Ming
2002-01-01
If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones
DEFF Research Database (Denmark)
Mohammadi, Soma; Bojesen, Carsten
2015-01-01
Increasing the building energy efficiency in recent years results in noticeably reduction in their heating demand. Combined with the current trend for utilizing low temperature heat sources, it raises the necessity of introducing a new generation of district heating [DH] systems with lowered...
A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation
Lee, C. K.
2014-01-01
This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…
Hybrid fluid/kinetic model for parallel heat conduction
Energy Technology Data Exchange (ETDEWEB)
Callen, J.D.; Hegna, C.C.; Held, E.D. [Univ. of Wisconsin, Madison, WI (United States)
1998-12-31
It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.
Heat propagation models for superconducting nanobridges at millikelvin temperatures
Blois, A.; Rozhko, S.; Hao, L.; Gallop, J. C.; Romans, E. J.
2017-01-01
Nanoscale superconducting quantum interference devices (nanoSQUIDs) most commonly use Dayem bridges as Josephson elements to reduce the loop size and achieve high spin sensitivity. Except at temperatures close to the critical temperature T c, the electrical characteristics of these bridges exhibit undesirable thermal hysteresis which complicates device operation. This makes proper thermal analysis an essential design consideration for optimising nanoSQUID performance at ultralow temperatures. However the existing theoretical models for this hysteresis were developed for micron-scale devices operating close to liquid helium temperatures, and are not fully applicable to a new generation of much smaller devices operating at significantly lower temperatures. We have therefore developed a new analytic heat model which enables a more accurate prediction of the thermal behaviour in such circumstances. We demonstrate that this model is in good agreement with experimental results measured down to 100 mK and discuss its validity for different nanoSQUID geometries.
Microscale Canopy Interactions in Aquatic Phototrophs
DEFF Research Database (Denmark)
Lichtenberg, Mads
Photosynthetic production and light utilization efficiencies in aquatic organisms and microbial communities is determined by the irradiance incident on the system, which on a macroscale is dependent on factors such as, water depth and turbidity. However, on a microscale the light field inside...... phototrophic tissues and communities is determined by interactions between the incident light and the optical properties of the system, which is influenced by pigmentation, organization of tissue structural components, and the intracellular organisation of phytoelements. Our current understanding of how...... photosynthesis is influenced by light interactions is largely based on studies of terrestrial plants where canopy interactions have been described across scales; from landscape-level down to the organization of individual chloroplasts. How light interactions and photosynthetic efficiencies are influenced...
Molecular interaction studies using microscale thermophoresis.
Jerabek-Willemsen, Moran; Wienken, Chistoph J; Braun, Dieter; Baaske, Philipp; Duhr, Stefan
2011-08-01
Abstract The use of infrared laser sources for creation of localized temperature fields has opened new possibilities for basic research and drug discovery. A recently developed technology, Microscale Thermophoresis (MST), uses this temperature field to perform biomolecular interaction studies. Thermophoresis, the motion of molecules in temperature fields, is very sensitive to changes in size, charge, and solvation shell of a molecule and thus suited for bioanalytics. This review focuses on the theoretical background of MST and gives a detailed overview on various applications to demonstrate the broad applicability. Experiments range from the quantification of the affinity of low-molecular-weight binders using fluorescently labeled proteins, to interactions between macromolecules and multi-component complexes like receptor containing liposomes. Information regarding experiment and experimental setup is based on the Monolith NT.115 instrument (NanoTemper Technologies GmbH).
Microscale Flow Dynamics of Ribbons and Sheets
Montenegro-Johnson, Thomas D; Lauga, Eric
2016-01-01
Numerical study of the hydrodynamics of thin sheets and ribbons presents difficulties associated with resolving multiple length scales. To circumvent these difficulties, asymptotic methods have been developed to describe the dynamics of slender fibres and ribbons. However, such theories entail restrictions on the shapes that can be studied, and often break down in regions where standard boundary element methods are still impractical. In this paper we develop a regularised stokeslet method for ribbons and sheets in order to bridge the gap between asymptotic and boundary element methods. The method is validated against the analytical solution for plate ellipsoids, as well as the dynamics of ribbon helices and an experimental microswimmer. We then demonstrate the versatility of this method by calculating the flow around a double helix, and the swimming dynamics of a microscale "magic carpet".
Microscale soft robotics motivations, progress, and outlook
Kim, Jaeyoun (Jay)
2017-01-01
This book presents the technological basics and applications of small-scale (mm to sub-mm in length-scales) soft robots and devices, written for researchers in both academia and industry. Author Jaeyoun Kim presents technological motivations, enabling factors, and examples in an inter-linked fashion, making it easy for readers to understand and explore how microscale soft robots are a solution to researchers in search of technological platforms for safe, human-friendly biomedical devices. A compact and timely introduction, this book summarizes not only the enabling factors for soft robots and MEMS devices, but also provides a survey of progress in the field and looks to the future in terms of the material, design, and application aspects this new technology demonstrates.
Microscale nanosecond laser-induced optical breakdown in water.
Kudryashov, Sergey I; Zvorykin, Vladimir D
2008-09-01
Microscale optical breakdown induced in bulk pure water by high-power nanosecond KrF laser pulses was studied using optical transmission and contact broadband photoacoustic techniques. The breakdown has been identified as a sharp transmission drop coinciding with the appearance of unipolar compressive acoustic pulses, both indicating a thresholdlike rise of local intrinsic absorption in the micrometer-scale laser focal volume. The acoustic pulses, which are much broader than the exciting laser pulse and show a strongly reduced far-field diffraction effect, result from breakdown-induced millimeter-sized steam bubbles. The acoustic pulse amplitudes exhibit a sub-linear ( proportional, variantI(3/4)) pressure dependence on the laser intensity I characteristic of subcritical electron-ion plasma and demonstrating the avalanche enhancement of two-photon ionization above the breakdown threshold until the appearance of the critical plasma. In the critical plasma regime, where the transmission and the acoustic signals slowly vary as a function of laser intensity, the main acoustic pulse is preceded by nanosecond and sub- micros prepulses, where the first one represents a GPa-level plasma-driven shock wave and the second one adjacent to the main pulse appears due to weak submillimeter-long heating of water surrounding the hot plasma by its bremsstrahlung radiation, indicating significant dissociation of water molecules in the plasma.
Seidel, Susanne A I; Dijkman, Patricia M; Lea, Wendy A; van den Bogaart, Geert; Jerabek-Willemsen, Moran; Lazic, Ana; Joseph, Jeremiah S; Srinivasan, Prakash; Baaske, Philipp; Simeonov, Anton; Katritch, Ilia; Melo, Fernando A; Ladbury, John E; Schreiber, Gideon; Watts, Anthony; Braun, Dieter; Duhr, Stefan
2013-03-01
Microscale thermophoresis (MST) allows for quantitative analysis of protein interactions in free solution and with low sample consumption. The technique is based on thermophoresis, the directed motion of molecules in temperature gradients. Thermophoresis is highly sensitive to all types of binding-induced changes of molecular properties, be it in size, charge, hydration shell or conformation. In an all-optical approach, an infrared laser is used for local heating, and molecule mobility in the temperature gradient is analyzed via fluorescence. In standard MST one binding partner is fluorescently labeled. However, MST can also be performed label-free by exploiting intrinsic protein UV-fluorescence. Despite the high molecular weight ratio, the interaction of small molecules and peptides with proteins is readily accessible by MST. Furthermore, MST assays are highly adaptable to fit to the diverse requirements of different biomolecules, such as membrane proteins to be stabilized in solution. The type of buffer and additives can be chosen freely. Measuring is even possible in complex bioliquids like cell lysate allowing close to in vivo conditions without sample purification. Binding modes that are quantifiable via MST include dimerization, cooperativity and competition. Thus, its flexibility in assay design qualifies MST for analysis of biomolecular interactions in complex experimental settings, which we herein demonstrate by addressing typically challenging types of binding events from various fields of life science.
Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals
Zhang, Yuwen; Chen, J K
2015-01-01
Ultrafast laser material processing has received significant attention due to a growing need for the fabrication of miniaturized devices at micro- and nanoscales. The traditional phenomenological laws, such as Fourier's law of heat conduction, are challenged in the microscale regime and a hyperbolic or dual phase lag model should be employed. During ultrafast laser interaction with metal, the electrons and lattices are not in equilibrium. Various two-temperature models that can be used to describe the nonequilibrium heat transfer are presented. A semi-classical two-step heating model to investigate thermal transport in metals caused by ultrashort laser heating is also presented. The main difference between the semiclassical and the phenomenological two-temperature models is that the former includes the effects of electron drifting, which could result in significantly different electron and lattice temperature response from the latter for higher-intensity and shorter-pulse laser heating. Under higher laser flu...
Zhang, Jianbo; Ge, Hao; Li, Zhe; Ding, Zhanming
2015-01-01
This study develops a method to internally preheat lithium-ion batteries at low temperatures with sinusoidal alternating current (AC). A heat generation rate model in frequency domain is developed based on the equivalent electrical circuit. Using this model as the source term, a lumped energy conservation model is adopted to predict the temperature rise. These models are validated against the experimental results of preheating an 18650 cell at different thermal insulation conditions. The effects of current amplitude and frequency on the heating rate are illustrated with a series of simulated contours of heating time. These contours indicate that the heating rate increases with higher amplitude, lower frequency and better thermal insulation. The cell subjected to an alternating current with an amplitude of 7 A (2.25 C) and a frequency of 1 Hz, under a calibrated heat transfer coefficient of 15.9 W m-2 K-1, can be heated from -20 °C to 5 °C within 15 min and the temperature distribution remains essentially uniform. No capacity loss is found after repeated AC preheating tests, indicating this method incurs little damage to the battery health. These models are computationally-efficient and can be used in real time to control the preheating devices in electric vehicles.
Silva, Humberto R; Phelan, Patrick E; Golden, Jay S
2010-01-01
A zero-dimensional energy balance model was previously developed to serve as a user-friendly mitigation tool for practitioners seeking to study the urban heat island (UHI) effect. Accordingly, this established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values. In addition to modeling mitigation strategies, we present how the model can be utilized to evaluate human health vulnerability from excessive heat-related events, based on heat-related emergency service data from 2002 to 2006. The 24-h average heat index is shown to have the greatest correlation to heat-related emergency calls in the Phoenix (Arizona, USA) metropolitan region. The four modeled UHI mitigation strategies, taken in combination, would lead to a 48% reduction in annual heat-related emergency service calls, where increasing the albedo is the single most effective UHI mitigation strategy.
Nonlinear electrokinetic transport in networks of microscale and nanoscale pores
Alizadeh, Shima; Andersen, Mathias B.; Mani, Ali
2012-11-01
The objective of this study is to develop the understanding of nonlinear electrohydrodynamic effects in a wide range of systems including lab-on-a-chip systems, electroosmotic pumps, and, in general, porous media with random or fabricated pore morphology. We present a continuum model in which these systems are described as massive networks of long and thin pores. The thickness of the pores can vary from nanoscale to microscale, corresponding to the highly overlapped electric double layers (EDL) to the thin double layer limit. Within each pore the transport in the wall-normal direction is assumed to be in equilibrium leading to a reduced order model for the axial transport of species in the form of a transient one-dimensional partial differential equation (PDE). PDEs from different pores are coupled through boundary conditions at the pore intersections by proper implementation of the conservation laws. We show that this model can capture important nonlinear dynamics, which are typically ignored in homogenized models. Specifically, our model captures concentration polarization shocks and flow recirculation zones respectively formed when micropores and nanopores are connected in series and in parallel. We present a comparison between our model and recent experiments in microfluidics, and will discuss applications in porous media modeling for energy storage and water purification systems.
Directory of Open Access Journals (Sweden)
Mathhar Bdour
2016-10-01
Full Text Available Biomass as a source of renewable energy is a promising solution for current problems in energy supply. Olive waste is considered as an interesting option, especially for Mediterranean countries. Within this paper, a microscale externally fired gas turbine (EFGT technology is presented as a decentralized power plant, within the range of 15 kWth, based on olive residues. It was modeled by Aspen Plus 8.6 software to provide a sufficient technical study for such a plant. Optimized parameters for pressure ratio and turbine air-mass flow have been mapped for several loads to provide information for process control. For all cases, mechanical output, efficiency curves, and back-work ratio have been calculated. Using this information, typical plant sizes and an example of power production are discussed. Additionally, achievable energy production from olive waste is estimated on the basis of this data. The results of this study show that such a plant has an electrical efficiency of 5%–17%. This variation is due to the examination being performed under several combustion temperatures, actual load, heat exchanger temperatures, and heat transfer efficiency. A cost estimation of the discussed system showed an estimated capital cost of 33,800 to 65,300 € for a 15 kWth system.
The Mathematical Modelling of Heat Transfer in Electrical Cables
Directory of Open Access Journals (Sweden)
Bugajev Andrej
2014-05-01
Full Text Available This paper describes a mathematical modelling approach for heat transfer calculations in underground high voltage and middle voltage electrical power cables. First of the all typical layout of the cable in the sand or soil is described. Then numerical algorithms are targeted to the two-dimensional mathematical models of transient heat transfer. Finite Volume Method is suggested for calculations. Different strategies of nonorthogonality error elimination are considered. Acute triangles meshes were applied in two-dimensional domain to eliminate this error. Adaptive mesh is also tried. For calculations OpenFOAM open source software which uses Finite Volume Method is applied. To generate acute triangles meshes aCute library is used. The efficiency of the proposed approach is analyzed. The results show that the second order of convergence or close to that is achieved (in terms of sizes of finite volumes. Also it is shown that standard strategy, used by OpenFOAM is less efficient than the proposed approach. Finally it is concluded that for solving real problem a spatial adaptive mesh is essential and adaptive time steps also may be needed.
The Einstein specific heat model for finite systems
Boscheto, E.; de Souza, M.; López-Castillo, A.
2016-06-01
The theoretical model proposed by Einstein to describe the phononic specific heat of solids as a function of temperature consists of the very first application of the concept of energy quantization to describe the physical properties of a real system. Its central assumption lies in the consideration of a total energy distribution among N (in the thermodynamic limit N → ∞) non-interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most materials behave differently at the nanoscale, having thus some cases physical properties with potential technological applications. Here, a version of the Einstein model composed of a finite number of particles/oscillators is proposed. The main findings obtained in the frame of the present work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for systems with nano-metric dimensions; (ii) the observation that the corresponding chemical potential function for finite solids becomes null at finite temperatures as observed in the Bose-Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying N.
Heat Redistribution and Misaligned Orbit Models in PHOEBE
Horvat, Martin; Prsa, Andrej; Conroy, Kyle E.
2017-01-01
Reflection and aligned Roche geometry have been long supported in modeling codes that synthesize light and radial velocity curves of eclipsing binary stars. However, recent advances in observational data, mostly in terms of precision and temporal baseline, demonstrated that the assumptions of these two effects are frequently violated. Reflection treatment neglected the energy absorbed by the irradiated star, and Roche geometry assumed aligned vectors of spin and orbital angular momentum. Observations of night- and day-side brightness variation of cooler stellar and substellar companions point to a clear deficiency in treating heat redistribution, and the break in symmetry of the Rossiter-McLaughlin effect points to misaligned stellar spins w.r.t. orbital plane. The framework of existing codes did not allow for revising these effects while keeping the rest of the logic intact, which prompted a complete rewrite of the modeling code PHOEBE (PHysics Of Eclipsing BinariEs). Here we present the basic considerations and proof-of-concept examples of the revised reflection effect and misaligned spin-orbit support. Reflection has been extended with heat absorption and consequent redistribution, which can be local, longitudinal or global. Misaligned spin-orbit vectors are supported by deriving the equation of the Roche potential that allows misaligned rotational axes and are provided by the corresponding Euler angles. This research is supported by the NSF grant #1517474.
Inverse modeling for heat conduction problem in human abdominal phantom.
Huang, Ming; Chen, Wenxi
2011-01-01
Noninvasive methods for deep body temperature measurement are based on the principle of heat equilibrium between the thermal sensor and the target location theoretically. However, the measurement position is not able to be definitely determined. In this study, a 2-dimensional mathematical model was built based upon some assumptions for the physiological condition of the human abdomen phantom. We evaluated the feasibility in estimating the internal organs temperature distribution from the readings of the temperature sensors arranged on the skin surface. It is a typical inverse heat conduction problem (IHCP), and is usually mathematically ill-posed. In this study, by integrating some physical and physiological a-priori information, we invoked the quasi-linear (QL) method to reconstruct the internal temperature distribution. The solutions of this method were improved by increasing the accuracy of the sensors and adjusting their arrangement on the outer surface, and eventually reached the state of converging at the best state accurately. This study suggests that QL method is able to reconstruct the internal temperature distribution in this phantom and might be worthy of a further study in an anatomical based model.
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M J; Brueck, H D; 10.1063/1.4706965
2012-01-01
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world, however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. The XFEL (X-Ray Free Electron Laser) magnets are operated at 2 K, which makes vapor-cooled current leads impractical due to the sub-atmospheric bath pressure. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal inte...
A combined gray neural network model of seasonal heating load forecast
Institute of Scientific and Technical Information of China (English)
QIAOXiaozhuang; YANGChangzhi
2003-01-01
Seasonal heating load time sequence has the double trends of increasing and fluctuating, so it''s difficult to select a model to forecast it. In this paper, a combined model of gray model and artificial neural network model was presented to forecast seasonal heating load. A concrete model was established and was verified through actual examples.
Comparison of moving boundary and finite-volume heat exchanger models in the modelica language
Adriano Desideri; Bertrand Dechesne; Jorrit Wronski; Martijn van den Broek; Sergei Gusev; Vincent Lemort; Sylvain Quoilin
2016-01-01
When modeling low capacity energy systems, such as a small size (5–150 kWel) organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, th...
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the
Mechanism of fracture in macro- and micro-scales in hollow centre cracked disc specimen
Institute of Scientific and Technical Information of China (English)
M. Eftekhari; A. Baghbanan; H. Hashemolhosseini; H. Amrollahi
2015-01-01
The hollow centre cracked disc (HCCD) specimen is one of the suggested alternative methods for determining the fracture toughness of rock. This work aims to investigate the fracture mechanism in HCCD in macro- and micro-scales using numerical methods, extended finite element method (X-FEM) and particle flow code (PFC) modeling, respectively. In the X-FEM, heaviside and near-tip enrichment functions are employed to consider the presence of the crack in the model. In PFC modeling the movement and interaction of stressed assemblies of rigid spherical particles are modeled using the distinct element method (DEM). A numerical code called MEX-FEM based on XFEM has been developed to simulate the problems involving crack. The models of pure modes I and II in macro-scale are simulated in micro-scale. The results show that dimensionless stress intensity factors (YI,YI) for pure modes I and II increase by increasing the crack length ratio. The angle at which the pure mode II occurs decreases by increasing the crack length ratio. In mixed mode I-II, The value ofYI decreases by increasing the crack angle, while the value ofYI increases to a given crack angle and then it decreases. Moreover, the fracture in micro-scale, unlike the macro-scale, includes a combination of different modes of fracturing.
Mechanism of fracture in macro- and micro-scales in hollow centre cracked disc specimen
Institute of Scientific and Technical Information of China (English)
M.Eftekhari; A.Baghbanan; H.Hashemolhosseini; H.Amrollahi
2015-01-01
The hollow centre cracked disc(HCCD) specimen is one of the suggested alternative methods for determining the fracture toughness of rock. This work aims to investigate the fracture mechanism in HCCD in macro- and micro-scales using numerical methods, extended finite element method(X-FEM) and particle flow code(PFC) modeling, respectively. In the X-FEM, heaviside and near-tip enrichment functions are employed to consider the presence of the crack in the model. In PFC modeling the movement and interaction of stressed assemblies of rigid spherical particles are modeled using the distinct element method(DEM). A numerical code called MEX-FEM based on XFEM has been developed to simulate the problems involving crack. The models of pure modes I and Ⅱ in macro-scale are simulated in micro-scale. The results show that dimensionless stress intensity factors(YI, YⅡ) for pure modes I and Ⅱ increase by increasing the crack length ratio. The angle at which the pure mode Ⅱ occurs decreases by increasing the crack length ratio. In mixed mode I-Ⅱ, The value of YI decreases by increasing the crack angle, while the value of YⅡ increases to a given crack angle and then it decreases. Moreover, the fracture in micro-scale, unlike the macro-scale, includes a combination of different modes of fracturing.
Three dimensional heat transport modeling in Vossoroca reservoir
Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias
2017-04-01
Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to
Modeling and simulation of heat sinks for computer processors in COMSOL Multiphysics
2012-01-01
In this study, the heat transfer of three desktop- computer heat sinks was analyzed. The objective of using these heat sinks is to avoid overheating of the computer’s processing unit and in turn reduce the corresponding loss in the unit’s service time. The heat sinks were modeled using COMSOL Multiphysics with the actual dimensions of the devices, and heat generation was modeled with a point source. In the next step, the heat sink designs were modified to achieve a lower temperature in the hi...
Research on modeling of heat source for electron beam welding fusion-solidification zone
Institute of Scientific and Technical Information of China (English)
Wang Yajun; Fu Pengfei; Guan Yongjun; Lu Zhijun; Wei Yintao
2013-01-01
In this paper,the common heat source model of point and linear heat source in the numerical simulation of electron beam welding (EBW) were summarized and introduced.The combined point-linear heat source model was brought forward and to simulate the welding temperature fields of EBW and predicting the weld shape.The model parameters were put forward and regulated in the combined model,which included the ratio of point heat source to linear heat source Qpr and the distribution of linear heat source Lr.Based on the combined model,the welding temperature fields of EBW were investigated.The results show that the predicted weld shapes are conformable to those of the actual,the temperature fields are reasonable and correct by simulating with combined point-linear heat source model and the typical weld shapes are gained.
Application of short pulsed laser systems for micro-scale processing.
Energy Technology Data Exchange (ETDEWEB)
Jared, Bradley Howell
2010-03-01
The relatively recent development of short (nsec) and ultra-short (fsec) pulsed laser systems has introduced process capabilities which are particularly suited for micro-manufacturing applications. Micrometer feature resolutions and minimal heat affected zones are commonly cited benefits, although unique material interactions also prove attractive for many applications. A background of short and ultra-short pulsed laser system capabilities and material interactions will be presented for micro-scale processing. Processing strengths and limitations will be discussed and demonstrated within the framework of applications related to micro-machining, material surface modifications, and fundamental material science research.
DEFF Research Database (Denmark)
Zvingilaite, Erika; Klinge Jacobsen, Henrik
2015-01-01
their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... for private consumers decrease by 66% when all have the option to shift to the technology with lowest variable costs. © 2014 Elsevier Ltd. All Rights reserved...
Asymmetric Heat Conduction in One-Dimensional Hard-Point Model with Mass Gradient
Institute of Scientific and Technical Information of China (English)
LI Hai-Bin; NIE Qing-Miao; XIN Xiao-Tian
2009-01-01
The heat conduction in a one-dimensional (1D) hard-point model with mass gradient is studied. Using numerical simulation, we find an asymmetric heat conduction in this model with greater heat current in the direction of mass increase. The increase of temperature gradient, mass gradient and system size are found to enhance the asymmetric heat conduction. Based on the collision dynamic of a hard-point particle, we give a qualitative explanation for the underlying mechanism of asymmetric effect.
Packed bed heat storage: Continuum mechanics model and validation
Knödler, Philipp; Dreißigacker, Volker; Zunft, Stefan
2016-05-01
Thermal energy storage (TES) systems are key elements for various types of new power plant concepts. As possible cost-effective storage inventory option, packed beds of miscellaneous material come into consideration. However, high technical risks arise due to thermal expansion and shrinking of the packed bed's particles during cyclic thermal operation, possibly leading to material failure. Therefore, suitable tools for designing the heat storage system are mandatory. While particle discrete models offer detailed simulation results, the computing time for large scale applications is inefficient. In contrast, continuous models offer time-efficient simulation results but are in need of effective packed bed parameters. This work focuses on providing insight into some basic methods and tools on how to obtain such parameters and on how they are implemented into a continuum model. In this context, a particle discrete model as well as a test rig for carrying out uniaxial compression tests (UCT) is introduced. Performing of experimental validation tests indicate good agreement with simulated UCT results. In this process, effective parameters required for a continuous packed bed model were identified and used for continuum simulation. This approach is validated by comparing the simulated results with experimental data from another test rig. The presented method significantly simplifies subsequent design studies.
DEFF Research Database (Denmark)
Zvingilaite, Erika; Klinge Jacobsen, Henrik
2015-01-01
their primary heating source with secondary heating e.g. a woodstove. This choice results in increased indoor air pollution with fine particles causing health effects. We integrate health cost due to use of woodstoves into household optimisation of heating expenditures. The results show that due...... heating comfort is minimised. The private solution may deviate from the socio-economical optimal solution and we suggest changes to policy to incentivise the individuals to make choices more in line with the socio-economic optimal mix of energy savings and technologies. The households can combine...
Ölçeroğlu, Emre; McCarthy, Matthew
2016-03-02
Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of 1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.
Directory of Open Access Journals (Sweden)
Sangwoo Park
2016-04-01
Full Text Available Groundwater flow is one of the most important factors for the design of a ground heat exchanger (GHEX since the thermal environment of the ground around the buried GHEX is significantly affected by heat convection due to the groundwater flow. Several preceding studies have been conducted to develop analytical solutions to the heat transfer model of GHEX with consideration of groundwater flow. One of these solutions is the combined heat transfer model of conduction and convection. However, the developed combined analytical models are inapplicable to all of the configurations of ordinary GHEXs because these solutions assume that the inner part of the borehole is thermally inert or consists of the same material as that of the surrounding ground. In this paper, the applicability of the combined solid cylindrical heat source model, which is the most suitable to energy piles until now, was evaluated by performing a series of numerical analyses. In the numerical analysis, the inner part of the borehole was modeled as two different materials (i.e., permeable ground formation and impermeable fill such as concrete to evaluate applicability of the analytical solution along with different diameter-length (D/L ratios of borehole. In a small value of the D/L ratio, the analytical solution to the combined heat transfer model is in good agreement with the result of numerical analysis. On the other hand, when increasing the D/L ratio, the analytical solution significantly overestimates the effect of groundwater flow on the heat transfer of GHEXs because the analytical solution disregards the existence of the impermeable region in the borehole. Consequently, such tendency is more critical in the GHEX with a large D/L ratio such as large-diameter energy piles.
The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps
Energy Technology Data Exchange (ETDEWEB)
Fischer, S.K. Rice, C.K.
1999-12-10
The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Central model predictive control of a group of domestic heat pumps, case study for a small district
Leeuwen, van R.P.; Fink, J.; Smit, G.J.M.; Helfert, Markus; Krempels, Karl-Heinz; Donnellan, Brian; Klein, Cornel
2015-01-01
In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and
Central model predictive control of a group of domestic heat pumps, case study for a small district
van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; Helfert, Markus; Krempels, Karl-Heinz; Donnellan, Brian; Klein, Cornel
2015-01-01
In this paper we investigate optimal control of a group of heat pumps. Each heat pump provides space heating and domestic hot water to a single household. Besides a heat pump, each house has a buffer for domestic hot water and a floor heating system for space heating. The paper describes models and
The Heat Is On! Using Particle Models to Change Students' Conceptions of Heat and Temperature
Hitt, Austin Manning; Townsend, J. Scott
2015-01-01
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Manufacturing of Superhydrophobic Surfaces with Nanoscale and Microscale Features
Energy Technology Data Exchange (ETDEWEB)
None
2009-06-01
This factsheet describes a research project that will develop a technology that will enable nanoscale and microscale superhydrophobic (SHP) features to be imaged onto surfaces for the high-volume manufacturing of water-repellent components and coatings.
Wees, J.D. van; Bonte, D.; Nelskamp, S.
2009-01-01
Basement heat flow is one of the most influential parameters on basin maturity. Although rapid progress has been made in the development of tectonic models capable of modelling the thermal consequences of basin formation, these models are hardly used in basin modelling. To better predict heat flows
In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
Lee, Jun Yong; Jung, Sung-No; Kwon, Ho
2015-01-01
To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns.
New charged shear-free relativistic models with heat flux
Nyonyi, Y; Govinder, K S
2014-01-01
We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein-Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conform...
New charged shear-free relativistic models with heat flux
Nyonyi, Y.; Maharaj, S. D.; Govinder, K. S.
2013-11-01
We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein-Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conformally flat metrics.
Current fluctuations in a two dimensional model of heat conduction
Pérez-Espigares, Carlos; Garrido, Pedro L.; Hurtado, Pablo I.
2011-03-01
In this work we study numerically and analytically current fluctuations in the two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat conduction. For that purpose, we use a recently introduced algorithm which allows the direct evaluation of large deviations functions. We compare our results with predictions based on the Hydrodynamic Fluctuation Theory (HFT) of Bertini and coworkers, finding very good agreement in a wide interval of current fluctuations. We also verify the existence of a well-defined temperature profile associated to a given current fluctuation which depends exclusively on the magnitude of the current vector, not on its orientation. This confirms the recently introduced Isometric Fluctuation Relation (IFR), which results from the time-reversibility of the dynamics, and includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by timereversibility on the statistics of nonequilibrium fluctuations.
Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers
Energy Technology Data Exchange (ETDEWEB)
Shen, Bo [ORNL; Bhandari, Mahabir S [ORNL
2016-01-01
Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.
Institute of Scientific and Technical Information of China (English)
徐涛; 杨泽亮; 甘云华
2011-01-01
结合微尺度条件下液体乙醇的流动和燃烧特性,通过理论分析选择合理的模型来对液体乙醇的微尺度层流扩散燃烧进行数值模拟,然后采用数值模拟软件Fluent来分析液滴辐射传热与边界层滑移因素对数值模拟的影响,将数值模拟结果与测量值进行对比分析.研究结果表明:将液滴辐射传热和边界层滑移因素结合起来考虑能使数值模拟值与测量值更接近.%By taking into consideration the flow and combustion characteristics of liquid ethanol in microscale flow,a reasonable simulation model is selected based on theoretical analysis for the numerical simulation of microscale laminar-flow diffusion cumbustion of liquid ethanol, and the effects of droplet radiation heat transfer and boundary slip on the simulation are analyzed with Fluent. The simulated results are then compared with the measured ones finding that the numerical simulation considering both the droplet radiation heat transfer and the boundary slip is more accurate.
Modeling an RF Cold Crucible Induction Heated Melter with Subsidence
Energy Technology Data Exchange (ETDEWEB)
Grant L. Hawkes
2004-07-01
A method to reduce radioactive waste volume that includes melting glass in a cold crucible radio frequency induction heated melter has been investigated numerically. The purpose of the study is to correlate the numerical investigation with an experimental apparatus that in the above mentioned melter. Unique to this model is the subsidence of the glass as it changes from a powder to molten glass and drastically changes density. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melter process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities and magnetic vector potential. Coupled to all of this is a generator that will be used for this lab sized experiment. The coupling with the 60 kW generator occurs with the impedance of the melt as it progresses and changes with time. A power controller has been implemented that controls the primary coil current depending on the power that is induced into the molten glass region.
Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model
Energy Technology Data Exchange (ETDEWEB)
Williams, W.R. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)
1991-12-31
A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.
High-frequency Heating Behavior of Veneer-based Composites: Modelling and Validation
Directory of Open Access Journals (Sweden)
Peixing Wei
2014-04-01
Full Text Available A one-dimensional theoretical heat and mass transfer model was developed for high-frequency (HF heating of veneer-based composites, such as laminated veneer lumber (LVL and plywood. This model was based on the basic principles of energy and mass conservation, momentum conservation of gas flow, and gas thermodynamic relations. The response variables, including temperature, gas pressure, and moisture content (MC, were linked to basic material properties, such as veneer density, thermal conductivity, permeability, and dielectric properties. Initial and boundary conditions for solving the governing equations were also considered. The model was further validated by experiments with veneer HF heating and LVL HF heating. The model predictions agreed well with the experimental results. During veneer HF heating, the inner veneer core layers had lower MC than the outer surface layers. Compared to conventional hot platen heating, HF heating was proven to be an efficient and robust method for manufacturing veneer-based composites.
Vintzileos, A.; Halpert, M.; Gottschalk, J.; Allgood, A.
2016-12-01
Heatwaves are among the most dangerous, yet invisible, of natural hazards. According to NOAA, the distribution of 30-year based annual mean fatalities from natural hazards in the U.S. ranks as follows; those from heat (130), floods (81), tornadoes (70), lightning (48) and hurricanes (46). Early warning to excessive heat events can be improved by using multi-scale prognostic systems. We designed and developed such a system for forecasting excessive heat events at lead times beyond Week-1. This Subseasonal Excessive Heat Outlook System (SEHOS) consists of (a) a monitoring/verification component and (b) a forecasting component which in its baseline version uses NOAA's Global Ensemble Forecast System (GEFS) predictions of temperature and humidity from Day-8 to Day-14. In this presentation, we discuss the definition of heat events, sources of predictability and present the forecast skill of SEHOS for the GEFS reforecast period (1985-2014). We then use subseasonal reforecasts from several models from the S2S database and discuss the forecast value added by multi-model approaches in predicting excessive heat events.
Energy Technology Data Exchange (ETDEWEB)
Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)
1996-11-01
The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and
Energy Technology Data Exchange (ETDEWEB)
Lamfon, N.J. [Saudi Aramco Jeddah Refinery, Jeddah (Saudi Arabia); Najjar, Y.S.H.; Akyurt, M. [King Abdulaziz Univ., Mechanical Engineering Dept., Jeddah (Saudi Arabia)
1998-12-01
The results of a modeling and simulation study are presented for a combined system consisting of a gas turbine engine, a heat pipe recovery system and an inlet-air cooling system. The presentation covers performance data related to the gas turbine engine with precooled air intake as coupled to the water-in-copper heat pipe recovery system. This is done by matching the two mathematical models. The net power output is improved by 11% when the gas turbine engine is supplied with cold air produced by the heat-pipe recovery and utilization system. It is further concluded from the results produced by the combined mathematical model that the thermal efficiency of the gas turbine engine rises to 6% at 75% part load. It is to be anticipated that this rising trend in increases of thermal efficiency of the gas turbine engine would continue for operations at other (lower) part load conditions. (author)
Observational & modeling analysis of surface heat and moisture fluxes
Energy Technology Data Exchange (ETDEWEB)
Smith, E. [Florida State Univ., Tallahassee, FL (United States)
1995-09-01
An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.
Mathematical model of heat transfer for bloom continuous casting
Institute of Scientific and Technical Information of China (English)
Qing Liu; Liangzhou Wang; Liqiang Zhang; Liguo Cao; Xiuzhong Ding; Mei Liang; Yongge Qi
2008-01-01
A mathematical model for heat transfer during solidification in continuous casting of automobile steel, was established on researching under the influence of the solidifying process of bloom quality of CCM in the EAF steelmaking shop, at Shijiazhuang Iron and Steel Co. Ltd. Several steel grades were chosen to research, such as, 40Cr and 42CrMo. According to the results of the high temperature mechanical property tests of blooms, the respective temperature curves for controlling the solidification of differem steels were acquired, and a simulating software was developed. The model was verified using two methods, which were bloom pin-shooting and surface strand temperature measuring experiments. The model provided references for research on the solidifying proc-ess and optimization of a secondary cooling system for automobile steel. Moreover, it was already applied to real production. The calculated temperature distribution and solidification trend of blooms had offered a reliable theory for optimizing the solidifying process of blooms, increasing withdrawal speed, and improving bloom quality. Meanwhile, a new secondary cooling system was designed to optimize a secondary cooling water distribution, including choice and arrangements of nozzles, calculation of cooling water quantity, and so on.
Prediction of mechanical properties of cement paste at microscale
Directory of Open Access Journals (Sweden)
van Breugel, K.
2010-02-01
Full Text Available Prediction of the mechanical properties of cement paste at microscale has been done in this contribution by making use of 3D lattice fracture model.
The microstructure of cement paste is simulated by HYMOSTRUC3D first, which is represented in terms of sphere particles. Then the microstructure is converted into a voxel-based image, and a lattice system is constructed based on the image of the microstructure through ImgLat (Image to Lattice. A virtual uni-axial tensile test is configured and the fracture process is simulated by GLAK (Generalized Lattice Analysis Kernel. The outputs of fracture process simulation are the load-displacement diagram and micro-cracks propagation. The load-displacement diagram reveals the tensile behavior of cement paste at microscale, from which the elastic modulus and tensile strength can be obtained.
A numerical experiment is carried out to show how the model works, and the final results also demonstrate the feasibility of the above modeling procedure.
En el presente trabajo se ha realizado una predicción de las propiedades mecánicas del cemento en la micro-escala, empleando un modelo de fractura reticular 3D.
En primer lugar se simula la micro-estructura del cemento mediante el código HYMOSTRUC3D, representando dicha micro-estructura mediante partículas esféricas. A continuación, la micro-estructura generada se convierte en una imagen basada en “vóxeles”, y se construye un sistema reticular basado en esa imagen mediante el código ImgLat (Image to Lattice. Se define un ensayo de tensión uniaxial virtual, y se simula el proceso de fractura usando el código GLAK (Generalized Lattice Análisis Kernel. Los resultados obtenidos de esta simulación del proceso de fractura son diagramas de carga-desplazamiento y propagación de micro-roturas. El diagrama de carga-desplazamiento caracteriza el comportamiento a fractura de la pasta de cemento en la micro-escala, y a partir de éste se puede
Clothing evaporative heat resistance - Proposal for improved representation in standards and models
Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.
1999-01-01
Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement
Clothing evaporative heat resistance - Proposal for improved representation in standards and models
Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.
1999-01-01
Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement
Institute of Scientific and Technical Information of China (English)
Guoping Qing; Xuanchu Duan; Youqin Jiang
2004-01-01
Purpose :To investigate the dynamics of heat shock protein 72 (HSP72) expression in retinal ganglion cells (RGCs) in rat model of acute glaucoma treated with heat stress or intraperitoneal injection of zinc sulfate.Methods: Twenty-seven male Wistar rats were used to make acute glaucoma models. Five others served as normal control. Acute glaucoma models were made by intracameral irrigation in the right eyes with balanced salt saline (BSS) at 102 mmHg for 2 hours. Nine model rats were killed at different intervals after intracameral irrigation without treatment, which served as damage control. Ten were treated with heat stress 40℃～42℃, and 8 were used for zinc sulfate administration 2 days posterior to intracameral irrigation.Treated model rats were sacrificed at designed intervals after treatment. Right eyes were enucleated immediately, and the retinas were dissected for Western blot.Results: No HSP72 was found in RGCs of normal Wistar rats. In damage control group,slight HSP72 was detected during 6～36 hours posterior to intracameral irrigation. HSP72was detected significantly expressed in RGCs of both heat shock group and zinc sulfate group. But the dynamics of HSP72 production were quite different in these two treated groups. In heat shock group, HSP72 appeared at the sixth hour after treatment, and increased gradually until its peak production emerged at the 48th hour. HSP72 vanished 8days later after treatment. In zinc sulfate group, HSP72 expression began 24 hours later after zinc administration, and reached its highest level at the 72th hour posterior to treatment. HSP72 expression then decreased slowly, and disappeared 21 days later after treatment.Conclusion:HSP72 can be induced in RGCs of rat acute glaucoma models with heat stress or zinc sulfate adddministration. But the dynamics of the HSP72 induction in those two groups were quite different. Eye Science 2004;20:30-33.
Totally Asymmetric Limit for Models of Heat Conduction
De Carlo, Leonardo; Gabrielli, Davide
2017-08-01
We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.
Radiative heat transfer modelling in a PWR severe accident sequence
Energy Technology Data Exchange (ETDEWEB)
Magali Zabiego; Florian Fichot [Institut de Radioprotection et de Surete Nucleaire - BP 3 - 13115 Saint-paul-Lez-Durance (France); Pablo Rubiolo [Westinghouse Science and Technology - 1344 Beulah Road - Pittsburgh - PA 15235 (United States)
2005-07-01
Full text of publication follows: The present study is devoted to the estimation of the radiative heat transfers during a severe accident sequence in a Pressurized Water Reactor. In such a situation, the residual nuclear power released by the fuel rods can not be evacuated and heats up the core. As a result, the cylindrical rods and the structures initially composing the core undergo a degradation process: swelling, breaking or melting of the rods and structures and eventual collapse to form a heap of fragments called a debris bed. As the solid matrix loses its original shape, the core geometry continuously evolves from standing, regularly-spaced cylinders to a non-homogeneous system including deformed remaining rods and structures and debris particles. To predict this type of sequence, the ICARE/CATHARE software [1] is developed by IRSN. Since the temperatures can reach values greater than 3000 K, it was of major interest to provide the code with an accurate radiative transfer model usable whatever the geometry of the system. Considering the size of a reactor core compared to the mean penetration length of radiation, the core can be seen as an optically thick medium. This observation led us to use the diffusion approximation to treat the radiation propagation. In this approach, the radiative flux is calculated in a way similar to thermal conduction: q{sub r} = [K{sub e}].{nabla}T where [K{sub e}] is the equivalent conductivity tensor of the system accounting for thermal and radiative transfer. An homogenization technique is applied to estimate the equivalent conductivity. Given the temperature level, the radiative contribution to the equivalent conductivity tensor quickly becomes dominant. This model was described earlier in [2] in which it was shown that an equivalent conductivity can be continuously calculated in the system when the geometry evolves from standing regular cylinder rods to swollen or broken ones, surrounded or not by a film of liquid materials, to
Microscale mapping of SPAD photon detection probability
Bonifacio, D. A. B.; Gros-Daillon, E.; Verger, L.
2017-05-01
As silicon photomultiplier (SiPM) technology still has potential for further improvements, we describe a method to map the photon detection probability of a single-photon avalanche diode (SPAD) at the microscale level, in order to evaluate the behavior of the SPAD triggering capabilities as a function of the position of the incident light and to determine its homogeneity. For this purpose, we performed the analysis of the light response for a single active SPAD, with all its neighbors switched off, using a scanning setup, composed of the digital SiPM SPADnet-I data acquisition system, a microscope, a servo positioning system, a spectrograph and a CCD camera. We varied the wavelength of the incoming light to probe the device volume from the P-well to the N-well, with the ultimate goal of understanding and improving overall sensor performance. The comparison of this study to SPAD design and electric field technology computer-aided design (TCAD) simulation enables one to estimate how much the P-well drawn area could be increased to optimize fill factor without causing premature edge breakdown through guard ring failure.
Advances in Microscale Laser Shock Peening
Institute of Scientific and Technical Information of China (English)
CHEN Hongqiang; WANG Youneng; KYSAR Jeffrey W.; YAO Y.Lawrence
2004-01-01
The response of materials after microscale laser shock peening (μLSP) was experimentally characterized and compared with the theoretical prediction from the finite element method (FEM) analysis in microlength level. X-ray micro-diffraction technique was applied to the post-peened single crystal aluminum of (001) and (110) orientations, and X-ray profile was analyzed by sub-profiling and Fourier analysis method. Spatially resolved residual stress and strain deviation was quantified and explained in terms of the heterogeneous dislocation cell structure. In-plane crystal lattice rotation induced by μLSP was measured by electron backscatter diffraction (EBSD) and compared with the FEM simulation. Average mosaic size was evaluated from X-ray profile Fourier analysis and compared with the result from EBSD. Surface strength increase and dislocation cell structure formation were studied. The systematical characterization will lay the ground work for better understanding the effect of μLSP in microlength level and developing more realistic simulations.
Chladni Patterns in a Liquid at Microscale
Vuillermet, Gaël; Gires, Pierre-Yves; Casset, Fabrice; Poulain, Cédric
2016-05-01
By means of ultrathin silicon membranes excited in the low ultrasound range, we show for the first time that it is possible to form two-dimensional Chladni patterns of microbeads in liquid. Unlike the well-known effect in a gaseous environment at the macroscale, where gravity effects are generally dominant, leading particles towards the nodal regions of displacement, we show that the combined effects of an ultrathin plate excited at low frequency (yielding to subsonic waves) together with reduced gravity (arising from buoyancy) will enhance the importance of microstreaming in the Chladni problem. Here, we report that for micrometric beads larger than the inner streaming layer, the microscale streaming in the vicinity of the plate tends to gather particles in antinodal regions of vibrations yielding to patterns in good agreement with the predicted modes for a liquid-loaded plate. Interestingly, a symmetry breaking phenomenon together with the streaming can trigger movements of beads departing from one cluster to another. We show that, for higher modes, this movement can appear as a collective rotation of the beads in the manner of a "farandole."
Dynamic Morphologies of Microscale Droplet Interface Bilayers
Energy Technology Data Exchange (ETDEWEB)
Mruetusatorn, Prachya [ORNL; Boreyko, Jonathan B [ORNL; Sarles, Stephen A [ORNL; Venkatesan, Guru [The University of Tennessee; Hayes, Douglas G [ORNL; Collier, Pat [ORNL
2014-01-01
Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.
Characterization of fluid transport in microscale structures
Energy Technology Data Exchange (ETDEWEB)
Paul, P.H.
1998-01-01
A new tool for imaging both scalar transport and velocity fields in liquid flows through microscale structures is described. The technique employs an ultraviolet laser pulse to write a pattern into the flow by uncaging a fluorescent dye. This is followed, at selected time delays, by flood illumination with a pulse of visible light which excites the uncaged dye. The resulting fluorescence image collected onto a sensitive CCD camera. The instrument is designed as an oil immersion microscope to minimize the beam steering effects. The caged fluorescent dye is seeded in trace quantities throughout the active fluid, thus images with high contrast and minimal distortion due to any molecular diffusion history can be obtained at any point within the microchannel by selectivity activating the dye in the immediate region of interest. The author reports images of pressure- and electrokinetically-driven steady flow within round cross section capillaries having micron scale inner diameters. The author also demonstrates the ability to recover the velocity profile from a time sequence of these scalar images by direct inversion of the conserved scalar advection-convection equation.
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Bøknæs, Niels; Nielsen, P.L.
Heat treatment is an important process in the manufacturing of a wide range of solid foods. When food products of different sizes (e.g. cooking of shrimps) are processed with the conventional thermal processes, the products are heated unevenly where the small bodies are overcooked and the large...... developed. The mathematical model has been formulated from mechanistic understanding of the process. The resulting coupled model equations were solved using the Finite Element Method (COMSOL Multiphysics® version 4.3b). Experiments were carried out using a newly developed laboratory-scale ohmic heater where...
A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus
Energy Technology Data Exchange (ETDEWEB)
Raustad, Richard A. [Florida Solar Energy Center
2013-01-01
This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.
DPL Model Analysis of Non-Fourier Heat Conduction Restricted by Continuous Boundary Interface
Institute of Scientific and Technical Information of China (English)
Jiang Fangming; Liu Dengying
2001-01-01
Dual-phase lag (DPL) model is used to describe the non-Fourier heat conduction in a finite medium where the boundary at x=-0 is heated by a rectangular pulsed energy source and the other boundary is tightly contacted with another medium and satisfies the continuous boundary condition. Numerical solution of this kind of. non-Fourier heat conduction is presented in this paper. The results are compared with those predicted by the hyperbolic heat conduction (HHC) equation.
Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings
DEFF Research Database (Denmark)
Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei
2017-01-01
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...... as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load...
Directory of Open Access Journals (Sweden)
Jan Skočilas
2015-08-01
Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.
Leguérinel, I; Couvert, O; Mafart, P
2007-02-28
Environmental conditions of sporulation influence bacterial heat resistance. For different Bacillus species a linear Bigelow type relationship between the logarithm of D values determined at constant heating temperature and the temperature of sporulation was observed. The absence of interaction between sporulation and heating temperatures allows the combination of this new relationship with the classical Bigelow model. The parameters zT and zT(spo) of this global model were fitted to different sets of data regarding different Bacillus species: B. cereus, B. subtilis, B. licheniformis, B. coagulans and B. stearothermophilus. The origin of raw products or food process conditions before a heat treatment can lead to warm temperature conditions of sporulation and to a dramatic increase of the heat resistance of the generated spores. In this case, provided that the temperature of sporulation can be assessed, this model can be easily implemented to rectify F values on account of possible increase of thermal resistance of spores and to ensure the sterilisation efficacy.
Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications
Wees, J.D. van; Bergen, F. van; David, P.; Nepveu, M.; Beekman, F.; Cloetingh, S.; Bonté, D.
2009-01-01
Tectonic modeling is often neglected in the basin modeling workflow and heat flow is most times considered a user input. Such heat flows can, therefore, result in erroneous basin modeling outcomes, resulting in false overoptimistic identification of prospective areas or failure to identify prospects
Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications
Wees, J.D. van; Bergen, F. van; David, P.; Nepveu, M.; Beekman, F.; Cloetingh, S.; Bonté, D.
2009-01-01
Tectonic modeling is often neglected in the basin modeling workflow and heat flow is most times considered a user input. Such heat flows can, therefore, result in erroneous basin modeling outcomes, resulting in false overoptimistic identification of prospective areas or failure to identify
Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles
DEFF Research Database (Denmark)
Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.
2011-01-01
controlling the internal build up of heat leading to potential self-incineration. However, site specific measurements of temperature-dependent heat production as well as simulation results show that the heat produced from pyrite oxidation alone cannot cause such a temperature increase and that processes......Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...