WorldWideScience

Sample records for modeling mesoscale eddies

  1. Modeling mesoscale eddies

    Science.gov (United States)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale

  2. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    Science.gov (United States)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  3. The dependence of the oceans MOC on mesoscale eddy diffusivities: A model study

    Science.gov (United States)

    Marshall, John; Scott, Jeffery R.; Romanou, Anastasia; Kelley, Maxwell; Leboissetier, Anthony

    2017-01-01

    The dependence of the depth and strength of the ocean's global meridional overturning cells (MOC) on the specification of mesoscale eddy diffusivity (K) is explored in two ocean models. The GISS and MIT ocean models are driven by the same prescribed forcing fields, configured in similar ways, spun up to equilibrium for a range of K 's and the resulting MOCs mapped and documented. Scaling laws implicit in modern theories of the MOC are used to rationalize the results. In all calculations the K used in the computation of eddy-induced circulation and that used in the representation of eddy stirring along neutral surfaces, is set to the same value but is changed across experiments. We are able to connect changes in the strength and depth of the Atlantic MOC, the southern ocean upwelling MOC, and the deep cell emanating from Antarctica, to changes in K.

  4. Mesoscale Eddies in the Solomon Sea

    Science.gov (United States)

    Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.

    2011-12-01

    Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).

  5. Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale Eddies in the Tropical Pacific Solomon Sea

    Science.gov (United States)

    Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.

    2017-11-01

    Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.

  6. Tools and Methods for Visualization of Mesoscale Ocean Eddies

    Science.gov (United States)

    Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.

    2017-12-01

    Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available

  7. Cycloidal meandering of a mesoscale anticyclonic eddy

    Science.gov (United States)

    Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael

    2017-08-01

    By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic eddies, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual eddy were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three eddies constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.

  8. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  9. Contribution of mesoscale eddies to Black Sea ventilation

    Science.gov (United States)

    Capet, Arthur; Mason, Evan; Pascual, Ananda; Grégoire, Marilaure

    2017-04-01

    The shoaling of the Black Sea oxycline is one of the most urgent environmental issues in the Black Sea. The permanent oxycline derives directly from the Black Sea permanent stratification and has shoaled alarmingly in the last decades, due to a shifting balance between oxygen consumption and ventilation processes (Capet et al. 2016). The understanding of this balance is thus of the utmost importance and requires to quantify 1) the export of nutrients and organic materials from the shelf regions to the open sea and 2) the ventilation processes. These two processes being influenced by mesoscale features, it is critical to understand the role of the semi-permanent mesoscale structures in horizontal (center/periphery) and vertical (diapycnal and isopycnal) exchanges. A useful insight can be obtained by merging observations from satellite altimeter and in situ profilers (ARGO). In such composite analyses, eddies are first automatically identified and tracked from altimeter data (Mason et al. 2014, py-eddy-tracker). Vertical ARGO profiles are then expressed in terms of their position relative to eddy centers and radii. Derived statistics indicate how consistently mesoscale eddies alter the vertical structure, and provide a deeper understanding of the associated horizontal and vertical fluxes. However, this data-based approach is limited in the Black Sea due to the lower quality of gridded altimetric products in the vicinity of the coast, where semi-permanent mesoscale structures prevail. To complement the difficult analysis of this sparse dataset, a compositing methodology. is also applied to model outputs from the 5km GHER-BHAMBI Black Sea implementation (CMEMS BS-MFC). Characteristic biogeochemical anomalies associated with eddies in the model are analyzed per se, and compared to the observation-based analysis. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287-1297, doi:10

  10. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea

    Science.gov (United States)

    Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.

    2012-08-01

    The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.

  11. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø , Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjø llo, Solfrid Sæ tre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  12. Mesoscale eddies are oases for higher trophic marine life.

    Directory of Open Access Journals (Sweden)

    Olav R Godø

    Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  13. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  14. DeepEddy : a simple deep architecture for mesoscale oceanic eddy detection in SAR images

    NARCIS (Netherlands)

    Huang, Dongmei; Du, Yanling; He, Qi; Song, Wei; Liotta, Antonio

    2017-01-01

    Automatic detection of mesoscale oceanic eddies is in great demand to monitor their dynamics which play a significant role in ocean current circulation and marine climate change. Traditional methods of eddies detection using remotely sensed data are usually based on physical parameters, geometrics,

  15. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    Science.gov (United States)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for

  16. Observations of near-inertial kinetic energy inside mesoscale eddies.

    Science.gov (United States)

    Garcia Gomez, B. I.; Pallas Sanz, E.; Candela, J.

    2016-02-01

    The near-nertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoescale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 30 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical cross-sections of the KEi-composites show that the KEi is mainly located near the surface and at the edge of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center and near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. A relative maximum in the upper anticyclonic eddy is also observed. The cyclonic eddies present a maximum of KEi near to the surface at 70 m, while the maximum of KEi in the anticyclonic eddies occurs between 800 and 1000 m. It is also shown the dependence between the distribution and magnitude of the KEi and the eddy's characteristics such as radius, vorticity, and amplitude.

  17. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar

    2007-02-01

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  18. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    Science.gov (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  19. Mesoscale eddies in the Subantarctic Front-Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Pablo D. Glorioso

    2005-12-01

    Full Text Available Satellite and ship observations in the southern southwest Atlantic (SSWA reveal an intense eddy field and highlight the potential for using continuous real-time satellite altimetry to detect and monitor mesoscale phenomena with a view to understanding the regional circulation. The examples presented suggest that mesoscale eddies are a dominant feature of the circulation and play a fundamental role in the transport of properties along and across the Antarctic Circumpolar Current (ACC. The main ocean current in the SSWA, the Falkland-Malvinas Current (FMC, exhibits numerous embedded eddies south of 50°S which may contribute to the patchiness, transport and mixing of passive scalars by this strong, turbulent current. Large eddies associated with meanders are observed in the ACC fronts, some of them remaining stationary for long periods. Two particular cases are examined using a satellite altimeter in combination with in situ observations, suggesting that cross-frontal eddy transport and strong meandering occur where the ACC flow intensifies along the sub-Antarctic Front (SAF and the Southern ACC Front (SACCF.

  20. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    Science.gov (United States)

    2014-09-30

    alongshore winds favoring upwelling circulation. As for the other EBUS (e.g., Humboldt, Benguela, and Canary Currents ), equatorward winds drive...Eddy Effects in the General Circulation, Spanning Mean Currents , Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests...environments OBJECTIVES The central scientific questions are how the eddies control the persistent currents by their eddy-induced momentum and buoyancy fluxes

  1. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems

    Science.gov (United States)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro

    2017-10-01

    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  2. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    Science.gov (United States)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  3. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    Science.gov (United States)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Modification of inertial oscillations by the mesoscale eddy field

    Science.gov (United States)

    Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.

    2010-09-01

    The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.

  5. The South China Sea Mesoscale Eddy Experiment (S-MEE) and Its Primary Findings

    Science.gov (United States)

    Zhang, Z.; Tian, J.; Zhao, W.; Qiu, B.

    2016-02-01

    South China Sea (SCS), the largest marginal sea in the northwestern Pacific, have strong eddy activities as revealed by both satellite and in situ observations. The 3D structures of the SCS mesoscale eddies and their lifecycles, including the generation and dissipation processes, are, however, still not well understood at present because of the lack of well-designed field observations. In order to address the above two scientific issues (3D structure and lifecycle of SCS mesoscale eddies), the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. During the S-MEE, a total of 5 distinct mesoscale eddies were observed to cross the mooring arrays, among which one anticyclonic and cyclonic eddy pair was fully captured by the mooring arrays. In addition to moored observations, we also conducted two transects across the center of the anticyclonic eddy and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE and concurrent satellite-derived observations, we constructed the full-depth 3D structure of the eddy pair and analyzed its generation and dissipation mechanisms. We found that the eddies extend from the surface to the sea bottom and display prominent tilted structures in the vertical. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the oceanic eddy dissipation.

  6. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence

    Science.gov (United States)

    Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine

    2017-04-01

    Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.

  7. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  8. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  9. Numerical study on the interactions between the Kuroshio current in the Luzon Strait and a mesoscale eddy

    Science.gov (United States)

    Kuo, Yi-Chun; Chern, Ching-Sheng; Zheng, Zhe-Wen

    2017-04-01

    The Luzon Strait (LS) connects the northwestern Pacific Ocean and the South China Sea (SCS) and is the western boundary gap for the Kuroshio current (KC). Satellite observations indicate that a cyclonic mesoscale eddy can trigger westward extension of the KC into the SCS and shed a smaller anticyclonic eddy to the west of the LS. We used a nonlinear reduced-gravity (primitive equation) model to study this phenomenon and analyzed the dynamic process. The location of the collision between the eddy and the KC could be critical for varying the circulation in the LS. The eddy's deformation rate, associated with its decaying speed, is also closely related to the location of the eddy during collision. When a cyclonic eddy moved from a region to the east of the Luzon Island toward the LS, the KC intruded into the SCS with growing negative vorticity during the collision of the eddy and KC. This tendency for negative vorticity is attributed to the beta effect and squeezing of the planetary vorticity caused by the flow divergence. As the eddy dissipated, the KC in the LS recovered its original pattern. When the collision of the eddy occurred at the center of the LS, the momentum balance of the KC loop was dominated by the inertial term, and the circulation in the LS remained in a leaping state.

  10. The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias

    Science.gov (United States)

    Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.

    2016-02-01

    Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.

  11. Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Yu-Hsin Cheng

    2014-06-01

    Full Text Available The sea level anomaly data derived from satellite altimetry are analyzed to investigate statistical characteristics of mesoscale eddies in the North Pacific. Eddies are detected by a free-threshold eddy identification algorithm. The results show that the distributions of size, amplitude, propagation speed, and eddy kinetic energy of eddy follow the Rayleigh distribution. The most active regions of eddies are the Kuroshio Extension region, the Subtropical Counter Current zone, and the Northeastern Tropical Pacific region. By contrast, eddies are seldom observed around the center of the eastern part of the North Pacific Subarctic Gyre. The propagation speed and kinetic energy of cyclonic and anticyclonic eddies are almost the same, but anticyclonic eddies possess greater lifespans, sizes, and amplitudes than those of cyclonic eddies. Most eddies in the North Pacific propagate westward except in the Oyashio region. Around the northeastern tropical Pacific and the California currents, cyclonic and anticyclonic eddies propagate westward with slightly equatorward (197° average azimuth relative to east and poleward (165° deflection, respectively. This implies that the background current may play an important role in formation of the eddy pathway patterns.

  12. A New Scheme for the Simulation of Microscale Flow and Dispersion in Urban Areas by Coupling Large-Eddy Simulation with Mesoscale Models

    Science.gov (United States)

    Li, Haifeng; Cui, Guixiang; Zhang, Zhaoshun

    2018-04-01

    A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.

  13. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...

  14. Observed 3D Structure, Generation, and Dissipation of Mesoscale Eddies in the South China Sea

    Science.gov (United States)

    Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.

    2016-12-01

    South China Sea (SCS), the largest marginal sea in the western Pacific, is abundant with strong mesoscale eddies as revealed by both satellite and in situ observations. The 3D structure, generation and dissipation mechanisms of the SCS mesoscale eddies, however, are still not well understood at present due to the lack of well-designed and comprehensive field observations. In order to address the above scientific issues, the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. In addition to moored observations, we also conducted two transects across the center of one anticyclonic eddy (AE) and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE, we obtained the full-depth 3D structures of one AE and one cyclonic eddy (CE) and revealed their generation and dissipation mechanisms. For the first time we found that the eddies in the northern SCS extend from the surface to the sea bottom and display prominent tilted structures in the vertical. The AE was suggested to be shed from the Kuroshio current, which intruded into the SCS through Luzon Strait in winter. For the CE, its generation was associated with the barotropic instability of the Kuroshio current. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the eddy dissipation. The findings in this study, not only provides new insights into the 3D structure of oceanic eddies, but also contributes to

  15. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries

    2014-01-01

    , surface turbulence characteristics. In this study, we follow a theory that is different from the local gust concept as described above. In this theory, the gust at the surface is non-local; it is produced by the deflection of air parcels flowing in the boundary layer and brought down to the surface...... from the Danish site Høvsøre help us to understand the limitation of the traditional method. Good agreement was found between the extreme gust atlases for South Africa and the existing map made from a limited number of measurements across the country. Our study supports the non-local gust theory. While...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...

  16. Evolution of physical and biological characteristics of mesoscale eddy in north-central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos

    2015-04-01

    showed the development of a cyclonic structure north of the anticyclonic feature and nearer to Yanbu, 23 °N. In oligotrophic regions, like NCRS the deep chlorophyll maximum (DMC) can represent a significant proportion of the depth-integrated productivity. The mesoscale eddy field can further influence the biological response intensification and it played an important role in the primary production. Both types of eddies can transport deeper nutrient-rich waters into the upper ocean, enhancing the primary productivity.

  17. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  18. Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific

    Science.gov (United States)

    Arévalo-Martínez, Damian L.; Kock, Annette; Löscher, Carolin R.; Schmitz, Ruth A.; Stramma, Lothar; Bange, Hermann W.

    2016-02-01

    Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N2O) production-consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source-sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November-December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion in the core of the OMZ (O2 nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ's core was substantially higher in the centre of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, "ageing" of mesoscale eddies tends to decrease N2O concentrations through the water column in response to the

  19. Distribution of the near-inertial kinetic energy inside mesoscale eddies: Observations in the Gulf of Mexico

    Science.gov (United States)

    Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio

    2017-04-01

    The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.

  20. Mesoscale Eddies Control the Timing of Spring Phytoplankton Blooms: A Case Study in the Japan Sea

    Science.gov (United States)

    Maúre, E. R.; Ishizaka, J.; Sukigara, C.; Mino, Y.; Aiki, H.; Matsuno, T.; Tomita, H.; Goes, J. I.; Gomes, H. R.

    2017-11-01

    Satellite Chlorophyll a (CHL) data were used to investigate the influence of mesoscale anticyclonic eddies (AEs) and cyclonic eddies (CEs) on the timing of spring phytoplankton bloom initiation around the Yamato Basin (133-139°E and 35-39.5°N) in the Japan Sea, for the period 2002-2011. The results showed significant differences between AEs and CEs in the timing and initiation mechanism of the spring phytoplankton bloom. Blooms were initiated earlier in CEs which were characterized by shallow mixed-layer depths (mixed-layer depth. Conversely, blooms appeared in the AEs despite deeper mixed-layer depth (> 100 m) but close to the commencement of positive Q0. This suggests that the relaxation of turbulent mixing is crucial for the bloom initiation in AEs.

  1. Biogeochemistry of Recently Discovered Oxygen-Depleted Mesoscale Eddies in the Open Eastern Tropical North Atlantic

    Science.gov (United States)

    Fiedler, B.; Grundle, D.; Löscher, C. R.; Schütte, F.; Hauss, H.; Karstensen, J.; Silva, P.; Koertzinger, A.

    2016-02-01

    Severely oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered only recently. So far, few remote surveys conducted with autonomous platforms such as moorings, underwater gliders and profiling floats have provided a very first insight into these mesoscale eddies. Due to their hydrographic properties such water bodies are well isolated from ambient waters and therefore can develop severe near-surface oxygen deficits. In this presentation we show results from the first-ever biogeochemical survey of one of these anticyclonic mode-water eddies conducted in spring 2014 at the Cape Verde Ocean Observatory (CVOO) off West Africa. Very low oxygen concentrations of 4.5 µmol kg-1 associated with a CO2 partial pressure of 1164 µatm were found close to the core of the eddy (at 100 m depth). Measurements for nitrate and phosphate also show exceptional high values. Findings point to rapid oxygen consumption through remineralization of organic matter along with depressed lateral mixing of this water body. Indeed, rates for oxygen utilization (OUR) were found to be enhanced when compared to known values in the Atlantic. A closer look into the carbonate system inside the eddýs core revealed disadvantageous conditions for calcifying organisms with the pH dropping down to 7.6 and the Aragonite saturation level reaching 1 at the lower boundary of the euphotic zone. Finally, strong indications for a shift in nitrogen cycling in the core of the eddy from nitrification towards denitrification were found based on gene abundance and N2O-isotope analyses. To our knowledge such severe hypoxic and even suboxic near-surface conditions along with active denitrification have never been reported before in the open Atlantic Ocean.

  2. Extraction of spatial-temporal rules from mesoscale eddies in the South China Sea Based on rough set theory

    Science.gov (United States)

    Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.

    2011-06-01

    In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.

  3. Wind-Farm Parametrisations in Mesoscale Models

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2013-01-01

    In this paper we compare three wind-farm parametrisations for mesoscale models against measurement data from the Horns Rev I offshore wind-farm. The parametrisations vary from a simple rotor drag method, to more sophisticated models. Additional to (4) we investigated the horizontal resolution dep...

  4. Seismic Characterization of Oceanic Water Masses, Water Mass Boundaries, and Mesoscale Eddies SE of New Zealand

    Science.gov (United States)

    Gorman, Andrew R.; Smillie, Matthew W.; Cooper, Joanna K.; Bowman, M. Hamish; Vennell, Ross; Holbrook, W. Steven; Frew, Russell

    2018-02-01

    The Subtropical and Subantarctic Fronts, which separate Subtropical, Subantarctic, and Antarctic Intermediate Waters, are diverted to the south of New Zealand by the submerged continental landmass of Zealandia. In the upper ocean of this region, large volumes of dissolved or suspended material are intermittently transported across the Subtropical Front; however, the mechanisms of such transport processes are enigmatic. Understanding these oceanic boundaries in three dimensions generally depends on measurements collected from stationary vessels and moorings. The details of these data sets, which are critical for understanding how water masses interact and mix at the fine-scale (seismic reflection images of oceanic water masses have been produced using petroleum industry data. These seismic sections clearly show three main water masses, the boundary zones (fronts) between them, and associated thermohaline fine structure that may be related to the mixing of water masses in this region. Interpretations of the data suggest that the Subtropical Front in this region is a landward-dipping zone, with a width that can vary between 20 and 40 km. The boundary zone between Subantarctic Waters and the underlying Antarctic Intermediate Waters is also observed to dip landward. Several isolated lenses have been identified on the three data sets, ranging in size from 9 to 30 km in diameter. These lenses are interpreted to be mesoscale eddies that form at relatively shallow depths along the south side of the Subtropical Front.

  5. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    Directory of Open Access Journals (Sweden)

    T. S. Bibby

    2011-03-01

    Full Text Available Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic and the waters off Hawai'i (Pacific, alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si* in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  6. Mesoscale Models of Fluid Dynamics

    Science.gov (United States)

    Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.

    During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.

  7. Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake

    Science.gov (United States)

    Gnanadesikan, Anand; Pradal, Marie-Aude; Abernathey, Ryan

    2015-06-01

    Anthropogenic carbon dioxide uptake varies across Earth System Models for reasons that have remained obscure. When varied within a single model, the lateral eddy mixing coefficient ARedi produces a range of uptake similar to the modeled range. The highest uptake, resulting from a simulation with a constant ARedi of 2400 m2/s, simulates 15% more historical carbon uptake than a model with ARedi = 400 m2/s. A sudden doubling in carbon dioxide produces a 21% range in carbon uptake across the models. Two spatially dependent representations of ARedi produce uptake that lies in the middle of the range of constant values despite predicting very large values in the subtropical gyres. One-dimensional diffusive models of the type used for integrated assessments can be fit to the simulations, with ARedi accounting for a substantial fraction of the effective vertical diffusion. Such models, however, mask significant regional changes in stratification and biological carbon storage.

  8. Seasonal Variation of Submesoscale Flow Features in a Mesoscale Eddy-dominant Region in the East Sea

    Science.gov (United States)

    Chang, Yeon S.; Choi, Byoung-Ju; Park, Young-Gyu

    2018-03-01

    Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.

  9. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters

    Science.gov (United States)

    Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude

    2013-10-01

    of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.

  10. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  11. Development and Utilization of Regional Oceanic Modeling System (ROMS). Delicacy, Imprecision, and Uncertainty of Oceanic Simulations: An Investigation with the Regional Oceanic Modeling System (ROMS). Submesoscale Flows and Mixing in the Ocean Surface Layer Using the Regional Oceanic Modeling System (ROMS). Eddy Effects in General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, including Submesoscale Nests

    Science.gov (United States)

    2012-09-30

    biogeochemisty: chemical cycles, water quality, blooms , micro-nutrients, larval dispersal, biome transitions, and coupling to higher tropic levels. We...eddies in the Peru- Chile Current System. Climate Dynamics 39, 509-529. Colas, F., X. Wang, X. Capet, Y. Chao, & J.C. McWilliams, 2012b: Untangling the

  12. Mesoscale Modelling of the Response of Aluminas

    International Nuclear Information System (INIS)

    Bourne, N. K.

    2006-01-01

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response

  13. Evolution of physical and biological characteristics of mesoscale eddy in north-central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos; Jones, Burton

    2015-01-01

    -central Red Sea (NCRS) where anticyclonic eddies have been observed. The study began with a ship-based characterization of the eddy and was followed by a three-month observational time series using an autonomous glider equipped with a CTD, oxygen sensor

  14. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  15. Linking foraging behaviour to physical oceanographic structures: Southern elephant seals and mesoscale eddies east of Kerguelen Islands

    Science.gov (United States)

    Dragon, Anne-Cecile; Monestiez, P.; Bar-Hen, A.; Guinet, C.

    2010-10-01

    In the Southern Ocean, mesoscale features, such as fronts and eddies, have been shown to have a significant impact in structuring and enhancing primary productivity. They are therefore likely to influence the spatial structure of prey fields and play a key role in the creation of preferred foraging regions for oceanic top-predators. Optimal foraging theory predicts that predators should adjust their movement behaviour in relation to prey density. While crossing areas with sufficient prey density, we expect predators would change their behaviour by, for instance, decreasing their speed and increasing their turning frequency. Diving predators would as well increase the useful part of their dive i.e. increase bottom-time thereby increasing the fraction of time spent capturing prey. Southern elephant seals from the Kerguelen population have several foraging areas: in Antarctic waters, on the Kerguelen Plateau and in the interfrontal zone between the Subtropical and Polar Fronts. This study investigated how the movement and diving behaviour of 22 seals equipped with satellite-relayed data loggers changed in relation to mesoscale structures typical of the interfrontal zone. We studied the links between oceanographic variables including temperature and sea level anomalies, and diving and movement behaviour such as displacement speed, diving duration and bottom-time. Correlation coefficients between each of the time series were calculated and their significance tested with a parametric bootstrap. We focused on oceanographic changes, both temporal and spatial, occurring during behavioural transitions in order to clarify the connections between the behaviour and the marine environment of the animals. We showed that a majority of seals displayed a specific foraging behaviour related to the presence of both cyclonic and anticyclonic eddies. We characterized mesoscale oceanographic zones as either favourable or unfavourable based on the intensity of foraging activity as

  16. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    Science.gov (United States)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2017-10-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  17. Impact of SLA assimilation in the Sicily Channel Regional Model: model skills and mesoscale features

    Directory of Open Access Journals (Sweden)

    A. Olita

    2012-07-01

    Full Text Available The impact of the assimilation of MyOcean sea level anomalies along-track data on the analyses of the Sicily Channel Regional Model was studied. The numerical model has a resolution of 1/32° degrees and is capable to reproduce mesoscale and sub-mesoscale features. The impact of the SLA assimilation is studied by comparing a simulation (SIM, which does not assimilate data with an analysis (AN assimilating SLA along-track multi-mission data produced in the framework of MyOcean project. The quality of the analysis was evaluated by computing RMSE of the misfits between analysis background and observations (sea level before assimilation. A qualitative evaluation of the ability of the analyses to reproduce mesoscale structures is accomplished by comparing model results with ocean colour and SST satellite data, able to detect such features on the ocean surface. CTD profiles allowed to evaluate the impact of the SLA assimilation along the water column. We found a significant improvement for AN solution in terms of SLA RMSE with respect to SIM (the averaged RMSE of AN SLA misfits over 2 years is about 0.5 cm smaller than SIM. Comparison with CTD data shows a questionable improvement produced by the assimilation process in terms of vertical features: AN is better in temperature while for salinity it gets worse than SIM at the surface. This suggests that a better a-priori description of the vertical error covariances would be desirable. The qualitative comparison of simulation and analyses with synoptic satellite independent data proves that SLA assimilation allows to correctly reproduce some dynamical features (above all the circulation in the Ionian portion of the domain and mesoscale structures otherwise misplaced or neglected by SIM. Such mesoscale changes also infer that the eddy momentum fluxes (i.e. Reynolds stresses show major changes in the Ionian area. Changes in Reynolds stresses reflect a different pumping of eastward momentum from the eddy to

  18. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  19. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  20. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  1. Direct and Remote Effects of Topography and Orientation, and the Dynamics of Mesoscale Eddies

    Science.gov (United States)

    2017-09-01

    level, there are my boys, Kyle, Logan, and Liam, who give meaning to my life every day, and my wife, Brigette, who made sure they were taken care of...battle against stage-IV lung cancer. She is, and has always been, an inspiration to my work, my health and my life . I am here not only because she...poles. This means eddies are also large contributors in maintaining the heat balance for our planet . Because the stratification in our idealized

  2. Experimental modeling of eddy current inspection capabilities

    International Nuclear Information System (INIS)

    Junker, W.R.; Clark, W.G.

    1984-01-01

    This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques

  3. On Improving 4-km Mesoscale Model Simulations

    Science.gov (United States)

    Deng, Aijun; Stauffer, David R.

    2006-03-01

    A previous study showed that use of analysis-nudging four-dimensional data assimilation (FDDA) and improved physics in the fifth-generation Pennsylvania State University National Center for Atmospheric Research Mesoscale Model (MM5) produced the best overall performance on a 12-km-domain simulation, based on the 18 19 September 1983 Cross-Appalachian Tracer Experiment (CAPTEX) case. However, reducing the simulated grid length to 4 km had detrimental effects. The primary cause was likely the explicit representation of convection accompanying a cold-frontal system. Because no convective parameterization scheme (CPS) was used, the convective updrafts were forced on coarser-than-realistic scales, and the rainfall and the atmospheric response to the convection were too strong. The evaporative cooling and downdrafts were too vigorous, causing widespread disruption of the low-level winds and spurious advection of the simulated tracer. In this study, a series of experiments was designed to address this general problem involving 4-km model precipitation and gridpoint storms and associated model sensitivities to the use of FDDA, planetary boundary layer (PBL) turbulence physics, grid-explicit microphysics, a CPS, and enhanced horizontal diffusion. Some of the conclusions include the following: 1) Enhanced parameterized vertical mixing in the turbulent kinetic energy (TKE) turbulence scheme has shown marked improvements in the simulated fields. 2) Use of a CPS on the 4-km grid improved the precipitation and low-level wind results. 3) Use of the Hong and Pan Medium-Range Forecast PBL scheme showed larger model errors within the PBL and a clear tendency to predict much deeper PBL heights than the TKE scheme. 4) Combining observation-nudging FDDA with a CPS produced the best overall simulations. 5) Finer horizontal resolution does not always produce better simulations, especially in convectively unstable environments, and a new CPS suitable for 4-km resolution is needed. 6

  4. Dispersion of tracers by the oceanic eddy field modelling programme

    International Nuclear Information System (INIS)

    Richards, K.J.; O'Farrell, S.P.

    1987-01-01

    A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The present study is designed to study the dispersion of particles in a mesoscale eddy field produced by the numerical model. Dispersion rates are calculated for flows above three types of topography, a flat bottom, a random collection of hills and a ridge. The presence of topography is found to significantly affect the flow. The effective diffusion coefficient of the flow near the bottom is reduced by 20% for the random topography and 60% for the ridge from that for the flat bottom case. Estimates are given of the number of float years required to obtain a given accuracy for the diffusion coefficient. At the surface a modest number of floats (order 5) are required to obtain a 50% accuracy. However at the bottom, to be within a factor of 2 of the true value for the flows considered requires respectively 26, 42 and 103 float years for the flat, random and ridge cases. (author)

  5. MASCOTTE: analytical model of eddy current signals

    International Nuclear Information System (INIS)

    Delsarte, G.; Levy, R.

    1992-01-01

    Tube examination is a major application of the eddy current technique in the nuclear and petrochemical industries. Such examination configurations being specially adapted to analytical modes, a physical model is developed on portable computers. It includes simple approximations made possible by the effective conditions of the examinations. The eddy current signal is described by an analytical formulation that takes into account the tube dimensions, the sensor conception, the physical characteristics of the defect and the examination parameters. Moreover, the model makes it possible to associate real signals and simulated signals

  6. The Solomon Sea eddy activity from a 1/36° regional model

    Science.gov (United States)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  7. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  8. Modeling Air-Quality in Complex Terrain Using Mesoscale and ...

    African Journals Online (AJOL)

    Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...

  9. Skills of different mesoscale models over Indian region during ...

    Indian Academy of Sciences (India)

    tion and prediction of high impact severe weather systems. Such models ... mesoscale models can be run at cloud resolving resolutions (∼1km) ... J. Earth Syst. Sci. 117, No. ..... similar to climate drift, indicating that those error components are ...

  10. Mesoscale meteorological model based on radioactive explosion cloud simulation

    International Nuclear Information System (INIS)

    Zheng Yi; Zhang Yan; Ying Chuntong

    2008-01-01

    In order to simulate nuclear explosion and dirty bomb radioactive cloud movement and concentration distribution, mesoscale meteorological model RAMS was used. Particles-size, size-active distribution and gravitational fallout in the cloud were considered. The results show that the model can simulate the 'mushroom' clouds of explosion. Three-dimension fluid field and radioactive concentration field were received. (authors)

  11. Mesoscale modeling of solute precipitation and radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ke, Huibin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.

  12. Role of land state in a high resolution mesoscale model

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Land surface characteristics; high resolution mesoscale model; Uttarakhand ... to predict realistic location, timing, amount,intensity and distribution of rainfall ... region embedded within two low pressure centers over Arabian Seaand Bay of Bengal.

  13. Calculation of extreme wind atlases using mesoscale modeling. Final report

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake

    This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies as explai...

  14. Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry

    Science.gov (United States)

    Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin

    2016-04-01

    Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and

  15. Computer modelling of eddy current probes

    International Nuclear Information System (INIS)

    Sullivan, S.P.

    1992-01-01

    Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signal due to uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design and frequency. A finite element numerical program has been procured to calculate magnetic permeability in non-linear ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. These programs were used to test various probe designs for new testing applications. Measurements of magnetic permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. (author). 3 refs., 2 figs

  16. Observations of rapid changes in N:P ratio associated with non-Redfield nutrient utilization in mesoscale eddies in the upper ocean

    Science.gov (United States)

    Dai, M.; Xu, Y.; Kao, S. J.; Huang, B.; Sun, J.; Sun, Z.

    2016-02-01

    The concept of Redfield Ratio,or the ocean's nutrient stoichiometry has been fundamental to understanding the ocean biogeochemistry, reflecting the balance of elements between the organisms and the chemical environment and thereby modulating to a large extent the metabolic status of an ecosystem as well as the ecosystem structure. Nutrient stoichiometry of the deep ocean as a consequence of the organic matter regeneration therein is very much homogeneous worldwide while at the upper ocean, changes in nutrient stoichiometryas being frequently observed are to be better understood in terms of their mechanism. Here we report direct observations of fast on a weekly time scale and large fluctuations of nitrate+nitrite (N+N) to soluble reactive phosphorus (SRP) ratios in the ambient seawater in responding to development of meso-scale eddies in an oligotrophic sea, the South China Sea. At the spin up and/or matured stages of eddies, the N:P ratio fluctuated up to 44 in the upper 100 m water column. Along the decay of theeddy, N:P ratio declined back to 3- 20; similar to a "no eddy" condition of 4-22. Along with the fluctuations of N:P ratio was the diatom dominance with the eddy development, while the community structure of the region in typical or non-eddy conditions was predominated by the pico-/nano-plankton as revealed by both the taxa identification and biogenic silicate measurements. This fast growing diatom group apparently had lower nutrient utilization of nitrogenrelative to silicate and/or phosphorus, augmenting the ambient seawater N:P and N:Si. Such preferential P utilization therefore by the fast growing diatomsresulted in significant variations during the different stages of the eddy development.

  17. Parameterization of phase change of water in a mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Eppel, D; Grassl, H

    1987-01-01

    A parameterization scheme of phase change of water is suggested to be used in the 3-D numerical nonhydrostatic model GESIMA. The microphysical formulation follows the so-called bulk technique. With this procedure the net production rates in the balance equations for water and potential temperature are given both for liquid and ice-phase. Convectively stable as well as convectively unstable mesoscale systems are considered. With 2 figs..

  18. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  19. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  20. Mesoscale modeling: solving complex flows in biology and biotechnology.

    Science.gov (United States)

    Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander

    2013-07-01

    Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Distribution of picoplankton in the northeastern South China Sea with special reference to the effects of the Kuroshio intrusion and the associated mesoscale eddies.

    Science.gov (United States)

    Li, Jiajun; Jiang, Xin; Li, Gang; Jing, Zhiyou; Zhou, Linbin; Ke, Zhixin; Tan, Yehui

    2017-07-01

    We investigated picoplankton distribution patterns and environmental variables along an east-to-west transect in the northeastern South China Sea (SCS) during late winter 2016, giving us the opportunity to examine the impacts of the Kuroshio intrusion and the associated eddies. The results indicated that the subsurface (50-75m) phytoplankton biomass chlorophyll (Chl a) maximum (SCM) disappeared and was replaced by higher Chl a in the middle part of the transect due to the impacts of the Kuroshio intrusion and mesoscale eddies. Both flow cytometry and pyrosequencing data revealed that picoplankton abundance and community structure were significantly influenced by perturbations in complex physical processes. Picoeukaryotes represented most of the total phytoplankton biomass, and their maximum abundance (>10 4 cellsmL -1 ) occurred within cyclonic eddy-affected regions (Stations 11 and 12), whereas the abundance of Prochlorococcus was the lowest in these regions. Prochlorococcus showed a higher abundance in the Kuroshio-affected area, while Synechococcus was mostly distributed at the upper well-lit depths, with its maximum abundance observed in surface waters (0-30m) adjacent to the cyclonic eddy center. Heterotrophic bacteria (HBA) displayed high abundance along the transect, consistent with the total phytoplankton biomass. Phylogenetic analysis revealed 26 bacterial phyla, with major components belonging to Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroidetes, as well as SAR406. Notably, relatively more Rhodobacterales, Flavobacteriales, Alteromonadales, and Vibrionales that were distributed in surface waters of the cyclonic eddy center were specifically associated with the phytoplankton (mainly picoeukaryotes) bloom. Our study highlights the impacts of the Kuroshio intrusion in regulating the microbial ecology of the northeastern SCS and the potential coupling between phytoplankton and bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison

    Science.gov (United States)

    Wang, Yan; Stewart, Andrew L.

    2018-01-01

    Mesoscale eddies are ubiquitous in the ocean and play a key role in exchanges across continental slopes. In this study the properties of wind-driven baroclinic turbulence are investigated using eddy-resolving process simulations, focusing on the case of retrograde winds that arises around the margins of the subtropical gyres. In contrast to a flat-bottomed ocean, over steep slopes eddies develop from baroclinic instabilities are confined to the top few hundred meters. Deeper in the water column baroclinic instability and vertical momentum transfer are suppressed, so wind-input momentum is exported toward the open ocean by eddies before traversing down to the ocean bed. Close to the sloping topography, eddy energy sourced from the upper ocean is converted to potential energy, steepening isopycnals and driving bottom-trapped prograde flows. This process is associated with upgradient lateral buoyancy fluxes and downgradient isopycnal potential vorticity fluxes, and cannot be reproduced via linear stability calculations. These properties of wind-driven shelf/slope turbulence are contrasted against simulations with flat bathymetry. The key differences described above hinge on the flow close to the steep topographic slope, which may be sensitive to the model's vertical coordinate system. The simulations are therefore replicated using models that employ geopotential coordinates, terrain-following coordinates, and isopycnal coordinates. Quantitative inter-model discrepancies in the momentum and energy budgets are much more pronounced in the presence of a steep bottom slope. However, the key findings of this study are consistent across the models, suggesting that they are robust and warrant incorporation into parameterizations of eddy transfer across continental slopes.

  3. Mesoscale Model Data Preparation and Execution: A New Method Utilizing the Internet

    National Research Council Canada - National Science Library

    Kirby, Stephen

    2002-01-01

    In order to streamline and simplify the methodologies required to obtain and process the requisite meteorological data for mesoscale meteorological models such as the Battlescale Forecast Model (BFM...

  4. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  5. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  6. Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water

    Science.gov (United States)

    Bower, Amy S.; Furey, Heather H.

    2012-04-01

    The Gulf of Aden (GOA) in the northwestern Indian Ocean is the receiving basin for Red Sea Outflow Water (RSOW), one of the World’s few high-salinity dense overflows, but relatively little is known about spreading pathways and transformation of RSOW through the gulf. Here we combine historical data, satellite altimetry, new synoptic hydrographic surveys and the first in situ direct observations of subsurface currents in the GOA to identify the most important processes in the spreading of RSOW. The new in situ data sets were collected in 2001-2003 as part of the Red Sea Outflow Experiment (REDSOX) and consist of two CTD/LADCP Surveys and 49 one-year trajectories from acoustically tracked floats released at the depth of RSOW. The results indicate that the prominent positive and negative sea level anomalies frequently observed in the GOA with satellite altimetry are associated with anticyclonic and cyclonic eddies that often reach to at least 1000 m depth, i.e., through the depth range of equilibrated RSOW. The eddies dominate RSOW spreading pathways and help to rapidly mix the outflow water with the background. Eddies in the central and eastern gulf are basin-scale (∼250-km diameter) and have maximum azimuthal speeds of about 30 cm/s at the RSOW level. In the western gulf, smaller eddies not detectable with satellite altimetry appear to form as the larger westward-propagating eddies impale themselves on the high ridges flanking the Tadjura Rift. Both the hydrographic and Lagrangian observations show that eddies originating outside the gulf often transport a core of much cooler, fresher water from the Arabian Sea all the way to the western end of the GOA, where the highest-salinity outflow water is found. This generates large vertical and horizontal gradients of temperature and salinity, setting up favorable conditions for salt fingering and diffusive convection. Both of these mixing processes were observed to be active in the gulf. Two new annually appearing

  7. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  8. Dispersion of tracers by the oceanic eddy field modelling programme

    International Nuclear Information System (INIS)

    Richards, K.J.

    1986-01-01

    A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The study is designed to investigate the horizontal and vertical structure of the eddies and how this structure is influenced by the bottom topography. It is found that hills and valleys have a strong effect on the eddies above them. The flow close to the bottom has a tendency to be steered by the height contours. The surface and bottom flows become decorrelated and the vertical variation of the kinetic energy of the eddies is increased with higher topographic features. (author)

  9. LBM estimation of thermal conductivity in meso-scale modelling

    International Nuclear Information System (INIS)

    Grucelski, A

    2016-01-01

    Recently, there is a growing engineering interest in more rigorous prediction of effective transport coefficients for multicomponent, geometrically complex materials. We present main assumptions and constituents of the meso-scale model for the simulation of the coal or biomass devolatilisation with the Lattice Boltzmann method. For the results, the estimated values of the thermal conductivity coefficient of coal (solids), pyrolytic gases and air matrix are presented for a non-steady state with account for chemical reactions in fluid flow and heat transfer. (paper)

  10. Optogenetic stimulation of a meso-scale human cortical model

    Science.gov (United States)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  11. A three-dimensional viscous topography mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, J; Flender, M; Kandlbinder, T; Panhans, W G; Trautmann, T; Zdunkowski, W G [Mainz Univ. (Germany). Inst. fuer Physik der Atmosphaere; Cui, K; Ries, R; Siebert, J; Wedi, N

    1997-11-01

    This study describes the theoretical foundation and applications of a newly designed mesoscale model named CLIMM (climate model Mainz). In contrast to terrain following coordinates, a cartesian grid is used to keep the finite difference equations as simple as possible. The method of viscous topography is applied to the flow part of the model. Since the topography intersects the cartesian grid cells, the new concept of boundary weight factors is introduced for the solution of Poisson`s equation. A three-dimensional radiosity model was implemented to handle radiative transfer at the ground. The model is applied to study thermally induced circulations and gravity waves at an idealized mountain. Furthermore, CLIMM was used to simulate typical wind and temperature distributions for the city of Mainz and its rural surroundings. It was found that the model in all cases produced realistic results. (orig.) 38 refs.

  12. Mesoscale modeling of amorphous metals by shear transformation zone dynamics

    International Nuclear Information System (INIS)

    Homer, Eric R.; Schuh, Christopher A.

    2009-01-01

    A new mesoscale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.

  13. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    Directory of Open Access Journals (Sweden)

    V. Blažica

    2013-03-01

    Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.

  14. Stable carbon and nitrogen isotope variation in the northern lampfish and Neocalanus, marine survival rates of pink salmon, and meso-scale eddies in the Gulf of Alaska

    Science.gov (United States)

    Kline, Thomas C., Jr.

    2010-10-01

    Northern lampfish (NLF), Stenobrachius leucopsarus (Myctophidae), the dominant pelagic fish taxon of the subarctic North Pacific Ocean, were sampled opportunistically in MOCNESS tows made on continental slope waters of the Gulf of Alaska (GOA) as well as in deep areas of Prince William Sound (PWS) during 1997-2006. The overall mean whole-body lipid-corrected stable carbon isotope value of NLF from the GOA was -21.4 (SD = 0.7) whereas that from PWS was -19.5 (SD = 0.9). This pattern is similar to that observed for late feeding stage Neocalanus cristatus copepods thus confirming a mean cross-shelf carbon stable isotope gradient. As well, there was a statistically significant positive correlation between the considerable temporal variation in the monthly mean carbon stable isotope composition of GOA Neocalanus and GOA NLF ( r = 0.69, P food chain length whereas carbon stable isotopes reflect organic carbon production. The carbon stable isotope values of NLF, measured in May, were positively correlated to marine survival rate of PWS hatchery salmon cohorts entering the marine environment the same year ( r = 0.84, P < 0.001). The carbon stable isotope values for Neocalanus in May were also positively correlated to salmon marine survival ( r = 0.82, P < 0.001). Processes thus manifested through the carbon stable isotope value of biota from the continental slope more closely predicted marine survival rate than that of the salmon themselves. The incipient relationships suggested by the correlations are consistent with the hypothesis that exchange between coastal and oceanic waters in the study area is driven by meso-scale eddies. These eddies facilitate the occurrence of slope phytoplankton blooms as well as drive oceanic zooplankton subsidies into coastal waters. The strong as well as more significant correlations of salmon marine survival rate to NLF as well as slope Neocalanus carbon stable isotope values point to processes taking place at the slope (i.e., interactions

  15. Forcing of dissolved organic carbon release by phytoplankton by anticyclonic mesoscale eddies in the subtropical NE Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    S. Lasternas

    2013-03-01

    Full Text Available The organic carbon fluxes mediated by planktonic communities in two cyclonic eddies (CEs and two anticyclonic eddies (AEs at the Canary Eddy Corridor were studied and compared with the dynamics in two far-field (FF stations located outside the eddies. We observed favorable conditions and signs for upwelling at the center of CEs and for downwelling and mixing at the centers of AEs. CEs were characterized by a higher concentration of nutrients and the highest concentration of chlorophyll a (chl a, associated with the highest abundance of microphytoplankton and diatoms. AEs displayed concentrations of chl a values and nutrients similar to those at the FF stations, except for the highest ammonium concentration occurring at AE and a very low concentration of phosphorus at FF stations. AEs were transient systems characterized by an increasing abundance of picophytoplankton and heterotrophic bacteria. While primary production was similar between the systems, the production of dissolved organic carbon (PDOC was significantly higher in the AEs. Phytoplankton cell mortality was lowest in the CEs, and we found higher cell mortality rates at AE than at FF stations, despite similar chl a concentration. Environmental changes in the AEs have been significantly prejudicial to phytoplankton as indicated by higher phytoplankton cell mortality (60% of diatoms cells were dead and higher cell lysis rates. The adverse conditions for phytoplankton associated with the early-stage anticyclonic systems, mainly triggered by active downwelling, resulted in higher cell mortality, forcing photosynthesized carbon to fuel the dissolved pool.

  16. Assimilation of Aircraft Observations in High-Resolution Mesoscale Modeling

    Directory of Open Access Journals (Sweden)

    Brian P. Reen

    2018-01-01

    Full Text Available Aircraft-based observations are a promising source of above-surface observations for assimilation into mesoscale model simulations. The Tropospheric Airborne Meteorological Data Reporting (TAMDAR observations have potential advantages over some other aircraft observations including the presence of water vapor observations. The impact of assimilating TAMDAR observations via observation nudging in 1 km horizontal grid spacing Weather Research and Forecasting model simulations is evaluated using five cases centered over California. Overall, the impact of assimilating the observations is mixed, with the layer with the greatest benefit being above the surface in the lowest 1000 m above ground level and the variable showing the most consistent benefit being temperature. Varying the nudging configuration demonstrates the sensitivity of the results to details of the assimilation, but does not clearly demonstrate the superiority of a specific configuration.

  17. Meso-scale modeling of irradiated concrete in test reactor

    International Nuclear Information System (INIS)

    Giorla, A.; Vaitová, M.; Le Pape, Y.; Štemberk, P.

    2015-01-01

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  18. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  19. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    Science.gov (United States)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the

  20. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment

    Science.gov (United States)

    Bourbonnais, Annie; Altabet, Mark A.; Charoenpong, Chawalit N.; Larkum, Jennifer; Hu, Haibei; Bange, Hermann W.; Stramma, Lothar

    2015-06-01

    Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent "natural tracer experiments" with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ɛ; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3-), nitrite (NO2-), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3- was nearly exhausted, we measured the highest δ15N values for both NO3- and NO2- (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L-1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2- reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ɛ for NO3- reduction (up to ~30‰ in the presence of NO2-). However, the overall ɛ for N-loss was calculated to be only ~13-14‰ (as compared to canonical values of ~20-30‰) assuming a closed system and only slightly higher assuming an open system (16-19‰). Our results were similar whether calculated from the disappearance of DIN (NO3- + NO2-) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ɛ values for NO3- reduction to NO2- and NO2- reduction to N2 of ~16-21‰ and ~12‰, respectively, when the effect of NO2- oxidation could be removed. These results, together with the relationship between N and O of NO

  1. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  2. How does the Redi parameter for mesoscale mixing impact global climate in an Earth System Model?

    Science.gov (United States)

    Pradal, Marie-Aude; Gnanadesikan, Anand

    2014-09-01

    A coupled climate model is used to examine the impact of an increase in the mixing due to mesoscale eddies on the global climate system. A sixfold increase in the Redi mixing coefficient ARedi, which is within the admissible range of variation, has the overall effect of warming the global-mean surface air and sea surface temperatures by more than 1°C. Locally, sea surface temperatures increase by up to 7°C in the North Pacific and by up to 4°C in the Southern Ocean, with corresponding impacts on the ice concentration and ice extent in polar regions. However, it is not clear that the changes in heat transport from tropics to poles associated with changing this coefficient are primarily responsible for these changes. We found that the changes in the transport of heat are often much smaller than changes in long-wave trapping and short-wave absorption. Additionally, changes in the advective and diffusive transport of heat toward the poles often oppose each other. However, we note that the poleward transport of salt increases near the surface as ARedi increases. We suggest a causal chain in which enhanced eddy stirring leads to increased high-latitude surface salinity reducing salt stratification and water column stability and enhancing convection, triggering two feedback loops. In one, deeper convection prevents sea ice formation, which decreases albedo, which increases SW absorption, further increasing SST and decreasing sea ice formation. In the other, increased SST and reduced sea ice allow for more water vapor in the atmosphere, trapping long-wave radiation. Destratifying the polar regions is thus a potential way in which changes in ocean circulation might warm the planet.

  3. Mesoscale influence on long-range transport — evidence from ETEX modelling and observations

    Science.gov (United States)

    Sørensen, Jens Havskov; Rasmussen, Alix; Ellermann, Thomas; Lyck, Erik

    During the first European Tracer Experiment (ETEX) tracer gas was released from a site in Brittany, France, and subsequently observed over a range of 2000 km. Hourly measurements were taken at the National Environmental Research Institute (NERI) located at Risø, Denmark, using two measurement techniques. At this location, the observed concentration time series shows a double-peak structure occurring between two and three days after the release. By using the Danish Emergency Response Model of the Atmosphere (DERMA), which is developed at the Danish Meteorological Institute (DMI), simulations of the dispersion of the tracer gas have been performed. Using numerical weather-prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF) by DERMA, the arrival time of the tracer is quite well predicted, so also is the duration of the passage of the plume, but the double-peak structure is not reproduced. However, using higher-resolution data from the DMI version of the HIgh Resolution Limited Area Model (DMI-HIRLAM), DERMA reproduces the observed structure very well. The double-peak structure is caused by the influence of a mesoscale anti-cyclonic eddy on the tracer gas plume about one day earlier.

  4. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    Directory of Open Access Journals (Sweden)

    P. J. H. Volker

    2015-11-01

    Full Text Available We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP, uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  5. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.

    1999-01-01

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  6. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  7. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  8. Probabilistic flood damage modelling at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  9. An eddy viscosity model for flow in a tube bundle

    International Nuclear Information System (INIS)

    Soussan, D.; Grandotto, M.

    1998-01-01

    The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)

  10. Implementation of meso-scale radioactive dispersion model for GPU

    Energy Technology Data Exchange (ETDEWEB)

    Sunarko [National Nuclear Energy Agency of Indonesia (BATAN), Jakarta (Indonesia). Nuclear Energy Assessment Center; Suud, Zaki [Bandung Institute of Technology (ITB), Bandung (Indonesia). Physics Dept.

    2017-05-15

    Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.

  11. Modeling of Mesoscale Variability in Biofilm Shear Behavior.

    Directory of Open Access Journals (Sweden)

    Pallab Barai

    Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.

  12. Evaluation of a mesoscale dispersion modelling tool during the CAPITOUL experiment

    Science.gov (United States)

    Lac, C.; Bonnardot, F.; Connan, O.; Camail, C.; Maro, D.; Hebert, D.; Rozet, M.; Pergaud, J.

    2008-12-01

    Atmospheric transport and dispersion were investigated during the CAPITOUL campaign using measurements of sulphur hexafluoride (SF6) tracer. Six releases of SF6 tracer were performed (March 9-11 and July 1-3, 2004) in the same suburban area of Toulouse conurbation, during the Intensive Observing Periods (IOP) of CAPITOUL. Concentration data were collected both at ground-level along axes perpendicular to the wind direction (at distances ranging between 280 m and 5000 m from the release point), and above the ground at 100 m and 200 m height using aircraft flights. Meteorological conditions were all associated with daytime anticyclonic conditions with weak winds and convective clear and cloudy boundary layers. A meso-scale dispersion modelling system, PERLE, developed at Meteo-France for environmental emergencies in case of atmospheric accidental release, was evaluated in terms of meteorology and dispersion, for the different tracer experiments, in its operational configuration. PERLE is based on the combination of the non-hydrostatic meso-scale MESO-NH model, running at 2 km horizontal resolution, and the Lagrangian particle model SPRAY. The statistical meteorological evaluation includes two sets of simulations with initialisation from ECMWF or ALADIN. The meteorological day-to-day error statistics show fairly good Meso-NH predictions, in terms of wind speed, wind direction and near-surface temperature. A strong sensitivity to initial fields concerns the surface fluxes, crucial for dispersion, with an excessive drying of the convective boundary layer with ALADIN initial fields, leading to an overprediction of surface sensible heat fluxes. A parameterization of dry and shallow convection according to the Eddy-Diffusivity-Mass-Flux (EDMF) approach (Pergaud et al. 2008) allows an efficient mixing in the Convective Boundary Layer (CBL) and improves significantly the wind fields. A statistical evaluation of the dispersion prediction was then performed and shows a

  13. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    Science.gov (United States)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  14. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  15. Application of Eddy Currents in Medicine and their Modelling

    International Nuclear Information System (INIS)

    Krawczyk, A.; Wiak, S.; Zyss, T.; Sikora, R.

    1998-01-01

    The paper deals with the problems of interactions between the electromagnetic field and biological material, in particular the problem of eddy currents in human tissues and cells induced there for medical purposes, and the mathematical modeling of the phenomenon. The diagnostic and therapeutic effects of eddy currents are discussed and the advantages and drawbacks of these effects are given. A deeper analysis is devoted to the problem of transcranial magnetic stimulation (TMS) which is used in psychiatry as the treatment in depressive psychosis. (author)

  16. Toward the use of a mesoscale model at a very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gasset, N.; Benoit, R.; Masson, C. [Canada Research Chair on Nordic Environment Aerodynamics of Wind Turbines, Ottawa, ON (Canada)

    2008-07-01

    This presentation described a new compressible mesoscale model designed to obtain wind speed data for potential wind power resource development. Microscale modelling and computerized fluid dynamics (CFD) are used to study the mean properties of the surface layer of the atmospheric boundary layer (ABL). Mesoscale models study the temporal evolution of synoptic to mesoscale atmospheric phenomena and environmental modelling. Mesoscale modelling is essential for wind energy applications and large-scale resource evaluation, and can be compared with microscale models in order to validate input data and determine boundary conditions. The compressible community mesoscale model (MC2) was comprised of a national weather prediction (NWP) model with semi-implicit semi-Lagrangian (SISL) dynamics and compressible Euler equation solutions. Physical parameters included radiations; microphysics; thermal stratification; turbulence; and convection. The turbulence diffusion feature included unsteady Reynolds averaged Navier-Stokes; transport equations for turbulent kinetic energy; and mixing lengths. Operating modes included 3-D weather data, and surface and ground properties as well as 1-way self-nesting abilities. The validation framework for the model included a simulation of a set of realistic cases and theoretical cases including full dynamics and physics. Theoretical cases included manually imposed initial and boundary conditions and minimalist physics. Further research is being conducted to refine operating modes and boundary conditions. tabs., figs.

  17. How biophysical interactions associated with sub- and mesoscale structures and migration behavior affect planktonic larvae of the spiny lobster in the Juan Fernández Ridge: A modeling approach

    Science.gov (United States)

    Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos

    2018-03-01

    The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching

  18. Modelling and simulation of eddy current non-destructive testing

    International Nuclear Information System (INIS)

    Mansir, H.; Burais, N.; Nicolas, A.

    1986-01-01

    This paper presents the practical configuration for detecting cracks in conducting materials by eddy current non destructive testing. An electromagnetic field formulation is proposed using Maxwell's relations. Geometrical and physical properties of the crack are taken into account by several models, particularly with a new finite element called ''crack element''. Modelisation is applied to sensor impedance calculation with classical numerical methods [fr

  19. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    Science.gov (United States)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  20. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    Science.gov (United States)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  1. An Evaluation of Mesoscale Model Based Model Output Statistics (MOS) During the 2002 Olympic and Paralympic Winter Games

    National Research Council Canada - National Science Library

    Hart, Kenneth

    2003-01-01

    The skill of a mesoscale model based Model Output Statistics (MOS) system that provided hourly forecasts for 18 sites over northern Utah during the 2002 Winter Olympic and Paralympic Games is evaluated...

  2. A three-dimensional meso-scale modeling for helium bubble growth in metals

    International Nuclear Information System (INIS)

    Suzudo, T.; Kaburaki, H.; Wakai, E.

    2007-01-01

    A three-dimensional meso-scale computer model using a Monte-Carlo simulation method has been proposed to simulate the helium bubble growth in metals. The primary merit of this model is that it enables the visual comparison between the microstructure observed by the TEM imaging and those by calculations. The modeling is so simple that one can control easily the calculation by tuning parameters. The simulation results are confirmed by the ideal gas law and the capillary relation. helium bubble growth, meso-scale modeling, Monte-Carlo simulation, the ideal gas law and the capillary relation. (authors)

  3. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    Science.gov (United States)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.

    2011-12-01

    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.

  4. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    Science.gov (United States)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and

  5. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  6. Eddy current modeling in linear and nonlinear multifilamentary composite materials

    Science.gov (United States)

    Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean

    2018-04-01

    In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.

  7. Electromagnetic modeling method for eddy current signal analysis

    International Nuclear Information System (INIS)

    Lee, D. H.; Jung, H. K.; Cheong, Y. M.; Lee, Y. S.; Huh, H.; Yang, D. J.

    2004-10-01

    An electromagnetic modeling method for eddy current signal analysis is necessary before an experiment is performed. Electromagnetic modeling methods consists of the analytical method and the numerical method. Also, the numerical methods can be divided by Finite Element Method(FEM), Boundary Element Method(BEM) and Volume Integral Method(VIM). Each modeling method has some merits and demerits. Therefore, the suitable modeling method can be chosen by considering the characteristics of each modeling. This report explains the principle and application of each modeling method and shows the comparison modeling programs

  8. A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Kain, J.S.; Deng, A. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.

  9. Ocean eddies and climate predictability.

    Science.gov (United States)

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  10. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    1999-08-01

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  11. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.

    Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  12. Phase Behavior of Semiflexible-Flexible Diblock Copolymer Melt: Insight from Mesoscale Modeling.

    Czech Academy of Sciences Publication Activity Database

    Beránek, P.; Posel, Zbyšek

    2016-01-01

    Roč. 16, č. 8 (2016), s. 7832-7835 ISSN 1533-4880 R&D Projects: GA MŠk(CZ) LH12020 Institutional support: RVO:67985858 Keywords : conformational asymmetry * dissipative particle dynamics * mesoscale modeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.483, year: 2016

  13. Shadowing effects of offshore wind farms - an idealised mesoscale model study

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    The study of wind farm (WF) interaction is expected to gain importance, since the offshore wind farm density will increase especially in the North Sea in the near future. We present preliminary results of wind farm interaction simulated by mesoscale models. We use the Explicit Wake Parametrisatio...

  14. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    Science.gov (United States)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  15. Intense mesoscale variability in the Sardinia Sea

    Science.gov (United States)

    Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner

    2015-04-01

    From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a warm-core anticyclonic eddy in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another warm-core anticyclonic eddy of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-core cyclonic eddy of Winter Intermediate Water in the depth range between 170 m and 370 m. All three eddies showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.

  16. The mesoscale dispersion modeling system a simulation tool for development of an emergency response system

    International Nuclear Information System (INIS)

    Uliasz, M.

    1990-01-01

    The mesoscale dispersion modeling system is under continuous development. The included numerical models require further improvements and evaluation against data from meteorological and tracer field experiments. The system can not be directly applied to real time predictions. However, it seems to be a useful simulation tool for solving several problems related to planning the monitoring network and development of the emergency response system for the nuclear power plant located in a coastal area. The modeling system can be also applied to another environmental problems connected with air pollution dispersion in complex terrain. The presented numerical models are designed for the use on personal computers and are relatively fast in comparison with the similar mesoscale models developed on mainframe computers

  17. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    Science.gov (United States)

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  18. Objective mapping of observed sub-surface mesoscale cold core eddy in the Bay of Bengal by stochastic inverse technique with tomographically simulated travel times

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; Sridevi, B.; Maneesha, K.; SujithKumar, S.; Prasanna, P.L.; Murthy, K.S.R.

    of Bengal during south-west monsoon season and explore possibility to reconstruct the acoustic profile of the eddy by Stochastic Inverse Technique. A simulation experiment on forward and inverse problems for observed sound velocity perturbation field has...

  19. Modeling and analysis of a novel planar eddy current damper

    Science.gov (United States)

    Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi

    2014-05-01

    In this paper, a novel 2-DOF permanent magnet planar eddy current damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar eddy current damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.

  20. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    Science.gov (United States)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  1. Mesoscale model parameterizations for radiation and turbulent fluxes at the lower boundary

    International Nuclear Information System (INIS)

    Somieski, F.

    1988-11-01

    A radiation parameterization scheme for use in mesoscale models with orography and clouds has been developed. Broadband parameterizations are presented for the solar and the terrestrial spectral ranges. They account for clear, turbid or cloudy atmospheres. The scheme is one-dimensional in the atmosphere, but the effects of mountains (inclination, shading, elevated horizon) are taken into account at the surface. In the terrestrial band, grey and black clouds are considered. Furthermore, the calculation of turbulent fluxes of sensible and latent heat and momentum at an inclined lower model boundary is described. Surface-layer similarity and the surface energy budget are used to evaluate the ground surface temperature. The total scheme is part of the mesoscale model MESOSCOP. (orig.) With 3 figs., 25 refs [de

  2. Aero-Acoustic Modelling using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Shen, W Z; Soerensen, J N

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 deg. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 deg. The predicted noise spectrum is compared to experimental data

  3. A Distributed Hydrological model Forced by DIMP2 Data and the WRF Mesoscale model

    Science.gov (United States)

    Wayand, N. E.

    2010-12-01

    Forecasted warming over the next century will drastically reduce seasonal snowpack that provides 40% of the world’s drinking water. With increased climate warming, droughts may occur more frequently, which will increase society’s reliance on this same summer snowpack as a water supply. This study aims to reduce driving data errors that lead to poor simulations of snow ablation and accumulation, and streamflow. Results from the Distributed Hydrological Model Intercomparison Project Phase 2 (DMIP2) project using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted the critical need for accurate driving data that distributed models require. Currently, the meteorological driving data for distributed hydrological models commonly rely on interpolation techniques between a network of observational stations, as well as historical monthly means. This method is limited by two significant issues: snowpack is stored at high elevations, where interpolation techniques perform poorly due to sparse observations, and historic climatological means may be unsuitable in a changing climate. Mesoscale models may provide a physically-based approach to supplement surface observations over high-elevation terrain. Initial results have shown that while temperature lapse rates are well represented by multiple mesoscale models, significant precipitation biases are dependent on the particular model microphysics. We evaluate multiple methods of downscaling surface variables from the Weather and Research Forecasting (WRF) model that are then used to drive DHSVM over the North Fork American River basin in California. A comparison between each downscaled driving data set and paired DHSVM results to observations will determine how much improvement in simulated streamflow and snowpack are gained at the expense of each additional degree of downscaling. Our results from DMIP2 will be used as a benchmark for the best available DHSVM run using all available observational data. The

  4. The Karlsruhe Atmospheric Mesoscale Model KAMM; Das Karlsruher Atmosphaerische Mesoskalige Modell KAMM

    Energy Technology Data Exchange (ETDEWEB)

    Adrian, G. [Forschungszentrum Karlsruhe GmbH Umwelt und Technik (Germany). Inst. fuer Meteorologie und Klimaforschung]|[Karlsruhe Univ. (T.H.). (Germany). Inst. fuer Meteorologie und Klimaforschung

    1998-01-01

    The applications of the KAMM model range from real-time simulations over the analysis of mesoscale phenomena and the development of parametrizations to describing climatology. In the course of time, wishes emerged to change essential parts of the original model concept, calling for substantial reprogramming; so it was decided to entirely redraft the dynamic core of KAMM and to program it from the beginning including the parallelization of the code. The paper describes the basics of the new model core. (orig./KW) [Deutsch] Der Anwendungsbereich des KAMM-Modells erstreckt sich von Echtzeitsimulationen, ueber Analyse mesoskaliger Phaenomene, Entwicklung von Parametrisierungen bis hin zur beschreibenden Klimatologie. Weil im Laufe der Entstehungszeit wesentliche Aenderungswuensche des urspruenglichen Konzeptes entstanden sind, die eine Neuprogrammierung in wesentlichen Teilen erforderlich erscheinen lassen, wurde entschieden, den dynamischen Kern von KAMM voellig neu zu gestalten und bei der Programmierung eine Parallelisierung des Codes von Anfang an mit einzubeziehen. Die Grundlagen dieses neuen Modellkernes werden vorgestellt. (orig./KW)

  5. Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Oishik, E-mail: oishik-sen@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com [RAMDO Solutions, LLC, Iowa City, IA 52240 (United States); Choi, K.K., E-mail: kyung-choi@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Jacobs, Gustaaf, E-mail: gjacobs@sdsu.edu [Aerospace Engineering, San Diego State University, San Diego, CA 92115 (United States); Udaykumar, H.S., E-mail: hs-kumar@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-05-01

    Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the least number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.

  6. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; O' Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  7. Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution

    Science.gov (United States)

    2017-03-01

    for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics ...managers because foredunes provide ecosystem services and can reduce storm damages to coastal infrastructure, both of which increase the resiliency...MS 2 U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Duck, NC ERDC/CHL CHETN-II-57 March 2017 2 models of

  8. Framework of cloud parameterization including ice for 3-D mesoscale models

    Energy Technology Data Exchange (ETDEWEB)

    Levkov, L; Jacob, D; Eppel, D; Grassl, H

    1989-01-01

    A parameterization scheme for the simulation of ice in clouds incorporated into the hydrostatic version of the GKSS three-dimensional mesoscale model. Numerical simulations of precipitation are performed: over the Northe Sea, the Hawaiian trade wind area and in the region of the intertropical convergence zone. Not only some major features of convective structures in all three areas but also cloud-aerosol interactions have successfully been simulated. (orig.) With 19 figs., 2 tabs.

  9. Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2011-10-01

    Full Text Available Large-eddy simulations of a pocket of open cells (POC based on VOCALS Regional Experiment (REx NSF C-130 Research Flight 06 are analyzed and compared with aircraft observations. A doubly-periodic domain 192 km × 24 km with 125 m horizontal and 5 m vertical grid spacing near the capping inversion is used. The POC is realized in the model as a fixed 96 km wide region of reduced cloud droplet number concentration (Nc based on observed values; initialization and forcing are otherwise uniform across the domain. The model reproduces aircraft-observed differences in boundary-layer structure and precipitation organization between a well-mixed overcast region and a decoupled POC with open-cell precipitating cumuli, although the simulated cloud cover is too large in the POC. A sensitivity study in which Nc is allowed to advect following the turbulent flow gives nearly identical results over the 16 h length of the simulation (which starts at night and goes into the next afternoon.

    The simulated entrainment rate is nearly a factor of two smaller in the less turbulent POC than in the more turbulent overcast region. However, the inversion rises at a nearly uniform rate across the domain because powerful buoyancy restoring forces counteract horizontal inversion height gradients. A secondary circulation develops in the model that diverts subsiding free-tropospheric air away from the POC into the surrounding overcast region, counterbalancing the weaker entrainment in the POC with locally weaker subsidence.

  10. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments

    Science.gov (United States)

    Small, R. Justin; Msadek, Rym; Kwon, Young-Oh; Booth, James F.; Zarzycki, Colin

    2018-05-01

    It has been hypothesized that the ocean mesoscale (particularly ocean fronts) can affect the strength and location of the overlying extratropical atmospheric storm track. In this paper, we examine whether resolving ocean fronts in global climate models indeed leads to significant improvement in the simulated storm track, defined using low level meridional wind. Two main sets of experiments are used: (i) global climate model Community Earth System Model version 1 with non-eddy-resolving standard resolution or with ocean eddy-resolving resolution, and (ii) the same but with the GFDL Climate Model version 2. In case (i), it is found that higher ocean resolution leads to a reduction of a very warm sea surface temperature (SST) bias at the east coasts of the U.S. and Japan seen in standard resolution models. This in turn leads to a reduction of storm track strength near the coastlines, by up to 20%, and a better location of the storm track maxima, over the western boundary currents as observed. In case (ii), the change in absolute SST bias in these regions is less notable, and there are modest (10% or less) increases in surface storm track, and smaller changes in the free troposphere. In contrast, in the southern Indian Ocean, case (ii) shows most sensitivity to ocean resolution, and this coincides with a larger change in mean SST as ocean resolution is changed. Where the ocean resolution does make a difference, it consistently brings the storm track closer in appearance to that seen in ERA-Interim Reanalysis data. Overall, for the range of ocean model resolutions used here (1° versus 0.1°) we find that the differences in SST gradient have a small effect on the storm track strength whilst changes in absolute SST between experiments can have a larger effect. The latter affects the land-sea contrast, air-sea stability, surface latent heat flux, and the boundary layer baroclinicity in such a way as to reduce storm track activity adjacent to the western boundary in the N

  11. Applications of CIVA NDE 10 on Eddy Current Modeling

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Ilham Mukhriz Zainal Abidin; AABdul Razak Hamzah

    2011-01-01

    CIVA NDE 10 is the simulation software and used as the platform to develop the models dedicated to Eddy Current testing (ET). It has various application in semi analytical modeling approaches. The focus of this paper is to simulate the signals response on the 40 % external groove of the Inconel 600 heat exchanger tubes with outside diameter of 22.22 mm. The inspection were simulated using 17 mm outside diameter differential probe with 100 kHz and 500 kHZ testing frequency. All the simulation results were validated using the experimental results integrated in the CIVA software. The configurations of the probe and tube consisting the flaw show the good agreement between the experimental and the simulated data. (author)

  12. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    Science.gov (United States)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  13. Large-eddy simulation of the temporal mixing layer using the Clark model

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, B.J.; Kuerten, J.G.M.

    1996-01-01

    The Clark model for the turbulent stress tensor in large-eddy simulation is investigated from a theoretical and computational point of view. In order to be applicable to compressible turbulent flows, the Clark model has been reformulated. Actual large-eddy simulation of a weakly compressible,

  14. Vortex stability in a multi-layer quasi-geostrophic model: application to Mediterranean Water eddies

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Xavier; Ménesguen, Claire; Meunier, Thomas [Laboratoire de Physique des Oceans, UBO/IFREMER/CNRS/IRD, Brest (France); Sokolovskiy, Mikhail [Institute of Water Problems of the RAS, Moscow (Russian Federation); Aguiar, Ana, E-mail: xcarton@univ-brest.fr [Instituto Dom Luiz, Universidade de Lisboa, Lisbon (Portugal)

    2014-12-01

    The stability of circular vortices to normal mode perturbations is studied in a multi-layer quasi-geostrophic model. The stratification is fitted on the Gulf of Cadiz where many Mediterranean Water (MW) eddies are generated. Observations of MW eddies are used to determine the parameters of the reference experiment; sensitivity tests are conducted around this basic case. The objective of the study is two-fold: (a) determine the growth rates and nonlinear evolutions of unstable perturbations for different three-dimensional (3D) velocity structures of the vortices, (b) check if the different structure of our idealized vortices, mimicking MW cyclones and anticyclones, can induce different stability properties in a model that conserves parity symmetry, and apply these results to observed MW eddies. The linear stability analysis reveals that, among many 3D distributions of velocity, the observed eddies are close to maximal stability, with instability time scales longer than 100 days (these time scales would be less than 10 days for vertically more sheared eddies). The elliptical deformation is most unstable for realistic eddies (the antisymmetric one dominates for small eddies and the triangular one for large eddies); the antisymmetric mode is stronger for cyclones than for anticyclones. Nonlinear evolutions of eddies with radii of about 30 km, and elliptically perturbed, lead to their re-organization into 3D tripoles; smaller eddies are stable and larger eddies break into 3D dipoles. Horizontally more sheared eddies are more unstable and sustain more asymmetric instabilities. In summary, few differences were found between cyclone and anticyclone stability, except for strong horizontal velocity shears. (paper)

  15. Vortex stability in a multi-layer quasi-geostrophic model: application to Mediterranean Water eddies

    International Nuclear Information System (INIS)

    Carton, Xavier; Ménesguen, Claire; Meunier, Thomas; Sokolovskiy, Mikhail; Aguiar, Ana

    2014-01-01

    The stability of circular vortices to normal mode perturbations is studied in a multi-layer quasi-geostrophic model. The stratification is fitted on the Gulf of Cadiz where many Mediterranean Water (MW) eddies are generated. Observations of MW eddies are used to determine the parameters of the reference experiment; sensitivity tests are conducted around this basic case. The objective of the study is two-fold: (a) determine the growth rates and nonlinear evolutions of unstable perturbations for different three-dimensional (3D) velocity structures of the vortices, (b) check if the different structure of our idealized vortices, mimicking MW cyclones and anticyclones, can induce different stability properties in a model that conserves parity symmetry, and apply these results to observed MW eddies. The linear stability analysis reveals that, among many 3D distributions of velocity, the observed eddies are close to maximal stability, with instability time scales longer than 100 days (these time scales would be less than 10 days for vertically more sheared eddies). The elliptical deformation is most unstable for realistic eddies (the antisymmetric one dominates for small eddies and the triangular one for large eddies); the antisymmetric mode is stronger for cyclones than for anticyclones. Nonlinear evolutions of eddies with radii of about 30 km, and elliptically perturbed, lead to their re-organization into 3D tripoles; smaller eddies are stable and larger eddies break into 3D dipoles. Horizontally more sheared eddies are more unstable and sustain more asymmetric instabilities. In summary, few differences were found between cyclone and anticyclone stability, except for strong horizontal velocity shears. (paper)

  16. Statistical Studies of Mesoscale Forecast Models MM5 and WRF

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2004-01-01

    ... models were carried out and the results were compared with surface observation data. Both models tended to overforecast temperature and dew-point temperature, although the correlation coefficients between forecast and observations were fairly high...

  17. Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.S.; Newberger, P.A. [Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Holm, D.D. [Los Alamos National Lab., NM (United States)

    1998-07-01

    The authors consider the motion of a rotating, continuously stratified fluid governed by the hydrostatic primitive equations (PE). An approximate Hamiltonian (L1) model for small Rossby number {var_epsilon} is derived for application to mesoscale oceanographic flow problems. Numerical experiments involving a baroclinically unstable oceanic jet are utilized to assess the accuracy of the L1 model compared to the PE and to other approximate models, such as the quasigeostrophic (QG) and the geostrophic momentum (GM) equations. The results of the numerical experiments for moderate Rossby number flow show that the L1 model gives accurate solutions with errors substantially smaller than QG or GM.

  18. Application of Prognostic Mesoscale Modeling in the Southeast United States

    International Nuclear Information System (INIS)

    Buckley, R.L.

    1999-01-01

    A prognostic model is being used to provide regional forecasts for a variety of applications at the Savannah River Site (SRS). Emergency response dispersion models available at SRS use the space and time-dependent meteorological data provided by this model to supplement local and regional observations. Output from the model is also used locally to aid in forecasting at SRS, and regionally in providing forecasts of the potential time and location of hurricane landfall within the southeast United States

  19. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Trebotich, D

    2006-10-02

    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  20. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  1. Description of the University of Auckland Global Mars Mesoscale Meteorological Model (GM4)

    Science.gov (United States)

    Wing, D. R.; Austin, G. L.

    2005-08-01

    The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) is a numerical weather prediction model of the Martian atmosphere that has been developed through the conversion of the Penn State University / National Center for Atmospheric Research fifth generation mesoscale model (MM5). The global aspect of this model is self consistent, overlapping, and forms a continuous domain around the entire planet, removing the need to provide boundary conditions other than at initialisation, yielding independence from the constraint of a Mars general circulation model. The brief overview of the model will be given, outlining the key physical processes and setup of the model. Comparison between data collected from Mars Pathfinder during its 1997 mission and simulated conditions using GM4 have been performed. Diurnal temperature variation as predicted by the model shows very good correspondence with the surface truth data, to within 5 K for the majority of the diurnal cycle. Mars Viking Data is also compared with the model, with good agreement. As a further means of validation for the model, various seasonal comparisons of surface and vertical atmospheric structure are conducted with the European Space Agency AOPP/LMD Mars Climate Database. Selected simulations over regions of interest will also be presented.

  2. Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency

    Science.gov (United States)

    Aikens, Kurt; Craft, Kyle; Redman, Andrew

    2015-11-01

    The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  3. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  4. Mesoscale to microscale wind farm flow modeling and evaluation

    DEFF Research Database (Denmark)

    Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick

    2017-01-01

    The increasing size of wind turbines, with rotors already spanning more than 150m diameter and hub heights above 100m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer stru...

  5. Mesoscale modeling of smoke radiative feedback over the Sahel region

    Science.gov (United States)

    Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.

    2013-12-01

    This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.

  6. A new Method for the Estimation of Initial Condition Uncertainty Structures in Mesoscale Models

    Science.gov (United States)

    Keller, J. D.; Bach, L.; Hense, A.

    2012-12-01

    The estimation of fast growing error modes of a system is a key interest of ensemble data assimilation when assessing uncertainty in initial conditions. Over the last two decades three methods (and variations of these methods) have evolved for global numerical weather prediction models: ensemble Kalman filter, singular vectors and breeding of growing modes (or now ensemble transform). While the former incorporates a priori model error information and observation error estimates to determine ensemble initial conditions, the latter two techniques directly address the error structures associated with Lyapunov vectors. However, in global models these structures are mainly associated with transient global wave patterns. When assessing initial condition uncertainty in mesoscale limited area models, several problems regarding the aforementioned techniques arise: (a) additional sources of uncertainty on the smaller scales contribute to the error and (b) error structures from the global scale may quickly move through the model domain (depending on the size of the domain). To address the latter problem, perturbation structures from global models are often included in the mesoscale predictions as perturbed boundary conditions. However, the initial perturbations (when used) are often generated with a variant of an ensemble Kalman filter which does not necessarily focus on the large scale error patterns. In the framework of the European regional reanalysis project of the Hans-Ertel-Center for Weather Research we use a mesoscale model with an implemented nudging data assimilation scheme which does not support ensemble data assimilation at all. In preparation of an ensemble-based regional reanalysis and for the estimation of three-dimensional atmospheric covariance structures, we implemented a new method for the assessment of fast growing error modes for mesoscale limited area models. The so-called self-breeding is development based on the breeding of growing modes technique

  7. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    2014-01-01

    anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column...... densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce...

  8. Verification of some numerical models for operationally predicting mesoscale winds aloft

    International Nuclear Information System (INIS)

    Cornett, J.S.; Randerson, D.

    1977-01-01

    Four numerical models are described for predicting mesoscale winds aloft for a 6 h period. These models are all tested statistically against persistence as the control forecast and against predictions made by operational forecasters. Mesoscale winds aloft data were used to initialize the models and to verify the predictions on an hourly basis. The model yielding the smallest root-mean-square vector errors (RMSVE's) was the one based on the most physics which included advection, ageostrophic acceleration, vertical mixing and friction. Horizontal advection was found to be the most important term in reducing the RMSVE's followed by ageostrophic acceleration, vertical advection, surface friction and vertical mixing. From a comparison of the mean absolute errors based on up to 72 independent wind-profile predictions made by operational forecasters, by the most complete model, and by persistence, we conclude that the model is the best wind predictor in the free air. In the boundary layer, the results tend to favor the forecaster for direction predictions. The speed predictions showed no overall superiority in any of these three models

  9. Wind Farm parametrization in the mesoscale model WRF

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2012-01-01

    , but are parametrized as another sub-grid scale process. In order to appropriately capture the wind farm wake recovery and its direction, two properties are important, among others, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual...... the extracted force is proportional to the turbine area interfacing a grid cell. The sub-grid scale wake expansion is achieved by adding turbulence kinetic energy (proportional to the extracted power) to the flow. The validity of both wind farm parametrizations has been verified against observational data. We...... turbines produce a thrust dependent on the background velocity. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, which is responsible for the expansion, is taken into account. Furthermore, since the model horizontal distance is several times...

  10. Solitonlike solutions in loop current eddies

    Science.gov (United States)

    Nakamoto, Shoichiro

    1989-01-01

    The application of the nonlinear quasi-geostrophic equations to an isolated eddy in the western continental slope region in the Gulf of Mexico is examined for a two-layer ocean model with bottom topography. In the linear limit, solutions are topographic nondispersive waves. Form-preserving solutions, or solitons, have been found. The solution is shown to be a limiting form for a nonlinear dispersive system propagating northward along the topographic waveguide in the western continental slope region in the Gulf of Mexico. Using satellite-tracked drifter data, a linear relationship is found between the amplitude of the deduced stream function of the eddy and its observed translational velocity over the continental slope, which supports the hypothesis that some mesoscale eddies interacting with the continental slope behave as solitons.

  11. Mesoscale modelling of atmospheric CO2 across Denmark

    DEFF Research Database (Denmark)

    Lansø, Anne Sofie

    2016-01-01

    of the simulated atmospheric CO2 across Denmark was, in particular, affected by the Danish terrestrial surface exchanges and its temporal variability. This study urges all future modelling studies of air–sea CO2 to include short-term variability in pCO2. To capture the full heterogeneity of the surface exchanges......It is scientifically well-established that the increase of atmospheric CO2 affects the entire globe and will lead to higher surface temperatures. Although anthropogenic CO2is emitted straight into the atmosphere, it does not all contribute to the existing atmospheric CO2 reservoir. Approximately 29......% is taken up by the global oceans, due to under-saturation of CO2 in the surface waters, while another 33 % is taken up by the terrestrial biosphere, via photosynthesis. In order to estimate the effects of increasing anthropogenic emissions of CO2 more accurately in the future, it is essential to understand...

  12. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J; Ebel, A; Lippert, E; Petry, H [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1998-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  13. Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model

    Science.gov (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-02-01

    A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

  14. Simulations of a November thunderstorm event by two mesoscale models in the south Alpine region

    OpenAIRE

    Borroni, A.

    2005-01-01

    Abstract: Two numerical models have been used to investigate the development of a thunderstorm event that took place on November 7th , 2004, in the northern Italy. A cold air mass moved from the northeast to the Alps and the Po valley, while the temperature in the lower layers was quite warm. A thunderstorm with rain and hail developed in the central and eastern part of Italy's subalpine region. In this work it's analyzed some aspects of the thunderstorm dynamics at the mesoscale using two di...

  15. On the sensitivity of mesoscale models to surface-layer parameterization constants

    Science.gov (United States)

    Garratt, J. R.; Pielke, R. A.

    1989-09-01

    The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

  16. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  17. Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific

    Science.gov (United States)

    Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.

    2017-12-01

    Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of

  18. The application of an eddy diffusivity model to the dispersion of radionuclides in the atmosphere and the calculation of cloud gamma exposure

    International Nuclear Information System (INIS)

    Maul, P.R.

    1981-05-01

    A model which has been applied successfully to the study of the mesoscale transport of sulphur compounds can be adapted for radionuclides released from nuclear power stations. Although more complicated than the conventional Gaussian plume models it has several important advantages including the better representation of dry deposition and the variation of dispersion parameters with height above the surface. Building entrainment can be included in a straightforward manner and an approximate method can be used to incorporate isotope-dependent deposition velocities. A new method of calculating cloud gamma exposure is described which is particularly suited to eddy diffusivity models. This model will be used as an alternative to Gaussian plume methods in the BNL safety code NECTAR. (author)

  19. Experimental modeling of eddy currents and deflections for tokamak limiters

    International Nuclear Information System (INIS)

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field

  20. Dynamic modeling of the horizontal eddy viscosity coefficient for quasigeostrophic ocean circulation problems

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2016-12-01

    Full Text Available This paper puts forth a simplified dynamic modeling strategy for the eddy viscosity coefficient parameterized in space and time. The eddy viscosity coefficient is dynamically adjusted to the local structure of the flow using two different nonlinear eddy viscosity functional forms to capture anisotropic dissipation mechanism, namely, (i the Smagorinsky model using the local strain rate field, and (ii the Leith model using the gradient of the vorticity field. The proposed models are applied to the one-layer and two-layer wind-driven quasigeostrophic ocean circulation problems, which are standard prototypes of more realistic ocean dynamics. Results show that both models capture the quasi-stationary ocean dynamics and provide the physical level of eddy viscosity distribution without using any a priori estimation. However, it is found that slightly less dissipative results can be obtained by using the dynamic Leith model. Two-layer numerical experiments also reveal that the proposed dynamic models automatically parameterize the subgrid-scale stress terms in each active layer. Furthermore, the proposed scale-aware models dynamically provide higher values of the eddy viscosity for smaller resolutions taking into account the local resolved flow information, and addressing the intimate relationship between the eddy viscosity coefficients and the numerical resolution employed by the quasigeostrophic models.

  1. An intercomparison of several diagnostic meteorological processors used in mesoscale air quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vimont, J.C. [National Park Service, Lakewood, CO (United States); Scire, J.S. [Sigma Research Corp., Concord, MA (United States)

    1994-12-31

    A major component, and area of uncertainty, in mesoscale air quality modeling, is the specification of the meteorological fields which affect the transport and dispersion of pollutants. Various options are available for estimating the wind and mixing depth fields over a mesoscale domain. Estimates of the wind field can be obtained from spatial and temporal interpolation of available observations or from diagnostic meteorological models, which estimate a meteorological field from available data and adjust those fields based on parameterizations of physical processes. A major weakness of these processors is their dependence on spatially and temporally sparse input data, particularly upper air data. These problems are exacerbated in regions of complex terrain and along the shorelines of large bodies of water. Similarly, the estimation of mixing depth is also reliant upon sparse observations and the parameterization of the convective and mechanical processes. The meteorological processors examined in this analysis were developed to drive different Lagrangian puff models. This paper describes the algorithms these processors use to estimate the wind fields and mixing depth fields.

  2. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    Science.gov (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  3. Preliminary analysis of four numerical models for calculating the mesoscale transport of Kr-85

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E [Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.

    1983-01-01

    A performance study of four numerical algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids has been made. Dispersion from point and distributed sources and a simulation of a continuous source are compared with analytical solutions to assess relative accuracy. Model predictions are then compared with actual measurements of Kr-85 emitted from the Savannah River Plant (SRP). The particle-in-cell and method of moments algorithms exhibit superior accuracy in modeling single source releases. For modeling distributed sources, algorithms based on the pseudospectral and finite element interpolation concepts exhibit comparable accuracy. The method of moments is felt to be the best overall performer, although all the models appear to be relatively close in accuracy.

  4. Applying computer modeling to eddy current signal analysis for steam generator and heat exchanger tube inspections

    International Nuclear Information System (INIS)

    Sullivan, S.P.; Cecco, V.S.; Carter, J.R.; Spanner, M.; McElvanney, M.; Krause, T.W.; Tkaczyk, R.

    2000-01-01

    Licensing requirements for eddy current inspections for nuclear steam generators and heat exchangers are becoming increasingly stringent. The traditional industry-standard method of comparing inspection signals with flaw signals from simple in-line calibration standards is proving to be inadequate. A more complete understanding of eddy current and magnetic field interactions with flaws and other anomalies is required for the industry to generate consistently reliable inspections. Computer modeling is a valuable tool in improving the reliability of eddy current signal analysis. Results from computer modeling are helping inspectors to properly discriminate between real flaw signals and false calls, and improving reliability in flaw sizing. This presentation will discuss complementary eddy current computer modeling techniques such as the Finite Element Method (FEM), Volume Integral Method (VIM), Layer Approximation and other analytic methods. Each of these methods have advantages and limitations. An extension of the Layer Approximation to model eddy current probe responses to ferromagnetic materials will also be presented. Finally examples will be discussed demonstrating how some significant eddy current signal analysis problems have been resolved using appropriate electromagnetic computer modeling tools

  5. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  6. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  7. Simulation of coastal winds along the central west coast of India using the MM5 mesoscale model

    Digital Repository Service at National Institute of Oceanography (India)

    Pushpadas, D.; Vethamony, P.; Sudheesh, K.; George, S.; Babu, M.T.; Nair, T.M.B.

    A high-resolution mesoscale numerical model (MM5) has been used to study the coastal atmospheric circulation of the central west coast of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3 km...

  8. Computational electromagnetics and model-based inversion a modern paradigm for eddy-current nondestructive evaluation

    CERN Document Server

    Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S

    2013-01-01

    Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...

  9. Integral Model of Eddy Currents in Nonmagnetic Structures

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Karban, P.

    2004-01-01

    Roč. 4, č. 3 (2004), s. 5-12 ISSN 1335-8243 R&D Projects: GA ČR GA102/03/0047 Keywords : magnetic field * eddy currents * integral equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  11. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    Science.gov (United States)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  12. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  13. Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =

    Science.gov (United States)

    Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David

    Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.

  14. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    Science.gov (United States)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  15. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  16. MEASUREMENTS AND MODELING OF EDDY CURRENT EFFECTS IN BNL'S AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; GARDNER, C.; GLENN, J.W.; HARVEY, M.; MENG, W.; ZENO, K.

    2006-01-01

    Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements

  17. Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model

    International Nuclear Information System (INIS)

    Xiao, Gang; Jia, Ming; Wang, Tianyou

    2016-01-01

    Spray combustion of n-heptane in a constant-volume vessel under engine-relevant conditions was investigated using linear eddy model in the framework of large eddy simulation. In this numerical approach, turbulent mixing was traced by an innovative stochastic approach instead of the conventional gradient diffusion model. Chemical reaction rates were calculated with the consideration of the sub-grid scale spatial fluctuations of reactive scalars. Turbulence-chemistry interactions were represented by the separated treatments of the underlying processes including turbulent stirring, chemical reaction, and molecular diffusion. The model was validated against the experimental data of ignition delay times, chemiluminescence images, and soot images from Sandia National Laboratories. Numerical results showed that the ignition process changed from the temperature-controlled regime to the mixing-controlled regime as the initial ambient temperature increased from 800 K to 1000 K. The premixed flame and the diffusion flame coexisted, while the gross heat release rate was found to be dominated by the premixed flame. The temperature fluctuation was mainly observed around the spray jet due to the cooling effect of the fuel vaporization. The fluctuations were more significantly smoothed out by the high-temperature flame than the low-temperature flame. The mean temperature would be overpredicted if the sub-grid temperature fluctuation was neglected. - Highlights: • Turbulent mixing is traced by stochastic method instead of gradient diffusion model. • Sub-grid scale fluctuations of reactive scalars are captured. • Ignition process varies from temperature-controlled to mixing-controlled regime. • Temperature fluctuation can be smoothed out by high-temperature flame. • The heat release rate is dominated by the premixed flame.

  18. Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies

    Science.gov (United States)

    Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.

    2016-12-01

    The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale

  19. Wind-Climate Estimation Based on Mesoscale and Microscale Modeling: Statistical-Dynamical Downscaling for Wind Energy Applications

    DEFF Research Database (Denmark)

    Badger, Jake; Frank, Helmut; Hahmann, Andrea N.

    2014-01-01

    This paper demonstrates that a statistical dynamical method can be used to accurately estimate the wind climate at a wind farm site. In particular, postprocessing of mesoscale model output allows an efficient calculation of the local wind climate required for wind resource estimation at a wind...

  20. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  1. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    International Nuclear Information System (INIS)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.

    2009-01-01

    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  2. Modelling daily sediment yield from a meso-scale catchment, a case study in SW Poland

    Energy Technology Data Exchange (ETDEWEB)

    Keesstra, S. D.; Schoorl, J.; Temme, A. J. A. M.

    2009-07-01

    For management purposes it is important to be able to assess the sediment yield of a catchment. however, at this moment models designed for estimating sediment yield are only capable to give either very detailed storm-based information or year averages. The storm-based models require input data that are not available for most catchment. However, models that estimate yearly averages, ignore a lot of other detailed information, like daily discharge and precipitation data. There are currently no models available that model sediment yield on the temporal scale of one day and the spatial scale of a meso-scale catchment, without making use of very detailed input data. To fill this scientific and management gap, landscape evolution model LAPSUS has been adapted to model sediment yield on a daily basis. This model has the water balance as a base. To allow calibration with the discharge at the outlet, a subsurface flow module has been added to the model. (Author) 12 refs.

  3. Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BT-FLEMO.

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Merz, Bruno; Schröter, Kai

    2017-04-01

    Flood loss modeling is an important component for risk analyses and decision support in flood risk management. Commonly, flood loss models describe complex damaging processes by simple, deterministic approaches like depth-damage functions and are associated with large uncertainty. To improve flood loss estimation and to provide quantitative information about the uncertainty associated with loss modeling, a probabilistic, multivariable Bagging decision Tree Flood Loss Estimation MOdel (BT-FLEMO) for residential buildings was developed. The application of BT-FLEMO provides a probability distribution of estimated losses to residential buildings per municipality. BT-FLEMO was applied and validated at the mesoscale in 19 municipalities that were affected during the 2002 flood by the River Mulde in Saxony, Germany. Validation was undertaken on the one hand via a comparison with six deterministic loss models, including both depth-damage functions and multivariable models. On the other hand, the results were compared with official loss data. BT-FLEMO outperforms deterministic, univariable, and multivariable models with regard to model accuracy, although the prediction uncertainty remains high. An important advantage of BT-FLEMO is the quantification of prediction uncertainty. The probability distribution of loss estimates by BT-FLEMO well represents the variation range of loss estimates of the other models in the case study. © 2016 Society for Risk Analysis.

  4. MELSAR: a mesoscale air quality model for complex terrain. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Whiteman, C.D.

    1985-04-01

    This final report is submitted as part of the Green River Ambient Model Assessment (GRAMA) project conducted at the US Department of Energy's Pacific Northwest Laboratory for the US Environmental Protection Agency. The GRAMA Program has, as its ultimate goal, the development of validated air quality models that can be applied to the complex terrain of the Green River Formation of western Colorado, eastern Utah and southern Wyoming. The Green River Formation is a geologic formation containing large reserves of oil shale, coal, and other natural resources. Development of these resources may lead to a degradation of the air quality of the region. Air quality models are needed immediately for planning and regulatory purposes to assess the magnitude of these regional impacts. This report documents one of the models being developed for this purpose within GRAMA - specifically a model to predict short averaging time (less than or equal to 24 h) pollutant concentrations resulting from the mesoscale transport of pollutant releases from multiple sources. MELSAR has not undergone any rigorous operational testing, sensitivity analyses, or validation studies. Testing and evaluation of the model are needed to gain a measure of confidence in the model's performance. This report consists of two volumes. This volume contains the Appendices, which include listings of the FORTRAN code and Volume 1 contains the model overview, technical description, and user's guide. 13 figs., 10 tabs.

  5. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    Science.gov (United States)

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  6. Eddy Current Loss Modeling for Design of PM Generators for Wind Turbines

    NARCIS (Netherlands)

    Jassal, A.

    2014-01-01

    This thesis deals with analysis, calculation and validation of eddy current loss models for Permanent Magnet (PM) direct drive generators for wind turbines. The modelling approach is a mixed use of analytical and Finite Element (FE) methods. The models are validated experimentally and design

  7. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  8. The effect of network resolution on data assimilation in a mesoscale model

    International Nuclear Information System (INIS)

    Dudhia, J.

    1994-01-01

    One goal of the Atmospheric Radiation Measurement (ARM) Program is to characterize meteorological fields over wide areas (200-km square) in order to better parameterize sub-grid-scale variability in general circulation models used for climate studies. Such a detailed knowledge over these areas is impossible with current observational methods alone, but the synthesis of a dataset by combining observations with a mesoscale numerical model is feasible. Current data assimilation techniques allow observed data to be incorporated while a model is running, thus constraining the model to fit the data as well as the data to be dynamically consistent with the model atmosphere. This interaction may therefore be regarded as a dynamical analysis technique. The technique used for data assimilation here will be the nudging method (Stauffer and Seaman 1990, Kuo and Guo 1989). Specifically, observational nudging where data at observational sites are gradually forced in the model without the need for a gridded analysis. This method is particularly appropriate for asynoptic data covering meso-β-scales, such as will be available at the Cloud and Radiation Testbed (CART) sites. The method makes it possible to incorporate the wide variety of data coming from these sites

  9. Using SST and land cover data from EO Missions for improved mesoscale modelling of the coastal zone

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Floors, Rogier Ralph; Lea, Guillaume

    was to evaluate the uncertainty of the modelled wind in the coastal zone and further improve it. Moreover LIDAR measurements were used to evaluate the wind speed retrieval from high resolution SAR systems (Sentinel-1 and TerraSAR-X). The WRF model used a high-resolution satellite SST reanalysis product from...... be implemented in the meso-scale model to better represent the actual conditions in the study area. Such improvements are expected to strengthen the model’s ability to represent land- sea and air-sea interactions, the atmospheric stability and the local topographic features that partly affect the coastal zone......Existing wind measurements in near-shore and offshore areas are sparse and scarce, therefore simulations from state-of-the-art meso-scale models are used for wind resource predictions. In coastal and near-shore areas, models are inaccurate and uncertain, mainly because of numerical approximations...

  10. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  11. Amplitudes of solar p modes: Modelling of the eddy time-correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Belkacem, K [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17-B 4000 Liege (Belgium); Samadi, R; Goupil, M J, E-mail: Kevin.Belkacem@ulg.ac.BE [LESIA, UMR8109, Universite Pierre et Marie Curie, Universite Denis Diderot, Obs. de Paris, 92195 Meudon Cedex (France)

    2011-01-01

    Modelling amplitudes of stochastically excited oscillations in stars is a powerful tool for understanding the properties of the convective zones. For instance, it gives us information on the way turbulent eddies are temporally correlated in a very large Reynolds number regime. We discuss the way the time correlation between eddies is modelled and we present recent theoretical developments as well as observational results. Eventually, we discuss the physical underlying meaning of the results by introducing the Ornstein-Uhlenbeck process, which is a sub-class of a Gaussian Markov process.

  12. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Science.gov (United States)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  13. Numerical modeling of the effects of roughness on flow and eddy formation in fractures

    Directory of Open Access Journals (Sweden)

    Scott Briggs

    2017-02-01

    Full Text Available The effect of roughness on flow in fractures was investigated using lattice Boltzmann method (LBM. Simulations were conducted for both statistically generated hypothetical fractures and a natural dolomite fracture. The effect of increasing roughness on effective hydraulic aperture, Izbash and Forchheimer parameters with increasing Reynolds number (Re ranging from 0.01 to 500 was examined. The growth of complex flow features, such as eddies arising near the fracture surface, was directly associated with changes in surface roughness. Rapid eddy growth above Re values of 1, followed by less rapid growth at higher Re values, suggested a three-zone nonlinear model for flow in rough fractures. This three-zone model, relating effective hydraulic conductivity to Re, was also found to be appropriate for the simulation of water flow in the natural dolomite fracture. Increasing fracture roughness led to greater eddy volumes and lower effective hydraulic conductivities for the same Re values.

  14. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  15. Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mesoscale meteorological modelling is an important tool to help understand air pollution and heat island effects in urban areas. Accurate wind simulations are difficult to obtain in areas of weak synoptic forcing. Local factors have a dominant role in the circulation and include land surface parameters and their interaction with the atmosphere. This paper examines an episode during the MCMA-2003 field campaign held in the Mexico City Metropolitan Area (MCMA in April of 2003. Because the episode has weak synoptic forcing, there is the potential for the surface heat budget to influence the local meteorology. High resolution satellite observations are used to specify the land use, vegetation fraction, albedo and surface temperature in the MM5 model. Making use of these readily available data leads to improved meteorological simulations in the MCMA, both for the wind circulation patterns and the urban heat island. Replacing values previously obtained from land-use tables with actual measurements removes the number of unknowns in the model and increases the accuracy of the energy budget. In addition to improving the understanding of local meteorology, this sets the stage for the use of advanced urban modules.

  16. Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data.

    Science.gov (United States)

    Grégoire, David; Verdon, Laura; Lefort, Vincent; Grassl, Peter; Saliba, Jacqueline; Regoin, Jean-Pierre; Loukili, Ahmed; Pijaudier-Cabot, Gilles

    2015-10-25

    The purpose of this paper is to analyse the development and the evolution of the fracture process zone during fracture and damage in quasi-brittle materials. A model taking into account the material details at the mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to compute histograms of the relative distances between damaged points. These numerical results are compared with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of the relative distances between damage events in the numerical calculations and acoustic events in the experiments exhibit good agreement. It is shown that the mesoscale model provides relevant information from the point of view of both global responses and the local failure process. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.

  17. Short range forecasting of sea breeze generated thunderstorms at the Kennedy Space Center: A real-time experiment using a primitive equation mesoscale numerical model

    Science.gov (United States)

    Lyons, Walter A.; Schuh, Jerome A.; Moon, Dennis; Pielke, Roger A.; Cotton, William; Arritt, Raymond

    1987-01-01

    The operational efficiency of using guidance from a mesoscale numerical model to improve sea breeze thunderstorm forecasts at and around the Shuttle landing strip was assessed. The Prognostic Three-Dimensional Mesoscale (P3DM) model, developed as a sea breeze model, reveals a strong correlation between regions of mesoscale convergence and the triggering of sea breeze convection thunderstorms. The P3DM was modified to generate stability parameters familiar to the operational forecaster. In addition to the mesoscale fields of wind, vertical motion, moisture, temperature, a stability indicator, a combination of model-predicted K and Lifted Indices and the maximum grid cell vertical motion, were proposed and tested. Results of blind tests indicate that a forecaster, provided with guidance derived from model output, could improve local thunderstorm forecasts.

  18. Modelling study of mesoscale cyclogenesis over Ross Sea, Antarctica, on February 18, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Stortini, M.; Morelli, S.; Marchesi, S. [Modena e Reggio Emilia Univ., Modena (Italy). Dipt. di Scienze dell' Ingegneria, Sez. Osservatorio Geofisico

    2000-04-01

    This paper examines the development of a summer event of mesoscale cyclogenesis off the coast of Victoria Land in the presence of katabatic winds, by means of numerical simulations. These refer to the period from 00 UTC 17 February to 00 UTC 19 February 1988 and were performed using the hydrostatic ETA (1993 version) limited area model with resolution 55 km x 55 km x 17 levels. The ETA model reproduces katabatic winds from Terra Nova Bay and a trough on the southwestern Ross Sea. A cyclonic vortex is simulated in the trough, even though it is weaker than the one present in the analysis initialized by the European Center for Medium Range Weather Forecast (Reading, United Kingdom). Idealized simulations with varied surface conditions were also performed. In particular, an ice-covered ocean acts to weaken the atmospheric phenomena, while a no-mountain simulation emphasizes the influence of the orography and the cold winds from the coast of Victoria Land on the mesocyclonic activity.

  19. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    Science.gov (United States)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  20. Modeling mesoscale diffusion and transport processes for releases within coastal zones during land/sea breezes

    International Nuclear Information System (INIS)

    Lyons, W.A.; Keen, C.S.; Schuh, J.A.

    1983-12-01

    This document discusses the impacts of coastal mesoscale regimes (CMRs) upon the transport and diffusion of potential accidental radionuclide releases from a shoreline nuclear power plant. CMRs exhibit significant spatial (horizontal and vertical) and temporal variability. Case studies illustrate land breezes, sea/lake breeze inflows and return flows, thermal internal boundary layers, fumigation, plume trapping, coastal convergence zones, thunderstorms and snow squalls. The direct application of a conventional Gaussian straight-line dose assessment model, initialized only by on-site tower data, can potentially produce highly misleading guidance as to plume impact locations. Since much is known concerning CMRs, there are many potential improvements to modularized dose assessment codes, such as by proper parameterization of TIBLs, forecasting the inland penetration of convergence zones, etc. A three-dimensional primitive equation prognostic model showed excellent agreement with detailed lake breeze field measurements, giving indications that such codes can be used in both diagnostic and prognostic studies. The use of relatively inexpensive supplemental meteorological data especially from remote sensing systems (Doppler sodar, radar, lightning strike tracking) and computerized data bases should save significantly on software development costs. Better quality assurance of emergency response codes could include systems of flags providing personnel with confidence levels as to the applicability of a code being used during any given CMR

  1. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

    Directory of Open Access Journals (Sweden)

    R. Sorgente

    2011-08-01

    Full Text Available The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products.

    The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre.

    The classical kinetic energy decomposition (eddy and mean allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and

  2. Renormalization-group theory for the eddy viscosity in subgrid modeling

    Science.gov (United States)

    Zhou, YE; Vahala, George; Hossain, Murshed

    1988-01-01

    Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.

  3. Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø

    2015-01-01

    Field scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field scale water balances...... because they have larger footprint areas than local soil moisture measurements.. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5 m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D...

  4. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  5. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  6. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    Science.gov (United States)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  7. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, Jennifer [Univ. of Alaska, Fairbanks, AK (United States); Joseph, Renu [Univ. of Alaska, Fairbanks, AK (United States)

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project will facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.

  8. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  9. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    Science.gov (United States)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  10. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  11. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling

    Czech Academy of Sciences Publication Activity Database

    Rebmann, C.; Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Carrara, A.; Cescatti, A.; Ceulemans, R.; Clement, R.; Elbers, J. A.; Granier, A.; Grünwald, T.; Guyon, D.; Havránková, Kateřina; Heinesch, B.; Knohl, A.; Laurila, T.; Longdoz, B.; Marcolla, B.; Markkanen, T.; Miglietta, F.; Moncrieff, J.; Montagnani, L.; Moors, E.; Nardino, M.; Ourcival, J.-M.; Rambal, S.; Rannik, Ü.; Rotenberg, E.; Sedlák, Pavel; Unterhuber, G.; Vesala, T.; Yakir, D.

    2005-01-01

    Roč. 80, - (2005), s. 121-141 ISSN 0177-798X Grant - others:Carboeuroflux(XE) EVK-2-CT-1999-00032 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z6087904 Keywords : Eddy covariance * Quality assurance * Quality control * Footprint modelling * Heterogeneity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.295, year: 2005

  12. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  13. Introducing uncertainty of radar-rainfall estimates to the verification of mesoscale model precipitation forecasts

    Directory of Open Access Journals (Sweden)

    M. P. Mittermaier

    2008-05-01

    Full Text Available A simple measure of the uncertainty associated with using radar-derived rainfall estimates as "truth" has been introduced to the Numerical Weather Prediction (NWP verification process to assess the effect on forecast skill and errors. Deterministic precipitation forecasts from the mesoscale version of the UK Met Office Unified Model for a two-day high-impact event and for a month were verified at the daily and six-hourly time scale using a spatially-based intensity-scale method and various traditional skill scores such as the Equitable Threat Score (ETS and log-odds ratio. Radar-rainfall accumulations from the UK Nimrod radar-composite were used.

    The results show that the inclusion of uncertainty has some effect, shifting the forecast errors and skill. The study also allowed for the comparison of results from the intensity-scale method and traditional skill scores. It showed that the two methods complement each other, one detailing the scale and rainfall accumulation thresholds where the errors occur, the other showing how skillful the forecast is. It was also found that for the six-hourly forecasts the error distributions remain similar with forecast lead time but skill decreases. This highlights the difference between forecast error and forecast skill, and that they are not necessarily the same.

  14. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    Science.gov (United States)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  15. Genesis of Hurricane Sandy (2012) Simulated with a Global Mesoscale Model

    Science.gov (United States)

    Shen, Bo-Wen; DeMaria, Mark; Li, J.-L. F.; Cheung, S.

    2013-01-01

    In this study, we investigate the formation predictability of Hurricane Sandy (2012) with a global mesoscale model. We first present five track and intensity forecasts of Sandy initialized at 00Z 22-26 October 2012, realistically producing its movement with a northwestward turn prior to its landfall. We then show that three experiments initialized at 00Z 16-18 October captured the genesis of Sandy with a lead time of up to 6 days and simulated reasonable evolution of Sandy's track and intensity in the next 2 day period of 18Z 21-23 October. Results suggest that the extended lead time of formation prediction is achieved by realistic simulations of multiscale processes, including (1) the interaction between an easterly wave and a low-level westerly wind belt (WWB) and (2) the appearance of the upper-level trough at 200 hPa to Sandy's northwest. The low-level WWB and upper-level trough are likely associated with a Madden-Julian Oscillation.

  16. Quantitative modelling of the closure of meso-scale parallel currents in the nightside ionosphere

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2004-01-01

    Full Text Available On 12 January 2000, during a northward IMF period, two successive conjunctions occur between the CUTLASS SuperDARN radar pair and the two satellites Ørsted and FAST. This situation is used to describe and model the electrodynamic of a nightside meso-scale arc associated with a convection shear. Three field-aligned current sheets, one upward and two downward on both sides, are observed. Based on the measurements of the parallel currents and either the conductance or the electric field profile, a model of the ionospheric current closure is developed along each satellite orbit. This model is one-dimensional, in a first attempt and a two-dimensional model is tested for the Ørsted case. These models allow one to quantify the balance between electric field gradients and ionospheric conductance gradients in the closure of the field-aligned currents. These radar and satellite data are also combined with images from Polar-UVI, allowing for a description of the time evolution of the arc between the two satellite passes. The arc is very dynamic, in spite of quiet solar wind conditions. Periodic enhancements of the convection and of electron precipitation associated with the arc are observed, probably associated with quasi-periodic injections of particles due to reconnection in the magnetotail. Also, a northward shift and a reorganisation of the precipitation pattern are observed, together with a southward shift of the convection shear. Key words. Ionosphere (auroral ionosphere; electric fields and currents; particle precipitation – Magnetospheric physics (magnetosphere-ionosphere interactions

  17. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  18. Development of a prototype mesoscale computer model incorporating treatment of topography

    International Nuclear Information System (INIS)

    Apsimon, H.; Kitson, K.; Fawcett, M.; Goddard, A.J.H.

    1984-01-01

    Models are available for simulating dispersal of accidental releases, using mass-consistent wind-fields and accounting for site-specific topography. These techniques were examined critically to see if they might be improved, and to assess their limitations. An improved model, windfield adjusted for topography (WAFT), was developed (with advantages over MATHEW used in the Atmospheric Release Advisory Capability - ARAC system). To simulate dispersion in the windfields produced by WAFT and calculate time integrated air concentrations and dry and wet deposition the TOMCATS model was developed. It treats the release as an assembly of pseudo-particles using Monte Carlo techniques to simulate turbulent displacements. It allows for larger eddy effects in the horizontal turbulence spectrum. Wet deposition is calculated using inhomogeneous rainfields evolving in time and space. The models were assessed, applying them to hypothetical releases in complex terrain, using typical data applicable in accident conditions, and undertaking sensitivity studies. One finds considerable uncertainty in results produced by these models. Although useful for post-facto analysis, such limitations cast doubt on their advantages, relative to simpler techniques, during an actual emergency

  19. Mesoscale atmospheric modelling technology as a tool for the long-term meteorological dataset development

    Science.gov (United States)

    Platonov, Vladimir; Kislov, Alexander; Rivin, Gdaly; Varentsov, Mikhail; Rozinkina, Inna; Nikitin, Mikhail; Chumakov, Mikhail

    2017-04-01

    The detailed hydrodynamic modelling of meteorological parameters during the last 30 years (1985 - 2014) was performed for the Okhotsk Sea and the Sakhalin island regions. The regional non-hydrostatic atmospheric model COSMO-CLM used for this long-term simulation with 13.2, 6.6 and 2.2 km horizontal resolutions. The main objective of creation this dataset was the outlook of the investigation of statistical characteristics and the physical mechanisms of extreme weather events (primarily, wind speed extremes) on the small spatio-temporal scales. COSMO-CLM is the climate version of the well-known mesoscale COSMO model, including some modifications and extensions adapting to the long-term numerical experiments. The downscaling technique was realized and developed for the long-term simulations with three consequent nesting domains. ERA-Interim reanalysis ( 0.75 degrees resolution) used as global forcing data for the starting domain ( 13.2 km horizontal resolution), then these simulation data used as initial and boundary conditions for the next model runs over the domain with 6.6 km resolution, and similarly, for the next step to 2.2 km domain. Besides, the COSMO-CLM model configuration for 13.2 km run included the spectral nudging technique, i.e. an additional assimilation of reanalysis data not only at boundaries, but also inside the whole domain. Practically, this computational scheme realized on the SGI Altix 4700 supercomputer system in the Main Computer Center of Roshydromet and used 2,400 hours of CPU time total. According to modelling results, the verification of the obtained dataset was performed on the observation data. Estimations showed the mean error -0.5 0C, up to 2 - 3 0C RMSE in temperature, and overestimation in wind speed (RMSE is up to 2 m/s). Overall, analysis showed that the used downscaling technique with applying the COSMO-CLM model reproduced the meteorological conditions, spatial distribution, seasonal and synoptic variability of temperature and

  20. Development of a prototype mesoscale computer model incorporating treatment of topography

    International Nuclear Information System (INIS)

    Apsimon, H.M.; Goddard, A.J.H.; Kitson, K.; Fawcett, M.

    1985-01-01

    More sophisticated models are now available to simulate dispersal of accidental radioactive releases to the atmosphere; these use mass-consistent windfields and attempt allowance for site-specific topographical features. Our aim has been to examine these techniques critically, develop where possible, and assess limitations and accuracy. The resulting windfield model WAFT uses efficient numerical techniques with improved orographic resolution and treatment of meteorological conditions. Time integrated air concentrations, dry and wet deposition are derived from TOMCATS, which applies Monte-Carlo techniques to an assembly of pseudo-particles representing the release, with specific attention to the role of large eddies and evolving inhomogeneous rainfields. These models have been assessed by application to hypothetical releases in complex terrain using data which would have been available in the event of an accident, and undertaking sensitivity studies. It is concluded that there is considerable uncertainty in results produced by such models; although they may be useful in post-facto analysis, such limitations cast doubt on their advantages relative to simpler techniques, with more modest requirements, during an actual emergency. (author)

  1. Surface Energy Balance in Jakarta and Neighboring Regions As Simulated Using Fifth Mesoscale Model (MM5

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah

    2014-04-01

    Full Text Available The objective of the present research was to assess the surface energy balance particularly in terms of the computed surface energy and radiation balance and the development of boundary layer over Jakarta and Neighboring Regions (JNR by means of numerical model of fifth generation of Mesoscale Model (MM5. The MM5 with four domains of 9 kilometers in spatial resolution presenting the outermost and the innermost of JNR is utilized. The research focuses on the third and fourth domains covering the entire JNR. The description between radiation and energy balance at the surface is obtained from the model. The result showed that energy balance is higher in the city area during daytime. Meanwhile, energy components, e.g., surface sensible and latent heat flux showed that at the sea and in the city areas were higher than other areas. Moreover, ground flux showed eastern region was higher than others. In general, radiation and energy balance was higher in the daytime and lower in the nighttime for all regions. The calculation of Bowen Ratio, the ratio of surface sensible and latent heat fluxes, was also higher in the city area, reflecting the dominations of urban and built-up land in the region. Meanwhile, Bowen Ratio in the rural area dominated by irrigated cropland was lower. It is consistent with changes of land cover properties, e.g. albedo, soil moisture, and thermal characteristics. In addition, the boundary layer is also higher in the city. Meanwhile western region dominated by suburban showed higher boundary layer instead of eastern region.

  2. A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy

    Science.gov (United States)

    MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2013-01-01

    AbstractWarm-core eddies (WCEs) often form in the meanders of Western Boundary Currents (WBCs). WCEs are frequently overwashed with less dense waters sourced from the WBC. We use the Regional Ocean Modelling System to investigate the ocean state during the overwashing of one such WCE in October 2008 in the East Australian Current (EAC). Comparisons of model outputs with satellite sea surface temperature and vertical profiles show that the model provides a realistic simulation of the eddy during the period when the EAC encircled and then overwashed the eddy. During the encircling stage, an eddy with closed circulation persisted at depth. In the surface EAC water entered from the north, encircled the eddy and exited to the east. The overwashing stage was initiated by the expulsion of cyclonic vorticity. For the following 8 days after the expulsion, waters from the EAC washed over the top of the eddy, transferring heat and anticyclonic vorticity radially-inward. After approximately one rotation period of overwashing, the eddy separated. The overwashing creates a two-layer system that forms a subsurface maximum velocity at the interface of the two layers. Analysis of water mass properties, Eulerian tracer dynamics, and Lagrangian particle tracks show that the original eddy sinks 10-50 m during the overwashing period. Overwashing has been observed in many WBCs and occurs in most WCEs in the western Tasman Sea.

  3. A DDES model with a Smagorinsky-type eddy viscosity formulation and log-layer mismatch correction

    International Nuclear Information System (INIS)

    Reddy, K.R.; Ryon, J.A.; Durbin, P.A.

    2014-01-01

    Highlights: • An alternate DDES formulation is proposed via the eddy viscosity definition. • Eddy viscosity is expressed as a Smagorinsky-type formula. • Log-layer mismatch is corrected by changing the length scale definition. • Model is validated for 2D as well as 3D flows. - Abstract: The current work develops a variant of delayed detached eddy simulation (DDES) that could be characterized as limiting the production term. Previous formulations have been based on limiting the dissipation rate (Spalart et al., 2006). A clipped length scale is applied directly to the eddy viscosity, yielding a Smagorinsky-like formulation when the model is on the eddy simulation branch. That clipped eddy viscosity limits the production rate. The length scale is modified in order to account for the log-layer mismatch (a well-known issue with DDES), without using additional blending functions. Another view of our approach is that the subgrid eddy-viscosity is represented by a mixing length formula l 2 ω; in the eddy field ω acts like a filtered rate of strain. Our model is validated for channel flow as well as separated flows (backward-facing step, 2D periodic hills) and illustrated via an air-blast atomizer

  4. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  5. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  6. Impact of aircraft exhaust on the atmosphere. Box model studies and 3-D mesoscale numerical case studies of seasonal differences

    Energy Technology Data Exchange (ETDEWEB)

    Petry, H; Ebel, A; Franzkowiak, V; Hendricks, J; Lippert, E; Moellhoff, M [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie

    1998-12-31

    The impact of aircraft emissions released in the tropopause region on atmospheric trace gases as O{sub 3} or HNO{sub 3} is investigated by means of model studies. Special emphasis is drawn on seasonal effects. A box model is applied as well as a 3-D mesoscale chemistry transport model. These model studies show that the impact of aircraft emissions on ozone in the tropopause region is much stronger in summer than in late autumn with a difference of one order of magnitude. (author) 14 refs.

  7. Impact of aircraft exhaust on the atmosphere. Box model studies and 3-D mesoscale numerical case studies of seasonal differences

    Energy Technology Data Exchange (ETDEWEB)

    Petry, H.; Ebel, A.; Franzkowiak, V.; Hendricks, J.; Lippert, E.; Moellhoff, M. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meteorologie

    1997-12-31

    The impact of aircraft emissions released in the tropopause region on atmospheric trace gases as O{sub 3} or HNO{sub 3} is investigated by means of model studies. Special emphasis is drawn on seasonal effects. A box model is applied as well as a 3-D mesoscale chemistry transport model. These model studies show that the impact of aircraft emissions on ozone in the tropopause region is much stronger in summer than in late autumn with a difference of one order of magnitude. (author) 14 refs.

  8. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2010-07-01

    Full Text Available Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine – based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four eddy flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and a modified model (based on model parameter tuning using eddy flux data. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  9. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  10. Improved Eddy-current Field Loss Model and Scaling Index for Magnets of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2015-01-01

    Full Text Available The paper gives detailed systematic researches on the mechanism and key factors of eddy-current losses in rotor magnets of high power-density permanent magnet synchronous motors(PMSMs. Firstly, this paper establishes quantitative mathematic model of eddy-current losses for surface-mounted PMSM based on eddy current field model and Maxwell equations. Then, a scaling index is put forward to weigh the key factors relevant to the eddy-current losses in magnets. At the same time, the principles of eddy-current losses in prototype PMSM are analyzed by the finite element analysis (FEA software. The contents researched in the paper have practical reference values for design and reliability analysis of PMSMs.

  11. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Harry Keo [Univ. of California, Davis, CA (United States)

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed

  12. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    Science.gov (United States)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    time on SGI 3800 with 30 processors). Simplified mechanisms are really important to study cases for which an online coupling is necessary between meso-scale and chemistry models (clouds or aerosols plumes impacts, highly variable meteorology).

  13. Meridional transport of salt in the global ocean from an eddy-resolving model

    Science.gov (United States)

    Treguier, A. M.; Deshayes, J.; Le Sommer, J.; Lique, C.; Madec, G.; Penduff, T.; Molines, J.-M.; Barnier, B.; Bourdalle-Badie, R.; Talandier, C.

    2014-04-01

    The meridional transport of salt is computed in a global eddy-resolving numerical model (1/12° resolution) in order to improve our understanding of the ocean salinity budget. A methodology is proposed that allows a global analysis of the salinity balance in relation to surface water fluxes, without defining a "freshwater anomaly" based on an arbitrary reference salinity. The method consists of a decomposition of the meridional transport into (i) the transport by the time-longitude-depth mean velocity, (ii) time-mean velocity recirculations and (iii) transient eddy perturbations. Water is added (rainfall and rivers) or removed (evaporation) at the ocean surface at different latitudes, which creates convergences and divergences of mass transport with maximum and minimum values close to ±1 Sv. The resulting meridional velocity effects a net transport of salt at each latitude (±30 Sv PSU), which is balanced by the time-mean recirculations and by the net effect of eddy salinity-velocity correlations. This balance ensures that the total meridional transport of salt is close to zero, a necessary condition for maintaining a quasi-stationary salinity distribution. Our model confirms that the eddy salt transport cannot be neglected: it is comparable to the transport by the time-mean recirculation (up to 15 Sv PSU) at the poleward and equatorial boundaries of the subtropical gyres. Two different mechanisms are found: eddy contributions are localized in intense currents such as the Kuroshio at the poleward boundary of the subtropical gyres, while they are distributed across the basins at the equatorward boundaries. Closer to the Equator, salinity-velocity correlations are mainly due to the seasonal cycle and large-scale perturbations such as tropical instability waves.

  14. Ensemble modelling of nitrogen fluxes: data fusion for a Swedish meso-scale catchment

    Directory of Open Access Journals (Sweden)

    J.-F. Exbrayat

    2010-12-01

    Full Text Available Model predictions of biogeochemical fluxes at the landscape scale are highly uncertain, both with respect to stochastic (parameter and structural uncertainty. In this study 5 different models (LASCAM, LASCAM-S, a self-developed tool, SWAT and HBV-N-D designed to simulate hydrological fluxes as well as mobilisation and transport of one or several nitrogen species were applied to the mesoscale River Fyris catchment in mid-eastern Sweden.

    Hydrological calibration against 5 years of recorded daily discharge at two stations gave highly variable results with Nash-Sutcliffe Efficiency (NSE ranging between 0.48 and 0.83. Using the calibrated hydrological parameter sets, the parameter uncertainty linked to the nitrogen parameters was explored in order to cover the range of possible predictions of exported loads for 3 nitrogen species: nitrate (NO3, ammonium (NH4 and total nitrogen (Tot-N. For each model and each nitrogen species, predictions were ranked in two different ways according to the performance indicated by two different goodness-of-fit measures: the coefficient of determination R2 and the root mean square error RMSE. A total of 2160 deterministic Single Model Ensembles (SME was generated using an increasing number of members (from the 2 best to the 10 best single predictions. Finally the best SME for each model, nitrogen species and discharge station were selected and merged into 330 different Multi-Model Ensembles (MME. The evolution of changes in R2 and RMSE was used as a performance descriptor of the ensemble procedure.

    In each studied case, numerous ensemble merging schemes were identified which outperformed any of their members. Improvement rates were generally higher when worse members were introduced. The highest improvements were achieved for the nitrogen SMEs compiled with multiple linear regression models with R2 selected members, which

  15. Analytical model development of an eddy-current-based non-contacting steel plate conveyance system

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.; Hwang, C.-C.

    2008-01-01

    A concise model for analyzing and predicting the quasi-static electromagnetic characteristics of an eddy-current-based non-contacting steel plate conveyance system has been developed. Confirmed by three-dimensional (3-D) finite element analysis (FEA), adequacy of the analytical model can be demonstrated. Such an effective approach, which can be conveniently used by the potential industries for preliminary system operational performance evaluations, will be essential for designers and on-site engineers

  16. Eddy-Kuroshio Interactions: Local and Remote Effects

    Science.gov (United States)

    Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang

    2017-12-01

    Quasi-geostrophic mesoscale eddies regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these eddy-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic eddy with the Kuroshio, the circular eddy is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic eddy during the eddy-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular eddy is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some eddy-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.Plain Language SummaryMesoscale eddies are everywhere in the ocean. These ocean swirls of either clockwise or counterclockwise spinning with diameter of about 100-300 km and rounding current speed of about 0.5 m/s, carrying energy and certain type of water mass, move westward and eventually reach the western boundary of each ocean. The evolution of these eddies and the interaction which occurs when they encounter the western boundary current, e.g. the Kuroshio in the

  17. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  18. Numerical modeling of thermal fatigue cracks from the viewpoint of eddy current testing

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Virkkunen, Iikka; Kemppainen, Mika

    2012-01-01

    This study discusses a suitable numerical modeling of a thermal fatigue crack from the viewpoint of eddy current testing. Five artificial thermal fatigue cracks, introduced into type 304L austenitic stainless steel plates with a thickness of 25 mm, are prepared; and eddy current inspections are carried out to gather signals using an absolute type pancake probe and a differential type plus point probe. Finite element simulations are then carried out to evaluate a proper numerical model of the thermal fatigue cracks. In the finite element simulations, the thermal fatigue cracks are modeled as a semi-elliptic planar region on the basis of the results of the destructive tests. The width and internal conductivity are evaluated by the simulations. The results of the simulations reveal that the thermal fatigue cracks are regarded as almost nonconductive when the internal conductivity is assumed to be uniform inside. (author)

  19. Do we need full mesoscale models to simulate the urban heat island? A study over the city of Barcelona.

    Science.gov (United States)

    García-Díez, Markel; Ballester, Joan; De Ridder, Koen; Hooyberghs, Hans; Lauwaet, Dirk; Rodó, Xavier

    2016-04-01

    As most of the population lives in urban environments, the simulation of the urban climate has become an important part of the global climate change impact assessment. However, due to the high resolution required, these simulations demand a large amount of computational resources. Here we present a comparison between a simplified fast urban climate model (UrbClim) and a widely used full mesoscale model, the Weather Research and Forecasting (WRF) model, over the city of Barcelona. In order to check the advantages and disadvantages of each approach, both simulations were compared with station data and with land surface temperature observations retrieved by satellites, focusing on the urban heat island. The effect of changing the UrbClim boundary conditions was studied too, by using low resolution global reanalysis data (70 km) and a higher resolution forecast model (15 km). Finally, a strict comparison of the computational resources consumed by both models was carried out. Results show that, generally, the performance of the simple model is comparable to or better than the mesoscale model. The exception are the winds and the day-to-day correlation in the reanalysis driven run, but these problems disappear when taking the boundary conditions from a higher resolution global model. UrbClim was found to run 133 times faster than WRF, using 4x times higher resolution and, thus, it is an efficient solution for running long climate change simulations over large city ensembles.

  20. Mesoscale models for stacking faults, deformation twins and martensitic transformations: Linking atomistics to continuum

    Science.gov (United States)

    Kibey, Sandeep A.

    We present a hierarchical approach that spans multiple length scales to describe defect formation---in particular, formation of stacking faults (SFs) and deformation twins---in fcc crystals. We link the energy pathways (calculated here via ab initio density functional theory, DFT) associated with formation of stacking faults and twins to corresponding heterogeneous defect nucleation models (described through mesoscale dislocation mechanics). Through the generalized Peieirls-Nabarro model, we first correlate the width of intrinsic SFs in fcc alloy systems to their nucleation pathways called generalized stacking fault energies (GSFE). We then establish a qualitative dependence of twinning tendency in fee metals and alloys---specifically, in pure Cu and dilute Cu-xAl (x= 5.0 and 8.3 at.%)---on their twin-energy pathways called the generalized planar fault energies (GPFE). We also link the twinning behavior of Cu-Al alloys to their electronic structure by determining the effect of solute Al on the valence charge density redistribution at the SF through ab initio DFT. Further, while several efforts have been undertaken to incorporate twinning for predicting stress-strain response of fcc materials, a fundamental law for critical twinning stress has not yet emerged. We resolve this long-standing issue by linking quantitatively the twin-energy pathways (GPFE) obtained via ab initio DFT to heterogeneous, dislocation-based twin nucleation models. We establish an analytical expression that quantitatively predicts the critical twinning stress in fcc metals in agreement with experiments without requiring any empiricism at any length scale. Our theory connects twinning stress to twin-energy pathways and predicts a monotonic relation between stress and unstable twin stacking fault energy revealing the physics of twinning. We further demonstrate that the theory holds for fcc alloys as well. Our theory inherently accounts for directional nature of twinning which available

  1. Assimilation of low-level wind in a high-resolution mesoscale model using the back and forth nudging algorithm

    Directory of Open Access Journals (Sweden)

    Jean-François Mahfouf

    2012-06-01

    Full Text Available The performance of a new data assimilation algorithm called back and forth nudging (BFN is evaluated using a high-resolution numerical mesoscale model and simulated wind observations in the boundary layer. This new algorithm, of interest for the assimilation of high-frequency observations provided by ground-based active remote-sensing instruments, is straightforward to implement in a realistic atmospheric model. The convergence towards a steady-state profile can be achieved after five iterations of the BFN algorithm, and the algorithm provides an improved solution with respect to direct nudging. It is shown that the contribution of the nudging term does not dominate over other model physical and dynamical tendencies. Moreover, by running backward integrations with an adiabatic version of the model, the nudging coefficients do not need to be increased in order to stabilise the numerical equations. The ability of BFN to produce model changes upstream from the observations, in a similar way to 4-D-Var assimilation systems, is demonstrated. The capacity of the model to adjust to rapid changes in wind direction with the BFN is a first encouraging step, for example, to improve the detection and prediction of low-level wind shear phenomena through high-resolution mesoscale modelling over airports.

  2. How does the Red Sea outflow water interact with Gulf of Aden Eddies?

    Science.gov (United States)

    Ilıcak, Mehmet; Özgökmen, Tamay M.; Johns, William E.

    As the Red Sea overflow water (RSOW) enters the Gulf of Aden (GOA), it interacts with a sequence of nearly barotropic, mesoscale eddies originating in the Indian Ocean. To investigate how these eddies impact the dispersal and eastward transport of the RSOW toward the Indian Ocean, a high resolution 3D regional model is employed to explore systematically the interaction between the RSOW and mesoscale eddies. Two types of experiments are conducted. In the first set, we simulate the behavior of RSOW in the presence of an idealized cyclone and an idealized anticyclone. The second type of simulation involves nesting of the regional model (ROMS) within a data-assimilating global model (HYCOM), in which a sequence of mesoscale eddies entering the Gulf of Aden is realistically captured. This simulation is integrated for one year, and includes a simple representation of the seasonality of the RSOW. Bower et al. (2002) suggest that the Red Sea overflow might be a western boundary undercurrent. Consistent with these expectations, the idealized simulations show that the preferred pathway of the RSOW in the absence of eddies is along the coast of Somalia (southern continental shelf) as a western boundary undercurrent. Simultaneously, a cyclonic circulation is generated in the far western GOA due to vortex stretching by the descending outflow. The presence of a cyclone in the western GOA increases the peak RSOW transport, but the cyclone itself rapidly loses its coherence after interacting with the rough topography in the western GOA. The presence of an anticyclone tends to block the preferred boundary pathway and inhibits the eastward transport of the RSOW. The eddies also result in substantially increased mixing of the RSOW in the western GOA. On the basis of the more realistic ROMS experiment, it is found that the modeled RSOW leaves the western part of the Gulf of Aden in short episodic bursts with transports that are an order of magnitude greater than that associated with

  3. Tridimensional numerical modelling of an eddy current non destructive testing process

    International Nuclear Information System (INIS)

    Bonnin, O.; Chavant, C.; Giordano, P.

    1993-01-01

    This paper presents the numerical modelling of a new eddy current inspection process. The originality of the process, developed jointly by IFREMER and the CEA, lies in the mode of inducing the currents in the component to be tested. The TRIFOU eddy current calculation code is used for the modelling, which is in 3D. It is shown that a crack in the component inspected will cause localized disturbance of the currents induced. If we then focus on this disturbance, assuming the electrical behaviour of the materials to be linear, the resulting problem can be set for a limited geometrical area, leading to an appreciable saving in machine time. It is also shown that the computed and experimental results are quantitatively similar. (authors). 2 figs., 6 refs

  4. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  5. Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea

    KAUST Repository

    Chen, Changsheng; Li, Ruixiang; Pratt, Larry; Limeburner, Richard; Beardsley, Robert C.; Bower, Amy; Jiang, Houshuo; Abualnaja, Yasser; Xu, Qichun; Lin, Huichan; Liu, Xuehai; Lan, Jian; Kim, Taewan

    2014-01-01

    Surface drifters released in the central Red Sea during April 2010 detected a well-defined anticyclonic eddy around 23°N. This eddy was ∼45–60 km in radius, with a swirl speed up to ∼0.5 m/s. The eddy feature was also evident in monthly averaged sea surface height fields and in current profiles measured on a cross-isobath, shipboard CTD/ADCP survey around that region. The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was configured for the Red Sea and process studies were conducted to establish the conditions necessary for the eddy to form and to establish its robustness. The model was capable of reproducing the observed anticyclonic eddy with the same location and size. Diagnosis of model results suggests that the eddy can be formed in a Red Sea that is subject to seasonally varying buoyancy forcing, with no wind, but that its location and structure are significantly altered by wind forcing, initial distribution of water stratification and southward coastal flow from the upstream area. Momentum analysis indicates that the flow field of the eddy was in geostrophic balance, with the baroclinic pressure gradient forcing about the same order of magnitude as the surface pressure gradient forcing.

  6. Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea

    KAUST Repository

    Chen, Changsheng

    2014-02-01

    Surface drifters released in the central Red Sea during April 2010 detected a well-defined anticyclonic eddy around 23°N. This eddy was ∼45–60 km in radius, with a swirl speed up to ∼0.5 m/s. The eddy feature was also evident in monthly averaged sea surface height fields and in current profiles measured on a cross-isobath, shipboard CTD/ADCP survey around that region. The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was configured for the Red Sea and process studies were conducted to establish the conditions necessary for the eddy to form and to establish its robustness. The model was capable of reproducing the observed anticyclonic eddy with the same location and size. Diagnosis of model results suggests that the eddy can be formed in a Red Sea that is subject to seasonally varying buoyancy forcing, with no wind, but that its location and structure are significantly altered by wind forcing, initial distribution of water stratification and southward coastal flow from the upstream area. Momentum analysis indicates that the flow field of the eddy was in geostrophic balance, with the baroclinic pressure gradient forcing about the same order of magnitude as the surface pressure gradient forcing.

  7. Meso-Scale Modelling of Deformation, Damage and Failure in Dual Phase Steels

    Science.gov (United States)

    Sari Sarraf, Iman

    Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high ductility, formability, and strength, as well as high strength-to-weight ratio and improved crash resistance. Dual phase steels belong to a family of high strength grades which consist of martensite, responsible for strengthening, distributed in a ductile ferrite matrix which accommodates the deformation throughout the forming process. It has been shown that the predominant damage mechanism and failure in DP steels depends on the ferrite and martensite grain sizes and their morphology, and can range from a mixture of brittle and ductile rupture to completely ductile rupture in a quasi-static uniaxial tension test. In this study, a hybrid finite element cellular automata model, initially proposed by Anton Shterenlikht (2003), was developed to evaluate the forming behaviour and predict the onset of instability and damage evolution in a dual phase steel. In this model, the finite element constitutive model is used to represent macro-level strain gradients and a damage variable, and two different cell arrays are designed to represent the ductile and brittle fracture modes in meso-scale. In the FE part of the model, a modified Rousselier ductile damage model is developed to account for nucleation, growth and coalescence of voids. Also, several rate-dependent hardening models were developed and evaluated to describe the work hardening flow curve of DP600. Based on statistical analysis and simulation results, a modified Johnson-Cook (JC) model and a multiplicative combination of the Voce-modified JC functions were found to be the most accurate hardening models. The developed models were then implemented in a user-defined material subroutine (VUMAT) for ABAQUS/Explicit finite element simulation software to simulate uniaxial tension tests at strain rates ranging from 0.001 1/s to 1000 1/s, Marciniak tests, and electrohydraulic free-forming (EHFF

  8. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  9. Mesoscale modelling methodology based on nudging to increase accuracy in WRA

    Science.gov (United States)

    Mylonas Dirdiris, Markos; Barbouchi, Sami; Hermmann, Hugo

    2016-04-01

    The offshore wind energy has recently become a rapidly growing renewable energy resource worldwide, with several offshore wind projects in development in different planning stages. Despite of this, a better understanding of the atmospheric interaction within the marine atmospheric boundary layer (MABL) is needed in order to contribute to a better energy capture and cost-effectiveness. Light has been thrown in observational nudging as it has recently become an innovative method to increase the accuracy of wind flow modelling. This particular study focuses on the observational nudging capability of Weather Research and Forecasting (WRF) and ways the uncertainty of wind flow modelling in the wind resource assessment (WRA) can be reduced. Finally, an alternative way to calculate the model uncertainty is pinpointed. Approach WRF mesoscale model will be nudged with observations from FINO3 at three different heights. The model simulations with and without applying observational nudging will be verified against FINO1 measurement data at 100m. In order to evaluate the observational nudging capability of WRF two ways to derive the model uncertainty will be described: one global uncertainty and an uncertainty per wind speed bin derived using the recommended practice of the IEA in order to link the model uncertainty to a wind energy production uncertainty. This study assesses the observational data assimilation capability of WRF model within the same vertical gridded atmospheric column. The principal aim is to investigate whether having observations up to one height could improve the simulation at a higher vertical level. The study will use objective analysis implementing a Cress-man scheme interpolation to interpolate the observation in time and in sp ace (keeping the horizontal component constant) to the gridded analysis. Then the WRF model core will incorporate the interpolated variables to the "first guess" to develop a nudged simulation. Consequently, WRF with and without

  10. Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin

    Science.gov (United States)

    Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.

    2017-04-01

    The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.

  11. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V.; Petry, H.; Ebel, A. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  12. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V; Petry, H; Ebel, A [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1998-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  13. Evaluation of cloud prediction and determination of critical relative humidity for a mesoscale numerical weather prediction model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Guo, Z.; Ackerman, T.P. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.

  14. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    OpenAIRE

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  15. Analysis of Eddy Resolving Model of the California Current System

    National Research Council Canada - National Science Library

    Cipriano, Nicholas

    1998-01-01

    A high-resolution, multi-level, primitive equation ocean model is used to investigate the combined role of seasonal wind forcing, thermohaline gradients, and coastline irregularities on the formation...

  16. Analytical modeling and analysis of magnetic field and torque for novel axial flux eddy current couplers with PM excitation

    Science.gov (United States)

    Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin

    2017-10-01

    Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.

  17. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling

    Directory of Open Access Journals (Sweden)

    A. Budishchev

    2014-09-01

    Full Text Available Most plot-scale methane emission models – of which many have been developed in the recent past – are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r2 = 0.7. In contrast, using the area-weighted average method yielded a low (r2 = 0.14 correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.

  18. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  19. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

    International Nuclear Information System (INIS)

    Bogey, Christophe; Bailly, Christophe

    2006-01-01

    Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers

  20. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

    Science.gov (United States)

    Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar

    2018-05-01

    Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.

  1. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Directory of Open Access Journals (Sweden)

    Francisco Montero-Chacón

    2017-02-01

    Full Text Available This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC. In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  2. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice-Particle Model.

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-02-21

    This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice-particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.

  3. Mesoscale Characterization of Fracture Properties of Steel Fiber-Reinforced Concrete Using a Lattice–Particle Model

    Science.gov (United States)

    Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando

    2017-01-01

    This work presents a lattice–particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice–particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests. PMID:28772568

  4. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  5. Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0

    Science.gov (United States)

    Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.

    2017-12-01

    Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.

  6. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    DEFF Research Database (Denmark)

    Breton, Simon-Philippe; Sumner, J.; Sørensen, Jens Nørkær

    2017-01-01

    surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple......Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review...

  7. Tracer experiment data sets for the verification of local and meso-scale atmospheric dispersion models including topographic effects

    International Nuclear Information System (INIS)

    Sartori, E.; Schuler, W.

    1992-01-01

    Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)

  8. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  9. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  10. The relationship between a deformation-based eddy parameterization and the LANS-α turbulence model

    Science.gov (United States)

    Bachman, Scott D.; Anstey, James A.; Zanna, Laure

    2018-06-01

    A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that resemble the Lagrangian-averaged Navier-Stokes-α model (LANS-α, e.g., Holm et al., 1998a). In this note we employ basic tensor mathematics to highlight the similarities between these turbulence models using component-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in 2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into numerical implementation, the input and dissipation of kinetic energy between these two turbulent models differ.

  11. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach

    Science.gov (United States)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick

    2017-09-01

    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the

  12. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  13. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    Science.gov (United States)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  14. Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model

    Science.gov (United States)

    Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander

    2014-04-01

    Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random

  15. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  16. Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation

    Science.gov (United States)

    Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun

    2018-03-01

    A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).

  17. Model based optimization of driver-pickup separation for eddy current measurement of gap

    Science.gov (United States)

    Klein, G.; Morelli, J.; Krause, T. W.

    2018-04-01

    The fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of a pressure tube (PT) contained within a larger diameter calandria tube (CT). The separation between the tubes, known as the PT-CT gap, ensures PT hydride blisters, which could lead to potential cracking of the PT, do not develop. Therefore, accurate measurements are required to confirm that contact between PT and CT is not imminent. Gap measurement uses an eddy current probe. However this probe is sensitive to lift-off variations, which can adversely affect estimated gap. A validated analytical flat plate model of eddy current response to gap was used to examine the effect of driver-pickup spacing on lift-off and response to gap at a frequency of 4 kHz, which is used for in-reactor measurements. This model was compared against, and shown to have good agreement with, a COMSOL® finite element method (FEM) model. The optimum coil separation, which included the constraint of coil size, was found to be 11 mm, resulting in a phase response between lift-off and response to change in gap of 66°. This work demonstrates the advantages of using analytical models for optimizing coil designs for measurement of parameters that may negatively influence the outcome of an inspection measurement.

  18. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  19. Linear Multivariable Regression Models for Prediction of Eddy Dissipation Rate from Available Meteorological Data

    Science.gov (United States)

    MCKissick, Burnell T. (Technical Monitor); Plassman, Gerald E.; Mall, Gerald H.; Quagliano, John R.

    2005-01-01

    Linear multivariable regression models for predicting day and night Eddy Dissipation Rate (EDR) from available meteorological data sources are defined and validated. Model definition is based on a combination of 1997-2000 Dallas/Fort Worth (DFW) data sources, EDR from Aircraft Vortex Spacing System (AVOSS) deployment data, and regression variables primarily from corresponding Automated Surface Observation System (ASOS) data. Model validation is accomplished through EDR predictions on a similar combination of 1994-1995 Memphis (MEM) AVOSS and ASOS data. Model forms include an intercept plus a single term of fixed optimal power for each of these regression variables; 30-minute forward averaged mean and variance of near-surface wind speed and temperature, variance of wind direction, and a discrete cloud cover metric. Distinct day and night models, regressing on EDR and the natural log of EDR respectively, yield best performance and avoid model discontinuity over day/night data boundaries.

  20. Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain

    Science.gov (United States)

    Physick, W. L.; Garratt, J. R.

    1995-04-01

    For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.

  1. A methodology to aid in the design of naval steels: Linking first principles calculations to mesoscale modeling

    International Nuclear Information System (INIS)

    Spanos, G.; Geltmacher, A.B.; Lewis, A.C.; Bingert, J.F.; Mehl, M.; Papaconstantopoulos, D.; Mishin, Y.; Gupta, A.; Matic, P.

    2007-01-01

    This paper provides a brief overview of a multidisciplinary effort at the Naval Research Laboratory aimed at developing a computationally-based methodology to assist in the design of advanced Naval steels. This program uses multiple computational techniques ranging from the atomistic length scale to continuum response. First-principles electronic structure calculations using density functional theory were employed, semi-empirical angular dependent potentials were developed based on the embedded atom method, and these potentials were used as input into Monte-Carlo and molecular dynamics simulations. Experimental techniques have also been applied to a super-austenitic stainless steel (AL6XN) to provide experimental input, guidance, verification, and enhancements to the models. These experimental methods include optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction, and serial sectioning in conjunction with computer-based three-dimensional reconstruction and quantitative analyses. The experimental results are also used as critical input into mesoscale finite element models of materials response

  2. A dual theory of price and value in a meso-scale economic model with stochastic profit rate

    Science.gov (United States)

    Greenblatt, R. E.

    2014-12-01

    The problem of commodity price determination in a market-based, capitalist economy has a long and contentious history. Neoclassical microeconomic theories are based typically on marginal utility assumptions, while classical macroeconomic theories tend to be value-based. In the current work, I study a simplified meso-scale model of a commodity capitalist economy. The production/exchange model is represented by a network whose nodes are firms, workers, capitalists, and markets, and whose directed edges represent physical or monetary flows. A pair of multivariate linear equations with stochastic input parameters represent physical (supply/demand) and monetary (income/expense) balance. The input parameters yield a non-degenerate profit rate distribution across firms. Labor time and price are found to be eigenvector solutions to the respective balance equations. A simple relation is derived relating the expected value of commodity price to commodity labor content. Results of Monte Carlo simulations are consistent with the stochastic price/labor content relation.

  3. Application of a mesoscale forecasting model (NMM) coupled to the CALMET to develop forecast meteorology to use with the CALPUFF air dispersion model

    International Nuclear Information System (INIS)

    Radonjic, Z.; Telenta, B.; Kirklady, J.; Chambers, D.; Kleb, H.

    2006-01-01

    An air quality assessment was undertaken as part of the Environmental Assessment for the Port Hope Area Initiative. The assessment predicted potential effects associated with the remediation efforts for historic low-level radioactive wastes and construction of Long-Term Waste Management Facilities (LTWMFs) for both the Port Hope and Port Granby Projects. A necessary element of air dispersion modelling is the development of suitable meteorological data. For the Port Hope and Port Granby Projects, a meteorological station was installed in close proximity to the location of the recommended LTWMF in Port Hope. The recommended location for the Port Granby LTWMF is approximately 10 km west of the Port Hope LTWMF. Concerns were raised regarding the applicability of data collected for the Port Hope meteorological station to the Port Granby Site. To address this concern, a new method for processing meteorological data, which coupled mesoscale meteorological forecasting data the U.S. EPA CALMET meteorological data processor, was applied. This methodology is possible because a new and advanced mesoscale forecasting modelling system enables extensive numerical calculations on personal computers. As a result of this advancement, mesoscale forecasting systems can now be coupled with the CALMET meteorological data processor and the CALPUFF air dispersion modelling system to facilitate wind field estimations and air dispersion analysis. (author)

  4. Comparing Epileptiform Behavior of Mesoscale Detailed Models and Population Models of Neocortex

    NARCIS (Netherlands)

    Visser, S.; Meijer, Hil Gaétan Ellart; Lee, Hyong C.; van Drongelen, Wim; van Putten, Michel Johannes Antonius Maria; van Gils, Stephanus A.

    2010-01-01

    Two models of the neocortex are developed to study normal and pathologic neuronal activity. One model contains a detailed description of a neocortical microcolumn represented by 656 neurons, including superficial and deep pyramidal cells, four types of inhibitory neurons, and realistic synaptic

  5. Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites

    Science.gov (United States)

    Mitchell, Stephen; Beven, Keith; Freer, Jim; Law, Beverly

    2011-06-01

    Semiarid forests are very sensitive to climatic change and among the most difficult ecosystems to accurately model. We tested the performance of the Biome-BGC model against eddy flux data taken from young (years 2004-2008), mature (years 2002-2008), and old-growth (year 2000) ponderosa pine stands at Metolius, Oregon, and subsequently examined several potential causes for model-data mismatch. We used the Generalized Likelihood Uncertainty Estimation methodology, which involved 500,000 model runs for each stand (1,500,000 total). Each simulation was run with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in modeled estimates of net ecosystem CO2 exchange (NEE) that were compared to measured eddy flux data. Simulations for the young stand exhibited the highest level of performance, though they overestimated ecosystem C accumulation (-NEE) 99% of the time. Among the simulations for the mature and old-growth stands, 100% and 99% of the simulations underestimated ecosystem C accumulation. One obvious area of model-data mismatch is soil moisture, which was overestimated by the model in the young and old-growth stands yet underestimated in the mature stand. However, modeled estimates of soil water content and associated water deficits did not appear to be the primary cause of model-data mismatch; our analysis indicated that gross primary production can be accurately modeled even if soil moisture content is not. Instead, difficulties in adequately modeling ecosystem respiration, mainly autotrophic respiration, appeared to be the fundamental cause of model-data mismatch.

  6. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  7. Mesoscale modelling in China: Risø DTU numerical wind atlas calculation for NE China (Dongbei)

    DEFF Research Database (Denmark)

    Badger, Jake; Larsén, Xiaoli Guo; Hahmann, Andrea N.

    of the wind resource for Dongbei south of 50oN. The results of the numerical wind atlas show a wind resource over the region of interest modulated mainly by topographic features. These are principally elevated terrain features, giving high resources on exposed ridges and lower resources adjacent to the low......This document reports on the methods and findings of project “A01 Mesoscale Modelling”, part of the CMA component of the Wind Energy Development (WED) programme, focusing mainly on the methods and work undertaken by Risø DTU. The KAMM/WAsP methodology for numerical wind atlas calculation....... The major new aspects of the project were the large number of KAMM/WAsP sensitivity studies, comparison with WRF, and the CMA’s numerical wind atlas method (WERAS). Additionally, the reliability of the input data for the methodology, and the wave-number spectra properties of the output data were...

  8. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  9. Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass

    Directory of Open Access Journals (Sweden)

    A. Samuelsen

    2012-06-01

    Full Text Available Acoustic measurements show that the biomass of zooplankton and mesopelagic fish is redistributed by mesoscale variability and that the signal extends over several hundred meters depth. The mechanisms governing this distribution are not well understood, but influences from both physical (i.e. redistribution and biological processes (i.e. nutrient transport, primary production, active swimming, etc. are likely. This study examines how hydrodynamic conditions and basic vertical swimming behavior act to distribute biomass in an anticyclonic eddy. Using an eddy-resolving 2.3 km-resolution physical ocean model as forcing for a particle-tracking module, particles representing passively floating organisms and organisms with vertical swimming behavior are released within an eddy and monitored for 20 to 30 days. The role of hydrodynamic conditions on the distribution of biomass is discussed in relation to the acoustic measurements. Particles released close to the surface tend, in agreement with the observations, to accumulate around the edge of the eddy, whereas particles released at depth gradually become distributed along the isopycnals. After a month they are displaced several hundreds meters in the vertical with the deepest particles found close to the eddy center and the shallowest close to the edge. There is no evidence of aggregation of particles along the eddy rim in the last simulation. The model results points towards a physical mechanism for aggregation at the surface, however biological processes cannot be ruled out using the current modeling tool.

  10. Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows

    KAUST Repository

    Rahman, Mustafa M.

    2017-01-05

    We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.

  11. On the scale similarity in large eddy simulation. A proposal of a new model

    International Nuclear Information System (INIS)

    Pasero, E.; Cannata, G.; Gallerano, F.

    2004-01-01

    Among the most common LES models present in literature there are the Eddy Viscosity-type models. In these models the subgrid scale (SGS) stress tensor is related to the resolved strain rate tensor through a scalar eddy viscosity coefficient. These models are affected by three fundamental drawbacks: they are purely dissipative, i.e. they cannot account for back scatter; they assume that the principal axes of the resolved strain rate tensor and SGS stress tensor are aligned; and that a local balance exists between the SGS turbulent kinetic energy production and its dissipation. Scale similarity models (SSM) were created to overcome the drawbacks of eddy viscosity-type models. The SSM models, such as that of Bardina et al. and that of Liu et al., assume that scales adjacent in wave number space present similar hydrodynamic features. This similarity makes it possible to effectively relate the unresolved scales, represented by the modified Cross tensor and the modified Reynolds tensor, to the smallest resolved scales represented by the modified Leonard tensor] or by a term obtained through multiple filtering operations at different scales. The models of Bardina et al. and Liu et al. are affected, however, by a fundamental drawback: they are not dissipative enough, i.e they are not able to ensure a sufficient energy drain from the resolved scales of motion to the unresolved ones. In this paper it is shown that such a drawback is due to the fact that such models do not take into account the smallest unresolved scales where the most dissipation of turbulent SGS energy takes place. A new scale similarity LES model that is able to grant an adequate drain of energy from the resolved scales to the unresolved ones is presented. The SGS stress tensor is aligned with the modified Leonard tensor. The coefficient of proportionality is expressed in terms of the trace of the modified Leonard tensor and in terms of the SGS kinetic energy (computed by solving its balance equation). The

  12. Response of an eddy-permitting ocean model to the assimilation of sparse in situ data

    Science.gov (United States)

    Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.

    2003-04-01

    The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.

  13. Modeling of Eddy current distribution and equilibrium reconstruction in the SST-1 Tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Sharma, Deepti; Radhakrishnana, Srinivasan; Daniel, Raju; Shankara Joisa, Y.; Atrey, Parveen Kumar; Pathak, Surya Kumar; Singh, Amit Kumar

    2015-01-01

    Toroidal continuity of the vacuum vessel and the cryostat leads to the generation of large eddy currents in these passive structures during the Ohmic phase of the steady state superconducting tokamak SST-1. This reduces the magnitude of the loop voltage seen by the plasma as also delays its buildup. During the ramping down of the Ohmic transformer current (OT), the resultant eddy currents flowing in the passive conductors play a crucial role in governing the plasma equilibrium. Amount of this eddy current and its distribution has to be accurately determined such that this can be fed to the equilibrium reconstruction code as an input. For the accurate inclusion of the effect of eddy currents in the reconstruction, the toroidally continuous conducting structures like the vacuum vessel and the cryostat with large poloidal cross-section and any other poloidal field (PF) coil sitting idle on the machine are broken up into a large number of co-axial toroidal current carrying filaments. The inductance matrix for this large set of toroidal current carrying conductors is calculated using the standard Green's function and the induced currents are evaluated for the OT waveform of each plasma discharge. Consistency of this filament model is cross-checked with the 11 in-vessel and 12 out-vessel toroidal flux loop signals in SST-1. Resistances of the filaments are adjusted to reproduce the experimental measurements of these flux loops in pure OT shots and shots with OT and vertical field (BV). Such shots are taken routinely in SST-1 without the fill gas to cross-check the consistency of the filament model. A Grad-Shafranov (GS) equation solver, named as IPREQ, has been developed in IPR to reconstruct the plasma equilibrium through searching for the best-fit current density profile. Ohmic transformer current (OT), vertical field coil current (BV), currents in the passive filaments along with the plasma pressure (p) and current (I p ) profiles are used as inputs to the IPREQ

  14. Eddy-resolving 1/10° model of the World Ocean

    Science.gov (United States)

    Ibrayev, R. A.; Khabeev, R. N.; Ushakov, K. V.

    2012-02-01

    The first results on simulating the intra-annual variability of the World Ocean circulation by use of the eddy-resolving model are considered. For this purpose, a model of the World Ocean with a 1/10° horizontal resolution and 49 vertical levels was developed (a 1/10 × 1/10 × 49 model of the World Ocean). This model is based on the traditional system of three-dimensional equations of the large-scale dynamics of the ocean and boundary conditions with an explicit allowance for water fluxes on the free surface of the ocean. The equations are written in the tripolar coordinate system. The numerical method is based on the separation of the barotropic and baroclinic components of the solution. Discretization in time is implemented using explicit schemes allowing effective parallelization for a large number of processors. The model uses the sub-models of the boundary layer of the atmosphere and the submodel of sea-ice thermodynamics. The model of the World Ocean was developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS) and the P.P. Shirshov Institute of Oceanogy (IO RAS). The formulation of the problem of simulating the intra-annual variability of thermohydrodynamic processes of the World Ocean and the parameterizations that were used are considered. In the numerical experiment, the temporal evolution of the atmospheric effect is determined by the normal annual cycle according to the conditions of the international Coordinated Ocean-Ice Reference Experiment (CORE-I). The calculation was carried out on a multiprocessor computer with distributed memory; 1601 computational cores were used. The presented analysis demonstrates that the obtained results are quite satisfactory when compared to the results that were obtained by other eddy-resolving models of the global ocean. The analysis of the model solution is, to a larger extent, of a descriptive character. A detailed analysis of the results is to be presented in following works

  15. Data assimilation of a ten-day period during June 1993 over the Southern Great Plains Site using a nested mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Dudhia, J.; Guo, Y.R. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative processes in these models. Since an observational network of practical size cannot be used alone to characterize the Cloud and Radiation Testbed (CART) site`s 3D structure and time development, data assimilation using the enhanced observations together with a mesoscale model is used to give a full 4D analysis at high resolution. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been applied over a ten-day continuous period in a triple-nested mode with grid sizes of 60, 20 and 6.67 in. The outer domain covers the United States` 48 contiguous states; the innermost is a 480-km square centered on Lamont, Oklahoma. A simulation has been run with data assimilation using the Mesoscale Analysis and Prediction System (MAPS) 60-km analyses from the Forecast Systems Laboratory (FSL) of the National Ocean and Atmospheric Administration (NOAA). The nested domains take boundary conditions from and feed back continually to their parent meshes (i.e., they are two-way interactive). As reported last year, this provided a simulation of the basic features of mesoscale events over the CART site during the period 16-26 June 1993 when an Intensive Observation Period (IOP) was under way.

  16. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.

    2014-01-01

    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  17. Simulating an extreme over-the-horizon optical propagation event over Lake Michigan using a coupled mesoscale modeling and ray tracing framework

    NARCIS (Netherlands)

    Basu, S.

    2017-01-01

    Accurate simulation and forecasting of over-the-horizon propagation events are essential for various civilian and defense applications. We demonstrate the prowess of a newly proposed coupled mesoscale modeling and ray tracing framework in reproducing such an event. Wherever possible, routinely

  18. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Roualt, M

    2016-10-01

    Full Text Available Sea-surface temperature (SST), altimetry derived sea-level anomalies (SLA) and surface current are used south of the Agulhas Current to identify warm core mesoscale ocean eddies presenting a distinct SST perturbation superior to 1(supo...

  19. The influence of mesoscale and submesoscale circulation on sinking particles in the northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Guangpeng Liu

    2018-04-01

    Full Text Available Mesoscale eddies and fronts in the ocean greatly impact lateral transport and in turn the trajectories of sinking particles. Such influence was explored for April and October 2012 in the Gulf of Mexico using numerical simulations performed with a regional model at 1-km horizontal resolution. Results are compared qualitatively to field samples from two sediment traps located at GC600 (27°22.5 N, 90°30.7 W and AT357 (27°31.5 N, 89°42.6 W, 81 km apart. In April the traps collected a comparable amount of material, while in October the flux at GC600 greatly exceeded that at AT357. Through inverse calculations, several thousand particle trajectories were reconstructed multiple times from the ocean surface to the depth of the traps (approximately 1,000 m using a range of sinking velocities, 20–100 m d–1. Taken together, model results and trap data indicate that cross-shore transport of riverine input induced by mesoscale eddies, and convergence and divergence processes at the scale of a few kilometers, significantly impact the trajectory of sinking particles. The large majority of modeled particles reach the bottom faster than would be expected by their sinking speeds alone. This finding is associated with submesoscale-induced horizontal convergence in the mixed layer that aggregates particles preferentially in downwelling regions, accelerating their descent. Furthermore, this study confirms that the cone of influence of vertical fluxes is highly variable in both space and time in the presence of an energetic eddy field, especially for particles with sinking velocity of 50 m d–1 or less. It also demonstrates that the variability of vertical fluxes in the Gulf of Mexico is highly complex and can be understood only by considering the mesoscale circulation and seasonal cycle of primary productivity, which in turn are linked to riverine inputs, wind forcing and the seasonal cycle of the mixed-layer depth.

  20. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  1. Three-dimensional eddy current solution of a polyphase machine test model (abstract)

    Science.gov (United States)

    Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado

    1994-05-01

    This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.

  2. Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

    International Nuclear Information System (INIS)

    Zhang, Jian Hai; Song, Sung Jin; Kim, Woong Ji; Kim, Hak Joon; Chung, Jong Duk

    2011-01-01

    Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT

  3. Angular approach combined to mechanical model for tool breakage detection by eddy current sensors

    Science.gov (United States)

    Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.

    2014-02-01

    The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.

  4. Modeling of mesoscale dispersion effect on the piezoresistivity of carbon nanotube-polymer nanocomposites via 3D computational multiscale micromechanics methods

    International Nuclear Information System (INIS)

    Ren, Xiang; Seidel, Gary D; Chaurasia, Adarsh K; Oliva-Avilés, Andrés I; Ku-Herrera, José J; Avilés, Francis

    2015-01-01

    In uniaxial tension and compression experiments, carbon nanotube (CNT)-polymer nanocomposites have demonstrated exceptional mechanical and coupled electrostatic properties in the form of piezoresistivity. In order to better understand the correlation of the piezoresistive response with the CNT dispersion at the mesoscale, a 3D computational multiscale micromechanics model based on finite element analysis is constructed to predict the effective macroscale piezoresistive response of CNT/polymer nanocomposites. The key factors that may contribute to the overall piezoresistive response, i.e. the nanoscale electrical tunneling effect, the inherent CNT piezoresistivity and the CNT mesoscale network effect are incorporated in the model based on a 3D multiscale mechanical–electrostatic coupled code. The results not only explain how different nanoscale mechanisms influence the overall macroscale piezoresistive response through the mesoscale CNT network, but also give reason and provide bounds for the wide range of gauge factors found in the literature offering insight regarding how control of the mesoscale CNT networks can be used to tailor nanocomposite piezoresistive response. (paper)

  5. Development of a 3D electromagnetic model for eddy current tubing inspection application to steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Pichenot, G.; Premel, D.; Sollier, T. [CEA Saclay, DRT/DECS, 91 - Gif-sur-Yvette (France)

    2003-10-01

    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws. (authors)

  6. Modeling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data

    Science.gov (United States)

    Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen

    2013-01-01

    We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...

  7. Modeling the flow in a 90 deg. rectangular duct using one Reynolds-stress and two eddy-viscosity models

    International Nuclear Information System (INIS)

    Yakinthos, K.; Vlahostergios, Z.; Goulas, A.

    2008-01-01

    A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions

  8. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.

  9. Hybrid Large Eddy Simulation / Reynolds Averaged Navier-Stokes Modeling in Directed Energy Applications

    Science.gov (United States)

    Zilberter, Ilya Alexandrovich

    In this work, a hybrid Large Eddy Simulation / Reynolds-Averaged Navier Stokes (LES/RANS) turbulence model is applied to simulate two flows relevant to directed energy applications. The flow solver blends the Menter Baseline turbulence closure near solid boundaries with a Lenormand-type subgrid model in the free-stream with a blending function that employs the ratio of estimated inner and outer turbulent length scales. A Mach 2.2 mixing nozzle/diffuser system representative of a gas laser is simulated under a range of exit pressures to assess the ability of the model to predict the dynamics of the shock train. The simulation captures the location of the shock train responsible for pressure recovery but under-predicts the rate of pressure increase. Predicted turbulence production at the wall is found to be highly sensitive to the behavior of the RANS turbulence model. A Mach 2.3, high-Reynolds number, three-dimensional cavity flow is also simulated in order to compute the wavefront aberrations of an optical beam passing thorough the cavity. The cavity geometry is modeled using an immersed boundary method, and an auxiliary flat plate simulation is performed to replicate the effects of the wind-tunnel boundary layer on the computed optical path difference. Pressure spectra extracted on the cavity walls agree with empirical predictions based on Rossiter's formula. Proper orthogonal modes of the wavefront aberrations in a beam originating from the cavity center agree well with experimental data despite uncertainty about in flow turbulence levels and boundary layer thicknesses over the wind tunnel window. Dynamic mode decomposition of a planar wavefront spanning the cavity reveals that wavefront distortions are driven by shear layer oscillations at the Rossiter frequencies; these disturbances create eddy shocklets that propagate into the free-stream, creating additional optical wavefront distortion.

  10. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  11. A Novel Observation-Guided Approach for Evaluating Mesoscale Convective Systems Simulated by the DOE ACME Model

    Science.gov (United States)

    Feng, Z.; Ma, P. L.; Hardin, J. C.; Houze, R.

    2017-12-01

    Mesoscale convective systems (MCSs) are the largest type of convective storms that develop when convection aggregates and induces mesoscale circulation features. Over North America, MCSs contribute over 60% of the total warm-season precipitation and over half of the extreme daily precipitation in the central U.S. Our recent study (Feng et al. 2016) found that the observed increases in springtime total and extreme rainfall in this region are dominated by increased frequency and intensity of long-lived MCSs*. To date, global climate models typically do not run at a resolution high enough to explicitly simulate individual convective elements and may not have adequate process representations for MCSs, resulting in a large deficiency in projecting changes of the frequency of extreme precipitation events in future climate. In this study, we developed a novel observation-guided approach specifically designed to evaluate simulated MCSs in the Department of Energy's climate model, Accelerated Climate Modeling for Energy (ACME). The ACME model has advanced treatments for convection and subgrid variability and for this study is run at 25 km and 100 km grid spacings. We constructed a robust MCS database consisting of over 500 MCSs from 3 warm-season observations by applying a feature-tracking algorithm to 4-km resolution merged geostationary satellite and 3-D NEXRAD radar network data over the Continental US. This high-resolution MCS database is then down-sampled to the 25 and 100 km ACME grids to re-characterize key MCS properties. The feature-tracking algorithm is adapted with the adjusted characteristics to identify MCSs from ACME model simulations. We demonstrate that this new analysis framework is useful for evaluating ACME's warm-season precipitation statistics associated with MCSs, and provides insights into the model process representations related to extreme precipitation events for future improvement. *Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson

  12. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2016-05-01

    Full Text Available Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB.In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  13. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    Science.gov (United States)

    Kreibich, Heidi; Schröter, Kai; Merz, Bruno

    2016-05-01

    Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  14. Reduced fractal model for quantitative analysis of averaged micromotions in mesoscale: Characterization of blow-like signals

    International Nuclear Information System (INIS)

    Nigmatullin, Raoul R.; Toboev, Vyacheslav A.; Lino, Paolo; Maione, Guido

    2015-01-01

    Highlights: •A new approach describes fractal-branched systems with long-range fluctuations. •A reduced fractal model is proposed. •The approach is used to characterize blow-like signals. •The approach is tested on data from different fields. -- Abstract: It has been shown that many micromotions in the mesoscale region are averaged in accordance with their self-similar (geometrical/dynamical) structure. This distinctive feature helps to reduce a wide set of different micromotions describing relaxation/exchange processes to an averaged collective motion, expressed mathematically in a rather general form. This reduction opens new perspectives in description of different blow-like signals (BLS) in many complex systems. The main characteristic of these signals is a finite duration also when the generalized reduced function is used for their quantitative fitting. As an example, we describe quantitatively available signals that are generated by bronchial asthmatic people, songs by queen bees, and car engine valves operating in the idling regime. We develop a special treatment procedure based on the eigen-coordinates (ECs) method that allows to justify the generalized reduced fractal model (RFM) for description of BLS that can propagate in different complex systems. The obtained describing function is based on the self-similar properties of the different considered micromotions. This kind of cooperative model is proposed here for the first time. In spite of the fact that the nature of the dynamic processes that take place in fractal structure on a mesoscale level is not well understood, the parameters of the RFM fitting function can be used for construction of calibration curves, affected by various external/random factors. Then, the calculated set of the fitting parameters of these calibration curves can characterize BLS of different complex systems affected by those factors. Though the method to construct and analyze the calibration curves goes beyond the scope

  15. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy

    Science.gov (United States)

    Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.

  16. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NARCIS (Netherlands)

    Moonen, P.; Gromke, C.B.; Dorer, V.

    2013-01-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are

  17. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Preliminary Results with Very Severe Cyclonic Storm Nargis (2008)

    Science.gov (United States)

    Shen, B.; Tao, W.; Atlas, R.

    2008-12-01

    Very Severe Cyclonic Storm Nargis, the deadliest named tropical cyclone (TC) in the North Indian Ocean Basin, devastated Burma (Myanmar) in May 2008, causing tremendous damage and numerous fatalities. An increased lead time in the prediction of TC Nargis would have increased the warning time and may therefore have saved lives and reduced economic damage. Recent advances in high-resolution global models and supercomputers have shown the potential for improving TC track and intensity forecasts, presumably by improving multi-scale simulations. The key but challenging questions to be answered include: (1) if and how realistic, in terms of timing, location and TC general structure, the global mesoscale model (GMM) can simulate TC genesis and (2) under what conditions can the model extend the lead time of TC genesis forecasts. In this study, we focus on genesis prediction for TCs in the Indian Ocean with the GMM. Preliminary real-data simulations show that the initial formation and intensity variations of TC Nargis can be realistically predicted at a lead time of up to 5 days. These simulations also suggest that the accurate representations of a westerly wind burst (WWB) and an equatorial trough, associated with monsoon circulations and/or a Madden-Julian Oscillation (MJO), are important for predicting the formation of this kind of TC. In addition to the WWB and equatorial trough, other favorable environmental conditions will be examined, which include enhanced monsoonal circulation, upper-level outflow, low- and middle-level moistening, and surface fluxes.

  18. Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling

    Directory of Open Access Journals (Sweden)

    F. Fierli

    2011-01-01

    Full Text Available We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that convection can influence the composition of the upper troposphere above the level of main outflow for an event of deep convection close to the observation site. Model analysis also shows that deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area has a non negligible role in determining TTL composition.

  19. Radiation-induced aging of PDMS Elastomer TR-55: a summary of constitutive, mesoscale, and population-based models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dinh, L. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-16

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-, thermal-, and electrical barriers. External factors like mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a controlled manner. In this report we summarize our modeling efforts on a polysiloxane elastomer TR-55, which is an important component in several of our systems, and representative of a wide class of filled rubber materials. The primary aging driver in this work has been γ-radiation, and a variety of modeling approaches have been employed, including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data, including mechanical stress-strain and compression set measurements, as well as MWD measurements using multiquantum NMR.

  20. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  1. Eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)

    2004-02-15

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.

  2. Eddy current testing

    International Nuclear Information System (INIS)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan; Shin, Young Kil

    2004-02-01

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants

  3. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  4. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    Science.gov (United States)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  5. Large-eddy simulation of a turbulent flow over the DrivAer fastback vehicle model

    Science.gov (United States)

    Ruettgers, Mario; Park, Junshin; You, Donghyun

    2017-11-01

    In 2012 the Technical University of Munich (TUM) made realistic generic car models called DrivAer available to the public. These detailed models allow a precise calculation of the flow around a lifelike car which was limited to simplified geometries in the past. In the present study, the turbulent flow around one of the models, the DrivAer Fastback model, is simulated using large-eddy simulation (LES). The goal of the study is to give a deeper physical understanding of highly turbulent regions around the car, like at the side mirror or at the rear end. For each region the contribution to the total drag is worked out. The results have shown that almost 35% of the drag is generated from the car wheels whereas the side mirror only contributes 4% of the total drag. Detailed frequency analysis on velocity signals in each wake region have also been conducted and found 3 dominant frequencies which correspond to the dominant frequency of the total drag. Furthermore, vortical structures are visualized and highly energetic points are identified. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).

  6. On the forcing mechanisms of mesocyclones in the eastern Weddell Sea region, Antarctica: Process studies using a mesoscale numerical model

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2001-04-01

    Full Text Available Development mechanisms of Antarctic mesocyclones in the eastern Weddell Sea area are examined by means of simulations with a mesoscale model using different idealized initial conditions. In one of the experiments, a mesocyclone develops over an area of open water close to the coast of the Antarctic continent. The forcing mechanisms of this mesocyclogenesis are investigated by means of sensitivity studies in which certain physical processes and the relevance of the surface conditions topography, sea surface temperature and sea ice coverage are examined. The sensitivity experiments show that the simulated mesocyclone is forced by an interaction of several forcing mechanisms at different stages of the development rather than by a single mechanism. The topography of the eastern Weddell Sea region and the summertime coastal polynia are shown to be of great importance for the mesocyclogenesis. A suitable synoptic-scale flow is necessary to support the katabatic flow over the sloped ice sheet, and to enhance the generation of cyclonic vorticity due to vertical stretching for the initial mesocyclogenesis. The diabatic process of the convergence of the sensible and latent heat fluxes in the boundary layer over the coastal polynia then becomes the dominant forcing mechanism for the further development of the mesocyclone.

  7. Suitability of Water Harvesting in the Upper Blue Nile Basin, Ethiopia: A First Step towards a Mesoscale Hydrological Modeling Framework

    Directory of Open Access Journals (Sweden)

    Yihun T. Dile

    2016-01-01

    Full Text Available Extreme rainfall variability has been one of the major factors to famine and environmental degradation in Ethiopia. The potential for water harvesting in the Upper Blue Nile Basin was assessed using two GIS-based Multicriteria Evaluation methods: (1 a Boolean approach to locate suitable areas for in situ and ex situ systems and (2 a weighted overlay analysis to classify suitable areas into different water harvesting suitability levels. The sensitivity of the results was analyzed to the influence given to different constraining factors. A large part of the basin was suitable for water harvesting: the Boolean analysis showed that 36% of the basin was suitable for in situ and ex situ systems, while the weighted overlay analysis showed that 6–24% of the basin was highly suitable. Rainfall has the highest influence on suitability for water harvesting. Implementing water harvesting in nonagricultural land use types may further increase the benefit. Assessing water harvesting suitability at the larger catchment scale lays the foundation for modeling of water harvesting at mesoscale, which enables analysis of the potential and implications of upscaling of water harvesting practices for building resilience against climatic shocks. A complete water harvesting suitability study requires socioeconomic analysis and stakeholder consultation.

  8. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  9. Electronic and Magnetic Properties of Transition-Metal Oxide Nanocomposites: A Tight-Binding Modeling at Mesoscale

    Science.gov (United States)

    Tai, Yuan-Yen; Zhu, Jian-Xin

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. In this talk, I will present an overview on our recent efforts in theoretical understanding of the electronic and magnetic properties TMO nanocomposites. In particular, I will introduce our recently developed tight-binding modeling of these properties arising from the interplay of competing interactions at the interfaces of planar and pillar nanocomposites. Our theoretical tool package will provide a unique capability to address the emergent phenomena in TMO nanocomposites and their mesoscale response to such effects like strain and microstructures at the interfaces, and ultimately help establish design principles of new multifunctionality with TMOs. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396, and was supported by the LANL LDRD Program.

  10. Coupled large eddy simulation and discrete element model of bedload motion

    Science.gov (United States)

    Furbish, D.; Schmeeckle, M. W.

    2011-12-01

    We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including

  11. Development of a 3-D model for eddy current testing: application for fastened structures in aeronautics

    International Nuclear Information System (INIS)

    Paillard, S.

    2007-12-01

    One of the Eddy Current Testing issues in aeronautics is the inspection of fastened structures to detect flaws nearby rivets which can grow because of mechanical stress. EADS and the CEA LIST have started a collaborative work with the support of the Ile-de-France Region to develop a simulation tool of EC fastened structures testing, integrated to the CIVA platform, aimed at conceiving testing methods, optimizing and qualifying it. The volume integral method using the Green dyadics formalism has been chosen in order to get a fast resolution of Maxwell equations. A first milestone was to build a simulation model of multilayer structures testing, thanks to the use of the multilayer Green dyads. Because of the rivet volume, 60 times bigger than the one of a typical flaw, a large number of discretization cells are needed. Therefore an iterative method has been developed in order to numerically solve large calculation zones. Finally, the flaw response simulation mostly has to cope with a scale issue between the size of the rivet and the one of the flaw, the latter being much smaller in a direction than the former. The whole model has been experimentally validated and compared to other simulation models at the important development steps: multilayer configuration, iteration resolution, and flaw signature. (author)

  12. An improved PSO-SVM model for online recognition defects in eddy current testing

    Science.gov (United States)

    Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin

    2013-12-01

    Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.

  13. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.; Arbic, Brian K.; Chassignet, Eric P.; Coward, Andrew C.; Maltrud, Mathew; Merryfield, William J.; Srinivasan, Ashwanth; Varghese, Anson

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between

  14. Modeling and Control of Large Eddies Generated by Maneuvering Self-Propelled Bodies in Stratified Fluids

    National Research Council Canada - National Science Library

    Voropayev, Sergey

    2001-01-01

    .... It is also shown that for vertical background shear typical for the upper ocean, the shear itself only partly suppresses the eddy formation and reduces their decay times, which still remain significantly large...

  15. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  16. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  17. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  18. Improvement of AEP Predictions Using Diurnal CFD Modelling with Site-Specific Stability Weightings Provided from Mesoscale Simulation

    International Nuclear Information System (INIS)

    Hristov, Y; Oxley, G; Žagar, M

    2014-01-01

    The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-ε turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies

  19. Mesoscale Modeling of Smoke Particles Distribution and Their Radiative Feedback over Northern Sub-Saharan African Region

    Science.gov (United States)

    Yue, Y.; Wang, J.; Ichoku, C. M.; Ellison, L.

    2015-12-01

    Stretching from southern boundary of Sahara to the equator and expanding west to east from Atlantic Ocean coasts to the India Ocean coasts, the northern sub-Saharan African (NSSA) region has been subject to intense biomass burning. Comprised of savanna, shrub, tropical forest and a number of agricultural crops, the extensive fires burn belt covers central and south of NSSA during dry season (from October to March) contributes to one of the highest biomass burning rate per km2 in the world. Due to smoke particles' absorption effects of solar radiation, they can modify the surface and atmosphere temperature and thus change atmospheric stability, height of the boundary layer, regional atmospheric circulation, evaporation rate, cloud formation, and precipitation. Hence, smoke particles emitted from biomass burning over NSSA region has a significant influence to the air quality, weather and climate variability. In this study, the first version of this Fire Energetics and Emissions Research (FEER.v1) emissions of several smoke constituents including light-absorbing organic carbon (OC) and black carbon (BC) are applied to a state-of-science meteorology-chemistry model as NOAA Weather Research and Forecasting Model with Chemistry (WRF-Chem). We analyzed WRF-Chem simulations of surface and vertical distribution of various pollutants and their direct radiative effects in conjunction with satellite observation data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIPSO) to strengthen the importance of combining space measured emission products like FEER.v1 emission inventory with mesoscale model over intense biomass burning region, especially in area where ground-based air-quality and radiation-related observations are limited or absent.

  20. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  1. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.

    Science.gov (United States)

    Zhang, Qing; Beard, Daniel A; Schlick, Tamar

    2003-12-01

    minimizer) is efficient and does not depend on the initial assigned values, and that the residual is acceptable when the distance to the model surface is close to, or larger than, the Debye length. We illustrate applications of DiSCO's model-building procedure to chromatin folding and supercoiled DNA bound to Hin and Fis proteins. DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale models are appropriate, to yield a resolution between the all-atom representative and the polymer level. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 2063-2074, 2003

  2. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.

    2011-11-15

    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as Energinet.dk, project no. 2007-1-7141. (Author)

  3. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  4. The formation of a cold-core eddy in the East Australian Current

    Science.gov (United States)

    Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2016-02-01

    Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.

  5. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  6. Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-03-01

    Full Text Available Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE, and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and

  7. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    Science.gov (United States)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while

  8. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    Science.gov (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  9. An intercomparison of mesoscale models at simple sites for wind energy applications

    DEFF Research Database (Denmark)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria

    2017-01-01

    of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated sing a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft ( ... %) and larger biases closer to the surface over land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that using a grid spacing larger than 3 km...... decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction....

  10. Large eddy simulation modeling of particle-laden flows in complex terrain

    Science.gov (United States)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  11. A meso-scale model to study the compressive strength of woven carbon fiber reinforced plastics

    NARCIS (Netherlands)

    Schormans, J.M.J.; Remmers, J.J.C.; Wilson, W.; Deshpande, V.S.

    2016-01-01

    Modeling kink-band formation in woven composites using a detailed micro-model is numerically expensive. In order to reduce the computational resources, a method to homogenize fiber-tows is proposed which uses a rules of mixture approach. The method is tested by comparing the stiffness and

  12. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  13. Turbulence modeling for flows around convex features giving rapid eddy distortion

    International Nuclear Information System (INIS)

    Tucker, P.G.; Liu, Y.

    2007-01-01

    Reynolds averaged Navier-Stokes model performances in the stagnation and wake regions for turbulent flows with relatively large Lagrangian length scales (generally larger than the scale of geometrical features) approaching small cylinders (both square and circular) is explored. The effective cylinder (or wire) diameter based Reynolds number, Re W ≤ 2.5 x 10 3 . The following turbulence models are considered: a mixing-length; standard Spalart and Allmaras (SA) and streamline curvature (and rotation) corrected SA (SARC); Secundov's ν t -92; Secundov et al.'s two equation ν t -L; Wolfshtein's k-l model; the Explicit Algebraic Stress Model (EASM) of Abid et al.; the cubic model of Craft et al.; various linear k-ε models including those with wall distance based damping functions; Menter SST, k-ω and Spalding's LVEL model. The use of differential equation distance functions (Poisson and Hamilton-Jacobi equation based) for palliative turbulence modeling purposes is explored. The performance of SA with these distance functions is also considered in the sharp convex geometry region of an airfoil trailing edge. For the cylinder, with Re W ∼ 2.5 x 10 3 the mixing length and k-l models give strong turbulence production in the wake region. However, in agreement with eddy viscosity estimates, the LVEL and Secundov ν t -92 models show relatively little cylinder influence on turbulence. On the other hand, two equation models (as does the one equation SA) suggest the cylinder gives a strong turbulence deficit in the wake region. Also, for SA, an order or magnitude cylinder diameter decrease from Re W = 2500 to 250 surprisingly strengthens the cylinder's disruptive influence. Importantly, results for Re W W = 250 i.e. no matter how small the cylinder/wire its influence does not, as it should, vanish. Similar tests for the Launder-Sharma k-ε, Menter SST and k-ω show, in accordance with physical reality, the cylinder's influence diminishing albeit slowly with size. Results

  14. High-Resolution Mesoscale Simulations of the 6-7 May 2000 Missouri Flash Flood: Impact of Model Initialization and Land Surface Treatment

    Science.gov (United States)

    Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.

    2004-01-01

    High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.

  15. Numerical experiments with assimilation of the mean and unresolved meteorological conditions into large-eddy simulation model

    OpenAIRE

    Esau, Igor

    2010-01-01

    Micrometeorology, city comfort, land use management and air quality monitoring increasingly become important environmental issues. To serve the needs, meteorology needs to achieve a serious advance in representation and forecast on micro-scales (meters to 100 km) called meteorological terra incognita. There is a suitable numerical tool, namely, the large-eddy simulation modelling (LES) to support the development. However, at present, the LES is of limited utility for applications. The study a...

  16. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    Science.gov (United States)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  17. Mesoscale atmospheric modeling of accidental toxic and radioactive releases for emergency response at SRS

    International Nuclear Information System (INIS)

    O'Steen, B.L.; Fast, J.D.

    1992-01-01

    In August of 1991, the Environmental Transport Group (ETG) began the development of an advanced Emergency Response (ER) system based upon the Colorado State University Regional Atmospheric Modeling System 1 (RAMS). This model simulates the three-dimensional, time-dependent, flow field and thermodynamic structure of the planetary boundary layer (PBL). A companion Lagrangian Particle Dispersion Model 2 (LPDM) simulates contaminant transport based on the flow and turbulence fields generated by RAMS. The current report describes progress to date on this project in the areas of data development, data assimilation, and operational (real-time) procedures. In particular, a diagnostic capability for simulating contaminant transport is demonstrated

  18. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  19. Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

    Directory of Open Access Journals (Sweden)

    Wojtas Krzysztof

    2015-06-01

    Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.

  20. Numerical modeling of a downwind-developing mesoscale convective system over the Masurian Lake District

    Directory of Open Access Journals (Sweden)

    Wójcik Damian K.

    2017-01-01

    Full Text Available Meteorological data concerning the severe convective system from the 21 August 2007 are analyzed in this study. Compiled information allows to understand the reason for the storm development and to identify its fundamental convective mode. Next, the EULAG model is utilized to perform an idealized test that shows a downwind–developing storm growth in an environment comparable to the one that was observed on the 21 August 2007 in the Masurian Lake District. Finally, the COSMO numerical weather prediction model is applied to reconstruct the storm development. The experiment is carried out for various computational grids having the horizontal grid length between 7.0 and 0.55 km. It turns out that the COSMO model is capable in simulating storms of that type. Since the model is used for operational weather forecasting in Poland the evaluation of this skill contributes to the increase of public safety.

  1. Mesoscale atmospheric modeling of the July 12, 1992 tritium release from the Savannah River Site

    International Nuclear Information System (INIS)

    Fast, J.D.; O'Steen, B.L.; Addis, R.P.

    1992-01-01

    In August of 1991, the Environmental Transport Group (ETG) began the development of an advanced Emergency Response (ER) system based upon the Colorado State University Regional Atmospheric Modeling System (RAMS). This model simulates the three-dimensional, time-dependent, flow field and thermodynamic structure of the planetary boundary layer (PBL). A companion Lagrangian Particle Dispersion Model (LPDM) simulates contaminant transport based on the flow and turbulence fields generated by RAMS. This paper describes the performance of the advanced ER system in predicting transport and diffusion near the SRS when compared to meteorological and sampling data taken during the July 12, 1992 tritium release. Since PUFF/PLUME and 2DPUF are two Weather INformation and Display (WIND) System atmospheric models that were used to predict the transport and diffusion of the plume at the time of the release, the results from the advanced ER system are also compared to those produced by PUFF/PLUME and 2DPUF

  2. Application of two phosphorus models with different complexities in a mesoscale river catchment

    Directory of Open Access Journals (Sweden)

    B. Guse

    2007-06-01

    Full Text Available The water balance and phosphorus inputs of surface waters of the Weiße Elster catchment, Germany, have been quantified using the models GROWA/MEPhos and SWAT. A comparison of the model results shows small differences in the mean long-term total runoff for the entire study area. All relevant pathways of phosphorus transport were considered in MEPhos with phosphorus inputs resulting to about 65% from point sources. SWAT focuses on agricultural areas and estimates a phosphorus input of about 60% through erosion. The mean annual phosphorus input from erosion calculated with SWAT is six times higher than the estimation with MEPhos due to the differing model concepts. This shows the uncertainty contributed by the modelling description of phosphorus pathways.

  3. Idealized Mesoscale Model Simulations of Open Cellular Convection Over the Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Kelly, Mark C.

    2012-01-01

    The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized...... version of the model, which excluded the effects of topography, surface inhomogeneities and large-scale weather forcing. Cells with an average diameter of 17.4 km developed. Simulations both with and without a capping inversion were made, and the cell-scale kinetic energy budget was calculated for each...... case. By considering all sources of explicit diffusion in the model, the budgets were balanced. In comparison with previous work based on observational studies, the use of three-dimensional, gridded model data afforded the possibility of calculating all terms in the budgets, which showed...

  4. Network-based Modeling of Mesoscale Catchments - The Hydrology Perspective of Glowa-danube

    Science.gov (United States)

    Ludwig, R.; Escher-Vetter, H.; Hennicker, R.; Mauser, W.; Niemeyer, S.; Reichstein, M.; Tenhunen, J.

    Within the GLOWA initiative of the German Ministry for Research and Educa- tion (BMBF), the project GLOWA-Danube is funded to establish a transdisciplinary network-based decision support tool for water related issues in the Upper Danube wa- tershed. It aims to develop and validate integration techniques, integrated models and integrated monitoring procedures and to implement them in the network-based De- cision Support System DANUBIA. An accurate description of processes involved in energy, water and matter fluxes and turnovers requires an intense collaboration and exchange of water related expertise of different scientific disciplines. DANUBIA is conceived as a distributed expert network and is developed on the basis of re-useable, refineable, and documented sub-models. In order to synthesize a common understand- ing between the project partners, a standardized notation of parameters and functions and a platform-independent structure of computational methods and interfaces has been established using the Unified Modeling Language UML. DANUBIA is object- oriented, spatially distributed and raster-based at its core. It applies the concept of "proxels" (Process Pixel) as its basic object, which has different dimensions depend- ing on the viewing scale and connects to its environment through fluxes. The presented study excerpts the hydrological view point of GLOWA-Danube, its approach of model coupling and network based communication (using the Remote Method Invocation RMI), the object-oriented technology to simulate physical processes and interactions at the land surface and the methodology to treat the issue of spatial and temporal scal- ing in large, heterogeneous catchments. The mechanisms applied to communicate data and model parameters across the typical discipline borders will be demonstrated from the perspective of a land-surface object, which comprises the capabilities of interde- pendent expert models for snowmelt, soil water movement, runoff formation, plant

  5. Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model

    Directory of Open Access Journals (Sweden)

    R. Marsh

    2010-07-01

    Full Text Available In a sensitivity experiment, an eddy-permitting ocean general circulation model is forced with realistic freshwater fluxes from the Greenland Ice Sheet, averaged for the period 1991–2000. The fluxes are obtained with a mass balance model for the ice sheet, forced with the ERA-40 reanalysis dataset. The freshwater flux is distributed around Greenland as an additional term in prescribed runoff, representing seasonal melting of the ice sheet and a fixed year-round iceberg calving flux, for 8.5 model years. By adding Greenland freshwater fluxes with realistic geographical distribution and seasonality, the experiment is designed to investigate the oceanic response to a sudden and spatially/temporally uniform amplification of ice sheet melting and discharge, rather than localized or gradual changes in freshwater flux. The impacts on regional hydrography and circulation are investigated by comparing the sensitivity experiment to a control experiment, without additional fluxes. By the end of the sensitivity experiment, the majority of additional fresh water has accumulated in Baffin Bay, and only a small fraction has reached the interior of the Labrador Sea, where winter mixed layer depth is sensitive to small changes in salinity. As a consequence, the impact on large-scale circulation is very slight. An indirect impact of strong freshening off the west coast of Greenland is a small anti-cyclonic component to the circulation around Greenland, which opposes the wind-driven cyclonic circulation and reduces net southward flow through the Canadian Archipelago by ~10%. Implications for the post-2000 acceleration of Greenland mass loss are discussed.

  6. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  7. MESOI Version 2.0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables

  8. Numerical modelling as a cost-reduction tool for probability of detection of bolt hole eddy current testing

    Science.gov (United States)

    Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.

    2011-03-01

    Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.

  9. Random variability in mesoscale wind observations and implications for diffusion models

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S.R. [Sigma Research Corp., Concord, MA (United States)

    1994-12-31

    The investigation reported in this paper grew out of a preliminary analysis of methods by which regional air quality models such as the Regional Oxidant Model account for horizontal transport and diffusion. It was discovered that there is a variety of often inconsistent methods used to parameterize horizontal diffusion at meso- and regional scales, and the time seemed ripe to review and compare and contrast these schemes. This paper provides a brief overview of the major issues that were uncovered and lists a few specific examples of the technical approaches that are used. Subsequent sections cover the basic physics of horizontal diffusion, the characteristics of observed wind fields, and methods of parameterizing horizontal diffusion in air quality models.

  10. Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation

    Directory of Open Access Journals (Sweden)

    Prashant K. Srivastava

    2017-10-01

    Full Text Available Reference Evapotranspiration (ETo and soil moisture deficit (SMD are vital for understanding the hydrological processes, particularly in the context of sustainable water use efficiency in the globe. Precise estimation of ETo and SMD are required for developing appropriate forecasting systems, in hydrological modeling and also in precision agriculture. In this study, the surface temperature downscaled from Weather Research and Forecasting (WRF model is used to estimate ETo using the boundary conditions that are provided by the European Center for Medium Range Weather Forecast (ECMWF. In order to understand the performance, the Hamon’s method is employed to estimate the ETo using the temperature from meteorological station and WRF derived variables. After estimating the ETo, a range of linear and non-linear models is utilized to retrieve SMD. The performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency (NSE indicates that the exponential model (RMSE = 0.226; %Bias = −0.077; NSE = 0.616 is efficient for SMD estimation by using the Observed ETo in comparison to the other linear and non-linear models (RMSE range = 0.019–0.667; %Bias range = 2.821–6.894; NSE = 0.013–0.419 used in this study. On the other hand, in the scenario where SMD is estimated using WRF downscaled meteorological variables based ETo, the linear model is found promising (RMSE = 0.017; %Bias = 5.280; NSE = 0.448 as compared to the non-linear models (RMSE range = 0.022–0.707; %Bias range = −0.207–−6.088; NSE range = 0.013–0.149. Our findings also suggest that all the models are performing better during the growing season (RMSE range = 0.024–0.025; %Bias range = −4.982–−3.431; r = 0.245–0.281 than the non−growing season (RMSE range = 0.011–0.12; %Bias range = 33.073–32.701; r = 0.161–0.244 for SMD estimation.

  11. Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei [University of Nottingham, Department of Mechanical, Materials and Manufacturing Engineering, Nottingham (United Kingdom); Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, Shanghai (China); Cui, Zhenshan [Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, Shanghai (China); Ou, Hengan [University of Nottingham, Department of Mechanical, Materials and Manufacturing Engineering, Nottingham (United Kingdom); Long, Hui [University of Sheffield, Department of Mechanical Engineering, Sheffield (United Kingdom)

    2016-10-15

    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the two-dimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters. (orig.)

  12. The dynamic background of a non-hydrostatic mesoscale model of the atmospheric circulation

    International Nuclear Information System (INIS)

    Kapitza, H.

    1987-01-01

    The anelastically approximated basic equations are transformed into a rectangular computational domain. The integration is performed with the McCormack-Scheme, while the pressure is calculated by a CG-method (KAPITZA and EPPEL, 1987). Useful boundary conditions are discussed. The model is tested with stratified flow over isolated hills. Analytic solutions derived from the linearized equations are compared with results of the linear model version. Very good agreement is found as long as wave reflexions at the upper boundary are prevented. With 27 figs [de

  13. Role of land state in a high resolution mesoscale model for ...

    Indian Academy of Sciences (India)

    13

    2015-10-02

    Oct 2, 2015 ... School of Earth, Ocean and Climate Sciences ... Though global models predicted the large scale event, but they had failed to predict realistic ... this study is to assess the impact of land state conditions in ...... Chand, R and C Singh 2015 Movements of western disturbance and associated cloud convection J.

  14. Validation of a mesoscale hydrological model in a small-scale forested catchment

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2016-01-01

    Roč. 47, č. 1 (2016), s. 27-41 ISSN 1998-9563 R&D Projects: GA TA ČR TA02021451 Institutional support: RVO:67985874 Keywords : hydrological modelling * small catchment * soil moisture * subsurface lateral flow * SWIM Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.754, year: 2016

  15. The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models

    NARCIS (Netherlands)

    Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M.

    2015-01-01

    The numerical weather prediction of radiation fog is challenging, as many models typically show large biases for the timing of the onset and dispersal of the fog, as well as for its depth and liquid water content. To understand the role of physical processes, i.e. turbulence, radiation, land-surface

  16. Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The aims of this study are to identify the capacities of applying an ecohydrological model for simulating flow and to assess the impact of point and non-point source pollution on nitrate loads in a complex lowland catchment, which has special hydrological characteristics in comparison with those of other catchments. The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants.

    Ecohydrological models like the SWAT model (Soil and Water Assessment Tool are useful tools for simulating nutrient loads in river catchments. Diffuse entries from the agriculture resulting from fertilizers as well as punctual entries from the wastewater treatment plants are implemented in the model set-up.

    The results of this study show good agreement between simulated and measured daily discharges with a Nash-Sutcliffe efficiency and a correlation coefficient of 0.76 and 0.88 for the calibration period (November 1998 to October 2004; 0.75 and 0.92 for the validation period (November 2004 to December 2007. The model efficiency for daily nitrate loads is 0.64 and 0.5 for the calibration period (June 2005 to May 2007 and the validation period (June 2007 to December 2007, respectively. The study revealed that SWAT performed satisfactorily in simulating daily flow and nitrate loads at the lowland catchment in Northern Germany.

  17. Mesoscale modeling of smoke transport over the South Asian maritime continent: vertical distributions and topographic effect

    Science.gov (United States)

    Ge, C.; Wang, J.; Yang, Z.; Hyer, E. J.; Reid, J. S.; Chew, B.; Mahamod, M.

    2011-12-01

    The online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) is used in conjunction with the FLAMBE MODIS-based biomass burning emissions to simulate the transport of smoke particles over the southeast Asian Maritime Continent (MC, 10°S - 10°N, 90°E-150°E) during September - October 2006 when the moderate El Nino event caused the largest region biomass burning outbreak since 1998. The modeled smoke transport pathway is found to be consistent with the MODIS true color images. Quantitatively, the modeled smoke particle mass can explain ~50% of temporal variability in 24-hour average observed PM10 at most ground stations, with linear correlation coefficients often larger than 0.7. Analysis of CALIOP data shows that smoke aerosols are primarily located within 3.5 km above the surface, and we found that smoke injection height in the model should be at ~800 m above surface to best match CALIOP observations downwind, instead of 2 km as used in the past literature. Comparison of CALIOP data in October 2006 with that in other years (2007-2010) reveals that the peak of aerosol extinction always occurs at ~1 km above surface, but smoke events in 2006 doubled the aerosol extinction from the surface to 3.5 km. Numerical experiments further show that the Tama Abu topography in Malaysia Peninsula has a significant impact on smoke transport and the surface in the vicinity. A conceptual model, based upon our analysis of two-month WRFchem simulation and satellite data, is proposed to explain the meteorological causes for smoke layers above the clouds as seen in the CALIOP data.

  18. Thermomechanical properties of polypropylene-based lightweight composites modeled on the mesoscale

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Darina; Kafka, Vratislav; Vokoun, David; Heller, Luděk; Matějka, L.; Kadeřávek, Lukáš; Pěnčík, J.

    2017-01-01

    Roč. 26, Oct (2017), s. 5166-5172 ISSN 1059-9495 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:68378297 Keywords : building material * composite * creep tests * mesomechanical model * thermal insulation Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.331, year: 2016

  19. A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale

    Science.gov (United States)

    Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel

    2017-11-01

    We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.

  20. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident

    International Nuclear Information System (INIS)

    Talerko, Nikolai

    2005-01-01

    This work is devoted to the reconstruction of time-dependent radioactive contamination fields in the territory of Ukraine in the initial period of the Chernobyl accident using the model of atmospheric transport LEDI (Lagrangian-Eulerian DIffusion model). The modelling results were compared with available 137 Cs air and ground contamination measurement data. The 137 Cs atmospheric transport over the territory of Ukraine was simulated during the first 12 days after the accident (from 26 April to 7 May 1986) using real aerological information and rain measurement network data. The detailed scenario of the release from the accidental unit of the Chernobyl nuclear plant has been built (including time-dependent radioactivity release intensity and time-varied height of the release). The calculations have enabled to explain the main features of spatial and temporal variations of radioactive contamination fields over the territory of Ukraine on the regional scale, including the formation of the major large-scale spots of radioactive contamination caused by dry and wet deposition

  1. Multiscale modeling of dislocation processes in BCC tantalum: bridging atomistic and mesoscale simulations

    International Nuclear Information System (INIS)

    Yang, L H; Tang, M; Moriarty, J A

    2001-01-01

    Plastic deformation in bcc metals at low temperatures and high-strain rates is controlled by the motion of a/2 screw dislocations, and understanding the fundamental atomistic processes of this motion is essential to develop predictive multiscale models of crystal plasticity. The multiscale modeling approach presented here for bcc Ta is based on information passing, where results of simulations at the atomic scale are used in simulations of plastic deformation at mesoscopic length scales via dislocation dynamics (DD). The relevant core properties of a/2 screw dislocations in Ta have been obtained using quantum-based interatomic potentials derived from model generalized pseudopotential theory and an ab-initio data base together with an accurate Green's-function simulation method that implements flexible boundary conditions. In particular, the stress-dependent activation enthalpy for the lowest-energy kink-pair mechanism has been calculated and fitted to a revealing analytic form. This is the critical quantity determining dislocation mobility in the DD simulations, and the present activation enthalpy is found to be in good agreement with the previous empirical form used to explain the temperature dependence of the yield stress

  2. Representation of physiological drought at ecosystem level based on model and eddy covariance measurements

    Science.gov (United States)

    Zhang, Y.; Novick, K. A.; Song, C.; Zhang, Q.; Hwang, T.

    2017-12-01

    Drought and heat waves are expected to increase both in frequency and amplitude, exhibiting a major disturbance to global carbon and water cycles under future climate change. However, how these climate anomalies translate into physiological drought, or ecosystem moisture stress are still not clear, especially under the co-limitations from soil moisture supply and atmospheric demand for water. In this study, we characterized the ecosystem-level moisture stress in a deciduous forest in the southeastern United States using the Coupled Carbon and Water (CCW) model and in-situ eddy covariance measurements. Physiologically, vapor pressure deficit (VPD) as an atmospheric water demand indicator largely controls the openness of leaf stomata, and regulates atmospheric carbon and water exchanges during periods of hydrological stress. Here, we tested three forms of VPD-related moisture scalars, i.e. exponent (K2), hyperbola (K3), and logarithm (K4) to quantify the sensitivity of light-use efficiency to VPD along different soil moisture conditions. The sensitivity indicators of K values were calibrated based on the framework of CCW using Monte Carlo simulations on the hourly scale, in which VPD and soil water content (SWC) are largely decoupled and the full carbon and water exchanging information are held. We found that three K values show similar performances in the predictions of ecosystem-level photosynthesis and transpiration after calibration. However, all K values show consistent gradient changes along SWC, indicating that this deciduous forest is less responsive to VPD as soil moisture decreases, a phenomena of isohydricity in which plants tend to close stomata to keep the leaf water potential constant and reduce the risk of hydraulic failure. Our study suggests that accounting for such isohydric information, or spectrum of moisture stress along different soil moisture conditions in models can significantly improve our ability to predict ecosystem responses to future

  3. Comparison of the new intermediate complex atmospheric research (ICAR) model with the WRF model in a mesoscale catchment in Central Europe

    Science.gov (United States)

    Härer, Stefan; Bernhardt, Matthias; Gutmann, Ethan; Bauer, Hans-Stefan; Schulz, Karsten

    2017-04-01

    Until recently, a large gap existed in the atmospheric downscaling strategies. On the one hand, computationally efficient statistical approaches are widely used, on the other hand, dynamic but CPU-intensive numeric atmospheric models like the weather research and forecast (WRF) model exist. The intermediate complex atmospheric research (ICAR) model developed at NCAR (Boulder, Colorado, USA) addresses this gap by combining the strengths of both approaches: the process-based structure of a dynamic model and its applicability in a changing climate as well as the speed of a parsimonious modelling approach which facilitates the modelling of ensembles and a straightforward way to test new parametrization schemes as well as various input data sources. However, the ICAR model has not been tested in Europe and on slightly undulated terrain yet. This study now evaluates for the first time the ICAR model to WRF model runs in Central Europe comparing a complete year of model results in the mesoscale Attert catchment (Luxembourg). In addition to these modelling results, we also describe the first implementation of ICAR on an Intel Phi architecture and consequently perform speed tests between the Vienna cluster, a standard workstation and the use of an Intel Phi coprocessor. Finally, the study gives an outlook on sensitivity studies using slightly different input data sources.

  4. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.

    Science.gov (United States)

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H

    2014-07-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

  5. Evidence of a southward eddy corridor in the South-West Indian ocean

    CSIR Research Space (South Africa)

    Ansorge, IJ

    2015-09-01

    Full Text Available Mesoscale eddies and meanders have been shown to be one of the dominant sources of flow variability in the world s ocean. One example of an isolated eddy hotspot is the South-West Indian Ridge (SWIR). Several investigations have shown that the SWIR...

  6. Mapping Offshore Winds Around Iceland Using Satellite Synthetic Aperture Radar and Mesoscale Model Simulations

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Nawri, Nikolai

    2015-01-01

    effects, gap flow, coastal barrier jets, and atmospheric gravity waves are not only observed in SAR, but are also modeled well from HARMONIE. Offshore meteorological observations are not available, but wind speed and wind direction measurements from coastal meteorological masts are found to compare well...... to nearby offshore locations observed by SAR. More than 2500 SAR scenes from the Envisat ASAR wide swathmode are used for wind energy resource estimation. The wind energy potential observed from satellite SAR shows high values above 1000 Wm −2 in coastal regions in the south, east, and west, with lower...

  7. Mathematical modeling of a four-stroke resonant engine for micro and mesoscale applications

    Science.gov (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-12-01

    In order to mitigate frictional and leakage losses in small scale engines, a compliant engine design is proposed in which the piston in cylinder arrangement is replaced by a flexible cavity. A physics-based nonlinear lumped-parameter model is derived to predict the performance of a prototype engine. The model showed that the engine performance depends on input parameters, such as heat input, heat loss, and load on the engine. A sample simulation for a reference engine with octane fuel/air ratio of 0.043 resulted in an indicated thermal efficiency of 41.2%. For a fixed fuel/air ratio, higher output power is obtained for smaller loads and vice-versa. The heat loss from the engine and the work done on the engine during the intake stroke are found to decrease the indicated thermal efficiency. The ratio of friction work to indicated work in the prototype engine is about 8%, which is smaller in comparison to the traditional reciprocating engines.

  8. Mesoscale Modeling of Kinetic Phase Behaviors in Mg-B-H (Subcontract Report)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornton, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wood, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-13

    Storage of hydrogen on board vehicles is one of the critical enabling technologies for creating hydrogenfueled transportation systems that can reduce oil dependency and mitigate the long-term effects of fossil fuels on climate change. Stakeholders in developing hydrogen infrastructure are currently focused on highpressure storage at 350 bar and 700 bar, in part because no viable solid-phase storage material has emerged. Nevertheless, solid-state materials, including high-density hydrides, remain of interest because of their unique potential to meet all DOE targets and deliver hydrogen at lower pressures and higher on-board densities. A successful solution would significantly reduce costs and ensure the economic viability of a U.S. hydrogen infrastructure. The Mg(BH4)2-MgB2 system represents a highly promising solution because of its reasonable reaction enthalpy, high intrinsic capacity, and demonstrated reversibility, yet suffers from poor reaction kinetics. This subcontract aims to deliver a phase-field model for the kinetics of the evolution of the relevant phases within the Mg-B-H system during hydrogenation and dehydrogenation. This model will be used within a broader theory, synthesis, and characterization framework to study the properties of geometry-selected nanoparticles of pristine and doped MgB2/Mg(BH4)2 with two aims: (1) understand the intrinsic limitations in (de)hydrogenation; (2) devise strategies for improving thermodynamics and kinetics through nanostructuring.

  9. Screen-level non-GTS data assimilation in a limited-area mesoscale model

    Directory of Open Access Journals (Sweden)

    M. Milelli

    2010-06-01

    Full Text Available The forecast in areas of very complex topography, as for instance the Alpine region, is still a challenge even for the new generation of numerical weather prediction models which aim at reaching the km-scale. The problem is enhanced by a general lack of standard observations, which is even more evident over the southern side of the Alps. For this reason, it would be useful to increase the performance of the mathematical models by locally assimilating non-conventional data. Since in ARPA Piemonte there is the availability of a great number of non-GTS stations, it has been decided to assimilate the 2 m temperature, coming from this dataset, in the very-high resolution version of the COSMO model, which has a horizontal resolution of about 3 km, more similar to the average resolution of the thermometers. Four different weather situations have been considered, ranging from spring to winter, from cloudy to clear sky. The aim of the work is to investigate the effects of the assimilation of non-GTS data in order to create an operational very high-resolution analysis, but also to test the option of running in the future a very short-range forecast starting from these analyses (RUC or Rapid Update Cycle. The results, in terms of Root Mean Square Error, Mean Error and diurnal cycle of some surface variables such as 2 m temperature, 2 m relative humidity and 10 m wind intensity show a positive impact during the assimilation cycle which tends to dissipate a few hours after the end of it. Moreover, the 2 m temperature assimilation has a slightly positive or neutral impact on the vertical profiles of temperature, eventhough some calibration is needed for the precipitation field which is too much perturbed during the assimilation cycle, while it is unaffected in the forecast period. So the stability of the planetary boundary layer, on the one hand, has not been particularly improved by the new-data assimilation, but, on the other hand, it has not been destroyed

  10. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  11. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  12. Models for the cross flow and the turbulent eddy diffusivity in bundles of rods with helical spacers

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1985-01-01

    The fuel elements of a LMFBR type reactor consist of a bundle of rods wrapped by helical wires that work as spacers. The bundle of rods is surrounded by an hexagonal duct. Models for the channel cross flow and for the turbulent eddy diffusivity were developed. In conjunction with these models, the flow redistribution factors permit to estabish a determinist method to calculate the temperature distribution. The obtained results are compared with experimental data available in the literature and with results given by other codes. Although these codes are based on much more complex models, the comparison was very satisfactory. (Author) [pt

  13. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    International Nuclear Information System (INIS)

    Attema, Jisk J; Loriaux, Jessica M; Lenderink, Geert

    2014-01-01

    Observations of extreme (sub-)hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius–Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2° warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2° global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2°. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11–14% per degree, in closer agreement with the observed relation. (paper)

  14. A mesoscale granular model for the mechanical behavior of alloys during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Vernede, Stephane [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland); Alcan Centre de Recherches de Voreppe, ZI Centr' Alp, 725 rue Aristide Berges, BP 27, Voreppe FR-38341 (France)], E-mail: stephane.vernede@alcan.com; Dantzig, Jonathan A. [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland); Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street Urbana, IL 61801 (United States); Rappaz, Michel [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Station 12, Lausanne CH-1015 (Switzerland)

    2009-03-15

    We present a two-dimensional granular model for the mechanical behavior of an ensemble of globular grains during solidification. The grain structure is produced by a Voronoi tessellation based on an array of predefined nuclei. We consider the fluid flow caused by grain movement and solidification shrinkage in the network of channels that is formed by the faces of the grains in the tessellation. We develop the governing equations for the flow rate and pressure drop across each channel when the grains are allowed to move, and we then assemble the equations into a global expression that conserves mass and force in the system. We show that the formulation is consistent with dissipative formulations of non-equilibrium thermodynamics. Several example problems are presented to illustrate the effect of tensile strains and the availability of liquid to feed the deforming microstructure. For solid fractions below g{sub s}=0.97, we find that the fluid is able to feed the deformation at low strain, even if external feeding is not permitted. For solid fractions above g{sub s}=0.97, clusters of grains with 'dry' boundaries form and fluid flow becomes highly localized.

  15. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  16. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling

    DEFF Research Database (Denmark)

    Søgaard, H.; Jensen, N.O.; Bøgh, E.

    2003-01-01

    Within an agricultural landscape of western Denmark, the carbon dioxide exchange was studied throughout a year (April 1998-March 1999). During the growing season, five eddy correlation systems were operated in parallel over some of the more important crops (winter wheat, winter barley, spring...

  17. Subfilter Scale Modelling for Large Eddy Simulation of Lean Hydrogen-Enriched Turbulent Premixed Combustion

    NARCIS (Netherlands)

    Hernandez Perez, F.E.

    2011-01-01

    Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to

  18. Subgrid scale modeling in large-Eddy simulation of turbulent combustion using premixed fdlamelet chemistry

    NARCIS (Netherlands)

    Vreman, A.W.; Oijen, van J.A.; Goey, de L.P.H.; Bastiaans, R.J.M.

    2009-01-01

    Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier-Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet

  19. Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2007-08-01

    Full Text Available The present study investigates effects of wildfire emissions on air quality in Europe during an intense fire season that occurred in summer 2003. A meso-scale chemistry transport model CHIMERE is used, together with ground based and satellite aerosol optical measurements, to assess the dispersion of fire emissions and to quantify the associated radiative effects. The model has been improved to take into account a MODIS-derived daily smoke emission inventory as well as the injection altitude of smoke particles. The simulated aerosol optical properties are put into a radiative transfer model to estimate (off-line the effects of smoke particles on photolysis rates and atmospheric radiative forcing. We have found that the simulated wildfires generated comparable amounts of primary aerosol pollutants (130 kTons of PM2.5, fine particles to anthropogenic sources during August 2003, and caused significant changes in aerosol optical properties not only close to the fire source regions, but also over a large part of Europe as a result of the long-range transport of the smoke. Including these emissions into the model significantly improved its performance in simulating observed aerosol concentrations and optical properties. Quantitative comparison with MODIS and POLDER data during the major fire event (3–8 August 2003 showed the ability of the model to reproduce high aerosol optical thickness (AOT over Northern Europe caused by the advection of the smoke plume from the Portugal source region. Although there was a fairly good spatial agreement with satellite data (correlation coefficients ranging from 0.4 to 0.9, the temporal variability of AOT data at specific AERONET locations was not well captured by the model. Statistical analyses of model-simulated AOT data at AERONET ground stations showed a significant decrease in the model biases suggesting that wildfire emissions are responsible for a 30% enhancement in mean AOT values during the heat

  20. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  1. Measurements and Mesoscale Modeling of Autumnal Vertical Ozone Profiles in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Yen-Ping Peng

    2008-01-01

    Full Text Available Vertical measurements of ozone were made using a tethered balloon at the Linyuan site in Kaohsiung County, southern Taiwan. Ozone was monitored at altitudes of 0, 100, 300, 500, and 1000 m from November 23 to 25 in 2005. The potential temperature profiles revealed a stable atmosphere during the study period, largely because of the dominance of the high-pressure system and nocturnal radiation cooling close to the surface. The mixing height was low (50 - 300 m, particularly in the late night and early morning. The surface ozone concentrations that were predicted using TAPM (The Air Pollution Model were high (33.7 - 119 ppbv in the daytime (10:00 - 16:00 and were low (10 - 40 ppbv at other times; the predictions of which were consistent with the observations. The simulated surface ozone concentrations reveal that costal lands typically had higher ozone concentrations than those inland, because most industrial parks are located in or close to the boundaries of Kaohsiung City. Both measurements and simulations indicate that daytime ozone concentrations decreased quickly with increasing height at altitudes below 300 m; while nighttime ozone concentrations were lower at low altitudes (50 to 300 m than at higher altitudes, partly because of dry deposition and titration of surface ozone by the near-surface nitrogen oxides (NOx and partly because of the existence of the residual layer above the stable nocturnal boundary layer. The simulations show a good correlation between the maximum daytime surface ozone concentration and average nighttime ozone concentration above the nocturnal boundary layer.

  2. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  3. Validation of satellite SAR offshore wind speed maps to in-situ data, microscala and mesoscale model results

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Barthelmie, R; Dellwik, E; Hoffmann Joergensen, B; Gylling Mortensen, N; Nielsen, M; Pryor, S; Rathmann, O

    2002-05-01

    A validation study has been performed in order to investigate the precision and accuracy of the satellite-derived ERS-2 SAR wind products in offshore regions. The overall project goal is to develop a method for utilizing the satellite wind speed maps for offshore wind resources, e.g. in future planning of offshore wind farms. The report describes the validation analysis in detail for three sites in Denmark, Italy and Egypt. The site in Norway is analyzed by the Nansen Environmental and Remote Sensing Centre (NERSC). Wind speed maps and wind direction maps from Earth Observation data recorded by the ERS-2 SAR satellite have been obtained from the NERSC. For the Danish site the wind speed and wind direction maps have been compared to in-situ observations from a met-mast at Horns Rev in the North Sea located 14 km offshore. The SAR wind speeds have been area-averaged by simple and advanced footprint modelling, ie. the upwind conditions to the meteorological mast are explicitly averaged in the SAR wind speed maps before comparison. The comparison results are very promising with a standard error of {+-} 0.61 m s{sup -1}, a bias {approx}2 m s{sup -1} and R{sup 2} {approx}0.88 between in-situ wind speed observations and SAR footprint averaged values at 10 m level. Wind speeds predicted by the local scale model LINCOM and the mesoscale model KAMM2 have been compared to the spatial variations in the SAR wind speed maps. The finding is a good correspondence between SAR observations and model results. Near the coast is an 800 m wide band in which the SAR wind speed observations have a strong negative bias. The bathymetry of Horns Rev combined with tidal currents give rise to bias in the SAR wind speed maps near areas of shallow, complex bottom topography in some cases. A total of 16 cases were analyzed for Horns Rev. For Maddalena in Italy five cases were analyzed. At the Italian site the SAR wind speed maps were compared to WAsP and KAMM2 model results. The WAsP model

  4. Dynamics, Stability, and Evolutionary Patterns of Mesoscale Intrathermocline Vortices

    Science.gov (United States)

    2016-12-01

    different manner from a dynamic eddy, which underscores inherent limitations of intrusion modeling in quiescent background states. Finally, it...of observed values. (3) A static eddy dissipates in a very different manner from a dynamic eddy, which underscores inherent limitations of...does not react to the environment in a physical manner . This establishes a need for future research on eddies to be modeled on a dynamically rotating

  5. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  6. A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah.

    Science.gov (United States)

    Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C

    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.

  7. Evaluation of meteorological fields generated by a prognostic mesoscale model using data collected during the 1993 GMAQS/COAST field study

    International Nuclear Information System (INIS)

    Lolk, N.K.; Douglas, S.G.

    1996-01-01

    In 1993, the US Interior Department's Minerals Management Service (MMS) sponsored the Gulf of Mexico Air Quality Study (GMAQS). Its purpose was to assess potential impacts of offshore petrochemical development on ozone concentrations in nonattainment areas in the Texas/Louisiana Gulf Coast region as mandated by the 1990 Clean Air Act Amendments. The GMAQS comprised data collection, data analysis, and applications of an advanced photochemical air quality model, the variable-grid Urban Airshed Model (UAM-V), and a prognostic mesoscale meteorological model (SAIMM -- Systems Applications International Mesoscale Model) to simulate two ozone episodes that were captured during the summer field study. The primary purpose of this paper is to evaluate the SAIMM-simulated meteorological fields using graphical analysis that utilize the comprehensive GMAQS/COAST (Gulf of Mexico Air Quality Study/Coastal Oxidant Assessment for Southeast Texas) database and to demonstrate the ability of the SAIMM to simulate the day-to-day variations in the evolution and structure of the gulf breeze and the mixed layer

  8. Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid

    2017-01-01

    This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...... the Reynolds number, and the effect is visible even at a relatively low chord-Reynolds number of 60,000. Among the tested models, the dynamic Smagorinsky gives the poorest predictions of the flow, with overprediction of lift and a larger separation on airfoils suction side. Among various models, the implicit...

  9. O the Development and Use of Four-Dimensional Data Assimilation in Limited-Area Mesoscale Models Used for Meteorological Analysis.

    Science.gov (United States)

    Stauffer, David R.

    1990-01-01

    The application of dynamic relationships to the analysis problem for the atmosphere is extended to use a full-physics limited-area mesoscale model as the dynamic constraint. A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or "nudging" is developed and evaluated in the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model, which is used here as a dynamic-analysis tool. The thesis is to determine what assimilation strategies and what meterological fields (mass, wind or both) have the greatest positive impact on the 72-h numerical simulations (dynamic analyses) of two mid-latitude, real-data cases. The basic FDDA methodology is tested in a 10-layer version of the model with a bulk-aerodynamic (single-layer) representation of the planetary boundary layer (PBL), and refined in a 15-layer version of the model by considering the effects of data assimilation within a multi-layer PBL scheme. As designed, the model solution can be relaxed toward either gridded analyses ("analysis nudging"), or toward the actual observations ("obs nudging"). The data used for assimilation include standard 12-hourly rawinsonde data, and also 3-hourly mesoalpha-scale surface data which are applied within the model's multi-layer PBL. Continuous assimilation of standard-resolution rawinsonde data into the 10-layer model successfully reduced large-scale amplitude and phase errors while the model realistically simulated mesoscale structures poorly defined or absent in the rawinsonde analyses and in the model simulations without FDDA. Nudging the model fields directly toward the rawinsonde observations generally produced results comparable to nudging toward gridded analyses. This obs -nudging technique is especially attractive for the assimilation of high-frequency, asynoptic data. Assimilation of 3-hourly surface wind and moisture data into the 15-layer FDDA system was most effective for improving the simulated precipitation fields because a

  10. Linear simulation of the stationary eddies in a GCM. II - The 'Mountain' model

    Science.gov (United States)

    Nigam, Sumant; Held, Isaac M.; Lyons, Steven W.

    1988-01-01

    Linear stationary wave theory is used to account for zonal asymmetries of the winter-averaged tropospheric circulation obtained in a GCM. The eddy zonal velocity field in the upper troposphere indicates that the orographic and thermal plus transient contributions are nearly equal in amplitude, while the eddy meridional velocity field (which is dominated by shorter zonal scales) shows the orographic contribution to be dominant. The two contributions are found to be roughly in phase over the east Asian coast, and they contribute roughly equal amounts to the low level Siberian high. Results indicate that the 300 mb extratropical response to tropical forcing reaches 50 gpm over Alaska, and that the responses to sensible heating and lower tropospheric transients are strongly anticorrelated.

  11. Investigating discrimination model of the signals obtained by eddy current testing

    International Nuclear Information System (INIS)

    Wache, G.; Rivenez, J.

    1986-01-01

    A software using an eddy current system controlled by a desk computer has been developed in order to separate a characteristic physical value among several parts. The numerical process involved uses multiparameter measurements done previously on significant parts belonging to the same class. The analysis presented deals with hardness testing of steel bolts in relation with heat-treatment, but other applications dealing with either micro structure check or defect investigation, could be done in the future by using a similar method

  12. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  13. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    Science.gov (United States)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  14. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lips, Urmas; Kikas, Villu; Liblik, Taavi; Lips, Inga

    2016-05-01

    High-resolution numerical modeling, remote sensing, and in situ data have revealed significant role of sub-mesoscale features in shaping the distribution pattern of tracers in the ocean's upper layer. However, in situ measurements are difficult to conduct with the required resolution and coverage in time and space to resolve the sub-mesoscale, especially in such relatively shallow basins as the Gulf of Finland, where the typical baroclinic Rossby radius is 2-5 km. To map the multi-scale spatiotemporal variability in the gulf, we initiated continuous measurements with autonomous devices, including a moored profiler and Ferrybox system, which were complemented by dedicated research-vessel-based surveys. The analysis of collected high-resolution data in the summers of 2009-2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale upwelling/downwelling, fronts, and eddies. The horizontal wavenumber spectra of temperature variance in the surface layer had slopes close to -2 between the lateral scales from 10 to 0.5 km. Similar tendency towards the -2 slopes of horizontal wavenumber spectra of temperature variance was found in the seasonal thermocline between the lateral scales from 10 to 1 km. It suggests that the ageostrophic sub-mesoscale processes could contribute considerably to the energy cascade in such a stratified sea basin. We showed that the intrusions of water with different salinity, which indicate the occurrence of a layered flow structure, could appear in the process of upwelling/downwelling development and relaxation in response to variable wind forcing. We suggest that the sub-mesoscale processes play a major role in feeding surface blooms in the conditions of coupled coastal upwelling and downwelling events in the Gulf of Finland.

  15. ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso-NH-C model and validation on the Escompte campaign

    Science.gov (United States)

    Tulet, Pierre; Crassier, Vincent; Cousin, Frederic; Suhre, Karsten; Rosset, Robert

    2005-09-01

    Classical aerosol schemes use either a sectional (bin) or lognormal approach. Both approaches have particular capabilities and interests: the sectional approach is able to describe every kind of distribution, whereas the lognormal one makes assumption of the distribution form with a fewer number of explicit variables. For this last reason we developed a three-moment lognormal aerosol scheme named ORILAM to be coupled in three-dimensional mesoscale or CTM models. This paper presents the concept and hypothesis of a range of aerosol processes such as nucleation, coagulation, condensation, sedimentation, and dry deposition. One particular interest of ORILAM is to keep explicit the aerosol composition and distribution (mass of each constituent, mean radius, and standard deviation of the distribution are explicit) using the prediction of three-moment (m0, m3, and m6). The new model was evaluated by comparing simulations to measurements from the Escompte campaign and to a previously published aerosol model. The numerical cost of the lognormal mode is lower than two bins of the sectional one.

  16. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    Science.gov (United States)

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter

  17. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.

    1994-01-01

    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables

  18. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  19. Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation

    Science.gov (United States)

    Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison

    2017-07-01

    The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.

  20. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: Using large-eddy simulation

    International Nuclear Information System (INIS)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-01-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. - Highlights: • Large-eddy simulation reproduces two unsteady vortices seen in a lab experiment. • Reactive pollutants in an urban street canyon exhibit significant spatial variation. • O 3 production rate inferred by the NO x -O 3 -steady-state-defect approach is discussed. • Ground level sourced pollutants are largely trapped within the lower vortex. • A method of quantifying parameters of a two-box model is developed. - Reactive pollutants in a deep street canyon exhibit significant spatial variation driven by two unsteady vortices. A method of quantifying parameters of a two-box model is developed

  1. Mesoscale Connections Summer 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    Our challenge derives from the fact that in metals or explosives grains, interfaces and defects control engineering performance in ways that are neither amenable to continuum codes (which fail to rigorously describe the heterogeneities derived from microstructure) nor computationally tractable to first principles atomistic calculations. This is a region called the mesoscale, which stands at the frontier of our desire to translate fundamental science insights into confidence in aging system performance over the range of extreme conditions relevant in a nuclear weapon. For dynamic problems, the phenomena of interest can require extremely good temporal resolutions. A shock wave traveling at 1000 m/s (or 1 mm/μs) passes through a grain with a diameter of 1 micron in a nanosecond (10-9 sec). Thus, to observe the mesoscale phenomena—such as dislocations or phase transformations—as the shock passes, temporal resolution better than picoseconds (10-12 sec) may be needed. As we anticipate the science challenges over the next decade, experimental insights on material performance at the micron spatial scale with picosecond temporal resolution—at the mesoscale— are a clear challenge. This is a challenge fit for Los Alamos in partnership with our sister labs and academia. Mesoscale Connections will draw attention to our progress as we tackle the mesoscale challenge. We hope you like it and encourage suggestions of content you are interested in.

  2. Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations

    Science.gov (United States)

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.; Xu, Kuan-Man; Ghan, Steven J.

    2015-04-01

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.

  3. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  4. Numerical modelling of the impedance plane for simultaneous determining, by eddy currents, the oxide thickness and conductivity in Zircaloy

    International Nuclear Information System (INIS)

    Lois, Alejandro E.

    2001-01-01

    During service at high temperature or in aggressive media, metallic structures and components may suffer different types of changes or degradation. As an example, phase transformations may occur, second phases may precipitate, and in consequence the mechanical and chemical properties of the material may change. Their behavior will therefore differ from that considered for the design of the component. The knowledge of the amount of a precipitated second phase in a component should be an important tool in the hands of the maintenance engineer. And it would be very important to obtain this knowledge nondestructively and reliably. The objective of this project is to evaluate by eddy currents the amount of the hydrogen incorporated during service in structural zirconium base materials. For this purpose, a series of Zircaloy-4 specimens with oxide layers of different thickness and different concentration of hydrogen obtained by controlled autoclave treatments were used. These specimens were tested with eddy current equipment. The information produced by an eddy current test is the superposition of many variables, e.g.: thickness of oxide layers, conductance, thickness of specimen, etc. In order to sort out this information, an analytical model of the impedance plane was programmed in a PC, with which this information was processed, permitting, in this way, to evaluate the conductivity of materials, taking into account the effect of oxide layers thickness. A linear relationship between the conductivity and the hydrogen content in the range of hydrogen concentrations of technological interest was observed. Therefore, the calculated electrical conductivity may be transformed to the amount of hydrogen content, using a suitable calibration curve. This process will allow for the nondestructive assessment of the amount of hydrogen in reactor components, such as pressure and calandria tubes, a knowledge which will enable the experts to predict the degree of fragility of those

  5. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    Science.gov (United States)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  6. Zonal flow shear amplification by depletion of anisotropic potential eddies in a magnetized plasma: idealized models and laboratory experiment

    International Nuclear Information System (INIS)

    Fedorczak, N; Manz, P; Chakraborty Thakur, S; Xu, M; Tynan, G R

    2013-01-01

    The consequences of vorticity conservation on the spatio-temporal interaction of a E × B zonal shear with a generic pattern of plasma potential modes are investigated in a magnetized plasma environment. Eddies organized on a chain along the zonal direction are locally depleted, resulting in what appears to be a radial decorrelation by the shear flow in the absence of dissipation. The eddy depletion occurs due to a transfer of enstrophy from the chain to the shear flow during the progressive growth in the chain anisotropy. The rate of zonal shear acceleration is derived analytically and its expression is validated by numerical simulations. The rate is proportional to the chain amplitude in the weak shear regime and to the shearing rate in the strong shear regime. Basic properties of the model are validated with fast visible imaging data collected on a magnetized plasma column experiment. A characteristic vorticity flux across the edge shear layer of tokamak plasmas is associated with the model predictions. The dependence of the interaction rate with turbulence amplitude and shearing rate could be an important ingredient of the low to high confinement mode transition. (paper)

  7. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    Science.gov (United States)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    The Mozambique Channel (western Indian Ocean) is a dynamic environment characterised by strong mesoscale features, which influence all biological components of the pelagic ecosystem. We investigated the distribution, abundance and feeding behaviour of seabirds in the Mozambique Channel in relation to physical and biological environmental variables, with a specific interest in mesoscale features. Seabird censuses were conducted in summer and winter during 7 cruises in the southern and northern Mozambique Channel. Tropical species accounted for 49% of the 37 species identified and 97% of the individuals, and species from the sub-Antarctic region constituted 30% of the identifications. The typically tropical sooty tern (Onychoprion fuscata) was the dominant species during all cruises, and overall accounted for 74% of the species observations and 85% of counted birds. Outputs of Generalised Linear Models at the scale of the Mozambique Channel suggested that higher densities of flying and feeding birds occurred in areas with lower sea surface temperatures and lower surface chlorophyll a concentrations. Most of the flocks of feeding birds did not associate with surface schools of fish or marine mammals, but when they did, these flocks were larger, especially when associated with tuna. While tropical species seemed to favour cyclonic eddies, frontal and divergence zones, non-tropical species were more frequently recorded over shelf waters. Sooty terns foraged preferentially in cyclonic eddies where zooplankton, micronekton and tuna schools were abundant. Among other major tropical species, frigatebirds (Fregata spp.) predominated in frontal zones between eddies, where tuna schools also frequently occurred and where geostrophic currents were the strongest. Red-footed boobies (Sula sula) concentrated in divergence zones characterised by low sea level anomalies, low geostrophic currents, and high zooplankton biomass close to the surface. Our results highlight the importance

  8. Combined meso-scale modeling and experimental investigation of the effect of mechanical damage on the transport properties of cementitious composites

    Science.gov (United States)

    Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham

    2016-09-01

    The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.

  9. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    Science.gov (United States)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  10. Modelling carbon and water exchange of a grazed pasture in New Zealand constrained by eddy covariance measurements.

    Science.gov (United States)

    Kirschbaum, Miko U F; Rutledge, Susanna; Kuijper, Isoude A; Mudge, Paul L; Puche, Nicolas; Wall, Aaron M; Roach, Chris G; Schipper, Louis A; Campbell, David I

    2015-04-15

    We used two years of eddy covariance (EC) measurements collected over an intensively grazed dairy pasture to better understand the key drivers of changes in soil organic carbon stocks. Analysing grazing systems with EC measurements poses significant challenges as the respiration from grazing animals can result in large short-term CO2 fluxes. As paddocks are grazed only periodically, EC observations derive from a mosaic of paddocks with very different exchange rates. This violates the assumptions implicit in the use of EC methodology. To test whether these challenges could be overcome, and to develop a tool for wider scenario testing, we compared EC measurements with simulation runs with the detailed ecosystem model CenW 4.1. Simulations were run separately for 26 paddocks around the EC tower and coupled to a footprint analysis to estimate net fluxes at the EC tower. Overall, we obtained good agreement between modelled and measured fluxes, especially for the comparison of evapotranspiration rates, with model efficiency of 0.96 for weekly averaged values of the validation data. For net ecosystem productivity (NEP) comparisons, observations were omitted when cattle grazed the paddocks immediately around the tower. With those points omitted, model efficiencies for weekly averaged values of the validation data were 0.78, 0.67 and 0.54 for daytime, night-time and 24-hour NEP, respectively. While not included for model parameterisation, simulated gross primary production also agreed closely with values inferred from eddy covariance measurements (model efficiency of 0.84 for weekly averages). The study confirmed that CenW simulations could adequately model carbon and water exchange in grazed pastures. It highlighted the critical role of animal respiration for net CO2 fluxes, and showed that EC studies of grazed pastures need to consider the best approach of accounting for this important flux to avoid unbalanced accounting. Copyright © 2015. Published by Elsevier B.V.

  11. Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils

    Science.gov (United States)

    Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus

    2018-03-01

    Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.

  12. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.

    Science.gov (United States)

    Qing, Chun; Wu, Xiaoqing; Huang, Honghua; Tian, Qiguo; Zhu, Wenyue; Rao, Ruizhong; Li, Xuebin

    2016-09-05

    Since systematic direct measurements of refractive index structure constant ( Cn2) for many climates and seasons are not available, an indirect approach is developed in which Cn2 is estimated from the mesoscale atmospheric model outputs. In previous work, we have presented an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and Forecasting (WRF) model coupled with Monin-Obukhov Similarity (MOS) theory which can be used to estimate surface layer Cn2 over the ocean. Here this paper is focused on surface layer Cn2 over snow and sea ice, which is the extending of estimating surface layer Cn2 utilizing WRF model for ground-based optical application requirements. This powerful approach is validated against the corresponding 9-day Cn2 data from a field campaign of the 30th Chinese National Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess how this approach performs. Besides, we present an independent analysis of this approach performance using the contingency tables. Such a method permits us to provide supplementary key information with respect to statistical operators. These methods make our analysis more robust and permit us to confirm the excellent performances of this approach. The reasonably good agreement in trend and magnitude is found between estimated values and measurements overall, and the estimated Cn2 values are even better than the ones obtained by this approach over the ocean surface layer. The encouraging performance of this approach has a concrete practical implementation of ground-based optical applications over snow and sea ice.

  13. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river

    Science.gov (United States)

    Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.

    2017-01-01

    Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the flow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flowmeasurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forfluvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of fluid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main flow is dynamic, with large temporal changes in flow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.

  14. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    Energy Technology Data Exchange (ETDEWEB)

    Amicarelli, A; Pelliccioni, A [ISPESL - Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1 00040 Monteporzio Catone (RM) Italy (Italy); Finardi, S; Silibello, C [ARIANET, via Gilino 9, 20128 Milano (Italy); Gariazzo, C

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM{sub 10} concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  15. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    Science.gov (United States)

    Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  16. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    International Nuclear Information System (INIS)

    Amicarelli, A; Pelliccioni, A; Finardi, S; Silibello, C; Gariazzo, C

    2008-01-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM 10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode

  17. Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean

    Science.gov (United States)

    Cornejo D'Ottone, Marcela; Bravo, Luis; Ramos, Marcel; Pizarro, Oscar; Karstensen, Johannes; Gallegos, Mauricio; Correa-Ramirez, Marco; Silva, Nelson; Farias, Laura; Karp-Boss, Lee

    2016-05-01

    Mesoscale eddies are important, frequent, and persistent features of the circulation in the eastern South Pacific (ESP) Ocean, transporting physical, chemical and biological properties from the productive shelves to the open ocean. Some of these eddies exhibit subsurface hypoxic or suboxic conditions and may serve as important hotspots for nitrogen loss, but little is known about oxygen consumption rates and nitrogen transformation processes associated with these eddies. In the austral fall of 2011, during the Tara Oceans expedition, an intrathermocline, anticyclonic, mesoscale eddy with a suboxic ( 0.5 µM), suggesting that active denitrification occurred in this water mass. Using satellite altimetry, we were able to track the eddy back to its region of formation on the coast of central Chile (36.1° S, 74.6° W). Field studies conducted in Chilean shelf waters close to the time of eddy formation provided estimates of initial O2 and N2O concentrations of the ESSW source water in the eddy. By the time of its offshore sighting, concentrations of both O2 and N2O in the subsurface oxygen minimum zone (OMZ) of the eddy were lower than concentrations in surrounding water and "source water" on the shelf, indicating that these chemical species were consumed as the eddy moved offshore. Estimates of apparent oxygen utilization rates at the OMZ of the eddy ranged from 0.29 to 44 nmol L-1 d-1 and the rate of N2O consumption was 3.92 nmol L-1 d-1. These results show that mesoscale eddies affect open-ocean biogeochemistry in the ESP not only by transporting physical and chemical properties from the coast to the ocean interior but also during advection, local biological consumption of oxygen within an eddy further generates conditions favorable to denitrification and loss of fixed nitrogen from the system.

  18. Turbulence modeling for mass transfer enhancement by separation and reattachment with two-equation eddy-viscosity models

    International Nuclear Information System (INIS)

    Xiong Jinbiao; Koshizuka, Seiichi; Sakai, Mikio

    2011-01-01

    Highlights: → We selected and evaluated five two-equation eddy-viscosity turbulence models for modeling the separated and reattaching flow. → The behavior of the models in the simple flow is not consistent with that in the separated and reattaching flow. → The Abe-Kondoh-Nagano model is the best one among the selected model. → Application of the stress limiter and the Kato-Launder modification in the Abe-Kondoh-Nagano model helps to improve prediction of the peak mass transfer coefficient in the orifice flow. → The value of turbulent Schmidt number is investigated. - Abstract: The prediction of mass transfer rate is one of the key elements for estimation of the flow accelerated corrosion (FAC) rate. Three low Reynolds number (LRN) k-ε models (Lam-Bremhorst (LB), Abe-Kondoh-Nagano (AKN) and Hwang-Lin (HL)), one LRN k-ω (Wilcox, WX) model and the k-ω SST model are tested for the computation of the high Schmidt number mass transfer, especially in the flow through an orifice. The models are tested in the computation of three types of flow: (1) the fully developed pipe flow, (2) the flow over a backward facing step, (3) the flow through an orifice. The HL model shows a good performance in predicting mass transfer in the fully developed pipe flow but fails to give reliable prediction in the flow through an orifice. The WX model and the k-ω SST model underpredict the mass transfer rate in the flow types 1 and 3. The LB model underestimates the mass transfer in the flow type 1, but shows abnormal behavior at the reattaching point in type 3. Synthetically evaluating all the models in all the computed case, the AKN model is the best one; however, the prediction is still not satisfactory. In the evaluation in the flow over a backward facing step shows k-ω SST model shows superior performance. This is interpreted as an implication that the combination of the k-ε model and the stress limiter can improve the model behavior in the recirculation bubble. Both the

  19. Utilization of mesoscale atmospheric dynamic model PHYSIC as a meteorological forecast model in nuclear emergency response system

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1997-01-01

    It is advantageous for an emergency response system to have a forecast function to provide a time margin for countermeasures in case of a nuclear accident. We propose to apply an atmospheric dynamic model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) as a meteorological forecast model in the emergency system. The model uses GPV data which are the output of the numerical weather forecast model of Japan Meteorological Agency as the initial and boundary conditions. The roles of PHYSIC are the interface between GPV data and the emergency response system and the forecast of local atmospheric phenomena within the model domain. This paper presents a scheme to use PHYSIC to forecast local wind and its performance. Horizontal grid number of PHYSIC is fixed to 50 x 50, whereas the mesh and domain sizes are determined in consideration of topography causing local winds at an objective area. The model performance was examined for the introduction of GPV data through initial and boundary conditions and the predictability of local wind field and atmospheric stability. The model performance was on an acceptable level as the forecast model. It was also recognized that improvement of cloud calculation was necessary in simulating atmospheric stability. (author)

  20. Identification of Mesoscale Convective Complex (MCC) phenomenon with image of Himawari 8 Satellite and WRF ARW Model on Bangka Island (Case Study: 7-8 February 2016)

    Science.gov (United States)

    Rinaldy, Nanda; Saragih, Immanuel J. A.; Wandala Putra, Agie; Redha Nugraheni, Imma; Wijaya Yonas, Banu

    2017-12-01

    Based on monitoring on 7th and 8th February 2016 there has been a flood that occurred due to heavy rainfall in a long time in some areas of Bangka Island. Mesoscale Convective Complex (MCC) is one type of Mesoscale Convective System (MCS). Previous research on MCC mentions that MCC can cause heavy rain for a long time. This study aims to identify the phenomenon of MCC in Bangka Island both in the satellite imagery and the output of the model. In addition, this study was also conducted to determine the effect of MCC on the weather conditions in Bangka Island. The study area in this research is Bangka Island with Pangkalpinang Meteorological Station as the centre of research. The data used in this research are FNL (Final Analysis) data from http://rda.ucar.edu/, Satellite Image of Himawari-8 IR1 Channel from BMKG, and meteorological observation data (synoptic and radiosonde) from Pangkalpinang Meteorological Station. The FNL data is simulated using the WRF-ARW model, verified using observation data and then visualized using GrADS. The results of the analysis of Himawari-8 satellite image data showed that two MCCs occurred on 7th and 8th February 2016 on Bangka Island and the MCC was nocturnal, which appeared at night which then continued until extinction in the morning the next day. In a peak cloud temperature review with the coordinates of Pangkalpinang Meteorological Station (-2,163 N 106,137 E) when 1st MCC and 2nd MCC events ranged from -60°C to -80°C. The result of WRF-ARW model output analysis shows that MCC area has high humidity value and positive vertical velocity value which indicates the potential of heavy rain for a long time.

  1. Impact of space dependent eddy mixing on large ocean circulation

    Science.gov (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Abernathey, R. P.

    2016-02-01

    Throughout the ocean, mesoscale eddies stir tracers such as heat, oxygen, helium, dissolved CO2, affecting their spatial distribution. Recent work (Gnanadesikan et al., 2013) showed that changes in eddy stirring could result in changes of the volume of hypoxic and anoxic waters, leading to drastic consequences for ocean biogeochemical cycles. The parameterization of mesocale eddies in global climate models (GCMs) is two parts, based on the formulations of Redi (1982) and Gent and McWilliams (1990) which are associated with mixing parameters ARedi and AGM respectively. Numerous studies have looked at the sensitivity of ESMs to changing AGM, either alone or in combination with an ARedi parameter taken to be equivalent to the value of the AGM. By contrast the impact of the Redi parameterization in isolation remains unexplored. In a previous article, Pradal and Gnanadesikan, 2014, described the sensitivity of the climate system to a six fold increase in the Redi parameter. They found that increasing the isopycnal mixing coefficient tended to warm the climate of the planet overall, through an increase of heat absorption linked to a destabilization of the halocline in subpolar regions (particularly the Southern Ocean). This previous work varied a globally constant Redi parameter from 400m2/s to 2400m2/s. New estimates from altimetry (Abernathey and Marshall, 2013) better constrain the spatial patterns and range for the ARedi parameter. Does such spatial variation matter, and if so, where does matter? Following Gnanadesikan et al. (2013) and Pradal and Gnanadesikan, 2014 this study examines this question with a suite of Earth System Models.

  2. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  3. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  4. Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model

    Science.gov (United States)

    Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan

    2015-05-01

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.

  5. Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: the San Fruttuoso case of 1915

    Science.gov (United States)

    Parodi, Antonio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco; Boni, Giorgio

    2017-05-01

    Highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood-producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapour content. However, analyses of the historical record do not provide a univocal answer, but these are likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria: the San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs that show strong convergence over the Ligurian Sea (17 out of 56 members) as these runs are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Ligurian Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers, and even photographs, can be very valuable sources of knowledge in the reconstruction of past extreme events.

  6. Modeling and simulation of defects detection in conductive multi-layered pieces by the eddy current technique

    International Nuclear Information System (INIS)

    Bennoud, S; Zergoug, M

    2015-01-01

    It has been shown that the eddy current method is one of the most effective techniques for the detection and characterization of surface and near-surface defects in conductive mediums especially in aluminum alloy. It is one of the most applied methods in industries which require a maximum of reliability and security (aerospace, aeronautics, nuclear, Etc). In this study, a code to solve electromagnetic problems by employing the finite element method is developed. The suggested model can simulate the probe response to the presence of a defect hidden in a multi-layered structure or a riveted structure on aluminum alloy. The developed code is based on the discretization in three dimensions of the Maxwell's equations in harmonic mode by the finite element method based on the combined potential formulations. That will enable us to interpret the results, to present them in graphical form and to carry out simulations for various applications

  7. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-05-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer