WorldWideScience

Sample records for modeling marine microbial

  1. A model for microbial phosphorus cycling in bioturbated marine sediments

    DEFF Research Database (Denmark)

    Dale, Andrew W.; Boyle, R. A.; Lenton, Timothy M.

    2016-01-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated...... P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from....... The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments. © 2016 Elsevier Ltd....

  2. MATHEMATICAL MODELING OF THE ELECTRIC CURRENT GENERATION IN A MICROBIAL FUEL CELL INOCULATED WITH MARINE SEDIMENT

    Directory of Open Access Journals (Sweden)

    J. T. Teleken

    Full Text Available Abstract Microbial fuel cells (MFC are electrochemical devices that utilize the ability of some microorganisms to oxidize organic matter and transfer electrons resulting from their metabolism to an insoluble acceptor. The goal of the present study was to model the kinetics of electrical current generation from an MFC inoculated with marine sediment. For this purpose, a differential equation system was used, including the Nernst-Monod relationship and Ohm's Law, to describe the microbial metabolism and the mechanism of extracellular electron transfer (EET, respectively. The experimental data obtained by cyclic voltammetry analysis were properly described by the model. It was concluded that marine microorganisms preferably use a direct mechanism of EET by means of nanowires to establish the electrochemical contact with the anode. The mathematical modeling could help understand MFC operation and, consequently, contribute to improving power generation from this source.

  3. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Erik Weinell, Claus

    2006-01-01

    The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906-3920] and the simplified biofilm. growth model of Gujer...... and Warmer [W. Gujer, O. Warmer, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley-Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent...

  4. Microbial quality of a marine tidal pool

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1995-01-01

    Full Text Available In this study the source of microbial pollution to a tidal pool was investigated. Both adjacent seawater which could contribute to possible faecal pollution and potential direct bather pollution were studied. The microbial quality of the marine...

  5. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes

    DEFF Research Database (Denmark)

    Weitz, Joshua S.; Stock, Charles A.; Wilhelm, Steven W.

    2015-01-01

    Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities......, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic...

  6. Marine snow microbial communities: scaling of abundances with aggregate size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2003-01-01

    Marine aggregates are inhabited by diverse microbial communities, and the concentration of attached microbes typically exceeds concentrations in the ambient water by orders of magnitude. An extension of the classical Lotka-Volterra model, which includes 3 trophic levels (bacteria, flagellates...... are controlled by flagellate grazing, while flagellate and ciliate populations are governed by colonization and detachment. The model also suggests that microbial populations are turned over rapidly (1 to 20 times d-1) due to continued colonization and detachment. The model overpredicts somewhat the scaling...... of microbial abundances with aggregate size observed in field-collected aggregates. This may be because it disregards the aggregation/disaggregation dynamics of aggregates, as well as interspecific interactions between bacteria....

  7. Research and Application of Marine Microbial Enzymes: Status and Prospects

    Science.gov (United States)

    Zhang, Chen; Kim, Se-Kwon

    2010-01-01

    Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes. PMID:20631875

  8. Marine microbial ecology in a molecular world: what does the future hold?

    Directory of Open Access Journals (Sweden)

    David A. Caron

    2005-06-01

    Full Text Available Advances in genetic and immunological approaches during the last few decades have transformed medicine and biomedical research. The human genome and the genomes of numerous model organisms are now fully sequenced. Initial exploitation of this wealth of genetic information has begun to revolutionize research on these species, and the applications derived from it. Progress in understanding the ecology of microorganisms (including marine taxa has followed closely on the heels of these advances, owing to the tremendous benefit afforded by major technological advances in biomedicine. Through the application of these novel approaches and new technologies, marine microbial ecology has moved from a minor footnote within marine biology and biological oceanography during the 1950s and ‘60s to the focus of much of our present interest in the ocean. During the intervening half-century we have learned a great deal regarding the overall abundances, distributions and activities of microorganisms in the sea. Recognition of the extraordinary diversity of marine microbes, the predominant role that they play in global biogeochemical processes, and the potential for natural or engineered microbial products to benefit humankind, has placed marine microbes in the spotlight of both scientific and popular attention. Our fascination with these minute denizens of the ocean is not likely to wane anytime soon. Recent studies have indicated that we still know relatively little about the breadth of microbial diversity in marine ecosystems. In addition, many (most? of the predominant marine microbial forms in nature have not yet been brought into laboratory culture. Thus, our knowledge is still rudimentary with respect to the spectra of biochemical, physiological and behavioral abilities of these species, and the study of marine microbes will remain a major focus of investigations in marine science well into the foreseeable future. As a large cadre of researchers moves

  9. Microbial Surface Colonization and Biofilm Development in Marine Environments

    Science.gov (United States)

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  10. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  11. Microbial metatranscriptomics in a permanent marine oxygen minimum zone

    OpenAIRE

    Stewart, Frank J.; Ulloa, Osvaldo; DeLong, Edward

    2010-01-01

    Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycl...

  12. Immense essence of excellence: marine microbial bioactive compounds.

    Science.gov (United States)

    Bhatnagar, Ira; Kim, Se-Kwon

    2010-10-15

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  13. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ira Bhatnagar

    2010-10-01

    Full Text Available Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery.

  14. Marine Microbial Systems Ecology: Microbial Networks in the Sea

    NARCIS (Netherlands)

    Muijzer, G.; Stal, L.J.; Cretoiu, M.S.

    2016-01-01

    Next-generation sequencing of DNA has revolutionized microbial ecology. Using this technology, it became for the first time possible to analyze hundreds of samples simultaneously and in great detail. 16S rRNA amplicon sequencing, metagenomics and metatranscriptomics became available to determine the

  15. REVIEW PAPER-MARINE MICROBIAL BIOACTIVE COMPOUNDS

    OpenAIRE

    Kalyani. P*, Hemalatha. K. P. J

    2016-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and...

  16. Life in the "plastisphere": microbial communities on plastic marine debris.

    Science.gov (United States)

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  17. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    Science.gov (United States)

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    and are found in free dissolved form, colloids, discreet partcles like TEP and/or associated with particulate matter, including cell aggregates, detritus, biofilms, microbial mats, etc. The chemical composition of EPS is influenced by various factors... of EPS in marine waters. Hence, various aspects of EPS di- cussed hereafter indicate bacterial and/or phyto origin unless specified. Characteristics of EPS Microorganisms grow in free planktonic state16,17 or are ata- ched to surfaces (natural...

  19. Microbial activity in the marine deep biosphere: Progress and prospects

    Directory of Open Access Journals (Sweden)

    Beth N Orcutt

    2013-07-01

    Full Text Available The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists – all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive. Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI "theme team" on microbial activity (www.darkenergybiosphere.org.

  20. Microbial activity in the marine deep biosphere: progress and prospects

    Science.gov (United States)

    Orcutt, Beth N.; LaRowe, Douglas E.; Biddle, Jennifer F.; Colwell, Frederick S.; Glazer, Brian T.; Reese, Brandi Kiel; Kirkpatrick, John B.; Lapham, Laura L.; Mills, Heath J.; Sylvan, Jason B.; Wankel, Scott D.; Wheat, C. Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org). PMID:23874326

  1. Microbial activity in the marine deep biosphere: progress and prospects.

    Science.gov (United States)

    Orcutt, Beth N; Larowe, Douglas E; Biddle, Jennifer F; Colwell, Frederick S; Glazer, Brian T; Reese, Brandi Kiel; Kirkpatrick, John B; Lapham, Laura L; Mills, Heath J; Sylvan, Jason B; Wankel, Scott D; Wheat, C Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists-all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) "theme team" on microbial activity (www.darkenergybiosphere.org).

  2. Microbial dehalogenation of organohalides in marine and estuarine environments.

    Science.gov (United States)

    Zanaroli, Giulio; Negroni, Andrea; Häggblom, Max M; Fava, Fabio

    2015-06-01

    Marine sediments are the ultimate sink and a major entry way into the food chain for many highly halogenated and strongly hydrophobic organic pollutants, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenylethers (PBDEs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Microbial reductive dehalogenation in anaerobic sediments can transform these contaminants into less toxic and more easily biodegradable products. Although little is still known about the diversity of respiratory dehalogenating bacteria and their catabolic genes in marine habitats, the occurrence of dehalogenation under actual site conditions has been reported. This suggests that the activity of dehalogenating microbes may contribute, if properly stimulated, to the in situ bioremediation of marine and estuarine contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Micro-Mar: a database for dynamic representation of marine microbial biodiversity

    Directory of Open Access Journals (Sweden)

    Rodríguez-Valera Francisco

    2005-09-01

    Full Text Available Abstract Background The cataloging of marine prokaryotic DNA sequences is a fundamental aspect for bioprospecting and also for the development of evolutionary and speciation models. However, large amount of DNA sequences used to quantify prokaryotic biodiversity requires proper tools for storing, managing and analyzing these data for research purposes. Description The Micro-Mar database has been created to collect DNA diversity information from marine prokaryotes for biogeographical and ecological analyses. The database currently includes 11874 sequences corresponding to high resolution taxonomic genes (16S rRNA, ITS and 23S rRNA and many other genes including CDS of marine prokaryotes together with available biogeographical and ecological information. Conclusion The database aims to integrate molecular data and taxonomic affiliation with biogeographical and ecological features that will allow to have a dynamic representation of the marine microbial diversity embedded in a user friendly web interface. It is available online at http://egg.umh.es/micromar/.

  4. Marine heatwaves and optimal temperatures for microbial assemblage activity.

    Science.gov (United States)

    Joint, Ian; Smale, Dan A

    2017-02-01

    The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3 H leucine, measured in a temperature gradient from 5°C to 38°C. Q 10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the assemblage optimum temperature (T opt ), which was out of phase with sea surface temperature. In July, highest 3 H-leucine incorporation rates were measured at temperatures that were only 2.8°C greater than ambient sea surface temperature but in winter, T opt was ∼20°C higher than the ambient sea surface temperature. Sea surface temperatures for the adjacent English Channel and Celtic Sea for 1982-2014 have periodically been >3°C higher than climatological mean temperatures. This suggests that discrete periods of anomalously high temperatures might be close to, or exceed, temperatures at which maximum microbial assemblage activity occurs. The frequency and magnitude of marine heatwaves are likely to increase as a consequence of anthropogenic climate change and extreme temperatures may influence the role of bacterial assemblages in biogeochemical processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Thermophilic anaerobic oxidation of methane by marine microbial consortia.

    Science.gov (United States)

    Holler, Thomas; Widdel, Friedrich; Knittel, Katrin; Amann, Rudolf; Kellermann, Matthias Y; Hinrichs, Kai-Uwe; Teske, Andreas; Boetius, Antje; Wegener, Gunter

    2011-12-01

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.

  6. Assessing marine microbial induced corrosion at Santa Catalina Island, California

    Directory of Open Access Journals (Sweden)

    Gustavo Antonio Ramírez

    2016-10-01

    Full Text Available High iron and eutrophic conditions are reported as environmental factors leading to accelerated low-water corrosion, an enhanced form of near-shore microbial-induced corrosion. To explore this hypothesis, we deployed flow-through colonization systems in laboratory-based aquarium tanks under a continuous flow of surface seawater from Santa Catalina Island, California, USA, for periods of two and six months. Substrates consisted of mild steel – a major constituent of maritime infrastructure – and the naturally occurring iron sulfide mineral pyrite. Four conditions were tested: free-venting high-flux conditions; a stagnant condition; an active flow-through condition with seawater slowly pumped over the substrates; and an enrichment condition where the slow pumping of seawater was supplemented with nutrient rich medium. Electron microscopy analyses of the two-month high flux incubations document coating of substrates with twisted stalks, resembling iron oxyhydroxide bioprecipitates made by marine neutrophilic Fe-oxidizing bacteria. Six-month incubations exhibit increased biofilm and substrate corrosion in the active flow and nutrient enriched conditions relative to the stagnant condition. A scarcity of twisted stalks was observed for all six month slow-flow conditions compared to the high-flux condition, which may be attributable to oxygen concentrations in the slow-flux conditions being prohibitively low for sustained growth of stalk-producing bacteria. All substrates developed microbial communities reflective of the original seawater input, as based on 16S rRNA gene sequencing. Deltaproteobacteria sequences increased in relative abundance in the active flow and nutrient enrichment conditions, whereas Gammaproteobacteria sequences were relatively more abundant in the stagnant condition. These results indicate that i high-flux incubations with higher oxygen availability favor the development of biofilms with twisted stalks resembling those of

  7. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  8. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  9. Marine and giant viruses as indicators of a marine microbial community in a riverine system.

    Science.gov (United States)

    Dann, Lisa M; Rosales, Stephanie; McKerral, Jody; Paterson, James S; Smith, Renee J; Jeffries, Thomas C; Oliver, Rod L; Mitchell, James G

    2016-12-01

    Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Microbial metatranscriptomics in a permanent marine oxygen minimum zone.

    Science.gov (United States)

    Stewart, Frank J; Ulloa, Osvaldo; DeLong, Edward F

    2012-01-01

    Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ. Shotgun pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth. Based on functional gene representation, transcriptome samples clustered apart from corresponding metagenome samples from the same depth, highlighting the discrepancies between metabolic potential and actual transcription. BLAST-based characterizations of non-ribosomal RNA sequences revealed a dominance of genes involved with both oxidative (nitrification) and reductive (anammox, denitrification) components of the marine nitrogen cycle. Using annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-specific changes in gene expression by key functional taxonomic groups. Notably, transcripts most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcriptome in the upper three depths, representing one in five protein-coding transcripts at 85 m. In contrast, transcripts matching the anammox bacterium Kuenenia stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia monooxygenase genes, which, despite being represented by both bacterial and archaeal sequences in the community DNA, were dominated (> 99%) by archaeal sequences in the RNA, suggesting a substantial role for archaeal nitrification in the upper OMZ. These data, as well as those

  11. Effect of Gamma Irradiation and Marination on Microbial Load of Beef Meat

    International Nuclear Information System (INIS)

    Elhifnawi, H.N.

    2010-01-01

    This study was undertaken to determine if a combined treatment (marinating in natural plant extracts or air) with gamma irradiation could have a synergetic effect, in order to reduce the dose required for microbial decontamination of fresh beef meat. The effect of these combined treatments on the shelf-life extension was also evaluated. The marinating treatment have a synergistic effect with irradiation treatment to reduce the total microbial count and controlling proliferation during storage at 4 degree C for 6 days. Irradiation of fresh beef meat with a dose of 3.0 kGy in combination with marination appear to be able to extend the microbial shelf-life. The D10 values of Listeria monocytogenes inoculated onto un-marinated and marinated beef were 0.5 and 0.4 kGy, respectively

  12. Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2009-09-01

    Full Text Available Marine snow (small amorphous aggregates with colloidal properties is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions.We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies.We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria.

  13. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    OpenAIRE

    Amanda G. Bendia; Camila N. Signori; Diego C. Franco; Rubens T. D. Duarte; Brendan J. M. Bohannan; Vivian H. Pellizari

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, an...

  14. Microbial bioavailability regulates organic matter preservation in marine sediments

    NARCIS (Netherlands)

    Koho, K. A.; Nierop, K. G. J.; Moodley, L.; Middelburg, J. J.; Pozzato, L.; Soetaert, K.; van der Plicht, J.; Reichart, G-J.; Herndl, G.

    2013-01-01

    Burial of organic matter (OM) plays an important role in marine sediments, linking the short-term, biological carbon cycle with the long-term, geological subsurface cycle. It is well established that low-oxygen conditions promote organic carbon burial in marine sediments. However, the mechanism

  15. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  16. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity.

    Science.gov (United States)

    Troussellier, Marc; Escalas, Arthur; Bouvier, Thierry; Mouillot, David

    2017-01-01

    Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism-microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares , which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.

  17. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Science.gov (United States)

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We

  18. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Directory of Open Access Journals (Sweden)

    Maryam Yazdani Foshtomi

    Full Text Available The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Our results indicated that bacteria (total and β-AOB showed more spatio-temporal variation than archaea (total and AOA as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal

  19. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.

    Science.gov (United States)

    Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W

    2007-05-01

    Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.

  20. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  1. Microbial Bioremediation of Fuel Oil Hydrocarbons in Marine Environment

    OpenAIRE

    Sapna Pavitran; C.B. Jagtap; S. Bala Subramanian; Susan Titus; Pradeep Kumar; P.C. Deb

    2006-01-01

    Pollution in marine environment due to heavier petroleum products such as high-speeddiesel is known to take from days to months for complete natural remediation owing to its lowvolatility. For the survival of marine flora and fauna, it is important to control pollution causedby such recalcitrant and xenobiotic substances. Several petroleum hydrocarbons found in natureare toxic and recalcitrant. Therefore, pollution due to high-speed diesel is a cause of concern.The natural dispersion of high-...

  2. Immense Essence of Excellence: Marine Microbial Bioactive Compounds

    OpenAIRE

    Ira Bhatnagar; Se-Kwon Kim

    2010-01-01

    Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and...

  3. Chemical Investigations of Marine Filamentous and Zoosporic Fungi and Studies in Marine Microbial Chemical Ecology

    OpenAIRE

    Jenkins, Kelly M.

    1998-01-01

    The natural products chemistry of marine microorganisms is an emerging area of organic chemistry with the aim of discovering novel secondary metabolites exhibiting both biomedical and ecological activities. While marine bacteria have proven to be a productive source of new natural products, there are many groups of marine microorganisms which have not been fully investigated. In particular, marine fungi represent an untapped and potentially novel source of bioactive secondary metabolites. Whi...

  4. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  6. Studies on some aspects of marine microbial exopolysaccharides

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.

    .1 Introduction Microbial (phytoplankton, bacteria, microzooplankton) exopolysaccharides (EPS) in the aquatic environments exists either in free form, constituting a part of dissolved organic matter (DOM) (Lignell 1990, Decho 1990, Heissenberger et al 1996.... Before the feeding experiment, the animals were rinsed with filtered seawater (0.22 ?m) to remove the adhered mucus coating and sediment and weighed. Plate I. Photograph of an adult Nereis diversicolor. 165 Preparation of organic free sediment...

  7. Application of Microbial BOD Sensors in Marine Monitoring

    Institute of Scientific and Technical Information of China (English)

    张悦; 王建龙; 李花子; 施汉昌; 竺建荣

    2001-01-01

    A strain of yeast, which can endure high osmotic pressure, is employed for the sensitive material of the microbial BOD sensor. Two immobilization methods are used, I.e. Calcium alginate gel be ads and PV A gel beads. The results show that the PVA gel beads is better. The influences of osmosis and heavy metal ions on the yeast entrapped in the PVA gel beads are also studied in the experiment.

  8. Petroleum Oxidation in Marine Microcosms by Natural Microbial Assemblages

    Science.gov (United States)

    Wardlaw, G. D.; Reddy, C. M.; Nelson, R. K.; Ehrhardt, C. J.; Valentine, D. L.

    2006-12-01

    Millions of gallons of petroleum are emitted into marine environments each year and the oxidation of this oil by microbes is an important mechanism for mediating toxicity. In terms of quantity, petroleum is the most abundant organic pollutant impacting marine environments today. Recent advances in chromatography have led to the development of comprehensive two-dimensional gas chromatography (GC &GC). The acronym, GC GC, is used because orthogonal gas chromatographic separations are achieved in both analytical dimensions by using stationary phases with varying partitioning abilities and selectivity. This novel method has greatly expanded the analytical window of petroleum hydrocarbons and was used to track the loss of petroleum hydrocarbons in aerobic marine microcosm experiments. Sediment microcosms were composed of seawater and sediment collected from the Coal Oil Point (COP) seep field off the coast of Santa Barbara, CA. Oil collected directly from the reservoir underlying the seep field was added to each microcosm, and samples were incubated for one year. Net metabolism was tracked by quantifying oxygen consumption and carbon dioxide production. The loss of petroleum components was tracked with GC GC, whereas the bacterial and archaeal community structures were tracked using T-RFLP. Results of these incubation studies will be presented.

  9. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    Directory of Open Access Journals (Sweden)

    Amanda G. Bendia

    2018-05-01

    Full Text Available Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

  10. Marine heatwaves and optimal temperatures for microbial assemblage activity

    OpenAIRE

    Joint, IR; Smale, DA

    2016-01-01

    The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3H leucine, measured in a temperature gradient from 5°C to 38°C. Q10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the as...

  11. Initial steps in the microbially influenced corrosion (MIC) of metallic surfaces in a natural marine environment

    International Nuclear Information System (INIS)

    Esteso, M.A.; Estrella, C.N.; Dolores de la Rosa, M.; Martinez-Trujillo, R.; Rosales, B.M.; Podesta, J.J.

    1992-01-01

    Immersion of various metal samples in polluted seawater from Tenerife Harbor was followed by microbial attachment as an intermediate step in fouling development. The purpose of this research was to determine the initial steps in MIC by identifying the different microbial species attached to the respective metal or alloy. Image analysis was used to determine the morphologic changes in the metal surfaces. The corrosion products were determined by X-ray diffraction. The open circuit potentials were measured periodically and their variation with time used to assess the electrochemical behavior in the aforementioned marine environment

  12. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  13. Modeling of microbial quality of food

    NARCIS (Netherlands)

    Zwietering, M.

    1993-01-01

    In this thesis it is shown that predictive modeling is a promising tool in food research, to be used to optimize food chains. Various models are developed and validated to be used to describe microbial growth in foods.

    A tool is developed to discriminate between different models and

  14. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On; Chung, Hong Chun; Yang, Jiangke; Wang, Yong; Dash, Swagatika; Wang, Hao; Qian, Pei-Yuan

    2014-01-01

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members

  15. Marine microbiology: Microbial ecology of the Red Sea [Mikrobielle Ökologie des Roten Meeres

    KAUST Repository

    Stingl, Ulrich; Ngugi, David; Thompson, Luke R.; Antunes, Andre; Cahill, Matthew

    2012-01-01

    The Red Sea is an unusually harsh marine environment, characterized by high temperature and salinity. It also harbors some of the most extreme environments on earth, the Deep Sea Brine Pools. Here, we report on the microbial communities in these environments. The water column is dominated by SAR11 and Prochlorococcus, which have developed specific adaptations to withstand the conditions. The Brine Pools have only been poorly characterized so far, and only four pure cultures are described. © Springer-Verlag 2012.

  16. Marine microbiology: Microbial ecology of the Red Sea [Mikrobielle Ökologie des Roten Meeres

    KAUST Repository

    Stingl, Ulrich

    2012-10-01

    The Red Sea is an unusually harsh marine environment, characterized by high temperature and salinity. It also harbors some of the most extreme environments on earth, the Deep Sea Brine Pools. Here, we report on the microbial communities in these environments. The water column is dominated by SAR11 and Prochlorococcus, which have developed specific adaptations to withstand the conditions. The Brine Pools have only been poorly characterized so far, and only four pure cultures are described. © Springer-Verlag 2012.

  17. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ

    2000-01-01

    microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria(5-7). Here we provide microscopic...... cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.......A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...

  18. Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

    Science.gov (United States)

    Trindade-Silva, Amaro E.; Rua, Cintia; Silva, Genivaldo G. Z.; Dutilh, Bas E.; Moreira, Ana Paula B.; Edwards, Robert A.; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Vasconcelos, Ana Tereza; Berlinck, Roberto G. S.; Thompson, Fabiano L.

    2012-01-01

    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome. PMID:22768320

  19. Microbial communities and bioactive compounds in marine sponges of the family irciniidae-a review.

    Science.gov (United States)

    Hardoim, Cristiane C P; Costa, Rodrigo

    2014-09-30

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species-the vast majority of which are difficult to cultivate-and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  20. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    Directory of Open Access Journals (Sweden)

    Cristiane C. P. Hardoim

    2014-09-01

    Full Text Available Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  1. Microbial diversity in methane hydrate-bearing deep marine sediments core preserved in the original pressure.

    Science.gov (United States)

    Takahashi, Y.; Hata, T.; Nishida, H.

    2017-12-01

    In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).

  2. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Jennifer B. Glass

    2015-09-01

    Full Text Available Iron (Fe and copper (Cu are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3-, NO2-, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8 occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  3. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    Science.gov (United States)

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  4. State-Space Modelling in Marine Science

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard

    State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...

  5. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments.

    Science.gov (United States)

    Keswani, Anisha; Oliver, David M; Gutierrez, Tony; Quilliam, Richard S

    2016-07-01

    Marine plastic debris is well characterized in terms of its ability to negatively impact terrestrial and marine environments, endanger coastal wildlife, and interfere with navigation, tourism and commercial fisheries. However, the impacts of potentially harmful microorganisms and pathogens colonising plastic litter are not well understood. The hard surface of plastics provides an ideal environment for opportunistic microbial colonisers to form biofilms and might offer a protective niche capable of supporting a diversity of different microorganisms, known as the "Plastisphere". This biotope could act as an important vector for the persistence and spread of pathogens, faecal indicator organisms (FIOs) and harmful algal bloom species (HABs) across beach and bathing environments. This review will focus on the existent knowledge and research gaps, and identify the possible consequences of plastic-associated microbes on human health, the spread of infectious diseases and bathing water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  7. A General Business Model for Marine Reserves

    Science.gov (United States)

    Sala, Enric; Costello, Christopher; Dougherty, Dawn; Heal, Geoffrey; Kelleher, Kieran; Murray, Jason H.; Rosenberg, Andrew A.; Sumaila, Rashid

    2013-01-01

    Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models. PMID:23573192

  8. Multiscale Modeling of Microbial Communities

    Science.gov (United States)

    Blanchard, Andrew

    Although bacteria are single-celled organisms, they exist in nature primarily in the form of complex communities, participating in a vast array of social interactions through regulatory gene networks. The social interactions between individual cells drive the emergence of community structures, resulting in an intricate relationship across multiple spatiotemporal scales. Here, I present my work towards developing and applying the tools necessary to model the complex dynamics of bacterial communities. In Chapter 2, I utilize a reaction-diffusion model to determine the population dynamics for a population with two species. One species (CDI+) utilizes contact dependent inhibition to kill the other sensitive species (CDI-). The competition can produce diverse patterns, including extinction, coexistence, and localized aggregation. The emergence, relative abundance, and characteristic features of these patterns are collectively determined by the competitive benefit of CDI and its growth disadvantage for a given rate of population diffusion. The results provide a systematic and statistical view of CDI-based bacterial population competition, expanding the spectrum of our knowledge about CDI systems and possibly facilitating new experimental tests for a deeper understanding of bacterial interactions. In the following chapter, I present a systematic computational survey on the relationship between social interaction types and population structures for two-species communities by developing and utilizing a hybrid computational framework that combines discrete element techniques with reaction-diffusion equations. The impact of deleterious and beneficial interactions on the community are quantified. Deleterious interactions generate an increased variance in relative abundance, a drastic decrease in surviving lineages, and a rough expanding front. In contrast, beneficial interactions contribute to a reduced variance in relative abundance, an enhancement in lineage number, and a

  9. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  10. Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments

    Science.gov (United States)

    Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.

    2017-12-01

    Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species

  11. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.

    Science.gov (United States)

    Oberbeckmann, Sonja; Loeder, Martin G J; Gerdts, Gunnar; Osborn, A Mark

    2014-11-01

    Plastic pollution is now recognised as a major threat to marine environments and marine biota. Recent research highlights that diverse microbial species are found to colonise plastic surfaces (the plastisphere) within marine waters. Here, we investigate how the structure and diversity of marine plastisphere microbial community vary with respect to season, location and plastic substrate type. We performed a 6-week exposure experiment with polyethylene terephthalate (PET) bottles in the North Sea (UK) as well as sea surface sampling of plastic polymers in Northern European waters. Scanning electron microscopy revealed diverse plastisphere communities comprising prokaryotic and eukaryotic microorganisms. Denaturing gradient gel electrophoresis (DGGE) and sequencing analysis revealed that plastisphere microbial communities on PET fragments varied both with season and location and comprised of bacteria belonging to Bacteroidetes, Proteobacteria, Cyanobacteria and members of the eukaryotes Bacillariophyceae and Phaeophyceae. Polymers sampled from the sea surface mainly comprised polyethylene, polystyrene and polypropylene particles. Variation within plastisphere communities on different polymer types was observed, but communities were primarily dominated by Cyanobacteria. This research reveals that the composition of plastisphere microbial communities in marine waters varies with season, geographical location and plastic substrate type. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. A Chemoinformatics Approach to the Discovery of Lead-Like Molecules from Marine and Microbial Sources En Route to Antitumor and Antibiotic Drugs

    Science.gov (United States)

    Pereira, Florbela; Latino, Diogo A. R. S.; Gaudêncio, Susana P.

    2014-01-01

    The comprehensive information of small molecules and their biological activities in the PubChem database allows chemoinformatic researchers to access and make use of large-scale biological activity data to improve the precision of drug profiling. A Quantitative Structure–Activity Relationship approach, for classification, was used for the prediction of active/inactive compounds relatively to overall biological activity, antitumor and antibiotic activities using a data set of 1804 compounds from PubChem. Using the best classification models for antibiotic and antitumor activities a data set of marine and microbial natural products from the AntiMarin database were screened—57 and 16 new lead compounds for antibiotic and antitumor drug design were proposed, respectively. All compounds proposed by our approach are classified as non-antibiotic and non-antitumor compounds in the AntiMarin database. Recently several of the lead-like compounds proposed by us were reported as being active in the literature. PMID:24473174

  13. Environmental Modeling Center / Marine Modeling and Analysis Branch

    Science.gov (United States)

    weather and climate. Both have a history. Marine Meteorology Group Products Ocean Winds - Satellite Remote announcement list for changes to our products and services. SDM Contact Notes: Ocean Models -- Avichal Mehra Ocean Waves Sea Ice SST Marine Met. Real Time Ocean Forecasting System (RTOFS) Global RTOFS A hybrid

  14. Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments

    NARCIS (Netherlands)

    Besaury, L.; Marty, F.; Buquet, S.; Mesnage, V.; Muijzer, G.; Quillet, L.

    2013-01-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions,

  15. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities.

    Science.gov (United States)

    Gilbert, Jack A; Field, Dawn; Huang, Ying; Edwards, Rob; Li, Weizhong; Gilna, Paul; Joint, Ian

    2008-08-22

    Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology is now enabling access to both known and previously unknown transcripts in natural communities. We present a study of a complex marine metatranscriptome obtained from random whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences which are frequently novel. Our alternative methodology increases the range of experimental options available for conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA. Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a far higher yield of large gene families with >100 members, approximately 91% of which were novel. This study provides further evidence that metatranscriptomic studies of natural microbial communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to explore both structure and function of microbial communities--if we can overcome the challenges of elucidating the functions of so many never-seen-before gene families.

  16. Carbohydrate production by phytoplankton and degradation in the marine microbial food web

    NARCIS (Netherlands)

    Alderkamp, Anne-Carlijn

    2006-01-01

    In this PhD thesis I describe studies relating to the cycling of the algal storage glucan chrysolaminaran. Chrysolaminaran is the most abundant type of storage carbohydrate in marine phytoplankton. I choose it as a model substrate to study factors influencing the cycling of carbohydrates, one of the

  17. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  18. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  19. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  20. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Alnajjar, Mohammad Ahmad

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  1. Data Assimilation in Marine Models

    DEFF Research Database (Denmark)

    Frydendall, Jan

    maximum likelihood framework. These issues are discussed in paper B. The third part of the thesis falls a bit out of the above context is work published in papers C, F. In the first paper, a simple data assimilation scheme was investigated to examine the potential benefits of incorporating a data......This thesis consists of six research papers published or submitted for publication in the period 2006-2009 together with a summary report. The main topics of this thesis are nonlinear data assimilation techniques and estimation in dynamical models. The focus has been on the nonlinear filtering...... techniques for large scale geophysical numerical models and making them feasible to work with in the data assimilation framework. The filtering techniques investigated are all Monte Carlo simulation based. Some very nice features that can be exploited in the Monte Carlo based data assimilation framework from...

  2. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  3. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Directory of Open Access Journals (Sweden)

    Michael F. Graw

    2018-04-01

    Full Text Available The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics.

  4. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Science.gov (United States)

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  5. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.; Salam, Darine A.; Rao, Hari Ananda; Semerjian, Lucy; Saikaly, Pascal

    2016-01-01

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway

  6. Deep-Subsurface Marine Methane Hydrate Microbial Communities: Who's There and What Are They Doing?

    Science.gov (United States)

    Colwell, F.; Reed, D.; Fujita, Y.; Delwiche, M.; Blackwelder, D.; Uchida, T.; Fujii, T.; Lu, H.

    2001-12-01

    Natural gas hydrates are crystalline deposits of freshwater and primarily methane. They are estimated to represent a potentially vast reservoir of energy. Relatively little is known regarding microbial communities surrounding deep [>100 meters below sea floor (mbsf)] hydrate-bearing sediments. Deep sediment cores were collected in zones above, within, and below the hydrate bearing strata in an accretionary prism off the coast of Japan. Microorganisms were characterized using cultivation- and non-cultivation-based microbiological techniques to better understand the role that they play in the production and distribution of methane in gas hydrates. Direct counts show cell density at 105 cells/g throughout the hydrate strata. Lipid and 16S rDNA analyses indicate that diverse bacterial and archaeal microorganisms are represented throughout the strata. Acetate and hydrogen were utilized as an energy source for methane-producing microorganisms from each sediment depth. Although the methanogenic biomarker coenzyme M was not present above the detection limit in any of the samples, cloning and characterization of amplified 16S ribosomal RNA genes indicated the presence of methanogenic microorganisms related to the Methanobacteriales and Methanococcales. In addition, archaeal clones closely related to the hyperthermophilic Pyrodictiales were detected. Analysis of eubacterial clones indicated a more diverse eubacterial community compared to the archaea, including members from the groups of cyanobacteria, proteobacteria, gram positive bacteria, and flexibacter-cytophaga-bacteriodes. This study suggests that the diversity of microbial communities associated with the presence of methane in gas hydrate-rich deep marine sediments is greater than previously estimated.

  7. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  8. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems.

    Science.gov (United States)

    Sauterey, Boris; Ward, Ben A; Follows, Michael J; Bowler, Chris; Claessen, David

    2015-01-01

    The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that "Everything is everywhere, but the environment selects", we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean.

  9. Modelling microbial interactions and food structure in predictive microbiology

    NARCIS (Netherlands)

    Malakar, P.K.

    2002-01-01

    Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.

    Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of

  10. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats.

    Science.gov (United States)

    Schuelke, Taruna; Pereira, Tiago José; Hardy, Sarah M; Bik, Holly M

    2018-04-01

    Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region

  11. A Workflow to Model Microbial Loadings in Watersheds

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  12. A Workflow to Model Microbial Loadings in Watersheds (proceedings)

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  13. Comparison of marine dispersion model predictions with environmental radionuclide concentrations

    International Nuclear Information System (INIS)

    Johnson, C.E.; McKay, W.A.

    1988-01-01

    The comparison of marine dispersion model results with measurements is an essential part of model development and testing. The results from two residual flow models are compared with seawater concentrations, and in one case with concentrations measured in marine molluscs. For areas with short turnover times, seawater concentrations respond rapidly to variations in discharge rate and marine currents. These variations are difficult to model, and comparison with concentrations in marine animals provides an alternative and complementary technique for model validation with the advantages that the measurements reflect the mean conditions and frequently form a useful time series. (author)

  14. Lagrangian Observations and Modeling of Marine Larvae

    Science.gov (United States)

    Paris, Claire B.; Irisson, Jean-Olivier

    2017-04-01

    Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.

  15. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  16. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia

    Directory of Open Access Journals (Sweden)

    Hana Zouch

    2017-08-01

    Full Text Available Anaerobic biotechnology using sulfate-reducing bacteria (SRB is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG, an acidic (pH ~3 by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate and sulfate sources (i.e., sodium sulfate or PG as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia. Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

  17. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na_3MnPO_4CO_3 and MnCO_3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N_2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g"−"1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na_3MnPO_4CO_3_. Results suggested the complexity of natural microbe-mediated Mn transformation.

  18. Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment.

    Science.gov (United States)

    Kevorkian, Richard; Bird, Jordan T; Shumaker, Alexander; Lloyd, Karen G

    2018-01-01

    growth only in a few clades directly involved in methanogenesis, rather than in the whole microbial community. IMPORTANCE Many microbes cannot be isolated in pure culture to determine their preferential growth conditions and predict their response to changing environmental conditions. We created a microcosm of marine sediments that allowed us to simulate a diagenetic profile using a temporal analog for depth. This allowed for the observation of the microbial community population dynamics caused by the natural shift from sulfate reduction to methanogenesis. Our research provides evidence for the population dynamics of uncultured microbes as well as the application of a novel method of turnover rate analysis for individual taxa within a mixed incubation, FRAxC, which stands for "fraction of read abundance times cells," which was verified by quantitative PCR. This allows for the calculation of population turnover times for microbes in a natural setting and the identification of uncultured clades involved in geochemical processes. Copyright © 2017 American Society for Microbiology.

  19. Merging Marine Ecosystem Models and Genomics

    Science.gov (United States)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  20. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  1. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    Science.gov (United States)

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  2. Modeling and Analysis in Marine Big Data: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Dongmei Huang

    2015-01-01

    Full Text Available It is aware that big data has gathered tremendous attentions from academic research institutes, governments, and enterprises in all aspects of information sciences. With the development of diversity of marine data acquisition techniques, marine data grow exponentially in last decade, which forms marine big data. As an innovation, marine big data is a double-edged sword. On the one hand, there are many potential and highly useful values hidden in the huge volume of marine data, which is widely used in marine-related fields, such as tsunami and red-tide warning, prevention, and forecasting, disaster inversion, and visualization modeling after disasters. There is no doubt that the future competitions in marine sciences and technologies will surely converge into the marine data explorations. On the other hand, marine big data also brings about many new challenges in data management, such as the difficulties in data capture, storage, analysis, and applications, as well as data quality control and data security. To highlight theoretical methodologies and practical applications of marine big data, this paper illustrates a broad view about marine big data and its management, makes a survey on key methods and models, introduces an engineering instance that demonstrates the management architecture, and discusses the existing challenges.

  3. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads

    KAUST Repository

    Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A.; Mahjoubi, Mouna; Malkawi, Hanan Issa; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser Refaat; Kalogerakis, Nicolas E.; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N.

    2015-01-01

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria. © 2015 Springer Science+Business Media New York

  4. Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads

    KAUST Repository

    Gertler, Christoph

    2015-04-29

    Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria. © 2015 Springer Science+Business Media New York

  5. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas

    2014-03-26

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  6. Design, Modeling, and Development of Microbial Cell Factories

    KAUST Repository

    Kodzius, Rimantas; Behzad, H.; Archer, John A.C.; Bajic, Vladimir B.; Gojobori, Takashi

    2014-01-01

    Using Metagenomic analysis, computational modeling, single cell and genome editing technologies, we will express desired microbial genes and their networks in suitable hosts for mass production of energy, food, and fine chemicals.

  7. Redox conditions and marine microbial community changes during the end-Ordovician mass extinction event

    Science.gov (United States)

    Smolarek, Justyna; Marynowski, Leszek; Trela, Wiesław; Kujawski, Piotr; Simoneit, Bernd R. T.

    2017-02-01

    The end-Ordovician (Hirnantian) crisis is the first globally distinct extinction during the Phanerozoic, but its causes are still not fully known. Here, we present an integrated geochemical and petrographic analysis to understand the sedimentary conditions taking place before, during and after the Late Ordovician ice age. New data from the Zbrza (Holy Cross Mountains) and Gołdap (Baltic Depression) boreholes shows that, like in other worldwide sections, the total organic carbon (TOC) content is elevated in the upper Katian and uppermost Hirnantian to Rhudannian black shales, but depleted (below 1%) during most of the Hirnantian. Euxinic conditions occurred in the photic zone in both TOC-rich intervals. This is based on the maleimide distribution, occurrence of aryl isoprenoids and isorenieratane, as well as a dominance of tiny pyrite framboids. Euxinic conditions were interrupted by the Hirnantian regression caused by glaciation. Sedimentation on the deep shelf changed to aerobic probably due to intense thermohaline circulation. Euxinia in the water column occurred directly during the time associated with the second pulse of the mass extinction with a termination of the end-Ordovician glaciation and sea level rise just at the Ordovician/Silurian (O/S) boundary. In contrast, we suggest based on inorganic proxies that bottom water conditions were generally oxic to dysoxic due to upwelling in the Rheic Ocean. The only episode of seafloor anoxia in the Zbrza basin was found at the O/S boundary, where all inorganic indicators showed elevated values typical for anoxia (U/Th > 1.25; V/Cr > 4.25; V/(V + Ni): 0.54-0.82 and Mo > 10-25 ppm). Significant differences in hopanes to steranes ratio and in C27-C29 sterane distribution between the Katian, Rhudannian and Hirnantian deposits indicate changes in marine microbial communities triggered by sharp climate change and Gondwana glaciation. The increase from biomarkers of cyanobacteria (2α-methylhopanes) after the O

  8. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    Science.gov (United States)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  9. A unique model system of microbial carbonate precipitation: Stromatolites of Lagoa Vermelha, Brazil

    Science.gov (United States)

    Warthmann, R. J.; Vasoncelos, C.; van Lith, Y.; Visscher, P. T.; McKenzie, J. A.

    2003-04-01

    Modern stromatolites are recognized as analogues to fossil laminated structures, which are remains of microbial activity that are widely found in sedimentary rocks beginning in the Neo-Archean, but are quite rare today. The key difference of modern microbial mats and stromatolites compared to ancient examples is the type of lithification. A few marine and hypersaline microbial mats have been observed to precipitate carbonates, and only in Shark Bay (Western, Australia) and Highborne Cay (Bahamas) has the formation of continuous laminae of carbonates been observed. Lagoa Vermelha, a moderate hypersaline lagoon in Rio de Janeiro, Brazil, offers the ideal conditions to promote lithification. Calcified, sometimes dolomitic stromatolites grow on the sediment surface, whereas within the sediments dolomite precipitates. The factors controlling carbonate precipitation in Lagoa Vermelha are the changing water chemistry and the special hydrology, combined with a high primary production by cyanobacteria, a high rate of respiration and the absence of higher organisms. Here, we present a study of the physico-chemical parameters, microbial processes and bio-minerals associated with these stromatolites and microbial mats. This approach provides boundary conditions to better understand dolomite formation. Several discrete lithified calcium carbonate layers are present. The first lithified layer is found beneath a 2-mm-thick biofilm, which contains Gloeocapsa. Below the underlying dense Microcoleus layer, the second micrite deposit is observed at 4-5 mm depth. Successive micritic laminae are preserved in the layer of decaying cyanobacteria that harbors large numbers of purple sulfur bacteria, heterotrophic microbes and sulfate-reducing bacteria. C-isotope studies of the carbonate layers indicate a contribution of organic derived carbon associated with microbial processes, such as sulfate reduction. The O-isotopic values indicate an evaporitic enrichment of the water. Understanding

  10. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    Science.gov (United States)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  11. Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia

    Directory of Open Access Journals (Sweden)

    Axel eSchippers

    2012-01-01

    Full Text Available Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 meters below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises R/V Meteor 72/5 and 76/1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, CARD-FISH and quantitative real-time PCR (Q-PCR. Total cell counts decreased with depths from 109 – 1010 cells /mL at the sediment surface to 107 – 109 cells /mL below one meter depth. Based on CARD-FISH and Q-PCR analysis overall similar proportions of Bacteria and Archaea were determined. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was successfully revealed by Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were as highly abundant as Archaea and Bacteria, respectively. Less abundant but detectable in most of the samples in high gene copy numbers were Eukarya and the Fe(III- and Mn(IV-reducing bacterial group Geobacteriaceae (off Namibia as well as the functional genes cbbL encoding for the large subunit of Rubisco, the functional genes dsrA and aprA of sulfate-reducers and the gene mcrA of methanogens. Overall the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  12. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia.

    Science.gov (United States)

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2012-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  13. Accounting for microbial habitats in modeling soil organic matter dynamics

    Science.gov (United States)

    Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier

    2017-04-01

    The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.

  14. Microbial food safety - modeling and applications

    Science.gov (United States)

    Microbial food safety is a key issue for the food processing industry, and enhancing food safety is everyone’s responsibility from food producers to consumers. Financial losses to the economy due to foodborne illness are in the billions of dollars, annually. Foodborne illness can be caused by patho...

  15. Technical data report : marine acoustics modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Chorney, N.; Warner, G.; Austin, M. [Jasco Applied Sciences, Victoria, BC (Canada)

    2010-07-01

    This study was conducted to predict the ensonification produced by vessel traffic transiting to and from the Enbridge Northern Gateway Project's marine terminal located near Kitimat, British Columbia (BC). An underwater acoustic propagation model was used to model frequency bands from 20 Hz to 5 kHz at a standard depth of 20 metres. The model included bathymetric grids of the modelling area; underwater sound speed as a function of depth; and geo-acoustic profiles based on the stratified composition of the seafloor. The obtained 1/3 octave band levels were then used to determine broadband received sound levels for 4 scenarios along various transit routes: the Langara and Triple Island in Dixon Entrance; the Browning Entrance in Hecate Strait, and Cape St. James in the Queen Charlotte Basin. The scenarios consisted of a tanker transiting at 16 knots, and an accompanying tug boat. Underwater sound level maps for each scenario were presented. 14 refs., 5 tabs., 16 figs.

  16. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  17. Spatiotemporal modelling of marine movement data using Template Model Builder (TMB)

    DEFF Research Database (Denmark)

    Auger-Méthé, Marie; Albertsen, Christoffer Moesgaard; Jonsen, Ian D.

    2017-01-01

    Tracking of marine animals has increased exponentially in the past decade, and the resulting data could lead to an in-depth understanding of the causes and consequences of movement in the ocean. However, most common marine tracking systems are associated with large measurement errors. Accounting...... tool for modelling marine movement data. We discuss how TMB’s potential reaches beyond marine movement studies...

  18. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  19. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    Science.gov (United States)

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Pan, Haixia [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Xu, Jianqiang [School of Life Science and Medicine, Dalian University of Technology, Panjin 124221 (China); Xu, Weiping; Liu, Lifen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China)

    2016-03-05

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na{sub 3}MnPO{sub 4}CO{sub 3} and MnCO{sub 3} were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N{sub 2} adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g{sup −1} adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na{sub 3}MnPO{sub 4}CO{sub 3.} Results suggested the complexity of natural microbe-mediated Mn transformation.

  1. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  2. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  3. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina; Moitinho-Silva, Lucas; Brü mmer, Franz; Cannistraci, Carlo V.; Ravasi, Timothy; Hentschel, Ute

    2015-01-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  4. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    Science.gov (United States)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  5. Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions

    Directory of Open Access Journals (Sweden)

    Paola Di Donato

    2016-05-01

    Full Text Available The present review will explore the most relevant findings on marine microbial biofilm, with particular attention towards its polysaccharide fraction, namely exopolysaccharide (EPS. EPSs of microbial origin are ubiquitous in nature, possess unique properties and can be isolated from the bacteria living in a variety of habitats, including fresh water or marine environments, extreme environments or different soil ecosystems. These biopolymers have many application in the field of biotechnology. Several studies showed that the biofilm formation is closely related to quorum sensing (QS systems, which is a mechanism relying on the production of small molecules defined as “autoinducers” that bacteria release in the surrounding environment where they accumulate. In this review, the involvement of microbial chemical communication, by QS mechanism, in the formation of marine biofilm will also be discussed.

  6. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  7. Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions

    Energy Technology Data Exchange (ETDEWEB)

    López, José L.; Golemba, Marcelo; Hernández, Edgardo; Lozada, Mariana; Dionisi, Hebe; Jansson, Janet K.; Carroll, Jolynn; Lundgren, Leif; Sjöling, Sara; Mac Cormack, Walter P.; Sobecky, Patricia

    2016-11-03

    Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes were ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.

  8. Marine Model Trout Farms: developments in marine RAS

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg

    2011-01-01

    , nitrogen is removed in a full-scale experimental set-up where sludge from the drum filter is hydrolysed and the VFAs generated used as energy-source for the denitrification process in separate tanks/filters. Final polishing follows in a constructed wetland. For the first 2 years of operation production......Economical and environmentally sustainable production of large salmonids in sea water has in Denmark been called for during some years. Based on the experience gained from the Danish Model Trout Farms in freshwater, a rather similar concept has been developed for farming of larger fish in sea water...... temperature the pumps can be individually turned on/off primarily in relation to oxygen need and consumption in the fish tank. In a 1 year batch production some 20 t of fish will be introduced in April and some 80 t are supposed to be harvested in December. End-of-pipe treatment is a two-step process. First...

  9. B-Vitamin Competition: Intracellular and Dissolved B-Vitamins Provide Insight into Marine Microbial Community Dynamics

    Science.gov (United States)

    Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under

  10. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  11. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    Science.gov (United States)

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  12. Modeling microbial processes in porous media

    Science.gov (United States)

    Murphy, Ellyn M.; Ginn, Timothy R.

    The incorporation of microbial processes into reactive transport models has generally proceeded along two separate lines of investigation: (1) transport of bacteria as inert colloids in porous media, and (2) the biodegradation of dissolved contaminants by a stationary phase of bacteria. Research over the last decade has indicated that these processes are closely linked. This linkage may occur when a change in metabolic activity alters the attachment/detachment rates of bacteria to surfaces, either promoting or retarding bacterial transport in a groundwater-contaminant plume. Changes in metabolic activity, in turn, are controlled by the time of exposure of the microbes to electron acceptors/donor and other components affecting activity. Similarly, metabolic activity can affect the reversibility of attachment, depending on the residence time of active microbes. Thus, improvements in quantitative analysis of active subsurface biota necessitate direct linkages between substrate availability, metabolic activity, growth, and attachment/detachment rates. This linkage requires both a detailed understanding of the biological processes and robust quantitative representations of these processes that can be tested experimentally. This paper presents an overview of current approaches used to represent physicochemical and biological processes in porous media, along with new conceptual approaches that link metabolic activity with partitioning of the microorganism between the aqueous and solid phases. Résumé L'introduction des processus microbiologiques dans des modèles de transport réactif a généralement suivi deux voies différentes de recherches: (1) le transport de bactéries sous forme de colloïdes inertes en milieu poreux, et (2) la biodégradation de polluants dissous par une phase stationnaire de bactéries. Les recherches conduites au cours des dix dernières années indiquent que ces processus sont intimement liés. Cette liaison peut intervenir lorsqu

  13. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    KAUST Repository

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  14. Microbial Communities Model Parameter Calculation for TSPA/SR

    International Nuclear Information System (INIS)

    D. Jolley

    2001-01-01

    This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M and O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M and O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow ΔG (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M and O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M and O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed

  15. Autecology of crenarchaeotal and bacterial clades in marine sediments and microbial mats

    OpenAIRE

    Kubo, Kyoko

    2011-01-01

    The focus of this thesis was the autecology of the Miscellaneous Crenarchaeotal Group (MCG), a phylum-level clade of Archaea occurring mostly in marine sediments. Sequences of MCG 16S rRNA genes have been retrieved from a wide range of marine and terrestrial habitats, such as deep subsurface sediments, hydrothermal sediments, mud volcanoes, estuaries, hot springs and freshwater lake sediments. MCG members seem to have no general preferences for a particular temperature or salinity. So far, no...

  16. Development of a transport model for the microbial degradation of ...

    African Journals Online (AJOL)

    A mathematical model for first order reaction rate under isothermal condition was developed for predicting the diffusivity and transport rate of anthracene and pyrene during biodegradation using two microbial strains (corynebacteria spp and pseudomonas putida) in a heterogeneous porous medium. The formulation ...

  17. Modeling Logistic Performance in Quantitative Microbial Risk Assessment

    NARCIS (Netherlands)

    Rijgersberg, H.; Tromp, S.O.; Jacxsens, L.; Uyttendaele, M.

    2010-01-01

    In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage

  18. [Analysis on sustainable development of marine economy in Jiangsu Province based on marine ecological footprint correction model].

    Science.gov (United States)

    Yang, Shan; Wang, Yu-ting

    2011-03-01

    Based on the theories and methods of ecological footprint, the concept of marine ecological footprint was proposed. According to the characteristics of marine environment in Jiangsu Province, five sub-models of marine ecological footprints, including fishery, transporation, marine engineering construction, marine energy, and tidal flat, were constructed. The equilibrium factors of the five marine types were determined by using improved entropy method, and the marine footprints and capacities in Jiangsu Province from 2000 to 2008 were calculated and analyzed. In 2000-2008, the marine ecology footprint per capita in Jiangsu Province increased nearly seven times, from 36.90 hm2 to 252.94 hm2, and the ecological capacity per capita grew steadily, from 105.01 hm2 to 185.49 hm2. In 2000, the marine environment in the Province was in a state of ecological surplus, and the marine economy was in a weak sustainable development state. Since 2004, the marine ecological environment deteriorated sharply, with ecological deficit up to 109660.5 hm2, and the sustainability of marine economy declined. The high ecological footprint of fishery was the main reason for the ecological deficit. Tidal flat was the important reserve resource for the sustainable development of marine economy in Jiangsu Province.

  19. Marine Microbial Mats and the Search for Evidence of Life in Deep Time and Space

    Science.gov (United States)

    Des Marais, David J.

    2011-01-01

    Cyanobacterial mats in extensive seawater evaporation ponds at Guerrero Negro, Baja California, Mexico, have been excellent subjects for microbial ecology research. The studies reviewed here have documented the steep and rapidly changing environmental gradients experienced by mat microorganisms and the very high rates of biogeochemical processes that they maintained. Recent genetic studies have revealed an enormous diversity of bacteria as well as the spatial distribution of Bacteria, Archaea and Eukarya. These findings, together with emerging insights into the intimate interactions between these diverse populations, have contributed substantially to our understanding of the origins, environmental impacts, and biosignatures of photosynthetic microbial mats. The biosignatures (preservable cells, sedimentary fabrics, organic compounds, minerals, stable isotope patterns, etc.) potentially can serve as indicators of past life on early Earth. They also can inform our search for evidence of any life on Mars. Mars exploration has revealed evidence of evaporite deposits and thermal spring deposits; similar deposits on Earth once hosted ancient microbial mat ecosystems.

  20. Modeling marine surface microplastic transport to assess optimal removal locations

    OpenAIRE

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the ...

  1. Bioremediation in marine ecosystems: a computational study combining ecological modelling and flux balance analysis

    Directory of Open Access Journals (Sweden)

    Marianna eTaffi

    2014-09-01

    Full Text Available The pressure to search effective bioremediation methodologies for contaminated ecosystems has led to the large-scale identification of microbial species and metabolic degradation pathways. However, minor attention has been paid to the study of bioremediation in marine food webs and to the definition of integrated strategies for reducing bioaccumulation in species. We propose a novel computational framework for analysing the multiscale effects of bioremediation at the ecosystem level, based on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The combination of techniques from synthetic biology and ecological network analysis allows the specification of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or synthetic microbial strains.In this study, we derive a bioaccumulation model of polychlorinated biphenyls (PCBs in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida KT2440 (iJN746 with the aerobic pathway of PCBs degradation. We assess the effectiveness of different bioremediation scenarios in reducing PCBs concentration in species and we study indices of species centrality to measure their importance in the contaminant diffusion via feeding links.The analysis of the Adriatic sea case study suggests that our framework could represent a practical tool in the design of effective remediation strategies, providing at the same time insights into the ecological role of microbial communities within food webs.

  2. A Biogeotechnical approach to Stabilize Soft Marine Soil with a Microbial Organic Material called Biopolymer

    Science.gov (United States)

    Chang, I.; Cho, G. C.; Kwon, Y. M.; Im, J.

    2017-12-01

    The importance and demands of offshore and coastal area development are increasing due to shortage of usable land and to have access to valuable marine resources. However, most coastal soils are soft sediments, mainly composed with fines (silt and clay) and having high water and organic contents, which induce complicated mechanical- and geochemical- behaviors and even be insufficient in Geotechnical engineering aspects. At least, soil stabilization procedures are required for those soft sediments, regardless of the purpose of usage on the site. One of the most common soft soil stabilization method is using ordinary cement as a soil strengthening binder. However, the use of cement in marine environments is reported to occur environmental concerns such as pH increase and accompanying marine ecosystem disturbance. Therefore, a new environmentally-friendly treatment material for coastal and offshore soils. In this study, a biopolymer material produced by microbes is introduced to enhance the physical behavior of a soft tidal flat sediment by considering the biopolymer rheology, soil mineralogy, and chemical properties of marine water. Biopolymer material used in this study forms inter-particle bonds between particles which is promoted through cation-bridges where the cations are provided from marine water. Moreover, biopolymer treatment renders unique stress-strain relationship of soft soils. The mechanical stiffness (M) instantly increase with the presence of biopolymer, while time-dependent settlement behavior (consolidation) shows a big delay due to the viscous biopolymer hydrogels in pore spaces.

  3. Marine Vessel Models in Changing Operational Conditions - A Tutorial

    DEFF Research Database (Denmark)

    Perez, Tristan; Sørensen, Asgeir; Blanke, Mogens

    2006-01-01

    conditions (VOC). However, since marine systems operate in changing VOCs, there is a need to adapt the models. To date, there is no theory available to describe a general model valid across different VOCs due to the complexity of the hydrodynamic involved. It is believed that system identification could......This tutorial paper provides an introduction, from a systems perspective, to the topic of ship motion dynamics of surface ships. It presents a classification of parametric models currently used for monitoring and control of marine vessels. These models are valid for certain vessel operational...

  4. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  5. Diversity of Microbial Communities and Quantitative Chemodiversity in Layers of Marine Sediment Cores from a Causeway (Kaichu-Doro in Okinawa Island, Japan

    Directory of Open Access Journals (Sweden)

    Taha Soliman

    2017-12-01

    Full Text Available Microbial community diversity and chemodiversity were investigated in marine sediments adjacent to the Okinawan “Kaichu-Doro” Causeway, which was constructed 46 years ago to connect a group of four islands (Henza-jima, Miyagi-jima, Ikei-jima, Hamahiga-jima to the Okinawan main island. This causeway was not built on pilings, but by land reclamation; hence, it now acts as a long, thin peninsula. The construction of this causeway was previously shown to have influenced the surrounding marine ecosystem, causing ecosystem fragmentation and loss of water circulation. In this study, we collected sediment cores (n = 10 from five paired sites in 1 m water depths. Each pair of sites consisted of one site each on the immediate north and south sides of the causeway. Originally the members of each pair were much closer to each other (<150 m than to other pairs, but now the members of each pair are isolated by the causeway. Each core was 60–80 cm long and was divided into 15-cm layers. We examined the vertical diversity of microbial communities and chemical compounds to determine the correlation between chemodiversity and microbial communities among marine sediment cores and layers. Principal coordinate analyses (PCoA of detected compounds and of bacterial and archaeal operational taxonomic units (OTUs revealed that the north and south sides of the causeway are relatively isolated, with each side having unique microbial OTUs. Additionally, some bacterial families (e.g., Acidaminobacteraceae, Rhizobiaceae, and Xanthomonadaceae were found only on the south side of Kaichu-Doro. Interestingly, we found that the relative abundance of OTUs for some microbial families increased from top to bottom, but this was reversed in some other families. We conclude that the causeway has altered microbial community composition and metabolite profiles in marine sediments.

  6. Diversity of Microbial Communities and Quantitative Chemodiversity in Layers of Marine Sediment Cores from a Causeway (Kaichu-Doro) in Okinawa Island, Japan.

    Science.gov (United States)

    Soliman, Taha; Reimer, James D; Yang, Sung-Yin; Villar-Briones, Alejandro; Roy, Michael C; Jenke-Kodama, Holger

    2017-01-01

    Microbial community diversity and chemodiversity were investigated in marine sediments adjacent to the Okinawan "Kaichu-Doro" Causeway, which was constructed 46 years ago to connect a group of four islands (Henza-jima, Miyagi-jima, Ikei-jima, Hamahiga-jima) to the Okinawan main island. This causeway was not built on pilings, but by land reclamation; hence, it now acts as a long, thin peninsula. The construction of this causeway was previously shown to have influenced the surrounding marine ecosystem, causing ecosystem fragmentation and loss of water circulation. In this study, we collected sediment cores ( n = 10) from five paired sites in 1 m water depths. Each pair of sites consisted of one site each on the immediate north and south sides of the causeway. Originally the members of each pair were much closer to each other (microbial communities and chemical compounds to determine the correlation between chemodiversity and microbial communities among marine sediment cores and layers. Principal coordinate analyses (PCoA) of detected compounds and of bacterial and archaeal operational taxonomic units (OTUs) revealed that the north and south sides of the causeway are relatively isolated, with each side having unique microbial OTUs. Additionally, some bacterial families (e.g., Acidaminobacteraceae, Rhizobiaceae, and Xanthomonadaceae) were found only on the south side of Kaichu-Doro. Interestingly, we found that the relative abundance of OTUs for some microbial families increased from top to bottom, but this was reversed in some other families. We conclude that the causeway has altered microbial community composition and metabolite profiles in marine sediments.

  7. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed....... This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  8. Flash flood modeling with the MARINE hydrological distributed model

    Science.gov (United States)

    Estupina-Borrell, V.; Dartus, D.; Ababou, R.

    2006-11-01

    Flash floods are characterized by their violence and the rapidity of their occurrence. Because these events are rare and unpredictable, but also fast and intense, their anticipation with sufficient lead time for warning and broadcasting is a primary subject of research. Because of the heterogeneities of the rain and of the behavior of the surface, spatially distributed hydrological models can lead to a better understanding of the processes and so on they can contribute to a better forecasting of flash flood. Our main goal here is to develop an operational and robust methodology for flash flood forecasting. This methodology should provide relevant data (information) about flood evolution on short time scales, and should be applicable even in locations where direct observations are sparse (e.g. absence of historical and modern rainfalls and streamflows in small mountainous watersheds). The flash flood forecast is obtained by the physically based, space-time distributed hydrological model "MARINE'' (Model of Anticipation of Runoff and INondations for Extreme events). This model is presented and tested in this paper for a real flash flood event. The model consists in two steps, or two components: the first component is a "basin'' flood module which generates flood runoff in the upstream part of the watershed, and the second component is the "stream network'' module, which propagates the flood in the main river and its subsidiaries. The basin flash flood generation model is a rainfall-runoff model that can integrate remotely sensed data. Surface hydraulics equations are solved with enough simplifying hypotheses to allow real time exploitation. The minimum data required by the model are: (i) the Digital Elevation Model, used to calculate slopes that generate runoff, it can be issued from satellite imagery (SPOT) or from French Geographical Institute (IGN); (ii) the rainfall data from meteorological radar, observed or anticipated by the French Meteorological Service (M

  9. Gut Microbial Diversity in Rat Model Induced by Rhubarb

    Science.gov (United States)

    Peng, Ying; Wu, Chunfu; Yang, Jingyu; Li, Xiaobo

    2014-01-01

    Rhubarb is often used to establish chronic diarrhea and spleen (Pi)-deficiency syndrome animal models in China. In this study, we utilized the enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) method to detect changes in bacterial diversity in feces and the bowel mucosa associated with this model. Total microbial genomic DNA from the small bowel (duodenum, jejunum, and ileum), large bowel (proximal colon, distal colon, and rectum), cecum, and feces of normal and rhubarb-exposed rats were used as templates for the ERIC-PCR analysis. We found that the fecal microbial composition did not correspond to the bowel bacteria mix. More bacterial diversity was observed in the ileum of rhubarb-exposed rats (Panalysis with the SPSS software, the Canonical Discriminant Function Formulae for model rats was established. PMID:25048267

  10. Contrasting response to nutrient manipulation in Arctic mesocosms are reproduced by a minimum microbial food web model.

    Science.gov (United States)

    Larsen, Aud; Egge, Jorun K; Nejstgaard, Jens C; Di Capua, Iole; Thyrhaug, Runar; Bratbak, Gunnar; Thingstad, T Frede

    2015-03-01

    A minimum mathematical model of the marine pelagic microbial food web has previously shown to be able to reproduce central aspects of observed system response to different bottom-up manipulations in a mesocosm experiment Microbial Ecosystem Dynamics (MEDEA) in Danish waters. In this study, we apply this model to two mesocosm experiments (Polar Aquatic Microbial Ecology (PAME)-I and PAME-II) conducted at the Arctic location Kongsfjorden, Svalbard. The different responses of the microbial community to similar nutrient manipulation in the three mesocosm experiments may be described as diatom-dominated (MEDEA), bacteria-dominated (PAME-I), and flagellated-dominated (PAME-II). When allowing ciliates to be able to feed on small diatoms, the model describing the diatom-dominated MEDEA experiment give a bacteria-dominated response as observed in PAME I in which the diatom community comprised almost exclusively small-sized cells. Introducing a high initial mesozooplankton stock as observed in PAME-II, the model gives a flagellate-dominated response in accordance with the observed response also of this experiment. The ability of the model originally developed for temperate waters to reproduce population dynamics in a 10°C colder Arctic fjord, does not support the existence of important shifts in population balances over this temperature range. Rather, it suggests a quite resilient microbial food web when adapted to in situ temperature. The sensitivity of the model response to its mesozooplankton component suggests, however, that the seasonal vertical migration of Arctic copepods may be a strong forcing factor on Arctic microbial food webs.

  11. Microbially mediated carbonation of marine alkaline minerals : Potential for concrete crack healing

    NARCIS (Netherlands)

    Jonkers, H.M.; Palin, D.; Flink, P.J.; Thijssen, A.

    2013-01-01

    Concrete constructions in the marine environment suffer from chemical attack of sea salts which can induce damage to both the concrete matrix and embedded steel reinforcement. For example, ingress of sulfate and chloride ions can respectively result in detrimental ettringite formation and enhanced

  12. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    NARCIS (Netherlands)

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A.A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution

  13. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    NARCIS (Netherlands)

    Mojica, K.D.A.; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host

  14. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma; Xiong, Yanghui; Alam, Aftab; Croue, Jean-Philippe; Hong, Pei-Ying

    2017-01-01

    at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction

  15. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Gonzalez-Gil, Graciela; Egger, Matthias; Slomp, Caroline P; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2017-10-01

    The microbial community inhabiting the shallow sulfate-methane transition zone in coastal sediments from marine Lake Grevelingen (The Netherlands) was characterized, and the ability of the microorganisms to carry out anaerobic oxidation of methane coupled to sulfate reduction was assessed in activity tests. In vitro activity tests of the sediment with methane and sulfate demonstrated sulfide production coupled to the simultaneous consumption of sulfate and methane at approximately equimolar ratios over a period of 150 days. The maximum sulfate reduction rate was 5 μmol sulfate per gram dry weight per day during the incubation period. Diverse archaeal and bacterial clades were retrieved from the sediment with the majority of them clustered with Euryarchaeota, Thaumarcheota, Bacteroidetes, and Proteobacteria. The 16S rRNA gene sequence analysis showed that the sediment from marine Lake Grevelingen contained anaerobic methanotrophic Archaea (ANME) and methanogens as archaeal clades with a role in the methane cycling. ANME at the studied site mainly belong to the ANME-3 clade. This study provides one of the few reports for the presence of ANME-3 in a shallow coastal sediment. Sulfate-reducing bacteria from Desulfobulbus clades were found among the sulfate reducers, however, with very low relative abundance. Desulfobulbus has previously been commonly found associated with ANME, whereas in our study, ANME-3 and Desulfobulbus were not observed simultaneously in clusters, suggesting the possibility of independent AOM by ANME-3.

  16. Elevated temperature alters carbon cycling in a model microbial community

    Science.gov (United States)

    Mosier, A.; Li, Z.; Thomas, B. C.; Hettich, R. L.; Pan, C.; Banfield, J. F.

    2013-12-01

    Earth's climate is regulated by biogeochemical carbon exchanges between the land, oceans and atmosphere that are chiefly driven by microorganisms. Microbial communities are therefore indispensible to the study of carbon cycling and its impacts on the global climate system. In spite of the critical role of microbial communities in carbon cycling processes, microbial activity is currently minimally represented or altogether absent from most Earth System Models. Method development and hypothesis-driven experimentation on tractable model ecosystems of reduced complexity, as presented here, are essential for building molecularly resolved, benchmarked carbon-climate models. Here, we use chemoautotropic acid mine drainage biofilms as a model community to determine how elevated temperature, a key parameter of global climate change, regulates the flow of carbon through microbial-based ecosystems. This study represents the first community proteomics analysis using tandem mass tags (TMT), which enable accurate, precise, and reproducible quantification of proteins. We compare protein expression levels of biofilms growing over a narrow temperature range expected to occur with predicted climate changes. We show that elevated temperature leads to up-regulation of proteins involved in amino acid metabolism and protein modification, and down-regulation of proteins involved in growth and reproduction. Closely related bacterial genotypes differ in their response to temperature: Elevated temperature represses carbon fixation by two Leptospirillum genotypes, whereas carbon fixation is significantly up-regulated at higher temperature by a third closely related genotypic group. Leptospirillum group III bacteria are more susceptible to viral stress at elevated temperature, which may lead to greater carbon turnover in the microbial food web through the release of viral lysate. Overall, this proteogenomics approach revealed the effects of climate change on carbon cycling pathways and other

  17. Modeling Approaches for Describing Microbial Population Heterogeneity

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita

    environmental conditions. Three cases are presented and discussed in this thesis. Common to all is the use of S. cerevisiae as model organism, and the use of cell size and cell cycle position as single-cell descriptors. The first case focuses on the experimental and mathematical description of a yeast...

  18. Development of a Fuzzy Model for Iranian Marine Casualties Management

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2014-09-01

    Full Text Available Marine Accident investigation multidimensional and complex, so this study aimed to provide a systematic approach to determining the degree of the most influential parameters (dimensions in accident occurrence in order to improve marine safety in the direction of good governance. In this paper, two-phase procedures are proposed. The first stage utilizes the fuzzy Delphi method (FDM to determine the critical factors of Marine Accident Investigation by interviewing the pertinent authorities. In the second stage, the fuzzy analytic hierarchy process (FAHP is applied to pair fuzzy numbers as measurable indices and finally to rank by degree each influential criterion within accident investigation. This study considers 1 goal, 4 aspects, and 31 criteria (parameters and establishes a ranking model that allows decision-makers to assess the prior ordering of reasons and sort by the most effective parameters involved in marine accident occurrence. The empirical study indicated that People, working and living conditions, effect is considered the highest ranking aspect, and Ability, skills, and knowledge of workers is considered the most important evaluation criterion overall by experts. These results were derived from fuzzy Delphi analytical hierarchy processing (FDAHP. A demonstration of the prior ordering of accident-causing parameters by authorities was addressed as well. Therefore, ranking the priority of every influential criterion (parameter will help marine transportation decision makers emphasize the areas in which to improve in order to prevent future marine accidents.

  19. Marine microbial ecology: Reminiscence of the status and some suggestions for the way forward

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    communities are central to all processes . From traditional cultivation based experiments to today's molecular analyses based on metagenomics, major strides have been made. Molecular ecology made significant impact by revealing the true scope... environmental parameters are recorded together with diversity data, it would be possible to assess the impact of space, time, on microbial communities and quantify interactions among factors. The integration of laboratory-developed microbiological sensors...

  20. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

    DEFF Research Database (Denmark)

    Grossart, H.P.; Kiørboe, Thomas; Tang, K.W.

    2006-01-01

    as well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth...... and aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached...... bacteria depended on phytoplankton growth and aggregation dynamics. The community composition of especially attached bacteria significantly differed between the 2 algal cultures. Our study suggests that phytoplankton aggregation and vertical fluxes are closely linked to interactions between the marine...

  1. Long distance electron transport in marine sediments: Microbial and geochemical implications

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Larsen, Steffen; Pfeffer, Christian

    and promotes the formation of Mg-calcite and iron oxides in the oxic zone. Oxygen seems to be the major electron acceptor, and more than 40% of the oxygen consumption in sediments can be driven by long distance electron transfer from distant electron donors. The major e-donor is sulfide, which is oxidized......Anaerobic oxidation of organic matter in marine sediment is traditionally considered to be coupled to oxygen reduction via a cascade of redox processes and transport of intermittent electron donors and acceptors. Electric currents have been found to shortcut this cascade and directly couple...... oxidation of sulphide centimeters down in marine sediment to the reduction of oxygen at the very surface1 . This electric coupling of spatially separated redox half-reactions seems to be mediated by centimeter long filamentous Desulfubulbus affiliated bacteria with morphological and ultra...

  2. Experimental and Modeling Studies of Interactions of Marine Aerosols and Clouds

    National Research Council Canada - National Science Library

    Kreidenweis, Sonia

    1995-01-01

    The specific objectives of the modeling component are to develop models of the marine boundary layer, including models that predict cloud formation and evolution and the effects of such processes on the marine aerosol (and vice versa...

  3. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing.

    Science.gov (United States)

    Hong, Pei-Ying; Wheeler, Emily; Cann, Isaac K O; Mackie, Roderick I

    2011-09-01

    Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species--the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E-9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E-14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356-896 OTUs) was >2-fold higher than in the MI (112-567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that

  4. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Wang, Guangce [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Zhu, Daling; Pan, Guanghua [College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China)

    2009-12-15

    To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 {+-} 0.07 mol H{sub 2}/mol glucose (mean {+-} S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 {+-} 0.03 mol H{sub 2}/mol glucose, 0.17 {+-} 0.01 mol H{sub 2}/mol glucose, 0.11 {+-} 0.01 mol H{sub 2}/mol glucose and 0.20 {+-} 0.04 mol H{sub 2}/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp. However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (author)

  5. In-Drift Microbial Communities Model Validation Calculations

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-09-24

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  6. In-Drift Microbial Communities Model Validation Calculation

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-10-31

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  7. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  8. In-Drift Microbial Communities Model Validation Calculations

    International Nuclear Information System (INIS)

    Jolley, D.M.

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data

  9. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    International Nuclear Information System (INIS)

    D.M. Jolley

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data

  10. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    Directory of Open Access Journals (Sweden)

    Karen L Casciotti

    2012-10-01

    Full Text Available The microbial nitrogen (N cycle involves a variety of redox processes that control the availability and speciation of N in the environment and are involved with the production of nitrous oxide (N2O, a climatically important greenhouse gas. Isotopic measurements of ammonium (NH4+, nitrite (NO2-, nitrate (NO3-, and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO3- and NO2- have shown that there is NO3- regeneration in the ocean’s euphotic zone, as well as in and around oxygen deficient zones, indicating that nitrification may play more roles in the ocean’s N cycle than generally thought. Likewise, the inverse isotope effect associated with NO2- oxidation yields unique information about the role of this process in NO2- cycling in the primary and secondary NO2- maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process, the insights provided by this information, and provide a prospectus for future work in this area.

  12. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH(+) (4)), nitrite (NO(-) (2)), nitrate (NO(-) (3)), and N(2)O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO(-) (3) and NO(-) (2) have shown that there is NO(-) (3) regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO(-) (2) oxidation yields unique information about the role of this process in NO(-) (2) cycling in the primary and secondary NO(-) (2) maxima. Finally, isotopic measurements of N(2)O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area.

  13. Global analysis of gene expression dynamics within the marine microbial community during the VAHINE mesocosm experiment in the southwest Pacific

    Science.gov (United States)

    Pfreundt, Ulrike; Spungin, Dina; Bonnet, Sophie; Berman-Frank, Ilana; Hess, Wolfgang R.

    2016-07-01

    Microbial gene expression was followed for 23 days within a mesocosm (M1) isolating 50 m3 of seawater and in the surrounding waters in the Nouméa lagoon, New Caledonia, in the southwest Pacific as part of the VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific (VAHINE) experiment. The aim of VAHINE was to examine the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. On day 4 of the experiment, the mesocosm was fertilized with phosphate. In the lagoon, gene expression was dominated by the cyanobacterium Synechococcus, closely followed by Alphaproteobacteria. In contrast, drastic changes in the microbial community composition and transcriptional activity were triggered within the mesocosm within the first 4 days, with transcription bursts from different heterotrophic bacteria in rapid succession. The microbial composition and activity of the surrounding lagoon ecosystem appeared more stable, although following similar temporal trends as in M1. We detected significant gene expression from Chromerida in M1, as well as the Nouméa lagoon, suggesting these photoautotrophic alveolates were present in substantial numbers in the open water. Other groups contributing substantially to the metatranscriptome were affiliated with marine Euryarchaeota Candidatus Thalassoarchaea (inside and outside) and Myoviridae bacteriophages likely infecting Synechococcus, specifically inside M1. High transcript abundances for ammonium transporters and glutamine synthetase in many different taxa (e.g., Pelagibacteraceae, Synechococcus, Prochlorococcus, and Rhodobacteraceae) was consistent with the known preference of most bacteria for this nitrogen source. In contrast, Alteromonadaceae highly expressed urease genes; Rhodobacteraceae and Prochlorococcus showed some urease expression, too. Nitrate reductase transcripts were detected on day 10 very prominently in Synechococcus and in Halomonadaceae. Alkaline

  14. Modeling marine surface microplastic transport to assess optimal removal locations

    NARCIS (Netherlands)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics

  15. Model of optical response of marine aerosols to Forbush decreases

    DEFF Research Database (Denmark)

    Bondo, Torsten; Enghoff, Martin Andreas Bødker; Svensmark, Henrik

    2010-01-01

    In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases - abrupt decreases in galactic cosmic rays - by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation...

  16. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...

  17. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  18. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  19. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  20. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  1. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  2. Seasonal variability in the persistence of dissolved environmental DNA (eDNA in a marine system: The role of microbial nutrient limitation.

    Directory of Open Access Journals (Sweden)

    Ian Salter

    Full Text Available Environmental DNA (eDNA can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA, a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs. Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can

  3. One-Dimensional Modelling of Marine Current Turbine Runaway Behaviour

    Directory of Open Access Journals (Sweden)

    Staffan Lundin

    2016-04-01

    Full Text Available If a turbine loses its electrical load, it will rotate freely and increase speed, eventually achieving that rotational speed which produces zero net torque. This is known as a runaway situation. Unlike many other types of turbine, a marine current turbine will typically overshoot the final runaway speed before slowing down and settling at the runaway speed. Since the hydrodynamic forces acting on the turbine are dependent on rotational speed and acceleration, turbine behaviour during runaway becomes important for load analyses during turbine design. In this article, we consider analytical and numerical models of marine current turbine runaway behaviour in one dimension. The analytical model is found not to capture the overshoot phenomenon, while still providing useful estimates of acceleration at the onset of runaway. The numerical model incorporates turbine wake build-up and predicts a rotational speed overshoot. The predictions of the models are compared against measurements of runaway of a marine current turbine. The models are also used to recreate previously-published results for a tidal turbine and applied to a wind turbine. It is found that both models provide reasonable estimates of maximum accelerations. The numerical model is found to capture the speed overshoot well.

  4. Optimal foraging in marine ecosystem models: selectivity, profitability and switching

    DEFF Research Database (Denmark)

    Visser, Andre W.; Fiksen, Ø.

    2013-01-01

    ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...... by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions...

  5. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    Science.gov (United States)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  6. Environmental Impact of Tributyltin-Resistant Marine Bacteria in the Indigenous Microbial Population of Tributyltin-Polluted Surface Sediments.

    Science.gov (United States)

    Mimura, Haruo; Yagi, Masahiro; Yoshida, Kazutoshi

    2017-01-01

     We compared the TBT-resistant ability of resting cells prepared from isolates that formed colonies on nutrient agar plates containing 100 µM tributyltin (TBT) chloride, such as Photobacterium sp. TKY1, Halomonas sp. TKY2, and Photobacterium sp. NGY1, with those from taxonomically similar type strains. Photobacterium sp. TKY1 showed the highest ability among those three isolates. The number of surviving Photobacterium sp. TKY1 cells was hardly decreased after 1 h of exposure to 100 µM TBTCl, regardless of the number of resting cells in the range from 10 9.4 to 10 4.2 CFU mL -1 . In such an experimental condition, the maximum number of TBT molecules available to associate with a single cell was estimated to be approximately 6.0 x 10 11.8 . Resting cells prepared from type strains Photobacterium ganghwense JCM 12487 T and P. halotolerans LMG 22194 T , which have 16S rDNA sequences highly homologous with those of Photobacterium sp. TKY1, showed sensitivity to TBT, indicating that TBT-resistant marine bacterial species are not closely related in spite of their taxonomic similarity. We also estimated the impact of TBT-resistant bacterial species to indigenous microbial populations of TBT-polluted surface sediments. The number of surviving TBT-sensitive Vibrio natriegens ATCC 14048 T cells, 10 6.2±0.3 CFU mL -1 , was reduced to 10 4.4±0.4 CFU mL -1 when TBT-resistant Photobacterium sp. TKY1 cells, 10 9.1±0.2 CFU mL -1 , coexisted with 10 9.4±0.2 CFU mL -1 of V. natriegens ATCC 14048 T cells in the presence of 100 µM TBTCl. These results indicate that the toxicity of TBT to TBT-sensitive marine bacterial populations might be enhanced when a TBT-resistant marine bacterial species inhabits TBT-polluted surface sediments.

  7. Constraint-based modeling in microbial food biotechnology

    Science.gov (United States)

    Rau, Martin H.

    2018-01-01

    Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM. PMID:29588387

  8. Marine Aerosol Precursor Emissions for Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Maltrud, Mathew Einar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  9. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  10. Culture-dependent and independent studies of microbial diversity in highly copper-contaminated Chilean marine sediments.

    Science.gov (United States)

    Besaury, Ludovic; Marty, Florence; Buquet, Sylvaine; Mesnage, Valérie; Muyzer, Gerard; Quillet, Laurent

    2013-02-01

    Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.

  11. Radioactive tracers as a tool for the study of in situ meiofaunal-microbial trophic interactions in marine sediments

    International Nuclear Information System (INIS)

    Carman, K.R.

    1989-01-01

    Three methods of delivering labeled substrates to natural cores of sediments were compared. Slurried sediments disrupted the sedimentary structure and significantly altered uptake of labeled substrates by copepod species. Thus, disruption of sedimentary structure can significantly alter microbial-meiofaunal interactions and influence the results of grazing studies. The [ 3 H]-thymidine technique for measuring bacterial production was evaluated. The metabolic fate of labeled thymidine in a coastal marine sediment was not consistent with assumptions necessary for measuring bacterial production or its consumption by meiofauna. Microautoradiography was used to demonstrate the sedimentary microalgae and heterotrophic bacteria can be selectively labeled with [ 14 C]bicarbonate and labeled organic substrates, respectively. A study was performed to determine if radioactivity measured in copepods from grazing experiments was the result of ingestion of labeled microorganisms or the result of uptake by non-feeding processes. Uptake of label by copepods from [ 14 C]-bicarbonate was due almost exclusively to grazing on microalgae. Uptake of label by copepods from [ 14 C]-acetate, however, resulted from activity by epicuticular bacteria and was not due to ingestion of labeled bacteria

  12. Using seabird habitat modeling to inform marine spatial planning in central California's National Marine Sanctuaries.

    Directory of Open Access Journals (Sweden)

    Jennifer McGowan

    Full Text Available Understanding seabird habitat preferences is critical to future wildlife conservation and threat mitigation in California. The objective of this study was to investigate drivers of seabird habitat selection within the Gulf of the Farallones and Cordell Bank National Marine Sanctuaries to identify areas for targeted conservation planning. We used seabird abundance data collected by the Applied California Current Ecosystem Studies Program (ACCESS from 2004-2011. We used zero-inflated negative binomial regression to model species abundance and distribution as a function of near surface ocean water properties, distances to geographic features and oceanographic climate indices to identify patterns in foraging habitat selection. We evaluated seasonal, inter-annual and species-specific variability of at-sea distributions for the five most abundant seabirds nesting on the Farallon Islands: western gull (Larus occidentalis, common murre (Uria aalge, Cassin's auklet (Ptychorampus aleuticus, rhinoceros auklet (Cerorhinca monocerata and Brandt's cormorant (Phalacrocorax penicillatus. The waters in the vicinity of Cordell Bank and the continental shelf east of the Farallon Islands emerged as persistent and highly selected foraging areas across all species. Further, we conducted a spatial prioritization exercise to optimize seabird conservation areas with and without considering impacts of current human activities. We explored three conservation scenarios where 10, 30 and 50 percent of highly selected, species-specific foraging areas would be conserved. We compared and contrasted results in relation to existing marine protected areas (MPAs and the future alternative energy footprint identified by the California Ocean Uses Atlas. Our results show that the majority of highly selected seabird habitat lies outside of state MPAs where threats from shipping, oil spills, and offshore energy development remain. This analysis accentuates the need for innovative marine

  13. Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?

    Energy Technology Data Exchange (ETDEWEB)

    Hofmockel, Kirsten; Hobbie, Erik

    2017-07-31

    Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.

  14. Models for Microbial Fuel Cells: A critical review

    Science.gov (United States)

    Xia, Chengshuo; Zhang, Daxing; Pedrycz, Witold; Zhu, Yingmin; Guo, Yongxian

    2018-01-01

    Microbial fuel cells (MFCs) have been widely viewed as one of the most promising alternative sources of renewable energy. A recognition of needs of efficient development methods based on multidisciplinary research becomes crucial for the optimization of MFCs. Modeling of MFCs is an effective way for not only gaining a thorough understanding of the effects of operation conditions on the performance of power generation but also becomes of essential interest to the successful implementation of MFCs. The MFC models encompass the underlying reaction process and limiting factors of the MFC. The models come in various forms, such as the mathematical equations or the equivalent circuits. Different modeling focuses and approaches of the MFC have emerged. In this study, we present a state of the art of MFCs modeling; the past modeling methods are reviewed as well. Models and modeling methods are elaborated on based on the classification provided by Mechanism-based models and Application-based models. Mechanisms, advantages, drawbacks, and application fields of different models are illustrated as well. We exhibit a complete and comprehensive exposition of the different models for MFCs and offer further guidance to promote the performance of MFCs.

  15. Models of marine molluscan diseases: Trends and challenges.

    Science.gov (United States)

    Powell, Eric N; Hofmann, Eileen E

    2015-10-01

    Disease effects on host population dynamics and the transmission of pathogens between hosts are two important challenges for understanding how epizootics wax and wane and how disease influences host population dynamics. For the management of marine shellfish resources, marine diseases pose additional challenges in early intervention after the appearance of disease, management of the diseased population to limit a decline in host abundance, and application of measures to restrain that decline once it occurs. Mathematical models provide one approach for quantifying these effects and addressing the competing goals of managing the diseased population versus managing the disease. The majority of models for molluscan diseases fall into three categories distinguished by these competing goals. (1) Models that consider disease effects on the host population tend to focus on pathogen proliferation within the host. Many of the well-known molluscan diseases are pandemic, in that they routinely reach high prevalence rapidly over large geographic expanses, are characterized by transmission that does not depend upon a local source, and exert a significant influence on host population dynamics. Models focused on disease proliferation examine the influence of environmental change on host population metrics and provide a basis to better manage diseased stocks. Such models are readily adapted to questions of fishery management and habitat restoration. (2) Transmission models are designed to understand the mechanisms triggering epizootics, identify factors impeding epizootic development, and evaluate controls on the rate of disease spread over the host's range. Transmission models have been used extensively to study terrestrial diseases, yet little attention has been given to their potential for understanding the epidemiology of marine molluscan diseases. For management of diseases of wild stocks, transmission models open up a range of options, including the application of area

  16. Developing Model Benchtop Systems for Microbial Experimental Evolution

    Science.gov (United States)

    Gentry, D.; Wang, J.; Arismendi, D.; Alvarez, J.; Ouandji, C.; Blaich, J.

    2017-12-01

    Understanding how microbes impact an ecosystem has improved through advances of molecular and genetic tools, but creating complex systems that emulate natural biology goes beyond current technology. In fact, many chemical, biological, and metabolic pathways of even model organisms are still poorly characterized. Even then, standard laboratory techniques for testing microbial impact on environmental change can have many drawbacks; they are time-consuming, labor intensive, and are at risk of contamination. By having an automated process, many of these problems can be reduced or even eliminated. We are developing a benchtop system that can run for long periods of time without the need for human intervention, involve multiple environmental stressors at once, perform real-time adjustments of stressor exposure based on current state of the population, and minimize contamination risks. Our prototype device allows operators to generate an analogue of real world micro-scale ecosystems that can be used to model the effects of disruptive environmental change on microbial ecosystems. It comprises of electronics, mechatronics, and fluidics based systems to control, measure, and evaluate the before and after state of microbial cultures from exposure to environmental stressors. Currently, it uses four parallel growth chambers to perform tests on liquid cultures. To measure the population state, optical sensors (LED/photodiode) are used. Its primary selection pressure is UV-C radiation, a well-studied stressor known for its cell- and DNA- damaging effects and as a mutagen. Future work will involve improving the current growth chambers, as well as implementing additional sensors and environmental stressors into the system. Full integration of multiple culture testing will allow inter-culture comparisons. Besides the temperature and OD sensors, other types of sensors can be integrated such as conductivity, biomass, pH, and dissolved gasses such as CO2 and O2. Additional

  17. Grounding line transient response in marine ice sheet models

    Directory of Open Access Journals (Sweden)

    A. S. Drouet

    2013-03-01

    Full Text Available Marine ice-sheet stability is mostly controlled by the dynamics of the grounding line, i.e. the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has been investigated within the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project, which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour, executing short-term simulations (200 yr of a steady ice sheet perturbed by the release of the buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding line behaviour of four different flowline ice-sheet models has been compared. The models differ in the physics implemented (full Stokes and shallow shelf approximation, the numerical approach, as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be broadly consistent in terms of grounding line position, rate of surface elevation change and surface velocity. However, still small differences appear for these latter variables, and they can lead to large discrepancies (> 100% observed in terms of ice sheet contribution to sea level when cumulated over time. Despite the recent important improvements of marine ice-sheet models in their ability to compute steady state configurations, our results question the capacity of these models to compute short-term reliable sea-level rise projections.

  18. Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514

    Directory of Open Access Journals (Sweden)

    Sreethar Swaathy

    2014-12-01

    Full Text Available The present study emphasizes the biosurfactant mediated anthracene degradation by a marine alkaliphile Bacillus licheniformis (MTCC 5514. The isolate, MTCC 5514 degraded >95% of 300 ppm anthracene in an aqueous medium within 22 days and the degradation percentage reduced significantly when the concentration of anthracene increased to above 500 ppm. Naphthalene, naphthalene 2-methyl, phthalic acid and benzene acetic acid are the products of degradation identified based on thin layer chromatography, high performance liquid chromatography, gas chromatography and mass analyses. It has been observed that the degradation is initiated by the biosurfactant of the isolate for solubilization through micellation and then the alkali pH and intra/extra cellular degradative enzymes accomplish the degradation process. Encoding of genes responsible for biosurfactant production (licA3 as well as catabolic reactions (C23O made with suitable primers designed. The study concludes in situ production of biosurfactant mediates the degradation of anthracene by B. licheniformis.

  19. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    Science.gov (United States)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  20. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    Science.gov (United States)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  1. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    Science.gov (United States)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  2. Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.

    Science.gov (United States)

    Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L

    2016-01-01

    The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.

  3. Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions

    Directory of Open Access Journals (Sweden)

    Maxime Dumont

    2016-12-01

    Full Text Available In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB or nitrite-oxidizing bacteria (NOB of a nitrification reactor—operated continuously over 525 days with varying inputs—were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed.

  4. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  5. Methodology for modeling the microbial contamination of air filters.

    Science.gov (United States)

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  6. Methodology for modeling the microbial contamination of air filters.

    Directory of Open Access Journals (Sweden)

    Yun Haeng Joe

    Full Text Available In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  7. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  8. 3D Marine MT Modeling for a Topographic Seafloor

    Science.gov (United States)

    Zhang, B., Sr.; Yin, C.; Ren, X.; Liu, Y.; Huang, X.; Liu, L.

    2017-12-01

    As an effective geophysical tool, marine magnetotelluric (MMT) exploration has been widely used in offshore oil and gas exploration. Accordingly, the MMT forward modelling has made big progress. However, most of the researches are focused on a flat seafloor. In this paper, we present a 3D finite-element (FE) algorithm for marine MT forward modelling based on unstructured grids that can accurately model the MMT responses for a topographic seafloor. The boundary value problem for the forward modelling is described by an Helmholtz equation together with the boundary conditions derived by assuming the electrical polarizations respectively along the x- and y-direction on the top surface of the modelling domain. Applying the Galerkin method to the boundary value problem and substituting the unstructured finite-element vector shape function into the equation, we derive the final large linear system for the two polarizations, from which the EM fields is obtained for the calculation of impedance apparent resistivities and phases. To verify the effectiveness of our algorithm, we compare our modelling results with those by Key's (2013) 2D marine MT open source code of Scripps Institution of Oceanography (Figure 1). From Figure 1, one sees that the two agree well, implying that our 3D modelling method based unstructured FE is an effective modelling tool for topographic seafloor. From the MMT modelling responses for other topographic seafloor models (not shown here), we further observe that 1) the apparent resistivities have a similar profile pattern to the topography at the seafloor; 2) at the edges of the topography, there exist sharp changes; 3) the seafloor topography may dominate the responses from the abnormal bodies under the seafloor. This paper is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900)

  9. Exposure to Crude Oil and Chemical Dispersant May Impact Marine Microbial Biofilm Composition and Steel Corrosion

    Directory of Open Access Journals (Sweden)

    Jennifer L. Salerno

    2018-06-01

    Full Text Available The release of hydrocarbons and chemical dispersant in marine environments may disrupt benthic ecosystems, including artificial reefs, formed by historic steel shipwrecks, and their associated organisms. Experiments were performed to determine the impacts of crude oil, dispersed crude oil, and dispersant on the community structure and function of microorganisms in seawater (SW and biofilms formed on carbon steel, a common ship hull construction material. Steel corrosion was also monitored to illustrate how oil spills may impact preservation of steel shipwrecks. Microcosms were filled with seawater (SW and incubated at 4°C. Carbon steel disks (CSDs were placed in each tank, and tanks were amended with crude oil and/or dispersant or no treatment. SW and CSD biofilms were sampled biweekly for genetic analysis using Illumina sequencing of 16S ribosomal RNA gene amplicons. Predicted and sequenced bacterial metagenomes were analyzed to examine impacts of oil and dispersant on metabolic function. Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia dominated SW and biofilms. Bacterial community structure differed significantly between treatments for SW and biofilms. OTUs affiliated with known (Pseudomonas and potential (Marinomonas hydrocarbon-degraders were roughly twice as abundant in biofilms treated with oil and dispersed oil, and steel corrosion of CSDs in these treatments was higher compared to control and dispersant treatments. OTUs affiliated with the Rhodobacteraceae family (biofilm formers and potential oil degraders were less abundant in the dispersant treatment compared to other treatments in biofilm and SW samples, but OTUs affiliated with the Pseudoalteromonas genus (biofilm formers and proposed hydrocarbon degraders were more abundant in dispersant-treated biofilms. Overall, functional gene analyses revealed a decrease in genes (predicted using PICRUSt and observed in sequenced metagenomes associated with hydrocarbon degradation

  10. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2012-05-01

    Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  11. Seawater quality and microbial communities at a desalination plant marine outfall. A field study at the Israeli Mediterranean coast.

    Science.gov (United States)

    Drami, Dror; Yacobi, Yosef Z; Stambler, Noga; Kress, Nurit

    2011-11-01

    Global desalination quadrupled in the last 15 years and the relative importance of seawater desalination by reverse osmosis (SWRO) increased as well. While the technological aspects of SWRO plants are extensively described, studies on the environmental impact of brine discharge are lacking, in particular in situ marine environmental studies. The Ashqelon SWRO plant (333,000 m(3) d(-1) freshwater) discharges brine and backwash of the pre-treatment filters (containing ferric hydroxide coagulant) at the seashore, next to the cooling waters of a power plant. At the time of this study brine and cooling waters were discharged continuously and the backwash discharge was pulsed, with a frequency dependent on water quality at the intake. The effects of the discharges on water quality and neritic microbial community were identified, quantified and attributed to the different discharges. The mixed brine-cooling waters discharge increased salinity and temperature at the outfall, were positively buoyant, and dispersed at the surface up to 1340 m south of the outfall. Nutrient concentrations were higher at the outfall while phytoplankton densities were lower. Chlorophyll-a and picophytoplankton cell numbers were negatively correlated with salinity, but more significantly with temperature probably as a result of thermal pollution. The discharge of the pulsed backwash increased turbidity, suspended particulate matter and particulate iron and decreased phytoplankton growth efficiency at the outfall, effects that declined with distance from the outfall. The discharges clearly reduced primary production but we could not attribute the effect to a specific component of the discharge. Bacterial production was also affected but differently in the three surveys. The combined and possible synergistic effects of SWRO desalination along the Israeli shoreline should be taken into account when the three existing plants and additional ones are expected to produce 2 Mm(3) d(-1) freshwater by

  12. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  13. Modeling marine surface microplastic transport to assess optimal removal locations

    Science.gov (United States)

    Sherman, Peter; van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.

  14. Spatio-temporal patterns in simple models of marine systems

    Science.gov (United States)

    Feudel, U.; Baurmann, M.; Gross, T.

    2009-04-01

    Spatio-temporal patterns in marine systems are a result of the interaction of population dynamics with physical transport processes. These physical transport processes can be either diffusion processes in marine sediments or in the water column. We study the dynamics of one population of bacteria and its nutrient in in a simplified model of a marine sediments, taking into account that the considered bacteria possess an active as well as an inactive state, where activation is processed by signal molecules. Furthermore the nutrients are transported actively by bioirrigation and passively by diffusion. It is shown that under certain conditions Turing patterns can occur which yield heterogeneous spatial patterns of the species. The influence of bioirrigation on Turing patterns leads to the emergence of ''hot spots``, i.e. localized regions of enhanced bacterial activity. All obtained patterns fit quite well to observed patterns in laboratory experiments. Spatio-temporal patterns appear in a predator-prey model, used to describe plankton dynamics. These patterns appear due to the simultaneous emergence of Turing patterns and oscillations in the species abundance in the neighborhood of a Turing-Hopf bifurcation. We observe a large variety of different patterns where i) stationary heterogeneous patterns (e.g. hot and cold spots) compete with spatio-temporal patterns ii) slowly moving patterns are embedded in an oscillatory background iii) moving fronts and spiral waves appear.

  15. Economic perspective of marine reserves in fisheries: a bioeconomic model.

    Science.gov (United States)

    Chakraborty, Kunal; Kar, T K

    2012-12-01

    The present paper describes a prey-predator type fishery model with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is protected zone. The objective of the paper is to maximize the net economic revenue earn from the fishery through implementing the sustainable properties of the fishery to keep the ecological balance. Biological measures are introduced to increase the understanding of the mechanisms in the bioeconomic system. The importance of marine reserve is analyzed through the obtained results of the numerical simulations of proposed model system. The results depict that reserves will be most effective when coupled with harvesting controls in adjacent fisheries. The paper also incorporates the induced cost and premium from establishing a marine protected area in a fishery. It is found that premium of marine protected area (MPA) increases with the increasing size of the reserve. Results are analyzed with the help of graphical illustrations. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Modeling marine surface microplastic transport to assess optimal removal locations

    International Nuclear Information System (INIS)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres. (letter)

  17. Modeling logistic performance in quantitative microbial risk assessment.

    Science.gov (United States)

    Rijgersberg, Hajo; Tromp, Seth; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2010-01-01

    In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times-mutually dependent in successive steps in the chain-cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for Listeria monocytogenes in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.

  18. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  19. Requirements for modeling airborne microbial contamination in space stations

    Science.gov (United States)

    Van Houdt, Rob; Kokkonen, Eero; Lehtimäki, Matti; Pasanen, Pertti; Leys, Natalie; Kulmala, Ilpo

    2018-03-01

    Exposure to bioaerosols is one of the facets that affect indoor air quality, especially for people living in densely populated or confined habitats, and is associated to a wide range of health effects. Good indoor air quality is thus vital and a prerequisite for fully confined environments such as space habitats. Bioaerosols and microbial contamination in these confined space stations can have significant health impacts, considering the unique prevailing conditions and constraints of such habitats. Therefore, biocontamination in space stations is strictly monitored and controlled to ensure crew and mission safety. However, efficient bioaerosol control measures rely on solid understanding and knowledge on how these bioaerosols are created and dispersed, and which factors affect the survivability of the associated microorganisms. Here we review the current knowledge gained from relevant studies in this wide and multidisciplinary area of bioaerosol dispersion modeling and biological indoor air quality control, specifically taking into account the specific space conditions.

  20. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    Science.gov (United States)

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  1. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    Science.gov (United States)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  2. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  3. Studies on 14C labelled chlorpyrifos in model marine ecosystem

    International Nuclear Information System (INIS)

    Pandit, G.G.; Mohan Rao, A.M.; Kale, S.P.; Murthy, N.B.K.; Raghu, K.

    1997-01-01

    Chlorpyrifos is one of the widely used organophosphorus insecticides in tropical countries. Experiments were conducted with 14 C labelled chlorpyrifos to study the distribution of this compound in model marine ecosystem. Less than 50 per cent of the applied activity remained in water in 24 h. Major portion of the applied chlorpyrifos (about 4.2 % residue per g) accumulated into the clams with sediment containing a maximum of 5 to 6 per cent of applied compound. No degradation of chlorpyrifos was observed in water or sediment samples. However, metabolic products were formed in clams. (author). 4 refs., 3 tabs

  4. A dynamic model of optimal reduction of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Deissenberg, C. [CEFI-CNRS, Les Milles (France); Gottinger, H.W. [International Inst. for Environmental Economics and Management, Bad Waldsee (Germany); Gurman, V. [RAS, Program Systems Inst., Pereslavl-Zalessky (Russian Federation); Marinushkin, D. [Pereslavl Univ., Pereslavl-Zalessky (Russian Federation)

    2001-07-01

    This paper proposes a system of dynamic models to describe the interactive behaviour of different agents (polluters, inspectors, and a principal pollution control agency) involved in the processes of marine oil pollution and of its prevention and purification, under some realistic assumptions, In particular, short- and long-term economic responses of polluters to monitoring efforts, as well as possible collusions between polluters and inspectors, are taken into account. A numerical example is considered using the results of Deissenberg et al., (2001), which show the existence of optimal fines and inspector wage rates that minimize (along with other variables) a simple and visual 'social damage' criterion. (Author)

  5. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    Science.gov (United States)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate

  6. Predictions and Verification of an Isotope Marine Boundary Layer Model

    Science.gov (United States)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  7. Boundary layer models for calving marine outlet glaciers

    Directory of Open Access Journals (Sweden)

    C. Schoof

    2017-10-01

    Full Text Available We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010 based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  8. Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades

    Directory of Open Access Journals (Sweden)

    Spyros A. Kinnas

    2003-01-01

    Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.

  9. Capturing microbial sources distributed in a mixed-use watershed within an integrated environmental modeling workflow

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied ...

  10. Density-dependent microbial turnover improves soil carbon model predictions of long-term litter manipulations

    Science.gov (United States)

    Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret

    2017-04-01

    Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.

  11. Changes in microbial composition and the prevalence of foodborne pathogens in crab marinated in soy sauce produced by six manufacturing plants.

    Science.gov (United States)

    Kim, Sun Ae; Choi, Eun Sook; Kim, Nam Hee; Kim, Hye Won; Lee, Na Young; Cho, Tae Jin; Jo, Jun Il; Kim, Soon Han; Lee, Soon Ho; Ha, Sang Do; Rhee, Min Suk

    2017-04-01

    The present study examined the changes in microbiological composition during the production process of crab marinated in soy sauce, potential microbial hazards, potential contamination routes and effective critical control points. Crab and soy sauce samples were obtained from six different manufacturing plants at different stages, and their microbiological content was comprehensively assessed by quantitative and qualitative analyses. The results revealed the following: (1) the final products contained 4.0 log colony-forming units (CFU) g -1 aerobic plate counts (APCs) and 1.1 log CFU g -1 coliforms, which may have been introduced from the raw materials (the level of APCs in raw crab and soy sauce mixed with other ingredients was 3.8 log CFU g -1 and 4.0 log CFU mL -1 respectively); (2) marination of crab in soy sauce may allow cross-contamination by coliforms; (3) only Bacillus cereus and Staphylococcus aureus were qualitatively detected in samples at different stages of manufacture (detection rate of 28 and 5.6% respectively), and these bacteria may impact the microbiological quality and safety of crab marinated in soy sauce; and (4) bacterial counts were either maintained or increased during the manufacturing process (suggesting that no particular step can be targeted to reduce bacterial counts). Proper management of raw materials and the marination process are effective critical control points, and alternative interventions may be needed to control bacterial quantity. The results provide important basic information about the production of crab marinated in soy sauce and may facilitate effective implementation of sanitary management practices in related industries and research fields. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  13. A hybrid finite difference and integral equation method for modeling and inversion of marine CSEM data

    DEFF Research Database (Denmark)

    Yoon, Daeung; Zhdanov, Michael; Cai, Hongzhu

    2015-01-01

    One of the major problems in the modeling and inversion of marine controlled source electromagnetic (MCSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward modeling algorithms...

  14. Modelling the bioconversion of cellulose into microbial products: rate limitations

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, J A

    1984-12-01

    The direct bioconversion of cellulose into microbial products carried out as a simultaneous saccharification and fermentation has a strong effect on the rates of cellulose degradation because cellobiose and glucose inhibition of the reaction are circumvented. A general mathematical model of the kinetics of this bioconversion has been developed. Its use in representing aerobic systems and in the analysis of the kinetic limitations has been investigated. Simulations have been carried out to find the rate limiting steps in slow fermentations and in rapid ones as determined by the specific rate of product formation. The requirements for solubilising and depolymerising enzyme activities (cellulase and cellobiase) in these systems has been determined. The activity that have been obtained for fungal cellulases are adequate for the kinetic requirements of the fastest fermentative strains. The results also show that for simultaneous bioconversions where strong cellobiose and glucose inhibition is overcome, no additional cellobiase is necessary to increase the rate of product formation. These results are useful for the selection of cellolytic micro-organisms and in the determination of enzymes to be cloned in recombinant strains. 17 references.

  15. Marine Natural Products as Models to Circumvent Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Solida Long

    2016-07-01

    Full Text Available Multidrug resistance (MDR to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC transporter P-glycoprotein (P-gp, which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  16. Thalassic biogas production from sea wrack biomass using different microbial seeds: cow manure, marine sediment and sea wrack-associated microflora.

    Science.gov (United States)

    Marquez, Gian Powell B; Reichardt, Wolfgang T; Azanza, Rhodora V; Klocke, Michael; Montaño, Marco Nemesio E

    2013-04-01

    Sea wrack (dislodged sea grasses and seaweeds) was used in biogas production. Fresh water scarcity in island communities where sea wrack could accumulate led to seawater utilization as liquid substrate. Three microbial seeds cow manure (CM), marine sediment (MS), and sea wrack-associated microflora (SWA) were explored for biogas production. The average biogas produced were 2172±156 mL (MS), 1223±308 mL (SWA) and 551±126 mL (CM). Though methane potential (396.9 mL(CH4) g(-1) volatile solid) computed from sea wrack proximate values was comparable to other feedstocks, highest methane yield was low (MS=94.33 mL(CH4) g(-1) VS). Among the microbial seeds, MS proved the best microbial source in utilizing sea wrack biomass and seawater. However, salinity (MS=42‰) observed exceeded average seawater salinity (34‰). Hence, methanogenic activity could have been inhibited. This is the first report on sea wrack biomass utilization for thalassic biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Quantitative Microbial Risk Assessment Tutorial Installation of Software for Watershed Modeling in Support of QMRA - Updated 2017

    Science.gov (United States)

    This tutorial provides instructions for accessing, retrieving, and downloading the following software to install on a host computer in support of Quantitative Microbial Risk Assessment (QMRA) modeling: • QMRA Installation • SDMProjectBuilder (which includes the Microbial ...

  18. Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry.

    Science.gov (United States)

    Izadpanah Qeshmi, Fatemeh; Homaei, Ahmad; Fernandes, Pedro; Javadpour, Sedigheh

    2018-03-01

    The marine environment is a rich source of biological and chemical diversity. It covers more than 70% of the Earth's surface and features a wide diversity of habitats, often displaying extreme conditions, where marine organisms thrive, offering a vast pool for microorganisms and enzymes. Given the dissimilarity between marine and terrestrial habitats, enzymes and microorganisms, either novel or with different and appealing features as compared to terrestrial counterparts, may be identified and isolated. L-asparaginase (E.C. 3.5.1.1), is among the relevant enzymes that can be obtained from marine sources. This amidohydrolase acts on L-asparagine and produce L-aspartate and ammonia, accordingly it has an acknowledged chemotherapeutic application, namely in acute lymphoblastic leukemia. Moreover, L-asparaginase is also of interest in the food industry as it prevents acrylamide formation. Terrestrial organisms have been largely tapped for L-asparaginases, but most failed to comply with criteria for practical applications, whereas marine sources have only been marginally screened. This work provides an overview on the relevant features of this enzyme and the framework for its application, with a clear emphasis on the use of L-asparaginase from marine sources. The review envisages to highlight the unique properties of marine L-asparaginases that could make them good candidates for medical applications and industries, especially in food safety. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Reductive dehalogenation in microbial and electrolytic model systems

    International Nuclear Information System (INIS)

    Criddle, C.S.

    1990-01-01

    This research addresses the principles or reductive dehalogenation, with a focus on microbial processes. Carbon tetrachloride (CT) was selected as a model compound for intensive investigation. Three different experimental systems were studied: pure cultures of Escherichia coli k-12, pure cultures of a denitrifying Pseudomonad isolated from aquifer solids (Pseudomonas sp. strain KC), and an electrolysis cell. The product distributions were consistent with the hypothesis that CT undergoes a rate-limiting reduction to radical species which rapidly react with constituents of the surrounding milieu. In cultures of E. coli k-12, use of oxygen and nitrate as terminal electron acceptors generally prevented CT transformation. At low oxygen levels (∼ 1%), however, transformation of 14 C-CT to 14 C-CO 2 and attachment to cell material did occur in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, 14 C-CT was recovered as 14 C-C 2 , chloroform (CF), and in a non-volatile fraction. In contrast, fermenting conditions resulted in more CF, more cell-bound 14 C, and almost no 14 C-CO 2 . Rates were faster under fermenting conditions than under fumarate-respiring conditions. Rates also decreased over time suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term. Pseudomonas sp. strain KC converted 14 C-CT to 14 C-CO 2 under denitrifying conditions, without CF production. Strain KC was the only organism of several denitrifiers that transformed CT. Induction of CT transformation by strain KC depended upon the presence of trace metals. Addition of ferrous iron and cobalt inhibited CT transformation. For strain KC, CT transformation is apparently linked to its mechanism for trace metal acquisition

  20. Comparison of multivariate microbial datasets with the Shannon index: An example using enzyme activity from diverse marine environments

    DEFF Research Database (Denmark)

    Steen, Andrew; Ziervogel, K.; Arnosti, C.

    2010-01-01

    Heterotrophic microbial communities contain substantial functional diversity, so studies of community function often generate multivariate data sets. Techniques for data reduction and analysis can help elucidate qualitative differences among sites from multivariate data sets that may be difficult...... of four cases, surface water communities accessed substrates at a more even rate than in deeper waters. The technique could usefully be applied to other types of data obtained in studies of microbial activity and the geochemical effects....

  1. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  2. Calibration and analysis of genome-based models for microbial ecology.

    Science.gov (United States)

    Louca, Stilianos; Doebeli, Michael

    2015-10-16

    Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.

  3. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  4. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    Science.gov (United States)

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  5. In Situ Enhancement of Anaerobic Microbial Dechlorination of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Marine and Estuarine Sediments

    National Research Council Canada - National Science Library

    Haeggblom, Max M; Fennell, Donna E; Kerkhof, Lee J

    2006-01-01

    ... that is associated with dredging, and decrease the cost of sediment management. Reductive dehalogenation is a promising mechanism for the removal of toxic organohalides from estuarine and marine sediments...

  6. Mind the gut : Genomic insights to population divergence and gut microbial composition of two marine keystone species

    NARCIS (Netherlands)

    Fietz, Katharina; Rye Hintze, Christian Olaf; Skovrind, Mikkel; Kjærgaard Nielsen, Tue; Limborg, Morten T; Krag, Marcus A; Palsbøll, Per J; Hestbjerg Hansen, Lars; Rask Møller, Peter; Gilbert, M Thomas P

    2018-01-01

    BACKGROUND: Deciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it

  7. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  8. The Role of the Horizontal Gene Pool and Lateral Gene Transfer in Enhancing Microbial Activities in Marine Sediments

    Science.gov (United States)

    2006-05-10

    nifH encoding plasmids of diazotrophic bacteria isolated from roots of a salt marsh grass. Meeting Abstract, 105th General Meeting of the American...When the method was applied to 100 endogenous plasmids isolated from cultivated marine diazotrophs from salt marsh grass rhizoplane niches remarkably...Beeson, K.E., D.L. Erdner, C.E. Bagwell, C.R. Lovell, and P.A. Sobecky. 2002. Differentiation of plasmids in marine diazotroph assemblages

  9. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  10. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  11. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  12. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  13. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    Science.gov (United States)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  14. GENOME-BASED MODELING AND DESIGN OF METABOLIC INTERACTIONS IN MICROBIAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Mahadevan

    2012-10-01

    With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  15. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage....... for multivariate data analysis. Growth of lactic acid bacteria was comparable for model and sausages, whereas survival of S. xylosus was better in the model. Multivariate analysis of volatiles showed that differences between fast and slowly acidified samples were identical for model and sausage. For both sausage...

  16. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Gobrogge, Eric [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Fu, Li [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Link, Katie [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Elliott, Scott M. [Climate, Ocean, and Sea Ice Modelling Group, Los Alamos National Laboratory, Los Alamos New Mexico USA; Wang, Hongfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Walker, Rob [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA

    2016-08-10

    Here we show that the addition of chemical interactions of soluble polysaccharides with a surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the fraction of hydroxyl functional groups in modeled sea spray organic matter is increased, improving agreement with FTIR observations of marine aerosol composition. The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5 – 0.7 for submicron sea spray particles over highly active phytoplankton blooms. We show results from Sum Frequency Generation (SFG) experiments that support the modeling approach, by demonstrating that soluble polysaccharides can strongly adsorb to a lipid monolayer via columbic interactions under appropriate conditions.

  17. Comparison of model microbial allocation parameters in soils of varying texture

    Science.gov (United States)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation

  18. Characterization of multiple antibiotic resistance of culturable microorganisms and metagenomic analysis of total microbial diversity of marine fish sold in retail shops in Mumbai, India.

    Science.gov (United States)

    Naik, Onkar A; Shashidhar, Ravindranath; Rath, Devashish; Bandekar, Jayant R; Rath, Archana

    2018-03-01

    Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g -1 . Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM , Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M , dfr1, tetA, bla TEM , and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.

  19. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.

    2016-10-09

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway, employment of anode as terminal electron acceptor (TEA) under inhibited sulfate reducing bacteria activity, and combined sulfate and anode usage as electron acceptors. A significant removal of naphthalene and 2-methylnaphthalene was observed at early stages of incubation in all treatments and was attributed to their high volatility. In the case of phenanthrene, a significant removal (93.83 ± 1.68%) was measured in the closed circuit SMFCs with the anode acting as the main TEA and under combined anode and sulfate reduction conditions (88.51 ± 1.3%). A much lower removal (40.37 ± 3.24%) was achieved in the open circuit SMFCs operating with sulfate reduction as a major biodegradation pathway. Analysis of the anodic bacterial community using 16S rRNA gene pyrosequencing revealed the enrichment of genera with potential exoelectrogenic capability, namely Geoalkalibacter and Desulfuromonas, on the anode of the closed circuit SMFCs under inhibited SRB activity, while they were not detected on the anode of open circuit SMFCs. These results demonstrate the role of the anode in enhancing PAHs biodegradation in contaminated marine sediments and suggest a higher system efficiency in the absence of competition between microbial redox processes (under SRB inhibition), namely due to the anode enrichment with exoelectrogenic bacteria, which is a more energetically favorable mechanism for PAHs oxidation than sulfate.

  20. Differential Decay of Cattle-associated Fecal Indicator Bacteria and Microbial Source Tracking Markers in Fresh and Marine Water

    Science.gov (United States)

    Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...

  1. Modelling the economic consequences of Marine Protected Areas using the BEMCOM model

    DEFF Research Database (Denmark)

    Hoff, A.; Andersen, J.L.; Christensen, Asbjørn

    2013-01-01

    the question ‘what’s best?’, i.e. finds the overall optimal effort allocation, from an economic point of view, between multiple harvesting fleets fishing under a subset of restrictions on catches and effort levels. The BEMCOM model is described and applied to the case of the Danish sandeel fishery in the North......This paper introduces and describes in detail the bioeconomic optimization model BEMCOM (BioEconomic Model to evaluate the COnsequences of Marine protected areas) that has been developed to assess the economic effects of introducing Marine Protected Areas (MPA) for fisheries. BEMCOM answers...... Sea. It has several times been suggested to close parts of the sandeel fishery in the North Sea out of concern for other species feeding on sandeel and/or spawning in the sandeel habitats. The economic effects of such closures have been assessed using BEMCOM. The results indicate that the model yields...

  2. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starte......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage.......A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter...... cultures Pediococcus pentosaceus and Staphylococcus xylosus. Volatiles were collected and analysed by dynamic headspace sampling and GC MS. The analysis was primarily focused on volatiles arising from amino acid degradation and a total of 24 compounds, of which 19 were quantified, were used...

  3. Modeling of Marine Natural Hazards in the Lesser Antilles

    Science.gov (United States)

    Zahibo, Narcisse; Nikolkina, Irina; Pelinovsky, Efim

    2010-05-01

    The Caribbean Sea countries are often affected by various marine natural hazards: hurricanes and cyclones, tsunamis and flooding. The historical data of marine natural hazards for the Lesser Antilles and specially, for Guadeloupe are presented briefly. Numerical simulation of several historical tsunamis in the Caribbean Sea (1755 Lisbon trans-Atlantic tsunami, 1867 Virgin Island earthquake tsunami, 2003 Montserrat volcano tsunami) are performed within the framework of the nonlinear-shallow theory. Numerical results demonstrate the importance of the real bathymetry variability with respect to the direction of propagation of tsunami wave and its characteristics. The prognostic tsunami wave height distribution along the Caribbean Coast is computed using various forms of seismic and hydrodynamics sources. These results are used to estimate the far-field potential for tsunami hazards at coastal locations in the Caribbean Sea. The nonlinear shallow-water theory is also applied to model storm surges induced by tropical cyclones, in particular, cyclones "Lilli" in 2002 and "Dean" in 2007. Obtained results are compared with observed data. The numerical models have been tested against known analytical solutions of the nonlinear shallow-water wave equations. Obtained results are described in details in [1-7]. References [1] N. Zahibo and E. Pelinovsky, Natural Hazards and Earth System Sciences, 1, 221 (2001). [2] N. Zahibo, E. Pelinovsky, A. Yalciner, A. Kurkin, A. Koselkov and A. Zaitsev, Oceanologica Acta, 26, 609 (2003). [3] N. Zahibo, E. Pelinovsky, A. Kurkin and A. Kozelkov, Science Tsunami Hazards. 21, 202 (2003). [4] E. Pelinovsky, N. Zahibo, P. Dunkley, M. Edmonds, R. Herd, T. Talipova, A. Kozelkov and I. Nikolkina, Science of Tsunami Hazards, 22, 44 (2004). [5] N. Zahibo, E. Pelinovsky, E. Okal, A. Yalciner, C. Kharif, T. Talipova and A. Kozelkov, Science of Tsunami Hazards, 23, 25 (2005). [6] N. Zahibo, E. Pelinovsky, T. Talipova, A. Rabinovich, A. Kurkin and I

  4. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aquilonius, Karin (Studsvik Nuclear AB (Sweden)); Qvarfordt, Susanne; Borgiel, Micke (Sveriges Vattenekologer AB (Sweden))

    2011-04-15

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  5. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    International Nuclear Information System (INIS)

    Aquilonius, Karin; Qvarfordt, Susanne; Borgiel, Micke

    2011-04-01

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  6. Fecal indicator organism modeling and microbial source tracking in environmental waters: Chapter 3.4.6

    Science.gov (United States)

    Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.

    2016-01-01

    Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

  7. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  8. CONCEPTS, MODELS AND IMPLEMENTATION OF THE MARINE SPATIAL DATA INFRASTRUCTURE IN GERMANY (MDI-DE

    Directory of Open Access Journals (Sweden)

    C. Rüh

    2012-07-01

    Full Text Available In Germany currently the development of a marine data infrastructure takes place with the aim of merging information concerning the fields coastal engineering, hydrography and surveying, protection of the marine environment, maritime conservation, regional planning and coastal research. This undertaking is embedded in a series of regulations and developments on many administrative levels from which specifications and courses of action derive. To set up a conceptual framework for the marine data infrastructure (MDI-DE scientists at the Professorship for Geodesy and Geoinformatics at Rostock University are building a reference model, evaluating meta-information systems and developing models to support common workflows in marine applications. The reference model for the marine spatial data infrastructure of Germany (MDI-DE is the guideline for all developments inside this infrastructure. Because the undertaking is embedded in a series of regulations and developments this paper illustrates an approach on modelling a scenario for the Marine Strategy Framework Directive (MSFD using the Unified Modelling Language (UML. Evaluating how other countries built their marine spatial infrastructures is of main importance, to learn where obstacles are and errors are likely to occur. To be able to look at other initiatives from a neutral point of view it is necessary to construct a framework for evaluation of marine spatial data infrastructures. Spatial data infrastructure assessment approaches were used as bases and were expanded to meet the requirements of the marine domain. As an international case-study this paper will look at Canada's Marine Geospatial Data Infrastructure (MGDI, COINAtlantic and GeoPortal.

  9. Concepts, Models and Implementation of the Marine Spatial Data Infrastructure in Germany Mdi-De

    Science.gov (United States)

    Rüh, C.; Bill, R.

    2012-07-01

    In Germany currently the development of a marine data infrastructure takes place with the aim of merging information concerning the fields coastal engineering, hydrography and surveying, protection of the marine environment, maritime conservation, regional planning and coastal research. This undertaking is embedded in a series of regulations and developments on many administrative levels from which specifications and courses of action derive. To set up a conceptual framework for the marine data infrastructure (MDI-DE) scientists at the Professorship for Geodesy and Geoinformatics at Rostock University are building a reference model, evaluating meta-information systems and developing models to support common workflows in marine applications. The reference model for the marine spatial data infrastructure of Germany (MDI-DE) is the guideline for all developments inside this infrastructure. Because the undertaking is embedded in a series of regulations and developments this paper illustrates an approach on modelling a scenario for the Marine Strategy Framework Directive (MSFD) using the Unified Modelling Language (UML). Evaluating how other countries built their marine spatial infrastructures is of main importance, to learn where obstacles are and errors are likely to occur. To be able to look at other initiatives from a neutral point of view it is necessary to construct a framework for evaluation of marine spatial data infrastructures. Spatial data infrastructure assessment approaches were used as bases and were expanded to meet the requirements of the marine domain. As an international case-study this paper will look at Canada's Marine Geospatial Data Infrastructure (MGDI), COINAtlantic and GeoPortal.

  10. Marines in the Boxer Rebellion as a Model for Current Marine Corps Operations

    Science.gov (United States)

    2016-06-10

    landed in New Providence, Bahamas in 1778, raising the American flag for the first time on foreign soil .2 Years later, First Lieutenant Presley O’Bannon...Marines conducted landings (and in some cases multiple landings) in support of American interests in the Hawaiian Islands, Egypt, Colombia , Haiti, Samoa...Argentina, Chile, Nicaragua, Colombia , and Trinidad. Most instances centered on insurgent forces unwilling to accept

  11. A spatio-temporal process data model for characterizing marine disasters

    International Nuclear Information System (INIS)

    Jiang, B; Gao, T; Zhang, X; Huang, X

    2014-01-01

    Marine disasters are a more prevalent problem in China than in many other countries. Based on the development of a status quo of China's marine disaster the space-time process model is used. The model uses the ocean's temperature field, salinity field, water density field, surface wind field, wave field and other four-dimensional spatio-temporal quantities. This paper studies that model in detail. This study aims at using the theory to provide support during marine disasters in an effort to prevent or decrease their frequency in the future

  12. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  13. Anisotropic mesh adaptation for marine ice-sheet modelling

    Science.gov (United States)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

  14. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  15. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    Science.gov (United States)

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to

  16. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    Science.gov (United States)

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  17. The U.S. Marine Corps Leadership Model: Can the Central Intelligence Agency Model After It?

    Science.gov (United States)

    2010-04-26

    Daft , Richard L. Leadership Theory and Practice. The Dryden Press. Fort Worth, TX, 1999. Faddis, Charles S. Beyond Repair,· The Decline and Fall...Military Studies Research Paper September 2009 - April 2010 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER The U.S. Marine Corps Leadership Model: can the...protecting our nation against foreign threats. Over the last few years, former CIA officers argue that the Agency’s organizational leadership structure needs

  18. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  19. Shore-based Path Planning for Marine Vehicles Using a Model of Ocean Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop path planning methods that incorporate an approximate model of ocean currents in path planning for a range of autonomous marine vehicles such as surface...

  20. Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models

    OpenAIRE

    Urtizberea, Agurtzane; Dupont, Nicolas; Rosland, Rune; Aksnes, Dag L.

    2013-01-01

    In marine ecosystem models, the underwater light intensity is commonly characterized by the shading of phytoplankton in addition to a background light attenuation coefficient. Colour dissolved organic matter (CDOM) is an important component of the background light attenuation, and we investigate how variation in CDOM attenuation affects euphotic zone properties in a general marine ecosystem model. Our results suggest that euphotic zone properties are highly sensitive to CDOM variations occurr...

  1. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Science.gov (United States)

    Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien

    2017-01-01

    Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.

  2. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.

    Directory of Open Access Journals (Sweden)

    Marko Budinich

    Full Text Available Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA and multi-objective flux variability analysis (MO-FVA. Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity that take place at the ecosystem scale.

  3. Preparation, characterization, and microbial degradation of specifically radiolabeled [14C]lignocelluloses from marine and fresh water macrophytes

    International Nuclear Information System (INIS)

    Benner, R.; Maccubbin, A.E.; Hodson, R.E.

    1984-01-01

    Specifically radiolabeled [ 14 C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [ 14 C]phenylalanine, [ 14 C]tyrosine, and [ 14 C]cinnamic acid as precursors. Specifically radiolabeled [ 14 C-polysaccharide]lignocelluloses were prepared by using [ 14 C]glucose as precursor. The rates of microbial degradation varied among [ 14 C-lignin]lignocelluloses labeled with different lignin precursors within the same plant species. In herbaceous plants, significant amounts (8 to 24%) of radioactivity from [ 14 C]phenylalanine and [ 14 C]tyrosine were found associated with protein. Microbial degradation of radiolabeled protein resulted in overestimation of lignin degradation rates in lignocelluloses derived from herbaceous aquatic plants. Other differences in degradation rates among [ 14 C-lignin]lignocelluloses from the same plant species were attributable to differences in the amount of label being associated with ester-linked subunits of peripheral lignin. After acid hydrolysis of [ 14 C-polysaccharide]lignocelluloses, radioactivity was detected in several sugars, although most of the radioactivity was distributed between glucose and xylose. After 576 h of incubation with salt marsh sediments, 38% of the polysaccharide component and between 6 and 16% of the lignin component (depending on the precursor) of J. roemerianus lignocellulose was mineralized to 14 CO 2 ; during the same incubation period, 30% of the polysaccharide component and between 12 and 18% of the lignin component of S. alterniflora lignocellulose was mineralized

  4. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  5. A comparative study of microbial diversity and community structure in marine sediments using poly(A tailing and reverse transcription PCR

    Directory of Open Access Journals (Sweden)

    Tatsuhiko eHoshino

    2013-06-01

    Full Text Available To obtain a better understanding of metabolically active microbial communities, we tested a molecular ecological approach using poly(A tailing of environmental 16S rRNA, followed by full-length complementary DNA (cDNA synthesis and sequencing to eliminate potential biases caused by mismatching of PCR primer sequences. The RNA pool tested was extracted from marine sediments of the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough. The sequences obtained using the ploy(A tailing method were compared statistically and phylogenetically with those obtained using conventional reverse transcription-polymerase chain reaction (RT-PCR with published domain-specific primers. Both methods indicated that Deltaproteobacteria are predominant in sediment (>85% of the total sequence read. The poly(A tailing method indicated that Desulfobacterales were the predominant deltaproteobacteria, while most of the sequences in libraries constructed using RT-PCR were derived from Desulfuromonadales. This discrepancy may have been due to low coverage of Desulfobacterales by the primers used. A comparison of library diversity indices indicated that the poly(A tailing method retrieves more phylogenetically diverse sequences from the environment. The four archaeal 16S rRNA sequences that were obtained using the poly(A tailing method formed deeply branching lineages that were related to Candidatus Parvarchaeum and the Ancient Archaeal Group. These results clearly demonstrate that poly(A tailing followed by cDNA sequencing is a powerful and less biased molecular ecological approach for the study of metabolically active microbial communities.

  6. Converted waves in shallow marine environments : Modelling and field experiments

    NARCIS (Netherlands)

    El Allouche, N.

    2011-01-01

    The shallow marine subsurface is explored for various engineering purposes e.g. constructing installations and platforms, laying pipelines and dredging for sand. Knowledge of the soil properties is essential to minimize the risks involved with these offshore activities. Energy resources in the form

  7. Optimizing Marine Corps Personnel Assignments Using an Integer Programming Model

    Science.gov (United States)

    2012-12-01

    Corps. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I. INTRODUCTION ...throughout our careers. xvi THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION The Marine Corps Manpower and Reserve Affairs (M&RA) office has the...2012 BAH Rates-with Dependents. Defense Travel Mangement Office. (2011, December). 2012 BAH Rates-without Dependents. M ileage C ost 1 Per D iem

  8. Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments

    DEFF Research Database (Denmark)

    Toes, Ann-Charlotte M; Finke, Niko; Kuenen, J Gijs

    2008-01-01

    Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy...... the finding that some groups of clones were shared between the metal-impacted sandy sediment and the harbor control, comparative analyses showed that the two sediments were significantly different in community composition. Consequences of redeposition of metal-polluted sediment were primarily underlined...... with cultivation-dependent techniques. Toxicity tests showed that the percentage of Cd- and Cu-tolerant aerobic heterotrophs was highest among isolates from the sandy sediment with metal-polluted mud on top....

  9. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  10. Effect of power quality on windings temperature of marine induction motors. Part I: Machine model

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime Univ., Dept. of Ship Electrical Power Engineering, Morska Str. 83, 81-225 Gdynia (Poland)

    2009-10-15

    Marine induction machines are exposed to various power quality disturbances appearing simultaneously in ship power systems: frequency and voltage rms value deviation, voltage unbalance and voltage waveform distortions. As a result, marine induction motors can be seriously overheated due to lowered supply voltage quality. Improvement of the protection of marine induction machines requires an appropriate method of power quality assessment and modification of the power quality regulations of ship classification societies. This paper presents an analytical model of an induction cage machine supplied with voltage of lowered quality, used in part II of the work (effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations) for power quality assessment in ship power systems, and for justification of the new power quality regulations proposal. The presented model is suitable for implementation in an on-line measurement system. (author)

  11. Modeling time-series data from microbial communities.

    Science.gov (United States)

    Ridenhour, Benjamin J; Brooker, Sarah L; Williams, Janet E; Van Leuven, James T; Miller, Aaron W; Dearing, M Denise; Remien, Christopher H

    2017-11-01

    As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.

  12. Economic analysis of Marine Protected Areas: Bioeconomic Modeling and Economic Valuation Approaches

    OpenAIRE

    Bui, Bich Xuan

    2017-01-01

    The papers 2 and 3 of this thesis are not available in Munin. Paper 2: Xuan, B. B., Sandorf, E. D., Aanesen, M.: “Informing Management Strategies for a Reserve: Results from a Discrete Choice Experiment Survey”. (Manuscript). Paper 3: Xuan, B. B.: “Extractive and Non-extractive Values of a Marine Protected Area: A Bio-economic Model Application". (Manuscript). Marine protected areas (MPAs) are often established for conservation objectives. Benefits provided by MPAs exceed pure biod...

  13. Radiation Dose Assessment Model for Marine Biota (K-BIOTA-DYN-M)

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong-Kwon; Kim, Byeong-Ho; Jun, In; Lim, Kwang-Muk; Choi, Yong-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this study, a dynamic compartment model based on the food chain of marine biota, which can be used with easily obtainable ecological parameters, is presented to predict the activity concentration and dose rate of marine biota as a result of a nuclear. The model was applied to investigate a long-term effect of the Fukushima accident on the marine biota by using {sup 131}I, {sup 134}Cs, and {sup 137}Cs activity concentrations of seawater measured for up to about 2.5years after the accident in the port of FDNPS, which was known to be the most severely contaminated. A dynamic compartment model was presented to assess the activity concentration and whole body dose rate of marine biota, and was tested through the prediction of the activity concentration and dose rate of the marine biota using the seawater activities of {sup 131}I, {sup 134}Cs, and {sup 137}Cs measured after the accident at two locations in the port of the Fukushima Daiichi Nuclear Power Station (FDNPS), as a result the Fukushima nuclear accident that occurred on March 11, 2011. The prediction results showed the radiological effect on the population of the marine biota as a consequence of the accident was insignificant. This result is also valid for biota in a less contaminated offshore because the present assessment was made for the most highly contaminated area such as marine ecosystem in the port of FDNPS. Conclusively, the present dynamic model can be usefully applied to estimate the activity concentration and whole body dose rate of the marine biota as the consequence of a nuclear accident.

  14. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system

    Science.gov (United States)

    Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob

    2013-01-01

    Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541

  15. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  16. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rooney, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  17. Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow, Alaska.

    Science.gov (United States)

    Colangelo-Lillis, J; Eicken, H; Carpenter, S D; Deming, J W

    2016-05-01

    Cryopegs are sub-surface hypersaline brines at sub-zero temperatures within permafrost; their global extent and distribution are unknown. The permafrost barrier to surface and groundwater advection maintains these brines as semi-isolated systems over geological time. A cryopeg 7 m below ground near Barrow, Alaska, was sampled for geochemical and microbiological analysis. Sub-surface brines (in situtemperature of -6 °C, salinity of 115 ppt), and an associated sediment-infused ice wedge (melt salinity of 0.04 ppt) were sampled using sterile technique. Major ionic concentrations in the brine corresponded more closely to other (Siberian) cryopegs than to Standard seawater or the ice wedge. Ionic ratios and stable isotope analysis of water conformed to a marine or brackish origin with subsequent Rayleigh fractionation. The brine contained ∼1000× more bacteria than surrounding ice, relatively high viral numbers suggestive of infection and reproduction, and an unusually high ratio of particulate to dissolved extracellular polysaccharide substances. A viral metagenome indicated a high frequency of temperate viruses and limited viral diversity compared to surface environments, with closest similarity to low water activity environments. Interpretations of the results underscore the isolation of these underexplored microbial ecosystems from past and present oceans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Robotic Detection of Marine Litter Using Deep Visual Detection Models

    OpenAIRE

    Fulton, Michael; Hong, Jungseok; Islam, Md Jahidul; Sattar, Junaed

    2018-01-01

    Trash deposits in aquatic environments have a destructive effect on marine ecosystems and pose a long-term economic and environmental threat. Autonomous underwater vehicles (AUVs) could very well contribute to the solution of this problem by finding and eventually removing trash. A step towards this goal is the successful detection of trash in underwater environments. This paper evaluates a number of deep-learning algorithms to the task of visually detecting trash in realistic underwater envi...

  19. Modeling Marine Exposure to Polychlorinated Biphenyls from Sunken Ships.

    Science.gov (United States)

    1996-12-01

    plant cell structure, including cellulose, and convert it to animal tissue . This extra effort reduces efficiency. The lowest efficiency of carnivores ... Plant Cell Cultures ," Environmental Toxicology and Chemistry. 14: 2017-2022 (1995). 104 Bonner, Nigel. Seals and Sea Lions of the World. New York...these PCBs in the marine ecosystem. As these materials are released from the site, they will be absorbed by various plant and animal species. The

  20. Numerical investigation of the recruitment process in open marine population models

    International Nuclear Information System (INIS)

    Angulo, O; López-Marcos, J C; López-Marcos, M A; Martínez-Rodríguez, J

    2011-01-01

    The changes in the dynamics, produced by the recruitment process in an open marine population model, are investigated from a numerical point of view. The numerical method considered, based on the representation of the solution along the characteristic lines, approximates properly the steady states of the model, and is used to analyze the asymptotic behavior of the solutions of the model

  1. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  2. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm.

    Directory of Open Access Journals (Sweden)

    Peter Norberg

    Full Text Available The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp and pMCBF6 (66 729 bp have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are "res-site hunters" that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA and the vegetative replication origin (oriV. One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.

  3. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Energy Technology Data Exchange (ETDEWEB)

    He, Yujie [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Yang, Jinyan [Univ. of Georgia, Athens, GA (United States). Warnell School of Forestry and Natural Resources; Northeast Forestry Univ., Harbin (China). Center for Ecological Research; Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy; Harden, Jennifer W. [U.S. Geological Survey, Menlo Park, CA (United States); McGuire, Anthony D. [Alaska Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Univ. of Alaska, Fairbanks, AK (United States). U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit; Liu, Yaling [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Wang, Gangsheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst. and Environmental Sciences Division; Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2015-11-20

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 PgCyr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  4. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Science.gov (United States)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-01-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  5. Marine Protists Are Not Just Big Bacteria.

    Science.gov (United States)

    Keeling, Patrick J; Campo, Javier Del

    2017-06-05

    The study of marine microbial ecology has been completely transformed by molecular and genomic data: after centuries of relative neglect, genomics has revealed the surprising extent of microbial diversity and how microbial processes transform ocean and global ecosystems. But the revolution is not complete: major gaps in our understanding remain, and one obvious example is that microbial eukaryotes, or protists, are still largely neglected. Here we examine various ways in which protists might be better integrated into models of marine microbial ecology, what challenges this will present, and why understanding the limitations of our tools is a significant concern. In part this is a technical challenge - eukaryotic genomes are more difficult to characterize - but eukaryotic adaptations are also more dependent on morphology and behaviour than they are on the metabolic diversity that typifies bacteria, and these cannot be inferred from genomic data as readily as metabolism can be. We therefore cannot simply follow in the methodological footsteps of bacterial ecology and hope for similar success. Understanding microbial eukaryotes will require different approaches, including greater emphasis on taxonomically and trophically diverse model systems. Molecular sequencing will continue to play a role, and advances in environmental sequence tag studies and single-cell methods for genomic and transcriptomics offer particular promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless, no experim....... The PSM constitutes a tool uniquely adapted to study the influence of liquid film geometry on microbial processes. It should therefore contribute to uncovering mechanisms of microbial adaptation to unsaturated environments.......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless......, no experimental systems are available that allow real-time observation of bacterial processes in liquid films of controlled thickness. We propose a novel, inexpensive, easily operated experimental platform, termed the porous surface model (PSM) that enables quantitative real-time microscopic observations...

  7. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  8. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  9. Model-Based Analysis of the Potential of Macroinvertebrates as Indicators for Microbial Pathogens in Rivers

    Directory of Open Access Journals (Sweden)

    Rubén Jerves-Cobo

    2018-03-01

    Full Text Available The quality of water prior to its use for drinking, farming or recreational purposes must comply with several physicochemical and microbiological standards to safeguard society and the environment. In order to satisfy these standards, expensive analyses and highly trained personnel in laboratories are required. Whereas macroinvertebrates have been used as ecological indicators to review the health of aquatic ecosystems. In this research, the relationship between microbial pathogens and macrobenthic invertebrate taxa was examined in the Machangara River located in the southern Andes of Ecuador, in which 33 sites, according to their land use, were chosen to collect physicochemical, microbiological and biological parameters. Decision tree models (DTMs were used to generate rules that link the presence and abundance of some benthic families to microbial pathogen standards. The aforementioned DTMs provide an indirect, approximate, and quick way of checking the fulfillment of Ecuadorian regulations for water use related to microbial pathogens. The models built and optimized with the WEKA package, were evaluated based on both statistical and ecological criteria to make them as clear and simple as possible. As a result, two different and reliable models were obtained, which could be used as proxy indicators in a preliminary assessment of pollution of microbial pathogens in rivers. The DTMs can be easily applied by staff with minimal training in the identification of the sensitive taxa selected by the models. The presence of selected macroinvertebrate taxa in conjunction with the decision trees can be used as a screening tool to evaluate sites that require additional follow up analyses to confirm whether microbial water quality standards are met.

  10. Exposure factors for marine eutrophication impacts assessment based on a mechanistic biological model

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    2015-01-01

    marine ecosystem (LME), five climate zones, and site-generic. The XFs obtained range from 0.45 (Central Arctic Ocean) to 15.9kgO2kgN-1 (Baltic Sea). While LME resolution is recommended, aggregated PE or XF per climate zone can be adopted, but not global aggregation due to high variability. The XF......Emissions of nitrogen (N) from anthropogenic sources enrich marine waters and promote planktonic growth. This newly synthesised organic carbon is eventually exported to benthic waters where aerobic respiration by heterotrophic bacteria results in the consumption of dissolved oxygen (DO......). This pathway is typical of marine eutrophication. A model is proposed to mechanistically estimate the response of coastal marine ecosystems to N inputs. It addresses the biological processes of nutrient-limited primary production (PP), metazoan consumption, and bacterial degradation, in four distinct sinking...

  11. Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian, China.

    Science.gov (United States)

    Chen, Chao; Liu, Qiu; Liu, Changjian; Yu, Jicheng

    2017-04-15

    An oil spill occurred at Xingang Port, Dalian, China in 2010. Four years after this spill, oil contamination was still detected in samples collected nearby. In this study, the strains that evolved in the sediment were screened by high-throughput sequencing technology. Most of these strains were genera reported to have functions associated with crude oil biodegradation. The diversities and numbers of microbes were monitored through enrichment culturing; the dominant strains propagated at first, but the enrichment could not be continued, which indicated that the prolonged culture was not effective in the enrichment of the micro-consortium. Oxygen was also observed to affect the propagation of the dominant microbes. The results showed the role of culture strategies and oxygen in the enrichment of the petroleum-degrading microbes. Therefore, dominant strains could be screened by optimizing both the enrichment time and oxygen concentration used for culturing to facilitate oil biodegradation in the marine ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.

    Science.gov (United States)

    Garza, Daniel R; Dutilh, Bas E

    2015-11-01

    Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.

  13. Analysis of stability to cheaters in models of antibiotic degrading microbial communities.

    Science.gov (United States)

    Szilágyi, András; Boza, Gergely; Scheuring, István

    2017-06-21

    Antibiotic resistance carried out by antibiotic degradation has been suggested recently as a new mechanism to maintain coexistence of microbial species competing on a single limiting resource, even in well-mixed homogeneous environments. Species diversity and community stability, however, critically depend on resistance against social cheaters, mutants that do not invest in production, but still enjoy the benefits provided by others. Here we investigate how different mutant cheaters affect the stability of antibiotic producing and degrading microbial communities. We consider two cheater types, production and degradation cheaters. We generalize the mixed inhibition-zone and chemostat models introduced previously [Kelsic, E. D., Zhao, J., Vetsigian, K., Kishony, R., 2015. Counteraction of an tibiotic production and degradation stabilizes microbial communities. Nature521, 516-519.] to study the population dynamics of microbial communities in well-mixed environment, and analyze the invasion of different cheaters in these models. We show that production cheaters, mutants that cease producing antibiotics, always destroy coexistence whenever there is a cost of producing these antibiotics. Degradation cheaters, mutants that loose their function of producing extracellular antibiotic degrading molecules, induce community collapse only if the cost of producing the degradation factors is above a critical level. Our analytical studies, supported by numerical simulations, highlight the sensitivity of antibiotic producing and degrading communities to loss-of-function mutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.

    2015-04-02

    In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.

  15. Kinetic modeling of cell metabolism for microbial production.

    Science.gov (United States)

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes.

    Directory of Open Access Journals (Sweden)

    Elianne Egge

    Full Text Available Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000-20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing.

  17. 3D forward modeling and response analysis for marine CSEMs towed by two ships

    Science.gov (United States)

    Zhang, Bo; Yin, Chang-Chun; Liu, Yun-He; Ren, Xiu-Yan; Qi, Yan-Fu; Cai, Jing

    2018-03-01

    A dual-ship-towed marine electromagnetic (EM) system is a new marine exploration technology recently being developed in China. Compared with traditional marine EM systems, the new system tows the transmitters and receivers using two ships, rendering it unnecessary to position EM receivers at the seafloor in advance. This makes the system more flexible, allowing for different configurations (e.g., in-line, broadside, and azimuthal and concentric scanning) that can produce more detailed underwater structural information. We develop a three-dimensional goal-oriented adaptive forward modeling method for the new marine EM system and analyze the responses for four survey configurations. Oceanbottom topography has a strong effect on the marine EM responses; thus, we develop a forward modeling algorithm based on the finite-element method and unstructured grids. To satisfy the requirements for modeling the moving transmitters of a dual-ship-towed EM system, we use a single mesh for each of the transmitter locations. This mitigates the mesh complexity by refining the grids near the transmitters and minimizes the computational cost. To generate a rational mesh while maintaining the accuracy for single transmitter, we develop a goal-oriented adaptive method with separate mesh refinements for areas around the transmitting source and those far away. To test the modeling algorithm and accuracy, we compare the EM responses calculated by the proposed algorithm and semi-analytical results and from published sources. Furthermore, by analyzing the EM responses for four survey configurations, we are confirm that compared with traditional marine EM systems with only in-line array, a dual-ship-towed marine system can collect more data.

  18. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    Science.gov (United States)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  19. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    International Nuclear Information System (INIS)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-01-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  20. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  1. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  2. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  3. The Earth Microbiome Project and modeling the planets microbial potential (Invited)

    Science.gov (United States)

    Gilbert, J. A.

    2013-12-01

    The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires

  4. Different Mechanisms of Soil Microbial Response to Global Change Result in Different Outcomes in the MIMICS-CN Model

    Science.gov (United States)

    Kyker-Snowman, E.; Wieder, W. R.; Grandy, S.

    2017-12-01

    Microbial-explicit models of soil carbon (C) and nitrogen (N) cycling have improved upon simulations of C and N stocks and flows at site-to-global scales relative to traditional first-order linear models. However, the response of microbial-explicit soil models to global change factors depends upon which parameters and processes in a model are altered by those factors. We used the MIcrobial-MIneral Carbon Stabilization Model with coupled N cycling (MIMICS-CN) to compare modeled responses to changes in temperature and plant inputs at two previously-modeled sites (Harvard Forest and Kellogg Biological Station). We spun the model up to equilibrium, applied each perturbation, and evaluated 15 years of post-perturbation C and N pools and fluxes. To model the effect of increasing temperatures, we independently examined the impact of decreasing microbial C use efficiency (CUE), increasing the rate of microbial turnover, and increasing Michaelis-Menten kinetic rates of litter decomposition, plus several combinations of the three. For plant inputs, we ran simulations with stepwise increases in metabolic litter, structural litter, whole litter (structural and metabolic), or labile soil C. The cumulative change in soil C or N varied in both sign and magnitude across simulations. For example, increasing kinetic rates of litter decomposition resulted in net releases of both C and N from soil pools, while decreasing CUE produced short-term increases in respiration but long-term accumulation of C in litter pools and shifts in soil C:N as microbial demand for C increased and biomass declined. Given that soil N cycling constrains the response of plant productivity to global change and that soils generate a large amount of uncertainty in current earth system models, microbial-explicit models are a critical opportunity to advance the modeled representation of soils. However, microbial-explicit models must be improved by experiments to isolate the physiological and stoichiometric

  5. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  6. Modeling the mutualistic interactions between tubeworms and microbial consortia.

    Directory of Open Access Journals (Sweden)

    Erik E Cordes

    2005-03-01

    Full Text Available The deep-sea vestimentiferan tubeworm Lamellibrachia luymesi forms large aggregations at hydrocarbon seeps in the Gulf of Mexico that may persist for over 250 y. Here, we present the results of a diagenetic model in which tubeworm aggregation persistence is achieved through augmentation of the supply of sulfate to hydrocarbon seep sediments. In the model, L. luymesi releases the sulfate generated by its internal, chemoautotrophic, sulfide-oxidizing symbionts through posterior root-like extensions of its body. The sulfate fuels sulfate reduction, commonly coupled to anaerobic methane oxidation and hydrocarbon degradation by bacterial-archaeal consortia. If sulfate is released by the tubeworms, sulfide generation mainly by hydrocarbon degradation is sufficient to support moderate-sized aggregations of L. luymesi for hundreds of years. The results of this model expand our concept of the potential benefits derived from complex interspecific relationships, in this case involving members of all three domains of life.

  7. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens

    2004-01-01

    Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metaboli...... network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction....

  8. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  9. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    Energy Technology Data Exchange (ETDEWEB)

    Saracino-Brown, Jocelyn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Smith, Courtney [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Gilman, Patrick [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-07-01

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. The workshop was planned by Federal agency, academic, and private partners to promote collaboration between ongoing offshore ecological survey efforts, and to promote the collaborative development of complementary predictive models and compatible databases. The meeting primarily focused on efforts to establish and predict marine mammal, seabird, and sea turtle abundance, density, and distributions extending from the shoreline to the edge of the Exclusive Economic Zone between Nantucket Sound, Massachusetts and Cape Hatteras, North Carolina.

  10. A Modeling Comparison of Methanogenesis from Noncompetitive vs Competitive Substrates in a Simulated Hypersaline Microbial Mat

    Science.gov (United States)

    Decker, K. L.; Potter, C.; Hoehler, T.

    2005-12-01

    The well-documented assumption about methanogens that co-occur in hypersaline mat communities with sulfate-reducing bacteria (SRB) is that they rely entirely on non-competitive substrates for methanogenesis. The reason for this is that during sulfate reduction, sulfur-reducing bacteria efficiently utilize H2, leaving a concentration too low for methanogenesis. Early results from recent work on a hypersaline microbial mat from salt evaporation ponds of Guerrero Negro, Baja, Mexico cast doubt that methanogenesis only occurs via non-competitive substrates, because it shows an excess of H2 in the mat rather than a paucity. We explore the use of our simulation model of the microbial biogeochemistry of a hypersaline mat (named MBGC) to compare methane production rates in a 1 cm thick mat when the methanogens use competitive substrates versus noncompetitive substrates. In the `non-competitive substrate' version of the model, methanogens rely exclusively on methylated amines that are accumulated as compatible solutes in cyanobacteria and released after lysis. In contrast, the `competitive substrate' models examine methanogen use of substrates (such as H2 + acetate) with different SRB population sizes (from absent to low). The comparison of these models of methane and sulfide biogeochemistry of a hypersaline mat has both ecological and geobiological significance, as one hypothesis of Archean microbial mats is that they existed in a low sulfate environment.

  11. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  12. Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen

    Science.gov (United States)

    Hunter, K. S.; Van Cappellen, P.

    2000-01-01

    Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.

  13. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    Directory of Open Access Journals (Sweden)

    Ludfi Pratiwi Bowo

    2017-06-01

    Full Text Available Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequential techniques, epidemiological techniques and systemic techniques, where the marine accidents are included in the epidemiological technique. This study compares the Human Error Assessment and Reduction Technique (HEART methodology and the 4M Overturned Pyramid (MOP model, which are applied to assess marine accidents. Furthermore, the MOP model can effectively describe the relationships of other factors which affect the accidents; whereas, the HEART methodology is only focused on human factors.

  14. A system-level model for the microbial regulatory genome.

    Science.gov (United States)

    Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S

    2014-07-15

    Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  15. A microbial model of economic trading and comparative advantage.

    Science.gov (United States)

    Enyeart, Peter J; Simpson, Zachary B; Ellington, Andrew D

    2015-01-07

    The economic theory of comparative advantage postulates that beneficial trading relationships can be arrived at by two self-interested entities producing the same goods as long as they have opposing relative efficiencies in producing those goods. The theory predicts that upon entering trade, in order to maximize consumption both entities will specialize in producing the good they can produce at higher efficiency, that the weaker entity will specialize more completely than the stronger entity, and that both will be able to consume more goods as a result of trade than either would be able to alone. We extend this theory to the realm of unicellular organisms by developing mathematical models of genetic circuits that allow trading of a common good (specifically, signaling molecules) required for growth in bacteria in order to demonstrate comparative advantage interactions. In Conception 1, the experimenter controls production rates via exogenous inducers, allowing exploration of the parameter space of specialization. In Conception 2, the circuits self-regulate via feedback mechanisms. Our models indicate that these genetic circuits can demonstrate comparative advantage, and that cooperation in such a manner is particularly favored under stringent external conditions and when the cost of production is not overly high. Further work could involve implementing the models in living bacteria and searching for naturally occurring cooperative relationships between bacteria that conform to the principles of comparative advantage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. A QSAR approach for virtual screening of lead-like molecules en route to antitumor and antibiotic drugs from marine and microbial natural products

    Directory of Open Access Journals (Sweden)

    Florbela Pereira

    2014-05-01

    Figure 1. The unreported 15 lead antibiotic MNPs and MbNPs from AntiMarin database, using the best Rfs antibiotic model with a probability of being antibiotic greater than or equal to 0.8. Figure 2. The selected 4 lead antitumor MNPs and MbNPs from the AntiMarin database, using the best Rfs antitumor model with a probability of being antitumor greater than or equal to 0.8. The present work corroborates by one side the results of our previous work6 and enables the presentation of a new set of possible lead like bioactive compounds. Additionally, it is shown the usefulness of quantum-chemical descriptors in the discrimination of biological active and inactive compounds. The use of the εHOMO quantum-chemical descriptor in the discrimination of large scale data sets of lead-like or drug-like compounds has never been reported. This approach results in the reduction, in great extent, of the number of compounds used in real screens, and it reinforces the results of our previous work. Furthermore, besides the virtual screening, the computational methods can be very useful to build appropriate databases, allowing for effective shortcuts of NP extracts dereplication procedures, which will certainly result in increasing the efficiency of drug discovery.

  17. Mathematical modelling and analysis for a three-tiered microbial food web in a chemostat

    Directory of Open Access Journals (Sweden)

    Miled El hajji

    2017-10-01

    Full Text Available In this article, we present a mathematical six-dimensional dynamical system involving a three-tiered microbial food web without maintenance. We give a qualitative analysis of the model, and an analysis of the local stability of equilibrium points. Under general assumptions of monotonicity, we prove the uniqueness and the local stability of the positive equilibrium point corresponding to the persistence of the three bacteria. Possibilities of periodic orbits are not excluded and asymptotic coexistence is satisfied.

  18. Hydrodynamic modelling of recreational water quality using Escherichia coli as an indicator of microbial contamination

    Science.gov (United States)

    Eregno, Fasil Ejigu; Tryland, Ingun; Tjomsland, Torulv; Kempa, Magdalena; Heistad, Arve

    2018-06-01

    Microbial contamination of recreational beaches is often at its worst after heavy rainfall events due to storm floods that carry fecal matter and other pollutants from the watershed. Similarly, overflows of untreated sewage from combined sewerage systems may discharge directly into coastal water or via rivers and streams. In order to understand the effect of rainfall events, wind-directions and tides on the recreational water quality, GEMSS, an integrated 3D hydrodynamic model was applied to assess the spreading of Escherichia coli (E. coli) at the Sandvika beaches, located in the Oslo fjord. The model was also used to theoretically investigate the effect of discharges from septic tanks from boats on the water quality at local beaches. The model make use of microbial decay rate as the main input representing the survival of microbial pathogens in the ocean, which vary widely depending on the type of pathogen and environmental stress. The predicted beach water quality was validated against observed data after a heavy rainfall event using Nash-Sutcliffe coefficient (E) and the overall result indicated that the model performed quite well and the simulation was in - good agreement with the observed E. coli concentrations for all beaches. The result of this study indicated that: 1) the bathing water quality was poor according to the EU bathing water directive up to two days after the heavy rainfall event depending on the location of the beach site. 2) The discharge from a boat at 300-meter distance to the beaches slightly increased the E. coli levels at the beaches. 3) The spreading of microbial pathogens from its source to the different beaches depended on the wind speed and the wind direction.

  19. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  20. Genome-scale modelling of microbial metabolism with temporal and spatial resolution.

    Science.gov (United States)

    Henson, Michael A

    2015-12-01

    Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.

  1. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    Science.gov (United States)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  2. Modeling microbial community structure and functional diversity across time and space.

    Science.gov (United States)

    Larsen, Peter E; Gibbons, Sean M; Gilbert, Jack A

    2012-07-01

    Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space - using appropriate experimental design - is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Microbial comparative pan-genomics using binomial mixture models

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2009-08-01

    Full Text Available Abstract Background The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. Results We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection probabilities. Estimated pan-genome sizes range from small (around 2600 gene families in Buchnera aphidicola to large (around 43000 gene families in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely occurring genes in the population. Conclusion Analyzing pan-genomics data with binomial mixture models is a way to handle dependencies between genomes, which we find is always present. A bottleneck in the estimation procedure is the annotation of rarely occurring genes.

  4. Microbial comparative pan-genomics using binomial mixture models

    DEFF Research Database (Denmark)

    Ussery, David; Snipen, L; Almøy, T

    2009-01-01

    The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter...... approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. RESULTS: We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection...... probabilities. Estimated pan-genome sizes range from small (around 2600 gene families) in Buchnera aphidicola to large (around 43000 gene families) in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely...

  5. The Impact of Consumer Phase Models in Microbial Risk Analysis

    DEFF Research Database (Denmark)

    Nauta, Maarten; Christensen, Bjarke Bak

    2011-01-01

    In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited...... availability of data. Therefore, several subjective (simplifying) assumptions have to be made when a CPM is constructed, but with a single CPM their impact on the QMRA results is unclear. We therefore compared the performance of eight published CPMs for Campylobacter in broiler meat in an example of a QMRA......, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose-response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk...

  6. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  7. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...

  8. A Comparison of Modeling Approaches in Simulating Chlorinated Ethene Removal in a Constructed Wetland by a Microbial Consortia

    National Research Council Canada - National Science Library

    Campbell, Jason

    2002-01-01

    The purpose of this study is to compare different approaches to modeling the reductive dechlorination of chlorinated ethenes in the anaerobic region of an upward flow constructed wetland by microbial consortia...

  9. A Comparison of Modeling Approaches in Simulating Chlorinated Ethene Removal in a Constructed Wetland by a Microbial Consortia

    National Research Council Canada - National Science Library

    Campbell, Jason

    2002-01-01

    ... of the modeling approaches affect simulation results. Concepts like microbial growth in the form of a biofilm and spatially varying contaminant concentrations bring the validity of the CSTR assumption into question...

  10. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment

    NARCIS (Netherlands)

    Hardesty, Britta D.; Harari, Joseph; Isobe, Atsuhiko; Lebreton, Laurent; Maximenko, Nikolai; Potemra, Jim; van Sebille, Erik; Vethaak, A.Dick; Wilcox, Chris

    2017-01-01

    Numerical modeling is one of the key tools with which we can gain insight into the distribution of marine litter, especially micro-plastics. Over the past decade, a series of numerical simulations have been constructed that specifically target floating marine litter, based on ocean models of various

  11. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2011-11-01

    Full Text Available Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR's Community Atmosphere Model (CAM5 with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7. Emissions of marine primary organic aerosols (POA, phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA and methane sulfonate (MS are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011 and Vignati et al. (2010 emission parameterizations, respectively. Marine sources of SOA and particulate MS (containing both sulfur and carbon atoms contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2, both Gantt et al. (2011 and Vignati et al. (2010 formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011 parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN. The largest increases (up to 20% in CCN (at a supersaturation (S of 0.2% number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming

  12. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  13. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  14. A stepwise-cluster microbial biomass inference model in food waste composting

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Sun Xueling

    2009-01-01

    A stepwise-cluster microbial biomass inference (SMI) model was developed through introducing stepwise-cluster analysis (SCA) into composting process modeling to tackle the nonlinear relationships among state variables and microbial activities. The essence of SCA is to form a classification tree based on a series of cutting or mergence processes according to given statistical criteria. Eight runs of designed experiments in bench-scale reactors in a laboratory were constructed to demonstrate the feasibility of the proposed method. The results indicated that SMI could help establish a statistical relationship between state variables and composting microbial characteristics, where discrete and nonlinear complexities exist. Significance levels of cutting/merging were provided such that the accuracies of the developed forecasting trees were controllable. Through an attempted definition of input effects on the output in SMI, the effects of the state variables on thermophilic bacteria were ranged in a descending order as: Time (day) > moisture content (%) > ash content (%, dry) > Lower Temperature (deg. C) > pH > NH 4 + -N (mg/Kg, dry) > Total N (%, dry) > Total C (%, dry); the effects on mesophilic bacteria were ordered as: Time > Upper Temperature (deg. C) > Total N > moisture content > NH 4 + -N > Total C > pH. This study made the first attempt in applying SCA to mapping the nonlinear and discrete relationships in composting processes.

  15. Effect of Nisin's Controlled Release on Microbial Growth as Modeled for Micrococcus luteus.

    Science.gov (United States)

    Balasubramanian, Aishwarya; Lee, Dong Sun; Chikindas, Michael L; Yam, Kit L

    2011-06-01

    The need for safe food products has motivated food scientists and industry to find novel technologies for antimicrobial delivery for improving food safety and quality. Controlled release packaging is a novel technology that uses the package to deliver antimicrobials in a controlled manner and sustain antimicrobial stress on the targeted microorganism over the required shelf life. This work studied the effect of controlled release of nisin to inhibit growth of Micrococcus luteus (a model microorganism) using a computerized syringe pump system to mimic the release of nisin from packaging films which was characterized by an initially fast rate and a slower rate as time progressed. The results show that controlled release of nisin was strikingly more effective than instantly added ("formulated") nisin. While instant addition experiments achieved microbial inhibition only at the beginning, controlled release experiments achieved complete microbial inhibition for a longer time, even when as little as 15% of the amount of nisin was used as compared to instant addition.

  16. Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling

    Science.gov (United States)

    Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.

    2016-02-01

    In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.

  17. Modelling the transport and decay processes of microbial tracers in a macro-tidal estuary.

    Science.gov (United States)

    Abu-Bakar, Amyrhul; Ahmadian, Reza; Falconer, Roger A

    2017-10-15

    The Loughor Estuary is a macro-tidal coastal basin, located along the Bristol Channel, in the South West of the U.K. The maximum spring tidal range in the estuary is up to 7.5 m, near Burry Port Harbour. This estuarine region can experience severe coastal flooding during high spring tides, including extreme flooding of the intertidal saltmarshes at Llanrhidian, as well as the lower industrial and residential areas at Llanelli and Gowerton. The water quality of this estuarine basin needs to comply with the designated standards for safe recreational bathing and shellfish harvesting industries. The waterbody however, potentially receives overloading of bacterial inputs that enter the estuarine system from both point and diffuse sources. Therefore, a microbial tracer study was carried out to get a better understanding of the faecal bacteria sources and to enable a hydro-environmental model to be refined and calibrated for both advection and dispersion transport. A two-dimensional hydro-environmental model has been refined and extended to predict the highest water level covering the intertidal floodplains of the Loughor Estuary. The validated hydrodynamic model for both water levels and currents, was included with the injected mass of microbial tracer, i.e. MS2 coliphage from upstream of the estuary, and modelled as a non-conservative tracer over several tidal cycles through the system. The calibration and validation of the transport and decay of microbial tracer was undertaken, by comparing the model results and the measured data at two different sampling locations. The refined model developed as a part of this study, was used to acquire a better understanding of the water quality processes and the potential sources of bacterial pollution in the estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Dynamic Model for Thrust Generation of Marine Propellers

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lindegaard, Karl-Petter; Fossen, Thor I.

    2000-01-01

    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a...

  19. 2011 Marine Hydrokinetic Device Modeling Workshop: Final Report; March 1, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Reed, M.; Smith, B.

    2011-10-01

    This report summarizes the NREL Marine and Hydrokinetic Device Modeling Workshop. The objectives for the modeling workshop were to: (1) Review the designs of existing MHK device prototypes and discuss design and optimization procedures; (2) Assess the utility and limitations of modeling techniques and methods presently used for modeling MHK devices; (3) Assess the utility and limitations of modeling methods used in other areas, such as naval architecture and ocean engineering (e.g., oil & gas industry); and (4) Identify the necessary steps to link modeling with other important components that analyze MHK devices (e.g., tank testing, PTO design, mechanical design).

  20. A Predictive Model for Microbial Counts on Beaches where Intertidal Sand is the Primary Source

    Science.gov (United States)

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K.; Solo-Gabriele, Helena M.; Wang, John D.; Fleming, Lora E.

    2015-01-01

    Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions. PMID:25840869

  1. Evaluation model applied to TRANSPETRO's Marine Terminals Standardization Program

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Maria Fatima Ludovico de; Mueller, Gabriela [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Instituto Tecnologico; Garcia, Luciano Maldonado [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper describes an innovative evaluation model applied to TRANSPETRO's 'Marine Terminals Standardization Program' based on updating approaches of programs evaluation and organizational learning. Since the program was launched in 2004, the need for having an evaluation model able to evaluate its implementation progress, to measure the degree of standards compliance and its potential economic, social and environmental impacts has become evident. Within a vision of safe and environmentally responsible operations of marine terminals, this evaluation model was jointly designed by TRANSPETRO and PUC-Rio to promote continuous improvement and learning in operational practices and in the standardization process itself. TRANSPETRO believes that standardization supports its services and management innovation capability by creating objective and internationally recognized parameters, targets and metrology for its business activities. The conceptual model and application guidelines for this important tool are presented in this paper, as well as the next steps towards its implementation. (author)

  2. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    Science.gov (United States)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  3. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    Science.gov (United States)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  4. Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and -curcudiol isolated from a deep reef collection of the Jamaican sponge Didiscus oxeata.

    Science.gov (United States)

    El Sayed, Khalid A; Yousaf, Muhammad; Hamann, Mark T; Avery, Mitchell A; Kelly, Michelle; Wipf, Peter

    2002-11-01

    Microbial and chemical transformation studies of the marine sesquiterpene phenols (S)-(+)-curcuphenol (1) and (S)-(+)-curcudiol (2), isolated from the Jamaican sponge Didiscus oxeata, were accomplished. Preparative-scale fermentation of 1 with Kluyveromyces marxianus var. lactis (ATCC 2628) has resulted in the isolation of six new metabolites: (S)-(+)-15-hydroxycurcuphenol (3), (S)-(+)-12-hydroxycurcuphenol (4), (S)-(+)-12,15-dihydroxycurcuphenol (5), (S)-(+)-15-hydroxycurcuphenol-12-al (6), (S)-(+)-12-carboxy-10,11-dihydrocurcuphenol (7), and (S)-(+)-12-hydroxy-10,11-dihydrocurcuphenol (8). Fourteen-days incubation of 1 with Aspergillus alliaceus (NRRL 315) afforded the new compounds (S)-(+)-10beta-hydroxycurcudiol (9), (S)-(+)-curcudiol-10-one (10), and (S)-(+)-4-[1-(2-hydroxy-4-methyl)phenyl)]pentanoic acid (11). Rhizopus arrhizus (ATCC 11145) and Rhodotorula glutinus (ATCC 15125) afforded (S)-curcuphenol-1alpha-D-glucopyranoside (12) and (S)-curcudiol-1alpha-D-glucopyranoside (13) when incubated for 6 and 8 days with 1 and 2, respectively. The absolute configuration of C(10) and C(11) of metabolites 7-9 was established by optical rotation computations. Reaction of 1 with NaNO(2) and HCl afforded (S)-(+)-4-nitrocurcuphenol (14) and (S)-(+)-2-nitrocurcuphenol (15) in a 2:1 ratio. Acylation of 1 and 2 with isonicotinoyl chloride afforded the expected esters (S)-(+)-curcuphenol-1-O-isonicotinate (16) and (S)-(+)-curcudiol-1-O-isonicotinate (17), respectively. Curcuphenol (1) shows potent antimicrobial activity against Candida albicans, Cryptococcus neoformans, methicillin-resistant Staphylococcus aureus, and S. aureus with MIC and MFC/MBC ranges of 7.5-25 and 12.5-50 microg/mL, respectively. Compounds 1 and 3 also display in vitro antimalarial activity against Palsmodium falciparium (D6 clone) with MIC values of 3600 and 3800 ng/mL, respectively (selectivity index >1.3). Both compounds were also active against P. falciparium (W2 clone) with MIC values of 1800 (S

  5. Research on marine and freshwater fish identification model based on hyper-spectral imaging technology

    Science.gov (United States)

    Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai

    2013-08-01

    With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.

  6. A Stochastic Multi-Media Model of Microbial Transport in Watersheds

    Science.gov (United States)

    Yeghiazarian, L.; Safwat, A.; Whiteaker, T.; Teklitz, A.; Nietch, C.; Maidment, D. R.; Best, E. P.

    2012-12-01

    Fecal contamination is the leading cause of surface-water impairment in the US, and fecal pathogens are capable of triggering massive outbreaks of gastrointestinal disease. The difficulty in prediction of water contamination has its roots in the stochastic variability of fecal pathogens in the environment, and in the complexity of microbial dynamics and interactions on the soil surface and in water. To address these challenges, we have developed a stochastic model whereby the transport of microorganisms in watersheds is considered in two broad categories: microorganisms that are attached to mineral or organic substrates in suspended sediment; and unattached microorganisms suspended in overland flow. The interactions of microorganisms with soil particles on the soil surface and in the overland flow lead to transitions of microorganisms between solid and aqueous media. The strength of attachment of microorganisms to soil particles is determined by the chemical characteristics of soils which are highly correlated with the particle size. The particle size class distribution in the suspended sediment is predicted by the Water Erosion Prediction Project (WEPP). The model is integrated with ArcGIS, resulting in a general transport-modeling framework applicable to a variety of biological and chemical surface water contaminants. Simulations are carried out for a case study of contaminant transport in the East Fork Little Miami River Watershed in Ohio. Model results include the spatial probability distribution of microbes in the watershed and can be used for assessment of (1) mechanisms dominating microbial transport, and (2) time and location of highest likelihood of microbial occurrence, thus yielding information on best water sampling strategies.

  7. Model description of trophodynamic behavior of methylmercury in a marine aquatic system

    International Nuclear Information System (INIS)

    Tong Yindong; Zhang Wei; Hu Xindi; Ou Langbo; Hu Dan; Yang Tianjun; Wei Wen; Wang Xuejun

    2012-01-01

    A marine food web in Bohai Bay, China, was selected to study methylmercury (MeHg) bioaccumulation, and an aquivalence-based mass balance model was established to explore the possibility of predicting the MeHg concentrations and quantifying MeHg bioaccumulation in the food web. Results showed that both total mercury (THg) and MeHg were biomagnified in the food web. The calculated MeHg concentrations in the selected species agreed well with the measured values, which shows the model could be a useful tool in MeHg concentration prediction in food web. Model outputs also showed that metabolism and growth dilution could be the dominant mechanisms for the reduction of MeHg levels in aquatic organisms. With the increase of trophic level, the contribution of food as a MeHg source for organism is increasing, and MeHg from prey was the dominant source. - Highlights: ► We model the bioaccumulation of methylmercury in a marine aquatic food web. ► Aquivalence-based mass balance model could quantify MeHg trophic transfer. ► Metabolism and growth dilution are dominant mechanisms of MeHg reduction in organisms. ► With increase of trophic levels, contribution of food as MeHg source is increasing. - Aquivalence-based mass balance model was established to study methylmercury bioaccumulation in a marine food web.

  8. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    2005-01-01

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  9. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  10. A general-purpose process modelling framework for marine energy systems

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Georgopoulou, Chariklia A.; Stefanatos, Iason C.; Zymaris, Alexandros S.; Kakalis, Nikolaos M.P.

    2014-01-01

    Highlights: • Process modelling techniques applied in marine engineering. • Systems engineering approaches to manage the complexity of modern ship machinery. • General purpose modelling framework called COSSMOS. • Mathematical modelling of conservation equations and related chemical – transport phenomena. • Generic library of ship machinery component models. - Abstract: High fuel prices, environmental regulations and current shipping market conditions impose ships to operate in a more efficient and greener way. These drivers lead to the introduction of new technologies, fuels, and operations, increasing the complexity of modern ship energy systems. As a means to manage this complexity, in this paper we present the introduction of systems engineering methodologies in marine engineering via the development of a general-purpose process modelling framework for ships named as DNV COSSMOS. Shifting the focus from components – the standard approach in shipping- to systems, widens the space for optimal design and operation solutions. The associated computer implementation of COSSMOS is a platform that models, simulates and optimises integrated marine energy systems with respect to energy efficiency, emissions, safety/reliability and costs, under both steady-state and dynamic conditions. DNV COSSMOS can be used in assessment and optimisation of design and operation problems in existing vessels, new builds as well as new technologies. The main features and our modelling approach are presented and key capabilities are illustrated via two studies on the thermo-economic design and operation optimisation of a combined cycle system for large bulk carriers, and the transient operation simulation of an electric marine propulsion system

  11. Modeling the formation of soluble microbial products (SMP in drinking water biofiltration

    Directory of Open Access Journals (Sweden)

    Yu Xin

    2008-09-01

    Full Text Available Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  12. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  13. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    Science.gov (United States)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  14. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    Directory of Open Access Journals (Sweden)

    D. P. Tittensor

    2018-04-01

    Full Text Available Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0, part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size, and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM Coupled Model Intercomparison Project Phase 5 (CMIP5 outputs under prescribed scenarios for historic (from the 1950s and future (to 2100 time periods; it will be adapted to CMIP phase 6 (CMIP6 in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems

  15. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

    Science.gov (United States)

    Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.

    2018-04-01

    Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the

  16. Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation.

    Science.gov (United States)

    Penloglou, Giannis; Chatzidoukas, Christos; Kiparissides, Costas

    2012-01-01

    The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Discussion of skill improvement in marine ecosystem dynamic models based on parameter optimization and skill assessment

    Science.gov (United States)

    Shen, Chengcheng; Shi, Honghua; Liu, Yongzhi; Li, Fen; Ding, Dewen

    2016-07-01

    Marine ecosystem dynamic models (MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization (PO), which is an important step in model calibration. An efficient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the efficiency of model calibration by analyzing and estimating the goodness-of-fit of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confidence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientific and normative technical framework for the improvement of MEDM skill.

  18. Characterization of agarose as immobilization matrix model for a microbial biosensor

    Directory of Open Access Journals (Sweden)

    Pernetti Mimma

    2003-01-01

    Full Text Available Microbial biosensors are promising tools for the detection of specific substances in different fields, such as environmental, biomedical, food or agricultural. They allow rapid measurements, no need for complex sample preparation or specialized personnel and easy handling. In order to enhance the managing, miniaturization and stability of the biosensor and to prevent cell leaching, bacteria immobilization is desirable. A systematic characterization procedure to choose a suitable immobilization method and matrix, was proposed in this study. Physical properties, storage stability mass transport phenomena and biocompatibility were evaluated, employing agarose as the model matrix. Preliminary essays with bioluminescent bacteria detecting Tributyltin were also carried out.

  19. Marine denitrification rates determined from a global 3-D inverse model

    Directory of Open Access Journals (Sweden)

    T. DeVries

    2013-04-01

    Full Text Available A major impediment to understanding long-term changes in the marine nitrogen (N cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global ocean circulation model to obtain the first 3-D estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of oceanic nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than many other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.

  20. Validation of an Eulerian population model for the marine copepod Calanus finmarchicus in the Norwegian Sea

    Science.gov (United States)

    Alver, Morten Omholt; Broch, Ole Jacob; Melle, Webjørn; Bagøien, Espen; Slagstad, Dag

    2016-08-01

    Calanus finmarchicus is an important zooplankton species in the Norwegian Sea, as a dominant food organism for pelagic fish larvae, and a potentially large source of marine lipids and proteins. Its position in the marine food web also makes it an important model species in assessing the risk posed by oil spills in the Norwegian and Arctic Seas. In this study, an Eulerian population model for C.finmarchicus, coupled to the physical and ecological model SINMOD, is presented. The model includes the full life cycle of C. finmarchicus with a representation of all developmental stages. The model has been validated against field measurements made in different areas of the Norwegian Sea in 1997 and 1998. The model displays geographical and temporal distributions of development stages that is in line with observed patterns. When comparing time series for selected regions, we see a high degree of variability both in the field samples and model output. On average, the model deviations are near half of the summed variability of the field data and model estimates. The model has applications within assessment of ecological production, and the potential for harvesting in the Norwegian and Arctic Seas, but in combination with other models, also for the assessment of ecological effects of oil spills and other types of pollution.

  1. Waste production and regional growth of marine activities an econometric model

    International Nuclear Information System (INIS)

    Bramati, Maria Caterina

    2016-01-01

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. - Highlights: • We use an econometric model as a tool for assessing the effects of regional policies on the development of economic activities related to the use of the sea and on the impact on the marine environment. • Through scenario simulation we provide strategic guidelines for policy makers and economic planners • The model features feedback effects of economic and demographic expansion on the pollution of coastal areas.

  2. Application of oil spill model to marine pollution and risk control problems

    Science.gov (United States)

    Aseev, Nikita; Agoshkov, Valery; Sheloput, Tatyana

    2017-04-01

    Oil transportation by sea induces challenging problems of environmental control. Millions of tonnes of oil are yearly released during routine ship operations, not to mention vast spills due to different accidents (e.g. tanker collisions, grounding, etc.). Oil pollution is dangerous to marine organisms such as plants, fish and mammals, leading to widespread damage to our planet. In turn, fishery and travel agencies can lose money and clients, and ship operators are obliged to pay huge penalties for environmental pollution. In this work we present the method of accessing oil pollution of marine environment using recently developed oil spill model. The model describes basic processes of the oil slick evolution: oil transport due to currents, drift under the action of wind, spreading on the surface, evaporation, emulsification and dispersion. Such parameters as slick location, mass, density of oil, water content, viscosity and density of "water-in-oil" emulsion can be calculated. We demonstrate how to apply the model to damage calculation problems using a concept of average damage to particular marine area. We also formulate the problem of oil spill risk control, when some accident parameters are not known, but their probability distribution is given. We propose a new algorithm to solve such problems and show results of our model simulations. The work can be interesting to broad environmental, physics and mathematics community. The work is supported by Russian Foundation for Basic Research grant 16-31-00510.

  3. Waste production and regional growth of marine activities an econometric model.

    Science.gov (United States)

    Bramati, Maria Caterina

    2016-11-15

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Coupling ecosystems exposure to nitrogen and species sensitivity to hypoxia: modelling marine eutrophication in LCIA

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) quantifies impacts of anthropogenic emissions by applying substance-specific impact potentials, or Characterisation Factors (CF), to the amount of substances emitted. Nitrogen (N) emissions from human activities enrich coastal marine...... ecosystems and promote planktonic growth that may lead to marine eutrophication impacts. Excessive algal biomass and dissolved oxygen (DO) depletion typify the ecosystem response to the nutrient input. The present novel method couples a mechanistic model of coastal biological processes that determines...... the ecosystem response (exposure) to anthropogenic N enrichment (eXposure Factor, XF [kgO2·kgN-1]) with the sensitivity of species exposed to oxygen-depleted waters (Effect Factor, EF [(PAF)·m3·kgO2-1], expressed as a Potentially Affected Fraction (PAF) of species). Thus, the coupled indicator (XF*EF, [(PAF)·m3...

  5. Modelling Marine Sediment Biogeochemistry: Current Knowledge Gaps, Challenges, and Some Methodological Advice for Advancement

    Directory of Open Access Journals (Sweden)

    Gennadi Lessin

    2018-02-01

    Full Text Available The benthic environment is a crucial component of marine systems in the provision of ecosystem services, sustaining biodiversity and in climate regulation, and therefore important to human society. With the contemporary increase in computational power, model resolution and technological improvements in quality and quantity of benthic data, it is necessary to ensure that benthic systems are appropriately represented in coupled benthic-pelagic biogeochemical and ecological modelling studies. In this paper we focus on five topical challenges related to various aspects of modelling benthic environments: organic matter reactivity, dynamics of benthic-pelagic boundary layer, microphytobenthos, biological transport and small-scale heterogeneity, and impacts of episodic events. We discuss current gaps in their understanding and indicate plausible ways ahead. Further, we propose a three-pronged approach for the advancement of benthic and benthic-pelagic modelling, essential for improved understanding, management and prediction of the marine environment. This includes: (A development of a traceable and hierarchical framework for benthic-pelagic models, which will facilitate integration among models, reduce risk of bias, and clarify model limitations; (B extended cross-disciplinary approach to promote effective collaboration between modelling and empirical scientists of various backgrounds and better involvement of stakeholders and end-users; (C a common vocabulary for terminology used in benthic modelling, to promote model development and integration, and also to enhance mutual understanding.

  6. A Systematic Review of Marine-Based Species Distribution Models (SDMs with Recommendations for Best Practice

    Directory of Open Access Journals (Sweden)

    Néstor M. Robinson

    2017-12-01

    Full Text Available In the marine environment Species Distribution Models (SDMs have been used in hundreds of papers for predicting the present and future geographic range and environmental niche of species. We have analyzed ways in which SDMs are being applied to marine species in order to recommend best practice in future studies. This systematic review was registered as a protocol on the Open Science Framework: https://osf.io/tngs6/. The literature reviewed (236 papers was published between 1992 and July 2016. The number of papers significantly increased through time (R2 = 0.92, p < 0.05. The studies were predominantly carried out in the Temperate Northern Atlantic (45% followed by studies of global scale (11% and studies in Temperate Australasia (10%. The majority of studies reviewed focused on theoretical ecology (37% including investigations of biological invasions by non-native organisms, conservation planning (19%, and climate change predictions (17%. Most of the studies were published in ecological, multidisciplinary, or biodiversity conservation journals. Most of the studies (94% failed to report the amount of uncertainty derived from data deficiencies and model parameters. Best practice recommendations are proposed here to ensure that novice and advanced SDM users can (a understand the main elements of SDMs, (b reproduce standard methods and analysis, and (c identify potential limitations with their data. We suggest that in the future, studies of marine SDMs should report on key features of the approaches employed, data deficiencies, the selection of the best explanatory model, and the approach taken to validate the SDM results. In addition, based on the literature reviewed, we suggest that future marine SDMs should account for uncertainty levels as part of the modeling process.

  7. Analysis of trait-based models in marine ecosystems

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe

    -temporal pattern formation in a predator–prey system where animals move towards higher fitness. Reaction-diffusion systems have been used extensively to describe spatio-temporal patterns in a variety of systems. However, animals rarely move completely at random, as expressed by diffusion. This has lead to models...... with taxis terms, describing individuals moving in the direction of an attractant. An example is chemotaxis models, where bacteria are attracted to a chemical substance. From an evolutionary perspective, it is expected that animals act as to optimize their fitness. Based on this principle, a predator......–prey system with fitness taxis and diffusion is proposed. Here, fitness taxis refer to animals moving towards higher values of fitness, and the specific growth rates of the populations are used as a measure of the fitness values. To determine the conditions for pattern formation, a linear stability analysis...

  8. Characteristics and Source Apportionment of Marine Aerosols over East China Sea Using a Source-oriented Chemical Transport Model

    Science.gov (United States)

    Kang, M.; Zhang, H.; Fu, P.

    2017-12-01

    Marine aerosols exert a strong influence on global climate change and biogeochemical cycling, as oceans cover beyond 70% of the Earth's surface. However, investigations on marine aerosols are relatively limited at present due to the difficulty and inconvenience in sampling marine aerosols as well as their diverse sources. East China Sea (ECS), lying over the broad shelf of the western North Pacific, is adjacent to the Asian mainland, where continental-scale air pollution could impose a heavy load on the marine atmosphere through long-range atmospheric transport. Thus, contributions of major sources to marine aerosols need to be identified for policy makers to develop cost effective control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model, which can directly track the contributions from multiple emission sources to marine aerosols, is used to investigate the contributions from power, industry, transportation, residential, biogenic and biomass burning to marine aerosols over the ECS in May and June 2014. The model simulations indicate significant spatial and temporal variations of concentrations as well as the source contributions. This study demonstrates that the Asian continent can greatly affect the marine atmosphere through long-range transport.

  9. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    Science.gov (United States)

    Nymo, Ingebjørg H; Arias, Maykel A; Pardo, Julián; Álvarez, María Pilar; Alcaraz, Ana; Godfroid, Jacques; Jiménez de Bagüés, María Pilar

    2016-01-01

    Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  10. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    Directory of Open Access Journals (Sweden)

    Ingebjørg H Nymo

    Full Text Available Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  11. A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells.

    Science.gov (United States)

    de Los Ángeles Fernandez, Maria; de Los Ángeles Sanromán, Maria; Marks, Stanislaw; Makinia, Jacek; Gonzalez Del Campo, Araceli; Rodrigo, Manuel; Fernandez, Francisco Jesus

    2016-01-01

    In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol(-1) glucose) and lactic acid (with a yield of 1.36molmol(-1) glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    Science.gov (United States)

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A quantitative microbial risk assessment model for Listeria monocytogenes in RTE sandwiches

    DEFF Research Database (Denmark)

    Tirloni, E.; Stella, S.; de Knegt, Leonardo

    2018-01-01

    within each serving. Then, two dose-response models were alternatively applied: the first used a fixed r value for each of the three population groups, while the second considered a variable r value (lognormal distribution), taking into account the variability in strain virulence and different host...... subpopulations susceptibility. The stochastic model predicted zero cases for total population for both the substrates by using the fixed r approach, while 3 cases were expected when a higher variability (in virulence and susceptibility) was considered in the model; the number of cases increased to 45......A Quantitative Microbial Risk Assessment (QMRA) was performed to estimate the expected number of listeriosis cases due to the consumption, on the last day of shelf life, of 20 000 servings of multi-ingredient sandwiches produced by a medium scale food producer in Italy, by different population...

  14. Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Raj K. Verma

    2010-01-01

    Full Text Available Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease.

  15. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    Science.gov (United States)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  16. Modelling of microbial polyhydroxyalkanoate surface binding protein PhaP for rational mutagenesis.

    Science.gov (United States)

    Zhao, Hongyu; Yao, Zhenyu; Chen, Xiangbin; Wang, Xinquan; Chen, Guo-Qiang

    2017-11-01

    Phasins are unusual amphiphilic proteins that bind to microbial polyhydroxyalkanoate (PHA) granules in nature and show great potential for various applications in biotechnology and medicine. Despite their remarkable diversity, only the crystal structure of PhaP A h from Aeromonas hydrophila has been solved to date. Based on the structure of PhaP A h , homology models of PhaP A z from Azotobacter sp. FA-8 and PhaP TD from Halomonas bluephagenesis TD were successfully established, allowing rational mutagenesis to be conducted to enhance the stability and surfactant properties of these proteins. PhaP A z mutants, including PhaP A z Q38L and PhaP A z Q78L, as well as PhaP TD mutants, including PhaP TD Q38M and PhaP TD Q72M, showed better emulsification properties and improved thermostability (6-10°C higher melting temperatures) compared with their wild-type homologues under the same conditions. Importantly, the established PhaP homology-modelling approach, based on the high-resolution structure of PhaP A h , can be generalized to facilitate the study of other PhaP members. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley; T.F. Ehrhorn; J. Horn

    2002-03-19

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C{sub 160}(H{sub 280}O{sub 80})N{sub 30}P{sub 2}S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated

  18. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    International Nuclear Information System (INIS)

    Jolley, D.M.; Ehrhorn, T.F.; Horn, J.

    2002-01-01

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C 160 (H 280 O 80 )N 30 P 2 S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated and unsaturated

  19. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling

    Science.gov (United States)

    Li, Gang; Li, Yuguo; Han, Bo; Liu, Zhan

    2018-01-01

    In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates is successfully applied to 3-D frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modelling algorithms, assumes that the electric or magnetic field values are zero at the boundaries. This requires the boundaries to be sufficiently far away from the area of interest. To mitigate the boundary artefacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we use the PML for CSEM field simulation instead of the conventional Dirichlet, the modelling area for these two different geophysical data collected from the same survey area could be the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3-D marine CSEM modelling by using the staggered finite-difference discretization. Numerical test indicates that the modelling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modelling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3-D example in this study, the memory saving using the PML is nearly 42 per cent and the time saving is around 48 per cent compared to using the Dirichlet.

  20. Effects of copper particles on a model septic system's function and microbial community.

    Science.gov (United States)

    Taylor, Alicia A; Walker, Sharon L

    2016-03-15

    There is concern surrounding the addition of nanoparticles into consumer products due to toxicity potential and the increased risk of human and environmental exposures to these particles. Copper nanoparticles are found in many common consumer goods; therefore, the disposal and subsequent interactions between potentially toxic Cu-based nanoparticles and microbial communities may have detrimental impacts on wastewater treatment processes. This study investigates the effects of three copper particles (micron- and nano-scale Cu particles, and a nano-scale Cu(OH)2-based fungicide) on the function and operation of a model septic tank. Septic system analyses included water quality evaluations and microbial community characterizations to detect changes in and relationships between the septic tank function and microbial community phenotype/genotype. As would be expected for optimal wastewater treatment, biological oxygen demand (BOD5) was reduced by at least 63% during nano-scale Cu exposure, indicating normal function. pH was reduced to below the optimum anaerobic fermentation range during the micro Cu exposure, suggesting incomplete degradation of organic waste may have occurred. The copper fungicide, Cu(OH)2, caused a 57% increase in total organic carbon (TOC), which is well above the typical range for septic systems and also corresponded to increased BOD5 during the majority of the Cu(OH)2 exposure. The changes in TOC and BOD5 demonstrate that the system was improperly treating waste. Overall, results imply individual exposures to the three Cu particles caused distinct disruptions in septic tank function. However, it was observed that the system was able to recover to typical operating conditions after three weeks post-exposure. These results imply that during periods of Cu introduction, there are likely pulses of improper removal of total organic carbon and significant changes in pH not in the optimal range for the system. Copyright © 2016 Elsevier Ltd. All rights

  1. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    Science.gov (United States)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  2. A Numerical Modeling for Study Marine Current in the Manado Bay, North Sulawesi

    Directory of Open Access Journals (Sweden)

    Parabelem Tinno Dolf Rompas

    2018-02-01

    Full Text Available This study is investigating about marine currents provided electrical energy through the numerical model. The objective of this study is to know the available power distributions in the Manado Bay, North Sulawesi, Indonesia. The Manado Bay was width 2200 m with 79 m of depth. In computation, we are made grids in x and y horizontal were 7 m respectively, also for z vertical of four layers. The results shown that the available power distributions in the Manado Bay at 0.1 Sv were 0.00-20.00 kW/m2 when low tide currents and when high tide currents were 0.00-105 kW/m2. The values will enable for marine currents power plant in the Manado Bay to future.

  3. Spatially-explicit LCIA model for marine eutrophication as a tool for sustainability assessment

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2014-01-01

    The increasing emissions from human activities are overrunning the ecosystems’ natural capacity to absorb them. Nutrient emissions, mostly nitrogen- and phosphorus-forms (N, P) from e.g. agricultural runoff and combustion processes, may lead to social-economic impacts and environmental quality......-enrichment to impacts on marine ecosystems. Emitted nitrogen reaches marine coastal waters where it promotes the growth of phytoplankton biomass in the surface photic zone from where it eventually sinks to bottom waters. This downward flux of organic matter is respired there by bacteria resulting in the consumption...... of dissolved oxygen. An excessive depletion of oxygen affects the exposed organisms and loss of species diversity may be expected. A model framework was built to estimate the potential impacts arising from N-emissions (see figure). It combines the fate of N in rivers and coastal waters, the exposure...

  4. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.

    Science.gov (United States)

    Karra, Udayarka; Huang, Guoxian; Umaz, Ridvan; Tenaglier, Christopher; Wang, Lei; Li, Baikun

    2013-09-01

    A novel and robust distributed benthic microbial fuel cell (DBMFC) was developed to address the energy supply issues for oceanographic sensor network applications, especially under scouring and bioturbation by aquatic life. Multi-anode/cathode configuration was employed in the DBMFC system for enhanced robustness and stability in the harsh ocean environment. The results showed that the DBMFC system achieved peak power and current densities of 190mW/m(2) and 125mA/m(2) respectively. Stability characterization tests indicated the DBMFC with multiple anodes achieved higher power generation over the systems with single anode. A computational model that integrated physical, electrochemical and biological factors of MFCs was developed to validate the overall performance of the DBMFC system. The model simulation well corresponded with the experimental results, and confirmed the hypothesis that using a multi anode/cathode MFC configuration results in reliable and robust power generation. Published by Elsevier Ltd.

  5. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater.

    Science.gov (United States)

    Wen, Qing; Wu, Ying; Cao, Dianxue; Zhao, Lixin; Sun, Qian

    2009-09-01

    Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD=626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m(3) (264 mW/m(2)). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m(2), reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.

  6. A validated dynamic model of the first marine molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ovrum, E.; Dimopoulos, G.

    2012-01-01

    In this work we present a modular, dynamic and multi-dimensional model of a molten carbonate fuel cell (MCFC) onboard the offshore supply vessel “Viking Lady” serving as an auxiliary power unit. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the vessel. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the offshore supply vessel. The calibration process included parameter identification, sensitivity analysis to identify the critical model parameters, and iterative calibration of these to minimize the overall prediction error. The calibrated model has a low prediction error of 4% for the operating range of the cell, exhibiting at the same time a physically sound qualitative behavior in terms of thermodynamic heat transfer and electrochemical phenomena, both on steady-state and transient operation. The developed model is suitable for a wide range of studies covering the aspects of thermal efficiency, performance, operability, safety and endurance/degradation, which are necessary to introduce fuel cells in ships. The aim of this MCFC model is to aid to the introduction, design, concept approval and verification of environmentally friendly marine applications such as fuel cells, in a cost-effective, fast and safe manner. - Highlights: ► We model the first marine molten carbonate fuel cell auxiliary power unit. ► The model is distributed spatially and models both steady state and transients. ► The model is validated against experimental data. ► The paper illustrates how the model can be used in safety and reliability studies.

  7. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  8. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  9. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  10. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  11. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  12. A survey of microbial community diversity in marine sediments impacted by petroleum hydrocarbons from the Gulf of Mexico and Atlantic shorelines, Texas to Florida

    Science.gov (United States)

    Lisle, John T.; Stellick, Sarah H.

    2011-01-01

    Microbial community genomic DNA was extracted from sediment samples collected along the Gulf of Mexico and Atlantic coasts from Texas to Florida. Sample sites were identified as being ecologically sensitive and (or) as having high potential of being impacted by Macondo-1 (M-1) well oil from the Deepwater Horizon blowout. The diversity within the microbial communities associated with the collected sediments provides a baseline dataset to which microbial community-diversity data from impacted sites could be compared. To determine the microbial community diversity in the samples, genetic fingerprints were generated and compared. Specific sequences within the community genomic DNA were first amplified using the polymerase chain reaction (PCR) with a primer set that provides possible resolution to the species level. A second nested PCR was performed on the primary PCR products using a primer set on which a GC-clamp was attached to one of the primers. The nested PCR products were separated using denaturing-gradient gel electrophoresis (DGGE) that resolves the nested PCR products based on sequence dissimilarities (or similarities), forming a genomic fingerprint of the microbial diversity within the respective samples. Samples with similar fingerprints were grouped and compared to oil-fingerprint data from the same sites (Rosenbauer and others, 2011). The microbial community fingerprints were generally grouped into sites that had been shown to contain background concentrations of non-Deepwater Horizon oil. However, these groupings also included sites where no oil signature was detected. This report represents some of the first information on naturally occurring microbial communities in sediment from shorelines along the Gulf of Mexico and Atlantic coasts from Texas to Florida.

  13. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2014-01-01

    Full Text Available The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results’ evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer’s obvious improvement of mapping error rate.

  14. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Science.gov (United States)

    Yan, Wang; Jiajin, Le; Yun, Zhang

    2014-01-01

    The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results' evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer's obvious improvement of mapping error rate. PMID:25250372

  15. Dynamics of a Lotka-Volterra type model with applications to marine phage population dynamics

    International Nuclear Information System (INIS)

    Gavin, C; Pokrovskii, A; Prentice, M; Sobolev, V

    2006-01-01

    The famous Lotka-Volterra equations play a fundamental role in the mathematical modeling of various ecological and chemical systems. A new modification of these equations has been recently suggested to model the structure of marine phage populations, which are the most abundant biological entities in the biosphere. The purpose of the paper is: (i) to make some methodical remarks concerning this modification; (ii) to discuss new types of canards which arise naturally in this context; (iii) to present results of some numerical experiments

  16. A Sense of Place: Integrating Environmental Psychology into Marine Socio-Ecological Models

    Science.gov (United States)

    van Putten, I. E.; Fleming, A.; Fulton, E.; Plaganyi-Lloyd, E.

    2016-02-01

    Sense of place is a concept that is increasingly applied in different social research contexts where it can act as a bridge between disciplines that might otherwise work in parallel. A sense of place is a well established and flexible concept that has been empirically measured using different survey methods. The psychological principals and theories that underpin sense of place have been inextricably linked to the quality of ecological systems and the impact on development of the system, and vice versa. Ecological models and scenario analyses play an important role in characterising, assessing and predicting the potential impacts of alternative developments and other changes affecting ecological systems. To improve the predictive accuracy of ecological models, human drivers, interactions, and uses have been dynamically incorporated, for instance, through management strategy evaluation applied to marine ecosystem models. However, to date no socio-ecological models (whether terrestrial or marine) have been developed that incorporate a dynamic feedback between ecosystem characteristics and peoples' sense of place. These models thus essentially ignore the influence of environmental psychology on the way people use and interact with ecosystems. We develop a proof of concept and provide a mathematical basis for a Sense of Place Index (SoPI) that allows the quantitative integration of environmental psychology into socio-ecological models. Incorporating dynamic feedback between the SoPI for different resource user groups and the ecological system improves the accuracy and precision of predictions regarding future resource use as well as, ultimately, the potential state of the resource to be developed.

  17. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  18. Implementation of marine spatial planning in shellfish aquaculture management: modeling studies in a Norwegian fjord.

    Science.gov (United States)

    Filgueira, Ramon; Grant, Jon; Strand, Øivind

    2014-06-01

    Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.

  19. Incorporating H2 Dynamics and Inhibition into a Microbially Based Methanogenesis Model for Restored Wetland Sediments

    Science.gov (United States)

    Pal, David; Jaffe, Peter

    2015-04-01

    Estimates of global CH4 emissions from wetlands indicate that wetlands are the largest natural source of CH4 to the atmosphere. In this paper, we propose that there is a missing component to these models that should be addressed. CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are multiple sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2, while the H2 and CO2 are used to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. Changing planted species, or genetically modifying new species of plants may control this transport of soil gases. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. The results of an incubation study were combined with a new model of propionate degradation for methanogenesis that also examines other natural parameters (i.e. gas transport through plants). This presentation examines how we would expect this model to behave in a natural field setting with changing sulfate and carbon loading schemes. These changes can be controlled through new plant species and other management practices. Next, we compare the behavior of two variations of this model, with or without the incorporation of H2 interactions, with changing sulfate, carbon loading and root volatilization. Results show that while the models behave similarly there may be a discrepancy of nearly

  20. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology

    International Nuclear Information System (INIS)

    Kong, R.Y.C.; Giesy, J.P.; Wu, R.S.S.; Chen, E.X.H.; Chiang, M.W.L.; Lim, P.L.; Yuen, B.B.H.; Yip, B.W.P.; Mok, H.O.L.; Au, D.W.T.

    2008-01-01

    A protocol for fixation and processing of whole adult marine medaka (Oryzias melastigma) was developed in parallel with in situ hybridization (ISH) and immunohistochemistry (IHC) for molecular analysis of in vivo gene and protein responses in fish. Over 200 serial sagittal sections (5 μm) can be produced from a single adult medaka to facilitate simultaneous localization and quantification of gene-specific mRNAs and proteins in different tissues and subcellular compartments of a single fish. Stereological analysis (as measured by volume density, V v ) was used to quantify ISH and IHC signals on tissue sections. Using the telomerase reverse transcriptase (omTERT) gene, omTERT and proliferating cell nuclear antigen (PCNA) proteins as examples, we demonstrated that it is possible to localize, quantify and correlate their tissue expression profiles in a whole fish system. Using chronic hypoxia (1.8 ± 0.2 mg O 2 L -1 for 3 months) as an environmental stressor, we were able to identify significant alterations in levels of omTERT mRNA, omTERT protein, PCNA (cell proliferation marker) and TUNEL (apoptosis) in livers of hypoxic O. melastigma (p < 0.05). Overall, the results suggest that O. melastigma can serve as a model marine fish for assessing multiple in vivo molecular responses to stresses in the marine environment

  2. Hybrid modeling of microbial exopolysaccharide (EPS) production: The case of Enterobacter A47.

    Science.gov (United States)

    Marques, Rodolfo; von Stosch, Moritz; Portela, Rui M C; Torres, Cristiana A V; Antunes, Sílvia; Freitas, Filomena; Reis, Maria A M; Oliveira, Rui

    2017-03-20

    Enterobacter A47 is a bacterium that produces high amounts of a fucose-rich exopolysaccharide (EPS) from glycerol residue of the biodiesel industry. The fed-batch process is characterized by complex non-linear dynamics with highly viscous pseudo-plastic rheology due to the accumulation of EPS in the culture medium. In this paper, we study hybrid modeling as a methodology to increase the predictive power of models for EPS production optimization. We compare six hybrid structures that explore different levels of knowledge-based and machine-learning model components. Knowledge-based components consist of macroscopic material balances, Monod type kinetics, cardinal temperature and pH (CTP) dependency and power-law viscosity models. Unknown dependencies are set to be identified by a feedforward artificial neural network (ANN). A semiparametric identification schema is applied resorting to a data set of 13 independent fed-batch experiments. A parsimonious hybrid model was identified that describes the dynamics of the 13 experiments with the same parameterization. The final model is specific to Enterobacter A47 but can be easily extended to other microbial EPS processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Future Arctic marine access: analysis and evaluation of observations, models, and projections of sea ice

    Directory of Open Access Journals (Sweden)

    T. S. Rogers

    2013-02-01

    Full Text Available There is an emerging need for regional applications of sea ice projections to provide more accuracy and greater detail to scientists, national, state and local planners, and other stakeholders. The present study offers a prototype for a comprehensive, interdisciplinary study to bridge observational data, climate model simulations, and user needs. The study's first component is an observationally based evaluation of Arctic sea ice trends during 1980–2008, with an emphasis on seasonal and regional differences relative to the overall pan-Arctic trend. Regional sea ice loss has varied, with a significantly larger decline of winter maximum (January–March extent in the Atlantic region than in other sectors. A lead–lag regression analysis of Atlantic sea ice extent and ocean temperatures indicates that reduced sea ice extent is associated with increased Atlantic Ocean temperatures. Correlations between the two variables are greater when ocean temperatures lag rather than lead sea ice. The performance of 13 global climate models is evaluated using three metrics to compare sea ice simulations with the observed record. We rank models over the pan-Arctic domain and regional quadrants and synthesize model performance across several different studies. The best performing models project reduced ice cover across key access routes in the Arctic through 2100, with a lengthening of seasons for marine operations by 1–3 months. This assessment suggests that the Northwest and Northeast Passages hold potential for enhanced marine access to the Arctic in the future, including shipping and resource development opportunities.

  4. Microbial Performance of Food Safety Control and Assurance Activities in a Fresh Produce Processing Sector Measured Using a Microbial Assessment Scheme and Statistical Modeling

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Sawe, Chemutai Tonui; Onyango, Cecilia Moraa

    2017-01-01

    assessment scheme and statistical modeling were used to systematically assess the microbial performance of core control and assurance activities in five Kenyan fresh produce processing and export companies. Generalized linear mixed models and correlated random-effects joint models for multivariate clustered...... the maximum safety level for environmental samples. Escherichia coli was detected in five of the six CSLs, including the final product. Among the processing-environment samples, the hand or glove swabs of personnel revealed a higher level of predicted contamination with E. coli, and 80% of the factories were...... of contamination with coliforms in water at the inlet than in the final rinse water. Four (80%) of the five assessed processors had poor to unacceptable counts of Enterobacteriaceae on processing surfaces. Personnel-, equipment-, and product-related hygiene measures to improve the performance of preventive...

  5. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  6. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  7. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  8. A survey of alterations in microbial community diversity in marine sediments in response to oil from the Deepwater Horizon spill: Northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Lisle, John T.

    2011-01-01

    Microbial community genomic DNA was extracted from sediment samples collected from the northern Gulf of Mexico (NGOM) coast. These samples had a high probability of being impacted by Macondo-1 (M-1) well oil from the Deepwater Horizon (DWH) drilling site. The hypothesis for this project was that presence of M-1 oil in coastal sediments would significantly alter the diversity within the microbial communities associated with the impacted sediments. To determine if community-level changes did or did not occur following exposure to M-1 oil, microbial community-diversity fingerprints were generated and compared. Specific sequences within the community's genomic DNA were first amplified using the polymerase chain reaction (PCR) using a primer set that provides possible resolution to the species level. A second nested PCR that was performed on the primary PCR products using a primer set on which a GC-clamp was attached to one of the primers. These nested PCR products were separated using denaturing-gradient gel electrophoresis (DGGE) that resolves the nested PCR products based on sequence dissimilarities (or similarities), forming a genomic fingerprint of the microbial diversity within the respective samples. Sediment samples with similar fingerprints were grouped and compared to oil-fingerprint data from Rosenbauer and others (2010). The microbial community fingerprints grouped closely when identifying those sites that had been impacted by M-1 oil (N=12) and/or some mixture of M-1 and other oil (N=4), based upon the oil fingerprints. This report represents some of the first information on naturally occurring microbial communities in sediment from shorelines along the NGOM coast. These communities contain microbes capable of degrading oil and related hydrocarbons, making this information relevant to response and recovery of the NGOM from the DWH incident.

  9. Bathymetric terrain model of the Atlantic margin for marine geological investigations

    Science.gov (United States)

    Andrews, Brian D.; Chaytor, Jason D.; ten Brink, Uri S.; Brothers, Daniel S.; Gardner, James V.; Lobecker, Elizabeth A.; Calder, Brian R.

    2016-01-01

    A bathymetric terrain model of the Atlantic margin covering almost 725,000 square kilometers of seafloor from the New England Seamounts in the north to the Blake Basin in the south is compiled from existing multibeam bathymetric data for marine geological investigations. Although other terrain models of the same area are extant, they are produced from either satellite-derived bathymetry at coarse resolution (ETOPO1), or use older bathymetric data collected by using a combination of single beam and multibeam sonars (Coastal Relief Model). The new multibeam data used to produce this terrain model have been edited by using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined 100-meter resolution grid. The final grid provides the largest high-resolution, seamless terrain model of the Atlantic margin..

  10. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics

    Energy Technology Data Exchange (ETDEWEB)

    Raisuddin, Sheikh [Department of Chemistry and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kwok, Kevin W.H. [Swire Institute of Marine Science, Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam, Hong Kong (China); Leung, Kenneth M.Y. [Swire Institute of Marine Science, Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam, Hong Kong (China); Schlenk, Daniel [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Lee, Jae-Seong [Department of Chemistry and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)]. E-mail: jslee2@hanyang.ac.kr

    2007-07-20

    There is an increasing body of evidence to support the significant role of invertebrates in assessing impacts of environmental contaminants on marine ecosystems. Therefore, in recent years massive efforts have been directed to identify viable and ecologically relevant invertebrate toxicity testing models. Tigriopus, a harpacticoid copepod has a number of promising characteristics which make it a candidate worth consideration in such efforts. Tigriopus and other copepods are widely distributed and ecologically important organisms. Their position in marine food chains is very prominent, especially with regard to the transfer of energy. Copepods also play an important role in the transportation of aquatic pollutants across the food chains. In recent years there has been a phenomenal increase in the knowledge base of Tigriopus spp., particularly in the areas of their ecology, geophylogeny, genomics and their behavioural, biochemical and molecular responses following exposure to environmental stressors and chemicals. Sequences of a number of important marker genes have been studied in various Tigriopus spp., notably T. californicus and T. japonicus. These genes belong to normal biophysiological functions (e.g. electron transport system enzymes) as well as stress and toxic chemical exposure responses (heat shock protein 20, glutathione reductase, glutathione S-transferase). Recently, 40,740 expressed sequenced tags (ESTs) from T. japonicus, have been sequenced and of them, 5673 ESTs showed significant hits (E-value, >1.0E-05) to the red flour beetle Tribolium genome database. Metals and organic pollutants such as antifouling agents, pesticides, polycyclic aromatic hydrocarbons (PAH) and polychrlorinated biphenyls (PCB) have shown reproducible biological responses when tested in Tigriopus spp. Promising results have been obtained when Tigriopus was used for assessment of risk associated with exposure to endocrine-disrupting chemicals (EDCs). Application of environmental

  11. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics

    International Nuclear Information System (INIS)

    Raisuddin, Sheikh; Kwok, Kevin W.H.; Leung, Kenneth M.Y.; Schlenk, Daniel; Lee, Jae-Seong

    2007-01-01

    There is an increasing body of evidence to support the significant role of invertebrates in assessing impacts of environmental contaminants on marine ecosystems. Therefore, in recent years massive efforts have been directed to identify viable and ecologically relevant invertebrate toxicity testing models. Tigriopus, a harpacticoid copepod has a number of promising characteristics which make it a candidate worth consideration in such efforts. Tigriopus and other copepods are widely distributed and ecologically important organisms. Their position in marine food chains is very prominent, especially with regard to the transfer of energy. Copepods also play an important role in the transportation of aquatic pollutants across the food chains. In recent years there has been a phenomenal increase in the knowledge base of Tigriopus spp., particularly in the areas of their ecology, geophylogeny, genomics and their behavioural, biochemical and molecular responses following exposure to environmental stressors and chemicals. Sequences of a number of important marker genes have been studied in various Tigriopus spp., notably T. californicus and T. japonicus. These genes belong to normal biophysiological functions (e.g. electron transport system enzymes) as well as stress and toxic chemical exposure responses (heat shock protein 20, glutathione reductase, glutathione S-transferase). Recently, 40,740 expressed sequenced tags (ESTs) from T. japonicus, have been sequenced and of them, 5673 ESTs showed significant hits (E-value, >1.0E-05) to the red flour beetle Tribolium genome database. Metals and organic pollutants such as antifouling agents, pesticides, polycyclic aromatic hydrocarbons (PAH) and polychrlorinated biphenyls (PCB) have shown reproducible biological responses when tested in Tigriopus spp. Promising results have been obtained when Tigriopus was used for assessment of risk associated with exposure to endocrine-disrupting chemicals (EDCs). Application of environmental

  12. Impacts of radiation exposure on the experimental microbial ecosystem: a particle-based model simulation approach

    International Nuclear Information System (INIS)

    Doi, M.; Tanaka, N.; Fuma, S.; Kawabata, Z.

    2004-01-01

    Well-designed experimental model ecosystem could be a simple reference of the actual environment and complex ecological systems. For ecological toxicity test of radiation and other environmental toxicants, we investigated and aquatic microbial ecosystem (closed microcosm) in the test tube with initial substrates,autotroph flagellate algae (Euglena, G.), heterotroph ciliate protozoa (Tetrahymena T.) and saprotroph bacteria (E, coli). These species organizes by itself to construct the ecological system, that keeps the sustainable population dynamics for more than 2 years after inoculation only by adding light diurnally and controlling temperature at 25 degree Celsius. Objective of the study is to develop the particle-based computer simulation by reviewing interactions among microbes and environment, and analyze the ecological toxicities of radiation on the microcosm by replicating experimental results in the computer simulation. (Author) 14 refs

  13. In situ examination of microbial populations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, Adam Camillo; Nielsen, Alex Toftgaard; Arvin, Erik

    2002-01-01

    A flow cell set-up was used as a model drinking water distribution system to analyze the in situ microbial population. Biofilm growth was followed by transmission light microscopy for 81 days and showed a biofilm consisting of microcolonies separated by a monolayer of cells. Protozoans (ciliates...... of a mixed population of α- and β-Proteobacteria. 65 strains from the inlet water and 20 from the biofilm were isolated on R2A agar plates and sorted into groups with amplified rDNA restriction analysis. The 16S rDNA gene was sequenced for representatives of the abundant groups. A phylogenetic analysis...... revealed that the majority of the isolated strains from the bulk water and biofilm were affiliated to the family of Comamonadaceae in the β-lineage of Proteobacteria. The majority of the strains from the α-lineage were affiliated to the family of Sphingomonadaceae. We were unable to detect any strains from...

  14. Projected 21st century decrease in marine productivity: a multi-model analysis

    Directory of Open Access Journals (Sweden)

    M. Steinacher

    2010-03-01

    Full Text Available Changes in marine net primary productivity (PP and export of particulate organic carbon (EP are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

  15. Modeling of microbial gas generation: application to the eastern Mediterranean “Biogenic Play”

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Dubille, M.; Montadert, L.

    2016-07-01

    Biogenic gas is becoming increasingly important as an exploration target in the petroleum industry because it occurs in geologically predictable circumstances and in large quantities at shallow depths as free gas or gas hydrates. As accumulations of biogenic gas result in a subtle synchronization between early generation and early trapping, we integrated a macroscopic model of microbial gas generation within a 3D basin and petroleum system forward simulator. The macroscopic model is based on a microscopic model, which consists in a 1D sedimentary column that accounts for sedimentation, compaction, Darcy flow and Diffusion flow. The organic carbon is the only non-soluble element considered in this version of the model. The dissolved elements are O2, SO4 2-, H2, CH3COOH, and CH4. Methane is dissolved in water or present as a free phase if its concentration exceeds its solubility at given pressure and temperature. In this microscopic model, the transformation of substrate into biomass is described through a set of logistic equations coupled with the transport equations (advection and diffusion). Based on the microscopic considerations we developed the macroscopic model of low maturity/biogenic gas generation in which hydrocarbons are generated through first order kinetic reactions at low maturity. This macroscopic model is adapted to petroleum system modeling at basin scale with TemisFlow®, which aims to understand and predict hydrocarbon generation, migration, and accumulation. It is composed of: i) A source rock criteria which allow defining the biogenic gas source rocks potential and ii) A kinetic model of methane generation. The previous model has been successfully applied on different basins such as the Carupano Basin from the offshore Venezuela, the Magdalena Delta (offshore Colombia) and the offshore Vietnam where direct observations of low-maturity gas were available. Furthermore, it has been applied in the offshore Lebanon in order to check the viability of

  16. Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.

    Science.gov (United States)

    Hussain, S A; Perrier, M; Tartakovsky, B

    2018-04-01

    Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.

  17. Modeling Microbial Processes in EPIC to Estimate Greenhouse Gas Emissions from soils

    Science.gov (United States)

    Schwab, D. E.; Izaurralde, R. C.; McGill, W. B.; Williams, J. R.; Schmid, E.

    2009-12-01

    Emissions of trace gases (CO2, N2O and CH4) to the atmosphere from managed terrestrial ecosystems have been contributing significantly to the warming of Earth. Trace gas production is dominated by biospheric processes. An improved knowledge of the soil-plant-atmosphere interface is of key importance for understanding trace gas dynamics. In soils, microbial metabolism plays a key role in the release or uptake of trace gases. Here we present work on the biophysical and biogeochemical model EPIC (Environmental Policy/Integrated Climate) to extend its capabilities to simulate CO2 and N2O fluxes in managed and unmanaged ecosystems. Emphasis will be given to recently developed, microbially-based, denitrification and nitrification modules. The soil-atmosphere exchange of trace gases can be measured by using various equipments, but often these measurements exhibit extreme space-time variability. We use hourly time steps to account for the variability induced by small changes in environmental conditions. Soils are often studied as macroscopic systems, although their functions are predominantly controlled at a microscopic level; i.e. the level of the microorganisms. We include these processes to the extent that these are known and can be quantitatively described. We represent soil dynamics mathematically with routines for gas diffusion, Michael Menten processes, electron budgeting and other processes such as uptake and transformations. We hypothesize that maximization of energy capture form scarce substrates using energetic favorable reactions drives evolution and that competitive advantage can result by depriving a competitor from a substrate. This Microbe Model changes concepts of production of N-containing trace gases; it unifies understanding of N oxidation and reduction, predicts production and evolution of trace gases and is consistent with observations of anaerobic ammonium oxidation.

  18. Modelling marine sediment biogeochemistry: Current knowledge gaps, challenges, and some methodological advice for advancement

    DEFF Research Database (Denmark)

    Lessin, Gennadi; Artioli, Yuri; Almroth-Rosell, Elin

    2018-01-01

    The benthic environment is a crucial component of marine systems in the provision of ecosystem services, sustaining biodiversity and in climate regulation, and therefore important to human society. With the contemporary increase in computational power, model resolution and technological improveme......The benthic environment is a crucial component of marine systems in the provision of ecosystem services, sustaining biodiversity and in climate regulation, and therefore important to human society. With the contemporary increase in computational power, model resolution and technological...... improvements in quality and quantity of benthic data, it is necessary to ensure that benthic systems are appropriately represented in coupled benthic-pelagic biogeochemical and ecological modelling studies. In this paper we focus on five topical challenges related to various aspects of modelling benthic...... environments: organic matter reactivity, dynamics of benthic-pelagic boundary layer, microphytobenthos, biological transport and small-scale heterogeneity, and impacts of episodic events. We discuss current gaps in their understanding and indicate plausible ways ahead. Further, we propose a three...

  19. Predictive modelling of habitat use by marine predators with respect to the abundance and depth distribution of pelagic prey

    Science.gov (United States)

    Boyd, Charlotte; Castillo, Ramiro; Hunt, George L.; Punt, André E..; VanBlaricom, Glenn R.; Weimerskirch, Henri; Bertrand, Sophie

    2015-01-01

    Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey.

  20. Differential Decay of Cattle-associated Fecal Indicator Bacteria and Microbial Source Tracking Markers in Fresh and Marine Water (ASM 2017 Presentation)

    Science.gov (United States)

    Background: Fecal indicator bacteria (FIB) have a long history of use in the assessment of the microbial quality of recreational waters. However, quantification of FIB provides no information about the pollution source(s) and relatively little is known about their fate in the amb...

  1. Development of Microbial Fuel Cell Prototypes for Examination of the Temporal and Spatial Response of Anodic Bacterial Communities in Marine Sediments

    Science.gov (United States)

    2014-01-01

    yeast extract (versus 10 g) and no reductant (Na2S) was used. IV. MFC CONSTRUCTION The prototypes were designed based on previous iterations...D.R. Lovley, J.D. Coates, E.L. Blunt-Harris, E.J.P. Phillips, J.C. Woodward, “Humic substances as electron acceptors for microbial respiration

  2. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Maathuis, A.; Heilig, G.H.J.; Venema, K.; Vos, de W.M.; Smidt, H.

    2010-01-01

    A high-density phylogenetic microarray targeting small subunit rRNA (SSU rRNA) sequences of over 1000 microbial phylotypes of the human gastrointestinal tract, the HITChip, was used to assess the impact of faecal inoculum preparation and operation conditions on an in vitro model of the human large

  3. Dynamic model for the assessment of radiological exposure to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Vives i Batlle, J. [Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom)], E-mail: jordi.vives@westlakes.ac.uk; Wilson, R.C.; Watts, S.J.; Jones, S.R.; McDonald, P.; Vives-Lynch, S. [Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom)

    2008-11-15

    A generic approach has been developed to simulate dynamically the uptake and turnover of radionuclides by marine biota. The approach incorporates a three-compartment biokinetic model based on first order linear kinetics, with interchange rates between the organism and its surrounding environment. Model rate constants are deduced as a function of known parameters: biological half-lives of elimination, concentration factors and a sample point of the retention curve, allowing for the representation of multi-component release. The new methodology has been tested and validated in respect of non-dynamic assessment models developed for regulatory purposes. The approach has also been successfully tested against research dynamic models developed to represent the uptake of technetium and radioiodine by lobsters and winkles. Assessments conducted on two realistic test scenarios demonstrated the importance of simulating time-dependency for ecosystems in which environmental levels of radionuclides are not in equilibrium.

  4. Observations of tip vortex cavitation inception from a model marine propeller

    Science.gov (United States)

    Lodha, R. K.; Arakeri, V. H.

    1984-01-01

    Cavitation inception characteristics of a model marine propeller having three blades, developed area ratio of 0.34 and at three different pitch to diameter ratios of 0.62, 0.83 and 1.0 are reported. The dominant type of cavitation observed at inception was the tip vortex type. The measured magnitude of inception index is found to agree well with a proposed correlation due to Strasberg. Performance calculations of the propeller based on combined vortex and blade element theory are also presented.

  5. The marine digital terrain model of the Panarea caldera (Aeolian Islands, Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Anzidei

    1998-06-01

    Full Text Available A Marine Digital Elevation Model (MDEM of the still active volcanic area of Panarea caldera is presented in this paper. A fast and accurate survey was performed by means of the Differential Global Positioning System (DGPS geodetic technique coupled with an echo-sounding gear and a real time navigation software. The instrumentation was installed on board of a low draught boat in order to collect data starting from the bathymeter of one meter. Planar positions and depths were obtained with average accuracies of 30 cm and 10 cm respectively providing a 3D map of the seafloor useful for geomorphological, geophysical and volcanic hazard applications.

  6. Activation of the marine ecosystem model 3D CEMBS for the Baltic Sea in operational mode

    Science.gov (United States)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a new marine ecosystem model 3D CEMBS designed for the Baltic Sea. The ecosystem model is incorporated into the 3D POPCICE ocean-ice model. The Current Baltic Sea model is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research) which was adapted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The ecosystem model is a biological submodel of the 3D CEMBS. It consists of eleven mass conservation equations. There are eleven partial second-order differential equations of the diffusion type with the advective term for phytoplankton, zooplankton, nutrients, dissolved oxygen, and dissolved and particulate organic matter. This model is an effective tool for solving the problem of ecosystem bioproductivity. The model is forced by 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdańsk.

  7. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models.

    Science.gov (United States)

    Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming

    2017-04-07

    Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.

  8. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  9. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Science.gov (United States)

    Vanysacker, L.; Denis, C.; Declerck, P.; Piasecka, A.; Vankelecom, I. F. J.

    2013-01-01

    Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development. PMID:23986906

  10. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge.

    Science.gov (United States)

    Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M

    2007-09-15

    Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.

  11. MATHEMATICAL SIMULATION OF THE INTERACTIONS AMONG CYANOBACTERIA, PURPLE SULFUR BACTERIA AND CHEMOTROPIC SULFUR BACTERIA IN MICROBIAL MAT COMMUNITIES

    NARCIS (Netherlands)

    DEWIT, R; VANDENENDE, FP; VANGEMERDEN, H

    A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur

  12. Evaluating commercial marine emissions and their role in air quality policy using observations and the CMAQ model

    Science.gov (United States)

    Ring, Allison M.; Canty, Timothy P.; Anderson, Daniel C.; Vinciguerra, Timothy P.; He, Hao; Goldberg, Daniel L.; Ehrman, Sheryl H.; Dickerson, Russell R.; Salawitch, Ross J.

    2018-01-01

    We investigate the representation of emissions from the largest (Class 3) commercial marine vessels (c3 Marine) within the Community Multiscale Air Quality (CMAQ) model. In present emissions inventories developed by the United States Environmental Protection Agency (EPA), c3 Marine emissions are divided into off-shore and near-shore files. Off-shore c3 Marine emissions are vertically distributed within the atmospheric column, reflecting stack-height and plume rise. Near-shore c3 Marine emissions, located close to the US shoreline, are erroneously assumed to occur only at the surface. We adjust the near-shore c3 Marine emissions inventory by vertically distributing these emissions to be consistent with the off-shore c3 Marine inventory. Additionally, we remove near-shore c3 Marine emissions that overlap with off-shore c3 Marine emissions within the EPA files. The CMAQ model generally overestimates surface ozone (O3) compared to Air Quality System (AQS) site observations, with the largest discrepancies occurring near coastal waterways. We compare modeled O3 from two CMAQ simulations for June, July, and August (JJA) 2011 to surface O3 observations from AQS sites to examine the efficacy of the c3 Marine emissions improvements. Model results at AQS sites show average maximum 8-hr surface O3 decreases up to ∼6.5 ppb along the Chesapeake Bay, and increases ∼3-4 ppb around Long Island Sound, when the adjusted c3 Marine emissions are used. Along with the c3 Marine emissions adjustments, we reduce on-road mobile NOX emissions by 50%, motivated by work from Anderson et al. 2014, and reduce the lifetime of the alkyl nitrate species group from ∼10 days to ∼1 day based on work by Canty et al. 2015, to develop the ;c3 Science; model scenario. Simulations with these adjustments further improve model representation of the atmosphere. We calculate the ratio of column formaldehyde (HCHO) and tropospheric column nitrogen dioxide (NO2) using observations from the Ozone

  13. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  14. Genome-enabled Modeling of Microbial Biogeochemistry using a Trait-based Approach. Does Increasing Metabolic Complexity Increase Predictive Capabilities?

    Science.gov (United States)

    King, E.; Karaoz, U.; Molins, S.; Bouskill, N.; Anantharaman, K.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2015-12-01

    The biogeochemical functioning of ecosystems is shaped in part by genomic information stored in the subsurface microbiome. Cultivation-independent approaches allow us to extract this information through reconstruction of thousands of genomes from a microbial community. Analysis of these genomes, in turn, gives an indication of the organisms present and their functional roles. However, metagenomic analyses can currently deliver thousands of different genomes that range in abundance/importance, requiring the identification and assimilation of key physiologies and metabolisms to be represented as traits for successful simulation of subsurface processes. Here we focus on incorporating -omics information into BioCrunch, a genome-informed trait-based model that represents the diversity of microbial functional processes within a reactive transport framework. This approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolithotrophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for cellular maintenance, respiration, biomass development, and enzyme production based upon dynamic intracellular and environmental conditions. This internal resource partitioning represents a trade-off against biomass formation and results in microbial community emergence across a fitness landscape. Biocrunch was used here in simulations that included organisms and metabolic pathways derived from a dataset of ~1200 non-redundant genomes reflecting a microbial community in a floodplain aquifer. Metagenomic data was directly used to parameterize trait values related to growth and to identify trait linkages associated with respiration, fermentation, and key enzymatic functions such as plant polymer degradation. Simulations spanned a range of metabolic complexities and highlight benefits originating from simulations

  15. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality.

    Science.gov (United States)

    Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-03-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Explorative analysis of microbes, colloids and gases together with microbial modelling. Site description model SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are the major driving force for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Laxemar site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on available primary data from the extended data freeze L2.3 (Nov 2007). This report focuses on microbiology, colloids and gases. Several methods must be used to characterise active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of

  17. Explorative analysis of microbes, colloids and gases together with microbial modelling. Site description model SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Pedersen, Karsten

    2008-08-01

    The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate changes are the major driving force for hydrogeochemical changes and therefore of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes of copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Laxemar site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on available primary data from the extended data freeze L2.3 (Nov 2007). This report focuses on microbiology, colloids and gases. Several methods must be used to characterise active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of

  18. Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications

    International Nuclear Information System (INIS)

    Sakellaridis, Nikolaos F.; Raptotasios, Spyridon I.; Antonopoulos, Antonis K.; Mavropoulos, Georgios C.; Hountalas, Dimitrios T.

    2015-01-01

    Engine cycle simulation models are increasingly used in diesel engine simulation and diagnostic applications, reducing experimental effort. Turbocharger simulation plays an important role in model's ability to accurately predict engine performance and emissions. The present work describes the development of a complete engine simulation model for marine Diesel engines based on a new methodology for turbocharger modelling utilizing physically based meanline models for compressor and turbine. Simulation accuracy is evaluated against engine bench measurements. The methodology was developed to overcome the problem of limited experimental maps availability for compressor and turbine, often encountered in large marine diesel engine simulation and diagnostic studies. Data from the engine bench are used to calibrate the models, as well as to estimate turbocharger shaft mechanical efficiency. Closed cycle and gas exchange are modelled using an existing multizone thermodynamic model. The proposed methodology is applied on a 2-stroke marine diesel engine and its evaluation is based on the comparison of predictions against measured engine data. It is demonstrated model's ability to predict engine response with load variation regarding both turbocharger performance and closed cycle parameters, as well as NOx emission trends, making it an effective tool for both engine diagnostic and optimization studies. - Highlights: • Marine two stroke diesel engine simulation model. • Turbine and compressor simulation using physical meanline models. • Methodology to derive T/C component efficiency and T/C shaft mechanical efficiency. • Extensive validation of predictions against experimental data.

  19. Removal of Inorganic, Microbial, and Particulate Contaminants from a Fresh Surface Water: Village Marine Tec. Expeditionary Unit Water Purifier, Generation 1

    Science.gov (United States)

    The Village Marine Tec. Generation 1 Expeditionary Unit Water Purifier (EUWP) is a mobile skid-mounted system employing ultrafiltration (UF) and reverse osmosis (RO) to produce drinking water from a variety of different water quality sources. The UF components were evaluated to t...

  20. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  1. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  2. The effect of hysteresis on microbial activity in computer simulation models

    NARCIS (Netherlands)

    Whitmore, A.P.; Heinen, M.

    1999-01-01

    Microbial activity in soils depends on the status or the soil water, which is expressed by pressure head (h) or water content (θ). There is no unique relationship between θ and h because moisture relations exhibit hysteresis. For convenience microbial activity has usually been related to the main

  3. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  4. MbT-Tool: An open-access tool based on Thermodynamic Electron Equivalents Model to obtain microbial-metabolic reactions to be used in biotechnological process.

    Science.gov (United States)

    Araujo, Pablo Granda;