WorldWideScience

Sample records for modeling liquid metal

  1. Modeling of thermodiffusion in liquid metal alloys.

    Science.gov (United States)

    Eslamian, Morteza; Sabzi, Fatemeh; Saghir, M Ziad

    2010-11-07

    In this paper following the linear non-equilibrium thermodynamics approach, an expression is derived for the calculation of the thermodiffusion factor in binary liquid metal alloys. The expression is comprised of two terms; the first term accounts for the thermally driven interactions between metal ions, a phenomenon similar to that of the non-ionic binary mixtures, such as hydrocarbons; the second term is called the electronic contribution and is the mass diffusion due to an internal electric field that is induced as a result of the imposed thermal gradient. Both terms are formulated as functions of the net heats of transport. The ion-ion net heat of transport is simulated by the activation energy of viscous flow and the electronic net heat of transport is correlated with the force acting on the ions by the rearrangement of the conduction electrons and ions. A methodology is presented and used to estimate the liquid metal properties, such as the partial molar internal energies, enthalpies, volumes and the activity coefficients used for model validation. The prediction power of the proposed expression along with some other existing thermodiffusion models for liquid mixtures, such as the Haase, Kempers, Drickamer and Firoozabadi formulas are examined against available experimental data obtained on ground or in microgravity environment. The proposed model satisfactorily predicts the thermodiffusion data of mixtures that are composed of elements with comparable melting points. It is also potentially and qualitatively able to predict a sign change in thermodiffusion factor of Na-K liquid mixture. With some speculation, the sign change is attributed to an anomalous change in thermoelectric power of Na-K mixture with composition.

  2. Study and modelling of liquid metal turbulent flows

    International Nuclear Information System (INIS)

    Pimont, Vincent

    1983-01-01

    In this research thesis, the author first reports the study of equations of a turbulent flow with heat transfer: transport equations of 2. order moments related to different fluctuations, influence of a change of referential. He analyses the structure of a non isothermal turbulent flow of liquid metal: study of the turbulent heat flow and of liquid metal temperature fluctuations, study of characteristic scales for such a flow, principle of assessment of orders of magnitude. He presents the modelling of transport equations of moments related to temperature fluctuation, and of transport equations at high Reynolds number. He finally reports the application of the developed model to the wall area of a non isothermal turbulent flow of liquid metal [fr

  3. Examination of Solubility Models for the Determination of Transition Metals within Liquid Alkali Metals

    Directory of Open Access Journals (Sweden)

    Jeremy Isler

    2016-06-01

    Full Text Available The experimental solubility of transition metals in liquid alkali metal was compared to the modeled solubility calculated using various equations for solubility. These equations were modeled using the enthalpy calculations of the semi-empirical Miedema model and various entropy calculations. The accuracy of the predicted solubility compared to the experimental data is more dependent on which liquid alkali metal is being examined rather than the transition metal solute examined. For liquid lithium the calculated solubility by the model was generally larger than experimental values, while for liquid cesium the modeling solubility was significantly smaller than the experimental values. For liquid sodium, potassium, and rubidium the experimental solubilities were within the range calculated by this study. Few data approached the predicted temperature dependence of solubility and instead most data exhibited a less pronounced temperature dependence.

  4. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  5. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-01-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  6. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  7. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  8. Liquid Metal Transformers

    OpenAIRE

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series...

  9. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  10. Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum

    2008-01-01

    The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model

  11. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  12. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  13. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  14. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  15. Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, L., E-mail: leo.buehler@kit.edu [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Mistrangelo, C.; Konys, J. [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Huang, Q. [Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS) (China); Obukhov, D. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA) (Russian Federation); Smolentsev, S. [University of California Los Angeles (UCLA) (United States); Utili, M. [ENEA C.R. Brasimone, Camugnano 40032 (Italy)

    2015-11-15

    Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

  16. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.

    Science.gov (United States)

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  17. A thermomechanical model for the fragmentation of a liquid metal droplet cooled by water

    Science.gov (United States)

    Ivochkin, Yu P.; Monastyrskiy, V. P.

    2017-11-01

    A thermo mechanical aspect of the fragmentation of a liquid metal droplet, solidified as it falls into cold water, is considered in the presented model. The formation of a solid phase in the form of continuous, fluid-tight and relatively rigid casting skin results in a pressure decrease inside the droplet due to the difference between liquid and solid metal density. Because of the high compression modulus of the melt, the pressure in the droplet becomes negative when the thickness of the solid skin achieves several microns. The tensile stress in the melt results in the deformation of the casting skin or the melt’s continuity violation in the form of a shrinkage pore. The rupture of the deformed solid crust results in the penetration of steam jets into the liquid part of the drop. Due to the difference in pressure in the surrounding steam and in the droplet, the casting skin is crushed and the melt is blown out. Both scenarios contribute to the hydrodynamic destruction of the droplet. The suggested thermo mechanical model gives a qualitative explanation for experimental data. In the experimental part of the work, droplets of molten Sn were solidified in water. The solidified pieces of the droplets usually include deformed, thin-walled shells and dispersed particles. On a qualitative level the composition and shape of the solid fragments can be explained within the bounds of the suggested thermo mechanical model.

  18. Establishment of neural network model for flow blockage detection system in a liquid metal reactor

    International Nuclear Information System (INIS)

    Seong, S.H.; Jeong, H.Y.; Hur, S.; Kim, S.O.

    2006-01-01

    Full text: Full text: A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. Since the flow blockage is occurred in the fuel assembly, it is difficult to directly detect the flow blockage in an assembly. However, the coolant temperature beyond the exit of the assemblies was fluctuated by temperature distortion in the core. Due to the change of the temperature profile at the exit of the partially blocked assembly, the characteristics of the temperature fluctuations in the upper plenum should be changed when an assembly was partially blocked. For examining the characteristics of the temperature fluctuations in the upper plenum, we have numerically analyzed the fluctuating temperature field in the upper plenum beyond the exit of the assemblies by using a LES turbulence model in CFX-5.7 code. After analyzing the characteristics of the temperature fluctuations in the upper plenum with various block conditions, we have studied their statistical characteristics like root mean square, standard deviation and skewness. Then, we have developed the neural network model for detecting a partial flow blockage of an assembly with the changes of root mean square, the standard deviation and the skewness of the fluctuation data as inputs and the size and the location of blockage conditions as outputs. Through validating the neural network model, we supposed that the developed neural network model should be a good alternative to detect the partial flow blockage in an assembly of a liquid metal reactor

  19. A study on the development of advanced models to predict the critical heat flux for water and liquid metals

    International Nuclear Information System (INIS)

    Lee, Yong Bum

    1994-02-01

    The critical heat flux (CHF) phenomenon in the two-phase convective flows has been an important issue in the fields of design and safety analysis of light water reactor (LWR) as well as sodium cooled liquid metal fast breeder reactor (LMFBR). Especially in the LWR application many physical aspects of the CHF phenomenon are understood and reliable correlations and mechanistic models to predict the CHF condition have been proposed. However, there are few correlations and models which are applicable to liquid metals. Compared with water, liquid metals show a divergent picture for boiling pattern. Therefore, the CHF conditions obtained from investigations with water cannot be applied to liquid metals. In this work a mechanistic model to predict the CHF of water and a correlation for liquid metals are developed. First, a mechanistic model to predict the CHF in flow boiling at low quality was developed based on the liquid sublayer dryout mechanism. In this approach the CHF is assumed to occur when a vapor blanket isolates the liquid sublayer from bulk liquid and then the liquid entering the sublayer falls short of balancing the rate of sublayer dryout by vaporization. Therefore, the vapor blanket velocity is the key parameter. In this work the vapor blanket velocity is theoretically determined based on mass, energy, and momentum balance and finally the mechanistic model to predict the CHF in flow boiling at low quality is developed. The accuracy of the present model is evaluated by comparing model predictions with the experimental data and tabular data of look-up tables. The predictions of the present model agree well with extensive CHF data. In the latter part a correlation to predict the CHF for liquid metals is developed based on the flow excursion mechanism. By using Baroczy two-phase frictional pressure drop correlation and Ledinegg instability criterion, the relationship between the CHF of liquid metals and the principal parameters is derived and finally the

  20. Inter-subchannel heat transfer modeling for a subchannel analysis of liquid metal-cooled reactors

    International Nuclear Information System (INIS)

    Hae-Yong, Jeong; Kwi-Seok, Ha; Young-Min, Kwon; Yong-Bum, Lee; Dohee, Hahn

    2007-01-01

    In a subchannel approach, the temperature, pressure and velocity in a subchannel are averaged, and one representative thermal-hydraulic condition specifies the state of a subchannel. To enhance the predictability of a subchannel analysis code, it is required to model the inter-subchannel heat transfer between the adjacent subchannels as accurately as possible. One of the critical parameters which determine the thermal-hydraulic behavior of the coolant in subchannels is the heat conduction between two neighboring sub-channels. This portion of a heat transfer becomes more important in the design of an LMR (Liquid Metal-cooled Reactor) because of the high heat capacity of the liquid metal coolant. The other important part of heat transfer is the mixing of flow as a form of cross flow. Especially, the turbulent mixing caused by the eddy motion of fluid across the gap between the subchannels enhances the exchange of the momentum and the energy through the gap with no net transport of the mass. Major results of recent efforts on these modeling have been implemented in a subchannel analysis code MATRA-LMR-FB. The analysis shows that the accuracy of a subchannel analysis code is improved by enhancing the models describing the conduction heat transfer and the cross-flow mixing, especially at low flow rate. (authors)

  1. The thermophysical properties of metallic liquids

    CERN Document Server

    Iida, Takamichi

    2015-01-01

    The main purpose of materials science and engineering is to make the best use of all the elements in the periodic table. This leads to the effective use and conservation of natural resources. For this purpose, in any liquid metallic processing operation, accurate data for the thermophysical properties of all metallic liquids (i.e. liquid metals, semimetals, and semiconductors) is needed. However, in addition, a clear understanding of the essence of their thermophysical properties, based on these data, is indispensable. The second volume continues from the first volume to provide explanations for the thermophysical properties of metallic liquids. The two volumes identify new dimensionless parameters, extracted from the velocity of sound. In spite of being simple parameters, they provide useful information on the nature and behaviour of metallic liquids. This volume covers several basic concepts needed to understand the thermophysical properties of metallic liquids and for developing reliable models to accurate...

  2. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  3. A simple model for radial expansion reactivity in LMRs [liquid metal reactors

    International Nuclear Information System (INIS)

    Cheng, H.S.; Van Tuyle, G.J.

    1988-01-01

    Presented in this report is a simple analytical model developed for evaluating the radial expansion reactivity in small modular liquid metal reactors (LMRs). The present model is based on a non-leakage representation of the effective neutron multiplication factor. The resultant analytical expression for the radial expansion reactivity is simple and can be used directly in a system code for safety analyses. Applications of the present model to PRISM and SAFR resulted in a good agreement with the values reported by vendors. This agreement establishes that the large negative reactivity insertion resulting from LMR core radial expansion can be confirmed using a simple analytical approach, and thus is important in the current effort to evaluate the reactor inherent feedbacks for the PRISM and SAFR designs

  4. Liquid metal thermal-hydraulics

    International Nuclear Information System (INIS)

    Kottowski-Duemenil, H.M.

    1994-01-01

    This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of

  5. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan

    2014-01-01

    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review of the ...... of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius....

  6. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    Science.gov (United States)

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  7. Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1982-01-01

    The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt

  8. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  9. Actively convected liquid metal divertor

    Science.gov (United States)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  10. Liquid metal heat transfer issues

    International Nuclear Information System (INIS)

    Hoffman, H.W.; Yoder, G.L.

    1984-01-01

    An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept

  11. Modeling of fully-developed, liquid metal, thin film flows for fusion divertor applications

    International Nuclear Information System (INIS)

    Morley, N.B.; Abdou, M.A.

    1995-01-01

    Interest in thin film flows of liquid metal (LM) in a strong magnetic field has increased due to the possible application of such flows to the protection of divertor surfaces in a tokamak fusion reactor. In order to investigate the behavior of such a thin film flow in the fully-developed limit, a two-dimensional numerical model of open-channel, magnetohydrodynamic (MHD) flow has been constructed. This flow is contained in a chute of arbitrary electrical conductance with a magnetic field perpendicular to the flow direction but with arbitrary azimuthal orientation. Results of this self-consistent model are used to examine issues of importance to the successful fusion divertor application of thin film flow, such as the uniform film height and heat transfer of the films. It is seen that the flow height can be dominated by even a small transverse component of the field, rather than the stronger coplanar component, due to the elongated nature of the film. The model is also used to determine the validity of the Hartmann-averaging technique, an approximation used extensively in previous developing film models to account for the effects of a dominant coplanar field. This Hartmann-averaging is shown to be accurate in predicting the behavior of the core flow in the strong coplanar MHD interaction regimes, but cannot predict the flow quantity in parallel layer jets that can make up an appreciable portion of the flow. The Hartmann-averaging method is seen to be unsuitable for elongated flows dominated by the transverse field component. (orig.)

  12. Subcritical thermal convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Science.gov (United States)

    Cardin, P.; Guervilly, C.

    2016-12-01

    We study non-linear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (10-2-1). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10-6, which is continuous at the onset (supercritical bifurcation) and consists of the interaction of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10-8. On the strong branch, the Reynolds number of the flow is greater than 1000, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (E = 10-6, Pr =10-2). Non-linear oscillations are observed near the onset of convection for E = 10-7 and Pr = 10-1.

  13. Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Science.gov (United States)

    Guervilly, Céline; Cardin, Philippe

    2016-12-01

    We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals ($Pr\\in[10^{-2},10^{-1}]$). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis ($Ek=10^{-6}$, $Pr=10^{-2}$). Nonlinear oscillations are observed near the onset of convection for $Ek=10^{-7}$ and $Pr=10^{-1}$.

  14. Numerical analysis of liquid metal MHD flows through circular pipes based on a fully developed modeling

    International Nuclear Information System (INIS)

    Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu

    2013-01-01

    Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2

  15. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  16. Magnetostriction of Liquid Metals

    Science.gov (United States)

    Bhandia, Rishi; Cooley, Jason C.; Imhoff, Seth D.

    The study of magnetic field-driven microstructural effects is in its infancy, but results have been promising. Previous work showed that these effects are easily observable in some systems, suggesting that magnetic fields could be used to control and engineer various micro-structural properties. The energy scales for crystallite rotation in the liquid and on the viscosity of the melt are known. However, the fundamental energy scale of the magnetic field interaction with the liquid and solid near the melting point is not. In this talk, we present magnetostriction data on liquid elements and alloys that will help us understand the energy scale of these processes and develop a theoretical understanding of solidification in magnetic fields.

  17. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landauʼs Fermi liquids

    Science.gov (United States)

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M.; Wang, J.-F.; Li, L.

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated θ ({\\boldsymbol{r}} ){\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} term. This novel metallic state was realized recently in Bi1-xSbx around x˜ 3% under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting (x\\lt 3%) and topological semiconducting phases (x\\gt 3%) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in B{{i}1-x}Sbx around x˜ 3% under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  18. Phonon dispersion relation of liquid metals

    Indian Academy of Sciences (India)

    Abstract. The phonon dispersion curves of some liquid metals, viz. Na (Z = 1), Mg. (Z = 2), Al (Z = 3) and Pb (Z = 4), have been computed using our model potential. The charged hard sphere (CHS) reference system is applied to describe the structural information. Our model potential along with CHS reference system is ...

  19. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Guidez, Joel; Jarriand, Paul.

    1975-01-01

    The invention concerns a fast neutron nuclear reactor cooled by a liquid metal driven through by a primary pump of the vertical drive shaft type fitted at its lower end with a blade wheel. To each pump is associated an exchanger, annular in shape, fitted with a central bore through which passes the vertical drive shaft of the pump, its wheel being mounted under the exchanger. A collector placed under the wheel comprises an open upward suction bell for the liquid metal. A hydrostatic bearing is located above the wheel to guide the drive shaft and a non detachable diffuser into which at least one delivery pipe gives, envelopes the wheel [fr

  20. A Fully-Coupled Approach for Modelling Plastic Deformation and Liquid Lubrication in Metal Forming

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    2016-01-01

    flow formulation which stands on the border line between fluidand solid mechanics and allows treating the lubricants as viscous incompressible (or nearlyincompressible) fluid and the metallic materials as non-Newtonian, high viscous, incompressiblefluids. The presentation is focused on the theoretical......This paper presents a new approach for combined modelling of plastic deformation andliquid lubrication in the contact interfaces between material and tooling in metal forming includingsituations where the lubricant is functioning as a pressure carrier. The approach is an alternative toconventional...... elements with fictitious small stiffness to physical modelling based on a fullycoupled procedure in which the lubricant flow and the plastic deformation of the metallic materialare solved simultaneously. The approach takes advantage of the intrinsic velocity-pressurecharacteristics of the finite element...

  1. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  2. Metals Separation by Liquid Extraction.

    Science.gov (United States)

    Malmary, G.; And Others

    1984-01-01

    As part of a project focusing on techniques in industrial chemistry, students carry out experiments on separating copper from cobalt in chloride-containing aqueous solution by liquid extraction with triisoctylamine solvent and search the literature on the separation process of these metals. These experiments and the literature research are…

  3. Liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Scott, D.

    1981-01-01

    An improved method of constructing the diagrid used to support fuel assemblies of liquid metal fast breeder reactors, is described. The functions of fuel assembly support and coolant plenum are performed by discrete components of the diagrid each of which can serve the function of the other in the event of failure of one of the components. (U.K.)

  4. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  5. Liquid metal engineering and technology. Volume 3

    International Nuclear Information System (INIS)

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology, volume 3, are divided into 3 sections bearing on: - materials and structures in liquid metal environment (16 conferences) - impurity monitoring and removal (37 conferences) - operating experience with liquid metals (15 conferences) [fr

  6. Embrittlement by liquid and solid metals

    International Nuclear Information System (INIS)

    Kamdar, M.H.

    1984-01-01

    This volume presents research on the phenomena of both liquid- and solid-metal induced embrittlement of metals and their occurrence in many important industries. In this book, review papers are presented on liquid-metal embrittlement, solid-metal embrittlement, and liquid- and solid-metal embrittlement of industrial metals and alloys. In addition, several papers presented cover parts of extensive investigations at the General Electric Company concerning liquid- and solid-metal embrittlement of zirconium nuclear fuel cladding tubes and possible means for preventing embrittlement of zirconium

  7. Mechanical pumps for liquid metals

    International Nuclear Information System (INIS)

    Baumier, J.; Gollion, H.J.

    1964-01-01

    The pumping of liquid metals by centrifugal pumps poses two principal problems. These are hermetic sealing of the rotating shaft and, its guidance where immersed in liquid metal. The solutions to the problems used on 13 experimental pumps are given here. The resolution of the guidance problem consists in the majority of cases in the utilisation of hydrostatic bearings. Accordingly, a theoretical study was instituted for the first time to calculate the bearings of the earlier pumps. After this, an experimental study was carried out, to check the theory by water tests. A relation for bearing calculation of pumps with diffusers is proposed. Finally the influence of the bearing elasticity on the shafts critical speed is studied. (authors) [fr

  8. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  9. Turbulent convection in liquid metal with and without rotation

    OpenAIRE

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional bu...

  10. A fuel freezing model for liquid-metal fast breeder reactor hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Best, F.R.; Erdman, C.; Wayne, D.

    1985-01-01

    A proposed fuel freezing mechanism for molten UO2 fuel penetrating a steel channel was investigated in the course of liquid-metal-cooled fast breeder reactor hypothetical core disruptiv accident safety studies. The fuel crust deposited on an underlying melting steel wall was analyzed as being subjected to two stresses one due to the pressure difference between the flowing fuel and the stagnant molten steel layer, and the other resulting from the temperature variation through the crust thickness. Analyses based on the proposed freezing mechanism and comparisons with fuel freezing experiments confirmed that fuel freezing occurs in three modes. For initially low steel wall temperatures, the fuel crust was stable and grew to occlude the channel. At high steel wall temperatures (above 1070 K), instantaneous wall melting leading to steel entrainment was calculated to occur with final penetration depending on the refreezing of the entrained steel. Between these two extremes, the stress developed within the crust at the steel melting front exceeds the critical buckling value, the crust ruptures, and steel is injected into the fuel flow. Freezing is dominated by the fuel/steel mixture. The theoretical penetration distances and freezing times were in good agreement with the experimental results with no more than 20% error involved.

  11. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Neil B. [Univ. of California, Los Angeles, CA (United States)

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along {rvec B}. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization.

  12. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    International Nuclear Information System (INIS)

    Morley, N.B.

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along rvec B. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization

  13. Metal Nanoparticles in Ionic Liquids.

    Science.gov (United States)

    Wegner, Susann; Janiak, Christoph

    2017-08-01

    During the last years ionic liquids (ILs) were increasingly used and investigated as reaction media, hydrogen sources, catalysts, templating agents and stabilizers for the synthesis of (monometallic and bimetallic) metal nanoparticles (M-NPs). Especially ILs with 1,3-dialkyl-imidazolium cations featured prominently in the formation and stabilization of M-NPs. This chapter summarizes studies which focused on the interdependencies of the IL with the metal nanoparticle and tried to elucidate, for example, influences of the IL-cation, -anion and alkyl chain length. Qualitatively, the size of M-NPs was found to increase with the size of the IL-anion. The influence of the size of imidazolium-cation is less clear. The M-NP size was both found to increase and to decrease with increasing chain lengths of the 1,3-dialkyl-imidazolium cation. It is evident from such reports on cation and anion effects of ILs that the interaction between an IL and a (growing) metal nanoparticle is far from understood. Factors like IL-viscosity, hydrogen-bonding capability and the relative ratio of polar and non-polar domains of ILs may also influence the stability of nanoparticles in ionic liquids and an improved understanding of the IL-nanoparticle interaction would be needed for a more rational design of nanomaterials in ILs. Furthermore, thiol-, ether-, carboxylic acid-, amino- and hydroxyl-functionalized ILs add to the complexity by acting also as coordinating capping ligands. In addition imidazolium cations are precursors to N-heterocyclic carbenes, NHCs which form from imidazolium-based ionic liquids by in situ deprotonation at the acidic C2-H ring position as intermediate species during the nanoparticle seeding and growth process or as surface coordinating ligand for the stabilization of the metal nanoparticle.

  14. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals

  15. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  16. Structural sound absorption in liquid metals

    International Nuclear Information System (INIS)

    Niyazov, S.

    1993-01-01

    Present article is devoted to structural sound absorption in liquid metals. The study of sound absorption in liquid metals shown that in all studied objects the structural absorption of sound was observed. The mechanism of structural relaxation in molten metal was revealed.

  17. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  18. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  19. Multipurpose sampler device for liquid metal

    International Nuclear Information System (INIS)

    Nelson, P.A.; Kolba, V.M.; Holmes, J.T.

    1975-01-01

    A device for collecting samples or examining a flow of liquid metal is provided for use with such as a liquid-metal-cooled nuclear reactor. The sampler device includes a casing surrounded by an external heater for establishing an upper isothermal zone and a lower zone for heating the entering liquid metal. One of various inserts is suspended into the isothermal zone where it is surrounded by a shroud tube for directing liquid-metal flow from the heating zone into the top of the insert. Discharge flow from the insert gravitates through a helically wound tube in heat exchange contact with entering liquid-metal flow within the heating zone. The inserts comprise an overflow cup with upper and lower freeze seals, a filter for removing particulate matter, and a fixture for maintaining various sample materials in equilibrium with liquid-metal flow. (U.S.)

  20. A new balance-of-plant model for the SASSYS-1 LMR [liquid metal reactor] systems analysis code

    International Nuclear Information System (INIS)

    Briggs, L.L.

    1989-01-01

    A balance-of-plant (BOP) model has been developed for use within the SASSYS-1 liquid-metal reactor systems analysis code. This model expands the scope of SASSYS-1 so that the code can explicitly model the waterside components of a nuclear power plant; previously, only the water side of the steam generators could be modeled, with the remainder of the water side represented by boundary conditions on the steam generator. The model represents the BOP a set of flow paths and path junctions; the mass and energy equations are solved at the junctions, and the momentum equation is solved along the flow paths. The junctions are thus mass and energy cells, and the paths are momentum cells. The various waterside component models (pumps, valves, etc.) are specialized types of energy or momentum cells, as appropriate. The solution scheme implicitly couples the energy cells through the momentum cells and solves simultaneously for pressures and enthalpies within the energy cells and for flows within the momentum cells

  1. Technique for detecting liquid metal leaks

    International Nuclear Information System (INIS)

    Bauerle, J.E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector

  2. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  3. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  4. Evolution of the liquid metal reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    This paper reports on the integral fat reactor (IFR) concept. A key feature of the IFR concept is the metallic fuel, the original choice in liquid metal reactor development. An IFR development program is detailed by the authors

  5. Some approaches to numerical modelling of a phenomenon observed during steam generator tube rupture in the reactor with liquid metal coolant

    Directory of Open Access Journals (Sweden)

    Usov Eduard V.

    2017-01-01

    Full Text Available The presented paper contains a description of approaches to simulate processes, observed during leakage in the steam generator of the reactor with liquid metal coolant. These approaches have been implemented in thermal hydraulic code HYDRA-IBRAE/LM. To calculate motion of gas bubbles in liquid metal flow and heat transfer of gas bubbles with metal, different relations are used in HYDRA-IBRAE/LM code. The code contains models of chemical interaction between water and sodium for modelling of tube rupture in sodium cooled fast reactors, Modelling of the experiments has been made using HYDRA-IBRAE/LM code. The results of the modelling with determined main factors are presented in the article.

  6. Liquid metals for solar power systems

    Science.gov (United States)

    Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T.

    2017-07-01

    The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almería (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.

  7. The SAFR liquid metal concept

    International Nuclear Information System (INIS)

    Baumeister, E.B.

    1987-01-01

    The Sodium Advanced Fast Reactor (SAFR) modular reactor concept is being developed by the team of Rockwell International, Combustion Engineering, and Bechtel under the U.S. Department of Energy's (DOE's) Advanced Liquid Metal Reactor (LMR) program. The SAFR plant would provide a viable alternate to light water reactors, especially for applications favoring small incremental capacity additions. SAFR is also a logical step to facilitate the later transition to LMFBRs. The SAFR plant concept employs multiple 350-MWe LMR Power Pak modules. Each Power Pak is a standardized, shop-fabricated unit that can be barge-shipped to the plant site for installation. The 350-MWe size allows SAFR to capitalize on all the inherent safety features provided by small reactors and factory fabrication, while still preserving some economy of scale. Shop fabrication minimizes nuclear-grade field fabrication and minimizes the overall plant construction schedule and capital cost. Each Power Pak consists of one reactor assembly and associated heat transfer equipment coupled to a single turbine generator. The reactor core employs mixed uranium-plutonium zirconium alloy metal fuel. The metal-alloy fuel (which has been used in EBR-II) has cost, safety, and safeguard advantages. The intrinsic properties of the sodium coolant (e.g., high boiling point, low vapor pressure, and strong natural convection), blended together with the pool-type LMR concept and the metal fuel, result in an inherently safe plant. Passive inherent features provide both public safety and plant investment protection. Refueling is carried out annually on each Power Pak, replacing one-fourth of the core over a 6-day refueling outage. A colocated pyroprocessing fuel cycle facility can be accommodated at the site such that no off-site shipments are required. (J.P.N.)

  8. Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.; Jongerius, A.L.; Weckhuysen, B.M.

    2013-01-01

    Lignin is a component of lignocellulosic biomass from which important aromatic compounds can potentially be obtained. In the present work, Alcell and soda lignin were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate (EMIM DEP) and subsequently oxidized using several

  9. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21. Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+, and the excited neutral helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmologicalmolecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 23P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydrogen model, an ever increasing population of the 23S and 23P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 23P→2 3S lines and the overpopulation of the helium triplet

  10. Liquid metal MHD generator systems

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.

    1985-01-01

    Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)

  11. Corrosion and compatibility in liquid alkali metals

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The literature dealing with liquid alkali metal corrosion of vanadium and its alloys is reviewed in the following subsections. Attention is given to both lithium and sodium data. Preceding this review, a brief outline of the current state of understanding of liquid metal corrosion mechanisms is provided

  12. Electrochemically induced actuation of liquid metal marbles.

    Science.gov (United States)

    Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2013-07-07

    Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called "liquid metal marbles". We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.

  13. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  14. Tokamak with liquid metal toroidal field coil

    International Nuclear Information System (INIS)

    Ohkawa, T.; Schaffer, M.J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof

  15. Liquid Metal Phagocytosis: Intermetallic Wetting Induced Particle Internalization.

    Science.gov (United States)

    Tang, Jianbo; Zhao, Xi; Li, Jing; Zhou, Yuan; Liu, Jing

    2017-05-01

    A biomimetic cellular-eating phenomenon in gallium-based liquid metal to realize particle internalization in full-pH-range solutions is reported. The effect, which is called liquid metal phagocytosis, represents a wet-processing strategy to prepare various metallic liquid metal-particle mixtures through introducing excitations such as an electrical polarization, a dissolving medium, or a sacrificial metal. A nonwetting-to-wetting transition resulting from surface transition and the reactive nature of the intermetallic wetting between the two metallic phases are found to be primarily responsible for such particle-eating behavior. Theoretical study brings forward a physical picture to the problem, together with a generalized interpretation. The model developed here, which uses the macroscopic contact angle between the two metallic phases as a criterion to predict the particle internalization behavior, shows good consistency with experimental results.

  16. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  17. Galvanic Replacement of the Liquid Metal Galinstan.

    Science.gov (United States)

    Hoshyargar, Faegheh; Crawford, Jessica; O'Mullane, Anthony P

    2017-02-01

    The galvanic replacement reaction is a highly versatile approach for the creation of a variety of nanostructured materials. However, the majority of reports are limited to the replacement of metallic nanoparticles or metal surfaces. Here we extend this elegant approach and describe the galvanic replacement of the liquid metal alloy galinstan with Ag and Au. This is achieved at a macrosized droplet to create a liquid metal marble that comprises a liquid metal core and a solid metal shell, whereby the morphology of the outer shell is determined by the concentration of metallic ions used in the solution during the galvanic replacement process. In principle, this allows one to recover precious metal ions from solution in their metallic form, which are immobilized on the liquid metal and therefore easy to recover. The reaction is also undertaken at liquid metal microdroplets created via sonication to produce Ag- and Au-based galinstan nanorice particles. These materials are characterized with SEM, XRD, TEM, SAED, EDX, XPS, UV-visible spectroscopy, and open-circuit potential versus time experiments to understand the galvanic replacement process. Finally, the nanosized materials are investigated for their catalytic activity toward the reduction of methylene blue in the presence of sodium borohydride. This approach illustrates a new avenue of research for the galvanic replacement process and, in principle, could be applied to many more systems.

  18. Design analysis of liquid metal pipe supports

    International Nuclear Information System (INIS)

    Margolin, L.L.; LaSalle, F.R.

    1979-02-01

    Design guidelines pertinent to liquid metal pipe supports are presented. The numerous complex conditions affecting the support stiffness and strength are addressed in detail. Topics covered include modeling of supports for natural frequency and stiffness calculations, support hardware components, formulas for deflection due to torsion, plate bending, and out-of-plane flexibility. A sample analysis and a discussion on stress analysis of supports are included. Also presented are recommendations for design improvements for increasing the stiffness of pipe supports and which were utilized in the FFTF system

  19. Turbulent magnetohydrodynamics in liquid metals

    International Nuclear Information System (INIS)

    Berhanu, Michael

    2008-01-01

    In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr

  20. Corrosion by liquid metals - Application to liquid sodium

    International Nuclear Information System (INIS)

    Lavielle, Lisette.

    1978-10-01

    In this bibliographic review on the corrosion by liquid metals, the first part is devoted to the theoretical aspects of the problem and the second part concerns the corrosion of steels by liquid sodium, as example. Obvious the numerous works now published, the mechanisms are still leaving bad known [fr

  1. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    Science.gov (United States)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  2. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47. Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355. The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in

  3. Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders

    International Nuclear Information System (INIS)

    Villand, M.; Grand, D.

    1983-01-01

    Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented

  4. Overview of liquid-metal MHD

    International Nuclear Information System (INIS)

    Dunn, P.F.

    1978-01-01

    The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser

  5. Equipment for liquid metal pressure measurement

    International Nuclear Information System (INIS)

    Jung, J.

    1977-01-01

    Equipment is proposed for measuring liquid metal pressure in piping or a tank. An auxiliary piping is connected to the piping or tank at the measuring point. The auxiliary piping transports liquid metal to a container by means of an electromagnetic pump. The piping also houses an electromagnetic flow ratemeter connected to an electric comparator. The comparator and the electromagnetic pump are connected to the pump output generator. (Z.M.)

  6. Detection of gas entrainment into liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, T., E-mail: t.vogt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Boden, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Andruszkiewicz, A. [Faculty of Mechanical and Power Engineering, Wroclaw University of Technology (Poland); Eckert, K. [Technische Universität Dresden, Institute of Fluid Mechanics, 01062 Dresden (Germany); Eckert, S.; Gerbeth, G. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany)

    2015-12-01

    Highlights: • We present liquid metal experiments dedicated to gas entrainment on the free surface. • Ultrasonic and X-ray attenuation techniques have been used to study the mechanisms of gas entrainment. • A comparison between bubbly flow in water and GaInSn showed substantial differences. • Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation. - Abstract: Entrainment of cover gas into the liquid metal coolant is one of the principal safety issues in the design of innovative liquid metal-cooled fast reactors. We present generic experimental studies of this phenomenon in low-melting metals. Ultrasonic and X-ray diagnostic tools were considered for a visualization of gas entrainment at the free surface of the melt. Laboratory experiments were conducted using the eutectic alloy GaInSn, which is liquid at room temperature. Vortex-activated entrainment of air at the free surface of a rotating flow was revealed by ultrasonic techniques. X-ray radioscopy was used to visualize the behavior of argon bubbles inside a slit geometry. The measurements reveal distinct differences between water and GaInSn, especially with respect to the process of bubble formation and the coalescence and breakup of bubbles. Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation.

  7. Liquid metals. Coexistence line, critical parameters, compressibility

    International Nuclear Information System (INIS)

    Filippov, L.P.

    1986-01-01

    Formulae to calculate four characteristic parameters of liquid metals (density, compressibility, critical temperature and individual parameter) according to four initial data are obtained: two values of vapor density and two values of vapor pressure. Comparison between experimental and calculation results are presented for liquid Cs, Na, Li, K, Rb

  8. Stretchable and Soft Electronics using Liquid Metals.

    Science.gov (United States)

    Dickey, Michael D

    2017-07-01

    The use of liquid metals based on gallium for soft and stretchable electronics is discussed. This emerging class of electronics is motivated, in part, by the new opportunities that arise from devices that have mechanical properties similar to those encountered in the human experience, such as skin, tissue, textiles, and clothing. These types of electronics (e.g., wearable or implantable electronics, sensors for soft robotics, e-skin) must operate during deformation. Liquid metals are compelling materials for these applications because, in principle, they are infinitely deformable while retaining metallic conductivity. Liquid metals have been used for stretchable wires and interconnects, reconfigurable antennas, soft sensors, self-healing circuits, and conformal electrodes. In contrast to Hg, liquid metals based on gallium have low toxicity and essentially no vapor pressure and are therefore considered safe to handle. Whereas most liquids bead up to minimize surface energy, the presence of a surface oxide on these metals makes it possible to pattern them into useful shapes using a variety of techniques, including fluidic injection and 3D printing. In addition to forming excellent conductors, these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials. The properties of these materials, their applications within soft and stretchable electronics, and future opportunities and challenges are considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reduction of Metal Oxide to Metal using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  10. Vacuum filling of complex microchannels with liquid metal.

    Science.gov (United States)

    Lin, Yiliang; Gordon, Olivia; Khan, M Rashed; Vasquez, Neyanel; Genzer, Jan; Dickey, Michael D

    2017-09-12

    This paper describes the utilization of vacuum to fill complex microchannels with liquid metal. Microchannels filled with liquid metal are useful as conductors for soft and stretchable electronics, as well as for microfluidic components such as electrodes, antennas, pumps, or heaters. Liquid metals are often injected manually into the inlet of a microchannel using a syringe. Injection can only occur if displaced air in the channels has a pathway to escape, which is usually accomplished using outlets. The positive pressure (relative to atmosphere) needed to inject fluids can also cause leaks or delamination of the channels during injection. Here we show a simple and hands-free method to fill microchannels with liquid metal that addresses these issues. The process begins by covering a single inlet with liquid metal. Placing the entire structure in a vacuum chamber removes the air from the channels and the surrounding elastomer. Restoring atmospheric pressure in the chamber creates a positive pressure differential that pushes the metal into the channels. Experiments and a simple model of the filling process both suggest that the elastomeric channel walls absorb residual air displaced by the metal as it fills the channels. Thus, the metal can fill dead-ends with features as small as several microns and branched structures within seconds without the need for any outlets. The method can also fill completely serpentine microchannels up to a few meters in length. The ability to fill dense and complex geometries with liquid metal in this manner may enable broader application of liquid metals in electronic and microfluidic applications.

  11. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  12. Recycling of Metal Containing Waste by Liquid-Liquid Extraction

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1999-01-01

    Through the years, a large number of liquid-liquid extraction have been proposed for metal waste recovery and recycling(1,2). However, few of them have achieved commercial application. In fact, relatively little information is available on practical operation and economic feasibility. This presentation will give complementary information by describing and comparing three processes, based on the Am MAR hydrometallurgical concept and representing three different modes of operation

  13. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  14. Dispersion relations of the acoustic modes in divalent liquid metals

    Directory of Open Access Journals (Sweden)

    Inui Masanori

    2017-01-01

    Full Text Available Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS. Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  15. Density dependent atomic motion in a liquid alkali metal

    International Nuclear Information System (INIS)

    Pilgrim, W.-C.; Hosokawa, S.; Morkel, C.

    2001-01-01

    Inelastic X-ray and neutron scattering results obtained from liquid sodium and rubidium are presented. They cover the entire liquid range between melting and liquid vapour critical point. At high densities the dynamics of the liquid metal is characterized by collective excitations. The corresponding dispersion relations indicate the existence of surprisingly stable next neighbouring shells leading to an increase of the propagation speed for the collective modes. Below 2ρ crit. the dynamics changes from collective to localized indicating the existence of molecular aggregates. This interpretation is in accord with a simple model where the properties of a Rb- and a Rb 2 - lattice are calculated using density functional theory. (orig.)

  16. Transport Properties of Liquid Metals

    International Nuclear Information System (INIS)

    Kart, H.H.

    2004-01-01

    Transport properties of Pd, Ag pure metals and their binary alloys are investigated by using molecular dynamics simulation. Quantum Sutton-Chen (Q-SC) many-body potential is used to define the interactions between the atoms. The effects of temperature and concentration on the transport properties such as diffusion and viscosity of the metals are analysed. The simulation results are in good agreement with the experimental and theoretical values

  17. SPH simulation of liquid metal target dynamics

    CERN Document Server

    Massidda, L; Massidda, Luca

    2010-01-01

    An implementation of the smoothed particle hydrodynamics (SPH) method to study the dynamics of liquid metal targets under the effect of high power proton beams is presented The accuracy of the method is verified through the comparison of numerical simulations with experimental results on liquid mercury performed in ISOLDE/CERN The results are in good agreement and allow to have a better insight on the physics of the phenomenon (C) 2010 Elsevier B V All rights reserved

  18. Computation of the Structure Factor of Some Transition Liquid Metals

    African Journals Online (AJOL)

    Applying the solution of the Percus-Yevic equation to a one component hard sphere system and using the recently developed potential for liquid transition liquid metals, the structure factor of transition liquid metals were computed. The peak height and peak position of the structure factor of the liquid metals were studied.

  19. Properties of structural materials in liquid metal environment

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1991-12-01

    The proceedings contain 16 contributions to the following topics: 1. Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; 2. Behaviour of Materials in Liquid Metal Environment under Off-Normal Conditions; 3. Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; and 4. Crack Propagation in Liquid Sodium. (MM)

  20. Some Issues in Liquid Metals Research

    Directory of Open Access Journals (Sweden)

    Maria José Caturla

    2015-11-01

    Full Text Available The ten articles [1–10] included in this Special Issue on “Liquid Metals” do not intend to comprehensively cover this extensive field, but, rather, to highlight recent discoveries that have greatly broadened the scope of technological applications of these materials. Improvements in understanding the physics of liquid metals are, to a large extent, due to the powerful theoretical tools in the hands of scientists, either semi-empirical [1,5,6] or ab initio (molecular dynamics, see [7]. Surface tension and wetting at metal/ceramic interfaces is an everlasting field of fundamental research with important technological implications. The review of [2] is broad enough, as the work carried out at Grenoble covers almost all interesting matters in the field. Some issues of interest in geophysics and astrophysics are discussed in [3]. The recently discovered liquid–liquid transition in several metals is dealt with in [4]. The fifth contribution [5] discusses the role of icosahedral superclusters in crystallization. In [6], thermodynamic calculations are carried out to identify the regions of the ternary phase diagram of Al-Cu-Y, where the formation of amorphous alloys is most probable. Experimental data and ab initio calculations are presented in [7] to show that an optimal microstructure is obtained if Mg is added to the Al-Si melt before than the modifier AlP alloy. Shock-induced melting of metals by means of laser driven compression is discussed in [8]. With respect to recent discoveries, one of the most outstanding developments is that of gallium alloys that are liquid at room temperature [9], and that, due to the oxide layer that readily cover their surface, maintain some “stiffness”. This has opened the possibility of 3D printing with liquid metals. The last article in this Special Issue [10] describes nano-liquid metals, a suspension of liquid metal and its alloy containing nanometer-sized particles. A room-temperature nano-liquid metal

  1. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Seed, G.

    1980-01-01

    In a liquid metal cooled nuclear reactor in which the reactor core is submerged in a pool of liquid metal coolant in a primary vessel housed in a concrete vault the core is surrounded by an impermeable barrier bounding an inner or hot region of the pool and an outer or cool region of the pool. The object of the present invention is the provision of a construction in which the complexity of design and manufacture of the barrier for bounding the inner and outer pools of coolant is reduced. (UK)

  2. Research into liquid metal MHD energy conversion

    International Nuclear Information System (INIS)

    Bayer, Z.

    1973-01-01

    The state of research into liquid metal MHD conversion and the problems arising from the processes taking place in the liquid metal-gas mixture are described. The possibilities are pointed out of improving multi-stage heat regeneration MHD systems. The expansion of the number of mixing stages contributes to higher energy conversion efficiency up to a certain driving energy. The relations are presented determining optimal conditions and a calculation method derived for finding the optimal energy distribution and the resulting energy conversion efficiency at any number of stages. (Oy)

  3. Oxidation-Mediated Fingering in Liquid Metals

    Science.gov (United States)

    Eaker, Collin B.; Hight, David C.; O'Regan, John D.; Dickey, Michael D.; Daniels, Karen E.

    2017-10-01

    We identify and characterize a new class of fingering instabilities in liquid metals; these instabilities are unexpected due to the large interfacial tension of metals. Electrochemical oxidation lowers the effective interfacial tension of a gallium-based liquid metal alloy to values approaching zero, thereby inducing drastic shape changes, including the formation of fractals. The measured fractal dimension (D =1.3 ±0.05 ) places the instability in a different universality class than other fingering instabilities. By characterizing changes in morphology and dynamics as a function of droplet volume and applied electric potential, we identify the three main forces involved in this process: interfacial tension, gravity, and oxidative stress. Importantly, we find that electrochemical oxidation can generate compressive interfacial forces that oppose the tensile forces at a liquid interface. The surface oxide layer ultimately provides a physical and electrochemical barrier that halts the instabilities at larger positive potentials. Controlling the competition between interfacial tension and oxidative (compressive) stresses at the interface is important for the development of reconfigurable electronic, electromagnetic, and optical devices that take advantage of the metallic properties of liquid metals.

  4. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  5. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  6. Liquid state properties of certain noble and transition metals

    International Nuclear Information System (INIS)

    Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M.

    1998-07-01

    Certain structural, thermodynamic and atomic transport properties of a number of liquid noble and transition metals are reported. The underlying theory combines together a simple form of the N-body potential and the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquid. The static structure factors calculated by using the VMHNC resemble the hard sphere (HS) values. Consequently the HS model is used to calculate the thermodynamic properties viz. specific heat, entropy, isothermal compressibility and atomic transport properties. (author)

  7. Numeric simulations of a liquid metal model of a bloom caster under the effect of rotary electromagnetic stirring

    Science.gov (United States)

    Barna, M.; Javurek, M.; Willers, B.; Eckert, S.; Reiter, J.

    2016-07-01

    At the voestalpine Stahl Donawitz GmbH the continuous casting of round steel blooms is commonly supported by electromagnetically induced stirring of the liquid steel flow. A number of beneficial effects are attributed to electromagnetic stirring in the mould region (M-EMS), e.g. the enhanced transition from columnar to equiaxed solidification, the homogenization of the liquid steel flow or the reduction of surface and subsurface defects. Although the positive effects of M-EMS can be seen on the blooms (e.g. in etchings), the link between electromagnetic stirring of the steel melt and the quality of the solidified bloom is not sufficiently understood. Theoretical considerations are often limited to general cases and their results are therefore not directly applicable to real continuous casting geometries. On the other hand, plant measurements can only be performed to a limited extent due to the harsh conditions and other restrictions (e.g. safety regulations). In this work an alternative approach is used to investigate the steel flow in a round bloom caster under the influence of M-EMS. In a 1:3 scale Perspex model of a round bloom strand, measurements of the flow under the influence of a rotating magnetic field can be conducted. These measurements provide a validation benchmark for the numeric simulations. A numeric model of the before mentioned 1:3 scale model is implemented, encompassing the strand, the submerged entry nozzle as well as the M-EMS device. In the modelling approach, the bidirectional coupling between liquid steel flow and the electromagnetic field/forces has to be considered because otherwise the resulting tangential velocities will be overestimated. With the validated modelling approach, simulations of real casting machines can then be conducted, stirring parameter influences can be shown and conclusions for the real casting process can be drawn.

  8. Supported liquid membranes technologies in metals removal from liquid effluents

    Directory of Open Access Journals (Sweden)

    de Agreda, D.

    2011-04-01

    Full Text Available The generation of liquid effluents containing organic and inorganic residues from industries present a potential hazardousness for environment and human health, being mandatory the elimination of these pollutants from the respective solutions containing them. In order to achieve this goal, several techniques are being used and among them, supported liquid membranes technologies are showing their potential for their application in the removal of metals contained in liquid effluents. Supported liquid membranes are a combination between conventional polymeric membranes and solvent extraction. Several configurations are used: flat-sheet supported liquid membranes, spiral wounds and hollow fiber modules. In order to improve their effectiveness, smart operations have been developed: non-dispersive solvent extraction, non-dispersive solvent extraction with strip phase dispersion and hollow fiber renewal liquid membrane. This paper overviewed some of these supported liquid membranes technologies and their applications to the treatment of metal-bearing liquid effluents.

    La generación, por parte de las industrias, de efluentes líquidos conteniendo sustancias orgánicas e inorgánicas, es un peligro potencial tanto para los humanos como para el medio ambiente, siendo necesaria la eliminación de estos elementos tóxicos de las disoluciones que los contienen. Para conseguir este fin, se están aplicando diversas técnicas y entre ellas las tecnologías de membranas líquidas soportadas, están demostrando sus aptitudes para la eliminación de metales contenidos en efluentes líquidos. Las membranas líquidas soportadas, resultan de la unión de las membranas poliméricas y de la tecnología de extracción líquido-líquido. Este tipo de membranas se pueden utilizar en diversas configuraciones: plana, módulo en fibra hueca y módulo en espiral y para aumentar su efectividad se están desarrollando las llamadas operaciones avanzadas: extracción no

  9. PFR liquid metals disposal at Dounreay

    International Nuclear Information System (INIS)

    McIntyre, A.W.

    1997-01-01

    When the Prototype Fast Reactor (PFR) at Dounreay was shut down in 1994, the UKAEA commissioned a series of studies to determine the least cost, lowest risk option for dealing with the liquid metal coolants, i.e. the sodium from the primary and secondary circuits and the NaK from the decay heat removal system. The studies concluded that leaving the liquid metals in situ was not a viable option. Removing the liquid metals had three options, provision of long term external storage facilities, re-use in other projects or treatment for final disposal. The UKAEA invited companies to bid for the challenging task of disposing of more than 1500 t of liquid metals. In 1995 UKAEA awarded NNC Ltd. one of the largest decommissioning projects ever to be let competitively in the UK. During the first year of the contract, the challenges have focused on solving design problems and a number of innovative solutions have been developed by NNC and its subcontractors. From January 1997 the focus has moved to construction on site at Dounreay, and the manufacturing and installation of the mechanical components of the plant

  10. LMET Mechanical testing in liquid metals

    International Nuclear Information System (INIS)

    Jong, Monica

    2013-01-01

    LMET is successfully developed to perform mechanical tests in heavy liquid metals up to 400 ° C. Fracture toughness tests and fatigue crack propagation tests are successfully performed. Tensile tests and fatigue tests applicability looks promising. With performing the precrack and the fracture toughness test in one sequence, wetting of the crack surface is assured. Data retrieved with LMET is reliable

  11. From basic physics to mechanisms of toxicity: the ``liquid drop'' approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles

    Science.gov (United States)

    Sizochenko, Natalia; Rasulev, Bakhtiyor; Gajewicz, Agnieszka; Kuz'min, Victor; Puzyn, Tomasz; Leszczynski, Jerzy

    2014-10-01

    Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were established. A new approach for representation of nanoparticles' structure is presented. For description of the supramolecular structure of nanoparticles the ``liquid drop'' model was applied. It is expected that a novel, proposed approach could be of general use for predictions related to nanomaterials. In addition, in our study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. The developed nano-QSAR models were validated and reliably predict the toxicity of all studied metal oxide nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-based descriptors were revealed to have an almost similar level of contribution to toxicity in both cases, while other parameters (van der Waals interactions, electronegativity and metal-ligand binding characteristics) have unequal contribution levels. In addition, the models developed here suggest different mechanisms of nanotoxicity for these two types of cells.Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, when discharged to the environment. To understand the mechanism of metal oxide nanoparticles' toxicity and reduce the number of experiments, the development of predictive toxicity models is important. In this study, performed on a series of nanoparticles, the comparative quantitative-structure activity relationship (nano-QSAR) analyses of their toxicity towards E. coli and HaCaT cells were

  12. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  13. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  14. Liquid-metal-cooled reactor

    Science.gov (United States)

    Hutter, E.

    A perforated depressor plate extending across the bottom of the instrument tree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition, coolant mixing devices and locating devices are provided attached to the depressor plate.

  15. Compact device to heat up a liquid metal

    International Nuclear Information System (INIS)

    Blanc, R.; Pelloux, L.

    1981-01-01

    Device for heating a liquid metal, sodium for instance, this device being in one piece and capable of being introduced in one go into the tank containing the liquid metal and comprising heating rods and an electromagnetic pump [fr

  16. Liquid crystal on subwavelength metal gratings

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation)

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  17. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor ...

  18. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  19. Liquid metal pump for nuclear reactors

    International Nuclear Information System (INIS)

    Allen, H.G.; Maloney, J.R.

    1975-01-01

    A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank

  20. Liquid uranium contaimment in refractories metals

    International Nuclear Information System (INIS)

    Duarte, J.L.; Padilha, A.F.

    1982-01-01

    Tests were performed on metalic materials for liquid uranium containment up to 2100 0 C. The materials Nb, Mo, Ta and W in the form of crucibles were tested at 2100 0 C for one hour in the presence of flowing argon. After testing, the crucibles were etched using HCl and analysed by optical metallography and electron proble microanalysis. The results are discussed in terms of Berthoud equation and indicated that the solubility limit of the crucible material in uranium at the temperature controlls the crucible dissolution by liquid uranium. The various phases formed, the mechanism of dissolution and the possible material for future use are presented and discussed. (Author) [pt

  1. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  2. Development of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Park, C.K.

    1998-01-01

    Future nuclear power plants should not only have the features of improved safety and economic competitiveness but also provide a means to resolve spent fuel storage problems by minimizing volume of high level wastes. It is widely believed that liquid metal reactors (LMRs) have the highest potential of meeting these requirements. In this context, the LMR development program was launched as a national long-term R and D program in 1992, with a target to introduce a commercial LMR around 2030. Korea Advanced Liquid Metal Reactor (KALIMER), a 150 MWe pool-type sodium cooled prototype reactor, is currently under the conceptual design study with the target schedule to complete its construction by the mid-2010s. This paper summarizes the KALIMER development program and major technical features of the reactor system. (author)

  3. On-skin liquid metal inertial sensor.

    Science.gov (United States)

    Varga, Matija; Ladd, Collin; Ma, Siyuan; Holbery, Jim; Tröster, Gerhard

    2017-09-26

    A wireless on-skin inertial sensor based on free-moving liquid metal is introduced. The inertial sensor comprises a eutectic gallium-indium (eGaIn) droplet that modulates the capacitance between two electrodes. The capacitive output of the sensor is connected to a planar coil to form an LC resonator whose resonant frequency can be read out wirelessly. Liquid metal electrodes and the coil are fabricated on a 20 μm thick silicone membrane, which can stretch up to 600%, using spray-deposition of eGaIn. The moving droplet is encapsulated on the opposite side of the membrane using spray-deposition of Dragon Skin 10 silicone. The output characteristics, electrical simulations of the capacitance, and dynamic characteristics of the sensor are shown. The sensor is used for measuring tilt angles and recording arm gestures.

  4. Electrically induced reorganization phenomena of liquid metal film printed on biological skin

    Science.gov (United States)

    Guo, Cangran; Yi, Liting; Yu, Yang; Liu, Jing

    2016-12-01

    Liquid metal has been demonstrated to be directly printable on biological skin as physiological measurement elements. However, many fundamental issues remained unclear so far. Here, we disclosed an intriguing phenomenon of electrically induced reorganization of liquid metal film. According to the experiments, when applying an external electric field to liquid metal films which were spray printed on biological skin, it would induce unexpected transformations of the liquid metals among different morphologies and configurations. These include shape shift from a large liquid metal film into a tiny sphere and contraction of liquid metal pool into spherical one. For comprehensively understanding the issues, the impacts of the size, voltage, orientations of the liquid metal electrodes, etc., were clarified. Further, effects of various substrates such as in vitro skin and in vivo skin affecting the liquid metal transformations were experimentally investigated. Compared to the intact tissues, the contraction magnitude of the liquid metal electrode appears weaker on in vivo skin of nude mice under the same electric field. The mechanisms lying behind such phenomena were interpreted through theoretical modeling. Lastly, typical applications of applying the current effect into practical elements such as electrical gating devices were also illustrated as an example. The present findings have both fundamental and practical values, which would help design future technical strategies in fabricating electronically controlled liquid metal electronics on skin.

  5. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  6. Modeling of liquid phases

    CERN Document Server

    Soustelle, Michel

    2015-01-01

    This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

  7. Heat exchanger for cooling liquid metal

    International Nuclear Information System (INIS)

    Mine, Masao; Nakao, Noboru; Ikeuchi, Toshiaki; Okabe, Ayao.

    1988-01-01

    Purpose: To improve the maintenance performance and heat resistance in heat exchangers integrated with solenoid pumps in the main coolant circuits of LMFBR type reactors. Constitution: Annular cores equipped with solenoid coils are disposed to the outside of the shell portion of a heat exchanger, while only annular cores are disposed to the inside of the shell and a flow channel for liquid metals is disposed between solenoid coils and the cores to constitute a structure of causing solenoid pump action. Then, the cores with coils generate magnetic fields and pumping action is caused by the Lorentz force due to the magnetic fields and the electric current generated in liquid metals in the flow channel between the cores and the shell, thereby driving the liquid metals. Accordingly, since the coils are disposed to the outside of the shell, the maintenance for the solenoid coils is facilitated, the heat resistant design and conditions for the coils are moderated and the sodium resistance is no more required to be considered. (Horiuchi, T.)

  8. Liquid-metal embrittlement of refractory metals by molten plutonium

    International Nuclear Information System (INIS)

    Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

    1980-07-01

    Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900 0 C and a strain rate of 10 -4 s -1 , the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy

  9. The US Liquid Metal Reactor Development Program

    International Nuclear Information System (INIS)

    Till, C.E.; Arnold, W.H.; Griffith, J.D.

    1988-01-01

    The US Liquid Metal Reactor Development Program has been restructured to take advantage of the opportunity today to carry out R and D on truly advanced reactor technology. The program gives particular emphasis to improvements to reactor safety. The new directions are based on the technology of the Integral Fast Reactor (IFR). Much of the basis for superior safety performance using IFR technology has been experimentally verified and aggressive programs continue in EBR-II and TREAT. Progress has been made in demonstrating both the metallic fuel and the new electrochemical processes of the IFR. The FFTF facility is converting to metallic fuel; however, FFTF also maintains a considerable US program in oxide fuels. In addition, generic programs are continuing in steam generator testing, materials development, and, with international cooperation, aqueous reprocessing. Design studies are carried out in conjunction with the IFR technology development program. In summary, the US maintains an active development program in Liquid Metal Reactor technology, and new directions in reactor safety are central to the program

  10. PERFLUOROCARBON LIQUIDS' ABILITY TO PROTECT THE MACULA FROM INTRAOCULAR DROPPING OF METALLIC FOREIGN BODIES: A Model Eye Study.

    Science.gov (United States)

    Shah, Chirag M; Gentile, Ronald C; Mehta, Mitul C

    2016-07-01

    To examine the utility of perfluoro-n-octane (PFO) in balanced salt solution (BSS) to shield the macula from the impact of dropped metallic intraocular foreign bodies (IOFBs) by modeling scenarios in which they may fall during surgical removal. Model eyes were filled with various fluid mixtures (Group 1: 10% PFO/90% BSS; Group 2: 100% BSS; Group 3: 100% PFO; Group 4: 10% PFO/90% air; Group 5: 10% BSS/90% air). In Groups 1, 4, and 5, the 10% fluid volume covered the theoretical macula. For each fluid mixture, up to 30 IOFB drop scenarios were performed for each of the 5 sample IOFBs from 3 locations. Trajectories were recorded using a camera attached to a Zeiss operating microscope (Carl Zeiss, Jena, Germany). The percentages of IOFBs impacting the macula were calculated and Fisher exact test was used to assess differences. In Group 1, 93% (417/450) of the dropped IOFBs were deflected by the PFO-BSS interface compared with 0% (0/500) in Groups 2, 3, 4, and 5 (P macula in 30% of tests when dropped from the superior posterior segment (P < 0.01), all other IOFBs (2.8-13.4 mg) were deflected by the PFO-BSS interface in 100% of Group 1 drops (P < 0.01). As demonstrated by these simulations, the PFO-BSS interface can deflect IOFBs dropped during surgery in a wide range of scenarios, especially when the IOFB is of lower mass.

  11. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H.U. [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  12. Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals

    Science.gov (United States)

    Manoylov, Anton; Lebon, Bruno; Djambazov, Georgi; Pericleous, Koulis

    2017-11-01

    The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters' breakup by cavitation.

  13. Bubble separation at the interface between a liquid metal and a liquid slag

    Science.gov (United States)

    Chevrier, Vincent F.

    Due to more specific consumer demand, most steel manufacturers are developing techniques to produce quality steels by limiting the number of defects in the final product. There are several aspects to be considered when producing "clean steels", and this research project will focus on one of them: inclusion and bubble separation. Large inclusions (solid or liquid) and gas bubbles have to be removed from the liquid metal before casting, and separation occurs mostly at the slag-metal interface. The objective of this study to develop a fundamental understanding of bubble separation at the slag-metal interface by looking at the chemical engineering literature on separation and coalescence, and by studying experimentally bubble separation at a liquid-liquid interface, first using a water-oil system and then with a metal-slag system. The literature review and the water modeling experiments have shown that four separate steps need to be considered when studying the removal of a buoyant phase particle at a liquid-liquid interface: the transport to the interface, the separation at the interface (film drainage), the film rupture and the removal from the interface. The major factors influencing the rest-time of an argon bubble at an oil-water interface are determined experimentally. The high temperature apparatus permits direct visualization of bubble behavior in metal and slag. The separation of argon bubbles at the slag-metal interface exhibits a behavior similar to what is observed in water modeling: the bubbles impact the interface and rest there for some time before coalescing. A methodology of studying the separation of solid and liquid inclusions is also established using two complementary techniques: x-ray fluoroscopy and confocal scanning electron microscopy. This experimental study showed that inclusions and bubbles do not separate immediately upon reaching the slag-metal interface but can rest in the metal phase for long periods of time before separating. Enhancing

  14. The coalescence of heterogeneous liquid metal on nano substrate

    Science.gov (United States)

    Wang, Long; Li, Yifan; Zhou, Xuyan; Li, Tao; Li, Hui

    2017-06-01

    Molecular dynamics simulation has been performed to study the asymmetric coalescence of heterogeneous liquid metal on graphene. Simulation results show that the anomalies in the drop coalescence is mainly caused by the wettability of heterogeneous liquid metal. The silver atoms incline to distribute on the outer layer of the gold and copper droplets, revealing that the structure is determined by the interaction between different metal atoms. The coalescence and fusion of heterogeneous liquid metal drop can be predicted by comparing the wettability and the atomic mass of metallic liquid drops, which has important implications in the industrial application such as ink-jet printing and metallurgy.

  15. Study Of The Structural Properties Of Some Liquid Metals And Their ...

    African Journals Online (AJOL)

    In this work, the electron gas energy of some liquid metals and alloys were computed based on statistical physics approach. Also, based on the solution of the Ornstein-Zernike equation for a one – component system, a model for the study of the structure factor of liquid metals and alloys were developed. The electron gas ...

  16. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  17. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  18. Observation of metallic conductivity in liquid carbon

    Science.gov (United States)

    Heremans, J.; Olk, C. H.; Eesley, G. L.; Steinbeck, J.; Dresselhaus, G.

    1988-02-01

    We report the temperature dependence of the electrical resistivity of carbon at atmospheric pressure and temperatures up to and above the melting point at 4450+/-100 K. Vapor-grown graphite fibers of different crystalline perfection were heated with 28-μsec electrical pulses. We also measure the transient reflectivity of graphite irradiated with picosecond laser pulses and find evidence for nonequilibrium heating. We conclude that liquid carbon is metallic with a nearly temperature-independent electrical resistivity of 30+/-8 μΩ.dm.

  19. Liquid-metal aspects of HYLIFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Hoffman, N.J.; McDowell, M.W.

    1980-01-01

    The High Yield Lithium Injection Fusion Energy (HYLIFE) converter is a reactor concept for an inertial fusion electric power plant. In this concept, flowing molten lithium protects the structures of the fusion chamber from the deleterious effects of deuterium-tritium (DT) fusion reactions and converts the pulsed fusion energy into steay thermal power. Lithium is circulated as the primary coolant to transfer heat to an intermediate sodium loop which drives a superheated steam cycle. Lithium is also the source of the tritium fuel which is recovered via a molten-salt extraction process. The liquid-metal aspects of the HYLIFE plant with particular emphasis on the lithium systems

  20. Experimental investigations of heat transfer and temperature fields in models simulating fuel assemblies used in the core of a nuclear reactor with a liquid heavy-metal coolant

    Science.gov (United States)

    Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.

    2015-09-01

    The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with

  1. Process for preparing liquid metal electrical contact device

    Science.gov (United States)

    Lovell, R. R.; Berkopec, F. D.; Culp, D. H. (Inventor)

    1977-01-01

    The parts of an electrical contact device are treated by sputter etching to remove the parent metal oxide. Prior to exposure of the electrodes to any oxygen, a sacrificial metal is sputter deposited on the parts. Preferably this sacrificial metal is one that oxidizes slowly and is readily dissolved by the liquid metal. The sacrificial metal may then be removed from unwanted areas. The remainder of the ring and the probe to be wet by the liquid metal are submerged in the liquid metal or the liquid metal is flushed over these areas, preferably while they are being slightly abraded, unitl all the sacrificial material on these portions is wet by the liquid metal. In doing so the liquid metal dissolves the sacrificial metal and permanently wets the parent metal. Preferred materials used in the process and for the electrodes of electrical contact devices are high purity (99.0%) nickel or AISI type 304 stainless steel for the electrical contact devices, gallium as the liquid metal, and gold as the sacrificial material.

  2. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  3. Feasible homopolar dynamo with sliding liquid-metal contacts

    OpenAIRE

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm~34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the ri...

  4. Liquid structure and melting of trivalent metal chlorides

    International Nuclear Information System (INIS)

    Tosi, M.P.; Pastore, G.; Saboungi, M.L.; Price, D.L.

    1991-03-01

    Many divalent and trivalent metal ions in stoichiometric liquid mixtures of their halides with alkali halides are fourfold or sixfold coordinated by halogens into relatively long-lived ''complexes''. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure polyvalent metal halide melt determines the character of its short-range and possible intermediate-range order. The available evidence on local coordination in some 140 mixtures has been successfully classified by a structure sorting method based on Pettifor's chemical scale of the elements. Within the general phenomenological frame provided by structure sorting, main attention is given in this work to the liquid structure and melting mechanisms of trivalent metal chlorides. The liquid structure of YCl 3 is first discussed on the basis of neutron diffraction measurements and of calculations within a simple ionic model, and the melting mechanisms of YCl 3 and AlCl 3 , which are structurally isomorphous in the crystalline state, are contrasted. By appeal to macroscopic melting parameters and transport coefficients and to liquid structure data on SbCl 3 , it is proposed that the melting mechanisms of these salts may be classified into three main types in correlation with the character of the chemical bond. (author). 31 refs, 1 fig., 3 tabs

  5. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  6. Modern Aspects of Liquid Metal Engineering

    Science.gov (United States)

    Czerwinski, Frank

    2017-02-01

    Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.

  7. Electro-Hydrodynamic Shooting Phenomenon of Liquid Metal Stream

    OpenAIRE

    Fang, Wen-Qiang; He, Zhi-Zhu; Liu, Jing

    2014-01-01

    We reported an electro-hydrodynamic shooting phenomenon of liquid metal stream. A small voltage direct current electric field would induce ejection of liquid metal inside capillary tube and then shooting into sodium hydroxide solution to form discrete droplets. The shooting velocity has positive relationship with the applied voltage while the droplet size is dominated by the aperture diameter of the capillary nozzle. Further, the motion of the liquid metal droplets can be flexibly manipulated...

  8. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  9. Engineering: Liquid metal pumped at a record temperature

    Science.gov (United States)

    Lambrinou, Konstantina

    2017-10-01

    Although liquid metals are effective fluids for heat transfer, pumping them at high temperatures is limited by their corrosiveness to solid metals. A clever pump design addresses this challenge using only ceramics. See Article p.199

  10. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  11. Surface energies of metals in both liquid and solid states

    Energy Technology Data Exchange (ETDEWEB)

    Aqra, Fathi, E-mail: fathiaqra2009@hotmail.com [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown); Ayyad, Ahmed [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown)

    2011-05-15

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension ({gamma}{sub m}), surface energy ({gamma}{sub SV}), surface excess entropy (-d{gamma}/dT), surface excess enthalpy (H{sub s}), coefficient of thermal expansion ({alpha}{sub m} and {alpha}{sub b}), sound velocity (c{sub m}) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  12. Utility industry evaluation of the metal fuel facility and metal fuel performance for liquid metal reactors

    International Nuclear Information System (INIS)

    Burstein, S.; Gibbons, J.P.; High, M.D.; O'Boyle, D.R.; Pickens, T.A.; Pilmer, D.F.; Tomonto, J.R.; Weinberg, C.J.

    1990-02-01

    A team of utility industry representatives evaluated the liquid metal reactor metal fuel process and facility conceptual design being developed by Argonne National Laboratory (ANL) under Department of Energy sponsorship. The utility team concluded that a highly competent ANL team was making impressive progress in developing high performance advanced metal fuel and an economic processing and fabrication technology. The utility team concluded that the potential benefits of advanced metal fuel justified the development program, but that, at this early stage, there are considerable uncertainties in predicting the net overall economic benefit of metal fuel. Specific comments and recommendations are provided as a contribution towards enhancing the development program. 6 refs

  13. Microstructure modeling in weld metal

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.

    1995-01-01

    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model's comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds

  14. A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid.

    Science.gov (United States)

    A de Castro, Isabela; Chrimes, Adam F; Zavabeti, Ali; Berean, Kyle J; Carey, Benjamin J; Zhuang, Jincheng; Du, Yi; Dou, Shi X; Suzuki, Kiyonori; Shanks, Robert A; Nixon-Luke, Reece; Bryant, Gary; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Daeneke, Torben

    2017-12-13

    We demonstrate a magnetocaloric ferrofluid based on a gadolinium saturated liquid metal matrix, using a gallium-based liquid metal alloy as the solvent and suspension medium. The material is liquid at room temperature, while exhibiting spontaneous magnetization and a large magnetocaloric effect. The magnetic properties were attributed to the formation of gadolinium nanoparticles suspended within the liquid gallium alloy, which acts as a reaction solvent during the nanoparticle synthesis. High nanoparticle weight fractions exceeding 2% could be suspended within the liquid metal matrix. The liquid metal ferrofluid shows promise for magnetocaloric cooling due to its high thermal conductivity and its liquid nature. Magnetic and thermoanalytic characterizations reveal that the developed material remains liquid within the temperature window required for domestic refrigeration purposes, which enables future fluidic magnetocaloric devices. Additionally, the observed formation of nanometer-sized metallic particles within the supersaturated liquid metal solution has general implications for chemical synthesis and provides a new synthetic pathway toward metallic nanoparticles based on highly reactive rare earth metals.

  15. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  16. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  17. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  18. Isentropic compression of liquid metals near the melt line

    Science.gov (United States)

    Seagle, Christopher; Porwitzky, Andrew

    2017-06-01

    A series of experiments designed to study the liquid metal response to isentropic compression have been conducted at Sandia's Z Pulsed Power Facility. Cerium and Tin have been shock melted by driving a quasi-ballistic flyer into the samples followed by a ramp compression wave generated by an increased driving magnetic field. The sound speed of the liquid metals has been investigated with the purpose of exploring possible solidification on ramp compression. Additional surface sensitive diagnostics have been employed to search for signatures of solidification at the window interface. Results of these experiments will be discussed in relation to the existing equation of state models and phase diagrams for these materials as well as future plans for exploring the response of liquid metals near the melt line. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  20. Facility protecting liquid metal circuits from deformation and accident

    International Nuclear Information System (INIS)

    Klemensevic, J.; Klinga, J.; Tomes, V.

    1986-01-01

    At the suction and delivery sides of the liquid metal pump the piping is connected via membranes to a storage tank. In case the permissible working overpressure is exceeded the membranes burst which allows the outflow of liquid metal into the storage tank. The membranes are placed between valves, which allows their easy replacement. (J.B.)

  1. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  2. Measurement of the differential pressure of liquid metals

    Science.gov (United States)

    Metz, H.J.

    1975-09-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed. (auth)

  3. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  4. Measurement of the differential pressure of liquid metals

    International Nuclear Information System (INIS)

    Metz, H.J.

    1975-01-01

    This patent relates to an improved means for measuring the differential pressure between any two points in a process liquid metal coolant loop, wherein the flow of liquid metal in a pipe is opposed by a permanent magnet liquid metal pump until there is almost zero flow shown by a magnetic type flowmeter. The pressure producing the liquid metal flow is inferred from the rate of rotation of the permanent magnet pump. In an alternate embodiment, a differential pressure transducer is coupled to a process pipeline by means of high-temperature bellows or diaphragm seals, and a permanent magnet liquid metal pump in the high-pressure transmission line to the pressure transducer can be utilized either for calibration of the transducer or for determining the process differential pressure as a function of the magnet pump speed

  5. Polarized Light from the Sun: Unification of the Corona and Analysis of the Second Solar Spectrum — Further Implications of a Liquid Metallic Hydrogen Solar Model

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2015-07-01

    Full Text Available In order to account for the slight polarization of the continuum towards the limb, propo- nents of the Standard Solar Model (SSM must have recourse to electron or hydrogen- based scattering of light, as no other mechanism is possible in a gaseous Sun. Con- versely, acceptance that the solar body is comprised of condensed matter opens up new avenues in the analysis of this problem, even if the photospheric surface itself is viewed as incapable of emitting polarized light. Thus, the increased disk polarization, from the center to the limb, can be explained by invoking the scattering of light by the at- mosphere above the photosphere. The former is reminiscent of mechanisms which are known to account for the polarization of sunlight in the atmosphere of the Earth. Within the context of the Liquid Metallic Hydrogen Solar Model (LMHSM, molecules and small particles, not electrons or hydrogen atoms as required by the SSM, would primarily act as scattering agents in regions also partially comprised of condensed hy- drogen structures (CHS. In addition, the well-known polarization which characterizes the K-corona would become a sign of emission polarization from an anisotropic source, without the need for scattering. In the LMHSM, the K, F, and T- coronas can be viewed as emissive and reflective manifestations of a single corona l entity adopting a radially anisotropic structure, while slowly cooling with altitude above the photosphere. The presence of “dust particles”, advanced by proponents of the SSM, would no longer be required to explain the F and T-corona, as a single cooling structure would account for the properties of the K, F, and T coronas. At the same time, the polarized “Second Solar Spectrum”, characterized by the dominance of certain elemental or ionic spectral lines and an abundance of molecular lines, could be explained in the LMHSM, by first invoking interface polarization and coordination of these species with condensed matter

  6. Liquid metal actuation-based reversible frequency tunable monopole antenna

    Science.gov (United States)

    Kim, Daeyoung; Pierce, Richard G.; Henderson, Rashaunda; Doo, Seok Joo; Yoo, Koangki; Lee, Jeong-Bong

    2014-12-01

    We report the fabrication and characterization of a reversible resonant frequency tunable antenna based on liquid metal actuation. The antenna is composed of a coplanar waveguide fed monopole stub printed on a copper-clad substrate, and a tunnel-shaped microfluidic channel linked to the printed metal. The gallium-based liquid metal can be injected and withdrawn from the channel in response to an applied air pressure. The gallium-based liquid metal is treated with hydrochloric acid to eliminate the oxide layer, and associated wetting/sticking problems, that arise from exposure to an ambient air environment. Elimination of the oxide layer allows for reliable actuation and repeatable and reversible tuning. By controlling the liquid metal slug on-demand with air pressure, the liquid metal can be readily controllable to connect/disconnect to the monopole antenna so that the physical length of the antenna reversibly tunes. The corresponding reversible resonant frequency changes from 4.9 GHz to 1.1 GHz. The antenna properties based on the liquid metal actuation were characterized by measuring the reflection coefficient and agreed well with simulation results. Additionally, the corresponding time-lapse images of controlling liquid metal in the channel were studied.

  7. On the self-diffusion process in liquid metals and alloys by the radioactive tracer method

    International Nuclear Information System (INIS)

    Ganovici, L.

    1978-01-01

    A theoretical and experimental study of self-diffusion process in liquid metals and alloys is presented. There are only a few pure metals for which diffusion coefficients in a liquid state are known. The thesis aims at increasing the number of liquid metals for which diffusion coefficients are available, by determining these values for liquids: Cd, Tl, Sb and Te. The self-diffusion coefficients of Te in some tellurium based liquid alloys such as Tl 2 Te, PbTe and Bi 90 Te 10 were also determined. Self-diffusion coefficients have been measured using two radioactive tracer methods: a) the capillary-reservoir method; b) the semi-infinite capillary method. The self-diffusion coefficients were derived from the measured radioactive concentration profile, using the solutions of Fick's second law for appropriate initial and limit conditions. The temperature dependence study of self-diffusion coefficients in liquids Cd, Tl, Sb and Te, was used to check some theoretical models on the diffusion mechanism in metallic melts. The experimental diffusion data interpreted in terms of the Arrhenius type temperature dependence, was used to propose two simple empiric relations for determining self diffusion coefficients of group I liquid metals and for liquid semi-metals. It was established a marked decrease of self-diffusion coefficients of liquid Te close to the solidification temperature. The diffusivity of Te in liquid Tl 2 Te points to an important decrease close to the solidification temperature. A simplified model was proposed for the diffusion structural unit in this alloy and the hard sphere model for liquid metals was checked by comparing the theoretical and experimental self-diffusion coefficients. (author)

  8. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Jackson, E.D.

    2002-01-01

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  9. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The K-corona, a significant portion of the solar atmosphere, displays a continuous spectrum which closely parallels photospheric emission, though without the presence of overlying Fraunhofer lines. The E-corona exists in the same region and is characterized by weak emission lines from highly ionized atoms. For instance, the famous green emission line from coronium (FeXIV is part of the E-corona. The F-corona exists beyond the K/E-corona and, like the photospheric spectrum, is characterized by Fraunhofer lines. The F-corona represents photospheric light scattered by dust particles in the interplanetary medium. Within the gaseous models of the Sun, the K-corona is viewed as photospheric radiation which has been scattered by relativistic electrons. This scattering is thought to broaden the Fraunhofer lines of the solar spectrum such that they can no longer be detected in the K-corona. Thus, the gaseous models of the Sun account for the appearance of the K-corona by distorting photospheric light, since they are unable to have recourse to condensed matter to directly produce such radiation. Conversely, it is now advanced that the continuous emission of the K-corona and associated emission lines from the E-corona must be interpreted as manifestations of the same phenomenon: condensed matter exists in the corona. It is well-known that the Sun expels large amounts of material from its surface in the form of flares and coronal mass ejections. Given a liquid metallic hydrogen model of the Sun, it is logical to assume that such matter, which exists in the condensed state on the solar surface, continues to manifest its nature once expelled into the corona. Therefore, the continuous spectrum of the K-corona provides the twenty-seventh line of evidence that the Sun is composed of condensed matter.

  10. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    Science.gov (United States)

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  11. Structural disorder in metallic glass-forming liquids.

    Science.gov (United States)

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  12. Dynamic stabilization of imploding liquid metal liner

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1979-01-01

    The rotational stabilization has been proposed against the Rayleigh-Taylor instability of the imploding liquid metal liner. In this paper, the discussion is made on the possibility of the dynamic stabilization by applying the oscillating azimuthal magnetic field in addition to the axial field. In contrast to the rotational stabilization, the required (field) energy for this stabilization is also used for the liner driving or the plasma confinement. In the analysis, the liner subjected to the acceleration is assumed to be infinitely long, at rest and have the situation at the start of the implosion or turnaround. At turnaround, the existence of the plasma is taken into account. The perturbed motion of the liner is discussed with a linear stability analysis. Results are as follows: (1) The dynamic stabilization at the start of the implosion is possible if the distance from the conducting wall to the liner outer surface is comparable with or less than the liner thickness. (2) At turnaround, the stability is improved with decreasing the ratio of the plasma radius to that of the liner inner surface however the kink mode (m = 1) cannot be suppressed. (author)

  13. Liquid metal cooled divertor for ARIES

    International Nuclear Information System (INIS)

    Muraviev, E.

    1994-01-01

    The paper represents an overview of the design study of a divertor system with liquid metal coolant (gallium) related to ARIES project. The work has been conducted by a group of specialists from Institute of Nuclear Fusion of Russian Scientific Center Kurchatov Institute within the scope of subcontract No. E212601 with General Atomics, San Diego, CA, USA. The key features of the proposed divertor design concept based on the specific LM coolant properties are as follows: (1) the requirement of the vacuum tightness of the divertor cooling tract is dismissed; (2) the pressurized coolant ducts can be separated from the plasma facing structure (PFS) elements which are subject to the thermal loads, and with this feature PFS can be replaced independently, without disturbing the cooling system; this is achieved with using free LM jets sprayed on the back side of the PFS elements, free LM film cooling and free LM draining under the action of gravity force. The divertor design has been developed formally as particularly applicable to ARIES-II reactor, the major reason for this being the choice of a vanadium-based alloy as the structural material compatible with gallium. Though there are some good prospects that carbon based materials including SiC-composite might be compatible with gallium as well. Then this concept could be used also in ARIES-IV and this possibility should be kept in mind for future

  14. Effects of pulsed power input into a liquid metal target

    CERN Document Server

    Ni, L; Spitzer, H

    1999-01-01

    In order to validate the computations of stress generated in the target container by the sudden input of a large amount of power in the liquid metal of a high-power spallation target, first experimental investigations were carried out in an international collaboration. Temperature and beam profile measurements showed that up to 61% of the incoming beam power was deposited in the target. The spatial power distribution was reconstructed from the experimental data. A computational model with consideration of fluid-structure interface was employed to simulate the pressure waves in the liquid and the resulting dynamic stress on the container. The maximum stress on the container was found to be 13.6 MP. Although experimental data are still very preliminary, a comparison of the measured stress and deformation data with the computational results showed reasonable agreement in the amplitudes, which are the most important data for engineering design. Although the methods developed to measure the strain on the target su...

  15. Diverse transformations of liquid metals between different morphologies.

    Science.gov (United States)

    Sheng, Lei; Zhang, Jie; Liu, Jing

    2014-09-10

    Transformation from a film into a sphere, rapid merging of separate objects, controlled self-rotation, and planar locomotion are the very unusual phenomena observed in liquid metals under application of an electric field to a liquid metal immersed in or sprayed with water. A mechanism for these effects is suggested and potential applications - for example the recovery of liquid metal previously injected into the body for therapeutic purposes - are outlined. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magnetohydrodynamic instability of a cylindrical liquid-metal brush

    International Nuclear Information System (INIS)

    Hong, S.H.; Wilhelm, H.E.

    1976-01-01

    The stability of a homopolar generator brush, consisting of a liquid-metal-filled cavity between rotating (rotor) and fixed (stator) cylinder electrodes, is analyzed in the presence of radial current transport and an axial homogeneous magnetic field. Within the frame of linear magnetohydrodynamics, it is shown that the liquid-metal flow in the brush is always unstable if the brush transports current. In the absence of current flow (infinite load) the axial magnetic field stabilizes the liquid-metal flow in the brush if the magnetic energy density is larger than a certain fraction of the energy density of the rotating fluid

  17. Modeling of liquid flow in surface discontinuities

    Science.gov (United States)

    Lobanova, I. S.; Meshcheryakov, V. A.; Kalinichenko, A. N.

    2018-01-01

    Polymer composite and metallic materials have found wide application in various industries such as aviation, rocket, car manufacturing, ship manufacturing, etc. Many design elements need permanent quality control. Ensuring high quality and reliability of products is impossible without effective nondestructive testing methods. One of these methods is penetrant testing using penetrating substances based on liquid penetration into defect cavities. In this paper, we propose a model of liquid flow to determine the rates of filling the defect cavities with various materials and, based on this, to choose optimal control modes.

  18. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    Idrees, M.; Khwaja, F.A.; Razmi, M.S.K.

    1981-08-01

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  19. Feasible homopolar dynamo with sliding liquid-metal contacts

    International Nuclear Information System (INIS)

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm≈34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the rings R i /R o ≈0.36 and the spiral pitch angle 54.7°. In a setup of two copper rings with the thickness of 3 cm, R i =10 cm and R o =30 cm, self-excitation of the magnetic field is expected at a critical rotation frequency around 10 Hz

  20. Novel thiosalicylate-based ionic liquids for heavy metal extractions

    Energy Technology Data Exchange (ETDEWEB)

    Leyma, Raphlin; Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg (South Africa); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Krachler, Regina; Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria)

    2016-08-15

    Highlights: • Six thiosalicylate-based ammonium and phosphonium ionic liquids (ILs) were newly synthesized. • ILs showed good extraction of cadmium, copper, and zinc. • Phosphonium ILs showed better extraction efficiencies than their ammonium counterparts. - Abstract: This study aims to develop novel ammonium and phosphonium ionic liquids (ILs) with thiosalicylate (TS) derivatives as anions and evaluate their extracting efficiencies towards heavy metals in aqueous solutions. Six ILs were synthesized, characterized, and investigated for their extracting efficacies for cadmium, copper, and zinc. Liquid-liquid extractions of Cu, Zn, or Cd with ILs after 1–24 h using model solutions (pH 7; 0.1 M CaCl{sub 2}) were assessed using flame atomic absorption spectroscopy (F-AAS). Phosphonium-based ILs trihexyltetradecylphosphonium 2-(propylthio)benzoate [P{sub 66614}][PTB] and 2-(benzylthio)benzoate [P{sub 66614}][BTB] showed best extraction efficiency for copper and cadmium, respectively and zinc was extracted to a high degree by [P{sub 66614}][BTB] exclusively.

  1. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  2. Liquid metal cooled reactor for space power

    International Nuclear Information System (INIS)

    Weitzberg, Abraham

    2003-01-01

    The conceptual design is for a liquid metal (LM) cooled nuclear reactor that would provide heat to a closed Brayton cycle (CBC) power conversion subsystem to provide electricity for electric propulsion thrusters and spacecraft power. The baseline power level is 100 kWe to the user. For long term power generation, UN pin fuel with Nb1Zr alloy cladding was selected. As part of the SP-100 Program this fuel demonstrated lifetime with greater than six atom percent burnup, at temperatures in the range of 1400-1500 K. The CBC subsystem was selected because of the performance and lifetime database from commercial and aircraft applications and from prior NASA and DOE space programs. The high efficiency of the CBC also allows the reactor to operate at relatively low power levels over its 15-year life, minimizing the long-term power density and temperature of the fuel. The scope of this paper is limited to only the nuclear components that provide heated helium-xenon gas to the CBC subsystem. The principal challenge for the LM reactor concept was to design the reactor core, shield and primary heat transport subsystems to meet mission requirements in a low mass configuration. The LM concept design approach was to assemble components from prior programs and, with minimum change, determine if the system met the objective of the study. All of the components are based on technologies having substantial data bases. Nuclear, thermalhydraulic, stress, and shielding analyses were performed using available computer codes. Neutronics issues included maintaining adequate operating and shutdown reactivities, even under accident conditions. Thermalhydraulic and stress analyses calculated fuel and material temperatures, coolant flows and temperatures, and thermal stresses in the fuel pins, components and structures. Using conservative design assumptions and practices, consistent with the detailed design work performed during the SP-100 Program, the mass of the reactor, shield, primary heat

  3. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  4. Blanket of a hybrid thermonuclear reactor with liquid- metal cooling

    International Nuclear Information System (INIS)

    Terent'ev, I.K.; Fedorovich, E.P.; Paramonov, P.M.; Zhokhov, K.A.

    1982-01-01

    Blanket design of a hybrid thermopuclear reactor with a liquid metal coolant is described. To decrease MHD-resistance for uranium zone fuel elements a cylindrical shape is suggested and movement of liquid-metal coolant in fuel element packets is presumed to be in perpendicular to the magnetic field and fuel element axes direction. The first wall is cooled by water, blanket-by lithium-lead alloy

  5. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps

    International Nuclear Information System (INIS)

    Maidana, Carlos O.; Nieminen, Juha E.

    2017-01-01

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed

  6. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    Directory of Open Access Journals (Sweden)

    Carlos O. Maidana

    2017-02-01

    Full Text Available Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  7. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Carlos O.; Nieminen, Juha E. [Maidana Research, Grandville (United States)

    2017-02-15

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  8. ANALYSIS OF THERMAL CONDUCTION AT MELTING OF METAL BRICKS IN LIQUID BATH. MESSAGE 2. MODELING AND CALCULATION OF PROCESS OF THE ALLOYED STEEL BRICKS MELTING IN MODEM MELTING AGGREGATES

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolskij

    2006-01-01

    Full Text Available The methods of calculation of duration of the metallic bricks heating and melting in liquid bath, taking into account variability of thermal-physical characteristics of metal due to temperature, is developed.

  9. Liquid Metal Embrittlement: new understanding for an old problem

    Science.gov (United States)

    Srolovitz, David

    2008-03-01

    When liquid metals are brought into contact with other polycrystalline metals, deep liquid-filled grooves often form at the intersections of grain boundaries and the solid-liquid interface. In some systems, e.g., Al-Ga, Cu-Bi and Ni-Bi, the liquid film quickly penetrates deep into the solid along the grain boundaries and leads to brittle, intergranular fracture under the influence of modest stresses. This is a form of liquid metal embrittlement (LME). This phenomenon is ubiquitous in material processing and is particularly important in nuclear reactor scenarios in which liquid metals are used as coolants and as spallation targets. The penetration of a liquid phase along the grain boundary is a complex phenomenon, involving several different types of simultaneous processes. The tendency for and rate of LME are also sensitive to externally controllable factors such as temperature and applied stress. Because of the interplay between the underlying phenomena that occur in LME, it has been difficult to perform experiments that can be interpreted to understand which processes control LME and which are simply parasitic. We study LME by performing molecular dynamics simulations of an Al bicrystal in contact with liquid Ga and investigate how Ga penetrates along the grain boundaries during the early stages of the wetting process. We use the simulation results to propose a new mechanism for LME and compare it with general trends gleaned from a series of LME experimental studies.

  10. Liquid metal embrittlement of T91 and 316L steels by heavy liquid metals: A fracture mechanics assessment

    Science.gov (United States)

    Auger, T.; Hamouche, Z.; Medina-Almazàn, L.; Gorse, D.

    2008-06-01

    LME of the martensitic T91 and the austenitic 316L steels have been investigated in the CCT geometry in the plane-stress condition. Using such a geometry, premature cracking induced by a liquid metal (PbBi and Hg) can be studied using a fracture mechanics approach based on CTOD, J-Δ a and fracture assessment diagram. One is able to measure a reduction of the crack tip blunting and a reduction of the energy required for crack propagation induced by the liquid metal. In spite of some limitations, this qualitative evaluation shows that liquid metals do not induce strong embrittlement on steels in plane-stress condition. Rather, the effect of the liquid metal seems to promote a fracture mode by plastic collapse linked with strain localization. It indicates that the materials, in spite of a potential embrittlement, should still be acceptable in terms of safety criteria.

  11. Surfing liquid metal droplet on the same metal bath via electrolyte interface

    Science.gov (United States)

    Zhao, Xi; Tang, Jianbo; Liu, Jing

    2017-09-01

    We report a phenomenon that when exerting an electric field gradient across a liquid metal/electrolyte interface, a droplet of the same liquid metal can persistently surf on the interface without coalescence. A thin layer of the intermediate solution, which separates the droplet from direct metallic contacting and provides levitating force, is responsible for such surfing effect. The electric resistance of this solution film is measured, and the film thickness is further theoretically calculated. The fact that the levitating state can be switched on and off via a controlled manner paves the way for reliably manipulating liquid metal droplets or devices.

  12. Specific power of liquid-metal-cooled reactors

    International Nuclear Information System (INIS)

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs

  13. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  14. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    Science.gov (United States)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  15. Numerical modelling of methanol liquid pool fires

    Science.gov (United States)

    Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.

    1999-12-01

    The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.

  16. Reliability and Maintainability Data for Liquid Metal Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles [Idaho National Laboratory

    2015-05-01

    One of the coolants of interest for future fusion breeding blankets is lead-lithium. As a liquid metal it offers the advantages of high temperature operation for good station efficiency, low pressure, and moderate flow rate. This coolant is also under examination for use in test blanket modules to be used in the ITER international project. To perform reliability, availability, maintainability and inspectability (RAMI) assessment as well as probabilistic safety assessment (PSA) of lead-lithium cooling systems, component failure rate data are needed to quantify the system models. RAMI assessment also requires repair time data and inspection time data. This paper presents a new survey of the data sets that are available at present to support RAMI and PSA quantification. Recommendations are given for the best data values to use when quantifying system models.

  17. Investigation of electronic transport properties of some liquid transition metals

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.

  18. Metal Matrix Composites for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    ...) technologies being developed for application to Liquid Rocket Engines (LIRE). Developments in LRE technology for the US Air Force are being tracked and planned through the Integrated High Payoff Rocket Propulsion Technologies Program (IHPRPT...

  19. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  20. Light-driven liquid metal nanotransformers for biomedical theranostics

    Science.gov (United States)

    Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro

    2017-05-01

    Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging.

  1. Modelling Methods of Magnetohydrodynamic Phenomena Occurring in a Channel of the Device Used to Wash Out the Spent Automotive Catalyst by a Liquid Metal

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-06-01

    Full Text Available The recovery of precious metals is necessary for environmental and economic reasons. Spent catalysts from automotive industry containing precious metals are very attractive recyclable material as the devices have to be periodically renovated and eventually replaced. This paper presents the method of removing platinum from the spent catalytic converters applying lead as a collector metal in a device used to wash out by using mangetohydrodynamic stirrer. The article includes the description of the methods used for modeling of magnetohydrodynamic phenomena (coupled analysis of the electromagnetic, temperature and flow fields occurring in this particular device. The paper describes the general phenomena and ways of coupling the various physical fields for this type of calculation. The basic computational techniques with a discussion of their advantages and disadvantages are presented.

  2. Polonium evaporation from dilute liquid metal solutions

    CERN Document Server

    Rizzi, Matthias; Eichler, Robert; Türler, Andreas; Mendonça, Tania Melo; Stora, Thierry; Gonzalez Prieto, Borja; Aerts, Alexander; Schumann, Dorothea

    2014-01-01

    The evaporation behavior of polonium as one of the most hazardous radionuclides produced in spallation based neutron sources with liquid lead-bismuth targets has been quantified in this study. The normalized apparent vapor pressure, i.e. the Henry constant of polonium over liquid lead-bismuth eutectic was determined in the temperature range relevant for operation of such targets, i.e. 164-500 degrees C. For comparison and better fundamental understanding, the Henry constant of polonium over pure liquid bismuth was determined in a temperature range of 300-500 degrees C. The Henry constants of polonium in this temperature range were found to be orders of magnitude higher than expected from earlier studies at higher temperatures. Possible mechanisms responsible for this unexpected behavior are discussed.

  3. Primary metals extraction by liquid membranes

    International Nuclear Information System (INIS)

    Subramanian, K.N.

    1980-01-01

    The extraction of copper and uranium by liquid membranes is presented. The recovery of uranium from wet process phosphoric acid is described. The development of this process has progressed through three stages, firstly the chemistry of uranium extraction as it pertains to liquid membrane systems. This was followed by continuous extraction tests on fresh black acid and on aged acid. Results on a 1 litre/minute pilot plant demonstrated that the process could be operated with a minimum of feed pretreatment and about 90% of uranium could be extracted. The extraction of copper from copper leach liquors is also described. (U.K.)

  4. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  5. Temperature-dependent liquid metal flowrate control device

    Science.gov (United States)

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  6. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  7. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  8. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  9. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    Science.gov (United States)

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  10. Technology for gelled liquid cryogenic propellants - Metallized hydrogen/aluminum

    Science.gov (United States)

    Starkovich, John; Palaszewski, Bryan

    1993-01-01

    The theoretical basis for solid-loaded or densified liquid hydrogen propellants for advanced space applications is outlined. Metallized propellants make it possible to increase the safety of propulsion systems as well as the payloads of future vehicles. Nanogellant formulated liquid hydrogen gels and other fuel gels are characterized by excellent settling stability, low yield point, and a high shear thinning index which makes them attractive for propulsion applications.

  11. Quantum simulation of low-temperature metallic liquid hydrogen

    OpenAIRE

    Chen, Ji; Xin-Zheng, Li; Zhang, Qianfan; Probert, Matt; Pickard, Chris J.; Needs, Richard J.; Michaelides, Angelos; Wang, Enge

    2013-01-01

    Experiments and computer simulations have shown that the melt-ing temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a liquid state might exist at low temperatures. It has also been suggested that this low temperature liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Here, we report results for hydrogen at high pressures using ab initio path-integral molecular dynamics methods, which include a description of t...

  12. Development of a Hemispherical Metal Diaphragm for Single-Cycle Liquid-Metal Positive Expulsion Systems

    National Research Council Canada - National Science Library

    Gorland, Sol

    1965-01-01

    This report presents experimental results pertaining to the design and development of a metallic expulsion diaphragm for single-cycle positive expulsion of high-temperature liquid in an agravity condition...

  13. Single-magnet rotary flowmeter for liquid metals

    OpenAIRE

    Priede, Jānis; Buchenau, Dominique; Gerbeth, Gunter

    2010-01-01

    We present a theory of single-magnet flowmeter for liquid metals and compare it with experimental results. The flowmeter consists of a freely rotating permanent magnet, which is magnetized perpendicularly to the axle it is mounted on. When such a magnet is placed close to a tube carrying liquid metal flow, it rotates so that the driving torque due to the eddy currents induced by the flow is balanced by the braking torque induced by the rotation itself. The equilibrium rotation rate, which var...

  14. Material behavior and physical chemistry in liquid metal systems

    International Nuclear Information System (INIS)

    The book gives an overview of current work in liquid metal science and technology. Included are the topics of sodium corrosion and mass transfer, impurities in sodium, lithium corrosion, material behavior, lead corrosion, chemical reactions, analytical chemistry, physical chemistry, solubility in alkali metals, and interstitial elements transfer. The 57 papers include one discussion report; the latter challenges the attempts made as reported in the other papers to determine the diffusing coefficients of the alloying elements during corrosion of austenitic stainless steel in liquid sodium. The preface groups the papers into logical categories and offers several overviews concerning results and findings. The index is to topics

  15. Critical length scales for flow phenomena in liquid metal batteries

    Science.gov (United States)

    Kelley, Douglas; Weier, Tom

    2017-11-01

    Liquid metal batteries, a new technology for grid-scale energy storage, are composed of three liquid layers and therefore subject to a wide variety of fluid dynamical phenomena, both beneficial and detrimental. Some, like thermal convection and electrovortex flow, drive finite flow regardless of the size, current density, and temperature of the battery. Others, like the Tayler instability and the metal pad instability, occur only in certain parameter regimes - almost always dependent on length scale. I will discuss critical length scales, considering implications for battery design in light of fundamental fluid dynamics. This work was supported by the National Science Foundation under Award Number CBET-1552182.

  16. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  17. Competing forces in liquid metal electrodes and batteries

    Science.gov (United States)

    Ashour, Rakan F.; Kelley, Douglas H.; Salas, Alejandro; Starace, Marco; Weber, Norbert; Weier, Tom

    2018-02-01

    Liquid metal batteries are proposed for low-cost grid scale energy storage. During their operation, solid intermetallic phases often form in the cathode and are known to limit the capacity of the cell. Fluid flow in the liquid electrodes can enhance mass transfer and reduce the formation of localized intermetallics, and fluid flow can be promoted by careful choice of the locations and topology of a battery's electrical connections. In this context we study four phenomena that drive flow: Rayleigh-Bénard convection, internally heated convection, electro-vortex flow, and swirl flow, in both experiment and simulation. In experiments, we use ultrasound Doppler velocimetry (UDV) to measure the flow in a eutectic PbBi electrode at 160 °C and subject to all four phenomena. In numerical simulations, we isolate the phenomena and simulate each separately using OpenFOAM. Comparing simulated velocities to experiments via a UDV beam model, we find that all four phenomena can enhance mass transfer in LMBs. We explain the flow direction, describe how the phenomena interact, and propose dimensionless numbers for estimating their mutual relevance. A brief discussion of electrical connections summarizes the engineering implications of our work.

  18. Optimizing advanced liquid metal reactors for burning actinides

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1994-10-01

    In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)

  19. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  20. Structural transformations in liquid metallic glassformers

    International Nuclear Information System (INIS)

    Son, L.; Ryltcev, R.; Sidorov, V.; Sordelet, D.

    2007-01-01

    The statistics and thermodynamics of quasi-chemical bonds in glass forming liquid alloys have been described by method used in polymer statistics. It is shown that this bonging results in structural anomalies of two types. The first corresponds to relaxation of metastable globular state, which takes place at lower temperature, while the second one represents the drastic change of mean length of quasi-polymers

  1. Liquid nanodroplet formation through phase explosion mechanism in laser-irradiated metal targets.

    Science.gov (United States)

    Mazzi, Alberto; Gorrini, Federico; Miotello, Antonio

    2015-09-01

    Some quantitative aspects of laser-irradiated pure metals, while approaching phase explosion, are still not completely understood. Here, we develop a model that describes the main quantities regulating the liquid-vapor explosive phase transition and the expulsion of liquid nanodroplets that, by solidifying, give rise to nanoparticle formation. The model combines both a thermodynamics description of the explosive phase change and a Monte Carlo simulation of the randomly generated critical vapor bubbles. The calculation is performed on a set of seven metals (Al, Fe, Co, Ni, Cu, Ag, and Au) which are frequently used in pulsed laser ablation experiments. Our final predictions about the size distribution of the liquid nanodroplets and the number ratio of liquid/vapor ejected atoms are compared, whenever possible, with available molecular dynamics simulations and experimental data.

  2. METAL CONCENTRATION OF LIQUID EFFLUENTS AND ...

    African Journals Online (AJOL)

    a

    The pharmaceutical industry comprises of those companies that produce drugs and ... of heavy metal contamination in the industrial area of Kattedan, India. ..... 4.0. Intensive. 4.81. Intensive. Cr. 2.50. Intensive. 1.92. Intensive. Cd. 1.16. Intensive. 2.40. Intensive. Ti. 3.0. Intensive. 4.81. Intensive. Ca. 1.25. Intensive. 1.09.

  3. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    Science.gov (United States)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  4. Heavy density liquid metal spallation target studies for Indian ADS

    Indian Academy of Sciences (India)

    Considering the neutron yield, thermal-hydraulics and radiation damage issues, we are proposing to develop spallation target based on heavy density liquid metals like lead and lead-bismuth-eutectic (LBE). Both window and windowless target configurations are presently being studied. In view of the various advantages ...

  5. Determination of liquid metal density using X-radiography

    International Nuclear Information System (INIS)

    Mel'nik, B.A.

    1978-01-01

    A method for measuring molten metal densities based on the determination of the critical angle of complete external X-ray reflection angle is proposed. A good agreement between the experimental and reported data is exemplified by density measurements of liquid Ga, In and Hg at different temperatures. The theoretical method accuracy is 0.2%

  6. Fuel transfer manipulator for liquid metal nuclear reactors

    International Nuclear Information System (INIS)

    Sturges, R.H.

    1983-01-01

    A manipulator for transferring fuel assemblies between inclined fuel chutes of a liquid metal nuclear reactor installation. Hoisting means are mounted on a mount supported by beams pivotably attached by pins to the mount and to the floor in such a manner that pivoting of the beams causes movement and tilting of a hoist tube between positions of alignment with the inclined chutes. (author)

  7. Metal concentration of liquid effluents and surroundings of a ...

    African Journals Online (AJOL)

    Major and trace metals (Mg, Na, K, Ca, Fe, Zn, Cu, Sn, Al, Pb, As, Cr, Cd, Mn and Ti) in liquid effluents, soil sediments and plant parts (roots and leaves) from Tisco Nigeria Limited, Akure, were determined in both open effluent channel and closed direct tank. The plant in the open effluent channel was Pennisetum purpureum ...

  8. Liquid Metal Oscillation and Arc Behaviour during Welding

    NARCIS (Netherlands)

    Yudodibroto, B.Y.B.

    2010-01-01

    The purpose of this research is to obtain insight into the oscillation behaviour of the liquid metal and the arc behaviour during GMA welding. Observations of the weld pool and the arc were undertaken by visual means using a high-speed video and by analysis of the voltage. To deal with the complex

  9. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  10. Liquid metal blanket module testing and design for ITER/TIBER II

    International Nuclear Information System (INIS)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs

  11. Experimental study of liquid-metal target designs of accelerating-controlled systems

    International Nuclear Information System (INIS)

    Iarmonov, Mikhail; Makhov, Kirill; Novozhilova, Olga; Meluzov, A.G.; Beznosov, A.V.

    2011-01-01

    Models of a liquid-metal target of an accelerator-controlled system have been experimentally studied at the Nizhny Novgorod State Technical University to develop an optimal design of the flow part of the target. The main explored variants of liquid-metal targets are: Design with a diaphragm (firm-and-impervious plug) mounted on the pipe tap of particle transport from the accelerator cavity to the working cavity of the liquid-metal target. Design without a diaphragm on the pipe tab of particle transport from the accelerator. The study was carried out in a high-temperature liquid-metal test bench under the conditions close to full-scale ones: the temperature of the eutectic lead-bismuth alloy was 260degC - 400degC, the coolant mass flow was 5-80 t/h, and the rarefaction in the gas cavity was 10 5 Pa, the coefficient of geometric similarity equal to 1. The experimental studies of hydrodynamic characteristics of flow parts in the designs of targets under full-scale conditions indicated high efficiency of a target in triggering, operating, and deactivating modes. Research and technology instructions for designs of the flow part of the liquid-metal target, the target design as a whole, and the target circuit of accelerator-controlled systems were formulated as a result of the studies. (author)

  12. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  13. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  14. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  15. Metal-loaded liquid scintillators for neutrino experiments

    International Nuclear Information System (INIS)

    Yeh Minfang; Williamson, Yuping; Hahn, Richard L

    2008-01-01

    After the first direct observation of neutrino flavor transformations at the Sudbury Neutrino Observatory, future planned neutrino experiments are focusing on the understanding of the neutrino oscillation mechanism by determining key neutrino parameters, such as the mass differences and mass hierarchy, the mixing angles, and the possibility of CP violation. Organic liquid scintillators (LS) have been the detection medium of choice for neutrinos since the early discovery experiment of Reines and Cowan. For the delayed neutron-capture signal following antineutrino capture, the advantages of adding a metallic element to the LS (to form M-LS) are significant. Chemically, there are challenges to adding inorganic salts of metal directly to the LS. Key aspects of the metal-loaded LS for neutrino detection are (a) long-term chemical stability, (b) high optical transparency, (c) high photon production by the LS, and (d) ultra-low impurity content, mainly of natural radioactive contaminants, such as U, Th, Ra, and Rn. The BNL Neutrino and Nuclear Chemistry group has a long history of neutrino research since Ray Davis's pioneering Homestake experiment. The group has developed new chemical techniques of loading metals, such as In, Yb, Gd, Nd, and currently Li and other low-Z elements, in organic liquid scintillator that can be used for low-energy solar neutrino, reactor antineutrino, terrestrial antineutrino or double-beta decay experiments. Metals at different concentrations in a series of liquid scintillators have been studied systematically at BNL. We have successfully prepared many metal-doped scintillators, with long attenuation lengths (10-15 m) and high light yields. These have been stable for long period of time since synthesis (>2 years for Gd-LS and Nd-LS, and >3 years for In-LS), a crucial characteristic in experiments that are planned to run for at least 3 years. Our chemical-doping technologies and the performance of different organometallic liquid scintillators

  16. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  17. Development of a Non-Contact, Inductive Depth Sensor for Free-Surface, Liquid-Metal Flows

    Science.gov (United States)

    Bruhaug, Gerrit; Kolemen, Egemen; Fischer, Adam; Hvasta, Mike

    2017-10-01

    This paper details a non-contact based, inductive depth measurement system that can sit behind a layer of steel and measure the depth of the liquid metal flowing over the steel. Free-surface liquid metal depth measurement is usually done with invasive sensors that impact the flow of the liquid metal, or complex external sensors that require lasers and precise alignment. Neither of these methods is suitable for the extreme environment encountered in the diverter region of a nuclear fusion reactor, where liquid metal open channel flows are being investigated for future use. A sensor was developed that used the inductive coupling of a coil to liquid metal to measure the height of the liquid metal present. The sensor was built and tested experimentally, and modeled with finite element modeling software to further understand the physics involved. Future work will attempt to integrate the sensor into the Liquid Metal eXperiment (LMX) at the Princeton Plasma Physics Laboratory for more refined testing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  18. Interfacial morphologies and growth modes of F.C.C. metallic crystals from liquid alloys

    International Nuclear Information System (INIS)

    Camel, Denis

    1980-01-01

    Equilibrium and growth morphologies of f.c.c. metallic crystals in contact with liquid alloys have been observed in-situ using transmission electron microscopy. These morphologies have been discussed in terms of atomic interfacial structure and growth mechanisms with the help of a statistical thermodynamic model which takes into account the effects of chemical interactions and interfacial adsorption. (author) [fr

  19. Laser-induced metal reduction from liquid electrolyte precursor.

    Science.gov (United States)

    Kim, Dongsoo; Choi, Choljin

    2013-11-01

    A special sort of laser methods such as direct writing of metal and thin film deposition from liquid precursors was developed for the surface processing and the localized metallization of different kinds of materials. Laser radiation initiates the chemical reaction resulted in the reduction of the metal complexes to the metals in the liquid electrolyte, followed by the metal deposition on the substrate with a high degree of the adhesion. In this study, continuous wave of Ar+ laser generated in multiwave regime with laser power from 5 to 500 mW was chosen for the Copper reduction and deposition on SiO2 substrate. In order to investigate the effect of salt precursors on the properties of the deposited structures, two kinds of electrolyte solution were prepared on the base of CuSO4 and CuCl2. It was shown that metal deposition can be initiated at the laser power of 50 mW. The width of the deposits was found to be substantially dependent on the applied laser power. Deposits were revealed as conductive layers and the resistance of the layers depends strongly on the solution temperature and the salt precursor.

  20. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  1. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  2. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    Science.gov (United States)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  3. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  4. Magnetorotational Instability in a Rotating Liquid Metal Annulus

    International Nuclear Information System (INIS)

    Hantao Ji; Jeremy Goodman; Akira Kageyama

    2001-01-01

    Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion disks, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid-metal annulus (Couette flow) is explored by local and global stability analysis and magnetohydrodynamic (MHD) simulations. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed

  5. A homopolar disc dynamo experiment with liquid metal contacts

    OpenAIRE

    Avalos-Zúñiga, R. A.; Priede, J.; Bello-Morales, C. E.

    2017-01-01

    We present experimental results of a homopolar disc dynamo constructed at CICATA-Quer\\'etaro in Mexico. The device consists of a flat, multi-arm spiral coil which is placed above a fast-spinning metal disc and connected to the latter by sliding liquid-metal electrical contacts. Theoretically, self-excitation of the magnetic field is expected at the critical magnetic Reynolds number Rm~45, which corresponds to a critical rotation rate of about 10 Hz. We measured the magnetic field above the di...

  6. Measuring electric conductivity in liquid metals by eddy current method

    International Nuclear Information System (INIS)

    Zhuravlev, S.P.; Ostrovskij, O.I.; Grigoryan, V.A.

    1982-01-01

    Technique permitting to apply the method of vertiginous currents for investigation of electric conductivity of metal melts in the high temperature range is presented. Interferences affecting accuracy of measurements are specified and ways of their removing are pointed out. Scheme of measuring and design of the facility are described. Results of measuring electric resistance of liquid Fe, Co, Ni obtained for the first time by this method are presented. The data obtained agree with the results of measurements conducted by the method of the rotating magnetic field. Difference in absolute values of electric resistance in parallel experiments for each metal does not exceed 4%

  7. Safety characteristics of the US advanced liquid metal reactor core

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Gyorey, G.L.; Lipps, A.J.; Wu, T.

    1991-01-01

    The U.S. Advanced Liquid Metal Reactor (ALMR) design employs innovative, passive features to provide an unprecedented level of public safety and the ability to demonstrate this safety to the public. The key features employed in the core design to produce the desired passive safety characteristics are: a small core with a tight restraint system, the use of metallic U-Pu-Zr fuel, control rod withdrawal limiters, and gas expansion modules. In addition, the reactor vessel and closure are designed to have the capability to withstand, with large margins, the maximum possible core disruptive accident without breach and radiological release. (author)

  8. Model pseudopotential in simple metals

    International Nuclear Information System (INIS)

    Khanna, K.N.; Sharma, P.K.

    1980-01-01

    The model potential proposed by Sharma and Srivastava has been used to study the various properties of simple metals. New core radii have also been reported corresponding to three dielectric functions. For most metals, the model potential successfully describes the atomic properties. (author)

  9. Liquid-particle model for nuclear dynamics

    International Nuclear Information System (INIS)

    Strutinsky, V.; Magner, A.

    1983-01-01

    The liquid-particle model for nuclear dynamics is discussed. Combined liquid-quantum dynamics is described. In solving the dynamic problem the nuclear surface as a dynamic variable is introduced. The giant zeroth-sound resonances are studied

  10. Effect of Liquid Ga on Metal Surfaces: Characterization of Morphology and Chemical Composition of Metals Heated in Liquid Ga

    Directory of Open Access Journals (Sweden)

    Eun Je Lee

    2013-01-01

    Full Text Available This study investigates the effect of liquid gallium (Ga on metal foils made of titanium (Ti, niobium (Nb, and molybdenum (Mo. The Ti, Nb, and Mo foils were heated in liquid Ga at 120°C for a maximum of two weeks. After heating, the changes in the morphology and the chemical composition of the metal foils were analyzed by using a field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffractometer, and X-ray photoelectron spectrometer. The results of the analysis indicated that the Nb foil showed the minimum adhesion of liquid Ga to the surface while the maximum amount of liquid Ga was observed to adhere to the Ti foil. In addition, the Nb foil was oxidized and the Mo foil was reduced during the heating process. Considering these effects, we conclude that Mo may be used as an alternative encapsulation material for Ga in addition to Nb, which is used as the conventional encapsulation material, due to its chemical resistance against oxidation in hot liquid Ga.

  11. Two cylinder permanent magnet stirrer for liquid metals

    Science.gov (United States)

    Bojarevičs, A.; Baranovskis, R.; Kaldre, I.; Milgrāvis, M.; Beinerts, T.

    2017-07-01

    To achieve a uniform liquid metal composition and temperature distribution, stirring is often necessary for industrial processes. Here, a novel permanent magnet system for liquid melt stirring is proposed. It promises very low energy consumption and options for multiple different flow types compared to traditional travelling magnetic field inductors or mechanical stirrers. The proposed system has a simple design: it consists of two rotating permanent magnet cylinders, which are magnetized transversely to the axis of the cylinders. The experimental device was developed and tested under various regimes using GaInSn alloy in a cylindrical crucible. Aluminum stirring by permanent magnets in laboratory scale is tested, and stirring impact on directional solidification of metallic alloys is experimentally investigated.

  12. Liquid-metal dip seal with pneumatic spring

    International Nuclear Information System (INIS)

    Poindexter, A.M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal

  13. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  14. The analysis of heavy metal in leaching liquid of coal

    Science.gov (United States)

    Cao, Hongmei; Li, Guanglou; Zhang, Lu

    2018-02-01

    In this paper, heavy metals in coal were extracted by pure water to simulate the leaching effect of natural precipitation or artificial rainfall on outdoor storage of coal. The results show that the leaching liquid pH was slightly declining, and Cu, Zn, Pb, Cd were in μg/L level, far less than the hazardous waste identification standard of GB5085.3-2007. It suggests that leaching liquid was less harmful to environment when coal was immersed by big amount of water. In the case of spray or precipitation less, the pH drop was more obvious, leaching of heavy metals more, and the general elution of the initial dissolution of the most obvious. Although the amount of small but more toxic, the relevant management should be alert to its harmful.

  15. Seismic Base Isolation Analysis for PASCAR Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Lee, Kuk Hee; Yoo, Bong; Kim, Yun Jae

    2008-01-01

    This paper presents a study for developing a seismic isolation system for the PASCAR (Proliferation resistant, Accident-tolerant, Self-supported, Capsular and Assured Reactor) liquid metal reactor design. PASCAR use lead-bismuth eutectic (LBE) as coolant. Because the density (10,000kg/m 3 ) of LBE coolant is very heavier than sodium coolant and water, this presents a challenge to designers of the seismic isolation systems that will be used with these heavy liquid metal reactors. Finite element analysis is adapted to determine the characteristics of the isolator device. Results are presented from a study on the use of three-dimensional seismic isolation devices to the full-scale reactor. The seismic analysis responses of the two-dimensional and the three-dimensional isolation systems for the PASCAR are compared with that of the conventional fixed base system

  16. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  17. The concepts of liquid metal of IV generation

    International Nuclear Information System (INIS)

    Carbonnier, J. L.

    2005-01-01

    The concepts of liquid metals, due to their large spectrum, show important possibility of sustainable development: two concepts of liquid metal (Sodium and Lead) were engaged in the frame of the IV generation. The reactors with sodium benefit from considerable background of experience and of important work on projects to aim at the price diminution and the increase of safety (EFR, JSFR). The commitment of Japan as a leader of this concept and the support by France allow to contemplate an industrial deployment from 2015. The lead reactors offer some advantages in the domain of safety but otherwise require a highly important research and development binded to the control of the corrosion, the perspective of deployment of this concept are more hypothetical

  18. A study of corresponding states for the liquid alkali metals

    International Nuclear Information System (INIS)

    Mountain, R.D.

    1977-01-01

    The pseudopotential pair potentials developed by Price et al (Phys.Rev.;B2:2983(1970)) and by Dagens et al (Phys.Rev.;B11:2726(1975)) are used to investigate the microscopic basis for a law of corresponding states for the liquid alkali metals. Both sets of potential functions show small departures from corresponding states. Monte Carlo simulation is used to show that the temperature-dependent part of the equations of state for Na and K scale with an error of the order of 10%. The pair distribution functions for Na are in good agreement with the results of x-ray diffraction measurements. These studies suggest that corresponding states is a reasonable, but not completely accurate, way of describing the thermodynamic properties of the liquid alkali metals. (author)

  19. Study of liquid metal mixed convection in cavities

    International Nuclear Information System (INIS)

    Abadie, Philippe.

    1979-10-01

    This study has enabled some results to be obtained on the flow of liquid metals in cavities. The effects of different adimensional parameters characteristic of mixed convection flows were experimentally demonstrated. In the case of a roof heated cavity, three zones were distinguished: the mixing zone at the channel exit, a quasi constant temperature recirculation zone and a stratified zone at the top of the cavity. The thickness of this last region depends on natural convection effects: it disappears completely in a pure forced convection regime. A simple model using a critical Richardson number concept was developed in order to be able to predict the thickness of this region. Heat transfer correlation formulas were established both for the heated roof and forward direction heated wall cases. Some data was also obtained on temperature fluctuations for both cases. The different topics investigated are useful for defining heat transfers in certain regions of fast neutron sodium cooled reactors. A more extensive program is currently being developed in order to be able to investigate a wider range of variations in the above mentioned parameters and to more closely approximate reactor vessels [fr

  20. Stopping power of degenerate electron liquid at metallic densities

    International Nuclear Information System (INIS)

    Tanaka, Shigenori; Ichimaru, Setsuo

    1985-01-01

    We calculate the stopping power of the degenerate electron liquid at metallic densities in the dielectric formalism. The strong Coulomb-coupling effects beyond the random-phase approximation are taken into account through the static and dynamic local-field corrections. It is shown that those strong-coupling and dynamic effects act to enhance the stopping power substantially in the low-velocity regime, leading to an improved agreement with experimental data. (author)

  1. Passive safety and the advanced liquid metal reactors

    International Nuclear Information System (INIS)

    Hill, D.J.; Pedersen, D.R.; Marchaterre, J.F.

    1988-01-01

    Advanced Liquid Metal Reactors being developed today in the USA are designed to make maximum use of passive safety features. Much of the LMR safety work at Argonne National Laboratory is concerned with demonstrating, both theoretically and experimentally, the effectiveness of the passive safety features. The characteristics that contribute to passive safety are discussed, with particular emphasis on decay heat removal systems, together with examples of Argonne's theoretical and experimental programs in this area

  2. Conference on heat mass transfer and properties of liquid metals TF-2002

    International Nuclear Information System (INIS)

    Efanov, A.D.; Kozlov, F.A.

    2003-01-01

    Results of the conference TF-2002 devoted to the combined approach to problems of harnessing liquid metals as coolants for NPU are presented. The conference takes place in Obninsk, 29 - 31 October, 2002. Papers of the conference involve items on thermal hydraulics, mass transfer and safety of NPU with liquid metal coolants, structure, physical and chemical properties of liquid metal and liquid metal solutions, decommissioning of units and ecology, application of liquid metals divorced with NPU. Most of the papers of the conference are devoted to the investigation into lead and lead-bismuth coolants [ru

  3. Effects of externally applied Lorentz force on liquid metal flow

    Science.gov (United States)

    Fisher, Adam; Kolemen, Egemen; Hvasta, Mike

    2017-10-01

    This work looks at methods of controlling liquid metal flows using externally induced Lorentz forces. Large fusion reactors face an unsolved issue of heat fluxes at the divertor causing reactor damage. Fast-flowing liquid metal divertors can solve the heat flux problem, but to be viable there are various unfavorable flow phenomena that need to be suppressed and controlled. Some of those studied here are hydraulic jumps and surface waves. Externally induced Lorentz forces may be created by injecting electric currents into a liquid metal flow immersed within a magnetic field. Uniform Lorentz forces aligned with gravity work nearly analogously to changing gravity, and as such any flow features driven or affected by gravity may experience changes. As Lorentz force is dependent on current density which can be highly variant as cross-sectional flow depth changes, a non-uniform force field is created that is mostly unique to these types of flows; non-uniform magnetic fields yield similar effects. Lorentz force has been historically used as a driving force in pump applications, but little has been done in the way of flow control. The experiments in this work are galinstan channel flows that investigate the effects that Lorentz force has on hydraulic jump features and surface waves.

  4. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  5. Structure factor of liquid alkali metals using a classical-plasma reference system

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1983-11-01

    The paper presents calculations of the liquid structure factor of the alkali metals near freezing, starting from the classical plasma of bare ions as reference liquid. The indirect ion-ion interaction arising from electronic screening is treated by an optimized random phase approximation (ORPA), imposing physical requirements as in the original ORPA scheme developed by Weeks, Chandler and Andersen for liquids with strongly repulsive core potentials. A comparison of the results with computer simulation data for a model of liquid rubidium shows that the present approach overcomes the well-known difficulties met in applying to these metals the standard ORPA based on a reference liquid of neutral hard spheres. The optimization scheme is also shown to be equivalent to a reduction of the range of the indirect interaction in momentum space, as proposed empirically in earlier work. Comparison with experiment for the other alkalis shows that a good overall representation of the data can be obtained for sodium, potassium and cesium, but not for lithium, when one uses a very simple form of the electron-ion potential adjusted to the liquid compressibility. The small-angle scattering region is finally examined more carefully in the light of recent data of Waseda, with a view to possible refinements of the pseudopotential model. (author)

  6. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  7. ELECTRON-ION CORRELATION IN LIQUID-METALS FROM FIRST PRINCIPLES - LIQUID MG AND LIQUID PI

    NARCIS (Netherlands)

    DEWIJS, GA; PASTORE, G; SELLONI, A; VANDERLUGT, W

    1995-01-01

    We present a theoretical determination of electron-ion pair correlation functions g(ie) in liquid Mg and liquid Bi, two systems with widely different electronic and cohesive properties. Our calculations are based on first-principles molecular-dynamics simulations, which provide an accurate and

  8. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    Werth, G.

    1980-01-01

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL) [de

  9. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  10. The Liquid-Liquid Extraction of Toxic Metals (Cd, Hg and Pb by Calixarenes

    Directory of Open Access Journals (Sweden)

    D. Max Roundhill

    2009-12-01

    Full Text Available Toxic metals (Cd, Hg and Pb are mostly present in the environment due to natural phenomenon and human activities as well. Exposure of these non-essential elements in the environment causes severe effects. They are known to cause problems in humans as well as in aquatic life. In this work, we demonstrate various studies regarding liquid-liquid extraction of selected ions with different functionalized calixarenes. This review article briefly discusses several molecular designs of calixarenes for divalent ion (Cd2+, Hg2+ and Pb2+ recognition; as well as the relationship between structure and selectivity of the macrocycles is elaborated. The article does not, however, attempt to cover all of the different approaches to these toxic metal ions extraction.

  11. Fabricating highly catalytically active block copolymer/metal nanoparticle microstructures at the liquid/liquid interface.

    Science.gov (United States)

    Diao, Qi; Li, Xiaoyang; Diao, Mengxiao; Lee, Yong-Ill; Liu, Hong-Guo

    2018-03-22

    Our previous studies have shown that the metal nanoparticle/polymer composite structures fabricated at the liquid/liquid interface have good reusability but lower catalytic activity for heterogeneous reactions in aqueous solutions. This should be attributed to the poor water wettability and more compact structure of the polymer matrices. Therefore, it should be possible to improve the catalytic activity through designing and fabricating a porous composite structure with good water wettability. A modified liquid/liquid interface adsorption and fabrication method was used. An aqueous solution of copper acetate and a chloroform/DMF mixed solution of PS-b-PAA acted as the two phases. Through spontaneous emulsification, self-assembly of the polymer molecules with Cu 2+ ions in the droplets, and adsorption of the formed spherical micelles and nanofibers to the planar liquid/liquid interface, a porous composite microstructure was formed. This structure consisted of nanofiber-connected nanospheres which have a PS core and a PAA corona. Tiny and well-dispersed Cu nanoparticles were embedded in the hydrophilic corona and were adsorbed on the nanofibers surface as well. After physical cross-linking with 1,6-diaminohexane, the composite material exhibited high catalytic activity and good reusability for the reactions in aqueous solutions. For example, the rate constant for the reduction of p-nitroaniline reached 1965 s -1  g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Numerical analysis of experiments with gas injection into liquid metal coolant

    International Nuclear Information System (INIS)

    Usov, E V; Lobanov, P D; Pribaturin, N A; Mosunova, N A; Chuhno, V I; Kutlimetov, A E

    2016-01-01

    Presented paper contains results of a numerical analysis of experiments with gas injection in water and liquid metal which have been performed at the Institute of Thermophysics Russian Academy of Science (IT RAS). Obtained experimental data are very important to predict processes that take place in the BREST-type reactor during the hypothetical accident with damage of the steam generator tubes, and may be used as a benchmark to validate thermo-hydraulic codes. Detailed description of models to simulate transport of gas phase in a vertical liquid column is presented in a current paper. Two-fluid model with closing relation for wall friction and interface friction coefficients was used to simulate processes which take place in a liquid during injection of gaseous phase. It has being shown that proposed models allow obtaining a good agreement between experimental data and calculation results. (paper)

  13. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  14. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  15. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  16. Millimeter-scale liquid metal droplet thermal switch

    Science.gov (United States)

    Yang, Tianyu; Kwon, Beomjin; Weisensee, Patricia B.; Kang, Jin Gu; Li, Xuejiao; Braun, Paul; Miljkovic, Nenad; King, William P.

    2018-02-01

    Devices capable of actively controlling heat flow have been desired by the thermal management community for decades. The need for thermal control has become particularly urgent with power densification resulting in devices with localized heat fluxes as high as 1 kW/cm2. Thermal switches, capable of modulating between high and low thermal conductances, enable the partitioning and active control of heat flow pathways. This paper reports a millimeter-scale thermal switch with a switching ratio >70, at heat fluxes near 10 W/cm2. The device consists of a silicone channel filled with a reducing liquid or vapor and an immersed liquid metal Galinstan slug. Galinstan has a relatively high thermal conductivity (≈16.5 W/mK at room temperature), and its position can be manipulated within the fluid channel, using either hydrostatic pressure or electric fields. When Galinstan bridges the hot and cold reservoirs (the "ON" state), heat flows across the channel. When the hot and cold reservoirs are instead filled with the encapsulating liquid or vapor (the "OFF" state), the cross-channel heat flow significantly reduces due to the lower thermal conductivity of the solution (≈0.03-0.6 W/mK). We demonstrate switching ratios as high as 15.6 for liquid filled channels and 71.3 for vapor filled channels. This work provides a framework for the development of millimeter-scale thermal switches and diodes capable of spatial and temporal control of heat flows.

  17. Thermohydraulic behavior of liquid metal pool submitted to electronic bombardment

    International Nuclear Information System (INIS)

    Brun, Patrice

    1998-01-01

    This thesis deals with the thermohydraulics of liquid metal molten by an electron beam. We study the relationship between the liquid metal pool and the vapor rate. The aim is to find good conditions increasing the metal vapor rate. In first place, energy losses are identified. Mains are convection (buoyancy and thermo-capillary) strengthen by the deformation of the molten pool. The first action is to reduce the liquid interface deformation with a transient spot realized by scanning the electron beam. I find that in this case, the optimum vapor rate is obtained when the crossing time of the beam is smaller than characteristic time of formation of the cavity, but greater than the heating time of the surface. Secondly, I impose forces to change the morphology of the flow. Two actions are tried: magnetic field application and rotating motion of the crucible. External magnetic field application may reduce convective flow, by the creation of a magnetic brake. But in my experiment, magnetic field deteriorates electron beam before to be effective. Results obtained by the rotating motion of the crucible approve this choice to reduce energy losses and increase vapor rate. This growth of vapor rate is due to an expansion of the emitted vapor source and an increase of the central temperature of the molten pool. Nevertheless with the increase of the rotation velocity and after the optimum vapor rate, I note that the flow is not axisymmetric. My observation give to think about instabilities that are developed by baroclinic waves. The comparison of my works with the Eady's linear theory gives good results. (author) [fr

  18. Effects of loading variables on fatigue-crack growth in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1995-10-01

    Full Text Available Liquid-metal-induced embrittlement (LMIE) refers to the loss of ductility in normally ductile metals and alloys when stressed while in contact with a liquid metal. In this study, the fatigue crack growth behaviour of brass in molten gallium...

  19. Reactor advantages of the belt pinch and liquid metal walls

    International Nuclear Information System (INIS)

    Kotschenreuther, M.; Manickam, J.; Menard, J.; Rappaport, H.; Zheng Linjin; Dorland, B.; Miller, R.; Turnbull, A.

    2001-01-01

    MHD stability of highly elongated tokamaks (termed a belt pinch) are considered for high bootstrap fraction cases. By employing high triangularity or indentation, and invoking wall stabilization, and β can be increased by a factor of roughly 3 by increasing κ from 2 to 4. Axisymmetric stability up to κ=4 tolerable by employing a shell which conforms more closely to the boundary than in present experiments. Engineering difficulties with a close fitting shell in a reactor environment may be overcome by employing a liquid lithium alloy shell. Rapid metal flows can lead to potentially deleterious plasma shifts and damping of the flow. (author)

  20. Liquid metal field-emission ion sources and their applications

    International Nuclear Information System (INIS)

    Prewett, P.D.; Jefferies, D.K.

    1980-01-01

    The study of ion emission from liquid metal surfaces under the action of high electric fields has led to the development of ion sources of exceptionally high brightness. The design and operating characteristics of commercially manufactured sources of gallium and gold ions are described. Preliminary focusing and scanning experiments have produced spots estimated to be approximately 0.5 μm diameter at currents approximately 0.2 nA using an electrostatic ion optical system. A focused Ga + beam has been used as an ion microprobe for imaging and for elemental mapping of surfaces by SIMS. (author)

  1. Liquid-metal MHD for solar and coal

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E.S.; Cohen, D.; Grammel, S.J.

    1980-01-01

    The two-phase-generator, liquid-metal magnetohydrodynamic (LMMHD) energy conversion system has an inherently thermodynamic efficiency for the same heat source and sink temperatures and is better suited for cogeneration than other conversion systems. For solar applications, attractive efficiencies in comparison with alternative systems are calculated at approx. 580 K and approx. 1090 K, and cogeneration advantages are indicated. For coal applications, recent coal combustion gas-copper reaction results show that the copper can be used to control SO/sub 2/ emissions. The calculated cycle efficiencies are comparable to those for open-cycle plasma MHD at combustor temperatures of 2220 K or less.

  2. Rare-earth magnets applied to liquid metal flow

    International Nuclear Information System (INIS)

    Borges, E.M.; Sircilli Neto, F.; Passaro, A.

    1996-01-01

    The operation of electromagnetic pumps used to control liquid metal flow are based on the Lorentz force. In this work, it is studied the design of an electromagnetic pump substituting the C-type magnet used in a prototype built previously by Sm Co 5 permanent magnets. The results of the computational simulation indicate that the new pump can develop manometric pressure comparable to the previous prototype and also has smaller dimensions. Magnetic field measurement agreed with the magnetic simulation in the region of interest. (author)

  3. Some problems in the magnetohydrodynamics of liquid metals

    International Nuclear Information System (INIS)

    Moffatt, H.K.

    1978-01-01

    When electric currents are caused to flow in an electrically conducting fluid, either by the external application of time-periodic magnetic fields or by the application of large electric potential gradients at the boundary, the associated Lorentz force is in general rotational and a fluid motion, which may be laminar or turbulent, is in general established. Three prototype problems, on which some progress has been made over the last decade, are reviewed: (i) the problem of the generation of rotation in a liquid metal by the application of a rotating magnetic field; (ii) the generation of cellular motion by the application of an alternating field of fixed direction; and (iii) the problem of the generation of fluid motion by the injection of steady current at a point electrode on the fluid boundary. All three problems are of importance in molten metal technology. (author)

  4. Lubricating-cooling liquid for cold working of metals

    Energy Technology Data Exchange (ETDEWEB)

    Bokhanov, D.F.; Bykovskaya, Ye.Ye.; Chuprinina, A.I.; Gubanova, V.A.; Pigulskiy, A.A.; Stepanyants, S.A.

    1979-09-25

    A lubricating-cooling liquid with adequate adhesion to metals, good antioxidant and high antiwear properties with a wide range of application in metal processing consists of petroleum oil as the base and (in percent) 1.5-3.0 percent dibutyl ester of trichlormethylphosphine acid, 0.5-1.0 tributylphosphate, 20-25 SENZh products obtained by successive esterification, condensation and sulfurization of a mixture of synthetic fatty acids of fraction C10-C20, synthetic alcohols of fraction C10-C18 and polyfunctional oxygen containing compounds, and 3-5 percent odorizing additive (coriander oil). The functions of all components are examined and the stage-by-stage technology of producing the SENZh product with complex chemical composition is described.

  5. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  6. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors.

    Science.gov (United States)

    Zaghoo, Mohamed; Silvera, Isaac F

    2017-11-07

    Liquid metallic hydrogen (LMH) is the most abundant form of condensed matter in our solar planetary structure. The electronic and thermal transport properties of this metallic fluid are of fundamental interest to understanding hydrogen's mechanism of conduction, atomic or pairing structure, as well as the key input for the magnetic dynamo action and thermal models of gas giants. Here, we report spectrally resolved measurements of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar. We analyze the data, as well as previously reported measurements, using the free-electron model. Fitting the energy dependence of the reflectance data yields a dissociation fraction of 65 ± 15%, supporting theoretical models that LMH is an atomic metallic liquid. We determine the optical conductivity of LMH and find metallic hydrogen's static electrical conductivity to be 11,000-15,000 S/cm, substantially higher than the only earlier reported experimental values. The higher electrical conductivity implies that the Jovian and Saturnian dynamo are likely to operate out to shallower depths than previously assumed, while the inferred thermal conductivity should provide a crucial experimental constraint to heat transport models. Published under the PNAS license.

  7. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors

    Science.gov (United States)

    Zaghoo, Mohamed; Silvera, Isaac F.

    2017-11-01

    Liquid metallic hydrogen (LMH) is the most abundant form of condensed matter in our solar planetary structure. The electronic and thermal transport properties of this metallic fluid are of fundamental interest to understanding hydrogen's mechanism of conduction, atomic or pairing structure, as well as the key input for the magnetic dynamo action and thermal models of gas giants. Here, we report spectrally resolved measurements of the optical reflectance of LMH in the pressure region of 1.4–1.7 Mbar. We analyze the data, as well as previously reported measurements, using the free-electron model. Fitting the energy dependence of the reflectance data yields a dissociation fraction of 65 ± 15%, supporting theoretical models that LMH is an atomic metallic liquid. We determine the optical conductivity of LMH and find metallic hydrogen's static electrical conductivity to be 11,000–15,000 S/cm, substantially higher than the only earlier reported experimental values. The higher electrical conductivity implies that the Jovian and Saturnian dynamo are likely to operate out to shallower depths than previously assumed, while the inferred thermal conductivity should provide a crucial experimental constraint to heat transport models.

  8. Mechanistic model of the oxygen reduction catalyzed by a metal-free porphyrin in one- and two-phase liquid systems

    Czech Academy of Sciences Publication Activity Database

    Trojánek, Antonín; Langmaier, Jan; Záliš, Stanislav; Samec, Zdeněk

    2013-01-01

    Roč. 110, NOV 2013 (2013), s. 816-821 ISSN 0013-4686 R&D Projects: GA ČR GAP208/11/0697 Institutional support: RVO:61388955 Keywords : oxygen reduction * metal-free porphyrin * catalysis Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  9. Steels in interaction with liquid metals: a review; L'influence des metaux liquides sur les aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Auger, T. [ECP/MSSMAT, UMR CNRS 8579, Grande voie des vignes, 92290 Chatenay-Malabry, (France)

    2011-07-01

    Liquid metals are envisaged for various nuclear applications ranging from spallation neutron sources to future fission and fusion reactors. A fair amount of current research is dedicated to the investigation of the interaction of steels, the only structural materials compatible at long term with liquid metals such as the eutectic lead-bismuth or sodium. The aging problems for these materials are corrosion, wettability and liquid metal induced embrittlement. This review recalls some of the key factors in the understanding of these problems. (authors)

  10. Liquid metal-to-gas leak-detection instruments

    International Nuclear Information System (INIS)

    Matlin, E.; Witherspoon, J.E.; Johnson, J.L.

    1982-01-01

    It is desirable for liquid-metal-cooled reactors that small liquid metal-to-gas leaks be reliably detected. Testing has been performed on a number of detection systems to evaluate their sensitivity, response time, and performance characteristics. This testing has been scheduled in three phases. The first phase was aimed at screening out the least suitable detectors and optimizing the performance of the most promising. In the second phase, candidates were tested in a 1500 ft 3 walk-in type enclosure in which leaks were simulated on 24-in. and 3-in. piping. In the third phase of testing, selected type detectors were tested in the 1500-ft 3 enclosure with Clinch River Breeder Reactor Plant (CRBRP) pipe insulation configurations and detector tubing configuration with cell gas recirculation simulated. Endurance testing of detection equipment was also performed as part of this effort. Test results have been shown that aerosol-type detectors will reliably detect leaks as small as a few grams per hour when sampling pipe insulation annuli

  11. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  12. Direct high-temperature ohmic heating of metals as liquid pipes.

    Science.gov (United States)

    Grosse, A V; Cahill, J A; Liddell, W L; Murphy, W J; Stokes, C S

    1968-05-03

    When a sufficiently high electric current is passed through a liquid metal, the electromagnetic pressure pinches off the liquid metal and interrupts the flow of current. For the first time the pinch effect has been overcome by use of centrifugal acceleration. By rotation of a pipe of liquid metal, tin or bismuth or their alloys, at sufficiently high speed, it can be heated electrically without intermission of the electric current. One may now heat liquid metallic substances, by resistive (ohmic) heating, to 5000 degrees K and perhaps higher temperatures.

  13. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  14. Conceptual design strategy for liquid-metal-wall inertial-fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Monsler, M.J.; Meier, W.R.

    1981-02-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade provides a basis for formulating a conceptual design strategy for such chambers. Both the attractive and unattractive features of a LMW chamber are enumerated, and a design strategy is formulated which accommodates the engineering constraints while minimizing the liquid-metal flow rate.

  15. Numerical simulation of turbulent liquid metal flows in plane channels and annuli

    International Nuclear Information System (INIS)

    Groetzbach, G.

    1980-06-01

    The method of direct numerical simulation is used to study heat transfer and statistical data for fully developed turbulent liquid metal flows in plane channels and annuli. Subgrid scale models using one transport equation account for the high wave-number turbulence not resolved by the finite difference grid. A special subgrid-scale heat flux model is deduced together with an approximative theory to calculate all model coefficients. This model can be applied on the total Peclet number range of technical liquid metal flows. Especially it can be used for very small Peclet numbers, where the results are independent on model parameters. A verification of the numerical results for liquid sodium and mercury flows is undertaken by the Nusselt number in plane channels and radial temperature and eddy conductivity profiles for annuli. The numerically determined Nusselt numbers for annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The numerical results for the eddy conductivity profiles may be used to remove these problems. The statistical properties of the simulated temperature fluctuations are within the wide scatter-band of experimental data. The numerical results give reasonable heat flux correlation coefficients which depend only weakly on the problem marking parameters. (orig.) [de

  16. Association of solvent extraction and liquid-liquid flotation processes for metal recovery

    International Nuclear Information System (INIS)

    Puget, Flavia P.; Mendonca, Luciano A. de; Massarani, Giulio

    2000-01-01

    From the batch solvent extraction process, in this work it has been carried out a preliminary study aiming the determination of the optimal operating conditions for zirconium recovery (10 ppm) using alamine 336 (tricaprylylamine) as extractor. The results have shown that the extraction takes place instantaneously (5s of manual agitation) and that at pH around 2.0 the extraction efficiency is up to 98-99% for an aqueous/organic phase volumetric ratio of 10. Based on these results, it is proposed to evaluate the possibility of using of a pioneering technology for metal recovery at low concentrations, using a experimental set-up that associates standard solvent extraction process with liquid-liquid flotation process. (author)

  17. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Science.gov (United States)

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  18. Spin-liquid state in an inhomogeneous periodic Anderson model

    Science.gov (United States)

    Caro, R. C.; Franco, R.; Silva-Valencia, J.

    2018-02-01

    We studied the ground state of alkaline-earth-metal atoms confined in one-dimensional optical lattices with an effective hybridization generated by a suitable laser field. This system is modeled by the periodic Anderson model plus a quadratic confining potential, and we adopted the density-matrix renormalization group to calculate its ground state. We found a one-to-one correspondence between the local variance, the local von Neumann entropy, and the on-site spin-spin correlation. For low global densities, we observed the formation of local singlets between delocalized and localized atoms and found Kondo spin-liquid domains that can be tuned with the confining potential, the hybridization, and the local repulsion. Band insulator, metallic, phase separation, and Kondo spin-liquid regions coexist in the ground state.

  19. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  20. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Cahalan, J.; Wigeland, R.; Friedel, G.; Kussmaul, G.; Royl, P.; Moreau, J.; Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs

  1. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  2. Molecular Models of Liquid Crystal Elastomers

    Science.gov (United States)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  3. Superconductor homopolar machines with liquid-metal contacts

    International Nuclear Information System (INIS)

    Aliyevsky, B.L.; Bazarnov, B.A.; Oktyabrsky, A.M.; Popov, N.N.; Sherstuk, A.G.; Shopen, D.P.

    1992-01-01

    Alongside with the power increase of Electric Superconductor (SC) Machines including Homopolar Machines (HM) there is a strong need of improving their working characteristics, raising the efficiency, reducing the superconductor consumption. In the paper, the results of investigating the mass, dimensional and energetic properties of SCHM are given which are illustrated by the calculation of homopolar generators in the band of nominal power per unit P n = (2-250) MW at the voltage of 12, 24, 60, 230 V and rotation frequency of 25 and 50 rps. Screened and unscreened HM of a cylindrical type with liquid-metal current collector devices (LCD) and inductor consisting of 2 opposing SC coils mounted in a fixed cryostat inside the rotating armature are investigated

  4. Heterogeneous fragmentation of metallic liquid microsheet with high velocity gradient

    Science.gov (United States)

    An-Min, He; Pei, Wang; Jian-Li, Shao

    2016-01-01

    Large-scale molecular dynamics simulations are performed to study the fragmentation of metallic liquid sheets with high velocity gradient. Dynamic fragmentation of the system involves the formation of a network of fragments due to the growth and coalescence of holes, decomposition of the network into filaments, and further breakup of the filaments into spherical clusters. The final size distribution of the fragmented clusters in the large volume limit is found to obey a bilinear exponential form, which is resulted from the heterogeneous breakup of quasi-cylindrical filaments. The main factors contributing to fragmentation heterogeneity are introduced, including strain rate inhomogeneity and matter distribution nonuniformity of fragments produced during decomposition of the network structure. Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0201010 and 2015B0201039) and the National Natural Science Foundation of China (Grant No. 11402032).

  5. Cleavage crystallography of liquid metal embrittled aluminum alloys

    Science.gov (United States)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  6. Vessel supporting structure for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Mahe, Armel; Jullien, Georges

    1974-01-01

    The supporting structure described is for a liquid metal cooled nuclear reactor, the vessel being of the type suspended to the end slab of the reactor. It includes a ring connected at one of its two ends to a single shell and at the other end to two shells. One of these three shells connected to the lower end of the ring forms the upper part of the vessel to be supported. The two other shells are embedded in two sperate parts of the slab. The ring and shell assembly is housed in an annular space provided in the end slab and separating it into two parts, namely a central part and a peripheral part [fr

  7. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  8. Method of shielding a liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    Sayre, R.K.

    1978-01-01

    The primary heat transport system of a nuclear reactor - particularly for a liquid-metal-cooled fast-breeder reactor - is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of a the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system

  9. Self-cooled liquid-metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-01-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative to other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor

  10. Application of probabilistic risk assessment to advanced liquid metal reactor designs

    International Nuclear Information System (INIS)

    Carroll, W.P.; Temme, M.I.

    1987-01-01

    The United States Department of Energy (US DOE) has been active in the development and application of probabilistic risk assessment methods within its liquid metal breeder reactor development program for the past eleven years. These methods have been applied to comparative risk evaluations, the selection of design features for reactor concepts, the selection and emphasis of research and development programs, and regulatory discussions. The application of probabilistic methods to reactors which are in the conceptual design stage presents unique data base, modeling, and timing challenges, and excellent opportunities to improve the final design. We provide here the background and insights on the experience which the US DOE liquid metal breeder reactor program has had in its application of probabilistic methods to the Clinch River Breeder Reactor Plant project, the Conceptual Design State of the Large Development Plant, and updates on this design. Plans for future applications of probabilistic risk assessment methods are also discussed. The US DOE is embarking on an innovative design program for liquid metal reactors. (author)

  11. Deflection of a liquid metal jet/drop in a tokamak environment

    Energy Technology Data Exchange (ETDEWEB)

    Pelekasis, Nikos, E-mail: pel@uth.gr [Department of Mechanical Engineering, University of Thessaly, Volos 38334 (Greece); Benos, Lefteris [Department of Mechanical Engineering, University of Thessaly, Volos 38334 (Greece); Gomes, Rui [Associação EURATOM/IST, Centro de Fusão Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2014-12-15

    Highlights: • We model steady flow of a liquid metal jet inside an electromagnetic field in the presence of inertia and capillary forces. • Similar analysis is performed for the motion of a liquid metal spherical drop. • The deflection of the trajectory is predicted as a function of the intensity of the externally imposed magnetic and electric fields. • The analysis is used as a proof of principle study in reference to experimental observations of jet/drop deflection due to j{sup →}×B{sup →} effects in the ISTTOK tokamak. • We discuss the possibility of using liquid metal flows as an alternative approach toward enhancing power exhaust in tokamak facilities. - Abstract: The interaction of a liquid gallium jet with plasma has been investigated in the ISTTOK tokamak. The jet was observed to remain intact during its interaction with plasma, within a certain length beyond which drop formation was observed. Significant deflection of the jet was detected as soon as plasma production was started. Furthermore, a strong dependency of the deflection magnitude on plasma position was observed that could be correlated with plasma potential gradients. As a means to capture and, possibly, quantify this effect, a preliminary magnetohydrodynamic analysis was performed in order to predict the trajectory of a jet that is traveling inside an electromagnetic field. The effect of Lorentz forces, gravity and pressure drop are accounted for in a unidirectional model that assumes a small jet radius in comparison with the trajectory length. The effect of external electric potential gradients on jet deflection was ascertained in conjunction with the importance of electric stresses in modulating the jet speed and radius. Analysis of the results reported in the ISTTOK experiments identifies the process of jet break-up as a capillary instability. The trajectory of the ensuing droplets is modeled and intensification of the deflection process is predicted in the presence of Lorentz

  12. Influences of viscous losses and end effects on liquid metal flow in electromagnetic pumps

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Seo, Joon Ho; Hong, Sang Hee; Cho, Su won; Nam, Ho Yun; Cho, Man

    1996-01-01

    Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current (υxB) generated by the liquid metal movement across the magnetic field rather than the one

  13. Dynamics of liquid nanodroplet formation in nanosecond laser ablation of metals

    Science.gov (United States)

    Mazzi, A.; Gorrini, F.; Miotello, A.

    2017-10-01

    The laser ablation mechanisms of metallic targets leading to liquid nanodroplet ejection are of wide interest both from a fundamental point of view and for applications in various fields, especially when nanoparticle synthesis is required. The phase explosion process was recognized as the driving mechanism of the expulsion of a mixture of vapor and liquid nanodroplets in the short pulse laser ablation of metals. A model based on thermodynamics that links the theory of homogeneous vapor bubble nucleation to the size distribution of the generated liquid nanoclusters has been recently proposed. The present work aims to take a step ahead to remove some assumptions made in previous work. Here an improved computational approach allows us to describe time-dependent nucleation in a homogeneous system with no temperature spatial gradients under nanosecond laser irradiation. Numerical results regarding the size distribution of formed liquid clusters and the time evolution of the process are shown for aluminum, iron, cobalt, nickel, copper, silver and gold. Connections with experimental data and molecular dynamics simulations, when available from literature, are reported and discussed.

  14. Liquid-Liquid Extraction of Transition Metal Cations by Glyoximes and Their Macrocyclic Glyoxime Ether Derivatives

    Directory of Open Access Journals (Sweden)

    Nazan Karapinar

    2013-01-01

    Full Text Available Liquid-liquid extraction of various alkalis (Li+, Na+, K+, and Cs+, transition metals (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+, and Pb2+ cations with phenylglyoxime (L1, p-tolylglyoxime (L2, N′-(4′-Benzo[15-crown-5]phenylaminoglyoxime (L3, and N′-(4′-Benzo[15-crown-5]-p-tolylaminoglyoxime (L4 from the aqueous phase into the organic phase was carried out. For comparison, the corresponding two glyoximes and their macrocyclic glyoxime ether derivatives were also examined. Crown ether groups having ligands (L3, L4 carry especially Na+ cation from aqueous phase to organic phase. The extraction equilibrium constants (Kex for complexes of ligands with Cu2+ and Hg2+ metal picrates between dichloromethane and water have been determined at 25°C. The values of the extraction constants (logKex were determined to be 12.27, 13.37, 12.94, and 12.39 for Cu2+ and 10.29, 10.62, 11.53, and 11.97 for Hg2+ with L1–L4, respectively.

  15. Liquid metal liner implosion systems with blade lattice for fusion

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1980-01-01

    In this paper, the liquid liner implosion systems with the blade lattice is proposed for the rotational stabilization of the liner inner surface which is facing a plasma in a fusion reactor. The blades are electrically conducting and inclined to the radial direction. Its major function is either acceleration or deceleration of the liner in the azimuthal direction. This system enables us to exclude the rotary mechanism for the liner rotation. In this system, the liner is formed as an annular flow of a liquid metal (the waterfall concept). Results show that there is no significant difference of the energy cost for the stabilization compared with the earlier proposed system where a liner is rotated rigidly before implosion. Furthermore, the application of the rotating blade lattice makes it possible to reduce the rotational kinetic energy required for the stabilization at turnaround, where the lattice acts as an impeller in the initial liner rotation. There is an optimum blade angle to maximize the compressed magnetic field energy inside the liner for a given driving energy. (author)

  16. The Dounreay PFR Liquid-Metal Disposal Project

    International Nuclear Information System (INIS)

    Sherwood, D.V.; Comline, A.; Small, J.; Blyth, J.

    2005-01-01

    The UKAEA Prototype Fast Reactor at Dounreay had a liquid sodium-cooled core. Following its shutdown in 1994, the liquid metal is being removed from the reactor and other vessels by means of specialized equipment and reacted with an aqueous solution of sodium hydroxide in a special vessel. The reaction products are neutralized with hydrochloric acid to produce a saline solution.The reactor sodium delivery and processing equipment is all of novel design. As sodium has been withdrawn from the vessel, it has been necessary to switch off the primary sodium pumps (used to heat the sodium), and the reactor is now kept at temperature by a purpose-designed electric heater and a NaK loop heater.A primary sodium extract pump has currently removed [approximately]450 tonnes of primary sodium from the reactor. As the level falls special equipment will be used to punch a hole in the primary circuit pipe work and to drill the strongback to allow trapped sodium to drain for extraction

  17. Faradaically selective membrane for liquid metal displacement batteries

    Science.gov (United States)

    Yin, Huayi; Chung, Brice; Chen, Fei; Ouchi, Takanari; Zhao, Ji; Tanaka, Nobuyuki; Sadoway, Donald R.

    2018-02-01

    In the realm of stationary energy storage, a plurality of candidate chemistries continues to vie for acceptance, among them the Na-NiCl2 displacement battery, which has eluded widespread adoption owing to the fragility of the β″-Al2O3 membrane. Here we report a porous electronically conductive membrane, which achieves chemical selectivity by preferred faradaic reaction instead of by regulated ionic conduction. Fitted with a porous membrane of TiN, a displacement cell comprising a liquid Pb positive electrode, a liquid Li-Pb negative electrode and a molten-salt electrolyte of PbCl2 dissolved in LiCl-KCl eutectic was cycled at a current density of 150 mA cm-2 at a temperature of 410 °C and exhibited a coulombic efficiency of 92% and a round-trip energy efficiency of 71%. As an indication of industrial scalability, we show comparable performance in a cell fitted with a faradaic membrane fashioned out of porous metal.

  18. Stability of Transition-metal Carbides in Liquid Phase Reactions Relevant for Biomass-Based Conversion

    NARCIS (Netherlands)

    Souza Macêdo, L.; Stellwagen, D.R.; Teixeira da Silva, V.; Bitter, J.H.

    2015-01-01

    Transition-metal carbides have been employed for biobased conversions aiming to replace the rare noble metals. However, when reactions are in liquid phase, many authors have observed catalyst deactivation. The main routes of deactivation in liquid phase biobased conversions are coke deposition,

  19. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  20. Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition

    Directory of Open Access Journals (Sweden)

    Wen-bo Yu

    2016-07-01

    Full Text Available To predict the heat transfer behavior of A380 alloy in a shot sleeve, a numerical approach (inverse method is used and validated by high pressure die casting (HPDC experiment under non-shooting condition. The maximum difference between the measured and calculated temperature profiles is smaller than 3 ℃, which suggests that the inverse method can be used to predict the heat transfer behavior of alloys in a shot sleeve. Furthermore, the results indicate an increase in maximum interfacial heat flux density (qmax and heat transfer coefficient (hmax with an increase in sleeve filling ratio, especially at the pouring zone (S2 zone. In addition, the values of initial temperature (TIDS and maximum shot sleeve surface temperature (Tsimax at the two end zones (S2 and S10 are higher than those at the middle zone (S5. Moreover, in comparison with fluctuations in heat transfer coefficient (h with time at the two end zones (S2 and S10, 2.4-6.5 kW·m-2·K-1, 3.5-12.5 kW·m-2·K-1, respectively, more fluctuations are found at S5 zone, 2.1-14.7 kW·m-2·K-1. These differences could theoretically explain the formation of the three zones: smooth pouring zone, un-smooth middle zone and smooth zone, with different morphologies in the metal log under the non-shot casting condition. Finally, our calculations also reveal that the values of qmax and hmax cast at 680 ℃ are smaller than those cast at 660 ℃ and at 700 ℃.

  1. MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Eder Oliveira Abensur

    2014-05-01

    Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.

  2. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    Science.gov (United States)

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  3. Giant and switchable surface activity of liquid metal via surface oxidation

    OpenAIRE

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial energy of a liquid metal via electrochemical deposition (or removal) of an oxide layer on its surface. Unlike conventional surfactants, this approach can tune the interfacial tension of a metal significantly (from ∼7× that of water to near zero), rapidly, and reversibly using only modest voltages. These properties can be harnessed to induce previously unidentified electrohydrodynamic phenomena for manipulating liquid metal alloys based on gallium...

  4. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  5. Heavy liquid metal cooled fast breeder reactor. Results in 1999

    International Nuclear Information System (INIS)

    Mihara, Takatsugu; Enuma, Yasuhiro; Tanaka, Yoshihiko; Umetsu, Youichirou; Ichimiya, Masakazu

    2000-07-01

    Based on the medium and long-term program of JNC, the feasibility study for fast breeder reactors (FBRs) including related nuclear fuel cycles has been started from the 1999 fiscal year. Various options of FBR plant systems have been studied and a concept of Heavy Liquid Metal cooled FBRs is one of these options. The purpose of this paper is to research and evaluate Heavy Liquid Metal cooled FBRs on the basis of literatures. First, we selected four types of plant concepts listed below. Concept 1: Large-scale pond type reactor with Pb cooled. Concept 2: Large-scale loop type reactor with Pb cooled. Concept 3: Medium-scale module tank type reactor with Pb cooled. Concept 4: Small-scale module tank type reactor with Pb-Bi cooled. Concept 1 and 2 are selected to seek for scale merit on economical aspect. In Concept 3 and 4, we tried to reduce the inventory of HLMC and to ease the load conditions on structures and seek for competitiveness with module effect such as mass production and learning effect. Through a preliminary design study, we identified some technical features of each concept and roughly evaluated economical competitiveness based on total weight of the NSSSs. From this study, we concluded. In general, the large-scale type concepts have little economical advantage because of its huge amount of material needed for its severe load conditions. (Concept 1 and 2). Even for the large-scale pond type reactor, the conclusion seems to be the same. Total amount of the thermal shielding material became huge. Aseismatic structure makes the amount of material increase under the Japanese seismic condition. (Concept 1) For the large-scale loop type reactor, we selected side entry and dual walled piping concept with slide-joint inner wall to cope with thermal expansion of piping system. However, there seemed to be difficulty with compatibility between slide-joint and oxide film corrosion prevention measures. (Concept 2) The medium and small modular type seemed to be

  6. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere I. Continuous Emission and Condensed Matter Within the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The continuous spectrum of the solar photosphere stands as the paramount observation with regard to the condensed nature of the solar body. Studies relative to Kirchhoff’s law of thermal emission (e.g. Robitaille P.-M. Kirchhoff’s law of thermal emission: 150 years. Progr. Phys., 2009, v. 4, 3–13. and a detailed analysis of the stellar opacity problem (Robitaille P.M. Stellar opacity: The Achilles’ heel of the gaseous Sun. Progr. Phys., 2011, v. 3, 93–99 have revealed that gaseous models remain unable to properly account for the generation of this spectrum. Therefore, it can be stated with certainty that the photosphere is comprised of condensed matter. Beyond the solar surface, the chromospheric layer of the Sun also generates a weak continuous spectrum in the visible region. This emission exposes the presence of material in the condensed state. As a result, above the level of the photosphere, matter exists in both gaseous and condensed forms, much like within the atmosphere of the Earth. The continuous visible spectrum associated with the chromosphere provides the twenty-sixth line of evidence that the Sun is condensed matter.

  7. Contact-free measurement of the flow field of a liquid metal inside a closed container

    Directory of Open Access Journals (Sweden)

    Heinicke Christiane

    2014-03-01

    Full Text Available The measurement of flow velocities inside metal melts is particularly challenging. Due to the high temperatures of the melts it is impossible to employ measurement techniques that require either mechanical contact with the melt or are only adaptable to translucent fluids. In the past years a number of electromagnetic techniques have been developed that allows a contact-free measurement of volume flows. One of these techniques is the so-called Lorentz Force Velocimetry (LFV in which the metal flow is exposed to an external, permanent magnetic field. The interaction between the metal and the magnet not only leads to a force on the fluid, but also on the magnet. The force can be measured and is proportional to the velocity of the melt. Moreover, by using a small permanent magnet it is possible to resolve spatial structures inside the flow.We will demonstrate this using a model experiment that has been investigated with different reference techniques previously. The experimental setup is a cylindrical vessel filled with a eutectic alloy which is liquid at room temperature. The liquid metal can be set into motion by means of a propeller at the top of the liquid. Depending on the direction of rotation of the propeller, the flow inside the vessel takes on different states. Beside the vessel, we place a Lorentz Force Flowmeter (LFF equipped with a small permanent magnet. By measuring the force on the magnet at different positions and different rotation speeds, we demonstrate that we can qualitatively and quantitatively reconstruct the flow field inside the vessel.

  8. Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, M.; Murty, B.S.; Guenther, B. [Fraunhofer-Inst. fuer Angewandte Materialforschung, Bremen (Germany)

    1997-09-01

    A modified VERL-process (vacuum evaporation on running liquids) employing high pressure magnetron sputtering has been used for the preparation of suspensions with metal nanoparticles. The method has been tested for Ag- and Fe-suspensions by varying the pressure of the Argon sputtering atmosphere in the range of 1 to 30 Pa. A narrow particle size distribution with a mean particle size ranging from 5--18 nm has been found. The mean particle size increases with increasing Argon pressure in the pressure range under investigation. A descriptive model for the process of particle formation as a function of sputtering gas pressure is given.

  9. Ga-In liquid metal nanoparticles prepared by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    Fan Yu

    2018-02-01

    Full Text Available Controlled synthesis and appropriate characterization of nanoscale particles of gallium-based liquid metals are critical to fulfilling their broad range of applications in the field of flexible, stretchable, and printable micro-/nanoelectronics. Herein, we report a new way to synthesize surfactant-free gallium-indium nanoparticles with controlled particle size on a variety of substrates through a facile physical vapor deposition method. It was found that with prolonged deposition time the liquid metal nanoparticles gradually grew from near-monodispersed small particles with a diameter of ~25 nm to bimodal distributed particles. A nucleation, growth, ripening and merging process was proposed to explain the observed evolution of particle size. Atomic force microscopy measurement indicates that the fabricated liquid metal nanoparticles demonstrate elastic deformation with a certain range of loads and the scanned particle size is dependent on the applied loads. We further investigated the gradual breaking process of the core-shell structured liquid metal nanoparticles, which was evidenced by multiple kinks on the force-separation curve. This work presents a new bottom-up approach to prepare nanoscale liquid metal particles and demonstrates that atomic force microscopy is a suitable technique to characterize the synthesized liquid metal nanoparticles. Keywords: Gallium-Indium alloy, Atomic force microscopy, Liquid metal, Nanoparticle

  10. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  11. Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits

    Science.gov (United States)

    Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa

    2017-12-01

    Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.

  12. The DSNP simulation language and its application to liquid-metal fast breeder reactor transient analyses

    International Nuclear Information System (INIS)

    Saphier, D.; Madell, J.T.

    1982-01-01

    A new, special purpose block-oriented simulation language, the Dynamic Simulator for Nuclear Power Plants (DSNP), was used to perform a dynamic analysis of several conceptual design studies of liquid metal fast breeder reactors. The DSNP being a high level language enables the user to transform a power plant flow chart directly into a simulation program using a small number of DSNP statements. In addition to the language statements, the DSNP system has its own precompiler and an extensive library containing models of power plant components, algorithms of physical processes, material property functions, and various auxiliary functions. The comparative analysis covered oxide-fueled versus metal-fueled core designs and loop- versus pool-type reactors. The question of interest was the rate of change of the temperatures in the components in the upper plenum and the primary loop, in particular the reactor outlet nozzle and the intermediate heat exchanger inlet nozzle during different types of transients. From the simulations performed it can be concluded that metal-fueled cores will have much faster temperature transients than oxide-fueled cores due mainly to the much higher thermal diffusivity of the metal fuel. The transients in the pool-type design (either with oxide fuel or metal fuel) will be much slower than in the loop-type design due to the large heat capacity of the sodium pool. The DSNP language was demonstrated to be well suited to perform many types of transient analysis in nuclear power plants

  13. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  14. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  15. Alloys for a liquid metal fast breeder reactor

    Science.gov (United States)

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  16. Utilizing metalized fabrics for liquid and rip detection and localization

    Science.gov (United States)

    Holland, Stephen A.; Mahan, Cody A.; Kuhn, Michael J.; Rowe, Nathan C.

    2013-05-01

    This paper proposes a novel technique for utilizing electrically conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), damage (e.g., rips, cuts, bullet holes) and, potentially, biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is employed to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system was developed that uses a multiplexed, Wheatstone bridge measurement approach to determine the resistances of a coarse electrode grid across the conductive fabric. Non-uniform resistance values of the grid infer the presence of liquids and rips in the fabric. The resistor-grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of disturbances in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events (although just the knowledge of a penetration may be adequate for some intended applications) as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.

  17. Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen [University of Tennessee, Knoxville (UTK); Mahan, Cody [Western Kentucky University; Kuhn, Michael J [ORNL; Rowe, Nathan C [ORNL

    2013-01-01

    This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system was developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.

  18. Actinides recovery from molten salt/liquid metal system by electrochemical methods

    Science.gov (United States)

    Iizuka, Masatoshi; Koyama, Tadafumi; Kondo, Naruhito; Fujita, Reiko; Tanaka, Hiroshi

    1997-08-01

    Electrochemical methods were examined for the recovery of actinides from the electrorefiner which is used in pyrometallurgical reprocessing of spent metal fuel for fast reactors. Uranium was successfully collected at the solid steel cathode from both liquid cadmium and molten salt solvents. In electrotransport from liquid cadmium, the behavior of uranium and rare earths was as expected by a computer simulation code based on the diffusion layer model at the interface between the electrolyte and the electrodes. In electroreduction from the molten salt electrolyte, a considerable amount of uranium was reduced at the CdLi anode by direct chemical reduction with lithium, especially at a lower anodic current density. The decrease in collection efficiency of uranium due to the direct chemical reduction would be avoided by maintaining the anode potential higher than the deposition potential of uranium.

  19. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective

    International Nuclear Information System (INIS)

    Coenen, J W; Philipps, V; Sergienko, G; Terra, A; Unterberg, B; Wegener, T; De Temmerman, G; Van den Bekerom, D C M; Federici, G; Strohmayer, G

    2014-01-01

    Applying liquid metals as plasma facing components for fusion power-exhaust can potentially ameliorate lifetime issues as well as limitations to the maximum allowed surface heat loads by allowing for a more direct contact with the coolant. The material choice has so far been focused on lithium (Li), as it showed beneficial impact on plasma operation. Here materials such as tin (Sn), gallium (Ga) and aluminum (Al) are discussed as alternatives potentially allowing higher operating temperatures without strong evaporation. Power loads of up to 25 MW m −2 for a Sn/W component can be envisioned based on calculations and modeling. Reaching a higher operating temperature due to material re-deposition will be discussed. Liquids typically face stability issues due to j × B forces, potential pressure and magnetohydrodynamic driven instabilities. The capillary porous system is used for stabilization by a mesh (W and Mo) substrate and replenishment by means of capillary action. (paper)

  20. Computations of the deformation and solidifcation of impinging liquid metal drops

    Science.gov (United States)

    Che, Judy; Tryggvason, Gretar; Ceccio, Steven

    1997-11-01

    The solidification of individual liquid metal drops impacting a cold wall, as well as the deposition of subsequent drops characterized by drop remelt, coalescence, and solidification, are simulated numerically. The numerical method fully couples fluid flow and heat transfer and is based on a single set of conservation equations written for all phases, allowing for arbitrary changes in material properties. Solidification is modeled as a stable, planar solid-liquid interface, which is valid for both pure and eutectic systems with no initial thermal undercooling. Using this technique, towers have been built by depositing drops on top of one another. Low Weber number simulations produce short, squat towers, while high Weber number cases generate tall, slender towers. Within a tower, each drop takes on a final shape based on the Peclet number and the non- dimensional freezing temperature. In some high Peclet number cases, divots freeze onto a drop's surface forming a pore at the axis of the tower. Supported by NASA.

  1. Mechanical models for tanks containing two liquids

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.

    1994-06-01

    The well-known Housner`s mechanical model for laterally excited rigid tanks that contain one liquid is generalized to permit consideration of tanks that contain two liquids under the horizontal and rocking base motions. Two mechanical models are developed herein; one is for rigid tanks and the other for flexible tanks. The model for rigid tanks has a rigidly attached mass and infinite number of elastically supported masses. The rigid attached mass which possesses a mass moment of inertia represents the impulsive component, whereas the elastically supported masses which do not possess mass moment of inertia represent the convective component of the response. These masses and their heights are chosen such that, under the same base motions, the base shear and base moments of the model match those of the original liquid-tank system. The spring stiffness constants for the elastically supported masses in the model are determined from the sloshing frequencies of the liquid-tank system. The model for flexible tanks, however, only represents the impulsive action of the hydrodynamic response. It has an elastically supported mass that does not possess mass moment of inertia and a member that has no mass but possesses a mass moment of inertia. This latter model is proposed for the study of the effect of the soil-structure interaction.

  2. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272

    Science.gov (United States)

    Mantuano, Danuza Pereira; Dorella, Germano; Elias, Renata Cristina Alves; Mansur, Marcelo Borges

    A hydrometallurgical route is proposed to recover zinc and manganese from spent alkaline batteries in order to separate base metals such as nickel, copper, aluminium, cadmium, lithium and cobalt which constitute the main metallic species of spent NiCd, NiMH and Li-ion rechargeable batteries. The route comprises the following main steps: (1) sorting batteries by type, (2) battery dismantling to separate the spent battery dust from plastic, iron scrap and paper, (3) leaching of the dust with sulphuric acid and (4) metal separation by a liquid-liquid extraction using Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) as extractant. The metal content of NiCd, NiMH and Li-ion batteries from three distinct manufacturers has been evaluated. A factorial design of experiments was used to investigate the leaching step using operational variables such as temperature, H 2SO 4 concentration, S/L ratio and H 2O 2 concentration. Analysis of metal separation by the liquid-liquid extraction with Cyanex 272 identified a pH 1/2 2.5-3.0 for zinc and aluminium, pH 1/2 4.0-4.5 for manganese, cadmium, copper and cobalt, pH 1/2 6.5 for nickel and pH 1/2 8.0 for lithium. These results indicate that batteries must be previously sorted by type and treated separately. In addition, data fitting to an equilibrium model proposed for the reactive test system by the European Federation of Chemical Engineering (EFChE) have indicated that MR 2(RH) 2 and MR 2 complexes (where M = Zn, Mn, Co, Cd and Cu) co-exist in the organic phase with Cyanex 272 depending on the loading conditions. The route has been found technically viable to separate the main metallic species of all batteries considered in this study.

  3. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    Science.gov (United States)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  4. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  5. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals

    International Nuclear Information System (INIS)

    Mousazadeh, M.H.; Faramarzi, E.; Maleki, Z.

    2010-01-01

    We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, σ, and segment energy, ε. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.

  6. Gallium-rich Pd-Ga phases as supported liquid metal catalysts

    Science.gov (United States)

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.

    2017-09-01

    A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

  7. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1994-01-01

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  8. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  9. Numerical and experimental study on vorticity measurement in liquid metal using local Lorentz force velocimetry

    Science.gov (United States)

    Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas

    2018-03-01

    Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.

  10. Experimental and numerical investigation of liquid-metal free-surface flows in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Class, A.G.; Litfin, K.; Wetzel, Th. [Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-PLATZ 1, 76344 Eggenstein-Leopoldshafen (Germany); Moreau, V.; Massidda, L. [CRS4 Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy); Thomas, S.; Lakehal, D. [ASCOMP GmbH Zurich, Zurich (Switzerland); Angeli, D.; Losi, G. [DIEF – Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Mooney, K.G. [University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering, Amherst (United States); Van Tichelen, K. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    Highlights: • Experimental study of free surface for lead bismuth eutectic target. • Numerical investigation of free surface of a liquid metal target. • Advanced free surface modelling. - Abstract: Accelerator Driven Systems (ADS) are extensively investigated for the transmutation of high-level nuclear waste within many worldwide research programs. The first advanced design of an ADS system is currently developed in SCK• CEN, Mol, Belgium: the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA). Many European research programs support the design of MYRRHA. In the framework of the Euratom project ‘Thermal Hydraulics of Innovative nuclear Systems (THINS)’ a liquid-metal free-surface experiment is performed at the Karlsruhe Liquid Metal Laboratory (KALLA) of Karlsruhe Institute of Technology (KIT). The experiment investigates a full-scale model of the concentric free-surface spallation target of MYRRHA using Lead Bismuth Eutectic (LBE) as coolant. In parallel, numerical free surface models are developed and tested which are reviewed in the article. A volume-of-fluid method, a moving mesh model, a free surface model combining the Level-Set method with Large-Eddy Simulation model and a smoothed-particle hydrodynamics approach are investigated. Verification of the tested models is based on the experimental results obtained within the THINS project and on previous water experiments performed at the University Catholic de Louvain (UCL) within the Euratom project ‘EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in Accelerator Driven System (EUROTRANS)’. The design of the target enables a high fluid velocity and a stable surface at the beam entry. The purpose of this paper is to present an overview of both experimental and numerical results obtained for free surface target characterization. Without entering in technical details, the status, the major achievements and lessons for the future with respect to

  11. Entrapment and escape of liquid lubricant in metal forming

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels; Eriksen, Morten

    1999-01-01

    Using a transparent tool entrapment, compression and eventual escape of liquid lubricant in surface pockets is observed in plane strip drawing. The two mechanisms of lubricant escape. Micro Plasto HydroDynamic and Hydrostatic Lubrication (MPHDL and MPHSL), are observed and quantified experimentally...... with Varying viscosity, speed, reduction, workpiece material, back tension and friction. The mechanisms are influenced by all these parameters in an explicable way. Theoretical models of the escape mechanisms are established combining continuum mechanic analyses of the die pressure distribution with a fluid...... mechanic analysis of the lubricant escape. Oscillations in the drawing force are caused by the local escape of lubricant. (C) 1999 Elsevier Science S.A. All rights reserved....

  12. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

    Science.gov (United States)

    Ščepanskis, Mihails; Sarma, Mārtiņš; Vontobel, Peter; Trtik, Pavel; Thomsen, Knud; Jakovičs, Andris; Beinerts, Toms

    2017-04-01

    This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

  13. Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography

    International Nuclear Information System (INIS)

    Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.

    2005-01-01

    The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps

  14. Compact, electromagnetic multiple-stream multiple-stream pump for liquid metals - Design concept

    Science.gov (United States)

    Davis, J. P.

    1970-01-01

    Pump provides independent liquid-metal streams at a uniform flow rate. The toroidal magnet structure can accomodate any reasonable number of pump circuits. The power requirement is suited to the output voltage of the basic thermionic diode output.

  15. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  16. Natural circulation in a liquid metal one-dimensional loop

    Science.gov (United States)

    Tarantino, M.; De Grandis, S.; Benamati, G.; Oriolo, F.

    2008-06-01

    A wide use of pure lead, as well as its alloys (such as lead-bismuth, lead-lithium), is foreseen in several nuclear-related fields: it is studied as coolant in critical and sub-critical nuclear reactors, as spallation target for neutron generation in several applications and for tritium generation in fusion systems. In this framework, a new facility named NAtural CIrculation Experiment (NACIE), has been designed at ENEA-Brasimone Research Centre. NACIE is a rectangular loop, made by stainless steel pipes. It consists mainly of a cold and hot leg and an expansion tank installed on the top of the loop. A fuel bundle simulator, made by three electrical heaters placed in a triangular lattice, is located in the lower part of the cold leg, while a tube in tube heat exchanger is installed in the upper part of the hot leg. The adopted secondary fluid is THT oil, while the foreseen primary fluid for the tests is lead-bismuth in eutectic composition (LBE). The aim of the facility is to carry out experimental tests of natural circulation and collect data on the heat transfer coefficient (HTC) for heavy liquid metal flowing through rod bundles. The paper is focused on the preliminary estimation of the LBE flow rate along the loop. An analytical methodology has been applied, solving the continuity, momentum and energy transport equations under appropriate hypothesis. Moreover numerical simulations have been performed. The FLUENT 6.2 CFD code has been utilized for the numerical simulations. The main results carried out from the pre-tests simulations are illustrated in the paper, and a comparison with the theoretical estimations is done.

  17. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  18. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  19. Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites

    Science.gov (United States)

    Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.

    1988-01-01

    Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.

  20. Numerical analysis of fragmentation processes of liquid metal in vapor explosions using Moving Particle Semi-implicit method

    International Nuclear Information System (INIS)

    Ikeda, Hirokazu; Matsuura, Fumio; Koshizuka, Seiichi; Oka, Yoshiaki

    1998-01-01

    Fragmentation of liquid metal takes place as basic processes of vapor explosions. This leads to rapid evaporation on the stretched interface. To date, a number of models explaining the fragmentation mechanisms have been proposed. However, few evidence has been obtained from the experiment because the phenomena are rapid. In Moving Particle Semi-implicit (MPS) method, grids are not necessary so that fluid fragmentation as well as multi-fluid thermal hydraulics can be analyzed. A numerical model of evaporation is developed for the present study. Impingement of water jets on a liquid metal pool is analyzed using the MPS method to investigate two typical models explaining the fragmentation mechanisms: Kim-Corradini and Ciccarelli-Frost models. Penetration of the water jet, which is assumed in Kim-Corradini model, is not observed in the calculation results. A filament of the liquid metal is observed between two water jets as assumed in Ciccarelli-Frost model. The filament appears when the jet density is smaller than the pool density, while the penetration appears when the jet density is hypothetically larger. The usual combinations of densities in vapor explosions are in the region of Ciccarelli-Frost model. (author)

  1. EURISOL-DS Multi-MW Target: Design of the EURISOL Liquid metal loop

    CERN Document Server

    K. Samec (PSI)

    A Mercury loop capable of evacuating 2.7 MW of the 4 MW deposited in the Eurisol liquid metal neutron spallation target is described in the present design study.The study takes into account the effects on the loop of temperature, pressure, irradiation, liquid metal corrosion, including both steady state operations and normal transients. Accidental conditions are only briefly alluded to in the form of a description of the protection barriers and envisaged mitigation strategies.

  2. Effective Extraction of Heavy Metals from their Effluents Using Some Potential Ionic Liquids as Green Chemicals

    Directory of Open Access Journals (Sweden)

    A. Rajendran

    2011-01-01

    Full Text Available Synthesis of nine Task Specific Ionic liquids (TSILs, their characterization using 1H NMR spectral studies and other physical properties and potential applications in the removal of certain heavy metals such as Nickel, Iron, Zinc, Copper and Lead has been studied. The removal of these heavy metals from the industrial effluents / contaminated water bodies using these ionic liquids has been proved to be more successful than conventional methods such as precipitation, cementation, reverse osmosis, ion exchange and adsorption.

  3. Experimental determination of systems suitable for study as monotectic binary metallic alloy solidification models

    Science.gov (United States)

    Smith, J. E., Jr.

    1985-01-01

    Transparent binary metallic alloy solidification models are important in attempts to understand the processes causing liquid-liquid and solid-liquid phase transformations in metallic alloy systems. These models permit visual observation of the phase transformation and the processes proceding solidification. The number of these transparent monotectic binary models needs to be expanded to distinguish between the unique and general phenomena observed. The expansion of the number of accurately determined monotectic phase diagrams of model systems, and contribution to a data base for eventual use with UNIFAC group contribution methods is examined.

  4. Computational and experimental studies of the flow field near the beam entrance window of a liquid metal target

    International Nuclear Information System (INIS)

    Geža, Vadims; Milenković, Rade Ž.; Kapulla, Ralf; Dementjevs, Sergejs; Jakovičs, Andris; Wohlmuther, Michael

    2014-01-01

    Highlights: • Water model of liquid metal target for validation of CFD models was built. • PIV measurements showed flow features in the region near beam entrance window. • The zones with high turbulence kinetic energy were distinguished. • Reasonable agreement between modeling and PIV data was obtained. - Abstract: After the first world liquid metal target has been successfully operated at the SINQ facility at the Paul Scherrer Institut (PSI) for 6 months. The idea of having a reliable target with a bypass flow for cooling the beam entrance window, but with the bypass flow not driven by a separate pump, was examined within the project called LIMETS (Liquid Metal Target for SINQ). In designing of liquid metal targets, turbulence modelling is of high importance due to lack in methods for measuring the spatial distribution of flow and turbulence characteristics. In this study, validation of different turbulence models were performed in water model with hemispherical geometry using particle image velocimetry (PIV) technique. Two components of water flow velocity in plexiglas container with inner radius of 88 mm were measured in different cross sections, with the velocities varying from 1 to 10 m/s. Numerical calculations using large eddy simulation (LES) approach and Reynolds averaged Navier–Stokes (RANS) models were carried out to validate their applicability and study performance issues. Mean velocity and turbulence kinetic energy data were used for comparison of PIV and calculation results. Reasonable agreement was obtained for mean velocity data, with some discrepancies due to the limited length of the inlet tube. However, several discrepancies in turbulence characteristics were found in numerical results, especially in RANS model calculations

  5. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    Science.gov (United States)

    Aji, D. P. B.; Johari, G. P.

    2014-12-01

    Consequences of increase in structural fluctuations on heating Pd40Ni10Cu30P20 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the Tg (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (-dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-Tg feature and a rapid rise at T near Tg. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  6. Development of a fast thermal response microfluidic system using liquid metal

    International Nuclear Information System (INIS)

    Gao, Meng; Gui, Lin

    2016-01-01

    Room temperature liquid metal gallium alloy has been widely used in many micro-electromechanical systems applications, such as on-chip electrical microheaters, micro temperature sensors, micro pumps and so on. Injecting liquid metal into microchannels can provide a simple, rapid, low-cost but efficient way to integrate these elements in microfluidic chips with high accuracy. The liquid metal-filled microstructures can be designed in any shape and easily integrated into microfluidic chips. In this paper, an on-chip liquid metal-based thermal microfluidic system is proposed for quick temperature control at the microscale. The micro system utilizes just one microfluidic chip as a basic working platform, which has liquid metal-based on-chip heaters, temperature sensors and electroosmotic flow pumps. Under the comprehensive control of these elements, the micro system can quickly change the temperature of a target fluid in the microfluidic chip. These liquid metal-based on-chip elements are very helpful for the fabrication and miniaturization of the microfluidic chip. In this paper, deionized water is used to test the temperature control performance of the thermal microfluidic system. According to the experimental results, the micro system can efficiently control the temperature of water ranging from 28 °C to 90 °C. The thermal microfluidic system has great potential for use in many microfluidic applications, such as on-chip polymerase chain reaction, temperature gradient focusing, protein crystallization and chemical synthesis. (paper)

  7. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  8. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  9. Study of solubility of akaline earth metals in liquid iron and in alloys on its base

    International Nuclear Information System (INIS)

    Ageev, Yu.A.; Archugov, S.A.

    1985-01-01

    Solubility of magnesium, calcium, strontium and barium in liquid iron and its alloys with aluminium, silicon, nickel, chromium and carbon at 1600 deg C has been measured. Interaction parameters taking account of the effect of added elements on alkaline earth metal solubility in liquid iron have been estimated

  10. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    Science.gov (United States)

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  11. Sidewall containment of liquid metal with vertical alternating magnetic fields

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.; Battles, James E.; Hull, John R.; Rote, Donald M.

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  12. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Science.gov (United States)

    Yu, Yang; Zhang, Jie; Liu, Jing

    2013-01-01

    Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.

  13. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  14. The electrodeposition and rare earths reduction in the molten salt actinides recovery systems using liquid metal

    International Nuclear Information System (INIS)

    Shim, J-B.; Lee, J-H.; Kwon, S-W.; Ahn, B-G.; Woo, M-S.; Lee, B-J.; Kim, E-H.; Park, H-S.; Yoo, J-H.

    2005-01-01

    A pyrochemical partitioning system uses liquid metals such as cadmium and bismuth in order to recover the actinide metals from a molten salt mixture containing rare earth fission product metals. The liquid metals play roles as a cathode in the electrowinning or an extracting phase in the reductive extraction operation. The product resulting from the above operations is metal-cadmium or-bismuth alloy, which should contain the rare earth element amounts as low as possible for a transmutation purpose. In this study, the electrodeposition behaviours of uranium and lanthanide elements such as La, Ce and Nd were investigated for solid molybdenum and liquid cadmium electrodes in a molten LiCl-KCl eutectic salt. Electrochemical methods used are a cyclic voltammetry (CV) and a chronopotentiometry for monitoring the salt phase and recovering the metals, respectively. The CV graphs for monitoring the oxidizing agent CdCl 2 in the salt phase were obtained. These show a time dependently disappearance of the oxidizing agent corresponding to the formation of UCl 3 by inserting the uranium metal into the salt. Also, a sequential oxidation technique which is added at a controlled amount of the oxidizing agents into the salt phase was applied. It was found that this method is feasible for the selective reduction of the rare earths content in liquid metal alloys. (author)

  15. Conformable liquid metal printed epidermal electronics for smart physiological monitoring and simulation treatment

    Science.gov (United States)

    Wang, Xuelin; Zhang, Yuxin; Guo, Rui; Wang, Hongzhang; Yuan, Bo; Liu, Jing

    2018-03-01

    Conformable epidermal printed electronics enabled from gallium-based liquid metals (LMs), highly conductive and low-melting-point alloys, are proposed as the core to achieving immediate contact between skin surface and electrodes, which can avoid the skin deformation often caused by conventional rigid electrodes. When measuring signals, LMs can eliminate resonance problems with shorter time to reach steady state than Pt and gelled Pt electrodes. By comparing the contact resistance under different working conditions, it is demonstrated that both ex vivo and in vivo LM electrode-skin models have the virtues of direct and immediate contact with skin surface without the deformation encountered with conventional rigid electrodes. In addition, electrocardio electrodes composed of conformable LM printed epidermal electronics are adopted as smart devices to monitor electrocardiogram signals of rabbits. Furthermore, simulation treatment for smart defibrillation offers a feasible way to demonstrate the effect of liquid metal electrodes (LMEs) on the human body with less energy loss. The remarkable features of soft epidermal LMEs such as high conformability, good conductivity, better signal stability, and fine biocompatibility represent a critical step towards accurate medical monitoring and future smart treatments.

  16. European liquid metal thermal-hydraulics R and D: present and future

    International Nuclear Information System (INIS)

    Roelofs, F.; Batta, A.; Bandini, G.; Van Tichelen, K.; Gerschenfeld, A.; Cheng, X.

    2014-01-01

    A large role is attributed in the future within the European Sustainable Nuclear Energy Technology Platform (SNE-TP) and especially the underlying European Sustainable Nuclear Industry Initiative (ESNII) to the application of fast reactors for sustainable nuclear energy production. Specifically, fast reactors are considered attractive because of their possibility to use natural resources efficiently and to reduce the volume and lifetime of nuclear waste. Currently four demonstration projects have a promising outlook in Europe, i.e. the ASTRID project in France, the MYRRHA project in Belgium, the ALFRED project developed in Europe and to be built in Romania, and the ELECTRA project in Sweden. Sodium and lead(-alloys) are envisaged as coolants for these reactors. Obviously, in the development of these reactors, thermal-hydraulics is recognized as a key challenge with emphasis on safety issues. This paper will discuss the present development status of liquid metal cooled reactor thermal-hydraulics as an outcome of the European 7. framework programme THINS (Thermal-Hydraulics for Innovative Nuclear Systems) project. The main project results with respect to liquid metal cooled reactors will be summarized, i.e. turbulence heat transfer model development, fuel assembly analysis, pool thermal-hydraulics, system behaviour, multi-phase physics, and multiscale thermal-hydraulics simulation. In conclusion, the main challenges for future developments will be indicated. Emphasis will be put on the important experimental and numerical challenges. (authors)

  17. Thermophysical properties of simple liquid metals: A brief review of theory

    Science.gov (United States)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  18. Liquid metal cooled reactors: Experience in design and operation

    International Nuclear Information System (INIS)

    2007-12-01

    on key fast reactor technology aspects in an integrative sense useful to engineers, scientists, managers, university students and professors. This publication has been prepared to contribute toward the IAEA activity to preserve the knowledge gained in the liquid metal cooled fast reactor (LMFR) technology development. This technology development and experience include aspects addressing not only experimental and demonstration reactors, but also all activities from reactor construction to decommissioning. This publication provides a survey of worldwide experience gained over the past five decades in LMFR development, design, operation and decommissioning, which has been accumulated through the IAEA programmes carried out within the framework of the TWG-FR and the Agency's INIS and NKMS

  19. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  20. Dynamics and Geometry of Icosahedral Order in Liquid and Glassy Phases of Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Masato Shimono

    2015-07-01

    Full Text Available The geometrical properties of the icosahedral ordered structure formed in liquid and glassy phases of metallic glasses are investigated by using molecular dynamics simulations. We investigate the Zr-Cu alloy system as well as a simple model for binary alloys, in which we can change the atomic size ratio between alloying components. In both cases, we found the same nature of icosahedral order in liquid and glassy phases. The icosahedral clusters are observed in liquid phases as well as in glassy phases. As the temperature approaches to the glass transition point Tg, the density of the clusters rapidly grows and the icosahedral clusters begin to connect to each other and form a medium-range network structure. By investigating the geometry of connection between clusters in the icosahedral network, we found that the dominant connecting pattern is the one sharing seven atoms which forms a pentagonal bicap with five-fold symmetry. From a geometrical point of view, we can understand the mechanism of the formation and growth of the icosahedral order by using the Regge calculus, which is originally employed to formulate a theory of gravity. The Regge calculus tells us that the distortion energy of the pentagonal bicap could be decreased by introducing an atomic size difference between alloying elements and that the icosahedral network would be stabilized by a considerably large atomic size difference.

  1. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Science.gov (United States)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  2. Liquid Metallic Hydrogen II. A Critical Assessment of Current and Primordial Helium Levels in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available Before a solar model becomes viable in astrophysics, one mus t consider how the ele- mental constitution of the Sun was ascertained, especially relative to its principle com- ponents: hydrogen and helium. Liquid metallic hydrogen has been proposed as a solar structural material for models based on condensed matter (e .g. Robitaille P.-M. Liq- uid Metallic Hydrogen: A Building Block for the Liquid Sun. Progr. Phys. , 2011, v. 3, 60–74. There can be little doubt that hydrogen plays a d ominant role in the uni- verse and in the stars; the massive abundance of hydrogen in t he Sun was established long ago. Today, it can be demonstrated that the near isointe nse nature of the Sun’s Balmer lines provides strong confirmatory evidence for a dis tinct solar surface. The situation relative to helium remains less conclusive. Stil l, helium occupies a prominent role in astronomy, both as an element associated with cosmol ogy and as a byproduct of nuclear energy generation, though its abundances within the Sun cannot be reliably estimated using theoretical approaches. With respect to th e determination of helium lev- els, the element remains spectroscopically silent at the le vel of the photosphere. While helium can be monitored with ease in the chromosphere and the prominences of the corona using spectroscopic methods, these measures are hig hly variable and responsive to elevated solar activity and nuclear fragmentation. Dire ct assays of the solar winds are currently viewed as incapable of providing definitive in formation regarding solar helium abundances. As a result, insight relative to helium r emains strictly based on the- oretical estimates which couple helioseismological appro aches to metrics derived from solar models. Despite their “state of the art” nature, heliu m estimates based on solar models and helioseismology are suspect on several fronts, i ncluding their reliance on solar opacities. The best knowledge can only come from the so

  3. Improved prediction of critical heat flux in liquid metal pool boiling

    International Nuclear Information System (INIS)

    Bankoff, S.G.; Fauske, H.K.

    1974-01-01

    The Kutateladze criterion for the pool boiling critical heat flux, which works well for nonmetallic liquids at or above atmospheric pressure, fails for the alkali liquid metals in the pressure range of interest for Liquid Metal Fast Breeder Reactor applications. In this pressure range bubble growth of the alkali liquid metals is largely inertia-controlled, in view of the large thermal conductivities, which implies a significant condensing heat flux within the bubbles themselves. The bubble growth is assumed to be described by the Mikic, Rohsenow, and Griffith equation. In this way a mean bubble age is determined, and hence a mean bubble thermal boundary layer thickness. The time-average critical heat flux is then obtained as the sum of the Kutateladze flux and the flux due to condensation on the bubble surfaces. No empirical parameters are employed. The present analysis predicts critical heat fluxes lying generally within the data band. (U.S.)

  4. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms a...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  5. Proofs of cluster formation and transitions in liquid metals and alloys

    International Nuclear Information System (INIS)

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  6. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    Science.gov (United States)

    Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.

    2018-01-01

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J  ×  B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.

  7. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  8. Advances in liquid metal cooled ADS systems, and useful results for the design of IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.; Debruyn, D. [SCK CEN, Mol (Belgium); Decreton, M. [Ghent Univ., Dept. of Applied Physics (Belgium)

    2007-07-01

    Full text of publication follows: Liquid metal cooled Accelerator Driven Systems (ADS) have a lot of design commonalities with the design of IFMIF. The use of a powerful accelerator and a liquid metal spallation source makes it similar to the main features of the IFMIF irradiator. Developments in the field of liquid metal ADS can thus be very useful for the design phase of IFMIF, and synergy between both domains should be enhanced to avoid dubbing work already done. The liquid metal ADS facilities are developed for testing materials under high fast (> 1 MeV) neutron flux, and also for studying the transmutation of actinides as foreseen in the P and T (Partitioning and Transmutation) strategy of future fission industry. The ADS are mostly constituted of a sub-critical fission fuel assembly matrix, a spallation source (situated at the centre of the fuel arrangement) and a powerful accelerator targeting the spallation source. In liquid metal ADS, the spallation source is a liquid metal (like Pb-Bi) which is actively cooled to remove the power generated by the particle beam, spallation reactions and neutrons. Based on an advanced ADS design (e.g. the MYRRHA/XT-ADS facility), the paper shows the various topics which are common for both facilities (ADS and IFMIF) and highlights their respective specificities, leading to focused R and D activities. This would certainly cover the common aspects related to high power accelerators, liquid metal targets and beam-target coupling. But problems of safety, radioprotection, source heating and cooling, neutrons shielding, etc... lead also to common features and developments. Results already obtained for the ADS development will illustrate this synergy. This paper will therefore allow to take profit of recent developments in both fission and fusion programs and enhance the collaboration among the R and D teams in both domains. (authors)

  9. Dielectric Spectroscopy of Metal Nanoparticle Doped Liquid Crystal Displays ExhibitingFrequency Modulation Response

    Science.gov (United States)

    Kobayashi, Shunsuke; Miyama, Tomohiro; Nishida, Naoto; Sakai, Yoshio; Shiraki, Hiroyuki; Shiraishi, Yukihide; Toshima, Naoki

    2006-06-01

    Twisted nematic liquid crystal displays (TN-LCDs), doped with the nanoparticles of metal, such as Pd, Ag, or Ag-Pd, which are protected with ligand molecules, such as nematic liquid crystal, exhibit a frequency modulation (FM) electro-optical (EO) response with short response time of milliseconds (ms) or sub-ms order together with the ordinary rms voltage response. These devices are called FM/AM-TN-LCDs; they are distinct from the ordinary LCDs featured by the amplitude modulation (AM) response. The phenomena of the FM/AM LCDs may be attributed to the dielectric dispersion of a heterogeneous dielectric medium known as the Maxwell-Wagner effect. It is experimentally shown that the frequency range spreads from several tens hertz to several tens kilohertz and the spectrum is more or less centered about the dielectric relaxation frequency. We formulated a theory based on an equivalent circuit model to evaluate the dielectric relaxation frequency and the dielectric strengths; and we succeeded in explaining the dependence of the dielectric relaxation frequency on the concentration of nanoparticles and the their dielectric and electrical properties, whereas conventional theories based on electromagnetic theory are unable to explain this concentration dependence. This paper reports on the experimental results of the EO effects and the dielectric spectroscopy including the dielectric relaxation times and the dielectric strengths of nematic liquid crystal, 5CB (4-pentyl-4'-cyanobiphenyl), doped with the metal nanoparticles of Pd alone and Ag-Pd composite; and discusses how the observed dielectric relaxation frequency or dielectric relaxation time depend on the concentration of the doped nanoparticles and also their electrical and dielectric properties.

  10. Preventing Oxide Adhesion of Liquid Metal Alloys to Enable Actuation in Microfluidic Systems

    Science.gov (United States)

    Joshipura, Ishan; Johnson, Alexander; Ayers, Hudson; Dickey, Michael

    This work explores the wetting behavior of an oxide-coated liquid metal, eutectic alloy of gallium and indium (`EGaIn'), which remains a liquid at room temperature. Liquid metals uniquely combine fluidity with metallic properties. Combined, these properties enable soft, stretchable, and shape reconfigurable electronics with `softer than skin' interfaces. Ga forms spontaneously a thin surface oxide that alters its wetting behavior and makes it difficult to move across surfaces without leaving residue behind. We examine the effects of surface roughness (i.e., Cassie-Baxter state) and lubrication to minimize adhesion of Ga oxide to surfaces. Lubricated surfaces create a `slip-layer' of liquid between the metal and surface that also inhibits wetting. This slip layer allows the metal to move reversibly through microchannels by preventing adhesion of the oxide. The metal may be pumped or moved by using low voltages or pneumatic actuation. Optical microscopy confirms the importance of the slip-layer, which enables non-stick motion of the metal through capillaries. Finally, electrochemical impedance spectroscopy characterizes the electrohydrodynanic motion of EGaIn in capillary systems.

  11. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo

    2011-09-01

    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  12. Chemical reactions of metal powders with organic and inorganic liquids during ball milling

    Science.gov (United States)

    Arias, A.

    1975-01-01

    Chromium and/or nickel powders were milled in metal chlorides and in organic liquids representative of various functional groups. The powders always reacted with the liquid and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 weight percent. Compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid.

  13. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  14. Liquid-drop model applied to heavy ions irradiation

    International Nuclear Information System (INIS)

    De Cicco, Hernan; Alurralde, Martin A.; Saint-Martin, Maria L. G.; Bernaola, Omar A.

    1999-01-01

    Liquid-drop model is used, previously applied in the study of radiation damage in metals, in an energy range not covered by molecular dynamics, in order to understand experimental data of particle tracks in an organic material (Makrofol E), which cannot be accurately described by the existing theoretical methods. The nuclear and electronic energy depositions are considered for each ion considered and the evolution of the thermal explosion is evaluated. The experimental observation of particle tracks in a region previously considered as 'prohibited' are justified. Although the model used has free parameters and some discrepancies with the experimental diametrical values exist, the agreement obtained is highly superior than that of other existing models. (author)

  15. Porous Poly(Ionic Liquid) Membranes as Efficient and Recyclable Absorbents for Heavy Metal Ions.

    Science.gov (United States)

    Ren, Yongyuan; Zhang, Jiandong; Guo, Jiangna; Chen, Fei; Yan, Feng

    2017-07-01

    Heavy metal ion pollution has become a serious environmental problem. Herein, this study reports the synthesis of poly(ionic liquid) (PIL) membranes via in situ photo-crosslinking of vinyl imidazole with both hydrophilic and hydrophobic ionic liquid monomers. The resultant amphiphilic polymer membranes are porous and exhibit high absorption capacity of metal ions (including Hg 2+ , Pb 2+ , Cu 2+ , Cd 2+ , and Zn 2+ ) in both high (1000 mg L -1 ) and low (10 mg L -1 ) concentration metal ion solutions. These metal ionic absorption membranes are easily regenerated in acid solution and can be reused without significant decreases of absorption capacity after many cycles. These PIL membranes may have potential applications as eco-friendly and safe heavy metal ion removal materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  17. Measuring probe and method for determining the oxygen content in gases, vapors, and liquids, especially in liquid metals

    International Nuclear Information System (INIS)

    Sundermann, H.; Andrae, U.

    1978-01-01

    The invention is concerned with the improvement of the measuring probe described in the main patent no. 1798002 with which the oxygen content in liquid metals, e.g. Na, is to be determined. In order to avoid the glass stopper shutting off the reference space having to be ground out it is proposed to connect the solid electrolyte firmly and hermetically with a metallic mounting support (e.g. Fe-Co-Ni alloy), having got the same thermal coefficient of expansion as the solid electrolyte (e.g. zirconium dioxide stabilized with ythium oxide or thorium dioxide). Further details of the design are very explicitly described. (HP) [de

  18. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  19. A conceptual design strategy for liquid-metal-wall inertial fusion reactors

    International Nuclear Information System (INIS)

    Monsler, M.J.; Meier, W.R.

    1981-01-01

    The liquid-metal-wall chamber has emerged as an attractive reactor concept for inertial fusion energy conversion. The principal feature of this concept is a thick, free-flowing blanket of liquid metal used to protect the structure of the reactor. The development and design of liquid-metal-wall chambers over the past decade are reviewed from the perspective of formulating a conceptual design strategy for such chambers. The basis for the design strategy is set by enumerating both the attractive and unattractive features of a LMW chamber. Past concepts are then reviewed to identify conceptual design approaches and physical configurations that enhance the positive aspects and minimize the negative aspects. A detailed description of the engineering considerations is given, including such topics as the selection of a liquid metal, control of radiation damage, selection of structural material, control of tritium breeding and extraction, control of wall stress, and designing for a given rep-rate. Finally, a design strategy is formulated which accomodates the engineering constraints while minimizing the liquid-metal flow rate. (orig.)

  20. Liquid metal technology for concentrated solar power systems: Contributions by the German research program

    Directory of Open Access Journals (Sweden)

    Thomas Wetzel

    2014-03-01

    Full Text Available Concentrated solar power (CSP systems can play a major role as a renewable energy source with the inherent possibility of including a thermal energy storage subsystem for improving the plant dispatchability. Next-generation CSP systems have to provide an increased overall efficiency at reduced specific costs and they will require higher operating temperatures and larger heat flux densities. In that context, liquid metals are proposed as advanced high temperature heat transfer fluids, particularly for central receiver systems. Their main advantages are chemical stability at temperatures up to 900 ℃ and even beyond, as well as largely improved heat transfer when compared to conventional fluids like oil or salt mixtures, primarily due to their superior thermal conductivity. However, major issues here are the corrosion protection of structural materials and the development of technology components and control systems, as well as the development of indirect storage solutions, to circumvent the relatively small heat capacity of liquid metals. On the other hand, using liquid metals might enable alternative technologies like direct thermal-electric conversion or use of solar high-tem­perature heat in chemical processes. This article aims at describing research areas and research needs to be addressed for fully evaluating and subsequently utilizing the potential of liquid metals in CSP systems. A second aim of the article is a brief overview of the liquid metal research capabilities of Karlsruhe Institute of Technology (KIT, their background and their relation to CSP and the aforementioned research pathways.

  1. Homogeneous liquid-liquid extraction of metal ions with non-fluorinated bis(2-ethylhexyl)phosphate ionic liquids having a lower critical solution temperature in combination with water.

    Science.gov (United States)

    Depuydt, Daphne; Liu, Liwang; Glorieux, Christ; Dehaen, Wim; Binnemans, Koen

    2015-09-28

    Ionic liquids with an ether-functionalised cation and the bis(2-ethylhexyl)phosphate anion show thermomorphic behaviour in water, with a lower critical solution temperature. These ionic liquids are useful for homogeneous liquid-liquid extraction of first-row (3d) transition metals.

  2. Metastable liquid-liquid transition in a molecular model of water.

    Science.gov (United States)

    Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-06-19

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  3. Liquid metal flow in a finite-length cylinder with a rotating magnetic field

    International Nuclear Information System (INIS)

    Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.

    1993-01-01

    A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)

  4. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

    Science.gov (United States)

    Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848

  5. Flow of a two-dimensional liquid metal jet in a strong magnetic field

    International Nuclear Information System (INIS)

    Reed, C.B.; Molokov, S.

    2002-01-01

    Two-dimensional, steady flow of a liquid metal slender jet pouring from a nozzle in the presence of a transverse, nonuniform magnetic field is studied. The surface tension has been neglected, while gravity is shown to be not important. The main aim of the study is to evaluate the importance of the inertial effects. It has been shown that for gradually varying fields characteristic for the divertor region of a tokamak, inertial effects are negligible for N > 10, where N is the interaction parameter. Thus the inertialess flow model is expected to give good results even for relatively low magnetic fields and high jet velocity. Simple relations for the jet thickness and velocity have been derived. The results show that the jet becomes thicker if the field increases along the flow and thinner if it decreases

  6. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries.

    Science.gov (United States)

    Sun, Ze; Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-02-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries.

  7. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  8. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)

  9. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    Science.gov (United States)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  10. Local coordination, electronic correlations and relation between thermodynamic and transport properties of sp liquid metals

    Science.gov (United States)

    March, N. H.

    A brief discussion on local coordination in expanded alkalis will be followed by a short review of recent progress in determining electronic correlation functions by combining experiment using diffraction techniques with computer simulation. Then both critical point properties and melting temperatures of liquid sp metals will be discussed. In the latter case, the main topic will be on a metal model which will be used to correlate the ratio of surface tension to shear viscosity with a characteristic velocity. Conventional choice is to take this velocity as the thermal value (kBT / M)1/2. This choice has some merit. However an alternative is to use the velocity of sound, and a different formula then emerges which depends on the valency Z. Reference to some experimental support for such a formula is given. Finally, connection with diffusion, and with bulk viscosity, is discussed with some involvement of a collective mode model, such as prompted by early neutron inelastic scattering results on Rb near its melting point.

  11. Liquid metal reactor head designs in the USA - heat and mass transfer considerations

    International Nuclear Information System (INIS)

    Burke, T.M.

    1986-01-01

    Development of liquid metal reactor plants in the United States over the past 30 years has resulted in an evolution of reactor head designs as reflected in the SRE, Hallam, EBR-II and FFTF plants. This evolution has probably been affected to some extent by the fact that, in contrast to most other countries, there is no single organization in the United States which has been responsible for the design of liquid metal reactor plants. The current U.S. LMR design efforts involve two innovative design consortiums (guided by the US Department of Energy) and a joint industry venture on the Large Scale Prototype Breeder. It is therefore somewhat difficult to provide a statement on the philosophy of the reactor head design in the U.S. This paper however briefly describes the existing and proposed U.S. liquid metal reactor head designs and in the process, attempt to provide some insight on the basis for those designs

  12. Experimental observation of proton-induced shocks and magneto-fluid- dynamics in liquid metal

    CERN Document Server

    Fabich, A

    2003-01-01

    A liquid metal target is one of the options for the pion production target of a nu-factory. The interaction between a liquid metal and a proton beam were observed with static mercury as well as with a free mercury jet and up to 4 multiplied by 10**1**2 protons/bunch. The experimental method for investigating the magneto-fluid-dynamic effects of a high-velocity liquid metal in a high magnetic field magnet has been validated by recording the behaviour of a 15 m/s mercury burst entering the gradient of a 13 T solenoid at GHMFL Grenoble. The paper includes the description of the optical read-out system as well as numerical results of the mercury drop velocities.

  13. Development of a wet vapor homogeneous liquid metal MHD power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Branover, H.; Unger, Y.; El-Boher, A.; Schweitzer, H.

    1991-09-01

    A feasibility study for the approval of liquid metal seeds recovery from a liquid metal vapor-inert gas mixture was conducted and presented in this report. The research activity included background studies on processes relating to mixing stream condenser performance, parametric studies and its experimental validation. The condensation process under study includes mass transfer phenomena combined with heat transfer and phase change. Numerical methods were used in order to solve the dynamic equations and to carry out the parametric study as well as the experimental data reduction. The MSC performance is highly effected by droplet diameter, thus the possibility of atomizing liquid metals were experimentally investigated. The results are generalized and finally used for a set of recommendations by which the recovery of seeds is expected to be feasible.

  14. Laser ablation of metal into liquid: near critical point phenomena and hydrodynamic instability

    Science.gov (United States)

    Inogamov, Nail; Zhakhovsky, Vasily; Khokhlov, Viktor

    2017-06-01

    Laser ablation of metal in contact with liquid differs much from ablation into vacuum. In spite of importance of this kind of laser-matter interaction (e.g., for nanoparticles production), the involved processes are still poorly understood. We show that to produce nanoparticles the laser absorbed energy should overcome the ablation threshold into vacuum by a few times. Thus the required temperatures in the heat-affected zone increase above a critical temperature. The flow of the substances, including propagation of a strong shock in liquid and a rarefaction wave inside the metal target, is analyzed. We demonstrate that the contact between metal and liquid, both being in their supercritical states, is hydrodynamically unstable. The instability is of the Rayleigh-Taylor type. Dynamics of the instability is important for separation of melt droplets which are frozen up to solid nanoparticles later.

  15. US/DOE Man-Machine Integration program for liquid metal reactors

    International Nuclear Information System (INIS)

    D'Zmura, A.P.; Seeman, S.E.

    1985-03-01

    The United States Department of Energy (DOE) Man-Machine Integration program was started in 1980 as an addition to the existing Liquid Metal Fast Breeder Reactor safety base technology program. The overall goal of the DOE program is to enhance the operational safety of liquid metal reactors by optimum integration of humans and machines in the overall reactor plant system and by application of the principles of human-factors engineering to the design of equipment, subsystems, facilities, operational aids, procedures and environments. In the four years since its inception the program has concentrated on understanding the control process for Liquid Metal Reactors (LMRs) and on applying advanced computer concepts to this process. This paper describes the products that have been developed in this program, present computer-related programs, and plans for the future

  16. Linking structure to fragility in bulk metallic glass-forming liquids

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-01-01

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T g . The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure

  17. Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source

    International Nuclear Information System (INIS)

    Marriott, Philip

    1987-06-01

    Ionisation and energy broadening mechanisms relevant to liquid metal ion sources are discussed. A review of experimental results giving a picture of source operation and a discussion of the emission mechanisms thought to occur for the ionic species and droplets emitted is presented. Further work is suggested by this review and an analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated and a series of measurements, both on and off the beam axis, of 69 Ga + , Ga ++ and Ga 2 + ions emitted at various currents from a gallium source has been performed. A comparison is made between these results and published work where possible, and the results are discussed with the aim of determining the emission and energy spread mechanisms operating in the gallium liquid metal ion source. (author)

  18. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    Science.gov (United States)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  19. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  20. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    Science.gov (United States)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  1. Liquid immiscibility in model bilayer lipid membranes

    Science.gov (United States)

    Veatch, Sarah L.

    There is growing evidence that cell plasma membranes are laterally organized into "raft" regions in which particular lipids and proteins are concentrated. These domains have sub-micron dimensions and have been implicated in vital cell functions. Similar liquid domains are observed in model bilayer membrane mixtures that mimick cellular lipid compositions. In model membranes, domains can be large (microns) and can readily form in the absence of proteins. This thesis presents studies of liquid immiscibility in model membrane systems using two experimental methods. By fluorescence microscopy, this thesis documents that miscibility transitions occur in a wide variety of ternary lipid mixtures containing high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol. I have constructed detailed miscibility phase diagrams for three separate ternary lipid mixtures (DOPC/DPPC/Chol, DOPC/PSM/Chol, and POPC/PSM/Chol). Phase separation is also observed in membranes of lipids extracted from human erythrocytes. NMR experiments probe lipid order and verify the coexistence of a saturated lipid and cholesterol rich liquid ordered (Lo) phase with a more disordered, unsaturated lipid rich liquid crystalline (Lalpha) phase at low temperatures. These experiments also find multiple thermodynamic transitions and lipid organization on different length-scales. This complexity is revealed because fluorescence microscopy and NMR probe lipid order at different length-scales (>1mum vs. ˜100nm). NMR detects small domains (˜80nm) at temperatures just below the miscibility transition, even though micron-scale domains are observed by fluorescent microscopy. NMR does detect large-scale ("100nm) demixing, but at a lower temperature. In addition, it has long been known that >10nm length-scale structure is present in many lipid mixtures containing cholesterol and at least one additional lipid species, though it is shown here that only a subset of

  2. Liquid crystal model of membrane flexoelectricity.

    Science.gov (United States)

    Rey, Alejandro D

    2006-07-01

    An interfacial liquid crystal model is formulated and used to derive a membrane shape equation that takes into account pressure, tension, bending, torsion, and flexoelectric forces. Flexoelectricity introduces electric field-induced curvature and is of relevance to the study and characterization of biological membranes. It is shown that flexoelectricity renormalizes the membrane mechanical tension, shear, and bending effects, and hence it offers diverse pathways to manipulate the membrane's shape. The derived electroelastic shape equation provides systematic guidance on how to use electric fields in membrane studies.

  3. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pumping liquid metal at high temperatures up to 1,673 kelvin.

    Science.gov (United States)

    Amy, C; Budenstein, D; Bagepalli, M; England, D; DeAngelis, F; Wilk, G; Jarrett, C; Kelsall, C; Hirschey, J; Wen, H; Chavan, A; Gilleland, B; Yuan, C; Chueh, W C; Sandhage, K H; Kawajiri, Y; Henry, A

    2017-10-11

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  5. Pumping liquid metal at high temperatures up to 1,673 kelvin

    Science.gov (United States)

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  6. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    Science.gov (United States)

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  8. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  9. Development of a self-actuated shutdown system for a liquid-metal breeder reactor

    International Nuclear Information System (INIS)

    Cooper, M.H.; Tupper, R.B.; Bernard, A.M.

    1984-01-01

    A comprehensive development program for a Self-Actuated Shutdown System for a Liquid-Metal Fast Breeder Reactor has been completed. The development program included component tests of a temperature sensitive electromagnet, prototype test including the absorber in a sodium loop, accelerated life tests of the high temperature electric coils, and an irradiation test of a miniaturized coil and magnetic circuit materials. The results of these tests have demonstrated that the self-actuated shutdown system is sufficiently developed for application in the next generation Liquid-Metal Fast Breeder Reactor. (author)

  10. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  11. Possible applications of crown-ethers to metal extraction using liquid membrane technology - a literature survey

    International Nuclear Information System (INIS)

    Dozol, M.

    1990-01-01

    Ether-crowns, discovered in 1967 by J.C. PEDERSEN, exhibit attractive complexive and extractive properties, enhanced in various fields, such as analytical chemistry, chemical synthesis, field of biology, or extractive chemistry. The investigations carried out on these macrocyclic compounds are continually increasing, as show in international literature. Among the focus of interest, the applications to metal extraction are extensively studied with crown compounds present in liquid phase or impregnated on supports (membranes or resins). The goal of this paper is to describe the application of crown-ethers to metal extraction, using liquid membrane processes. 69 refs

  12. Updated reference design of a liquid metal cooled tandem mirror fusion breeder

    International Nuclear Information System (INIS)

    Berwald, D.H.; Whitley, R.H.; Garner, J.K.

    1985-09-01

    Detailed studies of key techinical issues for liquid metal cooled fusion breeder (fusion-fission hybrid blankets) have been performed during the period 1983-4. Based upon the results of these studies, the 1982 reference liquid metal cooled tandem mirror fusion breeder blanket design was updated and is described. The updated reference blankets provides increased breeding and lower technological risk in comparison with the original reference blanket. In addition to the blanket design revisions, a plant concept, cost, and fuel cycle economics assessment is provided. The fusion breeder continues to promise an economical source of fissile fuel for the indefinite future

  13. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  14. A novel mechanism for the extraction of metals from water to ionic liquids.

    Science.gov (United States)

    Janssen, Camiel H C; Sánchez, Antonio; Witkamp, Geert-Jan; Kobrak, Mark N

    2013-11-11

    We present a novel mechanism for the extraction of metals from aqueous phases to room-temperature ionic liquids (ILs) by use of a high-temperature salt as an extraction agent. The mechanism capitalizes on the fact that charged metal complexes are soluble in ILs; this allows for extraction of charged complexes rather than the neutral species, which are formed by conventional approaches. The use of a well-chosen extraction agent also suppresses the competing ion-exchange mechanism, thus preventing degradation of the ionic liquid. The approach permits the use of excess extractant to drive the recovery of metals in high yield. This work presents both a thermodynamic framework for understanding the approach and experimental verification of the process in a range of different ILs. The method has great potential value in the recovery of metals, water purification and nuclear materials processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced metal recovery through oxidation in liquid and/or supercritical carbon dioxide

    KAUST Repository

    Blanco, Mario

    2017-08-24

    Process for enhanced metal recovery from, for example, metal-containing feedstock using liquid and/or supercritical fluid carbon dioxide and a source of oxidation. The oxidation agent can be free of complexing agent. The metal-containing feedstock can be a mineral such as a refractory mineral. The mineral can be an ore with high sulfide content or an ore rich in carbonaceous material. Waste can also be used as the metal-containing feedstock. The metal-containing feedstock can be used which is not subjected to ultrafine grinding. Relatively low temperatures and pressures can be used. The metal-containing feedstock can be fed into the reactor at a temperature below the critical temperature of the carbon dioxide, and an exotherm from the oxidation reaction can provide the supercritical temperature. The oxidant can be added to the reactor at a rate to maintain isothermal conditions in the reactor. Minimal amounts of water can be used as an extractive medium.

  16. Liquid-metal MHD for solar and coal: system and component status

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E.S.; Grammel, S,J.; Cohen, D.; Frisardi, T.

    1980-01-01

    The motivations for using two-phase-generator liquid-metal MHD (LMMHD) energy-conversion systems with solar collectors and cyclone-type coal combustors are given. The solar LMMHD studies presented focus on two collector temperatures - approx. 590/sup 0/K (600/sup 0/F) with an LMMHD Rankine cycle, an attractive temperature for near-term use, and approx. 1090/sup 0/K (1500/sup 0/F) with an LMMHD Brayton cycle, typical of higher-performance long-range uses. The coal LMMHD studies emphasize the development of a new system model and its application to performance and optimization analysis, and reactions of liquid copper with coal combustion products (gas, slag) and the use of the copper to control environmental impacts. Cogeneration applications and retrofits of existing central-station electric plants are particularly-attractive options for LMMHD with both solar and coal. High-efficiency high-power-density, and high-temperature LMMHD generator data are summarized, because they indicate that large, high-efficiency generators can be built. The status of the two-phase mixer and separator is discussed.

  17. Dissolution rates and solubility of some metals in liquid gallium and aluminum

    International Nuclear Information System (INIS)

    Yatsenko, S P; Sabirzyanov, N A; Yatsenko, A S

    2008-01-01

    The effect of liquid gallium and aluminum on some hard metals leading to dissolution and formation of intermetallic compounds (IMC) under static conditions and rotation of a specimen is studied. The solubility parameters from the Clapeyron-Clausius equation were considered to estimate the stability of still not studied metals. The presented experimental data on solubility and corrosion in a wide temperature range allow to calculate a number of parameters useful in manufacturing and application of master-alloys

  18. Dispersion forces and small-angle neutron scattering from liquid noble metals

    International Nuclear Information System (INIS)

    March, N.H.

    1988-01-01

    Maggs and Ashcroft [Phys. Rev. letts., 59,113 (1987)] have re-opened the question of the analogy between the cohesion of a molecular crystal, in which dispersion forces play a major role, and that in a metal crystal with polarizable ion cores. It is pointed out that small-angle neutron scattering from liquid noble metals could be used to test their predictions. (author)

  19. Small liquid metal reactor for an initial phase of fast breeder reactor introduction

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1985-01-01

    Safety and burnup characteristics of a 1000 MWth liquid metal reactor have been examined for various fuel types. With metallic Pu/Th fuel containing a small amount of zirconium hydride, low sodium-void reactivity, a high Doppler coefficient, and small burnup reactivity swings can be achieved. A conservative design is considered for an initial phase of fast breeder reactor development and possible modifications are discussed. (Author) [pt

  20. Application of liquid column chromatography to preconcentration, separation and determination of platinum metals

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    Separation and determination of platimum metals using the methods of adsorption, ion-pair, ion-exchange, distributing and sieve chromatography are discussed in the review of literature in 1971-1984. Separation and determination of metals as chelates using the method of adsorption and ion-pair chromatograpy are noted to be most perspective directions of developing highly effective liquid chromatography of inorganic systems

  1. Safety aspects of LMR [liquid metal-cooled reactor] core design

    International Nuclear Information System (INIS)

    Cahalan, J.E.

    1986-01-01

    Features contributing to increased safety margins in liquid metal-cooled reactor (LMR) design are identified. The technical basis is presented for the performance of a pool-type reactor system with an advanced metallic alloy fuel in unprotected accidents. Results are presented from analyses of anticipated transients without scram, including loss-of-flow (LOF), transient overpower (TOP), and loss-of-heat-sink (LOHS) accidents

  2. The role of SASSYS-1 in LMR [Liquid Metal Reactor] safety analysis

    International Nuclear Information System (INIS)

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs

  3. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  4. Research on Liquid Forming Process of Nickel Superalloys Thin Sheet Metals

    Directory of Open Access Journals (Sweden)

    Hyrcza-Michalska M.

    2017-12-01

    Full Text Available The paper presents the study of drawability of thin sheet metals made of a nickel superalloy Inconel type. The manufacturing process of axisymmetric cup – cone and a closed section profile in the form of a circular tube were designed and analyzed. In both cases, working fluid-oil was used in place of the rigid tools. The process of forming liquid is currently the only alternative method for obtaining complex shapes, coatings, and especially if we do it with high-strength materials. In the case of nickel superalloys the search for efficient methods to manufacture of the shaped shell is one of the most considerable problems in aircraft industry [1-5]. However, the automotive industries have the same problem with so-called advanced high-strength steels (AHSS. Due to this, both industrial problems have been examined and the emphasis have been put on the process of liquid forming (hydroforming. The study includes physical tests and the corresponding numerical simulations performed, using the software Eta/Dynaform 5.9. Numerical analysis of the qualitative and quantitative forecasting enables the formability of materials with complex and unusual characteristics of the mechanical properties and forming technology. It has been found that only the computer aided design based on physical and numerical modeling, makes efficient plastic processing possible using a method of hydroforming. Drawability evaluation based on the determination of the mechanical properties of complex characteristics is an indispensable element of this design in the best practice of industrial manufacturing products made of thin sheet metals.

  5. Magnetohydrodynamic throttling and control of liquid-metal flows

    International Nuclear Information System (INIS)

    Gel'fgat, Yu.M.; Gorbunov, L.A.; Vitkovskij, I.V.

    1989-01-01

    Systematic description of complex of purposeful physical and technical investigations of new trend of applied magnetic hydrodynamics, the main purpose of which includes investigation into physical regularities of behaviour of conducting melts under conditions specially provided to achieve maximal effect on electromagnetic field liquid, as well as, development of MHD-equipment specialized means using the detected effects and investigation of their application possibilities in different practical uses, is given in monography for the first time. 299 refs.; 245 figs.; 15 tabs

  6. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  7. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  8. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  9. Experimental investigation of rotating-drum separators for liquid-metal MHD applications

    International Nuclear Information System (INIS)

    Lenzo, C.S.; Dauzvardis, P.V.; Hantman, R.G.

    1978-01-01

    For the past several years, Argonne National Laboratory has been active in the development of closed-cycle two-phase-flow MHD power systems. One of the key components in such systems is an effective and efficient gas-liquid separator-diffuser. On the basis of an assessment of present technology, it was decided to study the characteristics of a rotating drum type of separator, and a multitask research and development program was initiated within the overall liquid-metal MHD research program. The first task, now completed, centered on the investigation of single-phase flow (liquid) deposited by a flow nozzle on the inner surface of freely-rotating cylinders or drums of 423 mm and 282 mm diam. The tests were designed to study the recovery of energy in the liquid layer deposited on the drum; the torque transmitted to the drum by the liquid as the result of shear stress between the liquid and the drum surface; the characteristics of the liquid layer; and the effects of drum size, nozzle shape and orientation, and nozzle velocity. The test results showed that a stable liquid film was formed on the drum and that the kinetic energy of the liquid layer was high enough to be potentially useful in two-phase-flow MHD power systems

  10. Experimental and theoretical studies of the wall boundary region 'heavy liquid-metal coolant - constructional material'

    International Nuclear Information System (INIS)

    Makhov, Kirill; Iarmonov, Mikhail; Bokova, Tatiana; Beznosov, A.V.

    2011-01-01

    The wall boundary layer is an inalienable part of the contours with heavy liquid metal coolants (HLMC) that are used in the fourth generation nuclear reactors. The properties of the wall boundary layer determine a reactor's efficiency and influence hydraulic characterises and heat exchange. Characteristics of the wall boundary layer 'HLMC - constructional material' have been studied by various techniques and methods at the Nizhny Novgorod State Technical University (NNSTU). The study included: ultrasonic analysis; determination of the contact thermal resistance; study of the influence of the wall boundary region characteristics on the MHD resistance of the HLMC flow. Due to the results of this research the modern model of the wall boundary layer in the medium of heavy metal coolants was built. The following characteristics were experimentally found in the wide range of parameters: the magnitude of the contact thermal resistance of the wall boundary layer in the Peclet number range from Pe=260 to Pe=1430 with the oxygen concentration varied in the range from 10 -7 to 10 0 ; the dependences of the hydraulic loss coefficients on the Stuart criterion in the magnetic field. (author)

  11. Recovery of Metallic Values from Brass Waste Using Brønsted Acidic Ionic Liquid as Leachate

    Science.gov (United States)

    Kilicarslan, Ayfer; Saridede, Muhlis Nezihi

    2015-11-01

    The waste formed during industrial brass manufacturing is rich in copper and zinc metals. Therefore, treatment of this waste is a necessity from economic and environmental aspects. This study presents a process for recovery of zinc and copper through Brønsted ionic liquid (1-butyl-3-methyl-imidazolium hydrogen sulfate; [Bmim]HSO4), as leachate. It was found that all zinc content could be dissolved from the waste under two optimum conditions: (1) in ionic liquid (IL) concentration of 70% (v/v) at 60°C in 30 min or (2) in IL concentration of 50% (v/v) at 100°C in 60 min. On the other hand, ionic liquid leaching gave poor copper solubility under the conditions of the study. Zinc dissolution in the range 5-75 min by [Bmim]HSO4 can be explained with the shrinking core model controlled by diffusion through a product layer, and the apparent activation energy was calculated as 4.36 kJ/mol. The leach liquor was treated to obtain metallic zinc by the electrowinning method without a purification step. Scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX) investigations showed that the layer of metallic zinc was plated successfully on the cathode.

  12. Liquid phase micro-extraction: Towards the green methodology for ultratrace metals determination in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    López-López J. A.

    2013-04-01

    Full Text Available Heavy metals are normally found, in natural waters, in very low concentrations. Some of them are essential for life in low level; however, in higher level they are toxic. Therefore, analyzing their bio-available fraction is of main interest. Standard methodology is based in the collection of a number of samples from a water body. Collected samples must be stored, pre-treated and then analyzed. Pre-treatment usually involves pre-concentrating the metal, with the corresponding risk of contamination or loss of analyte. This way, punctual information is obtained from every sampling campaign. As an alternative, passive sampling techniques allow the continuous and coupled sampling-pre-treatment for heavy metals analysis, giving a better approach in the characterization of the studied water body. Liquid phase micro-extraction (LPME is a green analytical alternative for liquid-liquid extraction that promotes a reduction of sample volume, solvent needed and waste generation. Using these systems, polypropylene hollow fibers (HF with pores in their walls can be used. A few micro-liters of organic solvent are supported in the pores. The sample is placed in the outer part of the fiber and a receiving phase is placed in its inner part, allowing continuous liquid extraction of the metal from the sample. Several fibers with different physical features have been employed to analyzed total concentration and bio-availability of some heavy metals (Ag, Ni, Cu in natural water samples. Thanks to fibers configuration, devices for passive sampling based in HF-LPME could be designed. Advantages of this methodology over existing ones are supported because the receiving phase is liquid. As a consequence, retained metals do not need to be eluted from the acceptor prior to instrumental analysis.

  13. Model Based Metal Transfer Control

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2006-01-01

    In pulsed gas metal arc welding (pulsed GMAW) current pulses are used for detaching drops at the tip of the electrode. To obtain a high weld quality one drop should be detached for every pulse, and moreover, the amount of energy used for detachment should be kept at a minimum. Thus, each pulse mu...

  14. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  15. Liquid lubrication in sheet metal forming at mesoscopic scale

    DEFF Research Database (Denmark)

    Hubert, C.; Dubar, L.; Bay, Niels

    2012-01-01

    The lubricant entrapment and escape phenomena in metal forming are studied experimentally as well as numerically. Experiments are carried out in strip reduction of aluminium sheet applying a transparent die to study the fluid flow between mesoscopic cavities. The numerical strategy is based...... on a weak fluid/structure coupling involving the Finite Element Method and analytical calculations. It allows to quantify the final shape of the lubricant pockets...

  16. Development of liquid metal type TBM technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kwak, J. G.; Kim, Y. (and others)

    2008-03-15

    The objectives of the ITER project for the construction and operation are to perform the test related to the neutronics, blanket module, tritium treatment technology, advanced plasma technology, and to test the heat extraction and tritium breeding in the test blanket for the fusion reactor. Other parties have been developing the Test Blanket Module (TBM) for testing in the ITER for these purposes. Through this project, we can secure the TBM design and related technology, which will be used as the core technology for the DEMO construction, our own fusion reactor development. In 1st year, the optimized design procedure was established with the existing tools, which have been used in nuclear reactor design, and the optimized HCML TBM design was obtained through iteration method according to the developed design procedure. He cooling system as a TBM auxiliary system was designed considering the final design of the KO HCML TBM such as coolant capacity and operation pressure. Layout for this system was prepared to be installed in the ITER TCWS vault. MHD effect of liquid Li breeder by magnetic flux in ITER such as much higher pressure drop was evaluated with CFD-ACE and it was concluded that the Li breeder should have a slow velocity to reduce this effect. Most results were arranged in the form of DDD including preliminary safety analysis report. In 2nd year, the optimized design procedure was complemented and updated. In performance analysis on thermal-hydraulic and thermo-mechanical one, full 3D meshes were generated and used in this analysis in order to obtain the more exact temperature, deformation, and stress solution. For liquid Li breeder system, design parameters were induced before the detailed design of the system and were used in the design of the liquid Li test loop. LOCA analysis, activation analysis in LOCA, EM analysis were performed as a preliminary safety analysis. In order to develop the manufacturing technology, Be+FMS and FMS to FMS joining conditions

  17. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs

  18. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides.

    Science.gov (United States)

    Babucci, Melike; Akçay, Aslı; Balci, Volkan; Uzun, Alper

    2015-08-25

    Thermal stability limits of 33 imidazolium ionic liquids (ILs) immobilized on three of the most commonly used high surface area metal-oxides, SiO2, γ-Al2O3, and MgO, were investigated. ILs were chosen from a family of 13 cations and 18 anions. Results show that the acidity of C2H of an imidazolium ring is one of the key factors controlling the thermal stability. An increase in C2H bonding strength of ILs leads to an increase in their stability limits accompanied by a decrease in interionic energy. Systematic changes in IL structure, such as changes in electronic structure and size of anion/cation, methylation on C2 site, and substitution of alkyl groups on the imidazolium ring with functional groups have significant effects on thermal stability limits. Furthermore, thermal stability limits of ILs are influenced strongly by acidic character of the metal-oxide surface. Generally, as the point of zero charge (PZC) of the metal-oxide increases from SiO2 to MgO, the interactions of IL and metal-oxide dominate over interionic interactions, and metal-oxide becomes the significant factor controlling the stability limits. However, thermal stability limits of some ILs show the opposite trend, as the chemical activities of the cation functional group or the electron donating properties of the anion alter IL/metal-oxide interactions. Results presented here can help in choosing the most suitable ILs for materials involving ILs supported on metal-oxides, such as for supported ionic liquid membranes (SILM) in separation applications or for solid catalyst with ionic liquid layer (SCILL) and supported ionic liquid phase (SILP) catalysts in catalysis.

  19. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  20. Optimized random phase approximation for the structure of liquid alkali metals as electron-ion plasmas

    International Nuclear Information System (INIS)

    Senatore, G.; Tosi, M.P.; Trieste Univ.

    1981-08-01

    The purpose of this letter is to stress that the way towards an unconventional optimized-random-phase-approximation (ORPA) approach to the structure of liquid metals is indicated, and in fact already a good first-order solution for such an approach is provided

  1. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    Science.gov (United States)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  2. Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Appleby, E.R.

    1975-08-01

    This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books

  3. Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer

    International Nuclear Information System (INIS)

    Costa, E.B. da.

    1992-09-01

    The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs

  4. Induction apparatus monitoring structural strains in liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Dean, S.A.; Evans, R.A.

    1981-01-01

    An improved method of monitoring induced torsional and linear strains in the internal structures of liquid metal cooled nuclear reactors is described. An electrical induction apparatus indicates the variation of magnetic coupling caused by a ferromagnetic member of the apparatus being subjected to such strains. (U.K.)

  5. Metal-halide systems: From molecular clusters to liquid-state structure

    Directory of Open Access Journals (Sweden)

    Mario P. Tosi

    2015-03-01

    Full Text Available I present a short review of the relationship between quantum-mechanical calculations on small molecular clusters of some metal-ion halides and studies of the microscopic structure in the condensed liquid phases of these compounds. The review is dedicated to the memory of Professor Vincenzo Grasso.

  6. Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2006-01-01

    In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

  7. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  8. Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Kar, Mega [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Leyma, Raphlin; Chib, Sonia; Roller, Alexander [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg (South Africa); Krachler, Regina [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); MacFarlane, Douglas R. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria)

    2017-02-15

    Highlights: • Thioglycolate-based ionic liquids have been synthesized and their physicochemical properties have been examined. • The developed ionic liquids can efficiently remove Cu(II) and Cd(II). • Loaded ionic liquids can be recycled by application of different stripping protocols. - Abstract: Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by {sup 1}H and {sup 13}C NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.

  9. Thermal convection of liquid metal in the titanium reduction reactor

    Science.gov (United States)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  10. Numerical Study of Liquid Sloshing on Anti-sloshing Device Using Open Cell Metal Foams in Oil Tank

    Science.gov (United States)

    Zhang, Y.; Qu, Z. G.; Tao, W. Q.; Lu, T. J.

    2010-03-01

    A new baffle structure design named open-cell metal foams baffle for anti-sloshing device in oil tank is presented in this study. Numerical simulation study on the liquid sloshing with various baffles is carried out using FLUENT with the volume-of-fluid (VOF) model. Four types of baffles were studied, namely non-baffle (type A), conventional parallel-baffle (type B), cross-baffle (type C) and open- cell metal foams baffles (type D). The oil velocity distribution, centroid and oil occupancy in the sloshing process is revealed in the case of vehicle speeding up and turning respectively. It is found that type D reduce velocity of oil, increase the value of oil occupancy in the suction pipe entrance of the oil tank and lower the centroid of oil obviously comparing with the other types. As for the same open-cell metal foam pore density, lower open-cell metal foam porosity has much better effect of inhibition of liquid sloshing, but there is little deviation among different porosity for the absolute value. Moreover, according to the same porosity, the oil centroid can be lowered obviously with the increase of pore density. The results of type D show practical significance and referable guideline for baffles design to improve the safety and stability of vehicle.

  11. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    International Nuclear Information System (INIS)

    Malang, S.; Mattas, R.

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R ampersand D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns

  12. Liquid metal reactor head designs in the USA. Heat and mass transfer considerations

    International Nuclear Information System (INIS)

    Burke, T.M.

    1985-09-01

    Development of liquid metal reactor plants in the United States over the past 30 years has resulted in an evolution of reactor head designs as reflected in the SRE, Hallam, EBR-II and FFTF plants. This evolution has probably been affected to some extent by the fact that, in contrast to most other countries, there is no single organization in the United States which has been responsible for the design of liquid reactor plants. The current US LMR design efforts involve two innovative design consortiums (guided by the US Department of Energy) and a joint industry venture on the Large Scale Prototype Breeder (LSPB). It is therefore somewhat difficult to provide a statement on the philosophy of the reactor head design in our country. I will however briefly describe the existing and proposed US liquid metal reactor head designs and in the process, attempt to provide some insight on the basis for those designs

  13. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective

    Science.gov (United States)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge

    2013-03-01

    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  14. Investigation of thermodynamic and transport properties of liquid transition metals using Wills-Harrison potentials

    International Nuclear Information System (INIS)

    Khaleque, M.A.; Bhuiyan, G.M.; Rashid, R.I.M.A.

    1998-01-01

    Thermodynamic properties such as entropy, specific heat capacity at constant pressure and isothermal compressibility have been calculated for liquid 3d, 4d and 5d transition metals near melting temperature. The hard sphere diameter for all such systems is estimated from the potential profile generated from the Wills and Harrison's prescription using linearized WCA theory of liquid. Evaluated values of entropy and specific heat capacity are found to be in good agreement with the experimental data. Transport property like shear viscosity for these liquid metals is obtained using the same potential profile. Lack of experimental data at melting temperatures hampers detailed comparison for all such systems. However, for the case of transport property, the results obtained are found to compare qualitatively well with the available experimental data. (author)

  15. A perspective on progress in liquid metal reactor safety

    International Nuclear Information System (INIS)

    Avery, R.

    1990-01-01

    Changes in perspectives on fast reactor safety have occurred over the past ten years due both to technical progress and to the course of events. The major aspect of these changes is that they relate to basic design decisions that are largely, but not exclusively, related to safety considerations. Among the topics discussed are inherent safety, choice of fuel between metal and oxide, choice of reactor configuration between pool and loop, impact of size on safety characteristics and modularity, containment options, and treatment of the hypothetical core disruptive accident

  16. Thermochemical Energy Storage through De/Hydrogenation of Organic Liquids: Reactions of Organic Liquids on Metal Hydrides.

    Science.gov (United States)

    Ulmer, Ulrich; Cholewa, Martin; Diemant, Thomas; Bonatto Minella, Christian; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2016-06-08

    A study of the reactions of liquid acetone and toluene on transition metal hydrides, which can be used in thermal energy or hydrogen storage applications, is presented. Hydrogen is confined in TiFe, Ti0.95Zr0.05Mn1.49V0.45Fe0.06 ("Hydralloy C5"), and V40Fe8Ti26Cr26 after contact with acetone. Toluene passivates V40Fe8Ti26Cr26 completely for hydrogen desorption while TiFe is only mildly deactivated and desorption is not blocked at all in the case of Hydralloy C5. LaNi5 is inert toward both organic liquids. Gas chromatography (GC) investigations reveal that CO, propane, and propene are formed during hydrogen desorption from V40Fe8Ti26Cr26 in liquid acetone, and methylcyclohexane is formed in the case of liquid toluene. These reactions do not occur if dehydrogenated samples are used, which indicates an enhanced surface reactivity during hydrogen desorption. Significant amounts of carbon-containing species are detected at the surface and subsurface of acetone- and toluene-treated V40Fe8Ti26Cr26 by X-ray photoelectron spectroscopy (XPS). The modification of the surface and subsurface chemistry and the resulting blocking of catalytic sites is believed to be responsible for the containment of hydrogen in the bulk. The surface passivation reactions occur only during hydrogen desorption of the samples.

  17. Analytic nearest neighbour model for FCC metals

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.; Garba, E.J.D.; Akinlade, O.

    1991-06-01

    A recently proposed analytic nearest-neighbour model for fcc metals is criticised and two alternative nearest-neighbour models derived from the separable potential method (SPM) are recommended. Results for copper and aluminium illustrate the utility of the recommended models. (author). 20 refs, 5 tabs

  18. Polymer-Derived In- Situ Metal Matrix Composites Created by Direct Injection of a Liquid Polymer into Molten Magnesium

    Science.gov (United States)

    Sudarshan; Terauds, Kalvis; Anilchandra, A. R.; Raj, Rishi

    2014-02-01

    We show that a liquid organic precursor can be injected directly into molten magnesium to produce nanoscale ceramic dispersions within the melt. The castings made in this way possess good resistance to tensile deformation at 673 K (400 °C), confirming the non-coarsening nature of these dispersions. Direct liquid injection into molten metals is a significant step toward inserting different chemistries of liquid precursors to generate a variety of polymer-derived metal matrix composites.

  19. Mixing requirements for the limiting fuel-coolant interactions in liquid metal fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Jr, W F

    1976-11-01

    An estimation of the mixing requirements for the limiting fuel-coolant interactions in two specific liquid metal cooled fast reactors, the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), has been undertaken. The mixing requirements were represented in terms of the limiting mixing time constants. These constants were determined with the Argonne parametric FCI Computer Model for a range of core involvements. Specifically, fuel masses used ranged from as low as one-seventh of the core to a full core involvement. In general, conservative values for additional FCI input parameters were assumed such that the results would be conservative. With the results in hand, several mechanisms were investigated to determine what limiting effects they could have on the mixing rates of the fuel and coolant during an FCI. The energy requirements for mixing were investigated. The results, however, provided no limiting effects. A solidification limited fragmentation model was also investigated. Although this model provided no absolute limiting effects, it did show that fuel particle sizes of a certain size could indeed limit the fuel-coolant mixing rates. Additionally, the limiting effects were found to be much less significant for UC fuel. The third mechanism that was investigated concerned the limiting effects of the finite fuel release rates as a result of TOP accidents in the FFTF. Equivalent mixing time constants based on the fuel release rates were shown to be greater than the limiting values. Thus, this mechanism was shown to be limiting for the particular accident sequence investigated.

  20. Thermal hydraulic numerical investigation of the heavy liquid metal free surface of MYRRHA spallation target experimental

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.

    2015-01-01

    The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load

  1. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material

    International Nuclear Information System (INIS)

    Fan, Li-Wu; Wu, Yu-Yue; Xiao, Yu-Qi; Zeng, Yi; Zhang, Yi-Ling; Yu, Zi-Tao

    2016-01-01

    Highlights: • A liquid metal is adopted as the PCM in a thermal energy storage-based heat sink. • Transient performance of the heat sink is tested in comparison to an organic PCM. • The liquid metal has a similar volumetric latent heat of fusion to the organic PCM. • Outperformance of the liquid metal is found due to its higher thermal conductivity. • Liquid metals are preferred when the system weight is less important than volume. - Abstract: In this Technical Note, the use of a liquid metal, i.e., a low melting point Pb–Sn–In–Bi alloy, as the phase change material (PCM) in thermal energy storage-based heat sinks is tested in comparison to an organic PCM (1-octadecanol) having a similar melting point of ∼60 °C. The thermophysical properties of the two types of PCM are characterized, revealing that the liquid metal is much more conductive while both have nearly identical volumetric latent heat of fusion (∼215 MJ/m 3 ). By using at the same volume of 80 mL, i.e., the same energy storage capacity, the liquid metal is shown to outperform significantly over the organic PCM under the various heating powers up to 105.3 W/cm 2 . During the heating period, the use of the liquid metal leads to a remarkable extension of the effective protection time to nearly twice longer as well as a reduction of the highest overheating temperature by up to 50 °C. The cool-down period can also be shortened significantly by taking advantage of the much higher thermal conductivity of the liquid metal. These findings suggest that liquid metals could serve as a promising PCM candidate for particular applications where the volume limit is very rigorous and the penalty in weight increment is acceptable.

  2. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  3. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  4. Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface

    Directory of Open Access Journals (Sweden)

    Johannes Kiefer

    2017-11-01

    Full Text Available Metal-liquid interfaces are of the utmost importance in a number of scientific areas, including electrochemistry and catalysis. However, complicated analytical methods and sample preparation are usually required to study the interfacial phenomena. We propose an infrared spectroscopic approach that enables investigating the molecular interactions at the interface, but needing only minimal or no sample preparation. For this purpose, the internal reflection element (IRE is wetted with a solution as first step. Second, a small plate of the metal of interest is put on top and pressed onto the IRE. The tiny amount of liquid that is remaining between the IRE and the metal is sufficient to produce an IR spectrum with good signal to noise ratio, from which information about molecular interactions, such as hydrogen bonding, can be deduced. Proof-of-concept experiments were carried out with aqueous salt and acid solutions and an aluminum plate.

  5. Secondary coolant circuit for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Brachet, A.; Figuet, J.; Guidez, J.; Lions, N.

    1984-01-01

    The invention can be applied for electric power generation with a fast neutron reactor cooled by liquid sodium. Each loop of the main circuit comprises a steam generator, a pump, and at least one heat exchanger disposed in the reactor vessel. A downstream buffer tank is disposed in the tube which is between the steam generator and the pump; the upper buffer tank can be disposed either in to the steam generator or out of this one. The invention allows to suppress the surge tank and the pump can be set in low place without needing a high argon-pressure for the circuit and without putting the storage tank in the secondary loop. It involves a diminution of dimensions and of the installation cost, and an improvement for the safety of heat exchangers in case of water/sodium reaction in the steam generator and, of the reliability for the pump operation [fr

  6. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  7. Transient safety performance of the PRISM innovative liquid metal reactor

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Rhow, S.K.; Wu, T.

    1988-01-01

    The PRISM sodium-cooled reactor concept utilizes passive safety characteristics and modularity to increase performance margins, improve licensability, reduce owner's risk and reduce costs. The relatively small size of each reactor module (471 MWt) facilitates the use of passive self-shutdown and shutdown heat removal features, which permit design simplification and reduction of safety-related systems. Key to the transient performance is the inherent negative reactivity feedback characteristics of the core design resulting from the use of metal (U-Pu-Zr) swing, and very low control rod runout worth. Selected beyond design basis events relying only on these core design features are analyzed and the design margins summarized to demonstrate the advancement in reactor safety achieved with the PRISM design concept

  8. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.; Barbier, F.

    2001-01-01

    Corrosion of steels exposed to flowing liquid lead alloys can be affected by hydrodynamic parameters. The rotating cylinder system is of interest for the practical evaluation of the fluid velocity effect on corrosion and for the prediction of the corrosion behavior in other geometries. Models developed in aqueous medium are tested in the case of liquid metal environments. It is shown that equations established for the rotating cylinder and the pipe flow geometry can be used effectively in liquid lead alloys (Pb-17Li) assuming the corrosion process is mass transfer controlled and the diffusion coefficient of dissolved species is known. The corrosion rate of martensitic steels in Pb-17Li is shown to be independent of the geometry when plotted as a function of the mass transfer coefficient. Predictions about the corrosion of steel in liquid Pb-Bi are performed but experiments are needed to validate the results obtained by modeling

  9. Thermal Hydraulic and Structural Analysis of Liquid Metal Target System

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Chung, Chang Hyun

    2002-01-01

    A subcritical transmutation reactor research is in progress for treatment of spent fuel. The subcritical transmutation reactor needs target system to produce high-energy neutrons. In target system, beam window is subject to high thermal field, because it interacts with high energy proton beam. In this study, target was designed based on thermal-hydraulic analysis, and thermal-structural analysis of window was performed. Preliminary design and mechanical analysis of liquid Pb-Bi target and 9Cr-2WVTa window were performed. Target was designed in a way to decrease window temperature. Installation of diffuse plate which has higher porosity in central zone was considered. Temperature and stress of window were analyzed varying minimum window thickness, beam power, and coolant flow rate. Thermal-bending stress was generated in window because of temperature gradient along the thickness of window. Coolant flow rate had insignificant effect on window stresses. It can be concluded that the target and window can be used in transmutation reactor operating condition (1 GeV, 6.78 mA). In this study, only static analysis has been made. But, accelerator beam trip can frequently occur in accelerator operation, so window and target container dynamic stress analysis will be needed. Furthermore, study about corrosion or irradiation characteristics of window will be needed in designing target and window. (authors)

  10. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  11. Conceptual design of the liquid metal laboratory of the TECHNOFUSION facility

    International Nuclear Information System (INIS)

    Abánades, A.; García, A.; Casal, N.; Perlado, J.M.; Ibarra, A.

    2012-01-01

    Highlights: ► Conceptual design of a liquid Li facility. ► Components and cost estimation. ► Liquid metal laboratory into TEHNOFUSION proposal. - Abstract: The application of liquid metal technology in fusion devices requires R and D related to many phenomena: interaction between liquid metals and structural material as corrosion, erosion and passivation techniques; magneto-hydrodynamics; free surface fluid-dynamics and any other physical aspect that will be needed for their safe reliable operation. In particular, there is a significant shortage of experimental facilities dedicated to the development of the lithium technology. In the framework of the TECHNOFUSION project, an experimental laboratory devoted to the lithium technology development is proposed, in order to shed some light in the path to IFMIF and the design of chamber's first wall and divertors. The conceptual design foresee a development in two stages, the first one consisting on a material testing loop. The second stage proposes the construction of a mock-up of the IFMIF target that will allow to assess the behaviour of a free-surface lithium target under vacuum conditions. In this paper, such conceptual design is addressed.

  12. A multi-slice sliding cell technique for diffusion measurements in liquid metals

    Science.gov (United States)

    Zhong, Langxiang; Hu, Jinliang; Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2017-09-01

    The long capillary and shear-cell techniques are traditionally used for diffusion measurements in liquid metals. Inspired by the idea of the shear-cell method, we have built a multi-slice sliding cell device for inter-diffusion measurements in liquid metals. The device is designed based on a linear sliding movement rather than a rotational shearing as used in the traditional shear-cell method. Compared with the normal shear-cell method, the present device is a more compact setup thus easier to handle. Also, it is expected to be easier to monitor with X-rays or neutrons if used in in situ experiments. A series of benchmark time-dependent diffusion experiments in Al-Cu melts carried out with the present technique reveal that accurate diffusion constants can be achieved only after a sufficient time. For short annealing times, the initial shearing process causing convective flow dominates the measurement and leads to an increase of the measured diffusion coefficient by a factor three. The diffusion data obtained for Al-Cu liquids are consistent with the most accurate data measured by the in situ X-ray radiography method under well controlled conditions of no temperature gradient or other perturbation. High accuracy and easy handling as well as superior adaptability make the present technique suitable for diffusion studies in liquid metals.

  13. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    Science.gov (United States)

    Johnson, Irving

    1988-06-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of metallic fuel from liquid metal cooled reactors is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble and the alkali metal and alkaline earth fission-product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  14. Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Saida, Junji; Imafuku, Muneyuki; Sato, Shigeo; Sanada, Takashi; Matsubara, Eiichiro; Inoue, Akihisa

    2007-01-01

    The correlation between the local structure and stability of supercooled liquid state is investigated in the Zr 70 (Ni, Cu) 30 binary and Zr 70 Al 10 (Ni, Cu) 20 (numbers indicate at.%) ternary metallic glasses. The Zr 70 Ni 30 binary amorphous alloy with a low stability of supercooled liquid state has a tetragonal Zr 2 Ni-like local structure around Ni atom. Meanwhile, the Zr 70 Cu 30 binary metallic glass has a different local structure of tetragonal Zr 2 Cu, where we suggest the icosahedral local structure by the quasicrystallization behavior in addition of a very small amount of noble metals. The effect of Al addition on the local structure in the Zr-Ni alloy is also examined. We have investigated that the dominant local structure changes in the icosahedral-like structure from the tetragonal Zr 2 Ni-like local structure by the Al substitution with Ni accompanying with the significant stabilization of supercooled liquid state. It is concluded that the formation of icosahedral local structure contributes to the enhancement of stability of supercooled liquid state in the Zr-based alloys

  15. Investigation of Correlations for the Thermal-hydraulic Analysis of Liquid Metal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won Pyo; Jeong, Hae Yong; Lee, Yong Bum

    2007-08-15

    The present investigation is aimed at reducing favorable constitutive correlations from those developed for the thermal-hydraulic analysis of Liquid Metal Reactors (LMR), for reliable safety analyses of KALIMER. It is achieved by analyzing them in a point of their accuracies. The study is particularly important because its outcomes can provide an essential knowledge on their relative errors including their conservatisms to be analyzed in the future KALIMER licensing stage. The predictions of the correlations have been compared with available experimental data on both friction factors for the wired-wrapped rod bundles in the core and the heat transfer coefficients in the system. As a result, the heat transfer coefficient inside pipe currently featured in SSC-K has been found acceptable. It, however, has shown a discrepancy of about 60 % and thus an alternative one has been proposed for improvement. Meanwhile, the friction factor model in the current SSC-K has not shown a prominent discrepancy in prediction trend but it has not backed an enough theoretical basis so that another model has been proposed. A systematic assessment for effects of those factors to the conservatism must be fully understood for the future licensing stage, and systematic calculations must be followed by designing an assessment matrix. Besides, it is essential to conduct experiments under similar conditions for constitutive parts of geometries which represent the KALIMER design.

  16. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  17. Sodium leak detection system for liquid metal cooled nuclear reactors

    International Nuclear Information System (INIS)

    Modarres, D.

    1991-01-01

    This patent describes a device for detecting sodium leaks from a reactor vessel of a liquid sodium cooled nuclear reactor the reactor vessel being concentrically surrounded by a a containment vessel so as to define an airtight gap containing argon. It comprises: a light source for generating a first light beam, the first light beam having first and second predominant wavelengths, the first wavelength being substantially equal to an absorption line of sodium and the second wavelength being chosen such that it is not absorbed by sodium and argon; an optical multiplexer optically coupled to the light source; optically coupled to the multiplexer, each of the sensors being embedded in the containment vessel of the reactor, each of the sensors projecting the first light beam into the gap and collecting the first light beam after it has reflected off of a surface of the reactor vessel; a beam splitter optically coupled to each of the sensors through the multiplexer, the beam splitter splitting the first light beam into second and third light beams of substantially equal intensities; a first filter dispersed within a path of second light beam for filtering the second wavelength out of the third light beam; first and second detector beams disposed with in the paths of the second and third light beams so as to detect the intensities of the second and third light beams, respectively; and processing means connected to the first and second detector means for calculating the amount of the first wavelength which is absorbed when passing through the argon

  18. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    Science.gov (United States)

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  19. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V. [Russian Academy of Science, Joint Institute of High Temperatures (Russian Federation); Leshukov, A. Yu. [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Aleskovskiy, K. V. [National Research University Moscow Power Engineering Institute (MPEI) (Russian Federation); Obukhov, D. M. [Joint Stock Company Efremov Institute of Electrophysical Apparatus (Russian Federation)

    2016-12-15

    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational

  20. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.