WorldWideScience

Sample records for modeling lipid accumulation

  1. Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina

    NARCIS (Netherlands)

    Meeuwse, P.; Tramper, J.; Rinzema, A.

    2011-01-01

    Lipid-accumulating fungi may be able to produce biodiesel precursors from agricultural wastes. As a first step in understanding and evaluating their potential, a mathematical model was developed to describe growth, lipid accumulation and substrate consumption of the oleaginous fungus Umbelopsis

  2. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    Science.gov (United States)

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  3. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    Science.gov (United States)

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD.

  4. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  5. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors.

    Science.gov (United States)

    Concas, Alessandro; Steriti, Alberto; Pisu, Massimo; Cao, Giacomo

    2014-02-01

    Recent works have shown that specific strains of microalgae are capable to simultaneously increase their growth rate and lipid content when cultured under suitable concentrations of iron. While these results are promising in view of the exploitation of microalgae for producing biofuels, to the best of our knowledge, no mathematical model capable to describe the effect of iron on lipid accumulation in microalgae, has been so far proposed. A comprehensive mathematical model describing the effect of iron on chlorophyll synthesis, nitrogen assimilation, growth rate and lipid accumulation in a freshwater strain of Chlorella vulgaris is then proposed in this work. Model results are successfully compared with experimental data which confirm the positive effect of growing iron concentrations on lipid productivity of C. vulgaris. Thus, the proposed model might represent a useful tool to optimize iron-based strategies to improve the lipid productivity of microalgal cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Loira Nicolas

    2012-05-01

    Full Text Available Abstract Background Yarrowia lipolytica is an oleaginous yeast which has emerged as an important microorganism for several biotechnological processes, such as the production of organic acids, lipases and proteases. It is also considered a good candidate for single-cell oil production. Although some of its metabolic pathways are well studied, its metabolic engineering is hindered by the lack of a genome-scale model that integrates the current knowledge about its metabolism. Results Combining in silico tools and expert manual curation, we have produced an accurate genome-scale metabolic model for Y. lipolytica. Using a scaffold derived from a functional metabolic model of the well-studied but phylogenetically distant yeast S. cerevisiae, we mapped conserved reactions, rewrote gene associations, added species-specific reactions and inserted specialized copies of scaffold reactions to account for species-specific expansion of protein families. We used physiological measures obtained under lab conditions to validate our predictions. Conclusions Y. lipolytica iNL895 represents the first well-annotated metabolic model of an oleaginous yeast, providing a base for future metabolic improvement, and a starting point for the metabolic reconstruction of other species in the Yarrowia clade and other oleaginous yeasts.

  7. A simple osmium post-fixation paraffin-embedment technique to identify lipid accumulation in fish liver using medaka (Oryziaslatipes) eggs and eleutheroembryos as lipid rich models

    International Nuclear Information System (INIS)

    Mondon, J.A.; Howitt, J.; Tosiano, M.; Kwok, K.W.H.; Hinton, D.E.

    2011-01-01

    Highlights: → Hepatic lipidosis in fish liver is often misdiagnosed or overlooked. → Specific histological fat stains and cryostat sections are not commonly used. → Standard paraffin processing removes lipid leaving vacuoles of unknown origin. → Osmium post-fixed paraffin-embedment is a cost effective alternative. → Medaka trials show suitability for lipid visualization in tissues from egg to adult. - Abstract: Hepatic lipidosis is a non-specific biomarker of effect from pollution exposure in fish. Fatty liver is often misdiagnosed or overlooked in histological assessments due to the decreasing application of specific fat procedures and stains. For example, ethanol dehydration in standard paraffin processing removes lipids, leaving vacuoles of which the precise nature is unknown. Lipids can be identified using osmium post-fixation in semi-thin resin sections or transmission electron microscopy. However, both are expensive and technically demanding procedures, often not available for routine environmental risk assessment and monitoring programs. The current emphasis to reduce and refine animal toxicity testing, requires refinement of the suite of histopathological techniques currently available to maximize information gained from using fish for toxicity testing and as bio-indicators of environmental quality. This investigation has successfully modified an osmium post-fixation technique to conserve lipids in paraffin-embedded tissues using medaka (Oryzias latipes) eleutheroembryos and eggs (embryos) as lipid rich models.

  8. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  9. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    International Nuclear Information System (INIS)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis

  10. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  11. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil

    Directory of Open Access Journals (Sweden)

    Aggelis, G.

    1995-06-01

    Full Text Available    The accumulation of lipids In microorganisms cultivated In growth media having as sole carbon and energy source vegetable or animal fat has been an object of research and industrial interest for many years. Interestingly, the accumulated fat often has a composition and structure much different from that of the fat present In the substrate.
       The present work describes a mathematical approach to the accumulation of fat by oleaginous microorganisms growing on medium containing vegetable oil as carbon source. A mathematical model, correlating the accumulation of reserve fat with the growth of microbial population and the available quantity of exocellular fat, is proposed. This model is verified by experimental data taken by cultivation of Mucor circinelloides CBS 172-27 on sunflower oil.
       The proposed model is described by the equation: XL = XLo + Lo(1-e-k2.t– (lnx-lnxo/k1    where XL(mg/l the concentration of reserve lipids at time t(h, XLo(mg/l the concentration of lipid reserves at time t=o, Lo(mg/l the initial concentration of exocellular fat (a t=o, X(mg/l the concentration of fat-free biomass at a given time t and Xo the concentration of fat-free biomass at time t=o; k1 and k2 constants.

       Durante muchos años la acumulación de lípidos en microorganismos desarrollados en medio de cultivo, tomando como única fuente de carbono y energía grasas vegetales o animales, ha sido objeto de investigación e Interés industrial.    Interesadamente, la grasa acumulada tiene a menudo una composición y estructura muy diferente de la que tiene la grasa presente en el sustrato.    El presente trabajo describe una aproximación matemática a la acumulaci

  12. Bicarbonate trigger for inducing lipid accumulation in algal systems

    Science.gov (United States)

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  13. Total lipid accumulation and fatty acid profiles of microalga Spirulina ...

    African Journals Online (AJOL)

    Nutrient limitation in terms of nitrogen and phosphorus increased lipid accumulation under depleted growth in Spirulina strains. Nitrogen limitation was found more effective than phosphorus in accumulating lipid. The fatty acid profile was variable: palmitic (48%), linolenic (21%) and linoleic acids (15%) were the most ...

  14. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, J.A.; Hand, R.E. Jr.; Mann, R.C.

    1986-12-01

    Lipid accumulation in three species of microalgae was investigated with flow cytometry (FCM) and transmission electron microscopy (TEM). Previous studies using batch cultures of a algae have led to the assumption that lipid accumulation in microalgae is a gradual process requiring at least several days for completion. However, FCM reveals, through changes in the chlorophyll:lipid ratio, that the time span required for individual cells to change metabolic state is short. Simultaneous FCM measurements of chlorophyll and nile red (neutral lipid) fluorescence in individual cells of nitrogen-deficient Isochrysis populations revealed a bimodal population distribution as one stage in the lipid accumulation process. The fact that two discrete populations exist, with few cells in an intermediate stage, suggests rapid response to a liqid trigger. Interpretations of light and electron microscopic observations are consistent with this hypothesis. The time required for an entire population to achieve maximum lipid content is considerably longer than that required for a single cell, due to the variation in response time among cells. In this study high lipid cultures were sometimes obtained by using FCM to separate high lipid cells from the remainder of the population. FCM holds much promise for strain enhancement but considerable developmental work, directed at providing more consistent results, remains to be done. 8 refs., 35 figs.

  15. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Danielsen, Pernille H; Folkmann, Janne K

    2014-01-01

    and subsequently incubated for another 18h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid...... single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral......Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3h...

  16. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  17. Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men.

    Directory of Open Access Journals (Sweden)

    Imtiaz A Samjoo

    Full Text Available Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS and intramyocellular lipid (IMCL accumulation have been implicated in the etiology of insulin resistance (IR in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes, IMCL/mitochondrial morphology in both subsarcolemmal (SS and intermyofibrillar (IMF regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density, increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = -0.34; P = 0.051 and IMF mitochondrial density (r = -0.29; P = 0.096, IMF IMCL/mitochondrial juxtaposition (r = -0.30; P = 0.086, and COXII (r = -0.32; P = 0.095 and COXIV protein abundance (r = -0.35; P = 0.052; while positively associated with SS IMCL size (r = 0.28; P = 0.119 and SS IMCL density (r = 0.25; P = 0.152. Our findings suggest that once physical activity and cardiorespiratory fitness have been

  18. Markers of Skeletal Muscle Mitochondrial Function and Lipid Accumulation Are Moderately Associated with the Homeostasis Model Assessment Index of Insulin Resistance in Obese Men

    Science.gov (United States)

    Samjoo, Imtiaz A.; Safdar, Adeel; Hamadeh, Mazen J.; Glover, Alexander W.; Mocellin, Nicholas J.; Santana, Jose; Little, Jonathan P.; Steinberg, Gregory R.; Raha, Sandeep; Tarnopolsky, Mark A.

    2013-01-01

    Lower skeletal muscle mitochondrial oxidative phosphorylation capacity (OXPHOS) and intramyocellular lipid (IMCL) accumulation have been implicated in the etiology of insulin resistance (IR) in obesity. The purpose of this study was to examine the impact of endurance exercise on biochemical and morphological measures of IMCL and mitochondrial content, and their relationship to IR in obese individuals. We examined mitochondrial content (subunit protein abundance and maximal activity of electron transport chain enzymes), IMCL/mitochondrial morphology in both subsarcolemmal (SS) and intermyofibrillar (IMF) regions by transmission electron microscopy, and intracellular lipid metabolites (diacylglycerol and ceramide) in vastus lateralis biopsies, as well as, the homeostasis model assessment index of IR (HOMA-IR) prior to and following twelve weeks of an endurance exercise regimen in healthy age- and physical activity-matched lean and obese men. Obese men did not show evidence of mitochondrial OXPHOS dysfunction, disproportionate IMCL content in sub-cellular regions, or diacylglycerol/ceramide accretion despite marked IR vs. lean controls. Endurance exercise increased OXPHOS and mitochondrial size and density, but not number of individual mitochondrial fragments, with moderate improvements in HOMA-IR. Exercise reduced SS IMCL content (size, number and density), increased IMF IMCL content, while increasing IMCL/mitochondrial juxtaposition in both regions. HOMA-IR was inversely associated with SS (r = −0.34; P = 0.051) and IMF mitochondrial density (r = −0.29; P = 0.096), IMF IMCL/mitochondrial juxtaposition (r = −0.30; P = 0.086), and COXII (r = −0.32; P = 0.095) and COXIV protein abundance (r = −0.35; P = 0.052); while positively associated with SS IMCL size (r = 0.28; P = 0.119) and SS IMCL density (r = 0.25; P = 0.152). Our findings suggest that once physical activity and cardiorespiratory fitness have

  19. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  20. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  1. Lipid accumulation and alkaline phosphatase activity in human ...

    African Journals Online (AJOL)

    Background: Alkaline phosphatase (ALP) controls intracellular lipid accumulation in human preadipocytes, but it is not known whether ALP is expressed in all body fat depots, or whether it has a similar role at all sites. Design: Cross-sectional. Setting and subjects: Subjects undergoing breast reduction and abdominal fat ...

  2. Lipid accumulation and alkaline phosphatase activity in human ...

    African Journals Online (AJOL)

    2012-10-03

    Oct 3, 2012 ... Background: Alkaline phosphatase (ALP) controls intracellular lipid accumulation in human preadipocytes, but it is not known whether ALP .... glutamine, supplemented with 10% foetal bovine serum and 100 U/ml penicillin ..... by a cascade of transcription factor gene expression.34. Evidence that ALP acts ...

  3. Correlation between lipid accumulation index and hyperuricemia in adult females

    Directory of Open Access Journals (Sweden)

    Ling-sheng GUI

    2016-01-01

    Full Text Available Objective  To explore the relationship between lipid accumulation index (LAI and hyperuricemia in females. Methods  One hundred and seventy-four adult females were included in the cross-sectional study from Mar. to Sep. 2006 through a simple random sampling from a group of population subjected to routine physical examination in the Luohuang Community of Chongqing municipality. The anthropometric measurements, blood pressure (BP, uric acid (UA, lipid profile, glucose and insulin levels were measured. Lipid accumulation product (LAP, body mass index (BMI and the homeostasis model assessment of insulin resistance (HOMA-IR were calculated. Subjects were divided into normal group and hyperuricemia group based on their UA levels, and an independent-samples t test was performed for comparison between the two groups; one-factor analysis of variance was performed for multiple comparisons. The Student-Newman-Keuls test was performed for homogeneity of variance. The relationship between UA and other variables was analyzed by Pearson correlation analysis and multiple linear stepwise regression analysis. Logistic regression analysis was used to determine the odds ratio of hyperuricemia in the highest quartile of LAP level. The analysis of the areas under the receiver operating characteristic (ROC curves was performed to identify the predictive ability of relevant variables to hyperuricemia. Results  Compared with normal group, the age, waist circumference (WC, triglyceride (TG, fasting insulin (FINS, HOMA-IR and LAP were higher in hyperuricemia group (P<0.05. The age, and levels of WC, BMI, systolic blood pressure (SBP, diastolic blood pressure (DBP, TG, total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C, fasting glucose (FPG, 2-hour postprandial glucose (2h-PPG, FINS, HOMA-IR and UA were higher as LAP increased (P<0.05, whereas the level of high-density lipoprotein cholesterol (HDL-C lowered as LAP increased (P<0.05. Pearson correlation

  4. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes.

    Science.gov (United States)

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice

    DEFF Research Database (Denmark)

    Bartels, E.D.; Nielsen, J.M.; Bisgaard, L.S.

    2010-01-01

    % (P lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function....... cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db...

  6. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  7. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    International Nuclear Information System (INIS)

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-01-01

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders

  8. Fucoidan from Marine Brown Algae Inhibits Lipid Accumulation

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2011-08-01

    Full Text Available In this study, we elucidated the inhibitory effect of fucoidan from marine brown algae on the lipid accumulation in differentiated 3T3-L1 adipocytes and its mechanism. The treatment of fucoidan in a dose-dependent manner was examined on lipid inhibition in 3T3-L1 cells by using Oil Red O staining. Fucoidan showed high lipid inhibition activity at 200 µg/mL concentration (P < 0.001. Lipolytic activity in adipocytes is highly dependent on hormone sensitive lipase (HSL, which is one of the most important targets of lipolytic regulation. Here, we examined the biological response of fucoidan on the protein level of lipolysis pathway. The expressed protein levels of total hormone sensitive lipase (HSL and its activated form, phosphorylated-HSL were significantly increased at concentration of 200 µg/mL fucoidan. Furthermore, insulin-induced 2-deoxy-D-[3H] glucose uptake was decreased up to 51% in fucoidan-treated cells as compared to control. Since increase of HSL and p-HSL expression and decrease of glucose uptake into adipocytes are known to lead to stimulation of lipolysis, our results suggest that fucoidan reduces lipid accumulation by stimulating lipolysis. Therefore, these results suggest that fucoidan can be useful for the prevention or treatment of obesity due to its stimulatory lipolysis.

  9. Molecular mechanism of intracellular lipid accumulation: Suppressive effect of PycnogenolR in liver cells

    Directory of Open Access Journals (Sweden)

    Shoichiro Ikuyama

    2013-09-01

    Full Text Available ABSTRACTCells are physiologically ready to accumulate lipids such as triacylglycerides in the cytoplasm.Five classes of perilipin (PLIN family proteins are known to be involved in the process of intracellular lipid accumulation. PLIN2 is expressed ubiquitously including adipocytes, hepatocytes and macrophages. Over-expression of PLIN2 is demonstrated in the lesions of fatty liver diseases and atherosclerosis. Suppression of PLIN2 expression prevents from developing these pathological conditions in animal models, suggesting that PLIN2 could be a therapeutic target molecule for excessive intracellular lipid accumulation which leads to various metabolic derangements. The PLIN2 gene promoter has two important cis-acting elements in close proximity:AP-1 element which mediates inflammatory signals and PPRE which mediates free fatty acid effect. In NMuLi mouse liver cells, FFA such as oleic acid requires both functional AP-1 and PPRE simultaneously to stimulate the promoter activity, indicating the presence of intimate interaction of inflammatory and metabolic signals on this gene. PycnogenolR, French maritime pine bark extracts, suppressed the oleic acid-induced PLIN2 expression and lipid accumulation in NMuLi cells. We found that PycnogenolR did not suppress the PLIN2 promoter activity or AP-1 binding to DNA. Instead, PycnogenolRfacilitates the PLIN2 mRNA degradation, leading to suppression of lipid accumulation. This effect seems to be independent of antioxidant effect of PycnogenolR.We raise the idea that PLIN2 is a putative target molecule for prevention of pathological condition induced by excessive lipid accumulation, and this class of natural compounds could be putative therapeutic modalities.Key words: PycnogenolR, lipid droplet, perilipin, fatty liver disease

  10. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. II. Study of cellular lipids of Mucor circinelloides during growth on a vegetable oil

    Directory of Open Access Journals (Sweden)

    Aggelis, G.

    1995-10-01

    Full Text Available Microbial oil production from fatty materials of animal or plant origin has been an object of research and industrial interest for many years. During the process of microbial growth/accumulation of fat reserves, the dominating phenomena that define the composition of endocellular fat are, first, the specific process of incorporation of substrate fatty acids into the microbial cell and, second, the endocellular changes of fatty acids defined by the enzymic capabilities of the microorganism. The fatty acids will either be degraded for growth needs or act as substrate of endocellular biotransformation processes, leading to concentration changes and production of "new" fatty acids which did not previously exist in the substrate.
    The purpose of the present work is to study the endocellular lipids of Mucor circinelloidesCBS 172-27 grown on sunflower oil. The mathematical model, described in part I, was applied in order to investigate the following:
    a. Microorganism specificity in the incorporation of substrate fatty acids.
    b. Microorganism specificity in the degradation of fatty acids present in the reserve fat.
    c. Possibilities of endocellular biotransformations during the microbial growth.
    In conclusion, this work is aimed at developing a quantitative expression of parameters defining the lipid composition of fat reserves. The proposed mathematical model can be used not only for selection of microbial strains having specific enzymic potential but also for substrate selection.

    La producción de aceites microbianos a partir de materiales grasos de origen animal o vegetal ha sido objeto de investigación e interés industrial durante muchos años. En el proceso de crecimiento microbiano/acumulación de reservas grasas, los fenómenos dominantes que definen la composición de grasa endocelular son, primero, el proceso específico de incorporación de ácidos grasos como sustratos en la célula microbiana

  11. Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats.

    Science.gov (United States)

    Furuyashiki, Takashi; Ogawa, Rui; Nakayama, Yoko; Honda, Kazuhisa; Kamisoyama, Hiroshi; Takata, Hiroki; Yasuda, Michiko; Kuriki, Takashi; Ashida, Hitoshi

    2013-09-01

    Based on a recent study indicating that enzymatically synthesized glycogen (ESG) possesses a dietary, fiber-like action, we hypothesized that ESG can reduce the risk of obesity. In this study, the antiobesity effects of ESG were investigated in a model of diet-induced obesity. Male Sprague-Dawley rats were divided into 4 groups and fed a normal or high-fat diet, with or without 20% ESG, for 4 weeks. Body weight, food intake, lipid deposition in the white adipose tissues and liver, fecal lipid excretion, and plasma lipid profiles were measured. At week 3, the body fat mass was measured using an x-ray computed tomography system, which showed that ESG significantly suppressed the high-fat diet-induced lipid accumulation. Similar results were observed in the weight of the adipose tissue after the experiment. Moreover, ESG significantly suppressed the lipid accumulation in the liver but increased fecal lipid excretion. The plasma concentrations of triacylglycerol and nonesterified fatty acid were lowered after a high-fat diet, whereas the total bile acid concentration was increased by ESG. However, the hepatic messenger RNA (mRNA) levels of enzymes related to lipid metabolism were not affected by ESG. Conversely, the mRNA levels of long-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase were up-regulated by ESG in the muscle. These results suggest that the combined effects of increased fecal lipid excretion, increased mRNA levels of enzymes that oxidize fatty acids in the muscle, and increased total bile acid concentration in the plasma mediate the inhibitory effect of ESG on lipid accumulation. © 2013.

  12. Lipid Accumulation Product Is Associated with Insulin Resistance, Lipid Peroxidation, and Systemic Inflammation in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Parvin Mirmiran

    2014-12-01

    Full Text Available BackgroundLipid accumulation product (LAP is a novel biomarker of central lipid accumulation related to risk of diabetes and cardiovascular disease. In this study, we assessed the association of LAP with glucose homeostasis, lipid and lipid peroxidation, and subclinical systemic inflammation in diabetic patients.MethodsThirty-nine male and 47 female type 2 diabetic patients were assessed for anthropometrics and biochemical measurements. LAP was calculated as [waist circumference (cm-65]×[triglycerides (mmol/L] in men, and [waist circumference (cm-58]×[triglycerides (mmol/L] in women. Associations of LAP with fasting glucose, insulin, insulin resistance index, lipid and lipoprotein levels, malondialdehyde, and high-sensitive C-reactive protein (hs-CRP were assessed.ResultsMean age and LAP index were 53.6±9.6 and 51.9±31.2 years, respectively. After adjustments for age, sex and body mass index status, a significant positive correlation was observed between LAP index and fasting glucose (r=0.39, P<0.001, and homeostasis model assessment of insulin resistance (r=0.31, P<0.05. After additional adjustment for fasting glucose levels, antidiabetic and antilipidemic drugs, the LAP index was also correlated to total cholesterol (r=0.45, P<0.001, high density lipoprotein cholesterol (HDL-C levels (r=-0.29, P<0.05, triglycerides to HDL-C ratio (r=0.89, P<0.001, malondialdehyde (r=0.65, P<0.001, and hs-CRP levels (r=0.27, P<0.05.ConclusionHigher central lipid accumulation in diabetic patients was related to higher insulin resistance, oxidative stress and systemic inflammation.

  13. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  14. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function.

    Science.gov (United States)

    Guebre-Egziabher, Fitsum; Alix, Pascaline M; Koppe, Laetitia; Pelletier, Caroline C; Kalbacher, Emilie; Fouque, Denis; Soulage, Christophe O

    2013-11-01

    Ectopic lipid accumulation is now known to be a mechanism that contributes to organ injury in the context of metabolic diseases. In muscle and liver, accumulation of lipids impairs insulin signaling. This hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, aging and lipodystrophy. Increasing data suggest that lipid accumulation in the kidneys could also contribute to the alteration of kidney function in the context of metabolic syndrome and obesity. Furthermore and more unexpectedly, animal models of kidney disease exhibit a decreased adiposity and ectopic lipid redistribution suggesting that kidney disease may be a state of lipodystrophy. However, whether this abnormal lipid partitioning during chronic kidney disease (CKD) may have any functional impact in these tissues needs to be investigated. Here, we provide a perspective by defining the problem and analyzing the possible causes and consequences. Further human studies are required to strengthen these observations, and provide novel therapeutic approaches. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    Energy Technology Data Exchange (ETDEWEB)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter, E-mail: pemo@sund.ku.dk

    2014-01-15

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered

  16. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    International Nuclear Information System (INIS)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.; Jespersen, Line F.; Aguilar-Pelaez, Karin; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2014-01-01

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposure to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C 60 or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C 60 , diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered expression

  17. Jiao Tai Wan Attenuates Hepatic Lipid Accumulation in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhaoyi Huang

    2013-01-01

    Full Text Available Jiao Tai Wan (JTW, a Chinese herbal formula containing Rhizoma Coptidis and Cortex Cinnamomi, has been used for diabetic treatment for many years. The aim of this study was to determine the main components in JTW and to investigate the effects of JTW on hepatic lipid accumulation in diabetic rats and humans. JTW extract was prepared and the main components were assayed by HPLC. An animal model of diabetes mellitus was established and JTW was administered intragastrically. In the clinical study, diabetic patients with poor glycemic control were treated with JTW. Blood glucose and lipid parameters, liver histology, hepatic triglyceride content and lipogenic gene expression were examined. Our data demonstrated that JTW significantly improved hyperglycemia, hyperlipidemia and hepatic lipid accumulation in diabetic rats. This was accompanied by the down-regulation of acetyl coenzyme A carboxylase (ACC and fatty acid synthase (FAS protein expressions, and the up-regulation of AMP-activated protein kinase (AMPK and phosphorylated-ACC (pACC protein expressions in the liver tissues. Diabetic patients also exhibited decreases in their hepatic triglyceride content. The results suggest that JTW attenuates hepatic lipid accumulation in diabetic rats and humans. These beneficial effects are possibly associated with the inhibition of lipogenic gene expression in the liver.

  18. Geochemistry Model Validation Report: External Accumulation Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Zarrabi

    2001-09-27

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  19. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    Zarrabi, K.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  20. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    Science.gov (United States)

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  1. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    Science.gov (United States)

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    Science.gov (United States)

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  3. EFFECT OF FERTILIZER ELEMENTS ON LIPIDS ACCUMULATION AND FATTY ACIDS COMPOSITION OF PUMPKIN SEEDS

    Directory of Open Access Journals (Sweden)

    S. M. Nadezhkin

    2013-01-01

    Full Text Available Effect of organic and mineral fertilizers on pumpkin seeds lipids accumulation and their fatty acids com position is investigated. The influence of nutrition's composition on the seeds size, lipids content and concentration of polyunsaturated fatty acids was shown.

  4. Sirt1 and Sirt6 mediate beneficial effects of rosiglitazone on hepatic lipid accumulation.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available Sirtuin (Sirt, a sensor of the cell metabolic state, regulates glucose and lipid metabolism. The aim of this study was to address whether rosiglitazone (RGZ alters hepatic Sirt1 and whether Sirt1 and/or Sirt6 have a regulatory role in the protective effects of RGZ on hepatocyte steatosis.To investigate the effect of RGZ on hepatic Sirt1, rats were administered with RGZ for 6 weeks. The involvement of Sirt1/6 in the RGZ-mediated effect against hepatic steatosis was evaluated by single or double knockdown of Sirt1 and Sirt6 in a hepatocyte steatosis model.RGZ in vivo increased Sirt1 expression and its activity in rat livers. In a hepatocyte steatosis model, RGZ significantly reduced lipid accumulation and activated the Sirt1/6-LKB1-AMPK pathway. Sirt1 knockdown abolished the effects of RGZ with regard to hepatocyte fat accumulation and the Sirt1/6-LKB1-AMPK pathway, suggesting that Sirt1 is a key regulator of RGZ-mediated metabolic processes. Sirt6 knockdown inhibited the protective effects of RGZ to a lesser extent than Sirt1, and double knockdown of Sirt1/6 showed no synergistic effects.Our results demonstrate that Sirt1/6 are involved in the RGZ-mediated effects on hepatocyte steatosis, and the regulatory effects of Sirt1 and Sirt6 are not synergistic but compensatory for improving hepatocyte steatosis.

  5. Role of Intestinal LXRα in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation

    Directory of Open Access Journals (Sweden)

    Tibiábin Benítez-Santana

    2017-05-01

    Full Text Available Post-prandial hyperlipidemia has emerged as a cardiovascular risk factor with limited therapeutic options. The Liver X receptors (Lxrs are nuclear hormone receptors that regulate cholesterol elimination. Knowledge of their role in regulating the absorption and handling of dietary fats is incomplete. The purpose of this study was to determine the role of intestinal Lxrα in post-prandial intestinal lipid transport. Using Lxrα knockout (nr1h3−/− and intestine-limited Lxrα over-expressing [Tg(fabp2a:EGFP-nr1h3] zebrafish strains, we measured post-prandial lipid excursion with live imaging in larvae and physiological methods in adults. We also conducted a long-term high-cholesterol dietary challenge in adults to examine the chronic effect of modulating nr1h3 gene dose on the development of hypercholesterolemia and hepatic lipid accumulation. Over-expression of Lxrα in the intestine delays the transport of ingested lipids in larvae, while deletion of Lxrα increases the rate of lipid transport. Pre-treating wildtype larvae with the liver-sparing Lxr agonist hyodeoxycholic acid also delayed the rate of intestinal lipid transport in larvae. In adult males, deletion of Lxrα accelerates intestinal transport of ingested lipids. Adult females showed higher plasma Lipoprotein lipase (Lpl activity compared to males, and lower post-gavage blood triacylglycerol (TAG excursion. Despite the sexually dimorphic effect on acute intestinal lipid handling, Tg(fabp2a:EGFP-nr1h3 adults of both sexes are protected from high cholesterol diet (HCD-induced hepatic lipid accumulation, while nr1h3−/− mutants are sensitive to the effects of HCD challenge. These data indicate that intestinal Lxr activity dampens the pace of intestinal lipid transport cell-autonomously. Selective activation of intestinal Lxrα holds therapeutic promise.

  6. Exploration of polar lipid accumulation profiles in Euglena gracilis using LipidBlast, an MS/MS spectral library constructed in silico.

    Science.gov (United States)

    Ogawa, Takumi; Furuhashi, Takeshi; Okazawa, Atsushi; Nakai, Rai; Nakazawa, Masami; Kind, Tobias; Fiehn, Oliver; Kanaya, Shigehiko; Arita, Masanori; Ohta, Daisaku

    2014-01-01

    A rapid protocol for polar lipid profiling was applied to Euglena gracilis lipid metabolism by LipidBlast, an MS/MS spectral similarity search tool. The similarity search results suggested anoxia-induced polar lipid metabolism in Euglena characterized by the accumulation of differential lipid classes, carbon chain lengths, and unsaturated bond numbers. The informatics-supported MS spectral search provides an alternative option for global lipid profiling studies.

  7. Lipid-Derived Biofuels: Determination of Factors that Control Triglyceride Accumulation in Microalgae

    Science.gov (United States)

    2012-10-30

    Accumulation in Microalgae Principal Investigator Dr. K.E. Cooksey Department of Microbiology 109 Lewis Hall Montana State University...neutral lipid generation for biofuel production through an examination of the biochemical and molecular processes important in the accumulation of...cultures to find the extent to which previously published results can be considered general for microalgae . Task 2. Quantify growth kinetics and

  8. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides

    Directory of Open Access Journals (Sweden)

    Zhang Weidong

    2011-06-01

    Full Text Available Abstract The recent energy crisis has triggered significant attention on the microbial synthesis of lipids, which comprise the raw material for biodiesel production. Microbial oil accumulation with filamentous fungi has great potential because filamentous fungi can form pellets during cell growth, and these pellets are much easier to harvest from cell broth. This paper focuses on the cell pelletization process of the oleaginous Mucor circinelloides. We have studied the effect of various cultural conditions on pelletized cell growth and lipid accumulation. This study is the first to report that pH adjustment during cell growth plays a key role in pellet formation of M. circinelloides and describes a handy method by which to induce cell pelletization in submerged fungal cultivation. Our study reveals that cell growth and lipid production are not significantly affected by pelletization and that lipid accumulation is triggered at stressed conditions, such as a high carbon-to-nitrogen ratio and high temperature.

  9. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides.

    Science.gov (United States)

    Xia, Chunjie; Zhang, Jianguo; Zhang, Weidong; Hu, Bo

    2011-06-02

    The recent energy crisis has triggered significant attention on the microbial synthesis of lipids, which comprise the raw material for biodiesel production. Microbial oil accumulation with filamentous fungi has great potential because filamentous fungi can form pellets during cell growth, and these pellets are much easier to harvest from cell broth. This paper focuses on the cell pelletization process of the oleaginous Mucor circinelloides. We have studied the effect of various cultural conditions on pelletized cell growth and lipid accumulation. This study is the first to report that pH adjustment during cell growth plays a key role in pellet formation of M. circinelloides and describes a handy method by which to induce cell pelletization in submerged fungal cultivation. Our study reveals that cell growth and lipid production are not significantly affected by pelletization and that lipid accumulation is triggered at stressed conditions, such as a high carbon-to-nitrogen ratio and high temperature.

  10. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qing eLi

    2015-11-01

    Full Text Available Wrinkled1 (WRI1 belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid synthesis and lipid assembly. The overexpression (OE of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, fatty acid synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipid monogalactosyldiacylglycerol (MGDG, digalactosyldiacylglycerol (DGDG, and phosphatidylcholine (PC in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide (PE, and oil (triacylglycerol, TAG in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  11. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming, E-mail: dr_dongming@126.com

    2016-08-05

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.

  12. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    International Nuclear Information System (INIS)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-01-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.

  13. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms.

    Science.gov (United States)

    Dourou, Marianna; Aggeli, Dimitra; Papanikolaou, Seraphim; Aggelis, George

    2018-03-01

    Oleaginous microorganisms are able to convert numerous agro-industrial and municipal wastes into storage lipids (single cell oil (SCO)) and are therefore considered as potential biofuel producers. While from an environmental and technological point of view the idea to convert waste materials into fuels is very attractive, the production cost of SCO is not currently competitive to that of conventional oils due to the low productivity of oleaginous microorganisms in combination with the high fermentation cost. Current strategies used to optimize the lipid-accumulating capacity of oleaginous microorganisms include the overexpression of genes encoding for key enzymes implicated in fatty acid and triacylglycerol synthesis, such as ATP-dependent citrate lyase, acetyl-CoA carboxylase, malic enzyme, proteins of the fatty acid synthase complex, glycerol 3-phosphate dehydrogenase and various acyltransferases, and/or the inactivation of genes encoding for enzymes implicated in storage lipid catabolism, such as lipases and acyl-CoA oxidases. Furthermore, blocking, even partially, pathways competitive to lipid biosynthesis (e.g., those involved in the accumulation of storage polysaccharide or organic acid and polyol excretion) can also increase lipid-accumulating ability in oleaginous microorganisms. Methodologies, such as adaptive laboratory evolution, can be included in existing workflows for the generation of strains with improved lipid accumulation capacity. In our opinion, efforts should be focused in the construction of strains with high carbon uptake rates and a reprogrammed coordination of the individual parts of the oleaginous machinery that maximizes carbon flux towards lipogenesis.

  14. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster

    Science.gov (United States)

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain’s LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  15. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    Science.gov (United States)

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  16. Growth and lipid accumulation in response to different cultivation temperatures in Nannochloropsis oculata for biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-03-01

    Full Text Available Background: Microalgal lipid is a promising feedstock for biodiesel production. The aim of the present study was to investigate the effects of cultivation temperature on the growth and lipid accumulation properties of Nannochloropsis oculata microalgae. Methods: Nannochloropsis oculatacan grow in a wide range of temperatures (5 ~ 35°C. Late in the stationary growth phase of microalgae, biomass production and lipid accumulation were measured. The methanol-chloroform extraction method was used to extract total lipids from dried cells. The direct esterification method was used to measure fatty acids. Constituents were identified by gas chromatography. Results: The results show that the maximum specific growth rate at 20°C was 0.1569 day-1, and the maximum biomass production of microalgae at 25°C was 2.2667 g/L. The highest percentage of biomass conversion into lipid (35.71% occurred at 30°C. Maximum lipid productivity was seen at temperatures of 15°C, 20°C, and 25°C, but the analysis of fatty acids in the three temperatures shownare maximum accumulations of triglycerides in the microalgae cells at 20°C and 25°C. Conclusion: In the cultivation of Nannochloropsis oculata, the optimal temperature range for maximum efficiency in biodiesel production from lipids is 20°C to 25°C.

  17. FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Srikarthika Jambunathan

    Full Text Available Fat Specific Protein 27 (FSP27, a lipid droplet (LD associated protein in adipocytes, regulates triglyceride (TG storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173-220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120-140 are essential but not sufficient for LD enlargement, whereas amino acids 120-210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation.

  18. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2012-10-01

    Full Text Available Abstract Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4 antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB, which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1, compared with transforming growth factor-β1 (TGF-β1. Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial

  19. Fucoxanthin Suppresses Lipid Accumulation and ROS Production During Differentiation in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Seo, Min-Jung; Seo, Young-Jin; Pan, Cheol-Ho; Lee, Ok-Hwan; Kim, Kui-Jin; Lee, Boo-Yong

    2016-11-01

    Fucoxanthin, a pigment from the chloroplasts of marine brown algae, has a number of effects against obesity, diabetes, inflammation and cancer and provides cerebrovascular protection. In this study, we investigated the inhibitory effects of fucoxanthin on lipid accumulation and reactive oxygen species (ROS) production during adipogenesis. Treatment with fucoxanthin suppresses protein levels of the adipogenic transcription factors CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor-γ and of their target protein, fatty acid binding protein 4. Lipogenesis-related enzymes, such as diglyceride acyltransferase 1 and lysophosphatidic acid acyltransferase-θ, were downregulated by fucoxanthin. The ROS-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and the NADPH-generating enzyme glucose-6-phosphate dehydrogenase also decreased following fucoxanthin treatment. The adipokine adiponectin and the ROS-scavenging enzymes superoxide dismutase 2, glutathione reductase and catalase were dose-dependently increased by fucoxanthin. Furthermore, lipolysis-related enzymes and superoxide dismutase 1 were slightly decreased, because of the suppression of lipid-generating factors and the cytosolic enzyme NOX4. To confirm these results, we investigated lipid accumulation and ROS production in zebrafish, where fucoxanthin suppressed lipid and triglyceride accumulation, as well as ROS production. Our data suggest that fucoxanthin inhibits lipid accumulation and ROS production by controlling adipogenic and lipogenic factors and ROS-regulating enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  1. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants

    OpenAIRE

    James, Christopher N.; Horn, Patrick J.; Case, Charlene R.; Gidda, Satinder K.; Zhang, Daiyuan; Mullen, Robert T.; Dyer, John M.; Anderson, Richard G. W.; Chapman, Kent D.

    2010-01-01

    CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common...

  2. Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation.

    Science.gov (United States)

    Liu, Zhiguo; Oyetunde, Tolutola; Hollinshead, Whitney D; Hermanns, Anna; Tang, Yinjie J; Liao, Wei; Liu, Yan

    2017-01-01

    C1 substrates (such as formate and methanol) are promising feedstock for biochemical/biofuel production. Numerous studies have been focusing on engineering heterologous pathways to incorporate C1 substrates into biomass, while the engineered microbial hosts often demonstrate inferior fermentation performance due to substrate toxicity, metabolic burdens from engineered pathways, and poor enzyme activities. Alternatively, exploring native C1 pathways in non-model microbes could be a better solution to address these challenges. An oleaginous fungus, Umbelopsis isabellina , demonstrates an excellent capability of metabolizing formate to promote growth and lipid accumulation. By co-feeding formate with glucose at a mole ratio of 3.9:1, biomass and lipid productivities of the culture in 7.5 L bioreactors were improved by 20 and 70%, respectively. 13 C-metabolite analysis, genome annotations, and enzyme assay further discovered that formate not only provides an auxiliary energy source [promoting NAD(P)H and ATP] for cell anabolism, but also contributes carbon backbones via folate-mediated C1 pathways. More interestingly, formate addition can tune fatty acid profile and increase the portion of medium-chain fatty acids, which would benefit conversion of fungal lipids for high-quality biofuel production. Flux balance analysis further indicates that formate co-utilization can power microbial metabolism to improve biosynthesis, particularly on glucose-limited cultures. This study demonstrates Umbelopsis isabellina's strong capability for co-utilizing formate to produce biomass and enhance fatty acid production. It is a promising non-model platform that can be potentially integrated with photochemical/electrochemical processes to efficiently convert carbon dioxide into biofuels and value-added chemicals.

  3. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    Science.gov (United States)

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses.

    Directory of Open Access Journals (Sweden)

    Pei-Luen Jiang

    Full Text Available Stable cnidarian-dinoflagellate (genus Symbiodinium endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B upon nitrogen (N-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503, indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG and cholesterol ester (CE were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs, a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.

  5. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei; Nicora, Carrie D.; Fillmore, Thomas L.; Purvine, Samuel O.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Baker, Scott E.; Metz, Thomas O.; Nielsen, Jens; Lee, Sang Yup

    2017-06-20

    ABSTRACT

    The yeastYarrowia lipolyticais a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis inY. lipolyticaand identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination ofDGA1overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.

    IMPORTANCEThe ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeastYarrowia lipolytica. Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors

  6. The relation between protein synthesis and lipide accumulation in L strain cells and Ehrlich ascites cells.

    Science.gov (United States)

    KING, D W; SOCOLOW, E L; BENSCH, K G

    1959-05-25

    It has long been known that fat accumulates in old injured cells both in tissue culture and in many mammalian disease states. The use of L cells grown in suspension tissue culture permitted the opportunity to study conditions in which lipide accumulation could be retarded or accelerated. These cultures exhibit a three-phase growth curve which is similar to that previously found with bacteria and consists of a lag period, logarithmic growth period, and stationary period. Daily aliquots were removed from cultures going through these phases and protein and cholesterol content correlated with cell division. It was found that L cells gradually accumulated lipide in the cell concurrent with retardation of cell division and protein synthesis. Conversely old lipide-laden cells, placed in fresh media and encouraged to active division with net protein synthesis progressed from a high to a low lipide/cell ratio over a period of 2 to 4 days. An amino acid analogue p-fluorophenylalanine and a mitotic inhibitor, colchicine, also markedly increased the lipide/cell ratio. Similar results were found in in vitro experiments with Ehrlich ascites cells.

  7. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Obayashi, Yoko, E-mail: youko_oobayashi@ajinomoto.com [Department of Pathology, University of Washington School of Medicine, Seattle, WA (United States); Campbell, Jean S.; Fausto, Nelson [Department of Pathology, University of Washington School of Medicine, Seattle, WA (United States); Yeung, Raymond S. [Department of Surgery, University of Washington School of Medicine, Seattle, WA (United States)

    2013-07-19

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration in the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.

  8. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Eduard J. Kerkhoven

    2017-06-01

    Full Text Available The yeast Yarrowia lipolytica is a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis in Y. lipolytica and identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1 with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.

  9. Non-polar lipids accumulate during storage of transfusion products and do not contribute to the onset of transfusion-related acute lung injury.

    Science.gov (United States)

    Peters, A L; Vervaart, M A T; van Bruggen, R; de Korte, D; Nieuwland, R; Kulik, W; Vlaar, A P J

    2017-01-01

    The accumulation of non-polar lipids arachidonic acid, 5-hydroxyeicosatetraenoic acid (HETE), 12-HETE and 15-HETE during storage of transfusion products may play a role in the onset of transfusion-related acute lung injury (TRALI), a syndrome of respiratory distress after transfusion. We investigated non-polar lipid accumulation in red blood cells (RBCs) stored for 42 days, plasma stored for 7 days at either 4 or 20°C and platelet (PLT) transfusion products stored for 7 days. Furthermore, we investigated whether transfusion of RBCs with increased levels of non-polar lipids induces TRALI in a 'two-hit' human volunteer model. All products were produced following Dutch Blood Bank protocols and are according to European standards. Non-polar lipids were measured with high-performance liquid chromotography followed by mass spectrometry. All non-polar lipids increased in RBCs after 21 days of storage compared to baseline. The non-polar lipid concentration in plasma increased significantly, and the increase was even more pronounced in products stored at 20°C. In platelets, baseline levels of 5-HETE and 15-HETE were higher than in RBCs or plasma. However, the non-polar lipids did not change significantly during storage of PLT products. Infusion of RBCs with increased levels of non-polar lipids did not induce TRALI in LPS-primed human volunteers. We conclude that non-polar lipids accumulate in RBC and plasma transfusion products and that accumulation is temperature dependent. Accumulation of non-polar lipids does not appear to explain the onset of TRALI (Dutch Trial Register - NTR4455). © 2016 International Society of Blood Transfusion.

  10. Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina.

    Science.gov (United States)

    Fakhry, Eman M; El Maghraby, Dahlia M

    2015-12-01

    This batch study deals with the relation between lipid as well as triglyceride contents in Nannochloropsis salina and variation in culture conditions such as nitrogen concentration and temperature. The tested parameters caused reduction in growth expressed as cell count, optical density and dry weight, as well strongly involved in lipids and triglycerides accumulation and significantly affected the lipid productivity. At the beginning of the work, the concentration of nitrogen in the medium was reduced to three quarter, half and quarter of the original f2 medium while the temperature kept constant. After that, the optimal nitrogen concentration (quarter of the original media) giving high lipid yield was tested with different temperature degrees from 15 to 35°C with five degree intervals. Although the growth was insignificantly influenced, a considerable increase in lipid and triglyceride (56.1 and 15.1% of dry weight respectively) was observed when the concentration of nitrogen in the medium was reduced to the quarter. Moreover, 59.3% lipid and 17.1% triglyceride on the basis of dry weight were obtained by the combination of 25% nitrogen concentration and 30°C. Simple regressions recommended that the interaction effect of nitrogen limitation and temperature on lipid and triglyceride accumulation was not as fundamental as for nitrogen limitation stress. The degree of nitrogen availability in the combination of temperature effect has been identified as the critical determinant for the maximal production of lipid in N. salina. Nevertheless, major advances in this field can be considered by studying more stresses techniques and genetic strategies.

  11. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.

    Science.gov (United States)

    Feng, Pingzhong; Deng, Zhongyang; Hu, Zhengyu; Fan, Lu

    2011-11-01

    Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation*

    Science.gov (United States)

    Deisenroth, Chad; Itahana, Yoko; Tollini, Laura; Jin, Aiwen; Zhang, Yanping

    2011-01-01

    The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasmic reticulum (ER) protein that is shuttled to the ER via an N-terminal endoplasmic reticulum targeting signal. One important function of the ER is synthesis of neutral lipids that are packaged into lipid droplets whose biogenesis occurs from ER-derived membranes. DHRS3 is enriched at focal points of lipid droplet budding where it also localizes to the phospholipid monolayer of ER-derived lipid droplets. p53 promotes lipid droplet accumulation in a manner consistent with DHRS3 enrichment in the ER. As a p53 target gene, the observations of Dhrs3 location and potential function provide novel insight into an unexpected role for p53 in lipid droplet dynamics with implications in cancer cell metabolism and obesity. PMID:21659514

  13. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    Science.gov (United States)

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  14. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  15. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    Science.gov (United States)

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-05-01

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Effect of Growth Hormone on Lipid Accumulation or Maturation in Adipocytes

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    2016-11-01

    Full Text Available Background: Adipogenesis of adipocytes includes two stages: initiation and maturation. Growth hormone (GH secretion is decreased in obese subjects and GH levels are inversely correlated with abdominal fat mass. The effects of growth hormone (GH on lipids accumulation or maturation of adipocytes remains elusive. Methods: In the present study, effect of GH on lipid accumulation in vitro and in vivo was examined. cDNA microarray, quantitative real time-PCR (qPCR and western blotting was used to analyze the expression of genes related to adipocyte lipid accumulation or degradation in pre- or mature 3T3-F442A adipocytes treated with GH and in epididymal adipose tissue of C57BL/6 mice administrated with GH. Level of adiponectin in supernatants of cultured F442A adipocytes was determined by enzyme-linked immune-sorbent assay. Results: We found that in 3T3-F442A especially 6 days post initiation of adipogenesis, GH intervention resulted in decreased expression of adipocyte maturation regulators (C/EBPα, PPARγ and prominent genes related to lipid synthesis such as FAS and FABP, while the expression of UCP1 was markedly enhanced. cDNA microarray analysis and qPCR showed that the expression of SOCS2 and Adipor2 was increased under GH-treatment in mature 3T3-F442A adipocytes. GH treatment increased the mRNA expression of adiponectin and UCP1 in mature adipocytes. The above results were confirmed by in vivo study. Conclusions: GH potentially negatively modulates the maturation and accumulation of lipid in adipocytes.

  17. An extract of Russian Tarragon Prevents Obesity-Related Ectopic Lipid Accumulation.

    Science.gov (United States)

    Yu, Yongmei; Mendoza, Tamra; Ribnicky, David; Poulev, Alexander; Noland, Robert C; Mynatt, Randall L; Raskin, Ilya; Cefalu, William T; Floyd, Z Elizabeth

    2018-02-23

    The primary disorder underlying metabolic syndrome is insulin resistance due to excess body weight and abdominal visceral fat accumulation. In this study, we asked if dietary intake of an ethanolic extract from Russian tarragon (Artemisia dracunculus L., termed PMI5011), shown to improve glucose utilization by enhancing insulin signaling in skeletal muscle, could prevent obesity-induced insulin resistance, skeletal muscle metabolic inflexibility and ectopic lipid accumulation in skeletal muscle and liver. Male wild-type mice were fed a high fat diet alone or supplemented with PMI5011 (1% w/w) over 3 months. Dietary intake of PMI5011 improved fatty acid oxidation and metabolic flexibility in skeletal muscle, reduced insulin levels and enhanced insulin signaling in skeletal muscle and liver independent of robust changes in expression of factors that control fatty acid oxidation. This corresponded with significantly reduced lipid accumulation in skeletal muscle and liver although body weight gain was comparable to high fat diet alone. Previous studies showed PMI5011 enhances insulin sensitivity in the setting of established obesity-induced insulin resistance. The current study demonstrates that dietary intake of PMI5011 prevents high fat diet-induced insulin resistance, metabolic dysfunction and ectopic lipid accumulation in skeletal muscle and liver without reducing body weight. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  19. Effects of alcohol compounds on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans.

    Directory of Open Access Journals (Sweden)

    Chao Huang

    Full Text Available The inhibitors present in dilute acid-treated lignocellulosic hydrolysates would show great effect on the growth and product formation of microorganisms. To understand their inhibitory law and mechanism on oleaginous microorganism could help improving the efficiency of lignocellulose hydrolysis, detoxification, and lipid fermentation. The effects of four representative alcohol compounds present in lignocellulosic hydrolysates, including furfuryl alcohol, vanillyl alcohol, catechol, hydroquinone on the cell growth and lipid accumulation of Trichosporon fermentans were systematically investigated in this work. The toxicity of selected alcohol compounds was well related to their log P value except furfuryl alcohol, whose log P value was the minimum but with the highest toxicity to T. fermentans. The inhibition of all the alcohol compounds on the growth of T. fermentans was more serious than on the lipid synthesis. Also, the growth of T. fermentans was more sensitive to the variation of inoculum size, temperature, and initial pH than lipid synthesis in the presence of alcohol compounds. Initial pH had more profound influence on the lipid fermentation than inoculum size and cultural temperature did. Careful control of fermentation conditions could be helpful for improving lipid yield of T. fermentans in lignocellulosic hydrolysates. Among the four alcohol compounds tested, most alcohol compounds showed inhibition on both sugar consumption and malic enzyme activity of T. fermentans. However, vanillyl alcohol had little influence on the malic enzyme activity. Similarly, all alcohol compounds except vanillyl alcohol exerted damage on the cell membrane of T. fermentans.

  20. Enhancement of lipid accumulation by oleaginous yeast through phosphorus limitation under high content of ammonia.

    Science.gov (United States)

    Huang, Xiangfeng; Luo, Huijuan; Mu, Tianshuai; Shen, Yi; Yuan, Ming; Liu, Jia

    2018-04-18

    Low concentrations of acetic acid were used as carbon source to cultivate Cryptococcus curvatus MUCL 29819 for lipid production under high content of ammonia. Phosphorus limitation combined with initial pH regulation (pH = 6) weakened inhibition of free ammonia and promoted lipid accumulation. In batch cultivation, the produced lipid content and yield was 30.3% and 0.92 g/L, higher than those under unlimited condition (18.3% and 0.64 g/L). The content of monounsaturated fatty acid also increased from 37.3% (unlimited condition) to 45.8% (phosphorus-limited condition). During sequencing batch cultivation (SBC), the lipid content reached up to 51.02% under phosphorus-limited condition while only 31.88% under unlimited condition, which can be explained by the higher conversion efficiency of the carbon source to lipid. The total energy consumption including lipid extraction, transesterification and purification was 7.47 and 8.33 GJ under phosphorus-limited and unlimited condition, respectively. Copyright © 2018. Published by Elsevier Ltd.

  1. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    Science.gov (United States)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  2. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  3. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis.

    Science.gov (United States)

    Beacham, T A; Macia, V Mora; Rooks, P; White, D A; Ali, S T

    2015-09-01

    Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  4. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  5. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    Science.gov (United States)

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation.

    Science.gov (United States)

    Benetti, Elisa; Mastrocola, Raffaella; Vitarelli, Giovanna; Cutrin, Juan Carlos; Nigro, Debora; Chiazza, Fausto; Mayoux, Eric; Collino, Massimo; Fantozzi, Roberto

    2016-10-01

    The aim of this study was to evaluate the effects of chronic treatment with empagliflozin, a potent and selective sodium glucose cotransporter-2 inhibitor, in a murine model of diet-induced obesity and insulin resistance, focusing on drug effects on body weight reduction and nucleotide-binding domain, leucine-rich repeat containing protein (NLRP)-3 inflammasome activation, which have never been investigated to date. Male C57BL/6 mice were fed control or a high fat-high sugar (HFHS) diet for 4 months. Over the last 2 months, subsets of animals were treated with empagliflozin (1-10 mg/kg) added to the diet. Empagliflozin evoked body weight reduction (P empagliflozin also decreased cardiac lipid accumulation. Moreover, diet-induced activation of NLRP-3 in kidney and liver (not observed in the heart) was dose-dependently attenuated by empagliflozin. Our results clearly demonstrate the ability of empagliflozin to counteract the deleterious effects evoked by chronic exposure to HFHS diet. Most notably, empagliflozin treatment was associated with NLRP-3 inflammasome signaling modulation, suggesting that this inhibition may contribute to the drug therapeutic effects. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Model Answers to Lipid Membrane Questions

    DEFF Research Database (Denmark)

    Mouritsen, O. G.

    2011-01-01

    Ever since it was discovered that biological membranes have a core of a bimolecular sheet of lipid molecules, lipid bilayers have been a model laboratory for investigating physicochemical and functional properties of biological membranes. Experimental and theoretical models help the experimental ...... to pursue. Here we review some membrane models for lipid self-assembly, monolayers, bilayers, liposomes, and lipid-protein interactions and illustrate how such models can help answering questions in modern lipid cell biology....... scientist to plan experiments and interpret data. Theoretical models are the theoretical scientist's preferred toys to make contact between membrane theory and experiments. Most importantly, models serve to shape our intuition about which membrane questions are the more fundamental and relevant ones...

  8. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  9. Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts

    Science.gov (United States)

    2014-01-01

    Background Oleaginous microorganisms, such as different yeast and algal species, can represent a sustainable alternative to plant oil for the production of biodiesel. They can accumulate fatty acids (FA) up to 70% of their dry weight with a predominance of (mono)unsaturated species, similarly to what plants do, but differently from animals. In addition, their growth is not in competition either with food, feed crops, or with agricultural land. Despite these advantages, the exploitation of the single cell oil system is still at an early developmental stage. Cultivation mode and conditions, as well as lipid extraction technologies, represent the main limitations. The monitoring of lipid accumulation in oleaginous microorganisms is consequently crucial to develop and validate new approaches, but at present the majority of the available techniques is time consuming, invasive and, when relying on lipid extraction, can be affected by FA degradation. Results In this work the fatty acid accumulation of the oleaginous yeasts Cryptococcus curvatus and Rhodosporidium toruloides and of the non-oleaginous yeast Saccharomyces cerevisiae (as a negative control) was monitored in situ by Fourier Transform Infrared Spectroscopy (FTIR). Indeed, this spectroscopic tool can provide complementary information to those obtained by classical techniques, such as microscopy, flow cytometry and gas chromatography. As shown in this work, through the analysis of the absorption spectra of intact oleaginous microorganisms it is possible not only to monitor the progression of FA accumulation but also to identify the most represented classes of the produced lipids. Conclusions Here we propose FTIR microspectroscopy - supported by multivariate analysis - as a fast, reliable and non invasive method to monitor and analyze FA accumulation in intact oleaginous yeasts. The results obtained by the FTIR approach were in agreement with those obtained by the other classical methods like flow cytometry and

  10. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.

    Science.gov (United States)

    Guo, Wan-Qian; Zheng, He-Shan; Li, Shuo; Du, Juan-Shan; Feng, Xiao-Chi; Yin, Ren-Li; Wu, Qing-Lian; Ren, Nan-Qi; Chang, Jo-Shu

    2016-12-01

    The aim of this study is to evaluate the feasibility of using lipid-accumulating microalgae to remove cephalosporin antibiotics 7-amino cephalosporanic acid (7-ACA) from wastewater with the additional benefit of biofuels production. Three isolated microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Mychonastes sp. YL-02) were cultivated under 7-ACA stress and their biomass productivity, lipid production and N-NO 3 - consumption were monitored. It was found that 7-ACA had slight inhibition effects on the microalgal growth at the ratio of 12.0% (Cha-01), 9.6% (YL-02), 11.7% (Tai-03). However, lipid accumulation in the three microalgae was not influenced by the presence of 7-ACA. The investigation on the 7-ACA removal mechanisms during microalgal growth shows that 7-ACA was mainly removed by microalgae adsorption as well as hydrolysis and photolysis reactions. This study demonstrates that using microalgae to treat antibiotic-containing wastewater is promising due to the potential of simultaneous antibiotic removal and biofuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis.

    Directory of Open Access Journals (Sweden)

    Kyle R Pomraning

    Full Text Available Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.

  12. Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis

    Science.gov (United States)

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; Kim, Young-Mo; Dohnalkova, Alice C.; Arey, Bruce W.; Bredeweg, Erin L.; Orr, Galya; Metz, Thomas O.; Baker, Scott E.

    2015-01-01

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shift in amino acid metabolism. We also report that exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains. PMID:25905710

  13. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    Czech Academy of Sciences Publication Activity Database

    Ota, S.; Yoshihara, M.; Yamazaki, T.; Takeshita, T.; Hirata, A.; Konomi, M.; Oshima, K.; Hattori, M.; Bišová, Kateřina; Zachleder, Vilém; Kawano, S.

    2016-01-01

    Roč. 6, MAY 16 (2016), s. 25731 ISSN 2045-2322 Institutional support: RVO:61388971 Keywords : electron-dense body * lipid accumulation * Parachlorella kessleri Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016

  14. Liquid immiscibility in model bilayer lipid membranes

    Science.gov (United States)

    Veatch, Sarah L.

    There is growing evidence that cell plasma membranes are laterally organized into "raft" regions in which particular lipids and proteins are concentrated. These domains have sub-micron dimensions and have been implicated in vital cell functions. Similar liquid domains are observed in model bilayer membrane mixtures that mimick cellular lipid compositions. In model membranes, domains can be large (microns) and can readily form in the absence of proteins. This thesis presents studies of liquid immiscibility in model membrane systems using two experimental methods. By fluorescence microscopy, this thesis documents that miscibility transitions occur in a wide variety of ternary lipid mixtures containing high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol. I have constructed detailed miscibility phase diagrams for three separate ternary lipid mixtures (DOPC/DPPC/Chol, DOPC/PSM/Chol, and POPC/PSM/Chol). Phase separation is also observed in membranes of lipids extracted from human erythrocytes. NMR experiments probe lipid order and verify the coexistence of a saturated lipid and cholesterol rich liquid ordered (Lo) phase with a more disordered, unsaturated lipid rich liquid crystalline (Lalpha) phase at low temperatures. These experiments also find multiple thermodynamic transitions and lipid organization on different length-scales. This complexity is revealed because fluorescence microscopy and NMR probe lipid order at different length-scales (>1mum vs. ˜100nm). NMR detects small domains (˜80nm) at temperatures just below the miscibility transition, even though micron-scale domains are observed by fluorescent microscopy. NMR does detect large-scale ("100nm) demixing, but at a lower temperature. In addition, it has long been known that >10nm length-scale structure is present in many lipid mixtures containing cholesterol and at least one additional lipid species, though it is shown here that only a subset of

  15. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  16. Primate fetal hepatic responses to maternal obesity: epigenetic signalling pathways and lipid accumulation.

    Science.gov (United States)

    Puppala, Sobha; Li, Cun; Glenn, Jeremy P; Saxena, Romil; Gawrieh, Samer; Quinn, Amy; Palarczyk, Jennifer; Dick, Edward J; Nathanielsz, Peter W; Cox, Laura A

    2018-03-07

    Maternal obesity (MO) increases offspring cardiometabolic disease risk. Altered fetal liver development in response to the challenge of MO has metabolic consequences underlying adverse offspring life-course health outcomes. Little is known about molecular pathways and potential epigenetic changes regulating primate fetal liver responses to MO. We hypothesized that MO would induce fetal baboon liver epigenetic changes resulting in dysregulation of key metabolic pathways that impact lipid metabolism. MO was induced prior to pregnancy by a high fat, high sucrose diet. Unbiased gene and microRNA (miRNA; small RNA Seq) abundance analyses were performed on fetal baboon livers at 0.9 gestation (G) and subjected to pathway analyses to identify fetal liver molecular responses to MO. Fetal baboon liver lipid and glycogen content were quantified by Computer Assisted Stereology Toolbox. In response to MO, fetal livers revealed dysregulation of TCA cycle, proteasome, oxidative phosphorylation, glycolysis and Wnt/β-catenin signalling pathways together with marked lipid accumulation supporting our hypothesis that multiple pathway dysregulation detrimentally impacts lipid management. This is the first study of MO programming of the nonhuman primate fetal liver using unbiased transcriptome analysis to detect changes in hepatic gene expression levels and identify potential miRNA epigenetic regulators of metabolic disruption. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Computational Modeling of Lipid Metabolism in Yeast

    Directory of Open Access Journals (Sweden)

    Vera Schützhold

    2016-09-01

    Full Text Available Lipid metabolism is essential for all major cell functions and has recently gained increasing attention in research and health studies. However, mathematical modeling by means of classical approaches such as stoichiometric networks and ordinary differential equation systems has not yet provided satisfactory insights, due to the complexity of lipid metabolism characterized by many different species with only slight differences and by promiscuous multifunctional enzymes.Here, we present a object-oriented stochastic model approach as a way to cope with the complex lipid metabolic network. While all lipid species are treated objects in the model, they can be modified by the respective converting reactions based on reaction rules, a hybrid method that integrates benefits of agent-based and classical stochastic simulation. This approach allows to follow the dynamics of all lipid species with different fatty acids, different degrees of saturation and different headgroups over time and to analyze the effect of parameter changes, potential mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast metabolism during one cell cycle period, we could analyze the distribution of all lipids to the various membranes in time-dependent manner.The presented approach allows to efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on the time- and location-dependent distributions of lipid species and their properties such as saturation. It is widely applicable, easily extendable and will provide further insights in healthy and diseased states of cell metabolism.

  18. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    Science.gov (United States)

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Strategic Feeding of Ammonium and Metal Ions for Enhanced GLA-Rich Lipid Accumulation in Cunninghamella bainieri 2A1

    Science.gov (United States)

    Wan Nawi, Wan Nazatul Naziah; Taha, Ekhlass M.; Omar, Othman; Abdul Kader, Abdul Jalil; Kalil, Mohd Sahaid; Abdul Hamid, Aidil

    2014-01-01

    Strategic feeding of ammonium and metal ions (Mg2+, Mn2+, Fe3+, Cu2+, Ca2+, Co2+, and Zn2+) for enhanced GLA-rich lipid accumulation in C. bainieri 2A1 was established. When cultivated in nitrogen-limited medium, the fungus produced up to 30% lipid (g/g biomass) with 12.9% (g/g lipid) GLA. However, the accumulation of lipid stopped at 48 hours of cultivation although glucose was abundant. This event occurred in parallel to the diminishing activity of malic enzyme (ME), fatty acid synthase (FAS), and ATP citrate lyase (ACL) as well as the depletion of metal ions in the medium. Reinstatement of the enzymes activities was achieved by feeding of ammonium tartrate, but no increment in the lipid content was observed. However, increment in lipid content from 32% to 50% (g/g biomass) with 13.2% GLA was achieved when simultaneous feeding of ammonium, glucose, and metal ions was carried out. This showed that the cessation of lipid accumulation was caused by diminishing activities of the enzymes as well as depletion of the metal ions in the medium. Therefore, strategic feeding of ammonium and metal ions successfully reinstated enzymes activities and enhanced GLA-rich lipid accumulation in C. bainieri 2A1. PMID:24991637

  20. Strategic Feeding of Ammonium and Metal Ions for Enhanced GLA-Rich Lipid Accumulation in Cunninghamella bainieri 2A1

    Directory of Open Access Journals (Sweden)

    Shuwahida Shuib

    2014-01-01

    Full Text Available Strategic feeding of ammonium and metal ions (Mg2+, Mn2+, Fe3+, Cu2+, Ca2+, Co2+, and Zn2+ for enhanced GLA-rich lipid accumulation in C. bainieri 2A1 was established. When cultivated in nitrogen-limited medium, the fungus produced up to 30% lipid (g/g biomass with 12.9% (g/g lipid GLA. However, the accumulation of lipid stopped at 48 hours of cultivation although glucose was abundant. This event occurred in parallel to the diminishing activity of malic enzyme (ME, fatty acid synthase (FAS, and ATP citrate lyase (ACL as well as the depletion of metal ions in the medium. Reinstatement of the enzymes activities was achieved by feeding of ammonium tartrate, but no increment in the lipid content was observed. However, increment in lipid content from 32% to 50% (g/g biomass with 13.2% GLA was achieved when simultaneous feeding of ammonium, glucose, and metal ions was carried out. This showed that the cessation of lipid accumulation was caused by diminishing activities of the enzymes as well as depletion of the metal ions in the medium. Therefore, strategic feeding of ammonium and metal ions successfully reinstated enzymes activities and enhanced GLA-rich lipid accumulation in C. bainieri 2A1.

  1. Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds

    Directory of Open Access Journals (Sweden)

    Anna eEl Tahchy

    2015-12-01

    Full Text Available Worldwide demand for vegetable oil is projected to double within the next thirty years due to increasing food, fuel and industrial requirements. There is therefore great interest in metabolic engineering strategies that boost oil accumulation in plant tissues, however, efforts to date have only achieved levels of storage lipid accumulation in plant tissues far below the benchmark to meet demand. Monoacylglycerol acyltransferase (MGAT is predominantly associated with lipid absorption and resynthesis in the animal intestine where it catalyses monoacylglycerol (MAG to form diacylglycerol (DAG, and then triacylglycerol (TAG. In contrast plant lipid biosynthesis routes do not include MGAT. Rather, DAG and TAG are either synthesized from glycerol-3-phosphate (G-3-P by a series of three subsequent acylation reactions, or originate from phospholipids via an acyl editing pathway. Mouse MGATs 1 and 2 have been shown to increase oil content transiently in Nicotiana benthamiana leaf tissue by 2.6 fold. Here we explore the feasibility of this approach to increase TAG in Arabidopsis thaliana seed. The stable MGAT2 expression resulted in a significant increase in seed oil content by 1.32 fold. We also report evidence of the MGAT2 activity based on in vitro assays. Up to 3.9 fold increase of radiolabelled DAG were produced in seed lysate which suggest that the transgenic MGAT activity can result in DAG re-synthesis by salvaging the MAG product of lipid breakdown. The expression of MGAT2 therefore creates an independent and complementary TAG biosynthesis route to the endogenous Kennedy pathway and other glycerolipid synthesis routes.

  2. Lipid accumulation product (LAP) is related to androgenicity and cardiovascular risk factors in postmenopausal women.

    Science.gov (United States)

    Maturana, Maria Augusta; Moreira, Roberta M C; Spritzer, Poli Mara

    2011-12-01

    To investigate whether lipid accumulation product (LAP) is related to androgen and sex hormone binding globulin (SHBG) levels and to cardiovascular risk factors in postmenopausal women with no evidence of established cardiovascular disease. Cross-sectional study. LAP (waist-58 × triglycerides [nmol/L]), LAP ≥ arbitrary cutoff point of 34.5, serum testosterone, SHBG, ultrasensitive C-reactive protein (us-CRP). Forty-nine women (mean age 55±5 years; median amenorrhea time 5.5 years [3-8]) were studied: 14% had the metabolic syndrome and 24.5% were hypertensive. Compared with LAP<34.5, LAP ≥ 34.5 (n=29, 59%) was associated with higher testosterone (p=0.021) and free androgen index (FAI) (p=0.003) and lower SHBG levels (p=0.013). Us-CRP (p=0.012), total cholesterol (p=0.041), glucose (p=0.020) and homeostasis model assessment (HOMA) (p=0.019) were higher, and high-density lipoprotein cholesterol (HDL-C) (p=0.001) was lower with LAP ≥ 34.5. LAP was positively correlated with total testosterone (r=0.349, p=0.014), FAI (rs=0.470, p=0.001), us-CRP (r=0.315, p=0.042), systolic (r=0.318, p=0.028) and diastolic (r=0.327, p=0.023) blood pressure, total cholesterol (r=0.498, p<0.001) and glucose (rs=0.319, p=0.026). LAP was negatively correlated with SHBG (rs=-0.430, p=0.003) and HDL-C (r=-0.319, p=0.026). LAP index seems to be associated with androgens and SHBG and with cardiovascular risk factors in postmenopausal women. Also, LAP seems to be a suitable method to screen for cardiovascular risk in postmenopause. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Valenzuela Jacob

    2012-06-01

    Full Text Available Abstract Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR fluorescence (NR fluorescence per cell increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases. Conclusions The results indicate that P. tricornutum continued carbon dioxide reduction when population growth was arrested and different carbon-concentrating mechanisms were used dependent upon exogenous

  4. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei

    2017-01-01

    correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular......, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered...

  5. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  6. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  7. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  8. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  9. Neuronal Cholesterol Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts Brain Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Sophie Ayciriex

    2017-07-01

    Full Text Available Impairment in cholesterol metabolism is associated with many neurodegenerative disorders including Alzheimer's disease (AD. However, the lipid alterations underlying neurodegeneration and the connection between altered cholesterol levels and AD remains not fully understood. We recently showed that cholesterol accumulation in hippocampal neurons, induced by silencing Cyp46a1 gene expression, leads to neurodegeneration with a progressive neuronal loss associated with AD-like phenotype in wild-type mice. We used a targeted and non-targeted lipidomics approach by liquid chromatography coupled to high-resolution mass spectrometry to further characterize lipid modifications associated to neurodegeneration and cholesterol accumulation induced by CYP46A1 inhibition. Hippocampus lipidome of normal mice was profiled 4 weeks after cholesterol accumulation due to Cyp46a1 gene expression down-regulation at the onset of neurodegeneration. We showed that major membrane lipids, sphingolipids and specific enzymes involved in phosphatidylcholine and sphingolipid metabolism, were rapidly increased in the hippocampus of AAV-shCYP46A1 injected mice. This lipid accumulation was associated with alterations in the lysosomal cargoe, accumulation of phagolysosomes and impairment of endosome-lysosome trafficking. Altogether, we demonstrated that inhibition of cholesterol 24-hydroxylase, key enzyme of cholesterol metabolism leads to a complex dysregulation of lipid homeostasis. Our results contribute to dissect the potential role of lipids in severe neurodegenerative diseases like AD.

  10. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    Science.gov (United States)

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...

  12. Production of fungal lipids : kinetic modeling and process design

    NARCIS (Netherlands)

    Meeuwse, P.

    2011-01-01

    Finding alternatives for fossil fuels is currently urgent. One of the new processes in this field is the production of biodiesel from lipids accumulated by microorganisms. Some yeasts and fungi accumulate lipids when a component needed for growth, usually the N-source, is limiting while the C-source

  13. Production of fungal lipids : kinetic modeling and process design

    NARCIS (Netherlands)

    Meeuwse, P.

    2011-01-01

    Finding alternatives for fossil fuels is currently urgent. One of the new processes in this field is the production of biodiesel from lipids accumulated by microorganisms. Some yeasts and fungi accumulate lipids when a component needed for growth, usually the N-source, is limiting while the

  14. Lipid accumulation in human breast cancer cells injured by iron depletors.

    Science.gov (United States)

    De Bortoli, Maida; Taverna, Elena; Maffioli, Elisa; Casalini, Patrizia; Crisafi, Francesco; Kumar, Vikas; Caccia, Claudio; Polli, Dario; Tedeschi, Gabriella; Bongarzone, Italia

    2018-04-03

    Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial

  15. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    Science.gov (United States)

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  16. Small heterodimer partner (SHP deficiency protects myocardia from lipid accumulation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    Full Text Available The small heterodimer partner (SHP regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO mice compared to those of wild-type (WT mice (nominal p value < 0.05. Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093. After 12 weeks of high fat diet (HFD, SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.

  17. Production of fungal lipids : kinetic modeling and process design

    OpenAIRE

    Meeuwse, P.

    2011-01-01

    Finding alternatives for fossil fuels is currently urgent. One of the new processes in this field is the production of biodiesel from lipids accumulated by microorganisms. Some yeasts and fungi accumulate lipids when a component needed for growth, usually the N-source, is limiting while the C-source is in excess. These oleaginous yeasts and fungi were previously mainly used for unsaturated fatty acid production, but now also come into view for production of lipids as a source of biodiesel. Th...

  18. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  19. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  20. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  1. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  2. Coarse grained model for semiquantitative lipid simulations

    NARCIS (Netherlands)

    Marrink, SJ; de Vries, AH; Mark, AE

    2004-01-01

    This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of

  3. Cathelicidin suppresses lipid accumulation and hepatic steatosis by inhibition of the CD36 receptor

    Science.gov (United States)

    Tran, Deanna Hoang-Yen; Tran, Diana Hoang-Ngoc; Mattai, S. Anjani; Sallam, Tamer; Ortiz, Christina; Lee, Elaine C.; Robbins, Lori; Ho, Samantha; Lee, Jung Eun; Fisseha, Elizabeth; Shieh, Christine; Sideri, Aristea; Shih, David Q; Fleshner, Philip; McGovern, Dermot PB; Vu, Michelle; Hing, Tressia C.; Bakirtzi, Kyriaki; Cheng, Michelle; Su, Bowei; Law, Ivy; Karagiannides, Iordanes; Targan, Stephan R.; Gallo, Richard L.; Li, Zhaoping; Koon, Hon Wai

    2016-01-01

    Background and Objectives Obesity is a global epidemic which increases the risk of the metabolic syndrome. Cathelicidin (LL-37 and mCRAMP) is an antimicrobial peptide with an unknown role in obesity. We hypothesize that cathelicidin expression correlates with obesity and modulates fat mass and hepatic steatosis. Materials and Methods Male C57BL/6J mice were fed a high-fat diet. Streptozotocin was injected into mice to induce diabetes. Experimental groups were injected with cathelicidin and CD36 overexpressing lentiviruses. Human mesenteric fat adipocytes, mouse 3T3-L1 differentiated adipocytes, and human HepG2 hepatocytes were used in the in vitro experiments. Cathelicidin levels in non-diabetic, prediabetic, and Type II diabetic patients were measured by ELISA. Results Lentiviral cathelicidin overexpression reduced hepatic steatosis and decreased the fat mass of high-fat diet-treated diabetic mice. Cathelicidin overexpression reduced mesenteric fat and hepatic fatty acid translocase (CD36) expression that was reversed by lentiviral CD36 overexpression. Exposure of adipocytes and hepatocytes to cathelicidin significantly inhibited CD36 expression and reduced lipid accumulation. Serum cathelicidin protein levels were significantly increased in non-diabetic and prediabetic patients with obesity, compared to non-diabetic patients with normal body mass index (BMI) values. Prediabetic patients had lower serum cathelicidin protein levels than non-diabetic subjects. Conclusions Cathelicidin inhibits the CD36 fat receptor and lipid accumulation in adipocytes and hepatocytes, leading to a reduction of fat mass and hepatic steatosis in vivo. Circulating cathelicidin levels are associated with increased BMI. Our results demonstrate that cathelicidin modulates the development of obesity. PMID:27163748

  4. Apolipoprotein O expression in mouse liver enhances hepatic lipid accumulation by impairing mitochondrial function.

    Science.gov (United States)

    Tian, Feng; Wu, Chen-Lu; Yu, Bi-Lian; Liu, Ling; Hu, Jia-Rui

    2017-09-09

    Apolipoprotein O (ApoO) was recently observed in the cellular mitochondrial inner membrane, which plays a role in mitochondrial function and is associated with myocardiopathy. Empirical information on the physiological functions of apoO is therefore limited. In this study, we aimed to elucidate the effect of apoO on hepatic fatty acid metabolism. An adenoviral vector expressing hApoO was constructed and introduced into chow diet and high-fat diet induced mice and the L02 human hepatoma cell line. High levels of hApoO mRNA and protein were detected in the liver, and the expression of lipid metabolism genes was significantly altered compared with negative controls. The liver function indices (serum ALT and AST) were clearly elevated, and the ultrastructure of cellular mitochondria was distinctly altered in the liver after apoO overexpression. Further, mitochondrial membrane potential decreased with hApoO treatment in L02 cells. These results establish a link between apoO and lipid accumulation and could suggest a new pathway for regulating non-alcoholic fatty liver disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. H-rev107 Regulates Cytochrome P450 Reductase Activity and Increases Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Fu-Ming Tsai

    Full Text Available H-rev107 is a member of the HREV107 type II tumor suppressor gene family and acts as a phospholipase to catalyze the release of fatty acids from glycerophospholipid. H-rev107 has been shown to play an important role in fat metabolism in adipocytes through the PGE2/cAMP pathway, but the detailed molecular mechanism underlying H-rev107-mediated lipid degradation has not been studied. In this study, the interaction between H-rev107 and cytochrome P450 reductase (POR, which is involved in hepatic lipid content regulation, was determined by yeast two-hybrid screen and confirmed by using in vitro pull down assays and immunofluorescent staining. The expression of POR in H-rev107-expressing cells enhanced the H-rev107-mediated release of arachidonic acid. However, H-rev107 inhibited POR activity and relieved POR-mediated decreased triglyceride content in HtTA and HeLa cervical cells. The inhibitory effect of H-rev107 will be abolished when POR-expressing cells transfected with PLA2-lacking pH-rev107 or treated with PLA2 inhibitor. Silencing of H-rev107 using siRNA resulted in increased glycerol production and reversion of free fatty acid-mediated growth suppression in Huh7 hepatic cells. In summary, our results revealed that H-rev107 is also involved in lipid accumulation in liver cells through the POR pathway via its PLA2 activity.

  6. Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production.

    Science.gov (United States)

    Yao, Lina; Shen, Hui; Wang, Nan; Tatlay, Jaspaul; Li, Liang; Tan, Tin Wee; Lee, Yuan Kun

    2017-04-01

    Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl-CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl-CoA pool through branched-chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG-rich D. tertiolecta mutant from targeted screening. Herein, a three-step α loop-integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl-CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response.

    Directory of Open Access Journals (Sweden)

    William E Greineisen

    Full Text Available Lipid bodies (LB are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3 and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.

  8. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    Science.gov (United States)

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  9. Atomic force microscopy of model lipid membranes.

    Science.gov (United States)

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  10. ITRAQ-Based Proteomic Analysis of the Metabolic Mechanisms Behind Lipid Accumulation and Degradation during Peanut Seed Development and Postgermination.

    Science.gov (United States)

    Wang, Yun; Ma, Xingli; Zhang, Xingguo; He, Xiaoyan; Li, Hemin; Cui, Dangqun; Yin, Dongmei

    2016-12-02

    Peanut seeds have a high oil content making them an important oil crop. During development and germination, seeds undergo complex dynamic and physiological changes. Changes in lipid metabolism and underlying mechanisms during seed development have been studied extensively by DNA and RNA sequencing; however, there are few studies on dynamic changes of proteomics during peanut seed development and germination. In this study, proteomic analyses were carried out 20, 40, 60, and 80 days after pollination and 5, 10, 20, and 30 days after germination using isobaric tags for relative and absolute quantitation (iTRAQ) technology to determine the protein profiles of lipid dynamics during peanut seed development and postgermination. A total of 5712 of 8505 proteins were identified, quantified, and divided into 23 functional groups, the largest of which was metabolism-related. Further analyses of the proteins and their pathways revealed initiation of fatty acid accumulation at early stages after flowering, while lipid degradation occurred largely through the lipoxygenase-dependent pathway. Protein expression patterns related to lipid accumulation and degradation were also verified at transcript levels using quantitative real-time polymerase chain reaction. The proteome profiles determined here will significantly enrich our understanding of the process of lipid accumulation and degradation and the dynamic changes in metabolic networks during peanut development.

  11. Accumulation of bioactive lipids during storage of blood products is not cell but plasma derived and temperature dependent

    NARCIS (Netherlands)

    Vlaar, Alexander P. J.; Kulik, Wim; Nieuwland, Rienk; Peters, Charlotte P.; Tool, Anton T. J.; van Bruggen, Robin; Juffermans, Nicole P.; de Korte, Dirk

    2011-01-01

    Bioactive lipids (lysophosphatidylcholines [lysoPCs]) accumulating during storage of cell-containing blood products are thought to be causative in onset of transfusion-related acute lung injury through activation of neutrophils. LysoPCs are thought to be derived from cell membrane degradation

  12. The lipid accumulation product for the early prediction of gestational insulin resistance and glucose dysregulation.

    Science.gov (United States)

    Brisson, Diane; Perron, Patrice; Kahn, Henry S; Gaudet, Daniel; Bouchard, Luigi

    2013-04-01

    Recent insights linking insulin resistance and lipid overaccumulation suggest a novel approach for the early identification of women who may soon experience glucose dysregulation. Among women without a history of gestational diabetes, we tested the association between the lipid accumulation product (LAP) obtained in early pregnancy and glucose dysregulation or insulin resistance in the second trimester. A total of 180 white pregnant women of French-Canadian origin were included in this study. At 11–14 weeks' gestation, fasting insulin, glucose, C-peptide concentrations, and estimated insulin resistance (HOMA-IR) were obtained. The waist circumference (WC) and fasting triglycerides (TG) were measured to calculate LAP as(WC[cm] - 58) · TG[mmol/L]. At 24–28 weeks' gestation, glucose was measured 2 hours after a 75-g oral glucose challenge and other fasting variables were repeated. Among the nulliparous women tested at the end of the second trimester, fasting insulin, C-peptide, insulin resistance (HOMA-IR index), fasting glucose, and 2-hour glucose progressively increased ( p £ 0.002)according to their first-trimester LAP tertiles. Similar results were observed in parous women except for the glucose variables. The first-trimester LAP tended to show a stronger correlation to the second-trimester HOMAIR index (r = 0.56) than fasting triglyceride levels alone (r = 0.40) or waist circumference alone (r = 0.44) among nulliparous women. Similar associations were observed for parous women. Adjustment for body mass index weakened these associations, especially among parous women. An increased value of LAP at the beginning of a pregnancy could be associated with an increased risk of insulin resistance or hyperglycemia later in gestation.

  13. mTORC1 signalling mediates PI3K-dependent large lipid droplet accumulation in Drosophila ovarian nurse cells

    Directory of Open Access Journals (Sweden)

    Lawrence B. Mensah

    2017-05-01

    Full Text Available Insulin and insulin-like growth factor signalling (IIS, which is primarily mediated by the PI3-kinase (PI3K/PTEN/Akt kinase signalling cassette, is a highly evolutionarily conserved pathway involved in co-ordinating growth, development, ageing and nutrient homeostasis with dietary intake. It controls transcriptional regulators, in addition to promoting signalling by mechanistic target of rapamycin (mTOR complex 1 (mTORC1, which stimulates biosynthesis of proteins and other macromolecules, and drives organismal growth. Previous studies in nutrient-storing germline nurse cells of the Drosophila ovary showed that a cytoplasmic pool of activated phosphorylated Akt (pAkt controlled by Pten, an antagonist of IIS, cell-autonomously regulates accumulation of large lipid droplets in these cells at late stages of oogenesis. Here, we show that the large lipid droplet phenotype induced by Pten mutation is strongly suppressed when mTor function is removed. Furthermore, nurse cells lacking either Tsc1 or Tsc2, which negatively regulate mTORC1 activity, also accumulate large lipid droplets via a mechanism involving Rheb, the downstream G-protein target of TSC2, which positively regulates mTORC1. We conclude that elevated IIS/mTORC1 signalling is both necessary and sufficient to induce large lipid droplet formation in late-stage nurse cells, suggesting roles for this pathway in aspects of lipid droplet biogenesis, in addition to control of lipid metabolism.

  14. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1).

    Science.gov (United States)

    Huete-Ortega, María; Okurowska, Katarzyna; Kapoore, Rahul Vijay; Johnson, Matthew P; Gilmour, D James; Vaidyanathan, Seetharaman

    2018-01-01

    Microalgae accumulate lipids when exposed to stressful conditions such as nutrient limitation that can be used to generate biofuels. Nitrogen limitation or deprivation is a strategy widely employed to elicit this response. However, this strategy is associated with a reduction in the microalgal growth, leading to overall poor lipid productivities. Here, we investigated the combined effect of a reduced source of nitrogen (ammonium) and super-saturating light intensities on the growth and induction of lipid accumulation in two model but diverse microalgal species, Phaeodactylum tricornutum and Nannochloropsis oceanica . We hypothesized that the lower energy cost of assimilating ammonium would allow the organisms to use more reductant power for lipid biosynthesis without compromising growth and that this would be further stimulated by the effect of high light (1000 µmol m -2 s -1 ) stress. We studied the changes in growth and physiology of both species when grown in culture media that either contained nitrate or ammonium as the nitrogen source, and an additional medium that contained ammonium with tungsten in place of molybdenum and compared this with growth in media without nitrogen. We focused our investigation on the early stages of exposure to the treatments to correspond to events relevant to induction of lipid accumulation in these two species. At super-saturating light intensities, lipid productivity in P. tricornutum increased twofold when grown in ammonium compared to nitrogen free medium that increased further when tungsten was present in the medium in place of molybdenum. Conversely, N. oceanica growth and physiology was not compromised by the high light intensities used, and the use of ammonium had a negative effect on the lipid productivity, which was even more marked when tungsten was present. Whilst the use of ammonium and super-saturating light intensities in P. tricornutum was revealed to be a good strategy for increasing lipid biosynthesis, no

  15. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Angeliki Lyssimachou

    Full Text Available Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT, which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR and peroxisome proliferator-activated receptor gamma (PPARγ. In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  16. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  17. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C Marisa R; Teixeira, Catarina; Castro, L Filipe C; Santos, Miguel M

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  18. Adipocyte Differentiation-Related Protein and OXPAT in Rat and Human Skeletal Muscle: Involvement in Lipid Accumulation and Type 2 Diabetes Mellitus

    NARCIS (Netherlands)

    Minnaard, R.; Schrauwen, P.; Schaart, G.; Jorgensen, J.A.; Lenaers, E.; Mensink, M.R.; Hesselink, M.K.C.

    2009-01-01

    Setting: A disordered lipid metabolism is implicated in the development of skeletal muscle insulin resistance. Lipid droplet proteins of the PAT [perilipin, adipocyte differentiation-related protein (ADRP), and TIP47] family have been shown to regulate lipid accumulation and intracellular metabolism

  19. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    Science.gov (United States)

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  20. The relationship between lipid accumulation product, visceral adiposity index and high-sensitivity C-reactive protein in healthy adults

    Directory of Open Access Journals (Sweden)

    Yan ZHANG

    2013-03-01

    Full Text Available Objective  To investigate the correlation between lipid accumulation product (LAP, visceral adiposity index (VAI and high-sensitivity C-reactive protein (hs-CRP in adults, and explore whether to use such correlation as indications is superior to the traditional body fat index based on body mass index (BMI, waist circumference (WC, waist-hip ratio (WHR and waist-height ratio (WHtR. Methods  The present work was a cross-sectional study involving 501 healthy adults (321 males and 180 females from the community of Chongqing Municipality. Anthropometric indexes [height, weight, WC, hip circumference (HC], blood pressure (BP, fasting lipid profile and levels of fasting and post-load glucose, insulin and hs-CRP were measured, and BMI, WHR, WHtR, fasting insulin resistant homeostasis model assessment (HOMA-IR, LAP and VAI were calculated. The correlations between hs-CRP and other variables were analyzed. Results  Following the elevation of titer of the hs-CRP, LAP, VAI, BMI, WC, WHR, WHtR, BP, glucose level, HOMA-IR, insulin, triglyceride (TG, low-density lipoprotein cholesterol (LDL-C and apolipoprotein B (ApoB increased (P<0.05, while high-density lipoprotein cholesterol (HDL-C and apolipoprotein A1 (ApoA1 levels declined (P<0.0001. Pearson's correlation analysis demonstrated that hs-CRP was correlated with all variances (P<0.01 except for total cholesterol (TC (P=0.181 and LDL -C (P=0.325. According to forward stepwise multiple regression analysis with hs-CRP as the dependent variance, WC was the only variance entering the regression model. Conclusion  LAP, VAI levels are correlated with hs-CRP level but not the major determinant factors of hs-CRP. WC is stronger than other variances in the association with hs-CRP in adults, and is still an independent predictor of inflammation.

  1. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    Science.gov (United States)

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  2. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation.

    Science.gov (United States)

    Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago; Ladiges, Warren; Rabinovitch, Peter S; Jurczak, Michael J; Choi, Cheol Soo; Shulman, Gerald I; Samuel, Varman T

    2017-08-01

    We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling. © 2017 by the American Diabetes Association.

  3. Finite element modeling of lipid bilayer membranes

    Science.gov (United States)

    Feng, Feng; Klug, William S.

    2006-12-01

    A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.

  4. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  5. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    Science.gov (United States)

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Rotavirus increases levels of lipidated LC3 supporting accumulation of infectious progeny virus without inducing autophagosome formation.

    Directory of Open Access Journals (Sweden)

    Francesca Arnoldi

    Full Text Available Replication of many RNA viruses benefits from subversion of the autophagic pathway through many different mechanisms. Rotavirus, the main etiologic agent of pediatric gastroenteritis worldwide, has been recently described to induce accumulation of autophagosomes as a mean for targeting viral proteins to the sites of viral replication. Here we show that the viral-induced increase of the lipidated form of LC3 does not correlate with an augmented formation of autophagosomes, as detected by immunofluorescence and electron microscopy. The LC3-II accumulation was found to be dependent on active rotavirus replication through the use of antigenically intact inactivated viral particles and of siRNAs targeting viral genes that are essential for viral replication. Silencing expression of LC3 or of Atg7, a protein involved in LC3 lipidation, resulted in a significant impairment of viral titers, indicating that these elements of the autophagic pathway are required at late stages of the viral cycle.

  7. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  8. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    and insulin sensitivity were assessed by treadmill running and euglycaemic-hyperinsulinaemic clamp, respectively, and muscle lipid metabolism was analysed by ex vivo assays in Stk25 transgenic and wild-type mice fed a high-fat diet. Lipid accumulation and mitochondrial function were also studied in rodent...... of liver steatosis, hepatic lipid metabolism and whole body glucose and insulin homeostasis. Here, we assessed the role of STK25 in control of ectopic fat storage and insulin responsiveness in skeletal muscle. METHODS: Skeletal muscle morphology was studied by histological examination, exercise performance...... and impaired mitochondrial function in rodent myoblasts overexpressing STK25, demonstrating an autonomous action for STK25 within cells. Global phosphoproteomic analysis revealed alterations in the total abundance and phosphorylation status of different target proteins located predominantly to mitochondria...

  9. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xueping Zhu

    2016-01-01

    Full Text Available Parenteral nutrition-associated liver disease (PNALD is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression.

  10. Reduction of lipid accumulation in white adipose tissues by Cassia tora (Leguminosae) seed extract is associated with AMPK activation.

    Science.gov (United States)

    Tzeng, Thing-Fong; Lu, Hung-Jen; Liou, Shorong-Shii; Chang, Chia Ju; Liu, I-Min

    2013-01-15

    Natural herbal medications may be one answer to the worldwide epidemic of obesity. This study examines the effects of Cassia seed ethanol extract (CSEE) upon lipid accumulation in white adipose tissue (WAT). CSEE exhibited a significant concentration-dependent decrease in the intracellular accumulation of trigycerides in 3T3-L1 adipocytes. After being fed a high-fat diet (HFD) for 2 weeks, rats were fed CSEE (100, 200 or 300 mg/kg) once daily for 8 weeks. CSEE caused dose-related reductions in body weight gain (as well as plasma lipid levels and epididymal WAT sizes in HFD-fed rats). CSEE enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and its primary downstream targeting enzyme, acetyl-CoA carboxylase, up-regulated gene expression of carnitine palmitoyl transferase 1, and down-regulated sterol regulatory element-binding protein 1 and fatty acid synthase protein levels in epididymal WAT of HFD-fed rats. CSEE could attenuate lipid accumulation in WAT via AMPK signaling pathway activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.

    Science.gov (United States)

    Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing

    2017-12-01

    Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.

  12. Aloin protects against chronic alcoholic liver injury via attenuating lipid accumulation, oxidative stress and inflammation in mice.

    Science.gov (United States)

    Cui, Yan; Ye, Qing; Wang, Heya; Li, Yingchao; Xia, Xiuhua; Yao, Weirong; Qian, He

    2014-12-01

    The present study was designed to investigate the protective effect of aloin against alcoholic liver disease in a chronic alcohol feeding mouse model. Mice were given alcohol twice a day by intragastric administration for 11 weeks (4.0, 4.7, 5.5 g/kg bw/day for the first 3 weeks respectively, 6.3 g/kg bw/day for the following 8 weeks). Aloin (10, 30 mg/kg bw) or vehicle was given by gavage to mice after each alcohol administration. Alcohol elevated the serum transaminases alanine aminotransferase, aspartate aminotransferase, total cholesterol and triglyceride levels which were significantly attenuated by the co-administration of aloin (p aloin significantly suppressed the alcohol-dependent induction of sterol regulatory element-binding protein-1c expression (p aloin supplementation significantly inhibited the alcohol-dependent elevation of malondialdehyde and cytochrome P4502E1 expression (p aloin (p aloin may represent a novel, protective strategy against chronic alcoholic liver injury by attenuating lipid accumulation, oxidative stress and LPS-induced inflammatory response.

  13. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jung Hwan [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, Yoo Jeong [Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongwon-gun, Chungbuk 363-951 (Korea, Republic of); Kim, Hyo Jung; Choi, Hyeonjin [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Yoonjeong; Seok, Jo Woon [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Jae-woo, E-mail: japol13@yuhs.ac [Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752 (Korea, Republic of); Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.

  14. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    International Nuclear Information System (INIS)

    Yu, Jung Hwan; Lee, Yoo Jeong; Kim, Hyo Jung; Choi, Hyeonjin; Choi, Yoonjeong; Seok, Jo Woon; Kim, Jae-woo

    2015-01-01

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator of mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans

  15. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  16. Building a multilevel modeling network for lipid processing systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri; Díaz Tovar, Carlos Axel; Hukkerikar, Amol

    2011-01-01

    and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFAC-CI model, development...

  17. β-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins

    Directory of Open Access Journals (Sweden)

    Khan Tayeba

    2004-11-01

    Full Text Available Abstract Background Recent studies suggest that hypercholesterolemia, an established risk factor for atherosclerosis, is also a risk factor for Alzheimer's disease. The myeloid scavenger receptor CD36 binds oxidized lipoproteins that accumulate with hypercholesterolemia and mediates their clearance from the circulation and peripheral tissues. Recently, we demonstrated that CD36 also binds fibrillar β-amyloid and initiates a signaling cascade that regulates microglial recruitment and activation. As increased lipoprotein oxidation and accumulation of lipid peroxidation products have been reported in Alzheimer's disease, we investigated whether β-amyloid altered oxidized lipoprotein clearance via CD36. Methods The availability of mice genetically deficient in class A (SRAI & II and class B (CD36 scavenger receptors has facilitated studies to discriminate their individual actions. Using primary microglia and macrophages, we assessed the impact of Aβ on: (a cholesterol ester accumulation by GC-MS and neutral lipid staining, (b binding, uptake and degradation of 125I-labeled oxidized lipoproteins via CD36, SR-A and CD36/SR-A-independent pathways, (c expression of SR-A and CD36. In addition, using mice with targeted deletions in essential kinases in the CD36-signaling cascade, we investigated whether Aβ-CD36 signaling altered metabolism of oxidized lipoproteins. Results In primary microglia and macrophages, Aβ inhibited binding, uptake and degradation of oxidized low density lipoprotein (oxLDL in a dose-dependent manner. While untreated cells accumulated abundant cholesterol ester in the presence of oxLDL, cells treated with Aβ were devoid of cholesterol ester. Pretreatment of cells with Aβ did not affect subsequent degradation of oxidized lipoproteins, indicating that lysosomal accumulation of Aβ did not disrupt this degradation pathway. Using mice with targeted deletions of the scavenger receptors, we demonstrated that Aβ inhibited oxidized

  18. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    Science.gov (United States)

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    accumulation by three different oleaginous yeasts. Single cell and in situ analyses allowed depicting and comparing the transition between growth and lipid accumulation occurring differently for the three different yeasts. These data provide novel information that can be exploited for screening the best cell factory, moving towards a sustainable microbial biodiesel production.

  19. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway

    DEFF Research Database (Denmark)

    Kase, E.T.; Wensaas, A.J.; Aas, V.

    2005-01-01

    Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism and are also involved in glucose metabolism. However, the functional role of LXRs in human skeletal muscle is at present unknown. This study demonstrates that chronic ligand activation of LXRs by a synthetic LXR....... Interestingly, in response to activation of LXRs, myotubes from patients with type 2 diabetes showed an elevated uptake and incorporation of palmitate into complex lipids but an absence of palmitate oxidation to CO(2). These results provide evidence for a functional role of LXRs in both lipid and glucose...

  20. FRACTAL MODEL OF DAMAGE ACCUMULATION IN SOLID BODES

    Directory of Open Access Journals (Sweden)

    Alim. Abed Al-Zobaede

    2014-01-01

    Full Text Available The paper considers a model of damage accumulation in parts of machines and structures which is based on a theory of fractals. Hidden process of destruction prior to the formation of macroscopic cracks is usually associated with the accumulation of micro-damages. Various models of damage accumulation and crack growth under the influence of power and thermal loads. However, models describing the accumulation process of micro-damages and their outgrowth into macro-crack are practically non-existent. Fractal structures with self-similarity are an adequate model of the fracture process. The MacDonald correlation function describing the medium structure allows to present the self-similarity of structures within a certain range of scales.The paper reviews models of damage accumulation near an opening in a composite medium and at layer boundaries. The Cantor model in a forward algorithm and a backward algorithm have been used in order to describe the model of damage accumulation. As it is known, the Cantor fractal (Cantor dust is obtained by using a recursive algorithm being applied to fracture mechanics can be regarded as a model of stepwise formation of dispersed micro-damages. The process of damage accumulation (latent destruction phase and its transition in the formation process of macro-cracks and their unification in a through-thickness crack can be described, for example, by the Paris' law.

  1. An accumulator model of semantic interference

    NARCIS (Netherlands)

    van Maanen, Leendert; van Rijn, Hedderik

    To explain latency effects in picture-word interference tasks, cognitive models need to account for both interference and stimulus onset asynchrony (SOA) effects. As opposed to most models of picture-word interference, which model the time course during the task in a ballistic manner, the RACE model

  2. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ian Smyth

    2008-09-01

    Full Text Available Harlequin Ichthyosis (HI is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.

  3. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases.

    Science.gov (United States)

    Tanaka, Ryusuke; Shigeta, Kazuhiro; Sugiura, Yoshimasa; Hatate, Hideo; Matsushita, Teruo

    2014-04-01

    Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29±5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79±25.25 to 1,184.40±60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r2=0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida.

  4. System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation

    Czech Academy of Sciences Publication Activity Database

    Valledor, Luis; Furuhashi, T.; Recuenco-Muňoz, L.; Wienkoop, S.; Weckwerth, W.

    2014-01-01

    Roč. 7, č. 171 (2014), s. 1-17 ISSN 1754-6834 Institutional support: RVO:67179843 Keywords : chlamydomonas reinhardtii * lipid accumulation * nitrogen Subject RIV: EI - Biotechnology ; Bionics Impact factor: 6.044, year: 2014

  5. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  6. Application of growth-phase based light-feeding strategies to simultaneously enhance Chlorella vulgaris growth and lipid accumulation.

    Science.gov (United States)

    Sun, Yahui; Liao, Qiang; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun; Fu, Jingwei; Li, Jun

    2018-05-01

    Considering the variations of optimal light intensity required by microalgae cells along with growth phases, growth-phase light-feeding strategies were proposed and verified in this paper, aiming at boosting microalgae lipid productivity from the perspective of light conditions optimization. Experimental results demonstrate that under an identical time-averaged light intensity, the light-feeding strategies characterized by stepwise incremental light intensities showed a positive effect on biomass and lipid accumulation. The lipid productivity (235.49 mg L -1  d -1 ) attained under light-feeding strategy V (time-averaged light intensity: 225 μmol m -2  s -1 ) was 52.38% higher over that obtained under a constant light intensity of 225 μmol m -2  s -1 . Subsequently, based on light-feeding strategy V, microalgae lipid productivity was further elevated to 312.92 mg L -1  d -1 employing a two-stage based light-feeding strategy V 560 (time-averaged light intensity: 360 μmol m -2  s -1 ), which was 79.63% higher relative to that achieved under a constant light intensity of 360 μmol m -2  s -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  8. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    Science.gov (United States)

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  10. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  11. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    International Nuclear Information System (INIS)

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC 50 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC 50 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13 C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata

  12. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C., E-mail: cdirusso2@unl.edu

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  13. Aortic lipid and 125I-albumin accumulation in streptozotocin-diabetic guinea pigs: prevention by insulin treatment

    International Nuclear Information System (INIS)

    Schlosser, M.J.; Bannon, A.W.; Verlangieri, A.J.

    1986-01-01

    Diabetes mellitus, a major risk factor of atherosclerosis, is associated with the aortic accumulation of macromolecules. The authors have examined this relationship in the streptozotocin (STZ)-diabetic guinea pig, a species (like man) unable to synthesize ascorbic acid and susceptible to atherosclerosis. Male Dunkin-Hartley guinea pigs received STZ (150 mg/kg, i.c.) or vehicle (control). After 5 days, insulin (10 U/kg/day) was given to half the STZ animals (STZ-INS0 while the remaining half (STZ-SAL) and controls received saline. 25 days later, animals were given 125 I-albumin (100 μCi/kg, i.a.). Activity was determined in plasma at 5 (C/sub p5), 15 and 30 minutes, and in the upper thoracic aorta after 30 minutes. Histopathological changes were evaluated in the lower aorta. Aortic albumin permeability defined as cpm/cm 2 /sec, cpm/cm 2 /sec/C/sub p5/, or cpm/C/sub p5//g tissue was significantly elevated in the STZ-SAL group compared to both STZ-INS and control groups; these latter two groups were not significantly different from each other. Oil-Red-O positive material (lipid) occurred at multifocal areas within the intima of the STZ-SAL animals only. This study demonstrates (1) an abnormal increase in aortic permeability to albumin, (2) histological evidence of early atherosclerotic lesions, and (3) that insulin treatment can prevent these angiopathies in this STZ-diabetic animal model

  14. N-Terminal Lipid Modification Is Required for the Stable Accumulation of CyanoQ in Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Andrea D Juneau

    Full Text Available The CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II, but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 to eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.

  15. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis

    DEFF Research Database (Denmark)

    Ma, Liqun; Zhong, Jian; Zhao, Zhigang

    2011-01-01

    Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not Apo...

  16. Lipid accumulation from pinewood pyrolysates by rhodosporidium diobovatum and chlorella vulgaris for biodiesel production

    NARCIS (Netherlands)

    Luque, L.; Orr, V.C.A.; Chen, S.; Westerhof, Roel Johannes Maria; Oudenhoven, Stijn; van Rossum, G.; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2016-01-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich

  17. 5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Directory of Open Access Journals (Sweden)

    Svetlana Dzitoyeva

    2013-01-01

    Full Text Available Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX activating protein (FLAP inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 μM olanzapine. A 5-day cotreatment with 10 μM MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 μM olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs. Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

  18. Lipid Processing Technology: Building a Multilevel Modeling Network

    DEFF Research Database (Denmark)

    Díaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Mukkerikar, Amol

    2011-01-01

    of a master parameter table; iii) development of a model library consisting of new and adopted process models of unit operations involved in lipid processing technologies, validation of the developed models using operating data collected from existing process plants, and application of validated models......The aim of this work is to present the development of a computer aided multilevel modeling network for the systematic design and analysis of processes employing lipid technologies. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling...... and a lipid-database of collected experimental data from industry and generated data from validated predictive property models, as well as modeling tools for fast adoption-analysis of property prediction models; ii) modeling of phase behavior of relevant lipid mixtures using the UNIFACCI model, development...

  19. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Monshupanee, T; Incharoensakdi, A

    2014-04-01

    Glycogen (GL) and lipids (LP) are efficient biofuel substrates, whereas polyhydroxybutyrate (PHB) is a potent biodegradable plastic. This study aimed to increase accumulation of these three compounds in Synechocystis sp. PCC 6803. Under autophototrophic growth, co-accumulation of the three compounds reached maximum level in a mid-stationary phase at 39·2% of dry weight (22·7% GL, 14·1% LP and 2·4% PHB). Nitrogen deprivation increased this to 61·5% (36·8% GL, 11·2% LP and 13·5% PHB), higher than that achieved by phosphorus, sulfur, iron or calcium deprivation. Combining nitrogen deprivation with 0·4% (w/v) glucose addition for heterophototrophic growth and optimizing the light intensity (200 μmol photons m(-2) s(-1) ) synergistically enhanced combined accumulation to 71·1% of biomass (41·3% GL, 16·7% LP and 13·1% PHB), a higher level than previously reported in Synechocystis. However, the maximum coproductivity of GL, LP and PHB (at 0·72 g l(-1) ) was obtained in the 12-day heterophototrophic culture without nitrogen deprivation. Accumulation of GL, LP and PHB was enhanced under both autophototrophic and heterophototrophic conditions by optimizations of nutrient and light supplies. This study provides a means for increasing co-production of potent bioenergy substrates and useful biomaterials in Synechocystis which may also be applicable to other cyanobacteria. © 2013 The Society for Applied Microbiology.

  20. Computer kinetic modelling of radionuclide accumulation in Marine organisms

    International Nuclear Information System (INIS)

    Quintella, H.M.; Santimateo, D.; Paschoa, A.S.

    1977-01-01

    Continuous System Modelling Program (CSMP) is used to simulate the first step of the kinetic of a radionuclide in a food chain by using the exponential model of accumulation from water-to-algae based on data found in the literature. The use of computer modelling as a tool for environmental studies is discussed as far as economical advantages and future applications are concerned

  1. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    Science.gov (United States)

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  2. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana.

    Directory of Open Access Journals (Sweden)

    Fabrizio Frontalini

    Full Text Available Heavy metals such as mercury (Hg pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.

  3. Cationic amphipathic peptides accumulate sialylated proteins and lipids in the plasma membrane of eukaryotic host cells

    OpenAIRE

    Weghuber, Julian; Aichinger, Michael C.; Brameshuber, Mario; Wieser, Stefan; Ruprecht, Verena; Plochberger, Birgit; Madl, Josef; Horner, Andreas; Reipert, Siegfried; Lohner, Karl; Henics, Tamas; Schuetz, Gerhard J

    2011-01-01

    Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In t...

  4. Effect of Nutrient Starvation under High Irradiance on Lipid and Starch Accumulation in Chlorella fusca (Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Jerez, C.G.; Malapascua, José R.; Sergejevová, Magda; Figueroa, Felix L.; Masojídek, Jiří

    2016-01-01

    Roč. 18, č. 1 (2016), s. 24-36 ISSN 1436-2228 R&D Projects: GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059; GA MŠk(CZ) EE2.3.20.0203 Institutional support: RVO:61388971 Keywords : Microalgae * Chlorella * Lipid Subject RIV: EE - Microbiology, Virology Impact factor: 2.748, year: 2016

  5. Unchanged mitochondrial phenotype, but accumulation of lipids in the myometrium in obese pregnant women

    DEFF Research Database (Denmark)

    Gam, Christiane Marie Bourgin Folke; Larsen, Lea Hüche; Mortensen, Ole Hartvig

    2017-01-01

    KEY POINTS: Obesity during pregnancy and childbirth is associated with labour dystocia leading to instrumental or operative delivery, but the underlying pathophysiological mechanisms remain unclear and insufficient uterine contractility has been suggested. This study examined whether reduced myom...... in obese women. In conclusion no indication of myometrial mitochondrial dysfunction in the isolated state was found, but the observed increase of lipid content might play a role in the pathophysiological mechanisms behind labour dystocia in obese women....

  6. Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations.

    Science.gov (United States)

    Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai

    2016-02-01

    It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    Science.gov (United States)

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation.

    Science.gov (United States)

    Zhang, Huaiyuan; Zhang, Luning; Chen, Haiqin; Chen, Yong Q; Ratledge, Colin; Song, Yuanda; Chen, Wei

    2013-12-01

    Malic enzyme (EC 1.1.1.40) converts L-malate to pyruvate and CO2 providing NADPH for metabolism especially for lipid biosynthesis in oleaginous microorganisms. However, its role in the oleaginous yeast, Yarrowia lipolytica, is unclear. We have cloned the malic enzyme gene (YALI0E18634g) from Y. lipolytica into pET28a, expressed it in Escherichia coli and purified the recombinant protein (YlME). YlME used NAD(+) as the primary cofactor. Km values for NAD(+) and NADP(+) were 0.63 and 3.9 mM, respectively. Citrate, isocitrate and α-ketoglutaric acid (>5 mM) were inhibitory while succinate (5-15 mM) increased NADP(+)- but not NAD(+)-dependent activity. To determine if fatty acid biosynthesis could be increased in Y. lipolytica by providing additional NADPH from an NADP(+)-dependent malic enzyme, the malic enzyme gene (mce2) from an oleaginous fungus, Mortierella alpina, was expressed in Y. lipolytica. No significant changes occurred in lipid content or fatty acid profiles suggesting that malic enzyme is not the main source of NADPH for lipid accumulation in Y. lipolytica.

  9. Cationic amphipathic peptides accumulate sialylated proteins and lipids in the plasma membrane of eukaryotic host cells.

    Science.gov (United States)

    Weghuber, Julian; Aichinger, Michael C; Brameshuber, Mario; Wieser, Stefan; Ruprecht, Verena; Plochberger, Birgit; Madl, Josef; Horner, Andreas; Reipert, Siegfried; Lohner, Karl; Henics, Tamás; Schütz, Gerhard J

    2011-10-01

    Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Monitoring lipid accumulation in the green microalga Botryococcus braunii with frequency-modulated stimulated Raman scattering

    Science.gov (United States)

    Wang, Chun-Chin; Chandrappa, Dayananda; Smirnoff, Nicholas; Moger, Julian

    2015-03-01

    The potential of microalgae as a source of renewable energy has received considerable interest because they can produce lipids (fatty acids and isoprenoids) that can be readily converted into biofuels. However, significant research in this area is required to increase yields to make this a viable renewable source of energy. An analytical tool that could provide quantitative in situ spectroscopic analysis of lipids synthesis in individual microalgae would significantly enhance our capability to understand the synthesis process at the cellular level and lead to the development of strategies for increasing yield. Stimulated Raman scattering (SRS) microscopy has great potential in this area however, the pump-probe signal from two-color two-photon absorption of pigments (chlorophyll and carotenoids) overwhelm the SRS signal and prevent its application. Clearly, the development of a background suppression technique is of significant value for this important research area. To overcome the limitation of SRS in pigmented specimens, we establish a frequency-modulated stimulated Raman scattering (FM-SRS) microscopy that eliminates the non-Raman background by rapidly toggling on-and-off the targeted Raman resonance. Moreover, we perform the background-free imaging and analysis of intracellular lipid droplets and extracellular hydrocarbons in a green microalga with FM-SRS microscopy. We believe that FM-SRS microscopy demonstrates the potential for many applications in pigmented cells and provides the opportunity for improved selective visualization of the chemical composition of algae and plants

  11. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium.

    Science.gov (United States)

    Bellou, S; Triantaphyllidou, I-E; Mizerakis, P; Aggelis, G

    2016-09-20

    Yarrowia lipolytica cultivated under double nitrogen and magnesium limitation, but not under single nitrogen or single magnesium limitation, produced 12.2g/l biomass containing 47.5% lipids, which corresponds to a lipid production 5.8g/l. These yields are the higher described in the literature for wild strains of Y. lipolytica. Transcription of ACL1 and ACL2, encoding for ATP-citrate lyase (ATP:CL) was observed even under non-oleaginous conditions but high activity of ATP:CL was only detected under oleaginous conditions induced by low or zero activity of NAD(+) dependent isocitrate dehydrogenase. The low activity of malic enzyme (ME), a NADPH donor in typical oleaginous microorganisms, indicated that ME may not be implicated in lipid biosynthesis in this yeast, and NADPH may be provided by the pentose phosphate pathway (PPP). These findings underline the essential role of magnesium in lipogenesis, which is currently quite unexplored. The presence of organic nitrogen in low concentrations during lipogenesis was also required, and this peculiarity was probably related with the PPP functioning, being the NADPH donor of lipogenic machinery in Y. lipolytica. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species

    DEFF Research Database (Denmark)

    Yao, Shuo; Brandt, Anders Bøving; Egsgaard, Helge

    2012-01-01

    Triacylglycerols, an energy storage compound in microalgae, are known to be accumulated after nitrogen starvation of microalgae cells. Microalgae could be of importance for future biodiesel production due to their fast growth rate and high oil content. In collections of temperature sensitive muta...

  13. p53-inducible DHRS3 Is an Endoplasmic Reticulum Protein Associated with Lipid Droplet Accumulation*

    OpenAIRE

    Deisenroth, Chad; Itahana, Yoko; Tollini, Laura; Jin, Aiwen; Zhang, Yanping

    2011-01-01

    The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasm...

  14. A model for estimating carbon accumulation in cork products

    Directory of Open Access Journals (Sweden)

    Ana C. Dias

    2014-08-01

    Full Text Available Aim of study: This study aims to develop a calculation model for estimating carbon accumulation in cork products, both whilst in use and when in landfills, and to apply the model to Portugal as an example.Area of study: The model is applicable worldwide and the case-study is Portugal.Material and methods: The model adopts a flux-data method based on a lifetime analysis and quantifies carbon accumulation in cork products according to three approaches that differ on how carbon stocks (or emissions are allocated to cork product consuming and producing countries. These approaches are: stock-change, production and atmospheric-flow. The effect on carbon balance of methane emissions from the decay of cork products in landfills is also evaluated.Main results: The model was applied to Portugal and the results show that carbon accumulation in cork products in the period between 1990 and 2010 varied between 24 and 92 Gg C year-1. The atmospheric-flow approach provided the highest carbon accumulation over the whole period due to the net export of carbon in cork products. The production approach ranked second because exported cork products were mainly manufactured from domestically produced cork. The net carbon balance in cork products was also a net carbon accumulation with all the approaches, ranging from 5 to 81 Gg C eq year-1.Research highlights: The developed model can be applied to other countries and may be a step forward to consider carbon accumulation in cork products in national greenhouse gas inventories, as well as in future climate agreements.Keywords: Atmospheric-flow approach; Greenhouse gas balance; Modelling; Production approach; Stock-change approach.

  15. Short Communication: Accumulation of Neutral Lipids in Liver and Aorta of Nef-Transgenic Mice

    OpenAIRE

    Pushkarsky, Tatiana; Shilov, Evgeny; Kruglova, Natalya; Naumann, Ronald; Brichacek, Beda; Jennelle, Lucas; Sviridov, Dmitri; Kruglov, Andrei; Nedospasov, Sergei A.; Bukrinsky, Michael

    2017-01-01

    HIV-infected individuals are at high risk of developing atherosclerosis and cardiovascular disease, in part, due to HIV-induced impairment of cholesterol metabolism. In vitro studies demonstrated that HIV-1 protein Nef inhibits activity of ABCA1, the main cellular cholesterol transporter, leading to cholesterol accumulation in macrophages and conversion of these cells into foam cells, characteristic for atherosclerosis. However, the mechanisms of Nef-mediated effects on cholesterol metabolism...

  16. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  17. Catechins and Caffeine Inhibit Fat Accumulation in Mice through the Improvement of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Chikako Sugiura

    2012-01-01

    Full Text Available To elucidate the inhibiting mechanisms of fat accumulation by catechins, caffeine, and epigallocatechin gallate (EGCG, ICR mice were fed diets containing either 0.3% catechins or 0.1% EGCG and/or 0.05% caffeine for 4 weeks. After the feeding, intraperitoneal adipose tissues weights were significantly lower in the caffeine, catechins + caffeine, and EGCG + caffeine groups compared to controls. Hepatic fatty acid synthase (FAS activity in the catechins + caffeine group was significantly lower, and the activities of acyl-CoA oxidase (ACO and carnitine palmitoyltransferase-II (CPT-II were significantly higher, compared to the control group. However, these activities were not observed in the other groups. FAS mRNA expression levels in the catechins + caffeine group were significantly lower than in the control group. ACO and CPT-II mRNA levels were not different among all of the treatment groups. These findings indicate that the inhibitory effects of fat accumulation via a combination of catechins, EGCG, or caffeine were stronger collectively than by either catechins, EGCG, or caffeine alone. Moreover, it was demonstrated that the combination of catechins and caffeine induced inhibition of fat accumulation by suppression of fatty acid synthesis and upregulation of the enzymatic activities involved in β-oxidation of fatty acid in the liver, but this result was not observed by combination of EGCG and caffeine.

  18. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    Science.gov (United States)

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  20. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    Science.gov (United States)

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  1. Evidence accumulation as a model for lexical selection.

    Science.gov (United States)

    Anders, R; Riès, S; van Maanen, L; Alario, F X

    2015-11-01

    We propose and demonstrate evidence accumulation as a plausible theoretical and/or empirical model for the lexical selection process of lexical retrieval. A number of current psycholinguistic theories consider lexical selection as a process related to selecting a lexical target from a number of alternatives, which each have varying activations (or signal supports), that are largely resultant of an initial stimulus recognition. We thoroughly present a case for how such a process may be theoretically explained by the evidence accumulation paradigm, and we demonstrate how this paradigm can be directly related or combined with conventional psycholinguistic theory and their simulatory instantiations (generally, neural network models). Then with a demonstrative application on a large new real data set, we establish how the empirical evidence accumulation approach is able to provide parameter results that are informative to leading psycholinguistic theory, and that motivate future theoretical development. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Replacing Fish Oil with Vegetable Oils in Salmon Feed Increases Hepatic Lipid Accumulation and Reduces Insulin Sensitivity in Mice

    DEFF Research Database (Denmark)

    Midtbø, Lisa Kolden

    Background: Due to a growing global aquaculture production, fish oil (FO) and fish meal (FM) are partly replaced with vegetable ingredients in aqua feed for Atlantic salmon. These replacements in the feed lead to an altered fatty acid composition in the salmon fillet. We aimed to investigate how......%) of FO with different vegetable oils (VOs); rape seed oil (WDRO), olive oil (WD-OO) or soybean oil (WD-SO). These diets were given to C57BL/6J mice, and mice had higher hepatic lipid accumulation and lower insulin sensitivity when given WD-SO compared with WD-FO. Mice given WD-SO had higher hepatic...... levels of diacylglycerol (DAG), ceramides and arachidonic acid (AA)-derived oxylipins compared with mice fed WD-FO. In addition, C57BL/6J mice were fed fish oil-enriched diets with different carbohydrate sources, and we observed that sucrose dose-dependently abrogate the antiobesity effect of fish oil...

  3. Exogenous glutamine increases lipid accumulation in developing seeds of castor bean (Ricinus communis L. cultured in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2015-01-01

    Full Text Available This report describes biomass production and compositional changes of developing castor seeds in response to change in the nitrogen resource (glutamine of the medium. During the early developmental period (24-36 days after pollination, oil was found to initially accumulate in the developing seeds. Carbohydrates and oil were inversely related after glutamine provision (35 mM, in the culture medium. [U-14C] sucrose labeling was used to investigate the effect of metabolic fluxes among different storage materials. Addition of glutamine led to a 7% increase of labeling in lipids and an inverse decrease of labeling in carbohydrates. It was postulated that changes in the glutamine concentration in the medium are likely to influence the partitioning of resources between the various storage products, especially carbohydrates and oil. These observations will contribute to a better understanding of assimilate partitioning in developing castor seeds and the development of molecular strategies to improve castor bean seed quality and plant breeding studies.

  4. Expression of apolipoprotein B in the kidney attenuates renal lipid accumulation

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Pedersen, Tanja Xenia; Bartels, Emil Daniel

    2010-01-01

    The ability to produce apolipoprotein (apo) B-containing lipoproteins enables hepatocytes, enterocytes, and cardiomyocytes to export triglycerides. In this study, we examined secretion of apoB-containing lipoproteins from mouse kidney and its putative impact on triglyceride accumulation in the tu......The ability to produce apolipoprotein (apo) B-containing lipoproteins enables hepatocytes, enterocytes, and cardiomyocytes to export triglycerides. In this study, we examined secretion of apoB-containing lipoproteins from mouse kidney and its putative impact on triglyceride accumulation...... in the tubular epithelium. Mouse kidney expressed both the apoB and microsomal triglyceride transfer protein genes, which permit lipoprotein formation. To examine de novo lipoprotein secretion, kidneys from human apoB-transgenic mice were minced and placed in medium with (35)S-amino acids. Upon sucrose gradient...... ultracentrifugation of the labeled medium, fractions were analyzed by apoB immunoprecipitation. (35)S-Labeled apoB100 was recovered in approximately 1.03-1.04 g/ml lipoproteins (i.e. similar to the density of plasma low density lipoproteins). Immunohistochemistry of kidney sections suggested that apoB mainly...

  5. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults.

    Science.gov (United States)

    Dai, Haijiang; Wang, Weijun; Chen, Ruifang; Chen, Zhiheng; Lu, Yao; Yuan, Hong

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD), recognized as the liver manifestation of metabolic syndrome, is highly prevalent in the general population. Recent studies suggest that lipid accumulation product is significantly associated with metabolic abnormalities. The aim of this study was to assess the accuracy of lipid accumulation product (LAP) as an effective screening tool for diagnosing NAFLD in the general population. A total of 40,459 subjects aged ≥18 years were enrolled in this cross-sectional study. LAP was calculated as [waist circumference (cm) - 65] × triglyceride concentration (mmol//L) in men and [waist circumference (cm) - 58] × triglyceride concentration (mmol/L) in women. Multiple logistic regression and receiver operating characteristic (ROC) analyses were performed. According to multiple logistic regression analyses, LAP was significantly associated with a higher prevalence and severity of NAFLD in both men and women. When assessed using ROC curve analyses, LAP exhibited high diagnostic accuracy for identifying NAFLD, and the areas under the curves (AUC) in men and women were 0.843 (95% CI 0.837, 0.849) and 0.887 (95% CI 0.882, 0.892), respectively. After further analyzed in different age groups, the diagnostic accuracy of LAP was found to be significantly better in younger age groups (aged 18-34 for men; aged 18-34 and 35-44 years for women) for both sexes. LAP is significantly associated with the presence and severity of NAFLD, and has a high diagnostic accuracy for identifying NAFLD in the general population. The diagnostic accuracy of LAP was especially high among younger age groups.

  6. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    Science.gov (United States)

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  7. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.

    Science.gov (United States)

    Hu, Xia; Zhou, Jiti; Liu, Guangfei; Gui, Bing

    2016-08-01

    As significant differences in cellular physiology, metabolic potential and genetics occur among strains with morphological similarity, the screening of appropriate microalgae species for effective CO2 fixation and biodiesel production is extremely critical. In this study, ten strains of Chlorella were cultivated in municipal wastewater influent (MWI) and their tolerance for MWI, CO2 fixation efficiency and lipid productivity were assessed. The results showed that the biomass concentrations of four strains (Chlorella vulgaris, Chlorella 64.01, Chlorella regularis var. minima and Chlorella sp.) were significantly higher than other strains. When the cultivation systems were aerated with 10% CO2, Chlorella sp. showed the highest CO2 fixation efficiency (35.51%), while the highest lipid accumulation (58.48%) was observed with C. vulgaris. Scanning electron microscopy images revealed that the cells of both Chlorella sp. and C. vulgaris kept their normal morphologies after 15day batch culture. These findings indicated that Chlorella sp. and C. vulgaris have fairly good tolerance for MWI, and moreover, Chlorella sp. was appropriate for CO2 fixation while C. vulgaris represented the highest potential for producing biodiesel. Copyright © 2016. Published by Elsevier B.V.

  8. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  9. Fish oil feeding is associated with an increased accumulation of dietary lipids in enterocytes: Results from an in vivo study in rats

    DEFF Research Database (Denmark)

    Larsen, L.F.; Marckmann, P.; Hansen, A.K.

    2003-01-01

    contents of enterocytes were determined by liquid scintillation counting. Two other groups of rats (2 x 6) fed the experimental diets were given an oral fat load and fasting and postprandial blood samples were taken. Results: The accumulation of H-3-lipids in enterocytes was higher in rats fed fish oil...... than in controls (area under the H-3-lipid time curve: 1041.3 versus 670.3 nmol oleic acid x min/mug DNA, P

  10. Modeling sludge accumulation rates in lined pit latrines in slum ...

    African Journals Online (AJOL)

    Modeling sludge accumulation rates in lined pit latrines in slum areas of Kampala City, Uganda. ... African Journal of Environmental Science and Technology ... methods such as open defecation and emptying into storm drainages are employed which consequently contribute to environmental and health-related challenges.

  11. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation.

    Science.gov (United States)

    Mock, Kaitlin; Lateef, Sundus; Benedito, Vagner A; Tou, Janet C

    2017-01-01

    High-fructose corn syrup-55 (HFCS-55) has been suggested to be more lipogenic than sucrose, which increases the risk for nonalcoholic fatty liver disease (NAFLD) and dyslipidemia. The study objectives were to determine the effects of drinking different sugar-sweetened solutions on hepatic gene expression in relation to liver fatty acid composition and risk of NAFLD. Female rats were randomly assigned (n=7 rats/group) to drink water or water sweetened with 13% (w/v) HFCS-55, sucrose or fructose for 8 weeks. Rats drinking HFCS-55 solution had the highest (P=.03) hepatic total lipid and triglyceride content and histological evidence of fat infiltration. Rats drinking HFCS-55 solution had the highest hepatic de novo lipogenesis indicated by the up-regulation of stearoyl-CoA desaturase-1 and the highest (Ptriglyceride-rich lipoprotein from the liver was increased as shown by up-regulation of gene expression of microsomal triglyceride transfer protein in rats drinking sucrose, but not HFCS-55 solution. The observed lipogenic effects were attributed to the slightly higher fructose content of HFCS-55 solution in the absence of differences in macronutrient and total caloric intake between rats drinking HFCS-55 and sucrose solution. Results from gene expression and fatty acid composition analysis showed that, in a hypercaloric state, some types of sugars are more detrimental to the liver. Based on these preclinical study results, excess consumption of caloric sweetened beverage, particularly HFCS-sweetened beverages, should be limited. Published by Elsevier Inc.

  12. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    OpenAIRE

    Jiqu Xu; Shuang Rong; Hui Gao; Chang Chen; Wei Yang; Qianchun Deng; Qingde Huang; Lingyun Xiao; Fenghong Huang

    2017-01-01

    Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO +...

  13. Diet-induced lipid accumulation in phospholipid transfer protein-deficient mice: its atherogenicity and potential mechanism[S

    Science.gov (United States)

    Yeang, Calvin; Qin, Shucun; Chen, Kailian; Wang, David Q-H.; Jiang, Xian-Cheng

    2010-01-01

    A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation. PMID:20543142

  14. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  15. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.

    Science.gov (United States)

    He, Bin; Yin, Chao; Gong, Yabin; Liu, Jie; Guo, Huiduo; Zhao, Ruqian

    2018-01-01

    Melatonin, the major pineal secretory product, has a significant impact on the female reproductive system. Recently, the beneficial effects of melatonin on mammalian oocyte maturation and embryonic development have drawn increased attention. However, the exact underlying mechanisms remain to be fully elucidated. This study demonstrates that supplementing melatonin to in vitro maturation (IVM) medium enhances IVM rate, lipid droplets (LDs) accumulation as well as triglyceride content in porcine oocytes. Decrease of mitochondrial membrane potential, mitochondrial respiratory chain complex IV activity as well as mitochondrial reactive oxygen species (mROS) content indicated that melatonin induced a decrease of mitochondrial activity. The copy number of mitochondrial DNA (mtDNA) which encodes essential subunits of oxidative phosphorylation (OXPHOS), was not affected by melatonin. However, the expression of mtDNA-encoded genes was significantly down-regulated after melatonin treatment. The DNA methyltransferase DNMT1, which regulates methylation and expression of mtDNA, was increased and translocated into the mitochondria in melatonin-treated oocytes. The inhibitory effect of melatonin on the expression of mtDNA was significantly prevented by simultaneous addition of DNMT1 inhibitor, which suggests that melatonin regulates the transcription of mtDNA through up-regulation of DNMT1 and mtDNA methylation. Increase of triglyceride contents after inhibition of OXPHOS indicated that mitochondrial quiescence is crucial for LDs accumulation in oocytes. Taken together, our results suggest that melatonin-induced reduction in mROS production and increase in IVM, and LDs accumulation in porcine oocytes is mediated by mitochondrial quiescence. © 2017 Wiley Periodicals, Inc.

  17. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation.

    Science.gov (United States)

    Sun, Jing; Cheng, Jun; Yang, Zongbo; Li, Ke; Zhou, Junhu; Cen, Kefa

    2015-10-01

    The pore structures and surface morphological characteristics of Nannochloropsis sp. cells with arsenic adsorption were initially investigated by N2-adsorption analysis and scanning electronic microscopy. Functional groups of cells were analysed by Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy. Total surface area of microalgal cells increased from 0.54 m(2)/g to 1.80 m(2)/g upon arsenic adsorption. The external cell surface area increased. More wrinkles and measles-like granules formed on the surfaces as a result of arsenic toxicity. Arsenic ions blocked cell pores and decreased the average pore diameter and total pore volume. Ether cross-linked structures in the algaenan layer of cell walls were disrupted as the percentage of C-O functional groups decreased. These functional groups underwent complexation reactions with arsenic ions. Accumulation of polyunsaturated fatty acids decreased because of oxidative stresses induced by arsenic. The increase in generation of short-chain saturated fatty acids was favourable for the production of quality biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate.

    Science.gov (United States)

    Reis, Cristiano E R; Zhang, Jianguo; Hu, Bo

    2014-09-01

    Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.

  19. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  20. A Mathematical Model of Neutral Lipid Content in terms of Initial Nitrogen Concentration and Validation in Coelastrum sp. HA-1 and Application in Chlorella sorokiniana

    Directory of Open Access Journals (Sweden)

    Zhenhua Yang

    2017-01-01

    Full Text Available Microalgae are considered to be a potential major biomass feedstock for biofuel due to their high lipid content. However, no correlation equations as a function of initial nitrogen concentration for lipid accumulation have been developed for simplicity to predict lipid production and optimize the lipid production process. In this study, a lipid accumulation model was developed with simple parameters based on the assumption protein synthesis shift to lipid synthesis by a linear function of nitrogen quota. The model predictions fitted well for the growth, lipid content, and nitrogen consumption of Coelastrum sp. HA-1 under various initial nitrogen concentrations. Then the model was applied successfully in Chlorella sorokiniana to predict the lipid content with different light intensities. The quantitative relationship between initial nitrogen concentrations and the final lipid content with sensitivity analysis of the model were also discussed. Based on the model results, the conversion efficiency from protein synthesis to lipid synthesis is higher and higher in microalgae metabolism process as nitrogen decreases; however, the carbohydrate composition content remains basically unchanged neither in HA-1 nor in C. sorokiniana.

  1. Multilevel modeling of damage accumulation processes in metals

    Science.gov (United States)

    Kurmoiartseva, K. A.; Trusov, P. V.; Kotelnikova, N. V.

    2017-12-01

    To predict the behavior of components and constructions it is necessary to develop the methods and mathematical models which take into account the self-organization of microstructural processes and the strain localization. The damage accumulation processes and the evolution of material properties during deformation are important to take into account. The heterogeneity of the process of damage accumulation is due to the appropriate physical mechanisms at the scale levels, which are lower than the macro-level. The purpose of this work is to develop a mathematical model for analyzing the behavior of polycrystalline materials that allows describing the damage accumulation processes. Fracture is the multistage and multiscale process of the build-up of micro- and mesodefects over the wide range of loading rates. The formation of microcracks by mechanisms is caused by the interactions of the dislocations of different slip systems, barriers, boundaries and the inclusions of the secondary phase. This paper provides the description of some of the most well-known models of crack nucleation and also suggests the structure of a mathematical model based on crystal plasticity and dislocation models of crack nucleation.

  2. [Job crisis and transformations in the new model of accumulation].

    Science.gov (United States)

    Zerda-Sarmiento, Alvaro

    2012-06-01

    The general and structural crisis capitalism is going through is the token of the difficulties accumulation model has been dealing with since 70's in developed countries. This model has been trying to settle down again on the basis of neoliberal principle and a new technical-economical paradigm. The new accumulation pattern has had a effect in employment sphere which have been made evident at all the elements that constitute work relationships. In Colombia, this model implementation has been partial and segmented. However, its consequences (and the long-term current crisis) have been evident in unemployment, precarious work, segmentation, informal work and restricted and private health insurance. Besides, financial accumulation makes labour profits flow at different levels. The economic model current government has aimed to implement leads to strengthening exports, so making population life conditions more difficult. In order to overcome the current state of affairs, the work sphere needs to become more creative. This creative approach should look for new schemes for expression and mobilization of work sphere's claims. This is supposed to be done by establishing a different economic model aimed to build a more inclusive future, with social justice.

  3. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Hatanaka Akimasa

    2011-07-01

    Full Text Available Abstract Background Studies have demonstrated the beneficial effect of palmitoleic acid (C16:1 n-7 on reducing muscle insulin resistance and preventing beta-cell apoptosis. However, the effect of palmitoleic acid on diabetes remains to be elucidated. The aim of this study was to examine the antidiabetic effect of palmitoleic acid in KK-Ay mice, a spontaneous model for studies of obese type 2 diabetes with low insulin sensitivity. Methods KK-Ay mice were orally administered vehicle, 300 mg/kg of palmitoleic acid, or 300 mg/kg of palmitic acid (C16:0 on a daily basis for 4 weeks. Results Palmitoleic acid reduced body weight increase, ameliorated the development of hyperglycemia and hypertriglyceridemia, and improved insulin sensitivity. In addition, hepatic characteristics were significantly affected, as weight of the liver and hepatic triglyceride levels were lower in the palmitoleic acid group when compared to the control (vehicle and palmitic acid groups. Oil red O staining clearly indicated reduced hepatic lipid accumulation in response to palmitoleic acid. Furthermore, palmitoleic acid down-regulated mRNA expressions of proinflammatory adipocytokine genes (TNFα and resistin in white adipose tissue and lipogenic genes (SREBP-1, FAS, and SCD-1 in liver. Conclusions These results suggest that palmitoleic acid improves hyperglycemia and hypertriglyceridemia by increasing insulin sensitivity, in part owing to suppressing proinflammatory gene expressions and improving hepatic lipid metabolism in diabetic mice.

  4. Effect of Exposure of Human Monocyte-Derived Macrophages to High, versus Normal, Glucose on Subsequent Lipid Accumulation from Glycated and Acetylated Low-Density Lipoproteins

    Directory of Open Access Journals (Sweden)

    Fatemeh Moheimani

    2011-01-01

    Full Text Available During atherosclerosis monocyte-derived macrophages accumulate cholesteryl esters from low-density lipoproteins (LDLs via lectin-like oxidised LDL receptor-1 (LOX-1 and class AI and AII (SR-AI, SR-AII and class B (SR-BI, CD36 scavenger receptors. Here we examined the hypothesis that hyperglycaemia may modulate receptor expression and hence lipid accumulation in macrophages. Human monocytes were matured into macrophages in 30 versus 5 mM glucose and receptor expression and lipid accumulation quantified. High glucose elevated LOX1 mRNA, but decreased SR-AI, SR-BI, LDLR, and CD36 mRNA. SR-BI and CD36 protein levels were decreased. Normo- and hyperglycaemic cells accumulated cholesteryl esters from modified LDL to a greater extent than control LDL, but total and individual cholesteryl ester accumulation was not affected by glucose levels. It is concluded that, whilst macrophage scavenger receptor mRNA and protein levels can be modulated by high glucose, these are not key factors in lipid accumulation by human macrophages under the conditions examined.

  5. Selective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids

    Directory of Open Access Journals (Sweden)

    Zehra Kahveci

    2014-03-01

    Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.

  6. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion.

    Science.gov (United States)

    Zhu, Shunni; Wang, Yajie; Xu, Jin; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-12-01

    The aim of this research was to study the effect of phosphorus supply on starch and lipid production under nitrogen starvation using Chlorella sp. as a model. High phosphate level had marginal effect on cell density but increased biomass growth. Massive phosphorus was assimilated quickly and mainly stored in the form of polyphosphate. The algal cells ceased phosphorus uptake when intracellular phosphorus reached a certain level. 5mM phosphate in the culture rendered a 16.7% decrease of starch synthesis and a 22.4% increase of lipid synthesis relative to low phosphate (0.17 mM). It is plausible that phosphate can regulate carbon partitioning between starch and lipid synthesis pathway by influencing ADP-glucose pyrophosphorylase activity. Moreover, high phosphate concentration enhanced the abundance of oleic acid, improving oil quality for biodiesel production. It is a promising cultivation strategy by integration of phosphorus removal from wastewater with biodiesel production for this alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ash accumulation effects using bench marked 0-D model

    International Nuclear Information System (INIS)

    Hu, S.C.; Guo, J.P.; Miley, G.H.

    1990-01-01

    Ash accumulation is a key issue relative to our ability to achieve D- 3 He ARIES III burn conditions. 1-1/2-d transport simulations using the BALDUR code have been used to examine the correlation between the global ash particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. The burn conditions for an ARIES-III plasma with various ash edge recycling coefficients are examined

  8. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets.

    Science.gov (United States)

    Iglesias, Nestor G; Mondotte, Juan A; Byk, Laura A; De Maio, Federico A; Samsa, Marcelo M; Alvarez, Cecilia; Gamarnik, Andrea V

    2015-09-01

    Dengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism. Here, we examined the process by which the viral capsid is transported from the endoplasmic reticulum (ER) membrane, where the protein is synthesized, to LDs. Using different methods of intervention, we found that the GBF1-Arf1/Arf4-COPI pathway is necessary for capsid transport to LDs, while the process is independent of both COPII components and Golgi integrity. The transport was sensitive to Brefeldin A, while a drug resistant form of GBF1 was sufficient to restore capsid subcellular distribution in infected cells. The mechanism by which LDs gain or lose proteins is still an open question. Our results support a model in which the virus uses a non-canonical function of the COPI system for capsid accumulation on LDs, providing new ideas for antiviral strategies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Lipid Processing Technology: Building a Multilevel Modeling Network

    DEFF Research Database (Denmark)

    Díaz Tovar, Carlos Axel; Mustaffa, Azizul Azri; Mukkerikar, Amol

    2011-01-01

    The aim of this work is to present the development of a computer aided multilevel modeling network for the systematic design and analysis of processes employing lipid technologies. This is achieved by decomposing the problem into four levels of modeling: i) pure component property modeling...

  10. Cell growth and lipid accumulation of a microalgal mutant Scenedesmus sp. Z-4 by combining light/dark cycle with temperature variation.

    Science.gov (United States)

    Ma, Chao; Zhang, Yan-Bo; Ho, Shih-Hsin; Xing, De-Feng; Ren, Nan-Qi; Liu, Bing-Feng

    2017-01-01

    The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under autotrophic conditions and little information is about the effects under mixotrophic cultivation. At the same time, many studies related to mixotrophic cultivation of microalgal strains, even at large scale, have been performed to obtain satisfactory biomass and lipid production. Therefore, it is necessary to investigate cellular metabolism under autotrophic and mixotrophic conditions at different light/dark cycles. Even though microalgal lipid production under optimal environmental factors has been reported by some researchers, the light/dark cycle and temperature are regarded as separate parameters in their studies. In practical cases, light/dark cycling and temperature variation during the day occur simultaneously. Therefore, studies about the combined effects of light/dark cycles and temperature variation on microalgal lipid production are of practical value, potentially providing significant guidelines for large-scale microalgal cultivation under natural conditions. In this work, cell growth and lipid accumulation of an oleaginous microalgal mutant, Scenedesmus sp. Z-4, were investigated at five light/dark cycles (0 h/24 h, 8 h/16 h, 12 h/12 h, 16 h/8 h, and 24 h/0 h) in batch culture. The results showed that the optimal light/dark cycle was 12 h/12 h, when maximum lipid productivity rates of 56.8 and 182.6 mg L -1  day -1 were obtained under autotrophic and mixotrophic cultivation, respectively. Poor microalgal growth and lipid accumulation appeared in the light/dark cycles of 0 h/24 h and 24 h/0 h under autotrophic condition. Prolonging the light duration was

  11. An exactly solvable, spatial model of mutation accumulation in cancer

    Science.gov (United States)

    Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej

    2016-12-01

    One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.

  12. Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells.

    Science.gov (United States)

    Zhang, Tianshun; Yamamoto, Norio; Ashida, Hitoshi

    2014-06-01

    Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease. 4-Hydroxyderricin (4HD), xanthoangelol (XAG), cardamonin (CAR) and flavokawain B (FKB) are chalcones that have exhibited various biological effects against obesity, inflammation, and diabetes; however, little is known about the inhibitory effects of these chalcones on fatty liver disease. In the present study, we investigated the ability of 4HD, XAG, CAR, and FKB to reduce lipid accumulation in hepatocytes. When HepG2 cells were treated with a mixture of fatty acids (FAs; palmitic acid : oleic acid = 1 : 2 ratio), significant lipid accumulation was observed. Under the same experimental conditions, addition of chalcones at 5 μM significantly suppressed the FA-induced lipid accumulation. We found that the expression of sterol regulatory element-binding protein-1 (SREBP-1), a key molecule involved in lipogenesis, was decreased in these chalcone-treated cells. We also found that these chalcones increased the expression of peroxisome proliferator-activated receptor α (PPARα), which is involved in FA oxidation. Moreover, these chalcones increased phosphorylation of AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), upstream regulators of SREBP-1 and PPARα. We confirmed that an AMPK inhibitor, compound C, reversed chalcone-induced changes in SREBP-1 and PPARα expression in the HepG2 cells. Collectively, we found that 4HD, XAG, CAR, and XAG attenuated lipid accumulation through activation of the LKB1/AMPK signaling pathway in HepG2 cells.

  13. Replacing Fish Oil with Vegetable Oils in Salmon Feed Increases Hepatic Lipid Accumulation and Reduces Insulin Sensitivity in Mice

    DEFF Research Database (Denmark)

    Midtbø, Lisa Kolden

    %) of FO with different vegetable oils (VOs); rape seed oil (WDRO), olive oil (WD-OO) or soybean oil (WD-SO). These diets were given to C57BL/6J mice, and mice had higher hepatic lipid accumulation and lower insulin sensitivity when given WD-SO compared with WD-FO. Mice given WD-SO had higher hepatic......Background: Due to a growing global aquaculture production, fish oil (FO) and fish meal (FM) are partly replaced with vegetable ingredients in aqua feed for Atlantic salmon. These replacements in the feed lead to an altered fatty acid composition in the salmon fillet. We aimed to investigate how...... levels of diacylglycerol (DAG), ceramides and arachidonic acid (AA)-derived oxylipins compared with mice fed WD-FO. In addition, C57BL/6J mice were fed fish oil-enriched diets with different carbohydrate sources, and we observed that sucrose dose-dependently abrogate the antiobesity effect of fish oil...

  14. Lipid accumulation product: a simple and accurate index for predicting metabolic syndrome in Taiwanese people aged 50 and over

    Directory of Open Access Journals (Sweden)

    Chiang Jui-Kun

    2012-09-01

    Full Text Available Abstract Background Lipid accumulation product (LAP has been advocated as a simple clinical indicator of metabolic syndrome (MS. However, no studies have evaluated the accuracy of LAP in predicting MS in Taiwanese adults. The aim of our investigation was to use LAP to predict MS in Taiwanese adults. Methods Taiwanese adults aged 50 years and over (n = 513 were recruited from a physical examination center at a regional hospital in southern Taiwan. MS was defined according to the MS criteria for Taiwanese people. LAP was calculated as (waist circumference [cm] − 65 × (triglyceride concentration [mM] for men, and (waist circumference [cm] − 58 × (triglyceride concentration [mM] for women. Simple logistic regression and receiver-operating characteristic (ROC analyses were conducted. Results The prevalence of MS was 19.5 and 21.5% for males and females, respectively. LAP showed the highest prediction accuracy among adiposity measures with an area under the ROC curve (AUC of 0.901. This was significantly higher than the adiposity measure of waist-to-height ratio (AUC = 0.813. Conclusions LAP was a simple and accurate predictor of MS in Taiwanese people aged 50 years and over. LAP had significantly higher predictability than other adiposity measures tested.

  15. Tert-butylhydroquinone reduces lipid accumulation in C57BL/6 mice with lower body weight gain.

    Science.gov (United States)

    Nam, Kung-Woo; Kim, Yong Hyun; Kwon, Hyun Jung; Rhee, Sang-Ki; Kim, Wan-Jong; Han, Man-Deuk

    2013-07-01

    tert-Butylhydroquinone (tBHQ) is a commonly used antioxidant additive that is approved for human use by both the Food and Agriculture Organization and the World Health Organization (FAO/WHO). In this study, we examined the effect of tBHQ on body weight gain and found that food supplementation with 0.001 % (w/w) tBHQ inhibited 61.4 % (P body weight gain in high-fat diet (HFD)-induced C57BL/6 mice, and the oral administration of tBHQ (1.5 mg/kg) reduced 47.5 % (P body weight gain in normal diet fed db/db mice. The HFD increased lipid deposit in adipocytes, but these were reduced significantly by tBHQ treatment in C57BL/6 mice. tBHQ supplementation significantly lowered the plasma triglyceride and total cholesterol, with reduced size of accumulated fat mass. The rate limiting enzyme of beta-oxidation (ACOX1) was significantly over-expressed in the liver with tBHQ treatment. These results indicate that tBHQ suppresses body weight gain in mice, possibly at least related to the up-regulation of ACOX1 gene expression.

  16. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won, E-mail: parksw@gnu.ac.kr

    2015-04-15

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  17. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    International Nuclear Information System (INIS)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won

    2015-01-01

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  18. Simultaneous effect of nitrate (NO3- concentration, carbon dioxide (CO2 supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Aarón Millán-Oropeza

    2015-03-01

    Full Text Available Biodiesel from microalgae is a promising technology. Nutrient limitation and the addition of CO2 are two strategies to increase lipid content in microalgae. There are two different types of nitrogen limitation, progressive and abrupt limitation. In this work, the simultaneous effect of initial nitrate concentration, addition of CO2, and nitrogen limitation on biomass, lipid, protein and carbohydrates accumulation were analyzed. An experimental design was established in which initial nitrogen concentration, culture time and CO2 aeration as independent numerical variables with three levels were considered. Nitrogen limitation was taken into account as a categorical independent variable. For the experimental design, all the experiments were performed with progressive nitrogen limitation. The dependent response variables were biomass, lipid production, carbohydrates and proteins. Subsequently, comparison of both types of limitation i.e. progressive and abrupt limitation, was performed. Nitrogen limitation in a progressive mode exerted a greater effect on lipid accumulation. Culture time, nitrogen limitation and the interaction of initial nitrate concentration with nitrogen limitation had higher influences on lipids and biomass production. The highest lipid production and productivity were at 582 mgL-1 (49.7 % lipid, dry weight basis and 41.5 mgL-1d-1, respectively; under the following conditions: 250 mgL-1 of initial nitrate concentration, CO2 supply of 4% (v/v, 12 d of culturing and 2 d in state of nitrogen starvation induced by progressive limitation. This work presents a novel way to perform simultaneous analysis of the effect of the initial concentration of nitrate, nitrogen limitation, and CO2 supply on growth and lipid production of Nannochloropsis oculata, with the aim to produce potential biofuels feedstock.

  19. Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production.

    Science.gov (United States)

    Rattanapoltee, Panida; Kaewkannetra, Pakawadee

    2014-07-01

    The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.

  20. Microporous device for local electric recordings on model lipid bilayers

    International Nuclear Information System (INIS)

    Kaufeld, Theresa; Schmidt, Christoph F; Steinem, Claudia

    2015-01-01

    A powerful approach for characterizing lipid membranes and embedded proteins is the reconstitution of model lipid bilayers. The extreme fragility of 5 nm thick bilayers is a challenge for device design and requires a trade off of stability against accessibility. We here present a microporous lab-on-chip device that allows us to form stable, solvent-free lipid bilayers from giant unilamellar vesicles (GUVs) in a geometry that provides a unique set of access possibilities. The device is constructed around a micro-fabricated silicon chip with clusters of 1 µm-diameter pores and provides optical access to the lipid bilayers for high-NA epifluorescence imaging. At the same time, solvent exchange is possible on both sides of the lipid bilayer. Complete coverage can be achieved with GUVs, so that voltages can be applied across the lipid bilayer and single-channel currents can be measured using external or integrated silver/silver chloride electrodes. We describe the micro-fabrication by standard cleanroom techniques and the characterization of the device by atomic force microscopy, scanning electron microscopy and impedance spectroscopy. In proof-of-concept experiments we demonstrate that the device is capable of low-noise, single-ion-channel recordings. (paper)

  1. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Science.gov (United States)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  2. Protein-lipid interactions in bilayer membranes: A lattice model

    Science.gov (United States)

    Pink, David A.; Chapman, Dennis

    1979-01-01

    A lattice model has been developed to study the effects of intrinsic membrane proteins upon the thermodynamic properties of a lipid bilayer membrane. We assume that only nearest-neighbor van der Waals and steric interactions are important and that the polar group interactions can be represented by effective pressure—area terms. Phase diagrams, the temperature T0, which locates the gel—fluid melting, the transition enthalpy, and correlations were calculated by mean field and cluster approximations. Average lipid chain areas and chain areas when the lipid is in a given protein environment were obtained. Proteins that have a “smooth” homogeneous surface (“cholesterol-like”) and those that have inhomogeneous surfaces or that bind lipids specifically were considered. We find that T0 can vary depending upon the interactions and that another peak can appear upon the shoulder of the main peak which reflects the melting of a eutectic mixture. The transition enthalpy decreases generally, as was found before, but when a second peak appears departures from this behavior reflect aspects of the eutectic mixture. We find that proteins have significant nonzero probabilities for being adjacent to one another so that no unbroken “annulus” of lipid necessarily exists around a protein. If T0 does not increase much, or decreases, with increasing c, then lipids adjacent to a protein cannot all be all-trans on the time scale (10-7 sec) of our system. Around a protein the lipid correlation depth is about one lipid layer, and this increases with c. Possible consequences of ignoring changes in polar group interactions due to clustering of proteins are discussed. PMID:286996

  3. Modelling a soft composite accumulator for human mobility assist devices.

    Science.gov (United States)

    Shaheen, Robert; Doumit, Marc

    2018-04-01

    Research in the field of human mobility assist devices, aiming to reduce the metabolic cost of daily activities, is seeing the benefits of the exclusive use of accumulators to store and release energy during the gait cycle. The Pneumatic Artificial Muscle, used in a passive state, has proven to be a superior choice for these devices when compared to its alternatives, however, challenges regarding muscle pressure dissipation and a limited elongation potential have been identified. A recently developed, novel Soft Composite material has been shown to experimentally replicate the distinctive mechanical behaviour of the Pneumatic Artificial Muscle, without the need for internal pressurization. This paper presents two separate constitutive models to provide a closer insight into the behaviour of these Soft Composite accumulators. Both models were derived from methods involving finite elasticity theory and employed either a structural strain energy function of Holzapfel, Gasser, and Ogden's type or a phenomenological strain energy function of Fung's type. Both models were in good agreement with the experimental data that were collected through a modified extension-inflation test and, therefore, provide a basis for further examination as a Soft Composite design model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats.

    Science.gov (United States)

    Xu, Jiqu; Rong, Shuang; Gao, Hui; Chen, Chang; Yang, Wei; Deng, Qianchun; Huang, Qingde; Xiao, Lingyun; Huang, Fenghong

    2017-03-13

    Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress.

  5. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Jiqu Xu

    2017-03-01

    Full Text Available Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD. Thus, we examined the effect of a combination of flaxseed oil (FO and astaxanthin (ASX on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX. Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress.

  6. Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Eun-Bin Kwon

    2018-01-01

    Full Text Available Zanthoxylum ailanthoides (ZA has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M could reduce oleic acid- (OA- induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.

  7. [Modeling of cotton boll maturation period and cottonseed biomass accumulation].

    Science.gov (United States)

    Li, Wen-Feng; Meng, Ya-Li; Zhao, Xin-Hua; Chen, Bing-Lin; Xu, Nai-Yin; Zhou, Zhi-Guo

    2009-04-01

    Field experiments with different maturity cotton cultivars and sowing dates were conducted at different sites to quantitatively study the effects of cultivar characteristics, weather conditions (air temperature and solar radiation), and crop management variable (N application rate) on the cotton boll maturation period and cottonseed biomass accumulation. The cotton boll maturation period was simulated by using the scale of physiological development time. Based on the hypothesis of sink-determined, the cottonseed biomass accumulation model was then developed. The subtending leaf N concentration of cotton boll was simulated with a semi-empirical equation, and used as the direct indicator of the N nutrition effect on cottonseed growth and development. The model was tested by independent field data obtained in the Yellow River Valley (Xuzhou and Anyang) and the lower reaches of Yangtze River Valley (Huaian) in 2005. The simulated values of boll maturation period showed reasonable agreement with observed values, with a root mean square error (RMSE) of 2.25 days for cultivar DSC-1, of 2.61 days for cultivar KC-1, and of 2.75 days for cultivar AC-33B. The RMSE of cottonseed dry mass prediction was 9.5 mg x seed(-1) for KC-1 and 8.2 mg x seed(-1) for AC-33B, indicating that the model had a good prediction precision.

  8. Sagunja-Tang Improves Lipid Related Disease in a Postmenopausal Rat Model and HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Hiroe Go

    2015-01-01

    Full Text Available The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. In in vivo study using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activity in vitro. These observations support the idea that Sagunja-tang is bioavailable both in vivo and in vitro and could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.

  9. Cheese consumption prevents fat accumulation in the liver and improves serum lipid parameters in rats fed a high-fat diet

    OpenAIRE

    Higurashi, Satoshi; Ogawa, Akihiro; Nara, Takayuki Y.; Kato, Ken; Kadooka, Yukio

    2016-01-01

    International audience; AbstractCheese consumption has been reported to reduce the risk of metabolic syndrome; however, the mechanisms by which cheese prevents these disorders are not fully understood. The purpose of this study was to examine the effects of cheese consumption on lipid accumulation in the liver as well as to evaluate various serum lipid parameters. Two groups (n = 7) of male Fischer-344 rats were fed the following high-fat diets for 9 weeks: AIN76-modified 20% fat diet contain...

  10. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity.

    Science.gov (United States)

    Fujiwara, Naoto; Nakagawa, Hayato; Enooku, Kenichiro; Kudo, Yotaro; Hayata, Yuki; Nakatsuka, Takuma; Tanaka, Yasuo; Tateishi, Ryosuke; Hikiba, Yohko; Misumi, Kento; Tanaka, Mariko; Hayashi, Akimasa; Shibahara, Junji; Fukayama, Masashi; Arita, Junichi; Hasegawa, Kiyoshi; Hirschfield, Hadassa; Hoshida, Yujin; Hirata, Yoshihiro; Otsuka, Motoyuki; Tateishi, Keisuke; Koike, Kazuhiko

    2018-02-06

    Metabolic reprogramming of tumour cells that allows for adaptation to their local environment is a hallmark of cancer. Interestingly, obesity-driven and non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) mouse models commonly exhibit strong steatosis in tumour cells as seen in human steatohepatitic HCC (SH-HCC), which may reflect a characteristic metabolic alteration. Non-tumour and HCC tissues obtained from diethylnitrosamine-injected mice fed either a normal or a high-fat diet (HFD) were subjected to comprehensive metabolome analysis, and the significance of obesity-mediated metabolic alteration in hepatocarcinogenesis was evaluated. The extensive accumulation of acylcarnitine species was seen in HCC tissues and in the serum of HFD-fed mice. A similar increase was found in the serum of patients with NASH-HCC. The accumulation of acylcarnitine could be attributed to the downregulation of carnitine palmitoyltransferase 2 (CPT2), which was also seen in human SH-HCC. CPT2 downregulation induced the suppression of fatty acid β-oxidation, which would account for the steatotic changes in HCC. CPT2 knockdown in HCC cells resulted in their resistance to lipotoxicity by inhibiting the Src-mediated JNK activation. Additionally, oleoylcarnitine enhanced sphere formation by HCC cells via STAT3 activation, suggesting that acylcarnitine accumulation was a surrogate marker of CPT2 downregulation and directly contributed to hepatocarcinogenesis. HFD feeding and carnitine supplementation synergistically enhanced HCC development accompanied by acylcarnitine accumulation in vivo. In obesity-driven and NASH-driven HCC, metabolic reprogramming mediated by the downregulation of CPT2 enables HCC cells to escape lipotoxicity and promotes hepatocarcinogenesis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  12. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  13. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    Directory of Open Access Journals (Sweden)

    Julian N Rosenberg

    Full Text Available While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM and heterotrophy in BBM supplemented with glucose (10 g L-1. Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1 d(-1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  14. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    Science.gov (United States)

    Rosenberg, Julian N; Kobayashi, Naoko; Barnes, Austin; Noel, Eric A; Betenbaugh, Michael J; Oyler, George A

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L-1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1) d(-1) to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  15. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  16. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  17. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  18. VLDL from Metabolic Syndrome Individuals Enhanced Lipid Accumulation in Atria with Association of Susceptibility to Atrial Fibrillation.

    Science.gov (United States)

    Lee, Hsiang-Chun; Lin, Hsin-Ting; Ke, Liang-Yin; Wei, Chi; Hsiao, Yi-Lin; Chu, Chih-Sheng; Lai, Wen-Ter; Shin, Shyi-Jang; Chen, Chu-Huang; Sheu, Sheng-Hsiung; Wu, Bin-Nan

    2016-01-20

    Metabolic syndrome (MetS) represents a cluster of metabolic derangements. Dyslipidemia is an important factor in MetS and is related to atrial fibrillation (AF). We hypothesized that very low density lipoproteins (VLDL) in MetS (MetS-VLDL) may induce atrial dilatation and vulnerability to AF. VLDL was therefore separated from normal (normal-VLDL) and MetS individuals. Wild type C57BL/6 male mice were divided into control, normal-VLDL (nVLDL), and MetS-VLDL (msVLDL) groups. VLDL (15 µg/g) and equivalent volumes of saline were injected via tail vein three times a week for six consecutive weeks. Cardiac chamber size and function were measured by echocardiography. MetS-VLDL significantly caused left atrial dilation (control, n = 10, 1.64 ± 0.23 mm; nVLDL, n = 7, 1.84 ± 0.13 mm; msVLDL, n = 10, 2.18 ± 0.24 mm; p < 0.0001) at week 6, associated with decreased ejection fraction (control, n = 10, 62.5% ± 7.7%, vs. msVLDL, n = 10, 52.9% ± 9.6%; p < 0.05). Isoproterenol-challenge experiment resulted in AF in young msVLDL mice. Unprovoked AF occurred only in elderly msVLDL mice. Immunohistochemistry showed excess lipid accumulation and apoptosis in msVLDL mice atria. These findings suggest a pivotal role of VLDL in AF pathogenesis for MetS individuals.

  19. Lipid accumulation product (LAP) as a criterion for the identification of the healthy obesity phenotype in postmenopausal women.

    Science.gov (United States)

    Lwow, Felicja; Jedrzejuk, Diana; Milewicz, Andrzej; Szmigiero, Leszek

    2016-09-01

    Obesity and its complications constitute a major health problem in postmenopausal women. The identification of the obesity phenotype, especially that of metabolically healthy obese (MHO) patients, is a necessary part of obesity treatment protocols. There are several methods to define MHO, but unfortunately, all of them are arbitrary and inconsistent. The aim of this work was to determine whether lipid accumulation product (LAP) could be used as a marker of the MHO phenotype in postmenopausal women. A sample of 345 Polish postmenopausal women aged 50-60years old participated in the study. Participants were classified as obese when their BMI was >27. Receiver operating characteristic curve analysis was performed to estimate the best cutoff for the LAP index value to identify postmenopausal women without metabolic syndrome components. We found that the best cutoff value was LAP ≤29.9, and this value was used to define MHO individuals. With this definition, the identification of MHO individuals could be made when both of the following criteria were met: LAP index ≤29.9 and no arterial hypertension (SBPwomen identified according to the above definition, were compared with those of MHO women identified by two other methods in the literature. These methods and our definition identified similar proportions of MHO women ranging from 11.6% to 16.9%. We found that MHO women identified by all of the definitions used in this study possessed a similar metabolic status, and they did not differ in anthropometric indices or body fat distribution measurements. We concluded that the combination of LAP estimation and arterial blood pressure measurement appear to constitute a useful method for identifying the MHO phenotype in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina

    International Nuclear Information System (INIS)

    Chen, Yimin; Tang, Xu; Kapoore, Rahul Vijay; Xu, Changan; Vaidyanathan, Seetharaman

    2015-01-01

    Highlights: • Two promising microalgal species for biofuel feedstock were studied and compared. • Harvest at different growth phases lead to different yields of biomass and lipids. • Deficiency of trace element or phosphorous enhanced lipid productivities. • Significant influence of nutrients on lipid profiles was only observed in N. salina. • Lipid profiles differed in the two species that can be explained biochemically. - Abstract: Microalgae have been proposed as carbon-neutral and sustainable fuel feedstock producers due to their fast growth and high lipid content. In this investigation, we examined the effect of different nutrient stresses on overall lipid productivities and physiology, in two microalgae species, namely Nannochloropsis salina and Dunaliella salina. For both the species in semi-continuous cultures, the dilution ratio was found to affect only the harvest period and not the biomass or lipid productivity. Harvest at different growth phases was influenced by the temporal nutrient status of the medium leading to different productivity of biomass and lipids. These two species also showed different cellular biochemistry and lipid metabolism in response to the different nutrient stresses. More efficient stimulators of lipid production than the commonly employed nitrogen limitation were identified, for e.g. deficiency of trace element. Significant influence of nutrient deficiency on lipid profiles was observed in N. salina, such as chain length and degree of unsaturation, with desirable characteristics for biodiesel production. The comparison of lipid profiles between these two species revealed phenomenal differences in some fatty acids, e.g. a higher level of γ-linolenic acid (C18:3n6) in D. salina and the exclusive presence of palmitoleic acid in N. salina. The biochemical composition with respect to the cellular function of the fatty acids is discussed with an attempt to better understand the differences in the lipid profiles.

  1. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  2. Isolation of thermo-tolerant and high lipid content green microalgae: oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus.

    Science.gov (United States)

    Pan, Yi-Ying; Wang, Suz-Ting; Chuang, Lu-Te; Chang, Yen-Wei; Chen, Ching-Nen Nathan

    2011-11-01

    Discoveries of new microalgae with thermo-tolerance, high growth rate, and high lipid content are crucial to algal biodiesel production in tropical and subtropical zones. Four new green microalgae were isolated in southern Taiwan. All four species are members of the genus Desmodesmus under the family Scenedesmaceae based on molecular and morphological analyses. Two of the four species survived at 45 °C for 24 h, with 5-13% of mortality rates caused by the heat. Total lipid contents of the two species reached over 50% in dry biomass under nitrogen starvation, and their triacylglycerols constituted around 75% of the total lipids. Thus the two species are good potential feedstocks for biodiesel production. Oil accumulation in the four species positively correlates with their photosystem II efficiencies during stress treatments (R2=0.90). This finding further supports that photosynthesis is essential for oil body formation under nitrogen starvation in green microalgae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs

    Directory of Open Access Journals (Sweden)

    Li Hong

    2011-07-01

    Full Text Available Abstract Background The role of renal lipoprotein lipase (LPL per se in kidney diseases is still controversial and obscure. The purpose of this study was to observe the preventive effects of Ibrolipim, a LPL activator, on lipid accumulation and LPL expression in the kidneys of minipigs fed a high-sucrose and high-fat diet (HSFD. Methods Male Chinese Bama minipigs were fed a control diet or HSFD with or without 0.1 g/kg/day Ibrolipim for 5 months. Body weight, plasma glucose, insulin, lipids, LPL activity, and urinary microalbumin were measured. Renal tissue was obtained for detecting LPL activity and contents of triglyceride and cholesterol, observing the renal lipid accumulation by Oil Red O staining, and examining the mRNA and protein expression of LPL by real time PCR, Western Blot and immunohistochemistry. Results Feeding HSFD to minipigs caused weight gain, hyperglycemia, hyperinsulinemia, hyperlipidemia and microalbuminuria. HSFD increased plasma LPL activity while it decreased the mRNA and protein expression and activity of LPL in the kidney. The increases in renal triglyceride and cholesterol contents were associated with the decrease in renal LPL activity of HSFD-fed minipigs. In contrast, supplementing Ibrolipim into HSFD lowered body weight, plasma glucose, insulin, triglyceride and urinary albumin concentrations while it increased plasma total cholesterol and HDL-C. Ibrolipim suppressed the renal accumulation of triglyceride and cholesterol, and stimulated the diet-induced down-regulation of LPL expression and activity in the kidney. Conclusions Ibrolipim exerts renoprotective and hypolipidemic effects via the increase in renal LPL activity and expression, and thus the increased expression and activity of renal LPL play a vital role in suppressing renal lipid accumulation and ameliorating proteinuria in diet-induced diabetic minipigs.

  4. ACCUMULATED DEFORMATION MODELING OF PERMANENT WAY BASED ON ENTROPY SYSTEM

    Directory of Open Access Journals (Sweden)

    D. M. Kurhan

    2015-07-01

    Full Text Available Purpose. The work provides a theoretical research about the possibility of using methods that determine the lifetime of a railway track not only in terms of total stresses, and accounting its structure and dynamic characteristics. The aim of these studies is creation the model of deformations accumulation for assessment of service life of a railway track taking into account these features. Methodology. To simulate a gradual change state during the operation (accumulation of deformations the railway track is presented as a system that consists of many particles of different materials collected in a coherent design. It is appropriate to speak not about the appearance of deformations of a certain size in a certain section of the track, and the probability of such event on the site. If to operate the probability of occurrence of deviations, comfortable state of the system is characterized by the number of breaks of the conditional internal connections. The same state of the system may correspond to different combinations of breaks. The more breaks, the more the number of options changes in the structure of the system appropriate to its current state. Such a process can be represented as a gradual transition from an ordered state to a chaotic one. To describe the characteristics of the system used the numerical value of the entropy. Findings. Its entropy is constantly increasing at system aging. The growth of entropy is expressed by changes in the internal energy of the system, which can be determined using mechanical work forces, which leads to deformation. This gives the opportunity to show quantitative indication of breaking the bonds in the system as a consequence of performing mechanical work. According to the results of theoretical research methods for estimation of the timing of life cycles of railway operation considering such factors as the structure of the flow of trains, construction of the permanent way, the movement of trains at high

  5. Etude de stratégies de culture de Dunaliella tertiolecta combinant haute densité cellulaire et accumulation de lipides en vue de produire du biodiesel

    Directory of Open Access Journals (Sweden)

    Massart, A.

    2010-01-01

    Full Text Available Study of culture strategies of Dunaliella tertiolecta combining high cell density and accumulation of lipids to produce biodiesel. Microalgae are photosynthetic organisms using light to capture CO2. Some species can accumulate, under specific growth conditions, carbon as lipids (triglycerides. This characteristic led the scientists to think about cultivating this microorganism to produce biodiesel. The following study is based on the cultivation of a 5 to 10 µm length green biflagellate microalgae, Dunaliella tertiolecta. Two objectives will be presented in parallel: first, the growth rate and then the oil content. An optimal design of experiment has been used to determine the influence of the concentration of different components in the medium as sodium chloride, nitrate and phosphate on the two responses. The fluorescence technique allows measurements of oil level within the microalgae. The experimental results show that increasing the growth leads to an oil level reduction. The sudden depletion (stress of an essential nutrient stops the growth but increase the lipids' storage. A nitrate stress allows lipid dry mass percentage of around 19%.

  6. Grateloupia lanceolata (Okamura) Kawaguchi, the edible red seaweed, inhibits lipid accumulation and reactive oxygen species production during differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2013-05-01

    Grateloupia lanceolata (Okamura) Kawaguchi is a red alga native to coastal areas of East Asia. The effect of a G. lanceolata extract on lipid accumulation and reactive oxygen species (ROS) production in 3T3-L1 cells was assessed by examining adipogenic transcription factors and ROS-regulating genes at the molecular level. An ethanol extract of G. lanceolata inhibited lipid accumulation and ROS production during adipogenesis. Treatment with the G. lanceolata extract lead to a reduction in the mRNA levels of the transcription factors, peroxisome proliferator-activated receptor-γ and CCAAT/ enhancer binding protein-α, and at the protein level for the target protein, adipocyte protein 2. ROS-producing nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 4 and NADPH-producing glucose-6-phosphate dehydrogenase mRNAs decreased following G. lanceolata extract treatment. In contrast, the mRNA level of ROS scavenging enzymes, including superoxide dismutase (SOD), glutathione peroxidase, and catalase increased in the extract-treated group. The increase in SOD1 (Cu/Zn-SOD) and 2 (Mn-SOD) proteins was correlated with their mRNA levels. Additionally, the G. lanceolata extract significantly enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes. Our results show that G. lanceolata extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  7. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits.

    Science.gov (United States)

    Simpson, Jeffrey P; Thrower, Nicholas; Ohlrogge, John B

    2016-09-01

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders.

    Science.gov (United States)

    Hebbar, Sarita; Khandelwal, Avinash; Jayashree, R; Hindle, Samantha J; Chiang, Yin Ning; Yew, Joanne Y; Sweeney, Sean T; Schwudke, Dominik

    2017-12-15

    Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD. © 2017 Hebbar et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Wei Xie

    Full Text Available Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27 has beneficial effects on lipid metabolism and inflammatory response. However, it has not been fully understood whether miR-27 affects the expression of LPL and subsequent development of atherosclerosis in apolipoprotein E knockout (apoE KO mice. To address these questions and its potential mechanisms, oxidized low-density lipoprotein (ox-LDL-treated THP-1 macrophages were transfected with the miR-27 mimics/inhibitors and apoE KO mice fed high-fat diet were given a tail vein injection with miR-27 agomir/antagomir, followed by exploring the potential roles of miR-27. MiR-27 agomir significantly down-regulated LPL expression in aorta and peritoneal macrophages by western blot and real-time PCR analyses. We performed LPL activity assay in the culture media and found that miR-27 reduced LPL activity. ELISA showed that miR-27 reduced inflammatory response as analyzed in vitro and in vivo experiments. Our results showed that miR-27 had an inhibitory effect on the levels of lipid both in plasma and in peritoneal macrophages of apoE KO mice as examined by HPLC. Consistently, miR-27 suppressed the expression of scavenger receptors associated with lipid uptake in ox-LDL-treated THP-1 macrophages. In addition, transfection with LPL siRNA inhibited the miR-27 inhibitor-induced lipid accumulation and proinflammatory cytokines secretion in ox-LDL-treated THP-1 macrophages. Finally, systemic treatment revealed that miR-27 decreased aortic plaque size and lipid content in apoE KO mice. The present results provide evidence that a novel antiatherogenic role of miR-27 was closely related to

  10. Lavatera critica, a green leafy vegetable, controls high fat diet induced hepatic lipid accumulation and oxidative stress through the regulation of lipogenesis and lipolysis genes.

    Science.gov (United States)

    Veeramani, Chinnadurai; Alsaif, Mohammed A; Al-Numair, Khalid S

    2017-12-01

    Lipid accumulation is the most vital risk factor for inducing nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. Thus, the development of novel drugs is urgently needed to control obesity related diseases. Here, we investigated the protective role of Lavatera critica (LC), a green vegetable, in male C57BL/6J mice fed with high fat (HF) diet for 10 weeks to induce hepatic lipid accumulation and oxidative cellular damage. After oral administration of chloroform (CFLC), ethyl acetate (EFLC), or methanol (MFLC) fractions of Lavatera critica to the HF group, EALC alone significantly reduced the activities of hepatic markers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST); moreover, the results showed that 50 mg/kg dose has the maximum activity. Thus, this active dose of EFLC was used for further analysis. Moreover, EFLC reduced the level of hepatic triglycerides (TG), total cholesterol (TC), free fatty acids (FFA), and prevented further increase in the body weight. Intriguingly, EFLC treatment also reversed the mRNA expression of fatty acid oxidative genes, such as peroxisome proliferator activated receptor-α (PPAR-α), carnitine palmitoyltransferase-1 (CPT-1), and acetyl-CoA carboxylase (ACO), and fatty acid synthesis genes such as fatty acid synthase (FAS), sterol-regulatory-element-binding protein-1c (SREBP-1c), and acetyl-CoA carboxylase (ACC). Furthermore, EFLC treatment also decreased the production of oxidative stress biomarkers, such as conjugated diene (CD), thiobarbituric acid reactive substances (TBARS), and lipid hydroperoxide (LOOH), and significantly enhanced the level of enzymatic antioxidants, such as glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), as well as non-enzymatic antioxidants, such as reduced glutathione (GSH), vitamin C, and vitamin E in the liver. Taken together, we conclude that EFLC has a protective effect against HF diet induced hepatic lipid accumulation and

  11. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    Science.gov (United States)

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  12. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice.

    Science.gov (United States)

    Sundaresan, Arjunan; Radhiga, Thangaiyan; Pugalendi, Kodukkur Viswanathan

    2014-10-15

    This study investigated the combined effect of ursolic acid (UA) and Rosiglitazone (RSG) on lipid regulatory genes in high fat diet (HFD)-fed mice. Male C57BL/6J mice were fed either normal diet or HFD for 10 weeks, after which animals in each dietary group were divided into following six groups, (normal diet, normal diet plus UA and RSG, HFD alone, HFD plus UA, HFD plus RSG, and HFD plus UA and RSG), for the next 5 weeks. UA (5mg/kg BW) and RSG (4mg/kg BW) were administered as suspensions directly into the stomach using a gastric tube. At the end of the study (106th day), their liver was analyzed for lipid content. RT-PCR and western blotting methods were used to analyze lipid regulatory genes. HFD-fed mice showed increased activities of hepatic marker enzymes (aspartate aminotransferase and alanine aminotransferase) in plasma and an increased concentration of total cholesterol, triglyceride and free fatty acid in liver. These results were confirmed by upregulated mRNA expression of lipogenic genes such as sterol-regulatory-element-binding protein-1c, fatty acid synthase and acetyl-CoA carboxylase and downregulated mRNA expression of fatty acid oxidative genes such as carnitine palmitoyltransferase-1, acetyl-CoA carboxylase and peroxisome proliferator activated receptor-α in HFD-fed mice. Combined treatment (UA/RSG) significantly reduced the hepatic marker enzyme activities and decreased the lipid accumulation in liver. Furthermore, combination treatment (UA/RSG) down-regulated lipogenic genes and upregulated fatty acid oxidative genes in HFD-fed mice. This study suggests that UA in combination with RSG reduced lipid accumulation in liver. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Granulation, control of bacterial contamination, and enhanced lipid accumulation by driving nutrient starvation in coupled wastewater treatment and Chlorella regularis cultivation.

    Science.gov (United States)

    Zhou, Dandan; Li, Yunbao; Yang, Yang; Wang, Yao; Zhang, Chaofan; Wang, Di

    2015-02-01

    Bacterial contamination and biomass harvesting are still challenges associated with coupling of microalgae and wastewater treatment technology. This study investigated aggregation, bacterial growth, lipid production, and pollutant removal during bacteria contaminated Chlorella regularis cultivation under nutrient starvation stress, by supposing the C/N/P ratios of the medium to 14/1.4/1 (MB₂.₅) and 44/1.4/1 (MB₄.₀), respectively. Granules of 500-650 μm were formed in the bacteria contaminated inoculum; however, purified C. regularis were generally suspended freely in the medium, indicating that bacterial presence was a prerequisite for granulation. Extracellular polymeric substance (EPS) analysis showed that polysaccharides were dominant in granules, while protein mainly distributed in the outer layer. Denaturing gradient gel electrophoresis (DGGE) results revealed Sphingobacteriales bacterium and Sphingobacterium sp. are vital organisms involved in the flocculation of microalgae, and nitrifiers (Stenotrophomonas maltophilia) could co-exist in the granular. Both EPS and DGGE results further supported that bacteria played key roles in granulation. C. regularis was always dominant and determined the total biomass concentration during co-cultivation, but bacterial growth was limited owing to nutrient deficiency. Starvation strategy also contributed to enhancement of lipid accumulation, as lipid content in MB₄.₀ with a greater C/N/P led to the greatest increase in the starvation period, and the maximum lipid productivity reached 0.057 g/(L·day). Chemical oxygen demand and nitrogen removal in MB₄.₀ reached 92 and 96%, respectively, after 3 days of cultivation. Thus, cultivation of microalgae in high C/N/P wastewater enabled simultaneous realization of biomass granulation, bacterial overgrowth limitation, enhanced lipid accumulation, and wastewater purification.

  14. Computer-Aided Modeling of Lipid Processing Technology

    DEFF Research Database (Denmark)

    Diaz Tovar, Carlos Axel

    2011-01-01

    increase along with growing interest in biofuels, the oleochemical industry faces in the upcoming years major challenges in terms of design and development of better products and more sustainable processes to make them. Computer-aided methods and tools for process synthesis, modeling and simulation...... are widely used for design, analysis, and optimization of processes in the chemical and petrochemical industries. These computer-aided tools have helped the chemical industry to evolve beyond commodities toward specialty chemicals and ‘consumer oriented chemicals based products’. Unfortunately...... to develop systematic computer-aided methods (property models) and tools (database) related to the prediction of the necessary physical properties suitable for design and analysis of processes employing lipid technologies. The methods and tools include: the development of a lipid-database (CAPEC...

  15. Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria.

    Science.gov (United States)

    Sakurai, Toshihiro; Aoki, Motohide; Ju, Xiaohui; Ueda, Tatsuya; Nakamura, Yasunori; Fujiwara, Shoko; Umemura, Tomonari; Tsuzuki, Mikio; Minoda, Ayumi

    2016-01-01

    The unicellular red alga Galdieria sulphuraria grows efficiently and produces a large amount of biomass in acidic conditions at high temperatures. It has great potential to produce biofuels and other beneficial compounds without becoming contaminated with other organisms. In G. sulphuraria, biomass measurements and glycogen and lipid analyses demonstrated that the amounts and compositions of glycogen and lipids differed when cells were grown under autotrophic, mixotrophic, and heterotrophic conditions. Maximum biomass production was obtained in the mixotrophic culture. High amounts of glycogen were obtained in the mixotrophic cultures, while the amounts of neutral lipids were similar between mixotrophic and heterotrophic cultures. The amounts of neutral lipids were highest in red algae, including thermophiles. Glycogen structure and fatty acids compositions largely depended on the growth conditions. Copyright © 2015. Published by Elsevier Ltd.

  16. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions

    Czech Academy of Sciences Publication Activity Database

    Takeshita, T.; Ota, M. S.; Yamazaki, T.; Hirata, A.; Zachleder, Vilém; Kawano, S.

    2014-01-01

    Roč. 158, č. 2 (2014), s. 127-134 ISSN 0960-8524 Institutional support: RVO:61388971 Keywords : Chlorella * alga * starch * lipids Subject RIV: EE - Microbiology, Virology Impact factor: 4.494, year: 2014

  17. The effect of simvastatin on lipid droplets accumulation in human embryonic kidney cells and pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Sveda, M.; Laubertová, L.; Varga, I.; Vítek, L.; Kolář, M.; Strnad, H.; Zelenka, Jaroslav; Boehmer, D.; Ruml, T.

    2013-01-01

    Roč. 12, AUG 21 (2013), s. 126 ISSN 1476-511X Institutional support: RVO:67985823 Keywords : simvastatin * lipid droplets * DNA microarray Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.310, year: 2013

  18. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    OpenAIRE

    Zhu, Xueping; Xiao, Zhihui; Xu, Yumin; Zhao, Xingli; Cheng, Ping; Cui, Ningxun; Cui, Mingling; Li, Jie; Zhu, Xiaoli

    2016-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE) are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE) are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER) and mitochondrial damage, ultimately resu...

  19. Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production.

    Science.gov (United States)

    Patel, Alok; Pravez, Mohammad; Deeba, Farha; Pruthi, Vikas; Singh, Rajesh P; Pruthi, Parul A

    2014-08-01

    Hemp seeds aqueous extract (HSAE) was used as cheap renewable feedstocks to grow novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 isolated from Himalayan permafrost soil. The yeast showed boosted triglyceride (TAG) accumulation in the lipid droplets (LDs) which were transesterified to biodiesel. The sonicated HSAE prepared lacked toxic inhibitors and showed enhanced total lipid content and lipid yield 55.56%, 8.39±0.57g/l in comparison to 41.92%, 6.2±0.8g/l from industrially used glucose synthetic medium, respectively. Supersized LDs (5.95±1.02μm) accumulated maximum TAG in sonicated HSAE grown cells were visualized by fluorescent BODIPY (505/515nm) stain. GC-MS analysis revealed unique longer carbon chain FAME profile containing Arachidic acid (C20:0) 5%, Behenic acid (C22:0) 9.7%, Heptacosanoic acid (C27:0) 14.98%, for the first time in this yeast when grown on industrially competent sonicated HSAE, showing more similarity to algal oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    Directory of Open Access Journals (Sweden)

    Chang-Feng Jin

    2013-01-01

    Full Text Available Eucommia ulmoides Oliv. (EU has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE on the carbon tetrachloride- (CCl4- induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH and increased malondialdehyde (MDA accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE.

  1. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    DEFF Research Database (Denmark)

    Vendelbo, M; Clasen, B F F; Treebak, Jonas Thue

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal....... This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation...... of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS...

  2. Dietary freshwater clam (Corbicula fluminea) extract suppresses accumulation of hepatic lipids and increases in serum cholesterol and aminotransferase activities induced by dietary chloretone in rats.

    Science.gov (United States)

    Chijimatsu, Takeshi; Umeki, Miki; Kobayashi, Satoru; Kataoka, Yutaro; Yamada, Koji; Oda, Hiroaki; Mochizuki, Satoshi

    2015-01-01

    We investigated the ameliorative effect of freshwater clam extract (FCE) on fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone. Furthermore, we examined the effects of major FCE components (fat and protein fractions) to determine the active components in FCE. Chloretone increased serum aminotransferase activities and led to hepatic lipid accumulation. Serum aminotransferase activities and hepatic lipid content were lower in rats fed total FCE or fat/protein fractions of FCE. Expression of fatty acid synthase and fatty acid desaturase genes was upregulated by chloretone. Total FCE and fat/protein fractions of FCE suppressed the increase in gene expression involved in fatty acid synthesis. Serum cholesterol levels increased twofold upon chloretone exposure. Total FCE or fat/protein fractions of FCE showed hypocholesterolemic effects in rats with hypercholesterolemia induced by chloretone. These suggest that FCE contains at least two active components against fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone.

  3. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease.

    Science.gov (United States)

    Lecommandeur, Emmanuelle; Baker, David; Cox, Timothy M; Nicholls, Andrew W; Griffin, Julian L

    2017-07-01

    Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Jennifer Popko

    Full Text Available Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646, because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7 accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS, but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3 and 22:6(n-3 in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.

  5. Lipid and moisture content modeling of amphidromous Dolly Varden using bioelectrical impedance analysis

    Science.gov (United States)

    Stolarski, J.T.; Margraf, F.J.; Carlson, J.G.; Sutton, T.M.

    2014-01-01

    The physiological well-being or condition of fish is most commonly estimated from aspects of individual morphology. However, these metrics may be only weakly correlated with nutritional reserves stored as lipid, the primary form of accumulated energy in fish. We constructed and evaluated bioelectrical impedance analysis (BIA) models as an alternative method of assessing condition in amphidromous Dolly Varden Salvelinus malma collected from nearshore estuarine and lotic habitats of the Alaskan Arctic. Data on electrical resistance and reactance were collected from the lateral and ventral surfaces of 192 fish, and whole-body percent lipid and moisture content were determined using standard laboratory methods. Significant inverse relationships between temperature and resistance and reactance prompted the standardization of these data to a constant temperature using corrective equations developed herein. No significant differences in resistance or reactance were detected among spawning and nonspawning females after accounting for covariates, suggesting that electrical pathways do not intersect the gonads. Best-fit BIA models incorporating electrical variables calculated from the lateral and ventral surfaces produced the strongest associations between observed and model-predicted estimates of proximate content. These models explained between 6% and 20% more of the variability in laboratory-derived estimates of proximate content than models developed from single-surface BIA data and 32% more than models containing only length and weight data. While additional research is required to address the potential effects of methodological variation, bioelectrical impedance analysis shows promise as a way to provide high-quality, minimally invasive estimates of Dolly Varden lipid or moisture content in the field with only small increases in handling time.

  6. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands – an Earth system model approach

    Directory of Open Access Journals (Sweden)

    R. J. Schuldt

    2013-03-01

    Full Text Available Since the Last Glacial Maximum, boreal wetlands have accumulated substantial amounts of peat, estimated at 180–621 Pg of carbon. Wetlands have significantly affected the atmospheric greenhouse gas composition in the past and will play a significant role in future changes of atmospheric CO2 and CH4 concentrations. In order to investigate those changes with an Earth system model, biogeochemical processes in boreal wetlands need to be accounted for. Thus, a model of peat accumulation and decay was developed and included in the land surface model JSBACH of the Max Planck Institute Earth System Model (MPI-ESM. Here we present the evaluation of model results from 6000 yr BP to the pre-industrial period. Over this period of time, 240 Pg of peat carbon accumulated in the model in the areas north of 40° N. Simulated peat accumulation rates agree well with those reported for boreal wetlands. The model simulates CH4 emissions of 49.3 Tg CH4 yr−1 for 6000 yr BP and 51.5 Tg CH4 yr−1 for pre-industrial times. This is within the range of estimates in the literature, which range from 32 to 112 Tg CH4 yr−1 for boreal wetlands. The modelled methane emission for the West Siberian Lowlands and Hudson Bay Lowlands agree well with observations. The rising trend of methane emissions over the last 6000 yr is in agreement with measurements of Antarctic and Greenland ice cores.

  7. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.

    Science.gov (United States)

    Hattersley, Kathryn J; Hein, Leanne K; Fuller, Maria

    2013-12-06

    Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    Science.gov (United States)

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri

    Czech Academy of Sciences Publication Activity Database

    Fernandes, B.; Teixeira, J.; Dragone, G.; Vicente, A. A.; Kawano, S.; Bišová, Kateřina; Přibyl, Pavel; Zachleder, Vilém; Vítová, Milada

    2013-01-01

    Roč. 144, SEP 2013 (2013), s. 268-274 ISSN 0960-8524 R&D Projects: GA MŠk LH12145; GA TA ČR TE01020080 Institutional support: RVO:61388971 ; RVO:67985939 Keywords : Lipids * Nutrient depletion * Nutrient replenishment Subject RIV: EE - Microbiology, Virology Impact factor: 5.039, year: 2013

  10. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  11. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts

    Czech Academy of Sciences Publication Activity Database

    Psahoulia, F.H.; Drosopoulos, K.G.; Doubravská, Lenka; Anděra, Ladislav; Pintzas, A.

    2007-01-01

    Roč. 6, č. 9 (2007), s. 2591-2599 ISSN 1535-7163 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : TRAIL * apoptosis * lipid rafts Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.800, year: 2007

  12. Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice.

    Science.gov (United States)

    Bakermans, Adrianus J; van Weeghel, Michel; Denis, Simone; Nicolay, Klaas; Prompers, Jeanine J; Houten, Sander M

    2013-11-01

    Elevation of long-chain acylcarnitine levels is a hallmark of long-chain mitochondrial β-oxidation (FAO) disorders, and can be accompanied by secondary carnitine deficiency. To restore free carnitine levels, and to increase myocardial export of long-chain fatty acyl-CoA esters, supplementation of L-carnitine in patients has been proposed. However, carnitine supplementation is controversial, because it may enhance the potentially lipotoxic buildup of long-chain acylcarnitines in the FAO-deficient heart. In this longitudinal study, we investigated the effects of carnitine supplementation in an animal model of long-chain FAO deficiency, the long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mouse. Cardiac size and function, and triglyceride (TG) levels were quantified using proton magnetic resonance imaging (MRI) and spectroscopy ((1)H-MRS) in LCAD KO and wild-type (WT) mice. Carnitine was supplemented orally for 4 weeks starting at 5 weeks of age. Non-supplemented animals served as controls. In vivo data were complemented with ex vivo biochemical assays. LCAD KO mice displayed cardiac hypertrophy and elevated levels of myocardial TG compared to WT mice. Carnitine supplementation lowered myocardial TG, normalizing myocardial TG levels in LCAD KO mice. Furthermore, carnitine supplementation did not affect cardiac performance and hypertrophy, or induce an accumulation of potentially toxic long-chain acylcarnitines in the LCAD KO heart. This study lends support to the proposed beneficial effect of carnitine supplementation alleviating toxicity by exporting acylcarnitines out of the FAO-deficient myocardium, rather than to the concern about a potentially detrimental effect of supplementation-induced production of lipotoxic long-chain acylcarnitines.

  13. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  14. BL153 Partially Prevents High-Fat Diet Induced Liver Damage Probably via Inhibition of Lipid Accumulation, Inflammation, and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available The present study was to investigate whether a magnolia extract, named BL153, can prevent obesity-induced liver damage and identify the possible protective mechanism. To this end, obese mice were induced by feeding with high fat diet (HFD, 60% kcal as fat and the age-matched control mice were fed with control diet (10% kcal as fat for 6 months. Simultaneously these mice were treated with or without BL153 daily at 3 dose levels (2.5, 5, and 10 mg/kg by gavage. HFD feeding significantly increased the body weight and the liver weight. Administration of BL153 significantly reduced the liver weight but without effects on body weight. As a critical step of the development of NAFLD, hepatic fibrosis was induced in the mice fed with HFD, shown by upregulating the expression of connective tissue growth factor and transforming growth factor beta 1, which were significantly attenuated by BL153 in a dose-dependent manner. Mechanism study revealed that BL153 significantly suppressed HFD induced hepatic lipid accumulation and oxidative stress and slightly prevented liver inflammation. These results suggest that HFD induced fibrosis in the liver can be prevented partially by BL153, probably due to reduction of hepatic lipid accumulation, inflammation and oxidative stress.

  15. Insulin-stimulated lipid accumulation is inhibited by ROS-scavenging chemicals, but not by the Drp1 inhibitor Mdivi-1.

    Science.gov (United States)

    Kim, Jung-Hak; Park, Sun-Ji; Kim, Bokyung; Choe, Young-Geun; Lee, Dong-Seok

    2017-01-01

    Adipocyte differentiation is regulated by intracellular reactive oxygen species (ROS) generation and mitochondrial fission and fusion processes. However, the correlation between intracellular ROS generation and mitochondrial remodeling during adipocyte differentiation is still unknown. Here, we investigated the effect on adipocyte differentiation of 3T3-L1 cells of intracellular ROS inhibition using N-acetyl cysteine (Nac) and Mito-TEMPO and of mitochondrial fission inhibition using Mdivi-1. Differentiated 3T3-L1 adipocytes displayed an increase in mitochondrial fission, ROS generation, and the expression of adipogenic and mitochondrial dynamics-related proteins. ROS scavenger (Nac or Mito-TEMPO) treatment inhibited ROS production, lipid accumulation, the expression of adipogenic and mitochondrial dynamics-related proteins, and mitochondrial fission during adipogenesis of 3T3-L1 cells. On the other hand, treatment with the mitochondrial fission inhibitor Mdivi-1 inhibited mitochondrial fission but did not inhibit ROS production, lipid accumulation, or the expression of adipogenic and mitochondrial dynamics-related proteins, with the exception of phosphorylated Drp1 (Ser616), in differentiated 3T3-L1 adipocytes. The inhibition of mitochondrial fission did not affect adipocyte differentiation, while intracellular ROS production decreased in parallel with inhibition of adipocyte differentiation. Therefore, our results indicated that ROS are an essential regulator of adipocyte differentiation in 3T3-L1 cells.

  16. The effect of simvastatin on lipid droplets accumulation in human embryonic kidney cells and pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Gbelcová, H.; Sveda, M.; Laubertová, L.; Varga, I.; Vítek, L.; Kolář, Michal; Strnad, Hynek; Zelenka, J.; Boehmer, D.; Ruml, T.

    2013-01-01

    Roč. 12, 21.8.2013 (2013), s. 126 ISSN 1476-511X R&D Projects: GA MZd(CZ) NT13112 Grant - others:GA MŠk(CZ) EE2.3.30.0060 Program:EE Institutional support: RVO:68378050 Keywords : simvastatin * lipid droplets * DNA microarray * Nile red * pancreatic cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.310, year: 2013

  17. A study on the relationship of arsenic accumulation with protein, lipid, ash and moisture contents in muscle of eight species of fish in Iran

    Directory of Open Access Journals (Sweden)

    A Askary Sary

    2012-11-01

    Full Text Available A comparative study was conducted to investigate a relationship between concentration of arsenic with protein, lipid, ash and moisture content in Cyprinus carpio, Oncorhynchus mykiss, Aristichthys nobilis, Hypophthalmichthys molitrix, Ctenopharyngodon idella, Scomberomorus commerson, Scomberomorus guttatus and Otolithes ruber. A total of 72 sample of common carp, Bighead carp, silver carp and grass carp fishing from Azadegan fish farming center, Ahvaz; Rainbow trout from Cheshme Dimeh and Scomberomorus commerson, Scomberomorus guttatus and Otolithes ruber caught with gill netfrom Hendijan. Wet-digestion method was performed prior to arsenic determination in the samples. The level of arsenic was measured by atomic absorption spectrophotometer. The results showed that concentration of arsenic in the muscle of fishes was 269.87 ± 20.96 µg/Kg. Moreover, levels of protein, lipid, ash and moisture in the samples were estimated at 19.67±0.78 g/100, 2.45±0.45 g/100, 1.49±0.23 g/100, 78±1.89 g/100, respectively. Results also showed a positive correlation between the accumulation of arsenic in muscle of fishes with levels of protein, lipid, ash and moisture (p

  18. Effects of organic carbon source and light-dark period on growth and lipid accumulation of Scenedesmus sp. AARL G022

    Directory of Open Access Journals (Sweden)

    Doungpen Dittamart

    2014-08-01

    Full Text Available The levels of different organic carbon supplements in a mixotrophic culture were optimised to enhance biomass and lipid accumulation in Scenedesmus sp. AARL G022. The supplement nutrients, viz. glucose, glycerol and sodium acetate, were compared with non-organic carbon supplement (photoautotrophic culture. The most suitable carbon source was found to be 0.05M glucose, giving a yield of 2.78 ± 0.86 g.L -1 of biomass and 233.68 ± 35.34 mg.L -1 of crude lipid. The highest yield of biomass (4.04 ± 0.36 g.L -1 was obtained from a light-dark cycle of 24:0 hr. The highest crude lipid yield of 396.35 ± 11.60 mg.L -1 was obtained from a light-dark cycle of 16:8 hr. The optimised condition for culturing Scenedesmus sp. AARL G022 is to cultivate it under a mixotrophic condition using 0.05M of glucose supplement with a light-dark cycle of 16:8 hr.

  19. 18F-fluorodeoxyglucose accumulation in the heart, brain and skeletal muscle of rats; the influence of time after injection, depressed lipid metabolism and glucose-insulin

    International Nuclear Information System (INIS)

    Kasalicky, J.; Konopkova, M.; Melichar, F.

    2001-01-01

    To study the effect of lipid depressing drugs on 18 FDG myocardial concentration. The changes of 18 FDG uptake in myocardium, brain and skeletal muscle of rats were compared as influenced by acipimox, tyloxapol and glucose with insulin. 5.55 MBq of 18 FDG were administered to Wistar rats. Control rats were killed 15, 30, 45 and 60 minutes following intravenous injection and the radioactivity concentration (cpm/g of tissue) in relation to injected cpm was determined in a well crystal adjusted to 511 KeV in order to check the time of maximal 18 FDG tissue uptake. The radioactivity in myocardium, skeletal muscle and brain in intact animals was compared with that of rats treated with tyloxapol (tritton WR 1339, 125 mg intravenously immediately before 18 FDG injection), acipimox (nicotinic acid derivative, 25 mg by stomach cannula 15 minutes before 18 FDG), or glucose with insulin (intravenous injection of 0.04 g and 0.04 UI immediately before 18 FDG). The animals were killed 45 minutes following 18 FDG injection. Tyloxapol and acipimox significantly elevated myocardial 18 FDG concentration (tyloxapol +37% and acipimox +48%), but the increase in 18 FDG concentration after glucose and insulin was slight and insignificant. The changes in skeletal muscle after lipid depressing agents were quite contrasting; the decrease in 18 FDG concentration was -74% after tyloxapol and -44% following acipimox administration. The accumulation of 18 FDG in brain was not influenced markedly by the drugs used or by glucose with insulin. The highest 18 FDG uptake in myocardium could be achieved by depressing the lipid metabolism and not by administration of glucose with insulin only. A marked increase in glucose accumulation in myocardium is not possible without previous shift from the utilisation of fatty acids. This finding is fully in agreement with present knowledge about energetic metabolism of myocardium. (author)

  20. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    Science.gov (United States)

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating.

  1. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System.

    Directory of Open Access Journals (Sweden)

    Shingo Iwasa

    Full Text Available Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1, is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins.

  2. NLRP3-MEDIATED RENAL LIPID ACCUMULATION OCCURS DURING EARLY DEVELOPMENT OF DIET-INDUCED CHRONIC KIDNEY DISEASE

    Directory of Open Access Journals (Sweden)

    PJ Bakker

    2012-06-01

    We propose a novel role for the immune receptor Nlrp3 in mediating renal cholesterol and phospholipid accumulation during the early development of Metsyn-driven CKD. Further research is conducted to investigate the therapeutic potential of Nlrp3 in early renal CKD development.

  3. Magnesium Reduces Hepatic Lipid Accumulation in Yellow Catfish (Pelteobagrus fulvidraco) and Modulates Lipogenesis and Lipolysis via PPARA, JAK-STAT, and AMPK Pathways in Hepatocytes.

    Science.gov (United States)

    Wei, Chuan-Chuan; Wu, Kun; Gao, Yan; Zhang, Li-Han; Li, Dan-Dan; Luo, Zhi

    2017-06-01

    Background: Magnesium influences hepatic lipid deposition in vertebrates, but the underlying mechanism is unknown. Objective: We used yellow catfish and their isolated hepatocytes to test the hypothesis that magnesium influences lipid deposition by modulating lipogenesis and lipolysis. Methods: Juvenile yellow catfish (mean ± SEM weight: 3.43 ± 0.02 g, 3 mo old, mixed sex) were fed a 0.14- (low), 0.87- (intermediate) or 2.11- (high) g Mg/kg diet for 56 d. Primary hepatocytes were incubated for 48 h in control or MgSO 4 -containing medium with or without 2-h pretreatment with an inhibitor (AG490, GW6471, or Compound C). Growth performance, cell viability, triglyceride (TG) concentrations, and expression of enzymes and genes involved in lipid metabolism were measured. Results: Compared with fish fed low magnesium, those fed intermediate or high magnesium had lower hepatic lipids (18%, 22%) and 6-phosphogluconate dehydrogenase (6PGD; 3.7%, 3.8%) and malic enzyme (ME; 35%, 48%) activities and greater mRNA levels of the lipolytic genes adipose triacylglyceride lipase ( atgl ; 82% and 1.7-fold) and peroxisome proliferator-activated receptor ( ppara ; 18% and 1.0-fold), respectively ( P magnesium were higher (24% to 3.1-fold, P magnesium. Compared with cells incubated with MgSO 4 alone, those incubated with MgSO 4 and pretreated with AG490, GW6471, or Compound C had greater TG concentrations (42%, 31%, or 56%), g6pd (98%, 59%, or 51%), 6pgd (68%, 73%, or 32%) mRNA expression, and activities of G6PD (35%, 45%, or 16%) and ME (1.5-fold, 1.3-fold, or 13%), and reduced upregulation (61%, 25%, or 45%) of the lipolytic gene, atgl ( P Magnesium reduced hepatic lipid accumulation in yellow catfish and the variation might be attributed to inhibited lipogenesis and increased lipolysis. PPARA, JAK-STAT, and AMPK pathways mediated the magnesium-induced changes in lipid deposition and metabolism. These results offer new insight into magnesium nutrition in vertebrates. © 2017

  4. Modeling Information Accumulation in Psychological Tests Using Item Response Times

    Science.gov (United States)

    Ranger, Jochen; Kuhn, Jörg-Tobias

    2015-01-01

    In this article, a latent trait model is proposed for the response times in psychological tests. The latent trait model is based on the linear transformation model and subsumes popular models from survival analysis, like the proportional hazards model and the proportional odds model. Core of the model is the assumption that an unspecified monotone…

  5. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Directory of Open Access Journals (Sweden)

    Strichartz Gary R

    2007-07-01

    Full Text Available Abstract Background Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene of β-hexosaminidase A (αβ and B (ββ. The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-, we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system. Results We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the Hexb+/- and Hexb-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of Hexb+/- and Hexb-/- mice showed normal myelin periods; however, Hexb-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides in brains of Hexb-/- mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the Hexb-/- mice (undetectable in Hexb+/-. Conclusion Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.

  6. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2013-02-01

    Some basidiomycetous yeast strains extracellularly produce cellobiose lipids (CLs), glycolipid biosurfactants which have strong fungicidal activity. The representative CL producer Ustilago maydis produces CLs together with the other glycolipids, mannosylerythritol lipids (MELs); the preference of the two glycolipids is affected considerably by the nitrogen source. To develop new CL producers, 12 MEL producers were cultured under the nitrogen-limited conditions. Pseudozyma aphidis and Pseudozyma. hubeiensis were characterized as new CL producers. CL production was induced on three strains, P. aphidis, Pseudozyma graminicola, and P. hubeiensis under these conditions. The putative homologous genes of U. maydis cyp1, which encodes a P450 monooxygenase, essential for CL biosynthesis, were partially amplified from their genomic DNA. The nucleotide sequences of the gene fragments from P. hubeiensis and P. aphidis shared identities with U. maydis cyp1 of 99% and 78%, respectively. Furthermore, all of the deduced translation products are tightly clustered in the phylogenic tree of the monooxygenase. These results suggest that the genes involved with CL biosynthesis must be widely distributed in the basidiomycetous fungi as well as the MEL biosynthesis genes, and thus, the genus Pseudozyma has great potential as a biosurfactant producer. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Enhancement of lipid productivity in oleaginous Colletotrichum fungus through genetic transformation using the yeast CtDGAT2b gene under model-optimized growth condition.

    Directory of Open Access Journals (Sweden)

    Prabuddha Dey

    Full Text Available Oleaginous fungi are of special interest among microorganisms for the production of lipid feedstocks as they can be cultured on a variety of substrates, particularly waste lingocellulosic materials, and few fungal strains are reported to accumulate inherently higher neutral lipid than bacteria or microalgae. Previously, we have characterized an endophytic filamentous fungus Colletotrichum sp. DM06 that can produce total lipid ranging from 34% to 49% of its dry cell weight (DCW upon growing with various carbon sources and nutrient-stress conditions. In the present study, we report on the genetic transformation of this fungal strain with the CtDGAT2b gene, which encodes for a catalytically efficient isozyme of type-2 diacylglycerol acyltransferase (DGAT from oleaginous yeast Candida troplicalis SY005. Besides the increase in size of lipid bodies, total lipid titer by the transformed Colletotrichum (lipid content ∼73% DCW was found to be ∼1.7-fold more than the wild type (lipid content ∼38% DCW due to functional activity of the CtDGAT2b transgene when grown under standard condition of growth without imposition of any nutrient-stress. Analysis of lipid fractionation revealed that the neutral lipid titer in transformants increased up to 1.8-, 1.6- and 1.5-fold compared to the wild type when grown under standard, nitrogen stress and phosphorus stress conditions, respectively. Lipid titer of transformed cells was further increased to 1.7-fold following model-based optimization of culture conditions. Taken together, ∼2.9-fold higher lipid titer was achieved in Colletotrichum fungus due to overexpression of a rate-limiting crucial enzyme of lipid biosynthesis coupled with prediction-based bioprocess optimization.

  8. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  9. Gender-specific contribution of cardiometabolic index and lipid accumulation product to left ventricular geometry change in general population of rural China.

    Science.gov (United States)

    Wang, Haoyu; Sun, Yingxian; Li, Zhao; Guo, Xiaofan; Chen, Shuang; Ye, Ning; Tian, Yichen; Zhang, Lijun

    2018-04-10

    Despite current interest in the unfavorable impact of cardiometabolic index (CMI) and lipid accumulation product (LAP) on diabetes and cardiovascular risk, information regarding the relation of CMI and LAP to left ventricular (LV) geometry has not been specifically addressed. We aimed to examine the hypothesis: (1) CMI and LAP represent an independent determinant of LV remodeling in general population of rural China; (2) there are gender differences in obesity-related alterations in terms of LV morphology. The sample for this cross-sectional analysis included 11,258 participants (mean age 53.9 years; 54.0% females) who underwent assessment of basic metabolic and anthropometric parameters in rural areas of northeast China. Comprehensive echocardiography-defined LV geometric pattern was determined according to left ventricular mass index and relative wall thickness. The prevalence rate of eccentric and concentric LV hypertrophy (LVH) presented a proportional increase with elevated quartiles of CMI and LAP in a dose-response manner (all P < 0.005). When CMI and LAP were entered as a continuous variable in multivariable adjusted model, we observed the independent effect of 1 SD increment in CMI and LAP with the probability of eccentric and concentric LVH, while this relationship was more pronounced in females than in males. Likewise, the odds ratio comparing the top versus bottom quartiles of CMI were 2.105 (95%CI:1.600-2.768) for eccentric LVH and 2.236 (95%CI:1.419-3.522) for concentric LVH in females. Males in the highest CMI quartile exhibited a nearly doubled (OR:1.724, 95%CI:1.287-2.311) and 1.523-fold (95%CI:1.003-2.313) greater risk of eccentric and concentric LVH, respectively. Increasing LAP entailed a higher possibility of eccentric LVH by a factor of 3.552 and 1.768 in females and males, respectively. In contrast to females, where LAP fourth quartile and concentric LVH were positively associated (OR:2.544, 95%CI:1.537-4.209), higher LAP did not

  10. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach

    Science.gov (United States)

    Buyukozturk, Fulden; Di Maio, Selena; Budil, David E.; Carrier, Rebecca L.

    2014-01-01

    Purpose To mechanistically study and model the effect of lipids, either from food or self-emulsifying drug delivery systems (SEDDS), on drug transport in the intestinal lumen. Methods Simultaneous lipid digestion, dissolution/release, and drug partitioning were experimentally studied and modeled for two dosing scenarios: solid drug with a food-associated lipid (soybean oil) and drug solubilized in a model SEDDS (soybean oil and Tween 80 at 1:1 ratio). Rate constants for digestion, permeability of emulsion droplets, and partition coefficients in micellar and oil phases were measured, and used to numerically solve the developed model. Results Strong influence of lipid digestion on drug release from SEDDS and solid drug dissolution into food-associated lipid emulsion were observed and predicted by the developed model. 90 minutes after introduction of SEDDS, there was 9% and 70% drug release in the absence and presence of digestion, respectively. However, overall drug dissolution in the presence of food-associated lipids occurred over a longer period than without digestion. Conclusion A systems-based mechanistic model incorporating simultaneous dynamic processes occurring upon dosing of drug with lipids enabled prediction of aqueous drug concentration profile. This model, once incorporated with a pharmacokinetic model considering processes of drug absorption and drug lymphatic transport in the presence of lipids, could be highly useful for quantitative prediction of impact of lipids on bioavailability of drugs. PMID:24234918

  11. Mathematical modeling of drug release from lipid dosage forms.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2011-10-10

    Lipid dosage forms provide an interesting potential for controlled drug delivery. In contrast to frequently used poly(ester) based devices for parenteral administration, they do not lead to acidification upon degradation and potential drug inactivation, especially in the case of protein drugs and other acid-labile active agents. The aim of this article is to give an overview on the current state of the art of mathematical modeling of drug release from this type of advanced drug delivery systems. Empirical and semi-empirical models are described as well as mechanistic theories, considering diffusional mass transport, potentially limited drug solubility and the leaching of other, water-soluble excipients into the surrounding bulk fluid. Various practical examples are given, including lipid microparticles, beads and implants, which can successfully be used to control the release of an incorporated drug during periods ranging from a few hours up to several years. The great benefit of mechanistic mathematical theories is the possibility to quantitatively predict the effects of different formulation parameters and device dimensions on the resulting drug release kinetics. Thus, in silico simulations can significantly speed up product optimization. This is particularly useful if long release periods (e.g., several months) are targeted, since experimental trial-and-error studies are highly time-consuming in these cases. In the future it would be highly desirable to combine mechanistic theories with the quantitative description of the drug fate in vivo, ideally including the pharmacodynamic efficacy of the treatments. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Raspberry Ketone Reduced Lipid Accumulation in 3T3-L1 Cells and Ovariectomy-Induced Obesity in Wistar Rats by Regulating Autophagy Mechanisms.

    Science.gov (United States)

    Leu, Sy-Ying; Chen, Yi-Chen; Tsai, Yung-Chieh; Hung, Yao-Wen; Hsu, Chih-Hsiung; Lee, Yen-Mei; Cheng, Pao-Yun

    2017-12-20

    This study aimed to determine the antiobesity effects of raspberry ketone (RK), one of the major aromatic compounds contained in raspberry, and its underlying mechanisms. During adipogenesis of 3T3-L1 cells, RK (300 μM) significantly reduced lipid accumulation and downregulated the expression of CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferation-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), and fatty acid synthase (FAS). RK also reduced the expression of light chain 3B (LC3B), autophagy-related protein 12 (Atg12), sirtuin 1 (SIRT1), and phosphorylated-tuberous sclerosis complex 2 (TSC2), whereas it increased the level of p62 and phosphorylated-mammalian target of rapamycin (mTOR). Daily administration of RK decreased the body weight (ovariectomy [Ovx] + RK, 352.6 ± 5 vs Ovx, 386 ± 5.8 g; P < 0.05), fat mass (Ovx + RK, 3.2 ± 0.05 vs Ovx, 5.0 ± 0.4 g; P < 0.05), and fat cell size (Ovx + RK, 6.4 ± 0.6 vs Ovx, 11.1 ± 0.7 × 10 3 μm 2 ; P < 0.05) in Ovx-induced obesity in rats. The expression of PPARγ, C/EBPα, FAS, and FABP4 was significantly reduced in the Ovx + RK group compared with that in the Ovx group. Similar patterns were observed in autophagy-related proteins and endoplasmic reticulum stress proteins. These results suggest that RK inhibited lipid accumulation by regulating autophagy in 3T3-L1 cells and Ovx-induced obese rats.

  13. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Directory of Open Access Journals (Sweden)

    Michael S Bono

    Full Text Available In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  15. Reduction of adipogenesis and lipid accumulation by Taraxacum officinale (Dandelion) extracts in 3T3L1 adipocytes: an in vitro study.

    Science.gov (United States)

    González-Castejón, Marta; García-Carrasco, Belén; Fernández-Dacosta, Raquel; Dávalos, Alberto; Rodriguez-Casado, Arantxa

    2014-05-01

    In this in vitro study, we have investigated the ability of Taraxacum officinale (dandelion) to inhibit adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. HPLC analysis of the three plant extracts used in this study-leaf and root extracts and a commercial root powder-identified caffeic and chlorogenic acids as the main phenolic constituents. Oil Red O staining and triglyceride levels analysis showed decreased lipid and triglyceride accumulation, respectively. Cytotoxicity was assessed with the MTT assay showing non-toxic effect among the concentrations tested. DNA microarray analysis showed that the extracts regulated the expression of a number of genes and long non-coding RNAs that play a major role in the control of adipogenesis. Taken together, our results indicate that the dandelion extracts used in this study may play a significant role during adipogenesis and lipid metabolism, and thus, supporting their therapeutic interest as potential candidates for the treatment of obesity. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    Directory of Open Access Journals (Sweden)

    Shunsuke Hirooka

    Full Text Available Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh under a nitrogen-depleted condition at low-pH (pH 3.0. These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  17. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  18. ON THE ISSUE OF "MEMORY" MARKOV MODEL OF DAMAGE ACCUMULATION

    Directory of Open Access Journals (Sweden)

    A. I. Lantuh-Lyaschenko

    2010-04-01

    Full Text Available This paper presents the application of a probabilistic approach for the modeling of service life of highway bridge elements. The focus of this paper is on the Markov stochastic deterioration models. These models can be used as effective tool for technical state assessments and prediction of residual resource of a structure. For the bridge maintenance purpose these models can give quantitative criteria of a reliability level, risk and prediction algorithms of the residual resource.

  19. Effects of long-term feeding of chitosan on postprandial lipid responses and lipid metabolism in a high-sucrose-diet-impaired glucose-tolerant rat model.

    Science.gov (United States)

    Liu, Shing-Hwa; He, Sih-Pin; Chiang, Meng-Tsan

    2012-05-02

    This study was designed to investigate the effects of long-term feeding of chitosan on postprandial lipid response and lipid metabolism in a high-sucrose (HS)-diet-impaired glucose-tolerant rat model. As the results, HS-diet-fed rats supplemented with 5 and 7% chitosan in diets for 9 weeks had lower postprandial plasma total cholesterol (TC) levels, but 7% chitosan in the diet had higher postprandial plasma triglyceride (TG) and TG-rich lipoprotein TG levels. Supplementation of chitosan significantly decreased the postprandial ratio of apolipoprotein B (apoB)48/apoB100 in TG-rich lipoprotein fractions of HS-diet-fed rats. Long-term supplementation of 5 and 7% chitosan in diets for 16 weeks had lower plasma TC, low-density lipoprotein cholesterol (LDL-C) + very low density lipoprotein cholesterol (VLDL-C), TC/high-density lipoprotein (HDL-C) ratio, leptin, and tumor necrosis factor-α (TNF-α) levels in HS-diet-fed rats. Moreover, it was noticed that the VLDL receptor (VLDLR) protein expression in skeletal muscles of HS-diet-fed rats was significantly decreased, which could be significantly reversed by supplementation of 5 and 7% chitosan. Rats supplemented with 7% chitosan in the diet significantly elevated the lipolysis rate and decreased the accumulation of TG in epididymal fat pads of HS-diet-fed rats. The plasma angiopoietin-like 4 (ANGPTL4) protein expression was not affected in HS-diet-fed rats, but it was significantly increased in 7% chitosan-supplemented HS-diet-fed rats. Taken together, these results indicate that supplementation of chitosan in the diet can improve the impairment of lipid metabolism in a HS-diet-fed rat model, but long-term high-dose chitosan feeding may enhance postprandial plasma TG and TG-rich lipoprotein TG levels in HS-diet-fed rats through an ANGPTL4-regulated pathway.

  20. Salicornia herbacea prevents weight gain and hepatic lipid accumulation in obese ICR mice fed a high-fat diet.

    Science.gov (United States)

    Pichiah, P B Tirupathi; Cha, Youn-Soo

    2015-12-01

    Foods that are rich in fat and or sodium chloride promote obesity and associated diseases, whereas intake of dietary fiber averts obesity development. Salicornia herbacea (SH) is a rich source of dietary fiber and high in sodium chloride; therefore, we investigated whether replacing common salt with SH in a high-fat diet could prevent obesity development. Mice were divided into five groups: group ND was fed a normal diet, group HD was fed a high-fat diet, group HD-NaCl was fed a high fat diet with sodium chloride 10 g kg(-1) , group HD-CL was fed a high-fat diet with cellulose 30 g kg(-1) and group HD-SH was fed a high-fat diet with SH powder 50 g kg(-1) . The amount of sodium chloride and cellulose added in the respective diet was equivalent to their amount in SH. Data from our study showed that, SH supplementation significantly decreased body weight gain, liver weight, hepatic triglyceride, serum leptin and insulin, along with the mRNA level of key lipid anabolic genes such as SREBP-1c, PPARγ and FAS compared to the HD group. The results of this study demonstrated that SH is a potential natural anti-obesity agent that can be used in place of sodium chloride. © 2014 Society of Chemical Industry.

  1. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    Science.gov (United States)

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modelling Accumulator Stripper Foil Heating for ESSNUSB Facility

    CERN Document Server

    Martini, Michel

    2015-01-01

    It is proposed to use the 2.0 GeV, 5 MW proton linac, 2.86 ms long pulses at 14 Hz of the European Spallation Source [1], [2] being built in Lund, Sweden to deliver, alternately with the spallation neutron production a very intense neutrino beam to enable the discovery of leptonic CP violation. To this end the linac would be upgraded to supply, in addition to the 2.86 ms long proton pulses at 14 Hz, four 0.72 ms H short pulses at 70 Hz for neutrino production. Because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production will need to be compressed to a few s with the aid of an accumulator ring. Charge exchange injection of an H- beam from the linac will be used, the linac delivering 1.1E15 H- per pulse. This paper is about stripping foil heating considerations, emphasizing the detailed evaluation of the foil temperature over the multiple ring re-fills

  4. A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation

    Energy Technology Data Exchange (ETDEWEB)

    Agosta, Cecile; Favier, Vincent [UJF-Grenoble 1 / CNRS, Laboratoire de Glaciologie et de Geophysique de l' Environnement UMR 5183, Saint Martin d' Heres (France); Genthon, Christophe; Gallee, Hubert; Krinner, Gerhard [CNRS / UJF-Grenoble 1, Laboratoire de Glaciologie et de Geophysique de l' Environnement UMR 5183, Saint Martin d' Heres (France); Lenaerts, Jan T.M.; Broeke, Michiel R. van den [Utrecht University, Institute for Marine and Atmospheric Research Utrecht (Netherlands)

    2012-01-15

    The GLACIOCLIM-SAMBA (GS) Antarctic accumulation monitoring network, which extends from the coast of Adelie Land to the Antarctic plateau, has been surveyed annually since 2004. The network includes a 156-km stake-line from the coast inland, along which accumulation shows high spatial and interannual variability with a mean value of 362 mm water equivalent a{sup -1}. In this paper, this accumulation is compared with older accumulation reports from between 1971 and 1991. The mean and annual standard deviation and the km-scale spatial pattern of accumulation were seen to be very similar in the older and more recent data. The data did not reveal any significant accumulation trend over the last 40 years. The ECMWF analysis-based forecasts (ERA-40 and ERA-Interim), a stretched-grid global general circulation model (LMDZ4) and three regional circulation models (PMM5, MAR and RACMO2), all with high resolution over Antarctica (27-125 km), were tested against the GS reports. They qualitatively reproduced the meso-scale spatial pattern of the annual-mean accumulation except MAR. MAR significantly underestimated mean accumulation, while LMDZ4 and RACMO2 overestimated it. ERA-40 and the regional models that use ERA-40 as lateral boundary condition qualitatively reproduced the chronology of interannual variability but underestimated the magnitude of interannual variations. Two widely used climatologies for Antarctic accumulation agreed well with the mean GS data. The model-based climatology was also able to reproduce the observed spatial pattern. These data thus provide new stringent constraints on models and other large-scale evaluations of the Antarctic accumulation. (orig.)

  5. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    NARCIS (Netherlands)

    Pera, H.; Kleijn, J.M.; Leermakers, F.A.M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and

  6. Predictive performances of lipid accumulation product vs. adiposity measures for cardiovascular diseases and all-cause mortality, 8.6-year follow-up: Tehran lipid and glucose study

    Directory of Open Access Journals (Sweden)

    Azizi Fereidoun

    2010-09-01

    Full Text Available Abstract Background The body mass index (BMI is the most commonly used marker for evaluating obesity related risks, however, central obesity measures have been proposed to be more informative. Lipid accumulation product (LAP is an alternative continuous index of lipid accumulation. We sought in this study to assess if LAP can outperform BMI, waist-to-height-ratio (WHtR, or waist-to-hip-ratio (WHpR in predicting incident cardiovascular disease (CVD or all-cause mortality. Results Among participants of Tehran Lipid and Glucose Study, 6,751 participants (2,964 men, aged ≥ 30 years, were followed for a median of 8.6 years. We observed 274 deaths (men: 168 and 447 CVD events (men: 257. Levels of common CVD risk factors significantly increased across LAP quartiles. Mortality rates did not differ by LAP quartiles. Among participants free of CVD at baseline [6331 (2,741 men], CVD incident rates per 1000 person increased in a stepwise fashion with increasing LAP quartile values in both men (from 6.9 to 17.0 and women (from 1.3 to 13.0, (Ps Among women, a 1-SD increment in log-LAP conferred a 41% increased risk for CVD (HR 1.41, 95% CIs 1.02-1.96. Among men, however, LAP was not observed to be independently associated with increased risk of CVD; except in a sub-group of men assigned to the lifestyle modification interventions, where, LAP predicted CVD risk. After adjustment with CVD risk factors LAP turned to be inversely associated with risk of all-cause mortality (HR, men 0.74, 95% CIs 0.61-0.90; women, 0.94 95% CIs 0.74-1.20. Among women, magnitude of increased risk of CVD due to LAP was not different from those of anthropometric measures. Among men, however, WHpR was observed to be more strongly associated with increased risk of CVD than was LAP. Among neither men nor women were the predictive performances (discrimination, calibration, goodness-of-fit of the LAP better than those of different anthropometric measures were. Conclusions If LAP is to be

  7. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  8. Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: Experiments and modeling.

    Science.gov (United States)

    Concas, Alessandro; Malavasi, Veronica; Costelli, Cristina; Fadda, Paolo; Pisu, Massimo; Cao, Giacomo

    2016-07-01

    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of Chlorella sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using the BIOCOIL photobioreactor operated in fed-batch mode. The experimental results, which show that a maximum growth rate of 0.52day(-1) and a lipid content equal to 25%wt can be achieved with the BIOICOIL, have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Finally, the fatty acid methyl esters obtained by trans-esterification of lipids extracted from C. sorokiniana, have been analyzed in view of the assessment of their usability for producing biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. IMPLEMENTATION AND VALIDATION OF A FULLY IMPLICIT ACCUMULATOR MODEL IN RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2016-01-01

    This paper presents the implementation and validation of an accumulator model in RELAP-7 under the framework of preconditioned Jacobian free Newton Krylov (JFNK) method, based on the similar model used in RELAP5. RELAP-7 is a new nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). RELAP-7 is a fully implicit system code. The JFNK and preconditioning methods used in RELAP-7 is briefly discussed. The slightly modified accumulator model is summarized for completeness. The implemented model was validated with LOFT L3-1 test and benchmarked with RELAP5 results. RELAP-7 and RELAP5 had almost identical results for the accumulator gas pressure and water level, although there were some minor difference in other parameters such as accumulator gas temperature and tank wall temperature. One advantage of the JFNK method is its easiness to maintain and modify models due to fully separation of numerical methods from physical models. It would be straightforward to extend the current RELAP-7 accumulator model to simulate the advanced accumulator design.

  10. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  11. Intake of farmed Atlantic salmon fed soybean oil increases insulin resistance and hepatic lipid accumulation in mice.

    Directory of Open Access Journals (Sweden)

    Lisa Kolden Midtbø

    Full Text Available BACKGROUND: To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L. are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs on development of insulin resistance and obesity in mice. METHODOLOGY/PRINCIPAL FINDINGS: Atlantic salmon were fed diets where FO was partly (80% replaced with three different VOs; rapeseed oil (RO, olive oil (OO or soy bean oil (SO. Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB and dichloro-diphenyl-tricloroethanes (DDT with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n-3 polyunsaturated fatty acid (PUFA content and increased n-6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA, exaggerated insulin resistance and increased accumulation of fat in the liver. CONCLUSION/SIGNIFICANCE: Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation.

  12. Modeling, Optimization, and Detailed Design of a Hydraulic Flywheel-Accumulator

    Science.gov (United States)

    Strohmaier, Kyle Glenn

    Improving mobile energy storage technology is an important means of addressing concerns over fossil fuel scarcity and energy independence. Traditional hydraulic accumulator energy storage, though favorable in power density, durability, cost, and environmental impact, suffers from relatively low energy density and a pressure-dependent state of charge. The hydraulic flywheel-accumulator concept utilizes both the hydro-pneumatic and rotating kinetic energy domains by employing a rotating pressure vessel. This thesis provides an in-depth analysis of the hydraulic flywheel-accumulator concept and an assessment of the advantages it offers over traditional static accumulator energy storage. After specifying a practical architecture for the hydraulic flywheel-accumulator, this thesis addresses the complex fluid phenomena and control implications associated with multi-domain energy storage. To facilitate rapid selection of the hydraulic flywheel-accumulator dimensions, computationally inexpensive material stress models are developed for each component. A drive cycle simulation strategy is also developed to assess the dynamic performance of the device. The stress models and performance simulation are combined to form a toolset that facilitates computationally-efficient model-based design. The aforementioned toolset has been embedded into a multi-objective optimization algorithm that aims to minimize the mass of the hydraulic flywheel-accumulator system and to minimize the losses it incurs over the course of a drive cycle. Two optimizations have been performed - one with constraints that reflect a vehicle-scale application, and one with constraints that reflect a laboratory application. At both scales, the optimization results suggest that the hydraulic flywheel-accumulator offers at least an order of magnitude improvement over traditional static accumulator energy storage, while operating at efficiencies between 75% and 93%. A particular hydraulic flywheel-accumulator design

  13. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    Science.gov (United States)

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Diffusion versus linear ballistic accumulation: different models for response time with different conclusions about psychological mechanisms?

    Science.gov (United States)

    Heathcote, Andrew; Hayes, Brett

    2012-06-01

    Two similar classes of evidence-accumulation model have dominated theorizing about rapid binary choice: diffusion models and racing accumulator pairs. Donkin, Brown, Heathcote, and Wagenmakers (2011) examined mimicry between the Ratcliff diffusion (RD; Ratcliff & Smith, 2004) and the linear ballistic accumulator (LBA; Brown & Heathcote, 2008), the 2 least similar models from each class that provide a comprehensive account of a set benchmark phenomena in rapid binary choice. Where conditions differed only in the rate of evidence accumulation (the most common case in past research), simulations showed the models supported equivalent psychological inferences. In contrast, differences in 2 other parameters of key psychological interest, response caution (the amount of information required for a decision), and nondecision time, traded-off when fitting 1 model to data simulated from the other, implying the potential for divergent inferences about latent cognitive processes. However, Donkin, Brown, Heathcote, and Wagenmakers did not find such inconsistencies between fits of the RD and LBA models in a survey of data sets from paradigms using a range of experimental manipulations. We examined a further data set, collected by Dutilh, Vandekerckhove, Tuerlinckx, and Wagenmakers (2009), which used a manipulation not surveyed by Donkin, Brown, Heathcote, and Wagenmakers's practice. Dutilh et al.'s RD model fits indicated that practice had large effects on all three types of parameters. We show that in this case the LBA provides a different and simpler account of practice effects. Implications for evidence accumulation modelling are discussed.

  16. 2D lattice model of a lipid bilayer: Microscopic derivation and thermodynamic exploration

    Science.gov (United States)

    Hakobyan, Davit; Heuer, Andreas

    2017-02-01

    Based on all-atom Molecular Dynamics (MD) simulations of a lipid bilayer we present a systematic mapping on a 2D lattice model. Keeping the lipid type and the chain order parameter as key variables we derive a free energy functional, containing the enthalpic interaction of adjacent lipids as well as the tail entropy. The functional form of both functions is explicitly determined for saturated and polyunsaturated lipids. By studying the lattice model via Monte Carlo simulations it is possible to reproduce the temperature dependence of the distribution of order parameters of the pure lipids, including the prediction of the gel transition. Furthermore, application to a mixture of saturated and polyunsaturated lipids yields the correct phase separation behavior at lower temperatures with a simulation time reduced by approximately 7 orders of magnitude as compared to the corresponding MD simulations. Even the time-dependence of the de-mixing is reproduced on a semi-quantitative level. Due to the generality of the approach we envisage a large number of further applications, ranging from modeling larger sets of lipids, sterols, and solvent proteins to predicting nucleation barriers for the melting of lipids. Particularly, from the properties of the 2D lattice model one can directly read off the enthalpy and entropy change of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel-to-liquid transition in excellent agreement with experimental and MD results.

  17. Recent greenland accumulation estimated from regional climate model simulations and ice core analysis

    DEFF Research Database (Denmark)

    Dethloff, K.; Schwager, M.; Christensen, J. H.

    2002-01-01

    The accumulation defined as "precipitation minus evaporation" over Greenland has been simulated with the high-resolution limited-area regional climate model HIRHAM4 applied over an Arctic integration domain. This simulation is compared with a revised estimate of annual accumulation rate...... distribution over Greenland taking into account information from a new set of ice core analyses, based on surface sample collections from the North Greenland Traverse. The region with accumulation rates below 150 mm yr-1 in central-northwest Greenland is much larger than previously assumed and extends about...

  18. Effects of different amounts and types of dietary fatty acids on the body weight, fat accumulation, and lipid metabolism in hamsters.

    Science.gov (United States)

    Yang, Ji-Hua; Chang, Jung-Su; Chen, Chi-Long; Yeh, Chiu-Li; Chien, Yi-Wen

    2016-05-01

    The aim of this study was to explore the effects of different amounts of dietary fatty acids on body weight, fat accumulation, and lipid metabolism of hamsters. Sixty male golden Syrian hamsters were randomly divided into six groups. Three of the groups (the S groups) were fed experimental diets containing 5%, 15%, and 20% (w/w) fat of soybean oil (S5, S15, and S20, respectively), and the other three groups (the M groups) were fed the same proportions of an experimental oil mixture (M5, M15, and M20, respectively). The experimental oil mixture consisted of 60% monounsaturated fatty acids (MUFAs) and a polyunsaturated-to-saturated fatty acid ratio of 5 with a mixture of soybean and canola oils. Food consumption was measured daily, and body weights were measured weekly. Serum insulin and leptin concentrations were measured and hepatic fatty acid metabolic enzymes and adipose differentiation markers were determined using an enzyme activity analysis and quantitative polymerase chain reaction. Results showed that the weight and weight gain of the S20 group were significantly greater than those of the other five groups. When the total fat consumption increased, the body weight, weight gain, and adipose tissue weight of the S groups significantly increased, but there were no significant differences in these parameters among the M groups. Serum low-density lipoprotein cholesterol concentrations were significantly lower in the M15 and S15 groups. The S20 group had significantly higher leptin and insulin concentrations and lipoprotein lipase was promoted, but the acetyl-coenzyme A oxidase and carnitine palmitoyltransferase-1, were significantly lower. The study demonstrated that a special experimental oil mixture (with 60% MUFAs and a ratio of 5) with high fat can prevent body weight gain and body fat accumulation by lowering insulin concentrations and increasing hepatic lipolytic enzyme activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    in membranes, we considered proteins of different hydrophobic length ( as well as different sizes). We studied the cooperative behavior of the lipid-protein system at mesoscopic time-and lengthscales. In particular, we correlated in a systematic way the protein-induced bilayer perturbation, and the lipid......Biological membranes are complex and highly cooperative structures. To relate biomembrane structure to their biological function it is often necessary to consider simpler systems. Lipid bilayers composed of one or two lipid species, and with embedded proteins, provide a model system for biological...... membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions...

  20. Comparison of Two Models for Damage Accumulation in Simulations of System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, R. [Idaho National Laboratory, Idaho Falls, ID (United States); Mandelli, D. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-11-01

    A comprehensive simulation study of system performance needs to address variations in component behavior, variations in phenomenology, and the coupling between phenomenology and component failure. This paper discusses two models of this: 1. damage accumulation is modeled as a random walk process in each time history, with component failure occurring when damage accumulation reaches a specified threshold; or 2. damage accumulation is modeled mechanistically within each time history, but failure occurs when damage reaches a time-history-specific threshold, sampled at time zero from each component’s distribution of damage tolerance. A limiting case of the latter is classical discrete-event simulation, with component failure times sampled a priori from failure time distributions; but in such models, the failure times are not typically adjusted for operating conditions varying within a time history. Nowadays, as discussed below, it is practical to account for this. The paper compares the interpretations and computational aspects of the two models mentioned above.

  1. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  2. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B.

    2017-06-01

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  3. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity.

    Science.gov (United States)

    Shamoto-Nagai, M; Maruyama, W; Hashizume, Y; Yoshida, M; Osawa, T; Riederer, P; Naoi, M

    2007-01-01

    alpha-Synuclein (alphaSYN) plays a central role in the neural degeneration of Parkinson's disease (PD) through its conformational change. In PD, alphaSYN, released from the membrane, accumulates in the cytoplasm and forms Lewy body. However, the mechanism behind the translocation and conformational change of alphaSYN leading to the cell death has not been well elucidated. This paper reports that in the dopamine neurons of the substantia nigra containing neuromelanin from PD patients, alphaSYN was modified with acrolein (ACR), an aldehyde product of lipid peroxidation. Histopathological observation confirmed the co-localization of protein immunoreactive to anti-alphaSYN and ACR antibody. By Western blot analyses of samples precipitated with either anti-alphaSYN or anti-ACR antibody, increase in ACR-modified alphaSYN was confirmed in PD brain. Modification of recombinant alphaSYN by ACR enhanced its oligomerization, and at higher ACR concentrations alphaSYN was fragmented and polymerized forming a smear pattern in SDS-PAGE. ACR reduced 20S proteasome activity through the direct modification of the proteasome proteins and the production of polymerized ACR-modified proteins, which inhibited proteasome activity in vitro. These results suggest that ACR may initiate vicious cycle of modification and aggregation of proteins, including alphaSYN, and impaired proteolysis system, to cause neuronal death in PD.

  4. Activation of GPR55 Receptors Exacerbates oxLDL-Induced Lipid Accumulation and Inflammatory Responses, while Reducing Cholesterol Efflux from Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Mirko Lanuti

    Full Text Available The G protein-coupled receptor GPR55 has been proposed as a new cannabinoid receptor associated with bone remodelling, nervous system excitability, vascular homeostasis as well as in several pathophysiological conditions including obesity and cancer. However, its physiological role and underlying mechanism remain unclear. In the present work, we demonstrate for the first time its presence in human macrophages and its increased expression in ox-LDL-induced foam cells. In addition, pharmacological activation of GPR55 by its selective agonist O-1602 increased CD36- and SRB-I-mediated lipid accumulation and blocked cholesterol efflux by downregulating ATP-binding cassette (ABC transporters ABCA1 and ABCG1, as well as enhanced cytokine- and pro-metalloprotease-9 (pro-MMP-9-induced proinflammatory responses in foam cells. Treatment with cannabidiol, a selective antagonist of GPR55, counteracted these pro-atherogenic and proinflammatory O-1602-mediated effects. Our data suggest that GPR55 could play deleterious role in ox-LDL-induced foam cells and could be a novel pharmacological target to manage atherosclerosis and other related cardiovascular diseases.

  5. Buddleja officinalis Maximowicz Extract Inhibits Lipid Accumulation on Adipocyte Differentiation in 3T3-L1 Cells and High-Fat Mice

    Directory of Open Access Journals (Sweden)

    Jin-Kyu Kim

    2012-07-01

    Full Text Available Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we elucidated that Buddleja officinalis Maximowicz extract significantly inhibited lipid accumulation during 3T3-L1 adipocyte differentiation. Furthermore, Buddleja officinalis Maximowicz extract reduced the body weight gain induced through feeding a high-fat diet to C57BL/6 mice. The treatment of Buddleja officinalis Maximowicz extract significantly reduced the adipose tissue weight to 2.7/100 g of body weight in high-fat mice. When their adipose tissue morphology was investigated for histochemical staining, the distribution of cell size in the high-fat diet groups was hypertrophied compared with those from Buddleja officinalis Maximowicz extract-treated mice. In addition, in Buddleja officinalis Maximowicz extract-treated mice, a significant reduction of serum triglyceride and T-cholesterol was observed at to 21% and 17%, respectively. The discovery of bioactive compounds from diet or dietary supplementation is one of possible ways to control obesity and to prevent or reduce the risks of various obesity-related diseases. These results support that Buddleja officinalis Maximowicz extract is expected to create the therapeutic interest with respect to the treatment of obesity.

  6. Buddleja officinalis Maximowicz extract inhibits lipid accumulation on adipocyte differentiation in 3T3-L1 cells and high-fat mice.

    Science.gov (United States)

    Roh, Changhyun; Park, Min-Kyoung; Shin, Hee-June; Jung, Uhee; Kim, Jin-Kyu

    2012-07-23

    Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we elucidated that Buddleja officinalis Maximowicz extract significantly inhibited lipid accumulation during 3T3-L1 adipocyte differentiation. Furthermore, Buddleja officinalis Maximowicz extract reduced the body weight gain induced through feeding a high-fat diet to C57BL/6 mice. The treatment of Buddleja officinalis Maximowicz extract significantly reduced the adipose tissue weight to 2.7/100 g of body weight in high-fat mice. When their adipose tissue morphology was investigated for histochemical staining, the distribution of cell size in the high-fat diet groups was hypertrophied compared with those from Buddleja officinalis Maximowicz extract-treated mice. In addition, in Buddleja officinalis Maximowicz extract-treated mice, a significant reduction of serum triglyceride and T-cholesterol was observed at to 21% and 17%, respectively. The discovery of bioactive compounds from diet or dietary supplementation is one of possible ways to control obesity and to prevent or reduce the risks of various obesity-related diseases. These results support that Buddleja officinalis Maximowicz extract is expected to create the therapeutic interest with respect to the treatment of obesity.

  7. Effects of waterborne Cu and Cd on anti-oxidative response, lipid peroxidation and heavy metals accumulation in abalone Haliotis discus hannai ino

    Science.gov (United States)

    Lei, Yanju; Zhang, Wenbing; Xu, Wei; Zhang, Yanjiao; Zhou, Huihui; Mai, Kangsen

    2015-06-01

    The aim of this study was to compare the effects of waterborne copper (Cu) and cadmium (Cd) on survival, anti-oxidative response, lipid peroxidation and metal accumulation in abalone Haliotis discus hannai. Experimental animals (initial weight: 7.49 g ± 0.01 g) were exposed to graded concentrations of waterborne Cu (0.02, 0.04, 0.06, 0.08 mg L-1) or Cd (0.025, 0.05, 0.25, 0.5 mg L-1) for 28 days, respectively. Activities of the anti-oxidative enzymes (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidases, GPx; glutathione S-transferase, GST), contents of the reduced glutathione (GSH) and malondiadehyde (MDA) in the hepatopancreas, and metal accumulation in hepatopancreas and muscles were analyzed after 0, 1, 3, 6, 10, 15, 21, 28 days of metal exposure, respectively. Results showed that 0.04 mg L-1, 0.06 mg L--1 and 0.08 mg L-1 Cu caused 100% death of abalone on the 21st, 10th and 6th day, respectively. However, no dead abalone was found during the 28-day waterborne Cd exposure at all experimental concentrations. Generally, activities of SOD and GST in hepatopancreas under all Cu concentrations followed a decrease trend as the exposure time prolonged. However, these activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Activities of CAT in all Cu exposure treatments were higher than those in the control. These activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Contents of MDA in hepatopancreas in all Cu treatments significantly increased first and then decreased to the control level. However, the MDA contents in hepatopancreas were not significantly changed during the 28-day Cd exposure. The metals accumulation in both hepatopancreas and muscles of abalone significantly increased with the increase of waterborne metals concentration and exposure time. These results indicated that H. discus hannai has a positive anti-oxidative defense

  8. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    International Nuclear Information System (INIS)

    Veltman, Karin; Huijbregts, Mark A.J.; Vijver, Martina G.; Peijnenburg, Willie J.G.M.; Hobbelen, Peter H.F.; Koolhaas, Josee E.; Gestel, Cornelis A.M. van; Vliet, Petra C.J. van; Jan Hendriks, A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. - Earthworm metal concentrations are less than linearly related to total soil concentrations and predicted pore water concentrations

  9. Improved climate model evaluation using a new, 750-year Antarctic-wide snow accumulation product

    Science.gov (United States)

    Medley, B.; Thomas, E. R.

    2017-12-01

    Snow that accumulates over the cold, dry grounded ice of Antarctica is an important component of its mass balance, mitigating the ice sheet's contribution to sea level. Secular trends in accumulation not only result trends in the mass balance of the Antarctic Ice Sheet, but also directly and indirectly impact surface height changes. Long-term and spatiotemporally complete records of snow accumulation are needed to understand part and present Antarctic-wide mass balance, to convert from altimetry derived volume change to mass change, and to evaluate the ability of climate models to reproduce the observed climate change. We need measurements in both time and space, yet they typically sample one dimension at the expense of the other. Here, we develop a spatially complete, annually resolved snow accumulation product for the Antarctic Ice Sheet over the past 750 years by combining a newly compiled database of ice core accumulation records with climate model output. We mainly focus on climate model evaluation. Because the product spans several centuries, we can evaluate model ability in representing the preindustrial as well as present day accumulation change. Significant long-term trends in snow accumulation are found over the Ross and Bellingshausen Sea sectors of West Antarctica, the Antarctic Peninsula, and several sectors in East Antarctica. These results suggest that change is more complex over the Antarctic Ice Sheet than a simple uniform change (i.e., more snowfall in a warming world), which highlights the importance of atmospheric circulation as a major driver of change. By evaluating several climate models' ability to reproduce the observed trends, we can deduce whether their projections are reasonable or potentially biased where the latter would result in a misrepresentation of the Antarctic contribution to sea level.

  10. Off-lattice model for the phase behavior of lipid-cholesterol bilayers

    DEFF Research Database (Denmark)

    Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth

    1999-01-01

    and previous approximate theories have suggested that cholesterol incorporated into lipid bilayers has different microscopic effects on lipid-chain packing and conformations and that cholesterol thereby leads to decoupling of the two ordering processes, manifested by a special equilibrium phase, "liquid......-ordered phase," where bilayers are liquid (with translational disorder) but lipid chains are conformationally ordered. We present in this paper a microscopic model that describes this decoupling phenomena and which yields a phase diagram consistent with experimental observations. The model is an off......-lattice model based on a two-dimensional random triangulation algorithm and represents lipid and cholesterol molecules by hard-core particles with internal (spin-type) degrees of freedom that have nearest-neighbor interactions. The phase equilibria described by the model, specifically in terms of phase diagrams...

  11. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation

    DEFF Research Database (Denmark)

    Axelsen, Lene N; Lademann, Jacob B; Petersen, Jørgen S

    2010-01-01

    Metabolic syndrome and obesity-related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose- and fat-fed rats (FFFRs) as a new animal model...... of metabolic syndrome. Sprague-Dawley rats were fed a 60 kcal/100 kcal fat diet with 10% fructose in the drinking water. After 6, 12, 18, 24, 36, and 48 wk of feeding, blood pressure, glucose tolerance, plasma insulin, glucose, and lipid levels were measured. Cardiac function was examined by in vivo pressure...... AMPK at 6 wk of feeding. This study characterizes a new animal model of the metabolic syndrome that could be beneficial in future studies of metabolic syndrome and cardiac complications....

  12. Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.

    Science.gov (United States)

    Holvoet, Paul; Rull, Anna; García-Heredia, Anabel; López-Sanromà, Sílvia; Geeraert, Benjamine; Joven, Jorge; Camps, Jordi

    2015-03-01

    There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Modeling electron competition among nitrogen oxides reduction and N2 O accumulation in hydrogenotrophic denitrification.

    Science.gov (United States)

    Liu, Yiwen; Ngo, Huu H; Guo, Wenshan; Peng, Lai; Chen, Xueming; Wang, Dongbo; Pan, Yuting; Ni, Bing-Jie

    2018-04-01

    Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor, and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N 2 O), a highly undesirable intermediate and potent greenhouse gas, can accumulate during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N 2 O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N 2 O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent hydrogenotrophic denitrifying cultures under various hydrogen and nitrogen oxides supplying conditions, suggesting the validity and applicability of the model. The results indicated that N 2 O accumulation would not be intensified under hydrogen limiting conditions, due to the higher electron competition capacity of N 2 O reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic denitrification. The model is expected to enhance our understanding of the process during hydrogenotrophic denitrification and the ability to predict N 2 O accumulation. © 2017 Wiley Periodicals, Inc.

  14. Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina

    International Nuclear Information System (INIS)

    Casado-Martinez, M. Carmen; Smith, Brian D.; DelValls, T. Angel; Luoma, Samuel N.; Rainbow, Philip S.

    2009-01-01

    The use of biodynamic models to understand metal uptake directly from sediments by deposit-feeding organisms still represents a special challenge. In this study, accumulated concentrations of Cd, Zn and Ag predicted by biodynamic modelling in the lugworm Arenicola marina have been compared to measured concentrations in field populations in several UK estuaries. The biodynamic model predicted accumulated field Cd concentrations remarkably accurately, and predicted bioaccumulated Ag concentrations were in the range of those measured in lugworms collected from the field. For Zn the model showed less but still good comparability, accurately predicting Zn bioaccumulation in A. marina at high sediment concentrations but underestimating accumulated Zn in the worms from sites with low and intermediate levels of Zn sediment contamination. Therefore, it appears that the physiological parameters experimentally derived for A. marina are applicable to the conditions encountered in these environments and that the assumptions made in the model are plausible. - Biodynamic modelling predicts accumulated field concentrations of Ag, Cd and Zn in the deposit-feeding polychaete Arenicola marina.

  15. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  16. Magnetic resonance imaging (MRI to study striatal iron accumulation in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Ana Virel

    Full Text Available Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI. The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.

  17. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?

    Science.gov (United States)

    Critchell, Kay; Lambrechts, Jonathan

    2016-03-01

    Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal environments around the world causing damage to fauna, flora and habitats. Plastics also have the potential to accumulate in the food web, as well as causing economic losses to tourism and sea-going industries. If we are to manage this increasing threat, we must first understand where debris is accumulating and why these locations are different to others that do not accumulate large amounts of marine debris. This paper demonstrates an advection-diffusion model that includes beaching, settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore waters to quantify the relative importance of these physical processes governing plastic debris accumulation. The aim of this paper is to prioritise research that will improve modelling outputs in the future. We have found that the physical characteristic of the source location has by far the largest effect on the fate of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and the relationship between debris resuspension/re-floating from beaches and the wind shadow created by high islands also has a dramatic impact on the modelling results. The rate of degradation of macroplastics into microplastics also have a large influence in the result of the modelling. The other processes presented (settling, wind drift velocity) also help determine the fate of debris, but to a lesser degree. These findings may help prioritise research on physical processes that affect plastic accumulation, leading to more accurate modelling, and subsequently management in the future.

  18. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  19. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice.

    Science.gov (United States)

    Santos, Izabelle Barcellos; de Bem, Graziele Freitas; Cordeiro, Viviane Silva Cristino; da Costa, Cristiane Aguiar; de Carvalho, Lenize Costa Reis Marins; da Rocha, Ana Paula Machado; da Costa, Gisele França; Ognibene, Dayane Teixeira; de Moura, Roberto Soares; Resende, Angela Castro

    2017-07-01

    Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Diphytanoyl lipids as model systems for studying membrane-active peptides.

    Science.gov (United States)

    Kara, Sezgin; Afonin, Sergii; Babii, Oleg; Tkachenko, Anton N; Komarov, Igor V; Ulrich, Anne S

    2017-10-01

    The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31 P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19 F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of Micronutrient Accumulation in Greenhouse Cucumber Crop Using a Modeling Approach

    Directory of Open Access Journals (Sweden)

    Lino J. Ramírez-Pérez

    2017-11-01

    Full Text Available The control of micronutrient application in cucumber cultivation has great importance as they participate in many functions of metabolism. In addition, micronutrient application efficiency is fundamental to avoid periods of overconsumption or deficits in the crop. To determine micronutrient accumulation using a dynamic model, two cycles of Vitaly and Luxell cucumber crops were grown. During the development of the crop, micronutrient content (Fe, B, Mn, Cu, and Zn in the different organs of the cucumber plant was quantified. The model dynamically simulated the accumulation of biomass and micronutrients using climatic variables recorded inside the greenhouse as inputs. It was found that a decrease in photosynthetically active radiation and temperature significantly diminished the accumulation of biomass by the cucumber plants. On the other hand, the results demonstrated that the model efficiently simulated both the accumulation of biomass and micronutrients in a cucumber crop. The efficiency evaluation showed values higher than R2 > 0.95. This dynamic model can be useful to define adequate strategies for the management of cucumber cultivation in greenhouses as well as the application of micronutrients.

  2. Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment.

    Science.gov (United States)

    Pan, Yuting; Ni, Bing-Jie; Lu, Huijie; Chandran, Kartik; Richardson, David; Yuan, Zhiguo

    2015-03-15

    The accumulation of the denitrification intermediates in wastewater treatment systems is highly undesirable, since both nitrite and nitric oxide (NO) are known to be toxic to bacteria, and nitrous oxide (N2O) is a potent greenhouse gas and an ozone depleting substance. To date, two distinct concepts for the modelling of denitrification have been proposed, which are represented by the Activated Sludge Model for Nitrogen (ASMN) and the Activated Sludge Model with Indirect Coupling of Electrons (ASM-ICE), respectively. The two models are fundamentally different in describing the electron allocation among different steps of denitrification. In this study, the two models were examined and compared in their ability to predict the accumulation of denitrification intermediates reported in four different experimental datasets in literature. The N-oxide accumulation predicted by the ASM-ICE model was in good agreement with values measured in all four cases, while the ASMN model was only able to reproduce one of the four cases. The better performance of the ASM-ICE model is due to that it adopts an "indirect coupling" modelling concept through electron carriers to link the carbon oxidation and the nitrogen reduction processes, which describes the electron competition well. The ASMN model, on the other hand, is inherently limited by its structural deficiency in assuming that carbon oxidation is always able to meet the electron demand by all denitrification steps, therefore discounting electron competition among these steps. ASM-ICE therefore offers a better tool for predicting and understanding intermediates accumulation in biological denitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lin, Yi; Ding, Dongxiao; Huang, Qiansheng; Liu, Qiong; Lu, Haoyang; Lu, Yanyang; Chi, Yulang; Sun, Xia; Ye, Guozhu; Zhu, Huimin; Wei, Jie; Dong, Sijun

    2017-09-01

    Exposure to Bisphenol A (BPA) has been associated with the development of nonalcoholic fatty liver disease (NAFLD) but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study was designed to explore whether exposure to BPA-triggered abnormal steatosis and lipid accumulation in the liver could be modulated by miR-192. We showed that male post-weaning C57BL/6 mice exposed to 50μg/kg/day of BPA by oral gavage for 90days displayed a NAFLD-like phenotype. In addition, we found in mouse liver and human HepG2 cells that BPA-induced hepatic steatosis and lipid accumulation were associated with decreased expression of miR-192, upregulation of SREBF1 and a series of genes involved in de novo lipogenesis. Downregulation of miR-192 in BPA-exposed hepatocytes could be due to defective pre-miR-192 processing by DROSHA. Using HepG2 cells, we further confirmed that miR-192 directly acted on the 3'UTR of SREBF1, contributing to dysregulation of lipid homeostasis in hepatocytes. MiR-192 mimic and lentivirus-mediated overexpression of miR-192 improved BPA-induced hepatic steatosis by suppressing SREBF1. Lastly, we noted that lipid accumulation was not a strict requirement for developing insulin resistance in mice after BPA treatment. In conclusion, this study demonstrated a novel mechanism in which NAFLD associated with BPA exposure arose from alterations in the miR-192-SREBF1 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis.

    Science.gov (United States)

    Wallstab, Christin; Eleftheriadou, Dimitra; Schulz, Theresa; Damm, Georg; Seehofer, Daniel; Borlak, Jürgen; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2017-10-01

    The liver responds to elevated plasma concentrations of free fatty acids (FFAs) with an enhanced uptake of FFAs and their esterification to triacylglycerol (TAG). On the long term, this may result in massive hepatic TAG accumulation called steatosis hepatitis. In hepatocytes, the poor water-soluble TAG is packed in specialized organelles: Lipid droplets (LDs) serving as transient cellular deposit and lipoproteins (LPs) transporting TAG and cholesterol esters to extra-hepatic tissues. The dynamics of these organelles is controlled by a variety of regulatory surface proteins (RSPs). Assembly and export of VLDLs are mainly regulated by the microsomal transfer protein (MTP) and apoprotein B100. Formation and lipolysis of LDs are regulated by several RSPs. The best studied regulators belong to the PAT (Perilipin/Adipophilin/TIP47) and CIDE families. Knockdown or overexpression of SRPs may significantly affect the total number and size distribution of LDs. Intriguingly, a large cell-to-cell heterogeneity with respect to the number and size of LDs has been found in various cell types including hepatocytes. These findings suggest that the extent of cellular lipid accumulation is determined not only by the imbalance between lipid supply and utilization but also by variations in the expression of RSPs and metabolic enzymes. To better understand the relative regulatory impact of individual processes involved in the cellular TAG turnover, we developed a comprehensive kinetic model encompassing the pathways of the fatty acid and triglyceride metabolism and the main molecular processes governing the dynamics of LDs. The model was parametrized such that a large number of experimental in vitro and in vivo findings are correctly recapitulated. A control analysis of the model revealed that variations in the activity of FFA uptake, diacylglycerol acyltransferase (DGAT) 2, and adipose triglyceride lipase (ATGL) have the strongest influence on the cellular TAG level. We used the model

  5. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    Science.gov (United States)

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models

    DEFF Research Database (Denmark)

    Møller, Peter; Risom, Lotte; Lundby, Carsten

    2008-01-01

    The objective of this review was to evaluate the association between hypoxia and oxidative damage to DNA and lipids. Evaluation criteria encompassed specificity and validation status of the biomarkers, study design, strength of the association, dose-response relationship, biological plausibility,...... in subjects at high altitude. Most of the animal experimental models should be interpreted with caution because the assays for assessment of lipid peroxidation products have suboptimal validity....

  7. DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses

    Science.gov (United States)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2015-10-01

    Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.

  8. Classification of ginseng berry (Panax ginseng C.A. MEYER) extract using 1H NMR spectroscopy and its inhibition of lipid accumulation in 3 T3-L1 cells.

    Science.gov (United States)

    Yang, Seung Ok; Park, Hae Ran; Sohn, Eun Suk; Lee, Sang Won; Kim, Hyung Don; Kim, Young Chang; Kim, Kee Hong; Na, Sae Won; Choi, Hyung-Kyoon; Arasu, Mariadhas Valan; Kim, Young Ock

    2014-11-24

    Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy. Lipid accumulation in the cells was analyzed by Oil Red O staining. The PLS-DA clearly distinguished P. ginseng berry extract (PGBE) according to the partial ripe (PR), ripe(R) and fully ripe (FR) stage. Lipid accumulation of PGBE was examined by measuring triglyceride content and Oil-Red O staining. These results suggested that the FR stage of PGBE decrease in lipid accumulation during adipocyte differentiation and the amount of threonine, asparagine, fumarate, tyraine, tyrosine, and phenylalanine increased with longer ripening of ginseng berries. Metabolite profiling of P. ginseng was identified by 1H NMR spectra. P. ginseng extract efficiently inhibits adipogenesis in 3 T3-L1 adipocytes concluded that the P. ginseng has the antiobesity properties.

  9. Accumulation of invariant NKT cells into inflamed skin in a novel murine model of nickel allergy.

    Science.gov (United States)

    Eguchi, Takanori; Kumagai, Kenichi; Kobayashi, Hiroshi; Shigematsu, Hiroaki; Kitaura, Kazutaka; Suzuki, Satsuki; Horikawa, Tatsuya; Hamada, Yoshiki; Ogasawara, Kouetsu; Suzuki, Ryuji

    2013-01-01

    Nickel (Ni) can cause delayed-type hypersensitivity reactions, which are thought to be mediated by the accumulation of T cells into inflamed skin. Accumulated T cells at the developmental stages in metal allergy are poorly characterized because a suitable animal model has not been established. To investigate the accumulated T cells in allergic inflamed skin, we generated a novel murine model of Ni-induced allergy. The murine model of Ni allergy was induced by two sensitizations of Ni plus lipopolysaccharide solution into the groin followed by three challenges with Ni solution into the footpad. Here we show that a specific TCR repertoire bearing Vα14Jα18, called natural killer (NK) T cells, was expanded monoclonally in BALB/c or C57BL/6 mice. Accumulation of NKT cells was characterized as CD4(+) or CD4(-)CD8(-) T cells. These results suggested that NKT cells are major pathogenic T cells at the elicitation phase of Ni allergy. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Evolution of the Relative Price of Goods and Services in a Neoclassical Model of Capital Accumulation

    OpenAIRE

    Vladimir Klyuev

    2005-01-01

    The paper provides an explanation for the secular increase in the price of services relative to that of manufactured goods that relies on capital accumulation rather than on an exogenous total factor productivity growth differential. The key assumptions of the two-sector, intertemporal optimizing model are relatively high capital intensity in the production of goods and limited cross-border capital mobility, allowing the interest rate to vary. With plausible parameterization, the model also p...

  11. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Experimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP-) interacting with membranes...... whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment...

  12. Dynamic interaction of slip displacement accumulation in a two-block Newmark model

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Y.; Psarropoulos, Prodromos N.

    2011-01-01

    Engineering structures may include discontinuities or predefined interfaces separating different construction materials, or failure planes generated for example within soil in the case of geotechnical applications. Due to seismic motion permanent slip displacements may accumulate along...... the aforementioned interfaces. The well-known Newmark’s sliding block has been widely applied to mimic the seismic response of structures with distinct interfaces. In the current study a new model is presented, which is based on the principles of Newmark’s approach. This model comprises of three stacked rigid blocks...... of the corresponding model. In addition, parametric analyses were performed in order to address the impact of the main factors influencing the interaction of the slip displacement accumulation along the two interfaces. It is shown, that taking into account the effect of the interaction leads to reduction...

  13. Irreversible thermodynamics models and constitutive equations of the irradiation induced deformation and damage accumulating processes

    International Nuclear Information System (INIS)

    Wassilew, C.

    1989-11-01

    This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)

  14. Sands subjected to repetitive vertical loading under zero lateral strain: accumulation models, terminal densities, and settlement

    KAUST Repository

    Chong, Song Hun

    2016-08-09

    Geosystems often experience numerous loading cycles. Plastic strain accumulation during repetitive mechanical loads can lead to shear shakedown or continued shear ratcheting; in all cases, volumetric strains diminish as the specimen evolves towards terminal density. Previously suggested models and new functions are identified to fit plastic strain accumulation data. All accumulation models are formulated to capture terminal density (volumetric strain) and either shakedown or ratcheting (shear strain). Repetitive vertical loading tests under zero lateral strain conditions are conducted using three different sands packed at initially low and high densities. Test results show that plastic strain accumulation for all sands and density conditions can be captured in the same dimensionless plot defined in terms of the initial relative density, terminal density, and ratio between the amplitude of the repetitive load and the initial static load. This observation allows us to advance a simple but robust procedure to estimate the maximum one-dimensional settlement that a foundation could experience if subjected to repetitive loads. © 2016, Canadian Science Publishing. All rights reserved.

  15. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.

    Science.gov (United States)

    Pera, H; Kleijn, J M; Leermakers, F A M

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus kc and k̄ and the preferred monolayer curvature J(0)(m), and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of kc and the area compression modulus kA are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k̄ and J(0)(m) can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k̄ and J(0)(m) change sign with relevant parameter changes. Although typically k̄ 0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks.

  16. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  17. Accumulating approach to the life-cycle pension model: practical advantages

    Directory of Open Access Journals (Sweden)

    Yaniv Azoulay

    2016-12-01

    Full Text Available In the present study, we make an effort to enhance the practical advantages of the life-cycle pension model. We observe that previous studies are based on a “switching”approach, that is, on the assumption that when a pension fund member reaches a certain age, his accumulated savings are fully switched to another fund with a lower risk profile; we suggest an “accumulating” approach, according to which, at the same age, the member’s previously accumulated wealth continues to be invested in the same fund, while his new regular pension contributions start being directed to another (less risky fund. We consider a hypothetical (average Israeli employee, analyze two age-dependent life-cycle investment distributions of his pension savings, and perform a comparison between the two approaches to the life-cycle model by employing an estimation-based and a simulation-based technique. The results demonstrate that the “accumulating” approach provides: (i higher estimated annualized real returns and real accumulated savings; (ii significantly higher simulated mean and median values of real accumulated savings. Moreover, we document that, though the “accumulating” approach increases the standard deviation of total savings, it does not lead to critically low pension wealth levels even for relatively unfavorable sequences of financial assets’ returns. Therefore, we conclude that the “accumulating” approach to the life-cycle model has a potential significantly to increase pension fund members’ total accumulated wealth relatively to the common “switching” approach, without significantly increasing the members’ risk.

  18. Duodenal-jejunal bypass surgery suppresses hepatic de novo lipogenesis and alleviates liver fat accumulation in a diabetic rat model.

    Science.gov (United States)

    Han, Haifeng; Hu, Chunxiao; Wang, Lei; Zhang, Guangyong; Liu, Shaozhuang; Li, Feng; Sun, Dong; Hu, Sanyuan

    2014-12-01

    Duodenal-jejunal bypass (DJB) surgery can induce rapid and durable remission of type 2 diabetes mellitus (T2DM), but the intrinsic mechanisms remain to be elucidated. Recent studies indicated that improved hepatic insulin resistance and insulin signaling transduction might contribute to the diabetic control after DJB. Given the important role of liver adiposity in hepatic insulin resistance, this study was aimed at investigating the effects of DJB on glucose homeostasis and liver fat accumulation in a T2DM rat model induced by high-fat diet (HFD) and small dose of streptozotocin (STZ). Forty adult male diabetic rats induced by HFD and small dose of STZ were randomly assigned to sham and DJB groups. Body weight, calorie intake, hormone levels, glucose, and lipid parameters were measured at indicated time points. Subsequently, hepatic triglycerides (TG) content and the protein levels of sterol regulatory element binding protein-1 (SREBP-1), carbohydrate response element binding protein (ChREBP), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) were evaluated at 2 and 8 weeks postoperatively. Compared with sham group, DJB induced rapid and significant improvements in glucose homeostasis and insulin sensitivity independently of weight loss and calorie restriction. The DJB-operated rats exhibited lower liver TG content and decreased hepatic SREBP-1, ChREBP, ACC, and FAS at 8 weeks postoperatively. DJB alleviated hepatic fat accumulation and downregulated the key transcriptional regulators and enzymes involved in hepatic de novo lipogenesis, which might contribute to improved hepatic insulin sensitivity and glucose homeostasis after DJB.

  19. The Alkamide trans-Pellitorine Targets PPARγ via TRPV1 and TRPA1 to Reduce Lipid Accumulation in Developing 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Barbara Lieder

    2017-05-01

    Full Text Available Adipose tissue is an important endocrine organ in the human body. However, pathological overgrowth is associated with chronic illness. Regulation of adipogenesis and maturation of adipocytes via bioactive compounds in our daily diet has been in focus of research in the past years and showed promising results for agonists of the ion channels transient receptor potential channel (TRP V1 and A1. Here, we investigated the anti-adipogenic potential and underlying mechanisms of the alkamide trans-pellitorine present in Piper nigrum via TRPV1 and TRPA1 in 3T3-L1 cells. trans-pellitorine was found to suppress mean lipid accumulation, when applied during differentiation and maturation, but also during maturation phase solely of 3T3-L1 cells in a concentration range between 1 nM and 1 μM by up to 8.84 ± 4.97 or 7.49 ± 5.08%, respectively. Blockage of TRPV1 using the specific inhibitor trans-tert-butyl-cyclohexanol demonstrated that the anti-adipogenic activity of trans-pellitorine depends on TRPV1. In addition, blockage of the TRPA1 channel using the antagonist AP-18 showed a TRPA1-dependent signaling in the early to intermediate stages of adipogenesis. On a mechanistic level, treatment with trans-pellitorine during adipogenesis led to reduced PPARγ expression on gene and protein level via activation of TRPV1 and TRPA1, and increased expression of the microRNA mmu-let-7b, which has been associated with reduced PPARγ levels. In addition, cells treated with trans-pellitorine showed decreased expression of the gene encoding for fatty acid synthase, increased expression of microRNA-103 and a decreased short-term fatty acid uptake on the functional level. In summary, these data point to an involvement of the TRPV1 and TRPA1 cation channels in the anti-adipogenic activity of trans-pellitorine via microRNA-let7b and PPARγ. Since trans-pellitorine does not directly activate TRPV1 or TRPA1, an indirect modulation of the channel activity is assumed and

  20. Visceral Adiposity Index and Lipid Accumulation Product Index: Two Alternate Body Indices to Identify Chronic Kidney Disease among the Rural Population in Northeast China

    Directory of Open Access Journals (Sweden)

    Dongxue Dai

    2016-12-01

    Full Text Available We aimed to compare the relative strength of the association between anthropometric obesity indices and chronic kidney disease (CKD. Another objective was to examine whether the visceral adiposity index (VAI and lipid accumulation product index (LAPI can identify CKD in the rural population of China. There were 5168 males and 6024 females involved in this cross-sectional study, and 237 participants (2.12% suffered from CKD. Obesity indices included body mass index (BMI, waist circumference (WC, waist-to-height ratio (WHtR, VAI and LAPI. VAI and LAPI were calculated with triglyceride (TG, high-density lipoprotein (HDL, BMI and WC. VAI = [WC/39.68 + (1.88 × BMI] × (TG /1.03 × (1.31/ HDL for males; VAI = [WC/36.58 + (1.89 × BMI] × (TG/0.81 × (1.52/HDL for females. LAPI = (WC-65 × TG for males, LAPI = (WC-58 × TG for females. CKD was defined as an estimated glomerular filtration rate (eGFR of less than 60 mL/min per 1.73 m2. The prevalence of CKD increased across quartiles for WHtR, VAI and LAPI. A multivariate logistic regression analysis of the presence of CKD for the highest quartile vs. the lowest quartile of each anthropometric measure showed that the VAI was the best predictor of CKD in females (OR: 4.21, 95% CI: 2.09–8.47, p < 0.001. VAI showed the highest AUC for CKD (AUC: 0.68, 95% CI: 0.65–0.72 and LAPI came second (AUC: 0.66, 95% CI: 0.61–0.70 in females compared with BMI (both p-values < 0.001. However, compared with the traditional index of the BMI, the anthropometric measures VAI, LAPI, WC, and WHtR had no statistically significant capacity to predict CKD in males. Our results showed that both VAI and LAPI were significantly associated with CKD in the rural population of northeast China. Furthermore, VAI and LAPI were superior to BMI, WC and WHtR for predicting CKD only in females.

  1. Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair.

    Science.gov (United States)

    Oak, Nikhil R; Gumucio, Jonathan P; Flood, Michael D; Saripalli, Anjali L; Davis, Max E; Harning, Julie A; Lynch, Evan B; Roche, Stuart M; Bedi, Asheesh; Mendias, Christopher L

    2014-12-01

    The repair and restoration of function after chronic rotator cuff tears are often complicated by muscle atrophy, fibrosis, and fatty degeneration of the diseased muscle. The inflammatory response has been implicated in the development of fatty degeneration after cuff injuries. Licofelone is a novel anti-inflammatory drug that inhibits 5-lipoxygenase (5-LOX), as well as cyclooxygenase (COX)-1 and COX-2 enzymes, which play important roles in inducing inflammation after injuries. While previous studies have demonstrated that nonsteroidal anti-inflammatory drugs and selective inhibitors of COX-2 (coxibs) may prevent the proper healing of muscles and tendons, studies about bone and cartilage have demonstrated that drugs that inhibit 5-LOX concurrently with COX-1 and COX-2 may enhance tissue regeneration. After the repair of a chronic rotator cuff tear in rats, licofelone would increase the load to failure of repaired tendons and increase the force production of muscle fibers. Controlled laboratory study. Rats underwent supraspinatus release followed by repair 28 days later. After repair, rats began a treatment regimen of either licofelone or a vehicle for 14 days, at which time animals were euthanized. Supraspinatus muscles and tendons were then subjected to contractile, mechanical, histological, and biochemical analyses. Compared with controls, licofelone-treated rats had a grossly apparent decrease in inflammation and increased fibrocartilage formation at the enthesis, along with a 62% increase in the maximum load to failure and a 51% increase in peak stress to failure. Licofelone resulted in a marked reduction in fibrosis and lipid content in supraspinatus muscles as well as reduced expression of several genes involved in fatty infiltration. Despite the decline in fibrosis and fat accumulation, muscle fiber specific force production was reduced by 23%. The postoperative treatment of cuff repair with licofelone may reduce fatty degeneration and enhance the development

  2. Pretreatment with intravenous lipid emulsion reduces mortality from cocaine toxicity in a rat model.

    Science.gov (United States)

    Carreiro, Stephanie; Blum, Jared; Hack, Jason B

    2014-07-01

    We compare the effects of intravenous lipid emulsion and normal saline solution pretreatment on mortality and hemodynamic changes in a rat model of cocaine toxicity. We hypothesize that intravenous lipid emulsion will decrease mortality and hemodynamic changes caused by cocaine administration compared with saline solution. Twenty male Sprague-Dawley rats were sedated and randomized to receive intravenous lipid emulsion or normal saline solution, followed by a 10 mg/kg bolus of intravenous cocaine. Continuous monitoring included intra-arterial blood pressure, pulse rate and ECG tracing. Endpoints included a sustained undetectable mean arterial pressure (MAP) or return to baseline MAP for 5 minutes. The log-rank test was used to compare mortality. A mixed-effect repeated-measures ANOVA was used to estimate the effects of group (intravenous lipid emulsion versus saline solution), time, and survival on change in MAP, pulse rate, or pulse pressure. In the normal saline solution group, 7 of 10 animals died compared with 2 of 10 in the intravenous lipid emulsion group. The survival rate of 80% (95% confidence interval 55% to 100%) for the intravenous lipid emulsion rats and 30% (95% confidence interval 0.2% to 58%) for the normal saline solution group was statistically significant (P=.045). Intravenous lipid emulsion pretreatment decreased cocaine-induced cardiovascular collapse and blunted hypotensive effects compared with normal saline solution in this rat model of acute lethal cocaine intoxication. Intravenous lipid emulsion should be investigated further as a potential adjunct in the treatment of severe cocaine toxicity. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  3. Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM

    International Nuclear Information System (INIS)

    Reyes, A.; Henríquez-Vargas, L.; Aravena, R.; Sepúlveda, F.

    2015-01-01

    Highlights: • Enhancement of paraffin wax thermal conductivity using soft drink can stripes. • Thermal analysis and simulations results agree well with experimental data. • Increase in accumulator thermal efficiencies through addition of external aluminum stripes. • Proposed accumulator allows up to 13,000 kJ of energy storage. - Abstract: Soft drink cans filled with paraffin wax mixed with 7.5% aluminum stripes, obtained from disposable cans, doubled the thermal conductivity of cans filled only with paraffin wax. Promising results obtained in a prototype heat exchanger encouraged the construction of this unit 6 times bigger. We experimentally evaluated and model a heat exchanger for solar energy accumulation, composed by 300 disposable soft drink cans filled with a total of 59.25 kg of paraffin wax mixed with 7.5% aluminum stripes. The effect of adding 2.75 kg of aluminum fins for enhancing heat transfer from the outer surface of the cans to the circulant air was experimentally analyzed. In sunny days, the wax melted completely in about 4 h. The accumulated energy in form of latent heat (about 13,000 kJ) allowed to increase the temperature of 0.040 kg/s of circulant air in at least 20 °C during a period of 2.5 h. For an air mass rate of 0.018 kg/s the period was extended practically to 5 h. The accumulator thermal analysis was presented and a subsequent numerical simulation with Matlab was performed to compare with the experimental results obtaining good agreement specially for higher air mass flow rates. The low cost accumulator presented is of simple construction and will allow extended use of solar energy for applications such as drying processes or household calefaction system.

  4. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management.

    Science.gov (United States)

    Shams, Shiva; Cerasino, Leonardo; Salmaso, Nico; Dietrich, Daniel R

    2014-03-01

    In this study, we investigated the kinetic aspects of the microcystin (MC) transfer from Planktothrix rubescens to Daphnia magna by carrying out exposure experiments in small simple mesocosms. We hypothesized that higher fractions of toxic cyanobacteria in the diet of grazers would shift the balance towards a greater than linear, i.e. non-linear accumulation of MC in D. magna. This hypothesis was tested by exposing D. magna to varying initial densities of MC-producing P. rubescens. The evolving models of MC accumulation differed largely as a result of the duration of exposure and initial MC concentrations used. Within the first 24h of exposure, MC accumulation in D. magna was linear, irrespective of the initial densities of toxic P. rubescens and thus MC concentrations. After 48 h of exposure, MC accumulation in D. magna showed an exponential pattern, possibly due to a delayed digestion of P. rubescens and/or decreased MC detoxification capabilities when compared with higher ambient concentrations of MC. After 72 h toxin concentrations in Daphnia drop in all experiments as a consequence of the reduced cyanobacterial cells in the medium and the detoxification of MC within Daphnia. The results obtained suggest that in lakes with higher MC content and longer cyanobacterial bloom period MC accumulation in D. magna should be more pronounced than in mesotrophic lakes with lower MC content. The latter interpretation, however, should be verified investigating accumulation of MC both in larger mesocosms and in situ, in lakes of different trophic status. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cholesterol strongly affects the organization of lipid monolayers studied as models of the milk fat globule membrane: Condensing effect and change in the lipid domain morphology.

    Science.gov (United States)

    Murthy, Appala Venkata Ramana; Guyomarc'h, Fanny; Paboeuf, Gilles; Vié, Véronique; Lopez, Christelle

    2015-10-01

    The biological membrane that surrounds the milk fat globules exhibits phase separation of polar lipids that is poorly known. The objective of this study was to investigate the role played by cholesterol in the organization of monolayers prepared as models of the milk fat globule membrane (MFGM). Differential scanning calorimetry and X-ray diffraction experiments allowed characterization of the gel to liquid crystalline phase transition temperature of lipids, Tm ~35°C, in vesicles prepared with a MFGM lipid extract. For temperature below Tm, atomic force microscopy revealed phase separation of lipids at 30 mN·m(-1) in Langmuir-Blodgett monolayers of the MFGM lipid extract. The high Tm lipids form liquid condensed (LC) domains that protrude by about 1.5 nm from the continuous liquid expanded (LE) phase. Cholesterol was added to the MFGM extract up to 30% of polar lipids (cholesterol/milk sphingomyelin (MSM) molar ratio of 50/50). Compression isotherms evidenced the condensing effect of the cholesterol onto the MFGM lipid monolayers. Topography of the monolayers showed a decrease in the area of the LC domains and in the height difference H between the LC domains and the continuous LE phase, as the cholesterol content increased in the MFGM lipid monolayers. These results were interpreted in terms of nucleation effects of cholesterol and decrease of the line tension between LC domains and LE phase in the MFGM lipid monolayers. This study revealed the major structural role of cholesterol in the MFGM that could be involved in biological functions of this interface (e.g. mechanisms of milk fat globule digestion). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    Science.gov (United States)

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    plasma triglyceride concentrations compared to the control (-53% and -65%, respectively) and ferulic acid (-47% and -60%, respectively) diets. Hamsters fed the control and ferulic acid diets had significantly higher plasma vitamin E concentrations compared to the RBO (201% and 161%, respectively) and oryzanol (548% and 462%, respectively) diets; the ferulic acid and oryzanol diets had significantly lower plasma lipid hydroperoxide levels than the control (-57% and -46%, respectively) diet. The oryzanol-fed hamsters excreted significantly more coprostenol and cholesterol in their feces than the ferulic acid (127% and 120%, respectively) diet. The control diet had significantly greater aortic TC and FC accumulation compared to the RBO (115% and 89%, respectively), ferulic acid (48% and 58%, respectively) and the oryzanol (74% and 70%, respectively) diets. However, only the RBO and oryzanol diets had significantly lower aortic cholesterol ester accumulation compared to the control (-73% and -46%, respectively) diet. The present study suggests that at equal dietary levels, oryzanol has a greater effect on lowering plasma non-HDL-C levels and raising plasma HDL-C than ferulic acid, possibly through a greater extent to increase fecal excretion of cholesterol and its metabolites. However, ferulic acid may have a greater antioxidant capacity via its ability to maintain serum vitamin E levels compared to RBO and oryzanol. Thus, both oryzanol and ferulic acid may exert similar antiatherogenic properties, but through different mechanisms.

  7. Don Quixote Pond: A Small Scale Model of Weathering and Salt Accumulation

    Science.gov (United States)

    Englert, P.; Bishop, J. L.; Patel, S. N.; Gibson, E. K.; Koeberl, C.

    2015-01-01

    The formation of Don Quixote Pond in the North Fork of Wright Valley, Antarctica, is a model for unique terrestrial calcium, chlorine, and sulfate weathering, accumulation, and distribution processes. The formation of Don Quixote Pond by simple shallow and deep groundwater contrasts more complex models for Don Juan Pond in the South Fork of Wright Valley. Our study intends to understand the formation of Don Quixote Pond as unique terrestrial processes and as a model for Ca, C1, and S weathering and distribution on Mars.

  8. Interaction of thermal responsive NIPAM nanogels with model lipid monolayers at the air-water interface.

    Science.gov (United States)

    Sun, Huihui; Resmini, Marina; Zarbakhsh, Ali

    2018-02-17

    Understanding the interaction of nanoparticles (NP) with ceramide lipids is important in developing strategies to overcome the formidable obstacle that is skin. This paper presents studies of interactions between N-isopropylacrylamide nanogels, crosslinked with 30% N,N'-methylenebisacrylamide, and model ceramide lipid monolayers at the air-water interface as a function of temperature. In the case of the mixed ceramide/cholesterol/behenic acid monolayer, the interaction of nanogels with the ceramide was strongly mediated by the fatty acids. This interaction between nanogels and monolayer components is dominated by hydrophobic-hydrophobic binding. The data show the important intermediary role of the fatty acid in facilitating transmembrane transport. For a pure ceramide lipid monolayer, the neutron reflectivity (NR), Brewster angle microscopy (BAM) and surface pressure results showed a lipid-nanogel complex formation and the subsequent depletion/solubilisation of the lipids from the interface when the area per molecule for the lipid was increased from 42 to 44 Å 2 . Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms.

    Science.gov (United States)

    Poveda, José A; Marcela Giudici, A; Lourdes Renart, M; Morales, Andrés; González-Ros, José M

    2017-09-01

    Research on ion channel modulation has become a hot topic because of the key roles these membrane proteins play in both prokaryotic and eukaryotic organisms. In this respect, lipid modulation adds to the overall modulatory mechanisms as a potential via to find new pharmacological targets for drug design based on interfering with lipid/channel interactions. However, our knowledge in this field is scarce and often circumscribed to the sites where lipids bind and/or its final functional consequences. To fully understand this process it is necessary to improve our knowledge on its molecular basis, from the binding sites to the signalling pathways that derive in structural and functional effects on the ion channel. In this review, we have compiled information about such mechanisms and established a classification into four different modes of action. Afterwards, we have revised in more detail the lipid modulation of Cys-loop receptors and of the potassium channel KcsA, which were chosen as model channels modulated by specific lipids. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models.

    Science.gov (United States)

    Agopian, Audrey; Castano, Sabine

    2014-01-01

    The fusion peptide of Ebola virus comprises a highly hydrophobic sequence located downstream from the N-terminus of the glycoprotein GP2 responsible for virus-host membrane fusion. The internal fusion peptide of GP2 inserts into membranes of infected cell to mediate the viral and the host cell membrane fusion. Since the sequence length of Ebola fusion peptide is still not clear, we study in the present work the behavior of two fusion peptides of different lengths which were named EBO17 and EBO24 referring to their amino acid length. The secondary structure and orientation of both peptides in lipid model systems made of DMPC:DMPG:cholesterol:DMPE (6:2:5:3) were investigated using PMIRRAS and polarized ATR spectroscopy coupled with Brewster angle microscopy. The infrared results showed a structural flexibility of both fusion peptides which are able to transit reversibly from an α-helix to antiparallel β-sheets. Ellipsometry results corroborate together with isotherm measurements that EBO peptides interacting with lipid monolayer highly affected the lipid organization. When interacting with a single lipid bilayer, at low peptide content, EBO peptides insert as mostly α-helices mainly perpendicular into the lipid membrane thus tend to organize the lipid acyl chains. Inserted in multilamellar vesicles at higher peptide content, EBO peptides are mostly in β-sheet structures and induce a disorganization of the lipid chain order. In this paper, we show that the secondary structure of the Ebola fusion peptide is reversibly flexible between α-helical and β-sheet conformations, this feature being dependent on its concentration in lipids, eventually inducing membrane fusion. © 2013.

  11. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    OpenAIRE

    Punge, H. J.; Gallée, H.; Kageyama, M.; Krinner, G.

    2012-01-01

    Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB) on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet ...

  12. Predictive models for deposit accumulation and corrosion on secondary side of steam generators

    International Nuclear Information System (INIS)

    Choi, Samuel; Moroney, Velvet; Marks, Chuck; Kreider, Marc

    2012-09-01

    Experience demonstrates that deposit accumulation in steam generators (SGs) can lead to corrosion of tubes. To minimize the probability of this corrosion, utilities employ a variety of deposit control strategies. However, these processes can involve significant costs and potentially affect outage critical paths. Since there has been no model that quantifies tube degradation as a function of deposit accumulation, utilities have had to make decisions regarding deposit control strategies without a reliable quantitative basis. The objective of this study is to develop methods that utilities can use to quantify benefits of SG deposit control strategies with regard to rates of secondary-side tube corrosion. Two different methodologies are employed in this work. The first methodology is empirical and is involved an attempt to correlate degradation rates with deposit accumulation as indicated by sludge pile height. Because there has been relatively little tube degradation in currently operating steam generators, this correlation is developed using data for Alloy 600MA SG tubes. To increase the number of units that could be used for defect/deposit correlations, a method to relate the sludge pile deposit mass and the number of tubes with non-zero sludge height is developed. The second methodology is theoretical and is based on the use of calculated differences in temperature and chemistry to predict the effect of deposits on corrosion rates. Computational fluid dynamics (CFD) models are developed to simulate thermal-hydraulic conditions representative of conditions that are present within porous deposits formed at the top of tube sheet. This paper will discuss the development and application of the predictive models for deposit accumulation and corrosion on the secondary side of steam generators. (authors)

  13. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.

  14. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Arias, J.; Marques, L.A.; Ruiz-Bueno, A.; Bailon, L.

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results

  15. SANS study of the unilamellar DMPC vesicles. The fluctuation model of lipid bilayer

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Vinod, A.

    2003-01-01

    On the basis of the separated form-factors model, parameters of the polydispersed unilamellar DMPC vesicle population are analyzed. The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The results of fitting of the experimental data obtained at the small angle spectrometer SANS-I, PSI (Switzerland) are: average vesicle radius 272±0.4 Armstrong, polydispersity of the radius 27 %, membrane thickness 50.6± Armstrong, thickness of hydrocarbon chain region 21.4±2.8 Armstrong, number of water molecules located per lipid molecule 13±1, and DMPC surface area 59±2 Armstrong 2 . The calculated water distribution function across the bilayer directly explains why lipid membrane is easy penetrated by water molecules

  16. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition

    International Nuclear Information System (INIS)

    Evans, C.D.; Caporn, S.J.M.; Carroll, J.A.; Pilkington, M.G.; Wilson, D.B.; Ray, N.; Cresswell, N.

    2006-01-01

    A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems. - Enhanced carbon sequestration may slow the rate of nitrogen saturation in heathlands

  17. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Jansson, Per-Erik; Karlberg, Louise [Royal Inst. of Technology, Stockholm (Sweden). Dept. Land and Water Resources

    2006-03-15

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  18. A model of accumulation of radionuclides in biosphere originating from groundwater contamination

    International Nuclear Information System (INIS)

    Gaerdenaes, Annemieke; Jansson, Per-Erik; Karlberg, Louise

    2006-03-01

    The objective of this study is to introduce a module in CoupModel describing the transport and accumulation in the biosphere of a radionuclide originating from a ground water contamination. Two model approaches describing the plant uptake of a radionuclide were included, namely passive and active uptake. Passive uptake means in this study that the root uptake rate of a radionuclide is governed by water uptake. Normal mechanism for the passive water uptake is the convective flux of water from the soil to the plant. An example of element taken up passively is Ca. Active plant uptake is in this model defined as the root uptake rate of a radionuclide that is governed by carbon assimilation i.e. photosynthesis and plant growth. The actively taken up element can for example be an element essential to plant, but not available in high enough concentration by passive uptake alone, like the major nutrients N and P or an element that very well resembles a plant nutrient, like Cs resembles K. Active uptake of trace element may occur alone or in addition to passive uptake. Normal mechanism for the active uptake is molecular diffusion from the soil solution to the roots or via any other organism living in symbiosis with the roots like the mycorrhiza. Also a model approach describing adsorption was introduced. CoupModel dynamically couples and simulates the flows of water, heat, carbon and nitrogen in the soil/plant/atmosphere system. Any number of plants may be defined and are divided into roots, leaves, stem and grain. The soil is considered in one vertical profile that may be represented into a maximum of 100 layers. The model is the windows-successor and integrated version of the DOS-models SOIL and SOILN, which have been widely used on different ecosystems and climate regions during 25 years time period. To this soil/plant/atmosphere model were introduced a module describing accumulation of a radionuclide in the biosphere originating from groundwater contamination. The

  19. Detrimental effects of fluvastatin on plasma lipid metabolism in rat breast carcinoma model

    Directory of Open Access Journals (Sweden)

    Kapinová Andrea

    2013-01-01

    Full Text Available From clinical practice, obvious positive effects of statins on plasma lipid metabolism are well known. On the other hand, there are several experimental rodent studies, where these beneficial effects were not confirmed. The effects of fluvastatin on selected serum lipid parameters in a rat model of experimental breast cancer were determined. The drug was dietary administered at two concentrations of 20 and 200 mg/kg. At the end of the study (experiment duration - 18 weeks the blood from each animal was collected and serum lipid parameters were evaluated. Fluvastatin in both treated groups significantly increased parameters of serum lipids (mostly in a dose dependent manner. Fluvastatin in both treated groups of animals significantly increased serum levels of triacylglycerols, total cholesterol, and LDL-, HDL-, VLDL-cholesterol when compared to the control group. Our results pointed out to the apparent harmful effects of fluvastatin on plasma lipid metabolism in rat mammary carcinogenesis. Based on our previous results, it seems that rats commonly used in cancer model studies are generally unresponsive to the hypocholesterolemic effects of statins.

  20. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States

    Science.gov (United States)

    Anning, D.W.

    2011-01-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000(kg/year)/km2 for the Salton Sea accounting unit. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  1. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Directory of Open Access Journals (Sweden)

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  2. MR-Visible Lipids and the Tumor Microenvironment

    Science.gov (United States)

    Delikatny, E. James; Chawla, Sanjeev; Leung, Daniel-Joseph; Poptani, Harish

    2013-01-01

    MR-visible lipids or mobile lipids are defined as lipids that are observable using proton magnetic resonance spectroscopy in cells and in tissues. These MR-visible lipids are composed of triglycerides and cholesterol esters that accumulate in intracellular neutral lipid droplets, where their MR visibility is conferred as a result of the increased molecular motion available in this unique physical environment. This review will discuss factors that lead to the biogenesis of MR-visible lipids in cancer cells and in other cell types such as immune cells and fibroblasts. We focus on the accumulations of mobile lipids that are inducible in cultured cells by a number of stresses, including culture conditions and in response to activating stimuli or apoptotic cell death induced by anticancer drugs. This is compared with animal tumor models, where increases in mobile lipids are observed in response to chemo and radiotherapy, and to human tumors where mobile lipids are observed predominantly in high-grade brain tumors and in regions of necrosis. Conducive conditions for mobile lipid formation in the tumor microenvironment will be discussed including low pH, oxygen availability and the presence of inflammatory cells. It is concluded that MR-visible lipids appear in cancer cells and human tumors as a stress response. Mobile lipids stored as neutral lipid droplets may play a role in detoxification of the cell or act as an alternate energy source, especially in cancer cells, which often grow in ischemic/hypoxic environments. The role of MR-visible lipids in cancer diagnosis and assessment of treatment response both in animal models of cancer as well as human brain tumors will also be discussed. Although technical limitations exist in the accurate detection of intratumoral mobile lipids, early increases in mobile lipids after therapeutic interventions may be used as a potential biomarker for assessing treatment response in cancer. PMID:21538631

  3. Snow accumulation/melting model (SAMM for integrated use in regional scale landslide early warning systems

    Directory of Open Access Journals (Sweden)

    G. Martelloni

    2013-03-01

    Full Text Available We propose a simple snow accumulation/melting model (SAMM to be applied at regional scale in conjunction with landslide warning systems based on empirical rainfall thresholds. SAMM is based on two modules modelling the snow accumulation and the snowmelt processes. Each module is composed by two equations: a conservation of mass equation is solved to model snowpack thickness and an empirical equation for the snow density. The model depends on 13 empirical parameters, whose optimal values were defined with an optimisation algorithm (simplex flexible using calibration measures of snowpack thickness. From an operational point of view, SAMM uses as input data only temperature and rainfall measurements, bringing about the additional benefit of a relatively easy implementation. After performing a cross validation and a comparison with two simpler temperature index models, we simulated an operational employment in a regional scale landslide early warning system (EWS and we found that the EWS forecasting effectiveness was substantially improved when used in conjunction with SAMM.

  4. Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model

    NARCIS (Netherlands)

    Marrink, SJ; Risselada, J; Mark, AE

    The transformation between a gel and a fluid phase in dipalmitoyl-phosphatidylcholine (DPPC) bilayers has been simulated using a coarse grained (CG) model by cooling bilayer patches composed of up to 8000 lipids. The critical step in the transformation process is the nucleation of a gel cluster

  5. Data, analysis and modeling of physical properties for process designof systems involving lipids

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    2013-01-01

    Pure component and mixture properties are necessary for synthesis, design, and analysis of processes forthe production of edible oils, fats, biodiesel, and other lipids. The lack of measured data for these systemsmakes it necessary to develop reliable predictive models based on limited data. We...

  6. Structure and interaction with lipid membrane models of Semliki Forest virus fusion peptide.

    Science.gov (United States)

    Agopian, A; Quetin, M; Castano, S

    2016-11-01

    Semliki Forest virus (SFV) is a well-characterized alphavirus that infects cells via endocytosis and an acid-triggered fusion step using class II fusion proteins. Membrane fusion is mediated by the viral spike protein, a heterotrimer of two transmembrane subunits, E1 and E2, and a peripheral protein, E3. Sequence analysis of the E1 ectodomain of a number of alphaviruses demonstrated the presence of a highly conserved hydrophobic domain on the E1 ectodomain. This sequence was proposed to be the fusion peptide of SFV and is believed to be the domain of E1 that interacts with the target membrane and triggers fusion. Here, we investigate the structure and the interaction with lipid membrane models of 76 YQCKVYTGVYPFMWGGAYCFC 96 sequence from SFV, named SFV21, using optical method (ellipsometry) and vibrational spectroscopiy approaches (Polarization Modulation infra-Red Reflection Absorption Spectroscopy, PMIRRAS, and polarized ATR-FTIR). We demonstrate a structural flexibility of SFV21 sequence whether the lateral pressure and the lipid environment. In a lipid environment that mimics eukaryotic cell membranes, a conformational transition from an α-helix to a β-sheet is induced in the presence of lipid by increasing the peptide to lipid ratio, which leads to important perturbations in the membrane organisation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Quantitative profiling of brain lipid raft proteome in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Kalinowska, Magdalena; Castillo, Catherine; Francesconi, Anna

    2015-01-01

    Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders.

  8. Windbreak effect on biomass and grain mass accumulation of corn: a modeling approach

    International Nuclear Information System (INIS)

    Zhang, H.; Brandle, J.R.

    1996-01-01

    While numerous studies have indicated that field windbreaks both improve crop growing conditions and generally enhance crop growth and yield, especially under less favorable conditions, the relationship between the two is not clearly understood. A simple model is proposed to simulate biomass and grain mass accumulation of corn (Zea mays L,) with a windbreak shelter or without (exposed condition). The model is based on the positive relationship between intercepted solar radiation and biomass accumulation and requires plant population and hourly inputs of solar radiation and air temperature. Using published data, radiation use efficiency (RUE) was related to plant population, and a temperature function was established between the relative corn growth and temperature for pre-silking stages. Biomass and grain mass simulated by the model agreed well with those measured for both sheltered and unsheltered plants from 1990 to 1992. Windbreaks did not significantly increase biomass or grain mass of corn for this study, even though air temperature was greater with than without shelter, probably indicating that the microclimatic changes induced by windbreaks were not physiologically significant for the 3-yr period studied. The model has potential use in future studies to relate windbreak effects to crop yield and to evaluate windbreak designs for maximum benefits

  9. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Accumulation of perfluorooctane sulfonate (PFOS) in the food chain of the Western Scheldt estuary: Comparing field measurements with kinetic modeling

    NARCIS (Netherlands)

    de Vos, M.G.; Huijbregts, M.A.J.; van den Heuvel-Greve, M.; Vethaak, A.D.; de Vijver, K.I.V.; Leonards, P.E.G.; van Leeuwen, S.P.J.; de Voogt, P.; Hendriks, A.J.

    2008-01-01

    The environmentally persistent perfluorooctane sulfonate (PFOS) is a perfluoroalkylated acid (PFA), which has been found to accumulate and biomagnify through food webs all over the world. In the present investigation, the accumulation kinetics of PFOS was explored using the bioaccumulation model

  11. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    International Nuclear Information System (INIS)

    Auzans, Aris; Teder, Allan; Tkaczyk, Alan H.

    2016-01-01

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  12. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    Energy Technology Data Exchange (ETDEWEB)

    Auzans, Aris [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia); Teder, Allan [School of Economics and Business Administration, University of Tartu, Narva mnt 4, EE-51009 Tartu (Estonia); Tkaczyk, Alan H., E-mail: alan@ut.ee [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia)

    2016-12-15

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  13. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  14. Further investigations on the role of ascorbic acid in stratum corneum lipid models after UV exposure.

    Science.gov (United States)

    Trommer, Hagen; Böttcher, Rolf; Huschka, Christoph; Wohlrab, Wolfgang; Neubert, Reinhard H H

    2005-08-01

    This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.

  15. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice

    Czech Academy of Sciences Publication Activity Database

    Liisberg, U.; Fauske, K. R.; Kuda, Ondřej; Fjare, E.; Myrmel, L. S.; Norberg, N.; Froyland, L.; Graff, I. E.; Liaset, B.; Kristiansen, K.; Kopecký, Jan; Madsen, L.

    2016-01-01

    Roč. 33, Jul (2016), s. 119-127 ISSN 0955-2863 Institutional support: RVO:67985823 Keywords : diet * dietary lipids * endocannabinoids * fish oil * phospholipids * liver * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.518, year: 2016

  16. Acute and perinatal-programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation

    DEFF Research Database (Denmark)

    Hellgren, Lars; Jensen, Runa I.; Waterstradt, Michelle S. G.

    2014-01-01

    Objective. Maternal high-fat intake during pregnancy may have long-term consequences in the offspring. Since this might relate to the capacity of mitochondrial metabolic adaptation and hepatic lipid metabolism, we investigated how maternal high-fat intake affected mitochondrial function and hepat...

  17. Modeling blowing snow accumulation downwind of an obstruction: The Ohara Eulerian particle distribution equation

    Science.gov (United States)

    Kinar, N. J.

    2017-05-01

    An equation was proposed to model the height of blowing snow accumulation downwind of an obstacle such as vegetation, a snow fence, a building, or a topographic feature. The equation does not require aerodynamic flow condition parameters such as wind speed, allowing for the spatial distribution of snow to be determined at locations where meteorological data is not available. However, snow particle diffusion, drift, and erosion coefficients must be estimated for application of the equation. These coefficients can be used to provide insight into the relative magnitude of blowing snow processes at a field location. Further research is required to determine efficient methods for coefficient estimation. The equation could be used with other models of wind-transported snow to predict snow accumulation downwind of an obstacle without the need for wind speed adjustments or correction equations. Applications for this equation include the design of snow fences, and the use of this equation with other hydrological models to predict snow distribution, climate change, drought, flooding, and avalanches.

  18. Modelization of the Current and Future Habitat Suitability of Rhododendron ferrugineum Using Potential Snow Accumulation.

    Directory of Open Access Journals (Sweden)

    Benjamin Komac

    Full Text Available Mountain areas are particularly sensitive to climate change. Species distribution models predict important extinctions in these areas whose magnitude will depend on a number of different factors. Here we examine the possible impact of climate change on the Rhododendron ferrugineum (alpenrose niche in Andorra (Pyrenees. This species currently occupies 14.6 km2 of this country and relies on the protection afforded by snow cover in winter. We used high-resolution climatic data, potential snow accumulation and a combined forecasting method to obtain the realized niche model of this species. Subsequently, we used data from the high-resolution Scampei project climate change projection for the A2, A1B and B1 scenarios to model its future realized niche model. The modelization performed well when predicting the species's distribution, which improved when we considered the potential snow accumulation, the most important variable influencing its distribution. We thus obtained a potential extent of about 70.7 km(2 or 15.1% of the country. We observed an elevation lag distribution between the current and potential distribution of the species, probably due to its slow colonization rate and the small-scale survey of seedlings. Under the three climatic scenarios, the realized niche model of the species will be reduced by 37.9-70.1 km(2 by the end of the century and it will become confined to what are today screes and rocky hillside habitats. The particular effects of climate change on seedling establishment, as well as on the species' plasticity and sensitivity in the event of a reduction of the snow cover, could worsen these predictions.

  19. Modelization of the Current and Future Habitat Suitability of Rhododendron ferrugineum Using Potential Snow Accumulation.

    Science.gov (United States)

    Komac, Benjamin; Esteban, Pere; Trapero, Laura; Caritg, Roger

    2016-01-01

    Mountain areas are particularly sensitive to climate change. Species distribution models predict important extinctions in these areas whose magnitude will depend on a number of different factors. Here we examine the possible impact of climate change on the Rhododendron ferrugineum (alpenrose) niche in Andorra (Pyrenees). This species currently occupies 14.6 km2 of this country and relies on the protection afforded by snow cover in winter. We used high-resolution climatic data, potential snow accumulation and a combined forecasting method to obtain the realized niche model of this species. Subsequently, we used data from the high-resolution Scampei project climate change projection for the A2, A1B and B1 scenarios to model its future realized niche model. The modelization performed well when predicting the species's distribution, which improved when we considered the potential snow accumulation, the most important variable influencing its distribution. We thus obtained a potential extent of about 70.7 km(2) or 15.1% of the country. We observed an elevation lag distribution between the current and potential distribution of the species, probably due to its slow colonization rate and the small-scale survey of seedlings. Under the three climatic scenarios, the realized niche model of the species will be reduced by 37.9-70.1 km(2) by the end of the century and it will become confined to what are today screes and rocky hillside habitats. The particular effects of climate change on seedling establishment, as well as on the species' plasticity and sensitivity in the event of a reduction of the snow cover, could worsen these predictions.

  20. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  1. Expression of type I and type II bovine scavenger receptors in Chinese hamster ovary cells: Lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M. (Massachusetts Inst. of Tech., Cambridge (United States) Massachusetts General Hospital, Boston (United States)); Ekkel, Y.; Rohrer, L.; Penman, M.; Freedman, N.J.; Krieger, M. (Massachusetts Inst. of Tech., Cambridge (United States)); Chisolm, G.M. (Research Inst. of the Cleveland Clinic Foundation, OH (United States))

    1991-06-01

    Type I and type II scavenger receptors, which have been implicated in the development of atherosclerosis and other macrophage-associated functions, differ only by the presence in the type I receptor of an extracellular cysteine-rich C-terminal domain. Stable Chinese hamster ovary (CHO) cell transfectants expressing high levels of either the type I or type II bovine scavenger receptors have been generated. Type I and type II receptors in these cells mediated high-affinity saturable endocytosis of both {sup 125}I-labeled acetylated low density lipoprotein (LDL) and {sup 125}I-labeled oxidized LDL with the distinctive broad ligand specificity characteristic of scavenger receptors. After incubation for 2 days with acetylated LDL, the transfected cells accumulated oil red O-staining lipid droplets reminiscent of those in macrophage foam cells, whereas untransfected CHO cells did not. Thus, macrophage-specific gene products other than the scavenger receptor are not required for modified-LDL-induced intracellular lipid accumulation. In transfected cells, acetylated LDL efficiently competed for both its own endocytosis and that of oxidized LDL. This nonreciprocal cross competition suggests that these ligands may bind to nonidentical but interacting sites on a single receptor. Results were similar for transfectants expressing either type I or type II scavenger receptors. The nonreciprocal cross competition seen in the transfected CHO cells differs from that previously observed with cultured macrophages.

  2. Models of dynamic extraction of lipid tethers from cell membranes

    International Nuclear Information System (INIS)

    Nowak, Sarah A; Chou, Tom

    2010-01-01

    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers

  3. Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Science.gov (United States)

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842

  4. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available The expanded growth model is developed to describe accumulation of plant biomass (Mg ha(-1 and mineral elements (kg ha(-1 in with calendar time (wk. Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L. growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N, phosphorus (P, and potassium (K. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

  5. [Effect of ethanol extract from Matbuhi Aftimun on blood lipide level in rat hyperilpldemla model].

    Science.gov (United States)

    Islam, Rabigul; Mamat, Yultuz; Rapkat, Haximjan

    2010-07-01

    To investigate the acute toxicity, lipid reducing effect and mechanism of action of ethanol extracts of Matbuhi Aftimun (E-MA), a classic prescription of Uighur medicine, on hyperlipidemia rat model. The LD50 or maximum tolerance of rats to E-MA was determined by simplified probit method. Hyperlipidemia rat model was established in SD rats by feeding high lipid emulsion, then E-MA at different dosages (0.80 g/kg, 1.60 g/kg and 3.20 g/kg) was given orally to them. The effects of E-MA on model rats' serum lipids, including total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglyceride (TG), were observed. And its effects on malondialdehydec (MDA) content, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), total lipase, including lipoprotein lipase (LPL) and hepato-lipase (HL) activities in the liver homogenate were assayed. The maximum tolerance of rats to E-MA was 64 g (crude drug)/kg. Compared with the hyperlipidemia model rat, the blood TC level was lower (P 0.05), also on the levels of SOD, GSH-PX and total lipase in the liver homogenate (P > 0.05). E-MA shows a serum TC reducing effect on hyperlipidemia rat model with low toxicity in mice.

  6. Transgenic UCP1 in white fat protects against lipid accumulation in skeletal muscle of mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Jeleník, Tomáš; Jílková, Zuzana; Slámová, Kristýna; Rossmeisl, Martin; Kopecký, Jan

    2007-01-01

    Roč. 50, Suppl.1 (2007), S321-S321 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /43./. 18.09.2007-21.09.2007, Amsterdam] R&D Projects: GA ČR(CZ) GD303/03/H065 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * respiratory uncoupling * white fat * lipid metabolism Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  7. Organ Damage and Hepatic Lipid Accumulation in Carp (Cyprinus carpio L.) after Feed-Borne Exposure to the Mycotoxin, Deoxynivalenol (DON)

    OpenAIRE

    Pietsch, Constanze; Schulz, Carsten; Rovira, Pere; Kloas, Werner; Burkhardt-Holm, Patricia

    2014-01-01

    Deoxynivalenol (DON) frequently contaminates animal feed, including fish feed used in aquaculture. This study intends to further investigate the effects of DON on carp (Cyprinus carpio L.) at concentrations representative for commercial fish feeds. Experimental feeding with 352, 619 or 953 μg DON kg−1 feed resulted in unaltered growth performance of fish during six weeks of experimentation, but increased lipid peroxidation was observed in liver, head kidney and spleen after feeding of fish wi...

  8. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  9. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ

    Directory of Open Access Journals (Sweden)

    Daniel A. Hahn

    2017-04-01

    Full Text Available Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to

  10. Modulation of phytochrome signaling networks for improved biomass accumulation using a bioenergy crop model

    Energy Technology Data Exchange (ETDEWEB)

    Mockler, Todd C. [Donald Danforth Plant Science Center, Saint Louis, MO (United States)

    2016-11-07

    Plant growth and development, including stem elongation, flowering time, and shade-avoidance habits, are affected by wavelength composition (i.e., light quality) of the light environment. the molecular mechanisms underlying light perception and signaling pathways in plants have been best characterized in Arabidopsis thaliana where dozens of genes have been implicated in converging, complementary, and antagonistic pathways communicating light quality cues perceived by the phytochrome (red/far-red) cryptochrome (blue) and phototropin (blue) photorecptors. Light perception and signaling have been studied in grasses, including rice and sorghum but in much less detail than in Arabidopsis. During the course of the Mocker lab's DOE-funded wrok generating a gene expression atlas in Brachypodium distachyon we observed that Brachypodium plants grown in continuous monochromatic red light or continuous white light enriched in far-red light accumulated significantly more biomass and exhibited significantly greater seed yield than plants grown in monochromatic blue light or white light. This phenomenon was also observed in two other grasses, switchgrass and rice. We will systematically manipulate the expression of genes predicted to function in Brachypodium phytochrome signaling and assess the phenotypic consequences in transgenic Brachypodium plants in terms of morphology, stature, biomass accumulation, and cell wall composition. We will also interrogate direct interactions between candidate phytochrome signaling transcription factors and target promoters using a high-throughput yeast one-hybrid system. Brachypodium distachyon has emerged as a model grass species and is closely related to candidate feedstock crops for bioethanol production. Identification of genes capable of modifying growth characteristics of Brachypodium, when misexpressed, in particular increasing biomass accumulation, by modulating photoreceptor signaling will provide valuable candidates for

  11. A metabolomic analysis of two intravenous lipid emulsions in a murine model.

    Directory of Open Access Journals (Sweden)

    Brian T Kalish

    Full Text Available Parenteral nutrition (PN, including intravenous lipid administration, is a life-saving therapy but can be complicated by cholestasis and liver disease. The administration of intravenous soy bean oil (SO has been associated with the development of liver disease, while the administration of intravenous fish oil (FO has been associated with the resolution of liver disease. The biochemical mechanism of this differential effect is unclear. This study compares SO and FO lipid emulsions in a murine model of hepatic steatosis, one of the first hits in PN-associated liver disease.We established a murine model of hepatic steatosis in which liver injury is induced by orally feeding mice a PN solution. C57BL/6J mice were randomized to receive PN alone (a high carbohydrate diet (HCD, PN plus intravenous FO (Omegaven®; Fresenius Kabi AG, Bad Homburg VDH, Germany, PN plus intravenous SO (Intralipid®; Fresenius Kabi AG, Bad Homburg v.d.H., Germany, for Baxter Healthcare, Deerfield, IL, or a chow diet. After 19 days, liver tissue was harvested from all animals and subjected to metabolomic profiling.The administration of an oral HCD without lipid induced profound hepatic steatosis. SO was associated with macro- and microvesicular hepatic steatosis, while FO largely prevented the development of steatosis. 321 detectable compounds were identified in the metabolomic analysis. HCD induced de novo fatty acid synthesis and oxidative stress. Both FO and SO relieved some of the metabolic shift towards de novo lipogenesis, but FO offered additional advantages in terms of lipid peroxidation and the generation of inflammatory precursors.Improved lipid metabolism combined with reduced oxidative stress may explain the protective effect offered by intravenous FO in vivo.

  12. Cholesterol as a factor regulating the influence of natural (PAF and lysoPAF) vs synthetic (ED) ether lipids on model lipid membranes.

    Science.gov (United States)

    Flasiński, Michał; Wydro, Paweł; Hąc-Wydro, Katarzyna; Dynarowicz-Łątka, Patrycja

    2013-11-01

    In this work we have performed a comparative study on the effect of antineoplastic ether lipid-edelfosine (ED), its natural analogs - Platelet Activating Factor (PAF) and its precursor (lyso-PAF), both lacking anticancer properties, on cholesterol/phosphatidylcholine (Chol/PC) monolayers, serving as model membranes. Since all the above ether lipids are membrane active, it can be expected that their effect on membranes may differentiate their biological activity. Our investigations were aimed at studying potential relationship of the effect of ED, PAF and lyso-PAF on model membranes, differing in condensation. We have modified molecular packing of Chol/PC model systems either by increasing the level of sterol in the system or changing the structure of PC, while keeping the same sterol content. Additionally, we have performed a detailed comparison of the miscibility of ED, PAF and lyso-PAF with various membrane lipids. The collected data evidenced that all the investigated ether lipids influence Chol/PC films in the same way; however, in a different magnitude. Moreover, the interactions of ED, PAF and lyso-PAF with model membranes were the strongest at the highest level of sterol in the system. A thorough analysis of the obtained results has proved that the effect of the investigated ether lipids on membranes is not dependent on the condensation of the system, but it is strongly determined by the concentration of cholesterol. Since ED was found to interact with model membranes stronger than PAF and lyso-PAF, we have suggested that this fact may contribute to differences in cytotoxicity of these compounds. © 2013.

  13. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study.

    Science.gov (United States)

    Uematsu, N; Matsuzaki, K

    2000-10-01

    Various physicochemical properties play important roles in the membrane activities of amphipathic antimicrobial peptides. To examine the effects of the polar angle, two model peptides, thetap100 and thetap180, with polar angles of 100 degrees and 180 degrees, respectively, were designed, and their interactions with membranes were investigated in detail. These peptides have almost identical physicochemical properties except for polar angle. Like naturally occurring peptides, these peptides selectively bind to acidic membranes, assuming amphipathic alpha-helices, and formed peptide-lipid supramolecular complex pores accompanied by lipid flip-flop and peptide translocation. Despite its somewhat lower membrane affinity, thetap100 exhibited higher membrane permeabilization activity, a greater flip-flop rate, as well as more antimicrobial activity due to a higher pore formation rate compared with thetap180. Consistent with these results, the peptide translocation rate of thetap100 was higher. Furthermore, the number of peptides constituting thetap100 pores was less than that of thetap180, and thetap100 pores involved more lipid molecules, as reflected by its cation selectivity. The polar angle was found to be an important parameter determining peptide-lipid interactions.

  14. A generic model for estimating biomass accumulation and greenhouse gas emissions from perennial crops

    Science.gov (United States)

    Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan

    2017-04-01

    Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub-models

  15. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes displays axonal accumulation of alpha-synuclein.

    Directory of Open Access Journals (Sweden)

    Norihito Uemura

    2015-04-01

    Full Text Available Homozygous mutations in the glucocerebrosidase (GBA gene result in Gaucher disease (GD, the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD. To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/- medaka that are completely deficient in glucocerebrosidase (GCase activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD.

  16. Monitoring accumulation sediment characteristics in full scale sewer physical model with urban wastewater.

    Science.gov (United States)

    Regueiro-Picallo, Manuel; Naves, Juan; Anta, Jose; Suárez, Joaquín; Puertas, Jerónimo

    2017-07-01

    A series of experiments were carried out with real wastewater in a pilot flume located at A Coruña wastewater treatment plant (WWTP) (Spain). A full scale model was developed to test a circular (300 mm inner diameter) and an equivalent area egg-shaped plastic pipe under controlled experimental conditions (pipe slope 2-5‰, averaged discharge Q = 4 L/s). Velocity profiles and sediment accumulation in the pipe invert was daily measured. Within the 7-11 days, the average sediment accumulation rate found in the circular pipe was between 1.4 and 3.8 mm/d. The sediment height depended on the input wastewater sediment distribution and organic content. The egg-shaped pipe presented no sediment deposit for the same downstream boundary conditions, although biofilms were attached to the walls of both pipes. Besides, wastewater quality was monitored continuously and sediment composition was studied at the end of experiments. Two types of sediment were recorded: a granular bed deposit (ρ = 1,460 kg/m 3 , d 50 = 202 μm) and wall biofilms (ρ = 1,190 kg/m 3 , d 50 = 76 μm).

  17. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model.

    Science.gov (United States)

    Herrero-Fresno, Ana; Martínez, Noelia; Sánchez-Llana, Esther; Díaz, María; Fernández, María; Martin, Maria Cruz; Ladero, Victor; Alvarez, Miguel A

    2012-07-02

    Tyramine and histamine are the biogenic amines (BAs) most commonly found in cheese, in which they appear as a result of the microbial enzymatic decarboxylation of tyrosine and histidine respectively. Given their toxic effects, their presence in high concentrations in foods should be avoided. In this work, samples of three cheeses (Zamorano, Cabrales and Emmental) with long ripening periods, and that often have high BA concentrations, were screened for the presence of BA-degrading lactic acid bacteria (LAB). Seventeen isolates were found that were able to degrade tyramine and histamine in broth culture. All 17 isolates were identified by 16S rRNA sequencing as belonging to Lactobacillus casei. They were typed by plasmid S1-PFGE and genomic macrorestriction-PFGE analysis. Two strains (L. casei 4a and 5b) associated with high degradation rates for both BAs were selected to test how this ability might affect histamine and tyramine accumulation in a Cabrales-like mini-cheese manufacturing model. The quantification of BAs and the monitoring of the strains' growth over ripening were undertaken by RP-HPLC and qPCR respectively. Both strains were found to reduce histamine and tyramine accumulation. These two strains might be suitable for use as adjunct cultures for reducing the presence of BAs in cheese. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    the techniques very well suited for the study of the nanodisc system. Chapter 3 explains two different modelling approaches that can be used in the analysis of small-angle scattering data from lipid-protein complexes. These are the continuous approach where the system of interest is modelled as a few regular...... are particularly interesting to study because they are common targets for pharmaceutical drugs. At the same time they are unfortunately unstable in solution which make them challenging to study. Phospholipid nanodiscs are small patches of lipid membrane stabilised by a belt of amphipathic helices. They can act...... as carriers of membrane proteins. Together they form monodisperse soluble aggregates of about 10 nm in size. Chapter 2 introduces the method of small-angle scattering. Small-angle X-ray and neutron scattering are well suited for studying particles in solution on length scales from 1 to 100 nm. This makes...

  19. Source rock contributions to the Lower Cretaceous heavy oil accumulations in Alberta: a basin modeling study

    Science.gov (United States)

    Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.

    2012-01-01

    The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.

  20. Model of Organic Solar Cell Photocurrent Including the Effect of Charge Accumulation at Interfaces and Non-Uniform Carrier Generation

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Cester, Andrea; Rizzo, Antonio

    2017-01-01

    We developed an improved model to fit the photocurrent density versus voltage in organic solar cells. The model has been validated by fitting data from P3HT:PCBM solar cells. Our model quantitatively accounts for the band bending near the electrodes caused by charge accumulation in the active layer...

  1. The lipid-sensor TREM2 aggravates disease in a model of LCMV-induced hepatitis

    NARCIS (Netherlands)

    Kosack, L. (Lindsay); Gawish, R. (Riem); Lercher, A. (Alexander); Vilagos, B. (Bojan); Hladik, A. (Anastasiya); Lakovits, K. (Karin); Bhattacharya, A. (Anannya); Schliehe, C. (Christopher); Mesteri, I. (Ildiko); Knapp, S. (Sylvia); Bergthaler, A. (Andreas)

    2017-01-01

    textabstractLipid metabolism is increasingly being appreciated to affect immunoregulation, inflammation and pathology. In this study we found that mice infected with lymphocytic choriomeningitis virus (LCMV) exhibit global perturbations of circulating serum lipids. Mice lacking the lipid-sensing

  2. Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study.

    Science.gov (United States)

    Clay, Summer N; Clithero, John A; Harris, Alison M; Reed, Catherine L

    2017-01-01

    Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM) to choice and response time (RT) data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier) varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation.

  3. Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study

    Directory of Open Access Journals (Sweden)

    Summer N. Clay

    2017-10-01

    Full Text Available Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM to choice and response time (RT data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation.

  4. Factors contributing to the accumulation of reproductive isolation: A mixed model approach.

    Science.gov (United States)

    Castillo, Dean M

    2017-08-01

    The analysis of large datasets describing reproductive isolation between species has been extremely influential in the study of speciation. However, the statistical methods currently used for these data limit the ability to make direct inferences about the factors predicting the evolution of reproductive isolation. As a result, our understanding of iconic patterns and rules of speciation rely on indirect analyses that have clear statistical limitations. Phylogenetic mixed models are commonly used in ecology and evolution, but have not been applied to studies of reproductive isolation. Here I describe a flexible framework using phylogenetic mixed models to analyze data collected at different evolutionary scales, to test both categorical and continuous predictor variables, and to test the effect of multiple predictors on rates and patterns of reproductive isolation simultaneously. I demonstrate the utility of this framework by re-analyzing four classic datasets, from both animals and plants, and evaluating several hypotheses that could not be tested in the original studies: In the Drosophila and Bufonidae datasets, I found support for more rapid accumulation of reproductive isolation in sympatric species pairs compared to allopatric species pairs. Using Silene and Nolana , I found no evidence supporting the hypothesis that floral differentiation elevates postzygotic reproductive isolation. The faster accumulation of postzygotic isolation in sympatry is likely the result of species coexistence determined by the level of postzygotic isolation between species. In addition, floral trait divergence does not appear to translate into pleiotropic effects on postzygotic reproductive isolation. Overall, these methods can allow researchers to test new hypotheses using a single statistical method, while remedying the statistical limitations of several previous methods.

  5. Bayesian Analysis of a Lipid-Based Physiologically Based Toxicokinetic Model for a Mixture of PCBs in Rats

    Directory of Open Access Journals (Sweden)

    Alan F. Sasso

    2012-01-01

    Full Text Available A lipid-based physiologically based toxicokinetic (PBTK model has been developed for a mixture of six polychlorinated biphenyls (PCBs in rats. The aim of this study was to apply population Bayesian analysis to a lipid PBTK model, while incorporating an internal exposure-response model linking enzyme induction and metabolic rate. Lipid-based physiologically based toxicokinetic models are a subset of PBTK models that can simulate concentrations of highly lipophilic compounds in tissue lipids, without the need for partition coefficients. A hierarchical treatment of population metabolic parameters and a CYP450 induction model were incorporated into the lipid-based PBTK framework, and Markov-Chain Monte Carlo was applied to in vivo data. A mass balance of CYP1A and CYP2B in the liver was necessary to model PCB metabolism at high doses. The linked PBTK/induction model remained on a lipid basis and was capable of modeling PCB concentrations in multiple tissues for all dose levels and dose profiles.

  6. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules.

    Science.gov (United States)

    Sun, Yahui; Huang, Yun; Liao, Qiang; Xia, Ao; Fu, Qian; Zhu, Xun; Fu, Jingwei

    2018-02-01

    Aiming at alleviating the adverse effect of poor light penetrability on microalgae growth, planar waveguide modules functioned as diluting and redistributing the intense incident light within microalgae culture more homogeneously were introduced into a lab-scale open raceway pond (ORP) for Nannochloropsis oculata cultivation. As compared to the conventional ORP, the illumination surface area to volume ratio and effective illuminated volume percentage in the proposed ORP were respectively improved by 5.53 times and 19.68-172.72%. Consequently, the superior light distribution characteristics in the proposed ORP contributed to 193.33% and 443.71% increase in biomass concentration and lipid yield relative to those obtained in conventional ORP, respectively. Subsequently, the maximum biomass concentration (2.31 g L -1 ) and lipid yield (1258.65 mg L -1 ) was obtained when the interval between adjacent planar waveguide modules was 18 mm. The biodiesel produced in PWM-ORPs showed better properties than conventional ORP due to higher MUFA and C18:1 components proportions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Smart, Lawrence B

    2006-01-01

    Cuticular wax deposition and composition affects drought tolerance and yield in plants. We examined the relationship between wax and dehydration stress by characterizing the leaf cuticular wax of tree tobacco (Nicotiana glauca L. Graham) grown under periodic dehydration stress. Total leaf cuticular wax load increased after each of three periods of dehydration stress using a CH2Cl2 extraction process. Overall, total wax load increased 1.5- to 2.5-fold, but composition of the wax was not altered. Homologous series of wax components were classified into organic groups; n-hentriacontane was the largest component (>75%) with alcohols and fatty acids representing drying event. Leaves excised from plants subjected to multiple drying events were more resistant to water loss compared to leaves excised from well-watered plants, indicating that there is a negative relationship between total wax load and epidermal conductance. Lipid transfer proteins (LTPs) are thought to be involved in the transfer of lipids through the extracellular matrix for the formation of cuticular wax. Using northern analysis, a 6-fold increase of tree tobacco LTP gene transcripts was observed after three drying events, providing further evidence that LTP is involved in cuticle deposition. The simplicity of wax composition and the dramatic wax bloom displayed by tree tobacco make this an excellent species in which to study the relationship between leaf wax deposition and drought tolerance.

  8. Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells.

    Science.gov (United States)

    Zhu, J J; Luo, J; Sun, Y T; Shi, H B; Li, J; Wu, M; Yu, K; Haile, A B; Loor, J J

    2015-05-01

    The role of fatty acid synthase (FASN) on de novo fatty acid synthesis has been well established. In monogastrics, unlike acetyl-coenzyme A carboxylase, FASN is primarily controlled at the transcriptional level. However, no data exist on ruminant mammary cells evaluating effects of FASN knockdown on mRNA expression of lipogenic genes. Inhibition of FASN in mammary cells by C75-mediated interference, a synthetic inhibitor of FASN activity, and short hairpin RNA-mediated interference markedly reduced cellular triglyceride content at least in part by decreasing the expression of genes related to triglyceride synthesis (GPAT, AGPAT6, and DGAT2) and enhancing the expression of lipolysis-related genes (ATGL and HSL). Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47, ADFP, BTN1A1, and XDH), cellular lipid droplets also were reduced sharply after incubation with C75 or adenovirus-short-hairpin-RNA. The results underscored the essential role of FASN in the overall process of milk-fat formation in goat mammary epithelial cells. Copyright © 2015 American Dairy Science Association. Pu