WorldWideScience

Sample records for modeling klamath river

  1. Water-quality modeling of Klamath Straits Drain recirculation, a Klamath River wetland, and 2011 conditions for the Link River to Keno Dam reach of the Klamath River, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Deas, Michael L.; Rounds, Stewart A.

    2014-01-01

    The upper Klamath River and adjacent Lost River are interconnected basins in south-central Oregon and northern California. Both basins have impaired water quality with Total Maximum Daily Loads (TMDLs) in progress or approved. In cooperation with the Bureau of Reclamation, the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc., have conducted modeling and research to inform management of these basins for multiple purposes, including agriculture, endangered species protection, wildlife refuges, and adjacent and downstream water users. A water-quality and hydrodynamic model (CE-QUAL-W2) of the Link River to Keno Dam reach of the Klamath River for 2006–09 is one of the tools used in this work. The model can simulate stage, flow, water velocity, ice cover, water temperature, specific conductance, suspended sediment, nutrients, organic matter in bed sediment and the water column, three algal groups, three macrophyte groups, dissolved oxygen, and pH. This report documents two model scenarios and a test of the existing model applied to year 2011, which had exceptional water quality. The first scenario examined the water-quality effects of recirculating Klamath Straits Drain flows into the Ady Canal, to conserve water and to decrease flows from the Klamath Straits Drain to the Klamath River. The second scenario explicitly incorporated a 2.73×106 m2 (675 acre) off-channel connected wetland into the CE-QUAL-W2 framework, with the wetland operating from May 1 through October 31. The wetland represented a managed treatment feature to decrease organic matter loads and process nutrients. Finally, the summer of 2011 showed substantially higher dissolved-oxygen concentrations in the Link-Keno reach than in other recent years, so the Link-Keno model (originally developed for 2006–09) was run with 2011 data as a test of model parameters and rates and to develop insights regarding the reasons for the improved water-quality conditions.

  2. Review of revised Klamath River Total Maximum Daily Load models from Link River Dam to Keno Dam, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Sullivan, Annett B.

    2013-01-01

    Flow and water-quality models are being used to support the development of Total Maximum Daily Load (TMDL) plans for the Klamath River downstream of Upper Klamath Lake (UKL) in south-central Oregon. For riverine reaches, the RMA-2 and RMA-11 models were used, whereas the CE-QUAL-W2 model was used to simulate pooled reaches. The U.S. Geological Survey (USGS) was asked to review the most upstream of these models, from Link River Dam at the outlet of UKL downstream through the first pooled reach of the Klamath River from Lake Ewauna to Keno Dam. Previous versions of these models were reviewed in 2009 by USGS. Since that time, important revisions were made to correct several problems and address other issues. This review documents an assessment of the revised models, with emphasis on the model revisions and any remaining issues. The primary focus of this review is the 19.7-mile Lake Ewauna to Keno Dam reach of the Klamath River that was simulated with the CE-QUAL-W2 model. Water spends far more time in the Lake Ewauna to Keno Dam reach than in the 1-mile Link River reach that connects UKL to the Klamath River, and most of the critical reactions affecting water quality upstream of Keno Dam occur in that pooled reach. This model review includes assessments of years 2000 and 2002 current conditions scenarios, which were used to calibrate the model, as well as a natural conditions scenario that was used as the reference condition for the TMDL and was based on the 2000 flow conditions. The natural conditions scenario included the removal of Keno Dam, restoration of the Keno reef (a shallow spot that was removed when the dam was built), removal of all point-source inputs, and derivation of upstream boundary water-quality inputs from a previously developed UKL TMDL model. This review examined the details of the models, including model algorithms, parameter values, and boundary conditions; the review did not assess the draft Klamath River TMDL or the TMDL allocations

  3. Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.

    2013-01-01

    The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.

  4. Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.

    2013-01-01

    A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of

  5. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-08-01

    In this study, a comparison between generalized regression neural network (GRNN) and multiple linear regression (MLR) models is given on the effectiveness of modelling dissolved oxygen (DO) concentration in a river. The two models are developed using hourly experimental data collected from the United States Geological Survey (USGS Station No: 421209121463000 [top]) station at the Klamath River at Railroad Bridge at Lake Ewauna. The input variables used for the two models are water, pH, temperature, electrical conductivity, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), the mean absolute error (MAE), Willmott's index of agreement (d), and correlation coefficient (CC) statistics. Of the two approaches employed, the best fit was obtained using the GRNN model with the four input variables used.

  6. Application of the Systems Impact Assessment Model (SIAM) to Fishery Resource Issues in the Klamath River, California

    Science.gov (United States)

    Campbell, Sharon G.; Bartholow, John M.; Heasley, John

    2010-01-01

    At the request of two offices of the U.S. Fish and Wildlife Service (FWS) located in Yreka and Arcata, Calif., we applied the Systems Impact Assessment Model (SIAM) to analyze a variety of water management concerns associated with the Federal Energy Regulatory Commission (FERC) relicensing of the Klamath hydropower projects or with ongoing management of anadromous fish stocks in the mainstem Klamath River, Oregon and California. Requested SIAM analyses include predicted effects of reservoir withdrawal elevations, use of full active storage in Copco and Iron Gate Reservoirs to augment spring flows, and predicted spawning and juvenile outmigration timing of fall Chinook salmon. In an effort to further refine the analysis of spring flow effects on predicted fall Chinook production, additional SIAM analyses were performed for predicted response to spring flow release variability from Iron Gate Dam, high and low pulse flow releases, the predicted effects of operational constraints for both Upper Klamath Lake water surface elevations, and projected flow releases specified in the Klamath Project 2006 Operations Plan (April 10, 2006). Results of SIAM simulations to determine flow and water temperature relationships indicate that up to 4 degrees C of thermal variability can be attributed to flow variations, but the effect is seasonal. Much more of thermal variability can be attributed to air temperature variations, up to 6 degrees C. Reservoirs affect the annual thermal signature by delaying spring warming by about 3 weeks and fall cooling by about 2 weeks. Multi-level release outlets on Iron Gate Dam would have limited utility; however, if releases are small (700 cfs) and a near-surface and bottom-level outlet could be blended, then water temperature may be reduced by 2-4 degrees C for a 4-week period during September. Using the full active storage in Copco and Iron Gate Reservoir, although feasible, had undesirable ramifications such as earlier spring warming, loss of

  7. Simulating daily water temperatures of the Klamath River under dam removal and climate change scenarios

    Science.gov (United States)

    Perry, Russell W.; Risley, John C.; Brewer, Scott J.; Jones, Edward C.; Rondorf, Dennis W.

    2011-01-01

    A one-dimensional daily averaged water temperature model was used to simulate Klamath River temperatures for two management alternatives under historical climate conditions and six future climate scenarios. The analysis was conducted for the Secretarial Determination on removal of four hydroelectric dams on the Klamath River. In 2012, the Secretary of the Interior will determine if dam removal and implementation of the Klamath Basin Restoration Agreement (KBRA) (Klamath Basin Restoration Agreement, 2010) will advance restoration of salmonid fisheries and is in the public interest. If the Secretary decides dam removal is appropriate, then the four dams are scheduled for removal in 2020.

  8. Life history diversity in Klamath River steelhead

    Science.gov (United States)

    Hodge, Brian W.; Wilzbach, Peggy; Duffy, Walter G. G.; Quinones, Rebecca M.; Hobbs, James A.

    2016-01-01

    Oncorhynchus mykiss exhibits a vast array of life histories, which increases its likelihood of persistence by spreading risk of extirpation among different pathways. The Klamath River basin (California–Oregon) provides a particularly interesting backdrop for the study of life history diversity in O. mykiss, in part because the river is slated for a historic and potentially influential dam removal and habitat recolonization project. We used scale and otolith strontium isotope (87Sr/86Sr) analyses to characterize life history diversity in wildO. mykiss from the lower Klamath River basin. We also determined maternal origin (anadromous or nonanadromous) and migratory history (anadromous or nonanadromous) of O. mykiss and compared length and fecundity at age between anadromous (steelhead) and nonanadromous (Rainbow Trout) phenotypes of O. mykiss. We identified a total of 38 life history categories at maturity, which differed in duration of freshwater and ocean rearing, age at maturation, and incidence of repeat spawning. Approximately 10% of adult fish sampled were nonanadromous. Rainbow Trout generally grew faster in freshwater than juvenile steelhead; however, ocean growth afforded adult steelhead greater length and fecundity than adult Rainbow Trout. Although 75% of individuals followed the migratory path of their mother, steelhead produced nonanadromous progeny and Rainbow Trout produced anadromous progeny. Overall, we observed a highly diverse array of life histories among Klamath River O. mykiss. While this diversity should increase population resilience, recent declines in the abundance of Klamath River steelhead suggest that life history diversity alone is not sufficient to stabilize a population. Our finding that steelhead and Rainbow Trout give rise to progeny of the alternate form (1) suggests that dam removal might lead to a facultatively anadromous O. mykiss population in the upper basin and (2) raises the question of whether both forms of

  9. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen

  10. Drought in the Klamath River Basin

    Science.gov (United States)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  11. Predicting the thermal effects of dam removal on the Klamath River.

    Science.gov (United States)

    Bartholow, John M; Campbell, Sharon G; Flug, Marshall

    2004-12-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river's water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river's seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river's thermal regime during certain conditions for over 200 km of the mainstem.

  12. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    Science.gov (United States)

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  13. Anomalies of larval and juvenile shortnose and lost river suckers in upper Klamath Lake, Oregon

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Larval and juvenile shortnose (Chasmistes brevirostris) and Lost River (Deltistes luxatus) suckers from Upper Klamath Lake, OR, were examined to determine anomaly...

  14. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  15. Klamath River Water Quality Data from Link River Dam to Keno Dam, Oregon, 2008

    Science.gov (United States)

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Vaughn, Jennifer

    2009-01-01

    This report documents sampling and analytical methods and presents field data from a second year of an ongoing study on the Klamath River from Link River Dam to Keno Dam in south central Oregon; this dataset will form the basis of a hydrodynamic and water quality model. Water quality was sampled weekly at six mainstem and two tributary sites from early April through early November, 2008. Constituents reported herein include field-measured water-column parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; total iron; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, and iron; specific UV absorbance at 254 nanometers; chlorophyll a; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. Sampling program results indicated: *Most nutrient and carbon concentrations were lowest in spring, increased starting in mid-June, remained elevated in the summer, and decreased in fall. Dissolved nitrite plus nitrate had a different seasonal cycle and was below detection or at low concentration in summer. *Although total nitrogen and total phosphorus concentrations did not show large differences from upstream to downstream, filtered ammonia and orthophosphate concentrations increased in the downstream direction and particulate carbon and particulate nitrogen generally decreased in the downstream direction. *Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. Cocci, with diameters of 0.1 to 0.2 micrometers, were smaller than the filter pore sizes used to separate dissolved from particulate matter. *Phytoplankton biovolumes were dominated by diatoms in spring and by the blue-green alga Aphanizomenon flos-aquae after mid-June. Another blue-green, Anabaena flos-aquae, was noted in samples from late May to late June. Phytoplankton

  16. Colonial waterbird predation on Lost River and Shortnose suckers in the Upper Klamath Basin

    Science.gov (United States)

    Evans, Allen F.; Hewitt, David A.; Payton, Quinn; Cramer, Bradley M.; Collis, Ken; Roby, Daniel D.

    2016-01-01

    We evaluated predation on Lost River Suckers Deltistes luxatus and Shortnose Suckers Chasmistes brevirostris by American white pelicans Pelecanus erythrorhynchos and double-crested cormorants Phalacrocorax auritus nesting at mixed-species colonies in the Upper Klamath Basin of Oregon and California during 2009–2014. Predation was evaluated by recovering (detecting) PIT tags from tagged fish on bird colonies and calculating minimum predation rates, as the percentage of available suckers consumed, adjusted for PIT tag detection probabilities but not deposition probabilities (i.e., probability an egested tag was deposited on- or off-colony). Results indicate that impacts of avian predation varied by sucker species, age-class (adult, juvenile), bird colony location, and year, demonstrating dynamic predator–prey interactions. Tagged suckers ranging in size from 72 to 730 mm were susceptible to cormorant or pelican predation; all but the largest Lost River Suckers were susceptible to bird predation. Minimum predation rate estimates ranged annually from Suckers and from Suckers, and predation rates were consistently higher on suckers in Clear Lake Reservoir, California, than on suckers in Upper Klamath Lake, Oregon. There was evidence that bird predation on juvenile suckers (species unknown) in Upper Klamath Lake was higher than on adult suckers in Upper Klamath Lake, where minimum predation rates ranged annually from 5.7% to 8.4% of available juveniles. Results suggest that avian predation is a factor limiting the recovery of populations of Lost River and Shortnose suckers, particularly juvenile suckers in Upper Klamath Lake and adult suckers in Clear Lake Reservoir. Additional research is needed to measure predator-specific PIT tag deposition probabilities (which, based on other published studies, could increase predation rates presented herein by a factor of roughly 2.0) and to better understand biotic and abiotic factors that regulate sucker susceptibility to

  17. Overview of Hydrologic Issues in the Upper Klamath River Basin, Oregon

    Science.gov (United States)

    Lynch, D. D.

    2005-12-01

    The geologic setting of the upper Klamath Basin makes it a naturally arid landscape with eutrophic water bodies. Anthropogenic alterations of the land and hydrology over the past 100 years have put large demands on water supplies and further enriched water bodies with nutrients. Major changes to the upper basin include diking and draining lakes and wetlands for agricultural and grazing land, modifying lakes to increase the supply of summer irrigation water, clearing land and harvesting timber, and installing hydropower dams on the mainstem Klamath River that has blocked salmon passage above Iron Gate Dam. These alterations have contributed to diminished populations of endangered shortnose and Lost River suckers in the upper basin and threatened Coho salmon in the lower Klamath River. Upper Klamath Lake (UKL), with an average depth of 2.5 meters and a surface area of 310 square kilometers, is the primary water-supply reservoir for the Bureau of Reclamation's Klamath Project, which services about half (97,000 ha) of the irrigated agriculture in the upper Klamath Basin. The lake is also the primary habitat for the two endangered suckers. Because of the nutrient enrichment of UKL, the development of large summer blooms of Aphanizomenon flos-aquae, and the periodic crash of these near monoculture blooms, the magnitude and frequency of large sucker die-offs from hypoxia have increased. The relation between management of the lake and surrounding wetlands and algal ecology is not well understood. It is clear, however, that runoff from drained wetlands upstream and around UKL have enriched the lake water and its bottom sediments with phosphorus for many decades. Internal loading from enriched bottom sediments triples the summer phosphorus concentration in UKL and fuels the problematic algal blooms from June through October. An ongoing pattern of below-average precipitation has increased demands from UKL and generated concern. Two recent Biological Opinions aimed at

  18. Simulated effects of dam removal on water temperatures along the Klamath River, Oregon and California, using 2010 Biological Opinion flow requirements

    Science.gov (United States)

    Risley, John C.; Brewer, Scott J.; Perry, Russell W.

    2012-01-01

    Computer model simulations were run to determine the effects of dam removal on water temperatures along the Klamath River, located in south-central Oregon and northern California, using flow requirements defined in the 2010 Biological Opinion of the National Marine Fisheries Service. A one-dimensional, daily averaged water temperature model (River Basin Model-10) developed by the U.S. Environmental Protection Agency Region 10, Seattle, Washington, was used in the analysis. This model had earlier been configured and calibrated for the Klamath River by the U.S. Geological Survey for the U.S. Department of the Interior, Klamath Secretarial Determination to simulate the effects of dam removal on water temperatures for current (2011) and future climate change scenarios. The analysis for this report was performed outside of the scope of the Klamath Secretarial Determination process at the request of the Bureau of Reclamation Technical Services Office, Denver, Colorado.For this analysis, two dam scenarios were simulated: “dams in” and “dams out.” In the “dams in” scenario, existing dams in the Klamath River were kept in place. In the “dams out” scenario, the river was modeled as a natural stream, without the J.C. Boyle, Copco1, Copco2, and Iron Gate Dams, for the entire simulation period. Output from the two dam scenario simulations included daily water temperatures simulated at 29 locations for a 50-year period along the Klamath River between river mile 253 (downstream of Link River Dam) and the Pacific Ocean. Both simulations used identical flow requirements, formulated in the 2010 Biological Opinion, and identical climate conditions based on the period 1961–2009.Simulated water temperatures from January through June at almost all locations between J.C. Boyle Reservoir and the Pacific Ocean were higher for the “dams out” scenario than for the “dams in” scenario. The simulated mean monthly water temperature increase was highest [1.7–2

  19. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  20. Demographic analysis of Lost River sucker and shortnose sucker populations in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.

    2008-01-01

    We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.

  1. Invertebrate assemblages in the lower Klamath River, with reference to Manayunkia speciosa

    Science.gov (United States)

    Malakauskas, David M.; Wilzbach, Margaret A.

    2012-01-01

    The freshwater polychaete, Manayunkia speciosa Leidy (Canalipalpata Sabellidae), is the intermediate host for two myxozoan pathogens (Ceratomyxa shasta and Parvicapsula minibicornis) that cause substantial mortalities of juvenile salmon in the Pacific Northwest, particularly in the Klamath River below Iron Gate Dam in California. Information on the distribution of M. speciosa in the Klamath River may facilitate targeted control of polychaete populations to disrupt the parasites that affect fish populations. We sampled invertebrate assemblages in the lower Klamath River in the summer and fall of 2005 and 2006 to estimate distribution patterns of M. speciosa and to characterize assemblage structure of invertebrates in reaches where the polychaete was both collected and not collected. The polychaete was most often found in a reach of river extending 100 km downstream from the Shasta River (river km 185-287). The reach in which it was found supported high taxonomic richness of invertebrates and a high abundance of filtering collectors including marine relicts such as sponges, unioinid mussels, and bryozoans. We suggest that the large, stable substrate on which these were found represents primary, optimal habitat for the polychaete, also a marine relict. Reaches above and below the zone where we collected polychaetes showed a general trend of reduced taxonomic richness as distance away from the polychaete zone increased, and also showed differing relative abundances of non-insect taxa and functional feeding groups. Differences in invertebrate assemblages between years were coincident with large differences in water flows. We suggest flows and food resources may play important roles in invertebrate distribution patterns.

  2. Effects of ambient water quality on the endangered Lost River sucker in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Martin, B.A.; Saiki, M.K.

    1999-01-01

    Populations of the Lost River sucker Deltistes luxatus have declined so precipitously in the Upper Klamath Basin of Oregon and California that this fish was recently listed for federal protection as an endangered species. Although Upper Klamath Lake is a major refuge for this species, fish in the lake occasionally experience mass mortalities during summer and early fall. This field study was implemented to determine if fish mortalities resulted from degraded water quality conditions associated with seasonal blooms of phytoplankton, especially Aphanizomenon flos-aquae. Our results indicated that fish mortality did not always increase as water temperature, pH, and un-ionized ammonia concentration increased in Upper Klamath Lake. Little or no mortality occurred when these water quality variables attained their maximum values. On the other hand, an inverse relation existed between fish mortality and dissolved oxygen concentration. High mortality (>90%) occurred whenever dissolved oxygen concentrations decreased to 1.05 mg/L, whereas mortality was usually low (< 10%) when dissolved oxygen concentrations equaled or exceeded 1.58 mg/L. Stepwise logistic regression also indicated that the minimum concentration of dissolved oxygen measured was the single most important determinant of fish mortality.

  3. Range maps of terrestrial species in the interior Columbia River basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; Barbara C. Wales; Rick. Demmer

    2003-01-01

    Current range distribution maps are presented for 14 invertebrate, 26 amphibian, 26 reptile, 339 bird, and 125 mammal species and selected subspecies (530 total taxa) of the interior Columbia River basin and northern portions of the Klamath and Great Basins in the United States. Also presented are maps of historical ranges of 3 bird and 10 mammal species, and 6 maps of...

  4. Klamath River Basin Hydrologic Conditions Prior to the September 2002 Die-Off of Salmon and Steelhead

    Science.gov (United States)

    Lynch, Dennis D.; Risley, John C.

    2003-05-27

    More than 33,000 salmon and steelhead died in the lower Klamath River in late September 2002 on their way to spawning areas upstream. According to the California Department of Fish and Game, the cause of death was infection by protozoan and bacterial pathogens. Two factors that may have contributed to the disease incidence are low streamflow and high water temperature.

  5. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  6. Upper Klamath Lake Basin nutrient-loading study; assessment of historic flows in the Williamson and Sprague rivers

    Science.gov (United States)

    Risley, John C.; Laenen, Antonius

    1999-01-01

    The Williamson River Basin, located in southcentral Oregon, has a drainage area of approximately 3,000 square miles. The Sprague River, which flows into the Williamson River Basin, has a drainage area of 1,580 square miles. Together, the Williamson and Sprague Rivers supply about one-half of the inflow to Upper Klamath Lake. Various statistical techniques, which included trend tests, double-mass curves, and two-sample tests, were used to detect significant changes in the precipitation-runoff relation for the Williamson and Sprague River Basins. Flows from these two rivers were compared with the precipitation and air temperature records collected at Klamath Falls to assess the effect of climate on flow variations. Most of the double-mass curves showed a major break in the slope of the curve occurring around 1950 and a smaller one near 1990. For the years 1930?50 and 1990?96, February through May flows were relatively lower in the Williamson River than in rivers in nearby basins, by an average of 25,000 acre-feet per year and 36,000 acre-feet per year, respectively, for the 4-month period. From 1950 through 1963, flows were generally higher in the Williamson River compared with the nearby rivers by an average of 38,000 acre-feet for the 4 months. In July through September of 1945?51, 1970?76, and 1992?96, flows were lower in the Williamson River than in the comparison rivers by an average of about 6,000 acre-feet for the 3-month period. Two-sample statistical tests of the annual flow data sets for the Williamson and Sprague Rivers showed a significant increase in the estimated population mean for the period 1951?96 compared to the estimated population mean for the period 1922?50. However, climate data, which included annual precipitation data from Klamath Falls, Crater Lake, and Medford, and annual air temperature data from Klamath Falls, all showed no significant difference between the two periods. During the past century, various human land-use activities, such as

  7. The persistence and characteristics of Chinook salmon migrations to the Upper Klamath River prior to exclusion by dams

    Science.gov (United States)

    Hamilton, John B; Rondorf, Dennis W.; Tinniswood, William; Leary, Ryan J; Mayer, Tim; Gavette, Charleen; Casal, Lynne A.

    2016-01-01

    In this research article, John Hamilton and his co-authors present extensive new research and information gathered since a 2005 publication on the historical evidence of anadromomous fish distribution in the Upper Klamath River watershed. Using historical accounts from early explorers and ethnographers to early-twentieth-century photographs, newspaper accounts, and government reports, the authors provide a more complete record of past salmon migrations. The updated record “substantiate[s] the historical persistence of salmon, their migration characteristics, and the broad population baseline that will be key to future commercial, recreational, and Tribal fisheries in the Klamath River and beyond.” During a time when salmon restoration plans are being considered in the region, the historical record can serve as guidance to once again establish diverse and thriving populations.

  8. Impact of seasonality and anthropogenic impoundments on dissolved organic matter dynamics in the Klamath River (Oregon/California, USA)

    Science.gov (United States)

    Oliver, Allison A.; Spencer, Robert G. M.; Deas, Michael L.; Dahlgren, Randy A.

    2016-07-01

    Rivers play a major role in the transport and processing of dissolved organic matter (DOM). Disturbances that impact DOM dynamics, such as river impoundments and flow regulation, have consequences for biogeochemical cycling and aquatic ecosystems. In this study we examined how river impoundments and hydrologic regulation impact DOM quantity and quality by tracking spatial and seasonal patterns of DOM in a large, regulated river (Klamath River, USA). Dissolved organic carbon (DOC) concentrations decreased downstream and longitudinal patterns in DOC load varied by season. Export of DOM (as DOC) was largely driven by river flow, while DOM composition was strongly influenced by impoundments. Seasonal algal blooms in upstream lentic reaches provided a steady source of algal DOM that was processed in downstream reaches. DOM at upstream sites had an average spectral slope ratio (SR) > 1, indicating algal-derived material, but decreased downstream to an average SR Removal of the four lower dams on the Klamath River is scheduled to proceed in the next decade. These results suggest that management should consider the role of impoundments on altering DOM dynamics, particularly in the context of dam removal.

  9. Technical evaluation of a total maximum daily load model for Upper Klamath and Agency Lakes, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Carter, James L.; Kuwabara, James S.; Simon, Nancy S.; Rounds, Stewart A.

    2013-01-01

    We reviewed a mass balance model developed in 2001 that guided establishment of the phosphorus total maximum daily load (TMDL) for Upper Klamath and Agency Lakes, Oregon. The purpose of the review was to evaluate the strengths and weaknesses of the model and to determine whether improvements could be made using information derived from studies since the model was first developed. The new data have contributed to the understanding of processes in the lakes, particularly internal loading of phosphorus from sediment, and include measurements of diffusive fluxes of phosphorus from the bottom sediments, groundwater advection, desorption from iron oxides at high pH in a laboratory setting, and estimates of fluxes of phosphorus bound to iron and aluminum oxides. None of these processes in isolation, however, is large enough to account for the episodically high values of whole-lake internal loading calculated from a mass balance, which can range from 10 to 20 milligrams per square meter per day for short periods. The possible role of benthic invertebrates in lake sediments in the internal loading of phosphorus in the lake has become apparent since the development of the TMDL model. Benthic invertebrates can increase diffusive fluxes several-fold through bioturbation and biodiffusion, and, if the invertebrates are bottom feeders, they can recycle phosphorus to the water column through metabolic excretion. These organisms have high densities (1,822–62,178 individuals per square meter) in Upper Klamath Lake. Conversion of the mean density of tubificid worms (Oligochaeta) and chironomid midges (Diptera), two of the dominant taxa, to an areal flux rate based on laboratory measurements of metabolic excretion of two abundant species suggested that excretion by benthic invertebrates is at least as important as any of the other identified processes for internal loading to the water column. Data from sediment cores collected around Upper Klamath Lake since the development of the

  10. Age-0 Lost River sucker and shortnose sucker nearshore habitat use in Upper Klamath Lake, Oregon: A patch occupancy approach

    Science.gov (United States)

    Burdick, S.M.; Hendrixson, H.A.; VanderKooi, S.P.

    2008-01-01

    We examined habitat use by age-0 Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris over six substrate classes and in vegetated and nonvegetated areas of Upper Klamath Lake, Oregon. We used a patch occupancy approach to model the effect of physical habitat and water quality conditions on habitat use. Our models accounted for potential inconsistencies in detection probability among sites and sampling occasions as a result of differences in fishing gear types and techniques, habitat characteristics, and age-0 fish size and abundance. Detection probability was greatest during mid- to late summer, when water temperatures were highest and age-0 suckers were the largest. The proportion of sites used by age-0 suckers was inversely related to depth (range = 0.4-3.0 m), particularly during late summer. Age-0 suckers were more likely to use habitats containing small substrate (64 mm) and habitats with vegetation than those without vegetation. Relatively narrow ranges in dissolved oxygen, temperature, and pH prevented us from detecting effects of these water quality features on age-0 sucker nearshore habitat use.

  11. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    Science.gov (United States)

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna D.; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and

  12. Structured decision making for conservation of bull trout (Salvelinus confluentus) in Long Creek, Klamath River Basin, south-central Oregon

    Science.gov (United States)

    Benjamin, Joseph R.; McDonnell, Kevin; Dunham, Jason B.; Brignon, William R.; Peterson, James T.

    2017-06-21

    With the decline of bull trout (Salvelinus confluentus), managers face multiple, and sometimes contradictory, management alternatives for species recovery. Moreover, effective decision-making involves all stakeholders influenced by the decisions (such as Tribal, State, Federal, private, and non-governmental organizations) because they represent diverse objectives, jurisdictions, policy mandates, and opinions of the best management strategy. The process of structured decision making is explicitly designed to address these elements of the decision making process. Here we report on an application of structured decision making to a population of bull trout believed threatened by high densities of nonnative brook trout (S. fontinalis) and habitat fragmentation in Long Creek, a tributary to the Sycan River in the Klamath River Basin, south-central Oregon. This involved engaging stakeholders to identify (1) their fundamental objectives for the conservation of bull trout, (2) feasible management alternatives to achieve their objectives, and (3) biological information and assumptions to incorporate in a decision model. Model simulations suggested an overarching theme among the top decision alternatives, which was a need to simultaneously control brook trout and ensure that the migratory tactic of bull trout can be expressed. More specifically, the optimal management decision, based on the estimated adult abundance at year 10, was to combine the eradication of brook trout from Long Creek with improvement of downstream conditions (for example, connectivity or habitat conditions). Other top decisions included these actions independently, as well as electrofishing removal of brook trout. In contrast, translocating bull trout to a different stream or installing a barrier to prevent upstream spread of brook trout had minimal or negative effects on the bull trout population. Moreover, sensitivity analyses suggested that these actions were consistently identified as optimal across

  13. Georectification of historical aerial photos to track meander change in Wood River, Klamath County, Oregon

    Science.gov (United States)

    Nash, C.; Hughes, M. L.

    2010-12-01

    The Wood River in Oregon’s Upper Klamath Basin is a meandering channel draining the southeastern slopes of Crater Lake National Park. Its valley floor is heavily grazed and highly altered by a series of irrigation channels that have substantially affected the river’s spring-fed flow regime and morphology. Despite efforts to restore the river’s hydrology, very little information is available about the river’s geomorphology. Using high-resolution LIDAR data from 2004 and georectified aerial photos from 1940-2009, we analyzed meander changes along the Wood River in the geomorphic context of its valley floor and meander belt. Aerial photos were scanned to produce digital images with sub-meter pixels, then georectified with a second-order polynomial transformation. Nine or fewer ground-control points were used for each photo to achieve an overall root-mean-square error value of 0.6 - 0.7 m. The scarcity of buildings and changes in the road and fence networks over the study period required the partial use of “natural pattern matching” during photo rectification. Semi-permanent patterns of fan erosion on the upper valley floor and hydrogeomorphic wetland patterns in lower valley provided the primary bases for natural pattern matching, further aided by the use of transparency during photo overlaying. Six prototypes of meander change were identified: extension, compression, translation, rotation, compound heading, and cutoff. Of these types, extension of meanders was the most frequently occurring. However, the effects of extension were counteracted by numerous meander cutoffs, which nominally affected sinuosity, but actually shortened the channel by about 1 km, or about 3%. Cutoffs were most frequent in the upper reaches of the river, where valley slope is higher, the meander belt is wider, and accommodation space was adequate to promote relatively high initial sinuosity. In these reaches, some cutoffs appear to have initiated downstream transfers of bedload

  14. Near-shore and off-shore habitat use by endangered juvenile Lost River and Shortnose Suckers in Upper Klamath Lake, Oregon: 2006 data summary

    Science.gov (United States)

    Burdick, Summer M.; Wilkens, Alexander X.; VanderKooi, Scott P.

    2008-01-01

    Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris , listed as endangered in 1988 under the Endangered Species Act, have shown infrequent recruitment into adult populations in Upper Klamath Lake (NRC 2004). In an effort to understand the causes behind and provide management solutions to apparent recruitment failure, a number of studies have been conducted including several on larval and juvenile sucker habitat use. Near-shore areas in Upper Klamath Lake with emergent vegetation, especially those near the mouth of the Williamson River, were identified as important habitat for larval suckers (Cooperman and Markle 2000; Reiser et al. 2001). Terwilliger et al. (2004) characterized primary age-0 sucker habitat as near-shore areas in the southern portion of Upper Klamath Lake with gravel and cobble substrates. Reiser et al. (2001) provided some evidence that juvenile suckers use habitats with emergent vegetation, but nothing concerning the extent or timing of use.

  15. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    Science.gov (United States)

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  16. Effects of Iron Gate Dam discharge and other factors on the survival and migration of juvenile coho salmon in the lower Klamath River, northern California, 2006-09

    Science.gov (United States)

    Beeman, John; Juhnke, Steven; Stutzer, Greg; Wright, Katrina

    2012-01-01

    Current management of the Klamath River includes prescribed minimum discharges intended partly to increase survival of juvenile coho salmon during their seaward migration in the spring. To determine if fish survival was related to river discharge, we estimated apparent survival and migration rates of yearling coho salmon in the Klamath River downstream of Iron Gate Dam. The primary goals were to determine if discharge at Iron Gate Dam affected coho salmon survival and if results from hatchery fish could be used as a surrogate for the limited supply of wild fish. Fish from hatchery and wild origins that had been surgically implanted with radio transmitters were released into the Klamath River slightly downstream of Iron Gate Dam at river kilometer 309. Tagged fish were used to estimate apparent survival between, and passage rates at, a series of detection sites as far downstream as river kilometer 33. Conclusions were based primarily on data from hatchery fish, because wild fish were only available in 2 of the 4 years of study. Based on an information-theoretic approach, apparent survival of hatchery and wild fish was similar, despite differences in passage rates and timing, and was lowest in the 54 kilometer (km) reach between release and the Scott River. Models representing the hypothesis that a short-term tagging- or handling-related mortality occurred following release were moderately supported by data from wild fish and weakly supported by data from hatchery fish. Estimates of apparent survival of hatchery fish through the 276 km study area ranged from 0.412 (standard error [SE] 0.048) to 0.648 (SE 0.070), depending on the year, and represented an average of 0.790 per 100 km traveled. Estimates of apparent survival of wild fish through the study area were 0.645 (SE 0.058) in 2006 and 0.630 (SE 0.059) in 2009 and were nearly identical to the results from hatchery fish released on the same dates. The data and models examined supported positive effects of water

  17. Peace on the River? Social-Ecological Restoration and Large Dam Removal in the Klamath Basin, USA

    Directory of Open Access Journals (Sweden)

    Hannah Gosnell

    2010-06-01

    Full Text Available This paper aims to explain the multiple factors that contributed to a 2010 agreement to remove four large dams along the Klamath river in California and Oregon and initiate a comprehensive social-ecological restoration effort that will benefit Indian tribes, the endangered fish on which they depend, irrigated agriculture, and local economies in the river basin. We suggest that the legal framework, including the tribal trust responsibility, the Endangered Species Act, and the Federal Power Act, combined with an innovative approach to negotiation that allowed for collaboration and compromise, created a space for divergent interests to come together and forge a legally and politically viable solution to a suite of social and environmental problems. Improved social relations between formerly antagonistic Indian tribes and non-tribal farmers and ranchers, which came about due to a number of local collaborative processes during the early 2000s, were critical to the success of this effort. Overall, we suggest that recent events in the Klamath basin are indicative of a significant power shift taking place between tribal and non-tribal interests as tribes gain access to decision-making processes regarding tribal trust resources and develop capacity to participate in the development of complex restoration strategies.

  18. Thermal regimes, nonnative trout, and their influences on native Bull Trout in the Upper Klamath River Basin, Oregon

    Science.gov (United States)

    Benjamin, Joseph R.; Heltzel, Jeannie; Dunham, Jason; Heck, Michael; Banish, Nolan P.

    2016-01-01

    The occurrence of fish species may be strongly influenced by a stream’s thermal regime (magnitude, frequency, variation, and timing). For instance, magnitude and frequency provide information about sublethal temperatures, variability in temperature can affect behavioral thermoregulation and bioenergetics, and timing of thermal events may cue life history events, such as spawning and migration. We explored the relationship between thermal regimes and the occurrences of native Bull Trout Salvelinus confluentus and nonnative Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta across 87 sites in the upper Klamath River basin, Oregon. Our objectives were to associate descriptors of the thermal regime with trout occurrence, predict the probability of Bull Trout occurrence, and estimate upper thermal tolerances of the trout species. We found that each species was associated with a different suite of thermal regime descriptors. Bull Trout were present at sites that were cooler, had fewer high-temperature events, had less variability, and took longer to warm. Brook Trout were also observed at cooler sites with fewer high-temperature events, but the sites were more variable and Brook Trout occurrence was not associated with a timing descriptor. In contrast, Brown Trout were present at sites that were warmer and reached higher temperatures faster, but they were not associated with frequency or variability descriptors. Among the descriptors considered, magnitude (specifically June degree-days) was the most important in predicting the probability of Bull Trout occurrence, and model predictions were strengthened by including Brook Trout occurrence. Last, all three trout species exhibited contrasting patterns of tolerating longer exposures to lower temperatures. Tolerance limits for Bull Trout were lower than those for Brook Trout and Brown Trout, with contrasts especially evident for thermal maxima. Our results confirm the value of exploring a suite of thermal

  19. 75 FR 33634 - Klamath Hydroelectric Settlement Agreement, Including Secretarial Determination on Whether to...

    Science.gov (United States)

    2010-06-14

    ... California and Oregon, the Klamath, Karuk, and Yurok Tribes, Klamath Project Water Users, and other Klamath... Purchase Plan, Drought Plan, Environmental Water Plan, Counties' Impacts-Mitigation and Benefits Program... Whether to Remove Four Dams on the Klamath River in California and Oregon AGENCY: Department of...

  20. Temporal and spatial distribution of endangered juvenile Lost River and shortnose suckers in relation to environmental variables in Upper Klamath Lake, Oregon: 2009 annual data summary

    Science.gov (United States)

    Bottcher, Jared L.; Burdick, Summer M.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year. Similar declines of age-1 suckers between spring and late summer also occur annually. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. Summer age-0 sucker habitat use and distribution have been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. This study was designed to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. The results of our third annual spring and summer sampling effort are presented in this report. Catch data collected in 2009 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality. Although age-1 sucker catch rates were again concentrated along the western shore in June and early July, as they were in 2007 and 2008, very few age-1 suckers were captured in Eagle Ridge Trench in 2009 - a deepwater area along the western shore extending from Howard Bay to Eagle Ridge Point. Instead, suckers in 2009 were concentrated in the relatively shallow bays along the western shore. Nevertheless, as dissolved-oxygen concentrations decreased in mid-July below sublethal thresholds around the Eagle Ridge Trench, age-1 suckers apparently moved away from the western shore, and subsequently were captured

  1. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    Science.gov (United States)

    Burdick, Summer M.

    2012-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in other lakes. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high-quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, where they are assumed lost to Upper Klamath Lake populations. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana) in October 2007, and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Farms) in October 2008, in order to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2010 by the U.S. Geological Survey as a part of this monitoring effort and follows two annual reports on data collected in 2008 and 2009. Restoration modifications made to the Williamson River Delta appeared to provide

  2. Tracer test analysis of the Klamath Falls geothermal resource: a comparison of models

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.E.

    1984-06-01

    Two tracer tests on doublet systems in a fractured geothermal system were carried out in Klamath Falls, Oregon. The purpose of the tests were to obtain data which would lead to information about the reservoir and to test the applicability of current tracer flow models. The results show rapid breakthrough times and indicate fracture flow with vigorous mixing of injector fluid before production of same. This leads to the idea that thermal breakthrough is not directly related to tracer breakthrough in the Klamath Union doublet system. There has been no long-term enthalpy loss from exploiting the resource for 40 years. In order to reduce the data, models were developed to analyze the results. Along with a porous media flow model two mathematical models developed to analyze fractured geothermal systems are used to help decipher the various tracer return curves. The flow of tracers in doublet systems was investigated. A mathematical description is used for tracer flow through fractures as a function of time and various nonlinear parameters which can be found using a curve fitting technique. This allows the reservoir to be qualitatively defined. These models fit the data well, but point to the fact that future improvement needs to be considered for a clearer and more quantitative understanding of fractured geothermal systems. 22 refs., 32 figs., 11 tabs.

  3. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  4. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  5. Inter-annual variability in apparent relative production, survival, and growth of juvenile Lost River and shortnose suckers in Upper Klamath Lake, Oregon, 2001–15

    Science.gov (United States)

    Burdick, Summer M.; Martin, Barbara A.

    2017-06-15

    Executive SummaryPopulations of the once abundant Lost River (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) of the Upper Klamath Basin, decreased so substantially throughout the 20th century that they were listed under the Endangered Species Act in 1988. Major landscape alterations, deterioration of water quality, and competition with and predation by exotic species are listed as primary causes of the decreases in populations. Upper Klamath Lake populations are decreasing because fish lost due to adult mortality, which is relatively low for adult Lost River suckers and variable for adult shortnose suckers, are not replaced by new young adult suckers recruiting into known adult spawning aggregations. Catch-at-age and size data indicate that most adult suckers presently in Upper Klamath Lake spawning populations were hatched around 1991. While, a lack of egg production and emigration of young fish (especially larvae) may contribute, catch-at-length and age data indicate high mortality during the first summer or winter of life may be the primary limitation to the recruitment of young adults. The causes of juvenile sucker mortality are unknown.We compiled and analyzed catch, length, age, and species data on juvenile suckers from Upper Klamath Lake from eight prior studies conducted from 2001 to 2015 to examine annual variation in apparent production, survival, and growth of young suckers. We used a combination of qualitative assessments, general linear models, and linear regression to make inferences about annual differences in juvenile sucker dynamics. The intent of this exercise is to provide information that can be compared to annual variability in environmental conditions with the hopes of understanding what drives juvenile sucker population dynamics.Age-0 Lost River suckers generally grew faster than age-0 shortnose suckers, but the difference in growth rates between the two species varied among years. This unsynchronized annual variation in

  6. Effects of Chiloquin Dam on spawning distribution and larval emigration of Lost River, shortnose, and Klamath largescale suckers in the Williamson and Sprague Rivers, Oregon

    Science.gov (United States)

    Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.

    2013-01-01

    Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring

  7. Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    Science.gov (United States)

    Burdick, Summer M.; VanderKooi, Scott P.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year and age-1 and older sub-adult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of access to, or abundance of, optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. Summer age-0 sucker habitat use and distribution has been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. We designed a study to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. In this document, which meets our annual data summary and reporting obligations, we discuss the results of our second annual spring and summer sampling effort. Catch data collected in 2007 and 2008 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality, which were previously undocumented. In both years during April and May, age-1 and older juvenile suckers were found in shallow water environments. Then, as water temperatures began to warm throughout Upper Klamath Lake in June, age-1 and older juvenile suckers primarily were captured along the western shore in some of the deepest available environments. Following a dramatic decrease in dissolved oxygen concentrations in Eagle Ridge

  8. Survival, movement, and health of hatchery-raised juvenile Lost River suckers within a mesocosm in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Hereford, Danielle M.; Burdick, Summer M.; Elliott, Diane G.; Dolan-Caret, Amari; Conway, Carla M.; Harris, Alta C.

    2016-01-28

    The recovery of endangered Lost River suckers (Deltistes luxatus) in Upper Klamath Lake is limited by poor juvenile survival and failure to recruit into the adult population. Poor water quality, degradation of rearing habitat, and toxic levels of microcystin are hypothesized to contribute to low juvenile survival. Studies of wild juvenile suckers are limited in that capture rates are low and compromised individuals are rarely captured in passive nets. The goal of this study was to assess the use of a mesocosm for learning about juvenile survival, movement, and health. Hatchery-raised juvenile Lost River suckers were PIT (passive integrated transponder) tagged and monitored by three vertically stratified antennas. Fish locations within the mesocosm were recorded at least every 30 minutes and were assessed in relation to vertically stratified water-quality conditions. Vertical movement patterns were analyzed to identify the timing of mortality for each fish. Most mortality occurred from July 28 to August 16, 2014. Juvenile suckers spent daylight hours near the benthos and moved throughout the entire water column during dark hours. Diel movements were not in response to dissolved-oxygen concentrations, temperature, or pH. Furthermore, low dissolved-oxygen concentrations, high temperatures, high pH, high un-ionized ammonia, or high microcystin levels did not directly cause mortality, although indirect effects may have occurred. However, water-quality conditions known to be lethal to juvenile Lost River suckers did not occur during the study period. Histological assessment revealed severe gill hyperplasia and Ichthyobodo sp. infestations in most moribund fish. For these fish, Ichthyobodo sp. was likely the cause of mortality, although it is unclear if this parasite originated in the rearing facility because fish were not screened for this parasite prior to introduction. This study has demonstrated that we can effectively use a mesocosm equipped with antennas to learn

  9. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2015

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2017-07-21

    Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2015 were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. Characteristics of the spawning migrations in 2015, such as the effects of temperature on the timing of the migrations, were similar to past years.Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for 13,617 individuals, and analyses for the subpopulation that spawns in the rivers included 39,321 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (greater than or equal to 0.86) between 1999 and 2013. Survival was notably lower for males from the rivers

  10. Survival and migration behavior of juvenile Coho Salmon in the Klamath River relative to discharge at Iron Gate Dam, Northern California, 2007

    Science.gov (United States)

    Beeman, John W.; Juhnke, Steve; Stutzer, Greg; Hetrick, Nicholas

    2008-01-01

    discharge at IGD was 1,518 cubic feet per second (ft3/s) and ranged from 1,020 to 2,460 ft3/s. Average daily discharge near the estuary at river kilometer (rkm) 13 was 9,820 ft3/s and ranged from 3,270 to 20,500 ft3/s. This study was based on hatchery fish taken directly from a holding tank at IGH. Wild fish were not available in numbers sufficient for use in 2007. Fish tagging began on April 9 and concluded on May 17, 2007. A total of 246 hatchery coho salmon were tagged and released, split evenly between releases in the Klamath River near IGH (rkm 309) and near the Tree of Heaven campground at rkm 280. The two release sites were used to enable estimation of a relative survival between IGH and the campground using the paired-release design, because potential effects of tagging and handling can be cancelled out with this method. However, the assumption that the survival probabilities of fish from each release site are equal in the reaches they have in common was violated, preventing its use in 2007. All estimates of survival were therefore calculated using the single-release design. The reach-specific estimates of survival were lower in 2007 than in 2006, but a similar survival pattern was evident among reaches in each year. The survival from IGH to rkm 33 was 0.653 [standard error (SE) 0.039] in 2006 and 0.497 (SE 0.044) in 2007. In each year, the reaches with the lowest survivals were upstream of the Scott River, which also is the area with the greatest differences in survivals between years. The reach with the highest survivals were in the Salmon River-to-Trinity River reach (at or near 1.0 in each year). The cause of the difference in survivals in each year were not identified, but could be related to differences in discharge or turbidity, as these are the primary differences between the years. These differences and other effects will be analyzed when the data from all study years (initially planned for 2006 through 2008) are available. Models of su

  11. Patterns of Larval Sucker Emigration from the Sprague and Lower Williamson Rivers of the Upper Klamath Basin, Oregon, Prior to the Removal of Chiloquin Dam - 2006 Annual Report

    Science.gov (United States)

    Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.; Markle, Douglas F.

    2009-01-01

    In 2006, we collected larval Lost River sucker Deltistes luxatus (LRS), shortnose sucker Chasmistes brevirostris (SNS), and Klamath largescale sucker Catostomus snyderi (KLS) emigrating from spawning areas in the Williamson and Sprague Rivers. This work is part of a multi-year effort to characterize the relative abundance, drift timing, and length frequencies of larval suckers in this watershed prior to the removal of Chiloquin Dam on the lower Sprague River. Additional larval drift samples were collected from the Fremont Bridge on Lakeshore Drive on the south end of Upper Klamath Lake near its outlet to the Link River. Because of difficulties in distinguishing KLS larvae from SNS larvae, individuals identified as either of these two species were grouped together and reported as KLS-SNS in this report. We found that larval densities varied by site with the highest densities being collected at the most upstream site on the Sprague River at river kilometer (rkm) 108.0 near Beatty, Oregon (Beatty), and the most downstream sites near Chiloquin, Oregon; one site on the Sprague River at rkm 0.7 (Chiloquin) and the other site on the Williamson River at rkm 7.4 (Williamson). Larval catches were relatively small and sporadic at two other sites on the Sprague River located between Chiloquin and Beatty (Power Station at rkm 9.5 and Lone Pine at rkm 52.7) and one site on the Sycan River at rkm 4.7. Most larvae (79 percent) collected in 2006 were identified as LRS. More larvae and eggs were collected at Chiloquin than at any other site. The seasonal timing of larval drift varied by location; larvae generally were captured earlier at upstream sites than at downstream sites. Cumulative catch percentages of drifting larvae suggest that larval LRS emigrated earlier than KLS-SNS larvae at every site. Drift of LRS larvae at Beatty began 3 to 4 weeks earlier than at Chiloquin or Williamson. At Chiloquin, peak larval catches occurred 3 and 5 weeks after peak egg catches. The daily peak

  12. Tagging age-1 Lost River and shortnose suckers with passive integrated transponders, Upper Klamath Lake, Oregon–Summary of 2009–11 effort

    Science.gov (United States)

    Burdick, Summer M.

    2012-01-01

    A passive integrated transponder (PIT) tagging study was initiated in 2009 for age-1 endangered Lost River and shortnose suckers in Upper Klamath Lake, Oregon, for the purpose of examining causes of mortality, validating estimated age to maturity, and examining movement patterns. This study, which was done opportunistically in 2009 and 2010, received funding in 2011 for a directed tagging effort. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican and double-crested cormorant breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of age-1 sucker movement. Sucker PIT tag detections in the Sprague and Williamson rivers in mid-summer and in autumn indicate age-1 suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds may have been a cause of mortality in 2009. Field conditions prevented scanning bird breeding and loafing areas in Upper Klamath Wildlife National Refuge for tags in 2011, however, limiting our ability to make inferences about bird predation in those years.

  13. Demographics and run timing of adult Lost River (Deltistes luxatus) and short nose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2012

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2014-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and

  14. Distribution, Health, and Development of Larval and Juvenile Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    Science.gov (United States)

    Burdick, Summer M.; Ottinger, Christopher; Brown, Daniel T.; VanderKooi, Scott P.; Robertson, Laura; Iwanowicz, Deborah

    2009-01-01

    Federally endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were once abundant throughout their range but populations have declined; they have been extirpated from several lakes, and may no longer reproduce in others. Poor recruitment into the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species, and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable rearing habitat. Within Upper Klamath Lake, a lack of marshes also may allow larval suckers to be swept from suitable rearing areas downstream into the seasonally anoxic waters of the Keno Reservoir. The Nature Conservancy (TNC) flooded about 3,600 acres to the north of the Williamson River mouth (Tulana Unit) in October 2007, and about 1,400 acres to the south and east of the Williamson River mouth (Goose Bay Unit) a year later, to retain larval suckers in Upper Klamath Lake, create nursery habitat for suckers, and improve water quality. In collaboration with TNC, the Bureau of Reclamation, and Oregon State University, we began a long-term collaborative research and monitoring program in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. Our approach includes two equally important aspects. One component is to describe habitat use and colonization processes by larval and juvenile suckers and non-sucker fish species. The second is to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report contains a summary of the first year of data collected as a part of this monitoring effort.

  15. Construction, calibration, and validation of the RBM10 water temperature model for the Trinity River, northern California

    Science.gov (United States)

    Jones, Edward C.; Perry, Russell W.; Risley, John C.; Som, Nicholas A.; Hetrick, Nicholas J.

    2016-03-31

    We constructed a one-dimensional daily averaged water-temperature model to simulate Trinity River temperatures for 1980–2013. The purpose of this model is to assess effects of water-management actions on water temperature and to provide water temperature inputs for a salmon population dynamics model. Simulated meteorological data, observed streamflow data, and observed water temperatures were used as model inputs to simulate a continuous 34-year time series of historical daily mean water temperature at eight locations along 112.2 river miles from Lewiston Dam near Weaverville, California, downstream to the Klamath River confluence. To demonstrate the utility of the model to inform management actions, we simulated three management alternatives to assess the effects of bypass flow augmentation in a drought year, 1994, and compared those results to the simulated historical baseline, referred to as the “No Action” alternative scenario. Augmentation flows from the Lewiston Dam bypass consist of temperature-controlled releases capable of cooling downstream water temperatures in hot times of the year, which can reduce the probability of disease outbreaks in fish populations. Outputs from the Trinity River water-temperature model were then used as inputs to an existing water-temperature model of the Klamath River to evaluate the effect of augmentation flow releases on water temperatures in the lower Klamath River

  16. Demographics and run timing of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2009

    Science.gov (United States)

    Hewitt, David A.; Hayes, Brian S.; Janney, Eric C.; Harris, Alta C.; Koller, Justin P.; Johnson, Mark A.

    2011-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout the spawning areas. Captures and remote encounters during spring 2009 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics over the last decade. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish was examined for any additional evidence of recruitment. Survival and recruitment estimates were combined to estimate changes in population size over time and to determine the status of the populations through 2007. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). One subpopulation of LRS migrates into tributaries to spawn, similar to shortnose suckers (SNS), whereas the other subpopulation spawns at upwelling areas along the eastern shoreline of the lake. In 2009, we captured and tagged 781 LRS at four shoreline areas and recaptured an additional 638 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,056 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Sucker Springs and Cinder Flats. In the Williamson

  17. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    Science.gov (United States)

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm

  18. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    Science.gov (United States)

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation

  19. Sediment oxygen demand in upper Klamath and Agency lakes, Oregon, 1999

    Science.gov (United States)

    Wood, T.M.

    2001-06-28

    Sediment oxygen demand (SOD) was measured in two shallow, interconnected lakes in southern Oregon, Upper Klamath Lake and Agency Lake, in spring and late summer of 1999. Upper Klamath Lake contains populations of two endangered fishes, the shortnose sucker and the Lost River sucker, and low dissolved oxygen concentrations in summer are thought to be one factor affecting sucker populations.

  20. Genetic Diversity of Black Salamanders (Aneides flavipunctatus across Watersheds in the Klamath Mountains

    Directory of Open Access Journals (Sweden)

    David B. Wake

    2013-08-01

    Full Text Available Here we characterize the genetic structure of Black Salamanders (Aneides flavipunctatus in the Klamath Mountains of northwestern California and southwestern Oregon using mitochondrial and nuclear DNA sequences. We hypothesized that the Sacramento, Smith, Klamath, and Rogue River watersheds would represent distinct genetic populations based on prior ecological results, which suggest that Black Salamanders avoid high elevations such as the ridges that separate watersheds. Our mitochondrial results revealed two major lineages, one in the Sacramento River watershed, and another containing the Klamath, Smith, and Rogue River watersheds. Clustering analyses of our thirteen nuclear loci show the Sacramento watershed population to be genetically distinctive. Populations in the Klamath, Smith, and Rogue watersheds are also distinctive but not as differentiated and their boundaries do not correspond to watersheds. Our historical demographic analyses suggest that the Sacramento population has been isolated from the Klamath populations since the mid-Pleistocene, with negligible subsequent gene flow (2 Nm ≤ 0.1. The Smith and Rogue River watershed populations show genetic signals of recent population expansion. These results suggest that the Sacramento River and Klamath River watersheds served as Pleistocene refugia, and that the Rogue and Smith River watersheds were colonized more recently by northward range expansion from the Klamath.

  1. Seasonal Phosphorus Sources and Loads to Upper Klamath Lake, Oregon, as Determined by a Dynamic SPARROW Model

    Science.gov (United States)

    Saleh, D.; Domagalski, J. L.; Smith, R. A.

    2016-12-01

    The SPARROW (SPAtially-Referenced Regression On Watershed Attributes) model, developed by the U.S. Geological Survey, has been used to identify and quantify the sources of nitrogen and phosphorus in watersheds and to predict their fluxes and concentration at specified locations downstream. Existing SPARROW models use a hybrid statistical approach to describe an annual average ("steady-state") relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. Although these annual models are useful for some management purposes, many water quality issues stem from intra- and inter-annual changes in constituent sources, hydrologic forcing, or other environmental conditions, which cause a lag between watershed inputs and stream water quality. We are developing a seasonal dynamic SPARROW model of sources, fluxes, and yields of phosphorus for the watershed (approximately 9,700 square kilometers) draining to Upper Klamath Lake, Oregon. The lake is hyper-eutrophic and various options are being considered for water quality improvement. The model was calibrated with 11 years of water quality data (2000 to 2010) and simulates seasonal loads and yields for a total of 44 seasons. Phosphorus sources to the watershed include animal manure, farm fertilizer, discharges of treated wastewater, and natural sources (soil and streambed sediment). The model predicts that phosphorus delivery to the lake is strongly affected by intra- and inter-annual changes in precipitation and by temporary seasonal storage of phosphorus in the watershed. The model can be used to predict how different management actions for mitigating phosphorus sources might affect phosphorus loading to the lake as well as the time required for any changes in loading to occur following implementation of the action.

  2. Aspen Delineation - Klamath National Forest [ds370

    Data.gov (United States)

    California Department of Resources — The database represents polygons of aspen stands in the Klamath National Forest, Siskiyou County, California. The Klamath National Forest Region 5 Vegetation aspen...

  3. Modelling river dune development

    NARCIS (Netherlands)

    Paarlberg, Andries; Weerts, H.J.T.; Dohmen-Janssen, Catarine M.; Ritsema, I.L; Hulscher, Suzanne J.M.H.; van Os, A.G.; Termes, A.P.P.

    2005-01-01

    Since river dunes influence flow resistance, predictions of dune dimensions are required to make accurate water level predictions. A model approach to simulate developing river dunes is presented. The model is set-up to be appropriate, i.e. as simple as possible, but with sufficient accuracy for

  4. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    Science.gov (United States)

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at

  5. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  6. Development and validation of a quantitative PCR to detect Parvicapsula minibicornis and comparison to histologically ranked infection of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), from the Klamath River, USA

    Science.gov (United States)

    True, K.; Purcell, M.K.; Foott, J.S.

    2009-01-01

    Parvicapsula minibicornis is a myxosporean parasite that is associated with disease in Pacific salmon during their freshwater life history phase. This study reports the development of a quantitative (real-time) polymerase chain reaction (QPCR) to detect P. minibicornis DNA. The QPCR assay targets the 18S ribosomal subunit gene. A plasmid DNA control was developed to calibrate cycle threshold (CT) score to plasmid molecular equivalent (PME) units, a measure of gene copy number. Assay validation revealed that the QPCR was sensitive and able to detect 50 ag of plasmid DNA, which was equivalent to 12.5 PME. The QPCR assay could detect single P. minibicornis actinospores well above assay sensitivity, indicating a single spore contains at least 100 times the 18S DNA copies required for detection. The QPCR assay was repeatable and highly specific; no detectable amplification was observed using DNA from related myxozoan parasites. The method was validated using kidney tissues from 218 juvenile Chinook salmon sampled during the emigration period of March to July 2005 from the Klamath River. The QPCR assay was compared with histological examination. The QPCR assay detected P. minibicornis infection in 88.1% of the fish sampled, while histological examination detected infection in 71.1% of the fish sampled. Good concordance was found between the methods as 80% of the samples were in agreement. The majority of the disconcordant fish were positive by QPCR, with low levels of P. minibicornis DNA, but negative by histology. The majority of the fish rated histologically as having subclinical or clinical infections had high QPCR levels. The results of this study demonstrate that QPCR is a sensitive quantitative tool for evaluating P. minibicornis infection in fish health monitoring studies. ?? 2008 Blackwell Publishing Ltd.

  7. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models...

  8. Aspen Characteristics - Klamath National Forest [ds369

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected with known aspen stands in the Klamath National Forest, Siskiyou County,...

  9. Sprague River Oregon Bars 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  10. Sprague River Oregon Floodplain Boundary

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  11. Sprague River Oregon Floodplain 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the...

  12. Sprague River Oregon Centerline 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  13. Sprague River Oregon Centerline 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  14. Sprague River Oregon Water 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  15. Sprague River Oregon Water 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  16. Sprague River Oregon Floodplain 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  17. Sprague River Oregon Bars 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the...

  18. Sprague River Oregon Bars 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  19. Sprague River Oregon Centerline 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  20. Sprague River Oregon Centerline 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  1. Sprague River Oregon Floodplain Centerline

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  2. 75 FR 54647 - Revision of Information Collection; Non-Use Valuation Survey, Klamath Basin; Correction and...

    Science.gov (United States)

    2010-09-08

    ... potential removal of four dams on the Klamath River owned by PacifiCorp are being conducted as a result of... Secretary of the Interior is to determine by March 31, 2012, whether the potential removal of these dams... potential benefits of dam removal that may accrue to members of the U.S. public who value such...

  3. 75 FR 52964 - Revision of Information Collection; Non-Use Valuation Survey, Klamath Basin

    Science.gov (United States)

    2010-08-30

    ... hydroelectric dams on the Klamath River by 2020. Dam removal is being considered a viable alternative to... governments) to reach a final agreement that would result in the largest dam removal project in U.S. history... expected to make a final determination regarding dam removal, contingent on results of an economic...

  4. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond

    Science.gov (United States)

    Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.

    2014-01-01

    Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water

  5. Modelling river history and evolution.

    Science.gov (United States)

    Coulthard, T J; Van de Wiel, M J

    2012-05-13

    Over the last few decades, a suite of numerical models has been developed for studying river history and evolution that is almost as diverse as the subject of river history itself. A distinction can be made between landscape evolution models (LEMs), alluvial architecture models, meander models, cellular models and computational fluid dynamics models. Although these models share some similarities, there also are notable differences between them, which make them more or less suitable for simulating particular aspects of river history and evolution. LEMs embrace entire drainage basins at the price of detail; alluvial architecture models simulate sedimentary facies but oversimplify flow characteristics; and computational fluid dynamics models have to assume a fixed channel form. While all these models have helped us to predict erosion and depositional processes as well as fluvial landscape evolution, some areas of prediction are likely to remain limited and short-term owing to the often nonlinear response of fluvial systems. Nevertheless, progress in model algorithms, computing and field data capture will lead to greater integration between these approaches and thus the ability to interpret river history more comprehensively.

  6. Sprague River Oregon Centerline North Fork 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  7. Sprague River Oregon Centerline North Fork 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  8. Sprague River Oregon Centerline North Fork 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  9. Sprague River Oregon Centerline South Fork 1975

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  10. Sprague River Oregon Centerline South Fork 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  11. Sprague River Oregon Centerline Sycan 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  12. Sprague River Oregon Centerline North Fork 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  13. Sprague River Oregon Centerline South Fork 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  14. Sprague River Oregon Centerline South Fork 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  15. Sprague River Oregon Water circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the...

  16. Sprague River Oregon Centerline Sycan 1968

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  17. Sprague River Oregon Centerline South Fork 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  18. Sprague River Oregon Centerline circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  19. Sprague River Oregon Centerline Sycan circa 1870

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Sprague River drains 4090 square kilometers in south-central Oregon before flowing into the Williamson River and upper Klamath Lake. In cooperation with the U.S....

  20. Klamath Basin National Wildlife Refuges: Tule Lake, Lower Klamath, Clear Lake, Upper Klamath, Klamath Forest, and Bear Valley National Wildlife Refuges: Annual narrative report: Calendar year 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin NWRs outlines Refuge accomplishments during the 1987 calendar year. The report begins with a summary of the year's...

  1. Klamath Basin National Wildlife Refuges: Tule Lake, Lower Klamath, Clear Lake, Upper Klamath, Klamath Forest, and Bear Valley National Wildlife Refuges: Annual narrative report: Calendar year 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments during the 1980 calendar year. The report begins with an...

  2. Klamath Basin National Wildlife Refuges: Tule Lake, Lower Klamath, Clear Lake, Upper Klamath, Klamath Forest, and Bear Valley National Wildlife Refuges: Annual narrative report: Calendar year 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin NWRs outlines Refuge accomplishments during the 1983 calendar year. The report begins with a summary of the year's...

  3. Klamath Basin National Wildlife Refuges: Tule Lake, Lower Klamath, Clear Lake, Upper Klamath, and Klamath Forest National Wildlife Refuges: Annual narrative report: Calendar year 1978

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments during the 1978 calendar year. The report begins with an...

  4. Klamath Basin National Wildlife Refuges: Tule Lake, Lower Klamath, Clear Lake, Upper Klamath, and Klamath Forest National Wildlife Refuges: Annual narrative report: Calendar year 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments during the 1977 calendar year. The report begins with an...

  5. 75 FR 65371 - Klamath Marsh National Wildlife Refuge, Klamath County, OR

    Science.gov (United States)

    2010-10-22

    ... photography, and environmental education and interpretation. We will review and update the CCP at least every... hours, at the following libraries: Library Address Chiloquin 216 South 1st Street, Chiloquin, OR 97624. Klamath County 126 South Third Street, Klamath Falls, OR 97601. USFWS-NCTC 698 Conservation Way...

  6. On the modelling of river delta formation

    NARCIS (Netherlands)

    Geleynse, N.

    2013-01-01

    This thesis presents approaches to the modelling of river delta formation. In particular, it provides results of numerical stratigraphic-morphodynamic modelling of river delta formation under various environmental forcings.

  7. The river model of black holes

    OpenAIRE

    Hamilton, Andrew J. S.; Lisle, Jason P.

    2004-01-01

    This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the b...

  8. Particle-tracking investigation of the retention of sucker larvae emerging from spawning grounds in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Simon, David C.; Markle, Douglas F.

    2014-01-01

    This study had two objectives: (1) to use the results of an individual-based particle-tracking model of larval sucker dispersal through the Williamson River delta and Upper Klamath Lake, Oregon, to interpret field data collected throughout Upper Klamath and Agency Lakes, and (2) to use the model to investigate the retention of sucker larvae in the system as a function of Williamson River flow, wind, and lake elevation. This is a follow-up study to work reported in Wood and others (2014) in which the hydrodynamic model of Upper Klamath Lake was combined with an individual-based, particle-tracking model of larval fish entering the lake from spawning areas in the Williamson River. In the previous study, the performance of the model was evaluated through comparison with field data comprising larval sucker distribution collected in 2009 by The Nature Conservancy, Oregon State University (OSU), and the U.S. Geological Survey, primarily from the (at that time) recently reconnected Williamson River Delta and along the eastern shoreline of Upper Klamath Lake, surrounding the old river mouth. The previous study demonstrated that the validation of the model with field data was moderately successful and that the model was useful for describing the broad patterns of larval dispersal from the river, at least in the areas surrounding the river channel immediately downstream of the spawning areas and along the shoreline where larvae enter the lake. In this study, field data collected by OSU throughout the main body of Upper Klamath Lake, and not just around the Williamson River Delta, were compared to model simulation results. Because the field data were collected throughout the lake, it was necessary to include in the simulations larvae spawned at eastern shoreline springs that were not included in the earlier studies. A complicating factor was that the OSU collected data throughout the main body of the lake in 2011 and 2012, after the end of several years of larval drift

  9. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  10. Modeling Water Quality in Rivers

    Directory of Open Access Journals (Sweden)

    Liren Yu

    2005-01-01

    Full Text Available This study reports a PC software, used in a Windows-based environment, which was developed based on the first order reaction of Biological Oxygen Demand (BOD and a modified Streeter and Phelps equation, in order to simulate and determine the variations of Dissolved Oxygen (DO and of the BOD along with the studied river reaches. The software considers many impacts of environmental factors, such as the different type of discharges (concentrated or punctual source, tributary contribution, distributed source, nitrogenous BOD, BOD sedimentation, photosynthetic production and benthic demand of oxygen, and so on. The software has been used to model the DO profile along one river, with the aim to improve the water quality through suitable engineering measure.

  11. Klamath Forest, National Wildlife Refuge, Klamath Basin National Wildlife Refuges: Annual narrative report: Calendar year 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Forest NWR outlines Refuge accomplishments during the 1981 calendar year. The report begins with a summary of the year's...

  12. Synthesis of the effects to fish species of two management scenarios for the secretarial determination on removal of the lower four dams on the Klamath

    Science.gov (United States)

    Hamilton,; Rondorf, Dennis W.; Hampton,; Quinones,; Simondet,; Smith,

    2011-01-01

    For decades the long-standing conflict in the Klamath River Basin over water and fish resources has persisted. In an effort to resolve these disputes, PacifiCorp and interested parties negotiated, wrote, and signed the Klamath Hydroelectric Settlement Agreement (KHSA) in 2010, calling for the potential removal of the four lower dams on the Klamath River mainstem. The KHSA established a process known as the Secretarial Determination, which includes 1) conducting new scientific studies and a re-evaluation of existing studies found in the FERC record and from other sources, and 2) evaluating the potential environmental and human effects of such an action pursuant to National Environmental Policy Act, California Environmental Quality Act, and other applicable laws.  In March 2012, the Secretary of the Interior will decide whether removal of these dams on the Klamath River: 1) will advance salmonid fisheries, and 2) is in the public interest. In this report, we summarize anticipated effects to fish resources under two management scenarios: 1) current conditions with dams in place and without the programs and actions in the Klamath Basin Restoration Agreement (KBRA), and 2) removal of the lower four dams plus programs and actions called for in the KBRA and KHSA. This information will aid the Secretary of the Interior in determining whether dam removal and implementation of KBRA will advance restoration of salmonid (salmon and trout) fisheries.

  13. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  14. The river model of black holes

    CERN Document Server

    Hamilton, A J S; Hamilton, Andrew J. S.; Lisle, Jason P.

    2004-01-01

    This paper presents a new way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but als...

  15. Distribution and condition of young-of-year Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon, 2008-10--Final Report

    Science.gov (United States)

    Burdick, Summer M.; Hewitt, David A.

    2012-01-01

    The Nature Conservancy undertook restoration of the Williamson River Delta Preserve with a primary goal "to restore and maintain the diversity of habitats that are essential to the endangered [Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris)] while, at the same time, minimizing disturbance and adverse impacts" (David Evans and Associates, 2005). The Western Fisheries Research Center of the U.S. Geological Survey was asked by the Bureau of Reclamation to assist The Nature Conservancy in assessing the use of the restoration by larval and juvenile suckers. We identified five obtainable objectives to gauge the habitat suitability for young-of-year suckers in the permanently flooded portions of the two most recently restored sections (Goose Bay and Tulana) of the Williamson River Delta Preserve (hereafter referred to as the Preserve) and its effects on the distribution and health of larval and juvenile suckers. Several of these objectives were met through collaborations with The Nature Conservancy, Oregon State University, Oregon Water Science Center, and Leetown Science Center.

  16. Klamath Basin Water Rights Place of Use

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  17. Model for the evolution of river networks

    Energy Technology Data Exchange (ETDEWEB)

    Leheny, R.L.; Nagel, S.R. (The James Franck Institute and the Department of Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States))

    1993-08-30

    We have developed a model, which includes the effects of erosion both from precipitation and from avalanching of soil on steep slopes, to simulate the formation and evolution of river networks. The avalanches provide a mechanism for competition in growth between neighboring river basins. The changing morphology follows many of the characteristics of evolution set forth by Glock. We find that during evolution the model maintains the statistical characteristics measured in natural river systems.

  18. Aspen Delineation - Klamath National Forest, EUI [ds368

    Data.gov (United States)

    California Department of Resources — The database represents delineations of known aspen stands where aspen assessments were collected in the Klamath National Forest, Siskiyou County, California. The...

  19. Modelling planform changes of braided rivers

    NARCIS (Netherlands)

    Jagers, Hendrik Reinhard Albert

    2003-01-01

    This study has focused on modelling techniques to predict planform changes of braided rivers and their relation with state-of-the-art knowledge on the physical processes and the availability of model input data

  20. River Network Modeling Beyond Discharge at Gauges

    Science.gov (United States)

    David, C. H.; Famiglietti, J. S.; Salas, F. R.; Whiteaker, T. L.; Maidment, D. R.; Tolle, K.

    2014-12-01

    Over the past two decades, the estimation of water flow in river networks within hydro-meteorological models has mostly focused on simulations of natural processes and on their verification at available river gauges. Despite valuable existing skills in hydrologic modeling the accounting for anthropogenic actions in current models remains limited. The emerging availability of datasets containing measured dam outflows and reported irrigation withdrawals motivates their inclusion into simulations of flow in river networks. However, the development of advanced river network models accounting for such datasets of anthropogenic influences requires a detailed data model and a thorough handling of the various data types, sources and time scales. This contribution details the development of a consistent data model suitable for accounting some observations of anthropogenic modifications of the surface water cycle and presents the impact of such inclusion on simulations using the Routing Application for Parallel computatIon of Discharge (RAPID).

  1. Modeling change in potential landscape vulnerability to forest insect and pathogen disturbances: methods for forested subwatersheds sampled in the midscale interior Columbia River basin assessment.

    Science.gov (United States)

    Paul F. Hessburg; Bradley G. Smith; Craig A. Miller; Scott D. Kreiter; R. Brion. Salter

    1999-01-01

    In the interior Columbia River basin midscale ecological assessment, including portions of the Klamath and Great Basins, we mapped and characterized historical and current vegetation composition and structure of 337 randomly sampled subwatersheds (9500 ha average size) in 43 subbasins (404 000 ha average size). We compared landscape patterns, vegetation structure and...

  2. Computational Modeling of Pollution Transmission in Rivers

    Science.gov (United States)

    Parsaie, Abbas; Haghiabi, Amir Hamzeh

    2017-06-01

    Modeling of river pollution contributes to better management of water quality and this will lead to the improvement of human health. The advection dispersion equation (ADE) is the government equation on pollutant transmission in the river. Modeling the pollution transmission includes numerical solution of the ADE and estimating the longitudinal dispersion coefficient (LDC). In this paper, a novel approach is proposed for numerical modeling of the pollution transmission in rivers. It is related to use both finite volume method as numerical method and artificial neural network (ANN) as soft computing technique together in simulation. In this approach, the result of the ANN for predicting the LDC was considered as input parameter for the numerical solution of the ADE. To validate the model performance in real engineering problems, the pollutant transmission in Severn River has been simulated. Comparison of the final model results with measured data of the Severn River showed that the model has good performance. Predicting the LDC by ANN model significantly improved the accuracy of computer simulation of the pollution transmission in river.

  3. Understanding effects of fire suppression, fuels treatment, and wildfire on bird communities in the Klamath-Siskiyou ecoregion

    Science.gov (United States)

    John D. Alexander; C. John Ralph; Bill Hogoboom; Nathaniel E. Seavy; Stewart Janes

    2004-01-01

    Although fire management is increasingly recognized as an important component of conservation in Klamath-Siskiyou ecosystems, empirical evidence on the ecological effects of fire in this region is limited. Here we describe a conceptual model as a framework for understanding the effects of fire and fire management on bird abundance. This model identifies three major...

  4. Geochronology and assembly model of the Wooley Creek batholith, Klamath Mountains, northern California: A potential equivalent for magma reservoirs below cordilleran volcanoes

    Science.gov (United States)

    Coint, N.; Barnes, C. G.; Yoshinobu, A. S.; Chamberlain, K.; Barnes, M. A.

    2013-12-01

    The Wooley Creek batholith located in the Klamath Mountains, northern California, is a tilted, calc-alkaline pluton emplaced between 159 and 155 Ma through three different accreted terranes. Exposure of 10 km structural relief through the intrusive complex and the preservation of associated roof dikes makes it an ideal place to understand the volcanic-plutonic connection. The batholith can be divided in three main zones. Two-pyroxene diorite to tonalite that are texturally heterogeneous constitute the lower zone. CA-TIMS data indicate that it was emplaced over much less than 1 m.y. (159.22 × 0.10 Ma to 158.99 × 0.17 Ma). The scatter observed in bulk rock compositions, coupled with field observations and pyroxene trace element analysis suggest that lower-zone magmas were emplaced rapidly as numerous batches that did not homogenize. Mass balance calculations indicate that these rocks are 30-100% cumulate (Barnes et al., AGU Fall meeting 2013), suggesting that a large volume of melt was extracted from the system. The upper zone is upwardly zoned from biotite hornblende tonalite in the lowest structural level to biotite hornblende granite at the top. CA-TIMS data indicate that the upper zone was also emplaced in a short time interval: 158.25 × 0.46 Ma and 158.21 × 0.17 Ma. Upper-zone rocks define linear trends in Harker diagrams, consistent with fractional crystallization. Hornblende trace element concentrations vary consistently throughout the zone, however no correlation exists between the SiO2 content of the rock and the hornblende trace element concentrations, indicating that hornblende grew from a homogeneous melt. The upper zone was therefore interpreted as representing a frozen magmatic reservoir that was once able to convect and homogenize. The broad upward zoning formed by melt percolation through a crystal-rich mush. The central zone is a transition zone. It was emplaced between 159.01 × 0.20 Ma and 158.30 × 0.16 Ma and is composed of rocks from both

  5. Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement

    Science.gov (United States)

    Snyder, Daniel T.; Risley, John C.; Haynes, Jonathan V.

    2012-01-01

    The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through "voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries." The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological information products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial

  6. Runoff modeling of the Mara River using Satellite Observed Soil ...

    African Journals Online (AJOL)

    with European Remote Sensing (ERS) Scatterometer in modeling runoff of the Zambezi river basin. ... (2008) using Geospatial Stream Flow ... obtained for Mara River at Mara mines, Nyangores at Bomet and Amala at Mulot river gauging ...

  7. Heat and mass transfer in the Klamath Falls, Oregon, geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Prucha, R.H.

    1987-05-01

    Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has perplexed researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Based on reevaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. A comprehensive 3-dimensional numerical model, based on the proposed conceptual model is also presented. This numerical model incorporates all of the main reservoir characteristics. Hot water recharge flows from depth, along a large normal fault, and flows into near surface permeable strata where it loses heat to surrounding beds and to mixing with cold regional groundwaters introduced from the north. By matching calculated and measured temperatures and pressures, hot and cold water recharge rates and the permeability distribution for the geothermal system are estimated. A semi-analytic solution and simple lumped parameter methods are also compared to the numerical analysis. Results suggest that the flow patterns within the geothermal system at Klamath Falls are complex and intimately associated with the permeability distribution and the pressures and temperatures at depth, within the faults.

  8. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective rive

  9. A review of possible causes of nutrient enrichment and decline of endangered sucker populations in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Bortleson, Gilbert C.; Fretwell, Marvin O.

    1993-01-01

    Upper Klamath Lake, and the connecting Agency Lake, is a large (140 square mile) lake in south-central Oregon. The lake has a recent history of long-duration, near-monoculture, blue-green algal blooms of Aphanizomenon flos-aquae. Typically, the algal bloom causes nuisance and detrimental conditions, including a deep-green "pea soup" appearance, from mid-May to late October. Accompanying the blooms are foul odors, extremely high pH, widely varied dissolved-oxygen concentrations of supersaturation or near depletion, occasional but extensive fish kills, and elevated levels of toxic ammonia. In 1988, the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris), long-term inhabitants of Upper Klamath Lake, were placed on the Federal endangered-species list. The endangering of the sucker species in recent years is hypothesized to be caused by degraded lake-water-quality conditions.

  10. Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1-5, 2010

    Science.gov (United States)

    Thorsteinson, Lyman; VanderKooi, Scott; Duffy, Walter

    2011-01-01

    This report presents the proceedings of the Klamath Basin Science Conference (February 2010). A primary purpose of the meeting was to inform and update Klamath Basin stakeholders about areas of scientific progress and accomplishment during the last 5 years. Secondary conference objectives focused on the identification of outstanding information needs and science priorities as they relate to whole watershed management, restoration ecology, and possible reintroduction of Pacific salmon associated with the Klamath Basin Restoration Agreement (KBRA). Information presented in plenary, technical, breakout, and poster sessions has been assembled into chapters that reflect the organization, major themes, and content of the conference. Chapter 1 reviews the major environmental issues and resource management and other stakeholder needs of the basin. Importantly, this assessment of information needs included the possibility of large-scale restoration projects in the future and lessons learned from a case study in South Florida. Other chapters (2-6) summarize information about key components of the Klamath Basin, support conceptual modeling of the aquatic ecosystem (Chapter 7), and synthesize our impressions of the most pressing science priorities for management and restoration. A wealth of information was presented at the conference and this has been captured in chapters addressing environmental setting and human development of the basin, hydrology, watershed processes, fishery resources, and potential effects from climate change. The final chapter (8) culminates in a discussion of many specific research priorities that relate to and bookend the broader management needs and restoration goals identified in Chapter 1. In many instances, the conferees emphasized long-term and process-oriented approaches to watershed science in the basin as planning moves forward.

  11. The Trail Inventory of Lower Klamath NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lower Klamath National Wildlife Refuge. Trails in this inventory are...

  12. Narrative report Klamath Basin National Wildlife Refuges [1963

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments from September through December of 1963. The report begins by...

  13. Narrative report Klamath Basin National Wildlife Refuges: 1967

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments during the 1967 calendar year. The report begins by...

  14. Narrative report Klamath Basin National Wildlife Refuges: 1968

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments during the 1968 calendar year. The report begins by...

  15. Narrative report Klamath Basin National Wildlife Refuges: 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuges outlines Refuge accomplishments during the 1966 calendar year. The report begins by...

  16. Merging imagery and models for river current prediction

    Science.gov (United States)

    Blain, Cheryl Ann; Linzell, Robert S.; McKay, Paul

    2011-06-01

    To meet the challenge of operating in river environments with denied access and to improve the riverine intelligence available to the warfighter, advanced high resolution river circulation models are combined with remote sensing feature extraction algorithms to produce a predictive capability for currents and water levels in rivers where a priori knowledge of the river environment is limited. A River Simulation Tool (RST) is developed to facilitate the rapid configuration of a river model. River geometry is extracted from the automated processing of available imagery while minimal user input is collected to complete the parameter and forcing specifications necessary to configure a river model. Contingencies within the RST accommodate missing data such as a lack of water depth information and allow for ensemble computations. Successful application of the RST to river environments is demonstrated for the Snohomish River, WA. Modeled currents compare favorably to in-situ currents reinforcing the value of the developed approach.

  17. Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

  18. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  19. Modeling sediment transport in river networks

    Science.gov (United States)

    Wang, Xu-Ming; Hao, Rui; Huo, Jie; Zhang, Jin-Feng

    2008-11-01

    A dynamical model is proposed to study sediment transport in river networks. A river can be divided into segments by the injection of branch streams of higher rank. The model is based on the fact that in a real river, the sediment-carrying capability of the stream in the ith segment may be modulated by the undergone state, which may be erosion or sedimentation, of the i-1th and ith segments, and also influenced by that of the ith injecting branch of higher rank. We select a database about the upper-middle reach of the Yellow River in the lower-water season to test the model. The result shows that the data, produced by averaging the erosion or sedimentation over the preceding transient process, are in good agreement with the observed average in a month. With this model, the steady state after transience can be predicted, and it indicates a scaling law that the quantity of erosion or sedimentation exponentially depends on the number of the segments along the reach of the channel. Our investigation suggests that fluctuation of the stream flow due to random rainfall will prevent this steady state from occurring. This is owing to the phenomenon that the varying trend of the quantity of erosion or sedimentation is opposite to that of sediment-carrying capability of the stream.

  20. The Chena River Watershed Hydrology Model

    Science.gov (United States)

    2012-04-01

    ER D C/ CR R EL T R -1 2 -1 The Chena River Watershed Hydrology Model C ol d R eg io n s R es ea rc h an d E n gi n ee ri n g La...14 Table 6. Estimated monthly ET using Hargreaves method and pan...using water balance method A generalized water balance for the Chena River watershed can be written as mS P S ET R     (3) where P

  1. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...... been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally...... suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...

  2. Technical Note: Automatic river network generation for a physically-based river catchment model

    OpenAIRE

    2010-01-01

    SHETRAN is a physically-based distributed modelling system that gives detailed simulations in time and space of water flow and sediment and solute transport in river catchments. Standard algorithms for the automatic generation of river channel networks from digital elevation data are impossible to apply in SHETRAN and other similar models because the river channels are assumed to run along the edges of grid cells. In this work a new algorithm for the automatic generation of a river cha...

  3. Technical Note: Automatic river network generation for a physically-based river catchment model

    OpenAIRE

    2010-01-01

    SHETRAN is a physically-based distributed modelling system that gives detailed simulations in time and space of water flow and sediment and solute transport in river catchments. Standard algorithms for the automatic generation of river channel networks from digital elevation data are impossible to apply in SHETRAN and other similar models because the river channels are assumed to run along the edges of grid cells. In this work a new algorithm for the automatic generation of a river channel ne...

  4. 75 FR 63706 - Amendment of Class D and Class E Airspace; Klamath Falls, OR

    Science.gov (United States)

    2010-10-18

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class D and Class E Airspace; Klamath Falls... amend Class D and Class E airspace at Klamath Falls, OR. Decommissioning of the Merrill ] Non-Directional Radio Beacon (NDB) at Klamath Falls Airport has made this action necessary for the safety...

  5. Evapotranspiration from marsh and open-water sites at Upper Klamath Lake, Oregon, 2008--2010

    Science.gov (United States)

    Stannard, David I.; Gannett, Marshall W.; Polette, Danial J.; Cameron, Jason M.; Waibel, M. Scott; Spears, J. Mark

    2013-01-01

    Water allocation in the Upper Klamath Basin has become difficult in recent years due to the increase in occurrence of drought coupled with continued high water demand. Upper Klamath Lake is a central component of water distribution, supplying water downstream to the Klamath River, supplying water for irrigation diversions, and providing habitat for various species within the lake and surrounding wetlands. Evapotranspiration (ET) is a major component of the hydrologic budget of the lake and wetlands, and yet estimates of ET have been elusive—quantified only as part of a lumped term including other substantial water-budget components. To improve understanding of ET losses from the lake and wetlands, measurements of ET were made from May 2008 through September 2010. The eddy-covariance method was used to monitor ET at two wetland sites continuously during this study period and the Bowen-ratio energy-balance method was used to monitor open-water lake evaporation at two sites during the warmer months of the 3 study years. Vegetation at one wetland site (the bulrush site) consists of a virtual monoculture of hardstem bulrush (formerly Scirpus acutus, now Schoenoplectus acutus), and at the other site (the mixed site) consists of a mix of about 70 percent bulrush, 15 percent cattail (Typha latifolia), and 15 percent wocus (Nuphar polysepalum). Measured ET at these two sites was very similar (means were ±2.5 percent) and mean wetland ET is computed as a 70 to 30 percent weighted average of the bulrush and mixed sites, respectively, based on community-type distribution estimated from satellite imagery. Biweekly means of wetland ET typically vary from maximum values of around 6 to 7 millimeters per day during midsummer, to minimum values of less than 1 mm/d during midwinter. This strong annual signal primarily reflects life-cycle changes in the wetland vegetation, and the annual variation of radiative input to the surface and resulting temperature. The perennial vegetation

  6. Water quality modelling of Lis River, Portugal.

    Science.gov (United States)

    Vieira, Judite; Fonseca, André; Vilar, Vítor J P; Boaventura, Rui A R; Botelho, Cidália M S

    2013-01-01

    The aim of the study was to predict the impact of flow conditions, discharges and tributaries on the water quality of Lis River using QUAL2Kw model. Calibration of the model was performed, based on data obtained in field surveys carried out in July 2004 and November 2006. Generally the model fitted quite well the experimental data. The results indicated a decrease of water quality in the downstream area of Lis River, after the confluence of Lena, Milagres and Amor tributaries, as a result of discharges of wastewaters containing degradable organics, nutrients and pathogenic organisms from cattle-raising wastewaters, domestic effluents and agricultural runoff. The water quality criteria were exceeded in these areas for dissolved oxygen, biochemical oxygen demand, total nitrogen and faecal coliforms. Water quality modelling in different scenarios showed that the impact of tributaries on the quality of Lis River water was quite negligible and mainly depends on discharges, which are responsible by an increase of almost 45, 13 and 44 % of ultimate carbonaceous biochemical oxygen demand (CBOD(u)), ammonium nitrogen and faecal coliforms, for winter simulation, and 23, 33 and 36 % for summer simulation, respectively, when compared to the real case scenario.

  7. Simple model for river network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Leheny, R.L. [The James Franck Institute and The Department of Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States)

    1995-11-01

    We simulate the evolution of a drainage basin by erosion from precipitation and avalanching on hillslopes. The avalanches create a competition in growth between neighboring basins and play the central role in driving the evolution. The simulated landscapes form drainage systems that share many qualitative features with Glock`s model for natural network evolution and maintain statistical properties that characterize real river networks. We also present results from a second model with a modified, mass conserving avalanche scheme. Although the terrains from these two models are qualitatively dissimilar, their drainage networks share the same general evolution and statistical features.

  8. Thermodynamic Modeling of Savannah River Evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  9. Progress towards Continental River Dynamics modeling

    Science.gov (United States)

    Yu, Cheng-Wei; Zheng, Xing; Liu, Frank; Maidment, Daivd; Hodges, Ben

    2017-04-01

    The high-resolution National Water Model (NWM), launched by U.S. National Oceanic and Atmospheric Administration (NOAA) in August 2016, has shown it is possible to provide real-time flow prediction in rivers and streams across the entire continental United States. The next step for continental-scale modeling is moving from reduced physics (e.g. Muskingum-Cunge) to full dynamic modeling with the Saint-Venant equations. The Simulation Program for River Networks (SPRNT) provides a computational approach for the Saint-Venant equations, but obtaining sufficient channel bathymetric data and hydraulic roughness is seen as a critical challenge. However, recent work has shown the Height Above Nearest Drainage (HAND) method can be applied with the National Elevation Dataset (NED) to provide automated estimation of effective channel bathymetry suitable for large-scale hydraulic simulations. The present work examines the use of SPRNT with the National Hydrography Dataset (NHD) and HAND-derived bathymetry for automated generation of rating curves that can be compared to existing data. The approach can, in theory, be applied to every stream reach in the NHD and thus provide flood guidance where none is available. To test this idea we generated 2000+ rating curves in two catchments in Texas and Alabama (USA). Field data from the USGS and flood records from an Austin, Texas flood in May 2015 were used as validation. Large-scale implementation of this idea requires addressing several critical difficulties associated with numerical instabilities, including ill-posed boundary conditions generated in automated model linkages and inconsistencies in the river geometry. A key to future progress is identifying efficient approaches to isolate numerical instability contributors in a large time-space varying solution. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  10. Simplifying dynamic river water quality modelling: A case study of inorganic nitrogen dynamics in the Crocodile River (South Africa).

    CSIR Research Space (South Africa)

    Deksissa, T

    2004-06-01

    Full Text Available and river water quality in the future. A simplified river water quality model was formulated based on a conceptual hydraulic sub-model and simplification of an existing river water quality model. The simplified water quality was derived from the River Water...

  11. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency lakes, Oregon

    Science.gov (United States)

    Snyder, Daniel T.; Morace, Jennifer L.

    1997-01-01

    Upper Klamath Lake and the connecting Agency Lake constitute a large, shallow lake in south-central Oregon that the historical record indicates has likely been eutrophic since its discovery by non-Native Americans. In recent decades, however, the lake has had annual occurrences of near-monoculture blooms of the blue-green alga Aphanizomenon flos-aquae that are thought to be a result of accelerated eutrophication. In 1988, two sucker species endemic to the lake, the Lost River sucker (Deltistes luxatus) and the shortnose sucker (Chasmistes brevirostris), were listed as endangered by the U.S. Fish and Wildlife Service, and it has been proposed that their decline is due to the poor water quality associated with extremely long and productive algal blooms. It has also been proposed that the effluent drained from wetlands has contributed to accelerated eutrophication.

  12. Technical Note: Automatic river network generation for a physically-based river catchment model

    Directory of Open Access Journals (Sweden)

    S. J. Birkinshaw

    2010-09-01

    Full Text Available SHETRAN is a physically-based distributed modelling system that gives detailed simulations in time and space of water flow and sediment and solute transport in river catchments. Standard algorithms for the automatic generation of river channel networks from digital elevation data are impossible to apply in SHETRAN and other similar models because the river channels are assumed to run along the edges of grid cells. In this work a new algorithm for the automatic generation of a river channel network in SHETRAN is described and its use in an example catchment demonstrated.

  13. Technical Note: Automatic river network generation for a physically-based river catchment model

    Science.gov (United States)

    Birkinshaw, S. J.

    2010-09-01

    SHETRAN is a physically-based distributed modelling system that gives detailed simulations in time and space of water flow and sediment and solute transport in river catchments. Standard algorithms for the automatic generation of river channel networks from digital elevation data are impossible to apply in SHETRAN and other similar models because the river channels are assumed to run along the edges of grid cells. In this work a new algorithm for the automatic generation of a river channel network in SHETRAN is described and its use in an example catchment demonstrated.

  14. Technical Note: Automatic river network generation for a physically-based river catchment model

    Directory of Open Access Journals (Sweden)

    S. J. Birkinshaw

    2010-05-01

    Full Text Available SHETRAN is a physically-based distributed modelling system that gives detailed simulations in time and space of water flow and sediment and solute transport in river catchments. Standard algorithms for the automatic generation of river channel networks from digital elevation data are impossible to apply in SHETRAN and other similar models because the river channels are assumed to run along the edges of grid cells. In this work a new algorithm for the automatic generation of a river channel network in SHETRAN is described and its use in an example catchment demonstrated.

  15. Hydrological and hydraulic modelling of the Nyl River floodplain Part ...

    African Journals Online (AJOL)

    2007-01-01

    Jan 1, 2007 ... Keywords: Nyl River floodplain, Nylsvlei, Nylsvley Nature Reserve, modelling wetland hydraulics, wetland evapotranspiration ..... A review of suitable methods for estimating evapotranspira- ..... ingum routing. J. Hydrol.

  16. Hydrodynamic Modeling on Suciu River (Maramures County

    Directory of Open Access Journals (Sweden)

    Năsui Daniel

    2016-06-01

    Full Text Available The GIS database containing the topographic and land use information was made in 2012, followed by field measurements surveys in 2013 and 2014. A number of 11 cross-sections were topographically apprised in the valley along the 11 km river reach. The geometric data requirements for the modeling software were prepared in ESRI’s ArcGIS™ 9.2 software using the HEC-GeoRAS extension. The steady flow data was edited in the HEC-RAS one-dimensional flow modeling software. Four scenarios were used for the river discharge, from normal to overflow. The results come in different forms, from tabular output, to stage hydrograph, to velocity distribution or 3D diagrams, all of which give a clear vision on the overflow high risk areas. The results were exported back to the GIS extension for additional spatial operations. Flow velocity maps were generated for each discharge scenario. Although the scenarios included very high discharge values, the flood impact on people assets is minimal. The reasons for this are the high slope of the riverbed and the proper placement in the floodplain, due mainly to the flood management works that took place after the 1970 flood.

  17. RiverML: Standardizing the Communication of River Model Data (Invited)

    Science.gov (United States)

    Jackson, S.; Maidment, D. R.; Arctur, D. K.

    2013-12-01

    RiverML is a proposed language for conveying a description of river channel and floodplain geometry and flow characteristics through the internet in a standardized way. A key goal of the RiverML project is to allow interoperability between all hydraulic and hydrologic models, whether they are industry standard software packages or custom-built research tools. By providing a common transfer format for common model inputs and outputs, RiverML can shorten the development time and enhance the immediate utility of innovative river modeling tools. RiverML will provide descriptions of cross sections and multiple flow lines, allowing the construction of wireframe representations. In addition, RiverML will support descriptions of network connectivity, properties such as roughness coefficients, and time series observations such as water surface elevation and flow rate. The language is constructed in a modular fashion such that the geometry information, network information, and time series observations can be communicated independently of each other, allowing an arbitrary suite of software packages to contribute to a coherently modeled scenario. Funding for the development of RiverML is provided through an NSF grant to CUAHSI HydroShare project, a web-based collaborative environment for sharing data & models. While RiverML is geared toward the transfer of data, HydroShare will serve as a repository for storing water-related data and models of any format, while providing enhanced functionality for standardized formats such as RiverML, WaterML, and shapefiles. RiverML is a joint effort between the CUAHSI HydroShare development team, the Open Geospatial Consortium (OGC) Hydrology Domain Working Group, and an international community of data providers, data users, and software developers.

  18. A model of the sediment transport on a river network

    Science.gov (United States)

    Wang, Xu-Ming; Hao, Rui; Zhang, Jin-Feng; Huo, Jie

    2007-03-01

    A dynamical model is proposed to mimic the sediment transport on a river network. A river can be divided into some segments. For the ith segment the schlepping sediment ability of the flow may be scouring or depositing, which is influenced by that of the (i- 1)th segment. In order to compare our model simulation results with the empirical data obtained in Yellow River, the model is equipped with an experiential relation between the flow rate and the depositing rate of the Yellow River. After this, the simulation results show an excellent agreement with the empirical conclusions obtained with the upper and middle parts of Yellow River when it is in the low-water periods (for instance, in Dec., Jan. and Feb.). This indicates that our model may successfully describe the scouring-depositing of river networks.

  19. Klamath-Siskiyou herpetofauna: Biogeographic patterns and conservation strategies

    Science.gov (United States)

    Bury, R.B.; Pearl, C.A.

    1999-01-01

    The Klamath-Siskiyou region of southwest Oregon and northwest California (USA) has some of the most complex landscape mosaics and plant communities in western North America, reflecting its marked diversity of precipitation and topography. With 38 native species of amphibians and reptiles, the Klamath-Siskiyou region has the most species-rich herpetofauna of any similarly sized mountain range in the Pacific Northwest. Although it is a biodiversity 'hot spot,' there are only two endemic species, both salamanders, in the Klamath-Siskiyou region. High diversity is due to the overlap of two major biogeographic groups: the Arcto- (= northern) and Madro- (= southern) Tertiary herpetofaunas. Many of the amphibians in the Klamath-Siskiyou region are restricted to specialized habitats. Much of our knowledge about the biology of the regional fauna is based on studies elsewhere. Distributional surveys and ecological research are needed to address how the herpetofauna responds to timber harvest and other human activities that may reduce populations and increase fragmentation of suitable habitats. Conservation of the region's diverse herpetofauna should emphasize strategies directed at habitat specialists and species at the latitudinal limits of their ranges.

  20. Modeling mercury biomagnification (South River, Virginia, USA) to inform river management decision making.

    Science.gov (United States)

    Tom, Kyle R; Newman, Michael C; Schmerfeld, John

    2010-04-01

    Mercury trophic transfer in the South River (VA, USA) was modeled to guide river remediation decision making. Sixteen different biota types were collected at six sites within 23 river miles. Mercury biomagnification was modeled using a general biomagnification model based on delta(15)N and distance from the historic mercury release. Methylmercury trophic transfer was clearer than that for total Hg and, therefore, was used to build the predictive model (r(2) (prediction) = 0.76). The methylmercury biomagnification factors were similar among sites, but model intercept did increase with distance down river. Minimum Akaike's Information Criterion Estimation (MAICE) justified the incorporation of distance in the model. A model with a very similar biomagnification factor to the South River (95% confidence intervals [CI] = 0.38-0.52) was produced for a second contaminated Virginia river, the North Fork Holston River (95% CI = 0.41-0.55). Percent of total Hg that was methylmercury increased monotonically with trophic position. Trophic models based on delta(15)N were adequate for predicting changes in mercury concentrations in edible fish under different remediation scenarios.

  1. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  2. Photodegradation of dissolved organic matter in two contrasting reaches of a regulated river

    Science.gov (United States)

    Oliver, A. A.; Dahlgren, R. A.; Spencer, R. G.

    2010-12-01

    standard plating and colony count methods. Water was analyzed for dissolved organic carbon (DOC), nutrients, and pH, UV-absorbance properties, including specific UV absorbance (SUVA) and selected spectral slopes (275-295 nm slope and 350-400 nm slope), were used to investigate changes in DOM characteristics. Spectrofluorometric techniques were used to determine the fluorescence index (emission at wavelength 450 nm to 500 nm at an excitation wavelength of 370 nm) for investigation of source material and transformations. Preliminary results suggest little to no change in DOC or nutrient concentrations. However, shifts in SUVA, spectral slope, and fluorescence index were apparent in both reservoir and river samples incubated at both sites, with larger changes observed for river samples incubated within the river reach at 70% light transmittance. These results provide information on how photodegradation may affect DOM recycling and regeneration as an energy source within different compartmentalized reaches of the Klamath River. This information will subsequently aid in developing models for predicting DOM dynamics over larger spatial and temporal scales, including predictions and implications for conditions following dam removal.

  3. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    Science.gov (United States)

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 104 individuals/m2, suggested, that the diffusive-flux estimates may be significantly enhanced, by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources ?? 2009 SETAC.

  4. Modeling Residual Circulation and Stratification in Oujiang River Estuary

    Institute of Scientific and Technical Information of China (English)

    LIN Wei-bo; WANG Yi-gang; RUAN Xiao-hong; XU Qun

    2012-01-01

    A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river's head to its mouth.

  5. Analytical model of interaction of tide and river flow

    Directory of Open Access Journals (Sweden)

    Phairot Chatanantavet

    2006-11-01

    Full Text Available Hydrodynamic characteristics of a river resulting from interaction of tide and river flow are important since problems regarding flood, salinity intrusion, water quality and sedimentation are ubiquitous. The lower reach of the river strongly influenced by tides from the sea, when interacting with river flows, results in a complicated pattern which is simplified to its interaction with four main constituents of tides obtained from harmonic analysis. An analytical model is developed in this study for simulating the hydrodynamic processes in estuarine waters, with the emphasis being given to the interaction between tides and river flows. The perturbation method is used to derive the analytical solution, in which the estuarine flow is separated into steady and unsteady components. Thus the analytical solutions derived consist of two distinct parts; one represents the influence of river flows and the other represents the influence of tides. The application of the model to a case study, the Chao Phraya river, which requires a time series of discharges and loadings at the river mouth to model water quality in the Gulf of Thailand, shows that the model can beautifully and completely simulate the hydrodynamic features of tide and river flow interaction especially in the rainy season when the river discharge is high. Data of tidal discharges are scarce because of high cost of measurement especially in the lower reach of the river strongly influenced by tides from the sea. From this study of relation between tidal discharges and tides, the analytical model can compute tidal discharges from tides correctly. The results of tides and tidal flow can subsequently be used to calculate eddy viscosity and dispersion coefficient for describing salinity and water quality profiles.

  6. A new global river network database for macroscale hydrologic modeling

    Science.gov (United States)

    Wu, Huan; Kimball, John S.; Li, Hongyi; Huang, Maoyi; Leung, L. Ruby; Adler, Robert F.

    2012-09-01

    Coarse-resolution (upscaled) river networks are critical inputs for runoff routing in macroscale hydrologic models. Recently, Wu et al. (2011) developed a hierarchical dominant river tracing (DRT) algorithm for automated extraction and spatial upscaling of river networks using fine-scale hydrography inputs. We applied the DRT algorithms using combined HydroSHEDS and HYDRO1k global fine-scale hydrography inputs and produced a new series of upscaled global river network data at multiple (1/16° to 2°) spatial resolutions. The new upscaled results are internally consistent and congruent with the baseline fine-scale inputs and should facilitate improved regional to global scale hydrologic simulations.

  7. RSMM: a network language for modeling pollutants in river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.B.; Standridge, C.R.; Schnoor, J.L.

    1983-06-01

    Predicting the steady state distribution of pollutants in rivers is important for water quality managers. A new simulation language, the River System Modeling Methodology (RSMM), helps users construct simulation models for analyzing river pollution. In RSMM, a network of nodes and branches represents a river system. Nodes represent elements such as junctions, dams, withdrawals, and pollutant sources; branches represent homogeneous river segments, or reaches. The RSMM processor is a GASP V program. Models can employ either the embedded Streeter-Phelps equations or user supplied equations. The user describes the network diagram with GASP-like input cards. RSMM outputs may be printed or stored in an SDL database. An interface between SDL and DISSPLA provides high quality graphical output.

  8. Physical-scale models of engineered log jams in rivers

    Science.gov (United States)

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  9. Modelling a river catchment using an electrical circuit analogue

    Directory of Open Access Journals (Sweden)

    C. G. Collier

    1998-01-01

    Full Text Available An electrical circuit analogue of a river catchment is described from which is derived an hydrological model of river flow called the River Electrical Water Analogue Research and Development (REWARD model. The model is based upon an analytic solution to the equation governing the flow of electricity in an inductance-capacitance-resistance (LCR circuit. An interpretation of L, C and R in terms of catchment parameters and physical processes is proposed, and tested for the River Irwell catchment in northwest England. Hydrograph characteristics evaluated using the model are compared with observed hydrographs, confirming that the modelling approach does provide a reliable framework within which to investigate the impact of variations in model input data.

  10. IMPROVEMENTS OF RIVER MODELING 1D DATA PREPARATION

    Directory of Open Access Journals (Sweden)

    ION-MARIAN MOISOIU

    2012-11-01

    Full Text Available Improvements of river modeling 1D data preparation. The importance of hydrographical networks data and the need for detailed studies do generate an increase of projects in this specialized area and a diversification of river mathematical modeling software. River mathematical modeling can be done in two ways, namely; the "2D mode" and the “1D mode”. The “2D mode” is where a digital terrain model of a full hydrographical basin must be produced and "1D mode" is where only cross sections, long sections and structures elevations needs to be presented in a graphical environment and in a specific formats for the mathematical modeling software. This paper will show the principle of a custom built GIS, specially created to help the preparation of 1D river modeling data. The benefits are; elimination of human errors, automated processing, increasing productivity, flexible output and cost reduction.

  11. Study of hydrodynamic model in sluice controlled river networks

    Science.gov (United States)

    Li, Yan; Zeng, Fantang

    2010-05-01

    Shiqi river network ,is situated in the Zhongshan city of Guangdong province in the P.R.China. The river network covers approximately 702.55km2 ,with a total river length of over 500km and extending over 34km from north to south and over 46km from east to west. The river network overlaps with the most densely populated and economically developed region in the Pear River Delta Economic Zone. In 2008 the region had a population of 1 846.9 thousands And a GDP of more than 8 2500 million RMB. All branches of the river network are encircled by the main rivers of Pear River Delta(PRD) network. With the economic and social development, all natural connections with the external rivers are controlled by the sluices, water body exchanges between the Shiqi river network and external rivers are significantly changed by human activities. The overall objective the research is to develop a tool for the local Environmental Protection Bureau to Understand and quantify the impact of the artificial construction on the hydrological cycle. The developed model can accurate representation of the water levels and flows in the study area, to allow accurate representation of the transport of pollutants. The river network topography is derived directly from the available database. Only the "major" rivers were included in the model, because cross-section data for the "minor" rivers are currently not available. In general, the 1D hydrodynamic model is provided with flow boundary conditions ("Q") at its upstream boundaries and with water level boundary conditions ("z") at its downstream boundaries. For all boundaries of Shiqi river network, there are no flow records available, all records are water level. To reflect the hydrodynamic process accurately, the author developed a new methods to set the hydrodynamic model's boundary. For each boundary, the boundary condition is "Z" when the sluice is open, and the boundary condition is "Q" while it is closed. The open or close condition is identified

  12. Modeling annual discharge of six Mexico’s northern rivers

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Navar

    2012-04-01

    Full Text Available The overall goal of this report was to understand river discharge variability to improve conventional water management practices of Mexico’s northern subtropical rivers. This report addresses whether: a river discharge tendencies, patterns and cycles can be detected with proxy and instrumental records; and b annual discharge can be forecasted by stochastic models. Eleven gauging stations of six major rivers; three lowland rivers discharging into the Pacific Ocean (Rios Santa Cruz, Acaponeta, and San Pedro; five upland rivers draining into the Pacific Ocean (Rio San Pedro: Peña del Aguila, Refugio Salcido, San Felipe, Vicente Guerrero and Saltito, one river flowing across the interior Basin (Rio Nazas: Salomé Acosta and two more rivers discharging into the Northern Gulf of Mexico (Rio San Juan: El Cuchillo and Rio Ramos: Pablillos were statistically analyzed. Instrumental recorded daily discharge data (1940-1999 and reconstructed time series data (1860-1940 using dendrochronological analysis delivered annual discharge data to be modeled using autoregressive integrated moving average, ARIMA models. Spectral density analysis, autocorrelation functions and the standardized annual discharge data evaluated annual discharge frequency cycles. Results showed ARIMA models with two autoregressive and one moving average coefficient adequately project river discharge for all gauging stations with four of them showing significant declining patterns since 1860. ARIMA models in combination with autocorrelation and spectral density techniques as well as standardized departures, in agreement with present (2002-2010 observations, forecast a wet episode that may last between 9 and 12 years thereafter entering again into a dry episode. Three dry-wet spell cycles with different time scales (1-2 years; 4-7 years; 9-12 years could be discerned from these analyses that are consistent for all three northern Mexico’s river clusters that emerged from a multivariate

  13. Modeling and Prognosis of the Strouma River Pollution

    Directory of Open Access Journals (Sweden)

    Petrov M.

    2007-12-01

    Full Text Available A model for analysis and prognosis of river quality has been developed, which is a modified method of the time series analysis has been applied for an assessment and prognosis of water pollution of the Strouma river. The following indexes of the water pollution of the Strouma river have been investigated: BOD, oxidation, soluble and insoluble substance - the village of Marino Pole. Periodical seasonal and annual pollution variations have been determined, as well as basic tendencies in the evolution of the water quality for the period from years 2001 to 2003. A prognosis of the river pollution for the year 2004 has been made. The received results show the offered times series analysis modified method successfully could be used for modeling and prognosis of the water pollution of the river ecosystems.

  14. Continental river routing model for water resources applications

    Science.gov (United States)

    Mizukami, N.; Clark, M. P.; Sampson, K. M.

    2015-12-01

    This presentation describes a stand-alone runoff routing tool, mizuRoute, which post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool utilizes vector-based river network data, which includes river segment lines and the associated drainage basin polygons. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The first step of the routing tool is hillslope routing, which uses a gamma distribution to construct a unit-hydrograph that represents the transport of runoff from a hillslope to an outlet of the catchment. The second step is river channel routing, which is performed with one of two routing scheme options: a) the kinematic wave tracking (KWT) routing procedure; and 2) the impulse response function - unit hydrograph (IRF-UH) routing procedure. This presentation demonstrate mizuRoute's capabilities to produce spatially distributed streamflow simulations based on the river network data from the United States Geological Survey (USGS) Geospatial Fabric (GF) dataset, which contains over 54000 river segments across the contiguous United States (CONUS). We routed ensemble of 150 years runoff simulated with Variable Infiltration Capacity Model forced by climate data from Coupled Model Intercomparison Project Phase 5. A brief analysis of the routing model parameter sensitivity is also presented.

  15. 75 FR 49866 - Proposed Amendment of Class D and Class E Airspace; Klamath Falls, OR

    Science.gov (United States)

    2010-08-16

    ... Falls, OR AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class D and Class E airspace at Klamath Falls, OR. Decommissioning of the Merrill Non-Directional Radio Beacon (NDB) at Klamath Falls Airport has made this...

  16. FLOOD MODELING OF THE VUKA RIVER SECTION UPSTREAM OF ITS CONFLUENCE WITH THE DANUBE RIVER

    Directory of Open Access Journals (Sweden)

    Dario Marić

    2016-12-01

    Full Text Available In this paper, a section of the Vuka River from its confluence with the Danube River in Vukovar to 3 + 630 rkm was modeled. The possibility and size of floods in the surrounding area were analyzed for different return periods (2, 5, 10, 50, and 100 yrs. Although the high-water levels of the Danube River are lower than the terrain elevation of Vukovar, they cause backwater in the Vuka River and in its tributary, the Bobotski canal. In that indirect way, the surrounding area is endangered and the efficiency of drainage systems is reduced. The existing riverbed of the analyzed Vuka River section was digitalized based on a digital terrain model using the geographic information system (GIS software ArcGIS and the HEC-GeoRAS toolbar. A mathematical model of the steady-state flow of the Vuka river section using the digitized riverbed was executed in the HEC-RAS software using different return periods. The obtained velocities and water levels were analyzed using HEC-RAS, and the sizes of the flooded areas were calculated and observed in ArcGIS.

  17. River predisposition to ice jams: a simplified geospatial model

    Science.gov (United States)

    De Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2017-07-01

    Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.

  18. MATHEMATICAL MODEL OF RIVER BED CHANGE DOWNSTREAM OF XIAOLANGDI RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A mathematical model of river bed change downstream of the Xiaolangdi Reservoir was developed based on the most recent achievement of sediment theory in the Yellow River. The model was verified by the comparison of computed results and measured data from 1986 to 1996. Numerical prediction of the erosion and deposition downstream of the Xiaolangdi Reservoir in its first operation year was carried out, and a series of suggestions were given for reservoir operation mode in its early operation period.

  19. Comparative Analysis of Two Models of the Strouma River Ecosystem

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2008-04-01

    Full Text Available A modified method of regression analysis for modelling of the water quality of river ecosystems is offered. The method is distinguished from the conventional regression analysis of that the factors included in the regression dependence are time functions. Two type functions are tested: polynomial and periodical. The investigations show better results the periodical functions give. In addition, a model for analysis of river quality has been developed, which is a modified method of the time series analysis. The model has been applied for an assessment of water pollution of the Strouma river. An assessment for adequately of the obtained model of the statistical criteria - correlation coefficient, Fisher function and relative error is developed and it shows that the models are adequate and they can be used for modelling of the water pollution on these indexes of the Strouma river. The analysis of the river pollution shows that there is not a materially increase of the anthropogenic impact of the Strouma river in the Bulgarian part for the period from 2001 to 2004.

  20. Rivers on Titan - numerical modelling of sedimentary structures

    Science.gov (United States)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the

  1. Water quality modeling for a tidal river network: A case study of the Suzhou River

    Institute of Scientific and Technical Information of China (English)

    Le FENG; Deguan WANG; Bin CHEN

    2011-01-01

    Combined with the basic characteristics of Suzhou plain river network,two modules are established,one of which is the hydrodynamic module using the water level node method involving gate operation,while the other is the water quality module based on the principle of WASP5 (water quality analysis simulation program5).These two modules were coupled and verified by the monitoring data of Suzhou River network.The results showed that calculation errors ofNH+4 -N and DO for the model were in the ranges of-15%-13% and -18%-16%,respectively.Despite of the deviations between the monitoring data and simulation result,the calculation accuracy of the model conforms to the practical engineering requirement.Therefore,the proposed coupling model may be useful for water quality simulation and assessment for river network under tidal influences.

  2. Water quality modeling for a tidal river network: A case study of the Suzhou River

    Science.gov (United States)

    Feng, Le; Wang, Deguan; Chen, Bin

    2011-12-01

    Combined with the basic characteristics of Suzhou plain river network, two modules are established, one of which is the hydrodynamic module using the water level node method involving gate operation, while the other is the water quality module based on the principle of WASP5 (water quality analysis simulation program5). These two modules were coupled and verified by the monitoring data of Suzhou River network. The results showed that calculation errors of NH{4/+}-N and DO for the model were in the ranges of -15%-13% and -18%-16%, respectively. Despite of the deviations between the monitoring data and simulation result, the calculation accuracy of the model conforms to the practical engineering requirement. Therefore, the proposed coupling model may be useful for water quality simulation and assessment for river network under tidal influences.

  3. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients t

  4. Modelling the impact of wind stress and river discharge on Danshuei River plume

    Science.gov (United States)

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.

    2008-01-01

    A three-dimensional, time-dependent, baroclinic, hydrodynamic and salinity model, UnTRIM, was performed and applied to the Danshuei River estuarine system and adjacent coastal sea in northern Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of wind stress and freshwater discharge on Dasnhuei River plume. As the absence of wind stress, the anticyclonic circulation is prevailed along the north to west coast. The model results reveal when winds are downwelling-favorable, the surface low-salinity waters are flushed out and move to southwest coast. Conversely, large amounts of low-salinity water flushed out the Danshuei River mouth during upwelling-favorable winds, as the buoyancy-driven circulation is reversed. Wind stress and freshwater discharge are shown to control the plume structure. ?? 2007 Elsevier Inc. All rights reserved.

  5. Modelling faecal coliforms and streptococci dynamics in an intermittent French river with Mohid River Network

    Science.gov (United States)

    Boutron, Olivier; Got, Patrice; Caro, Audrey; Salles, Christian; Perrin, Jean-Louis; Rodier, Claire; Marchand, Pierre; David, Arthur; Neves, Ramiro; Tournoud, Marie-George

    2010-05-01

    The sanitary microbiological condition of Mediterranean coastal rivers is a growing concern because of its impacts on the compliance of receiving coastal and transitional waters which are of high recreational and economic values. Due to strong anthropogenic pressures, coastal rivers do not often meet the required standards and guidelines, expressed in terms of coliforms and streptococci abundances. These indicator bacteria themselves are usually not pathogenic, but they allow the tracking of recent faecal contamination and the possible presence of pathogenic micro-organisms in rivers, in an easier and less costly way. Mediterranean coastal rivers are subject to long dry periods cut by short duration flush flood events. During dry and low flow period, faecal bacteria often bound to particulate matter tend to settle in the riverbed and to constitute an in-stream store in which bacteria are able to survive for long durations and even to multiply. During intense rainfall events and floods, peaks of faecal contamination occur in rivers due to entrainment of stored bacteria in river channels by the flood. Modelling these intermittent rivers poses a numerical challenge due to the high spatial and temporal gradients and proximity of zero value. These conditions are not well handled or not simulated at all in most of the currently available watershed and rivers models. The objective of this work is to simulate the transfer and fate of faecal coliforms and faecal streptococci in an intermittent river, considering a dry period followed by a flash flood. The river considered is the French river "La Vène", close to Montpellier, for which data of several dry periods and floods are available. The model considered is Mohid River Network (MRN), (www.mohid.com). MRN is a 1D hydrodynamic model that considers a network of tributaries and allows for dynamic time step. It can also compute properties transport, such as faecal bacteria, and compute water storage in pools, transmission

  6. River Network Evolution Based on Fluid-Erosion Model

    OpenAIRE

    2010-01-01

    A new landscape evolution model is proposed which is composed of the shallow water equations for the fluid above the sediment and the mass conservation equation of the sediment. Numerical simulations of the formation of landscape and river network are carried out based on these equations. It is shown that steady patterns of river network are formed for the initial inclinations of slopes within 0.00005 and 0.005. The fractal dimensions of the river network and the exponent of Hack's law are ob...

  7. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  8. Landscape Evolution Modelling of naturally dammed rivers

    NARCIS (Netherlands)

    Gorp, van W.; Temme, A.J.A.M.; Baartman, J.E.M.; Schoorl, J.M.

    2014-01-01

    Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long-lived and therefore have a long-term impact on fluvial and landscape evolution. This long-term impact is still poorly understood and

  9. Landscape Evolution Modelling of naturally dammed rivers

    NARCIS (Netherlands)

    van Gorp, Wouter; Temme, Arnaud J. A. M.; Baartman, Jantiene E. M.; Schoorl, Jeroen M.

    2014-01-01

    Natural damming of upland river systems, such as landslide or lava damming, occurs worldwide. Many dams fail shortly after their creation, while other dams are long-lived and therefore have a long-term impact on fluvial and landscape evolution. This long-term impact is still poorly understood and la

  10. Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement

    Science.gov (United States)

    Snyder, Daniel T.; Risley, John C.; Haynes, Jonathan V.

    2012-01-01

    The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through "voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries." The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological information products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial

  11. River network solution for a distributed hydrological model and applications

    Science.gov (United States)

    Jha, Raghunath; Herath, Srikantha; Musiake, Katumi

    2000-02-01

    A simultaneous solution for one-dimensional unsteady flow routing for a network of rivers has been developed, which can be used either with a complete distributed hydrological model, a simple rainfall-runoff model or as a stand alone river routing model. Either dynamic or kinematic solution schemes can be selected to simulate the river flows. The river network is either generated from the Digital Elevation Model (DEM) or directly input to the model. The model can handle any number of upstream channels and computational points. A sparse matrix solution algorithm is used to solve the 2N×2N matrix resulting from N nodes in the network. A submodule generates the initial water depth and discharge at each computational point from equilibrium discharge in the absence of observed initial conditions. The model is applied in three sub-catchments of the Chao Phraya river basin, Thailand, considering three different conditions. The simulated results show good agreement with observed discharges and provide insight to water level fluctuations, especially where tributaries join the main channel.

  12. River predisposition to ice jams: a simplified geospatial model

    OpenAIRE

    Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2016-01-01

    The goal of this work was to develop a simplified geospatial model to estimate the predisposition of any river channel to ice jams. Rather than predicting river ice break up, the main question here was to predict where the broken up ice is susceptible to jam based on the river’s geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, ...

  13. Dynamic ANN Modeling for Flood Forecasting in a River Network

    Science.gov (United States)

    Roy, Parthajit; Choudhury, P. S.; Saharia, Manabendra

    2010-10-01

    An experiment on predicting flood flows at each of the upstream and a down stream section of a river network is presented using focused Time Lagged Recurrent Neural Network with three different memories like TDNN memory, Gamma memory and Laguarre memory. This paper focuses on application of memory to the input layer of a TLRN in developing flood forecasting models for multiple sections in a river system. The study shows the Gamma memory has better applicability followed by TDNN and Laguarre memory.

  14. WATERSHED RUNOFFAND RIVER FLOOD MODELING IN LAND USE PLANNING

    Directory of Open Access Journals (Sweden)

    Marcello Niedda

    2010-06-01

    Full Text Available In land use planning along river paths it may be useful to consider the statistics of the flooding process of the river. The set of rules regulating land use planning in Italy results in the return period required being very long and, as a result, there are very high river discharge peaks which are taken into consideration and not much possibility of making experimental observations. Correct planning of land use should include some description of river flooding in these critical conditions. To do this a basin scale hydrological model and a robust numerical scheme of the 2D complete SWE have to be integrated. Knowing that experimental validation is very difficult we showed the reliability of the numerical schemes used to get consistent solutions. A watershed runoff forecast model was used to obtain the river hydrograph to apply as a boundary condition in the study of river flood inundation on the flat plain near the Olbia airport (Sardinia, Italy. A threshold of 1 cm was used as a condition to consider whether or not to include the cell in the computational field in the description of the wetting-drying process. And this seems to fit well in the model. The numerical model is conservative, ensuring preservation of water volumes with a precision of 10-4. The great surface water gradient in some sections is evident proof of the importance of the SWE inertial terms in wave front propagation. The flow peak loss during the alluvial plane flooding resulted in a reduction of about 10% of the discharge peak at the river mouth. This numerical method, which has been validated in previous similar applications, describes sufficiently well flooding in a complex area with river morphology limited by airport and road infrastructures.

  15. Modeling tropical river runoff:A time dependent approach

    Institute of Scientific and Technical Information of China (English)

    Rashmi Nigam; Sudhir Nigam; Sushil K.Mittal

    2014-01-01

    Forecasting of rainfall and subsequent river runoff is important for many operational problems and applications related to hydrol-ogy. Modeling river runoff often requires rigorous mathematical analysis of vast historical data to arrive at reasonable conclusions. In this paper we have applied the stochastic method to characterize and predict river runoff of the perennial Kulfo River in south-ern Ethiopia. The time series analysis based auto regressive integrated moving average (ARIMA) approach is applied to mean monthly runoff data with 10 and 20 years spans. The varying length of the input runoff data is shown to influence the forecasting efficiency of the stochastic process. Preprocessing of the runoff time series data indicated that the data do not follow a seasonal pattern. Our forecasts were made using parsimonious non seasonal ARIMA models and the results were compared to actual 10-year and 20-year mean monthly runoff data of the Kulfo River. Our results indicate that river runoff forecasts based upon the 10-year data are more accurate and efficient than the model based on the 20-year time series.

  16. Two dimensional hydrodynamic modeling of a high latitude braided river

    Science.gov (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  17. Flood forecasting for River Mekong with data-based models

    Science.gov (United States)

    Shahzad, Khurram M.; Plate, Erich J.

    2014-09-01

    In many regions of the world, the task of flood forecasting is made difficult because only a limited database is available for generating a suitable forecast model. This paper demonstrates that in such cases parsimonious data-based hydrological models for flood forecasting can be developed if the special conditions of climate and topography are used to advantage. As an example, the middle reach of River Mekong in South East Asia is considered, where a database of discharges from seven gaging stations on the river and 31 rainfall stations on the subcatchments between gaging stations is available for model calibration. Special conditions existing for River Mekong are identified and used in developing first a network connecting all discharge gages and then models for forecasting discharge increments between gaging stations. Our final forecast model (Model 3) is a linear combination of two structurally different basic models: a model (Model 1) using linear regressions for forecasting discharge increments, and a model (Model 2) using rainfall-runoff models. Although the model based on linear regressions works reasonably well for short times, better results are obtained with rainfall-runoff modeling. However, forecast accuracy of Model 2 is limited by the quality of rainfall forecasts. For best results, both models are combined by taking weighted averages to form Model 3. Model quality is assessed by means of both persistence index PI and standard deviation of forecast error.

  18. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Upper Klamath Lake is a large (140 square-mile), shallow (mean depth about 8 ft) lake in south-central Oregon that the historical record indicates has been eutrophic since its discovery by non-Native Americans. In recent decades, however, the lake has had annual occurrences of near- monoculture blooms of the blue-green alga Aphanizomenon flos-aquae. In 1988 two sucker species endemic to the lake, the Lost River sucker (Deltistes luxatus) and the shortnose sucker (Chasmistes brevirostris), were listed as endangered by the U.S. Fish and Wildlife Service, and it has been proposed that the poor water quality conditions associated with extremely long and productive blooms are contributing to the decline of those species.

  19. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  20. River Health Assessment Based on Fuzzy Matter-element Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The study aimed to assess the health state of rivers by using fuzzy matter-element model.[Method] Based on fuzzy matter-element analysis theory,the assessment model of river health was established,then a modified method to calculate the superior subordinate degree was put forward according to Hamming distance.Afterwards,a multi-level evaluation model,which contained the assessment indicators about hydrological features,ecological characteristics,environmental traits and service function,was set ...

  1. A Topological Phase Transition in Models of River Networks

    Science.gov (United States)

    Oppenheim, Jacob; Magnasco, Marcelo

    2012-02-01

    The classical Scheidegger model of river network formation and evolution is investigated on non-Euclidean geometries, which model the effects of regions of convergent and divergent flows - as seen around lakes and drainage off mountains, respectively. These new models may be differentiated by the number of basins formed. Using the divergence as an order parameter, we see a phase transition in the number of distinct basins at the point of a flat landscape. This is a surprising property of the statistics of river networks and suggests significantly different properties for riverine networks in uneven topography and vascular networks of arteries versus those of veins among others.

  2. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  3. A CFD model for pollutant dispersion in rivers

    Directory of Open Access Journals (Sweden)

    Modenesi K.

    2004-01-01

    Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.

  4. A fuzzy-autoregressive model of daily river flows

    Science.gov (United States)

    Greco, Roberto

    2012-06-01

    A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the nonlinear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.

  5. Dynamic modelling of processes in rivers affected by precipitation runoff

    DEFF Research Database (Denmark)

    Jacobsen, Judith L.

    1997-01-01

    In this thesis, models for the dynamics of oxygen and organic matter in receiving waters (such as rivers and creeks), which are affected by rain, are developed. A time series analysis framework is used, but presented with special emphasis on continuous time state space models. Also, the concept...

  6. Modelling of bio-morphodynamics in braided rivers: applications to the Waitaki river (New Zealand)

    Science.gov (United States)

    Stecca, G.; Zolezzi, G.; Hicks, M.; Measures, R.; Bertoldi, W.

    2016-12-01

    The planform shape of rivers results from the complex interaction between flow, sediment transport and vegetation processes, and can evolve in time following a change in these controls. The braided planform of the lower Waitaki (New Zealand), for instance, is endangered by the action of artificially-introduced alien vegetation, which spread after the reduction in magnitude of floods following hydropower dam construction. These processes, by favouring the flow concentration into the main channel, would likely promote a shift towards single thread morphology if vegetation was not artificially removed within a central fairway. The purpose of this work is to address the future evolution of these river systems under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not straightforwardly available at present. Our starting point is the GIAMT2D numerical model, solving two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We further develop this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, and tweaks the local flow roughness, critical shear stress for sediment transport and bank erodibility accordingly. We plan to apply the model to address the decadal-scale evolution of one reach in the Waitaki river, comparing different management scenarios for vegetation control.

  7. Integrated hydrological and water quality model for river management: a case study on Lena River.

    Science.gov (United States)

    Fonseca, André; Botelho, Cidália; Boaventura, Rui A R; Vilar, Vítor J P

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km(2) watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between -26% and 23% for calibration and -30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms.

  8. Identifiability analysis of the CSTR river water quality model.

    Science.gov (United States)

    Chen, J; Deng, Y

    2006-01-01

    Conceptual river water quality models are widely known to lack identifiability. The causes for that can be due to model structure errors, observational errors and less frequent samplings. Although significant efforts have been directed towards better identification of river water quality models, it is not clear whether a given model is structurally identifiable. Information is also limited regarding the contribution of different unidentifiability sources. Taking the widely applied CSTR river water quality model as an example, this paper presents a theoretical proof that the CSTR model is indeed structurally identifiable. Its uncertainty is thus dominantly from observational errors and less frequent samplings. Given the current monitoring accuracy and sampling frequency, the unidentifiability from sampling frequency is found to be more significant than that from observational errors. It is also noted that there is a crucial sampling frequency between 0.1 and 1 day, over which the simulated river system could be represented by different illusions and the model application could be far less reliable.

  9. Upper Klamath National Wildlife Refuge : Annual narrative report: Calendar year 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Upper Klamath National Wildlife Refuges outlines Refuge accomplishments during the 1981 calendar year. The report begins with an...

  10. Klamath Basin National Wildlife Refuge Complex: Annual narrative report: Calendar year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuge Complex outlines Refuge accomplishments during the 1992 calendar year. The Tule Lake National...

  11. Klamath Marsh National Wildlife Refuge: Final Comprehensive Conservation Plan and Environmental Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Klamath Marsh NWR for the next 15 years. This plan outlines the Refuge vision and...

  12. Pesticide Impact Assessment in Tule Lake and Lower Klamath National Wildlife Refuges, 1998 - 2000 Growing Season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tule Lake and the adjacent Lower Klamath National Wildlife Refuges (TLNWR and LKNWR) serve as key spring/fall staging and overwintering areas for Pacific Flyway...

  13. The Trail Inventory of Lower Klamath National Wildlife Refuge [Cycle 1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Lower Klamath National Wildlife Refuge. Trails in this inventory are...

  14. Klamath Basin Restoration Agreement Off-Project Water Program Sub-basin Analysis Flow Statistics

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — VERSION 5/15/2012 HYDROLOGICAL INFORMATION PRODUCTS FOR THE OFF-PROJECT WATER PROGRAM OF THE KLAMATH BASIN RESTORATION AGREEMENT By Daniel T. Snyder, John C. Risley,...

  15. Upper Klamath Basin Landsat Image for September 20, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  16. Klamath Basin National Wildlife Refuges Complex: Annual narrative report: Calendar year 1988

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuge Complex outlines Refuge accomplishments during the 1988 calendar year. The Tule Lake National...

  17. Klamath Basin National Wildlife Refuges Complex: Annual narrative report: Calendar year 1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuge Complex outlines Refuge accomplishments during the 1989 calendar year. The Tule Lake National...

  18. Upper Klamath Basin Landsat Image for May 25, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  19. Upper Klamath Basin Landsat Image for July 18, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  20. Upper Klamath Basin Landsat Image for May 6, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  1. Upper Klamath Basin Landsat Image for June 23, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  2. Upper Klamath Basin Landsat Image for October 29, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  3. Upper Klamath Basin Landsat Image for July 25, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  4. Klamath Basin National Wildlife Refuge Complex: Annual narrative report: Calendar year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuge Complex outlines Refuge accomplishments during the 1990 calendar year. The Tule Lake National...

  5. Upper Klamath Basin Landsat Image for April 7, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  6. Upper Klamath Basin Landsat Image for July 2, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  7. Upper Klamath Basin Landsat Image for April 29, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  8. Upper Klamath Basin Landsat Image for October 22, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  9. Upper Klamath Basin Landsat Image for August 20, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  10. Upper Klamath Basin Landsat Image for July 28, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  11. Upper Klamath Basin Landsat Image for May 30, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  12. Upper Klamath Basin Landsat Image for June 16, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  13. Upper Klamath Basin Landsat Image for June 26, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  14. Upper Klamath Basin Landsat Image for June 17, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  15. Upper Klamath Basin Landsat Image for June 1, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  16. Upper Klamath Basin Landsat Image for July 10, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-7 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  17. Upper Klamath Basin Landsat Image for August 29, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  18. Upper Klamath Basin Landsat Image for November 8, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  19. Upper Klamath Basin Landsat Image for July 9, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  20. Upper Klamath Basin Landsat Image for April 28, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  1. Upper Klamath Basin Landsat Image for April 30, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  2. Upper Klamath Basin Landsat Image for September 30, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  3. Upper Klamath Basin Landsat Image for September 21, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  4. Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  5. Upper Klamath Basin Landsat Image for August 26, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  6. Upper Klamath Basin Landsat Image for August 4, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  7. Upper Klamath Basin Landsat Image for October 16, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  8. Upper Klamath Basin Landsat Image for June 24, 2006: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-7 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  9. Upper Klamath Basin Landsat Image for September 27, 2006: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  10. Klamath Basin National Wildlife Refuge Complex: Annual narrative report: Calendar year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuge Complex outlines Refuge accomplishments during the 1995 calendar year. The Tule Lake National...

  11. Klamath Basin National Wildlife Refuge Complex: Annual narrative report: Calendar year 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Klamath Basin National Wildlife Refuge Complex outlines Refuge accomplishments during the 1993 calendar year. The Tule Lake National...

  12. Upper Klamath Basin Landsat Image for October 7, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  13. Upper Klamath Basin Landsat Image for July 11, 2004: Path 45 Rows 30 and 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  14. Supplement to report on water shortage [Klamath Marsh National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a collection of photographs meant to supplement an earlier report on water shortage in the Klamath Marsh. The photographs show aerial views of the...

  15. Upper Klamath Basin Landsat Image for July 12, 2004: Path 44 Row 31

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation...

  16. 76 FR 69700 - Klamath National Forest; California; Pumice Vegetation Management Project

    Science.gov (United States)

    2011-11-09

    ... Forest Service Klamath National Forest; California; Pumice Vegetation Management Project AGENCY: Forest... the environmental effects of implementing the Pumice Vegetation Management project. The project is... Haupt, Pumice Vegetation Management Project Team Leader, Goosenest Ranger District, 37805 Highway 97...

  17. Stochastic Modelling of Shiroro River Stream flow Process

    Directory of Open Access Journals (Sweden)

    Musa, J. J

    2013-01-01

    Full Text Available Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA. The development and use of a stochastic stream flow model involves some basic steps such as obtain stream flow record and other information, Selecting models that best describes the marginal probability distribution of flows. The flow discharge of about 22 years (1990-2011 was gotten from the Meteorological Station at Shiroro and analyzed with three different models namely; Autoregressive (AR model, Autoregressive Moving Average (ARMA model and Autoregressive Integrated Moving Average (ARIMA model. The initial model identification is done by using the autocorrelation function (ACF and partial autocorrelation function (PACF. Based on the model analysis and evaluations, proper predictions for the effective usage of the flow from the river for farming activities and generation of power for both industrial and domestic us were made. It also highlights some recommendations to be made to utilize the possible potentials of the river effectively

  18. River water quality modelling under drought situations - the Turia River case

    Science.gov (United States)

    Paredes-Arquiola, Javier; Macián, Javier; Pedro-Monzonís, María; Belda, Edgar; Momblanch, Andrea; Andreu, Joaquín

    2016-10-01

    Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  19. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  20. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  1. Waterfowl Migration on Klamath Basin National Wildlife Refuges 1953-2001

    Science.gov (United States)

    Gilmer, David S.; Yee, Julie L.; Mauser, David M.; Hainline, James M.

    2004-01-01

    The Klamath Basin National Wildlife Refuge (NWR) complex, located in northeastern California and southern Oregon, is situated on a major Pacific Flyway migration corridor connecting waterfowl breeding grounds in the north with major wintering grounds in California and Mexico. The complex comprises five waterfowl refuges including Lower Klamath NWR, Tule Lake NWR, Upper Klamath NWR, Klamath Marsh NWR, and Clear Lake NWR, and one bald eagle refuge, Bear Valley NWR. Lower Klamath and Tule Lake NWRs are the largest refuges in the complex; historically, they supported some of the greatest autumn and spring concentrations of migrating waterfowl in North America. Starting in 1953, standardized waterfowl surveys from small aircraft have been conducted in autumn through spring. This report summarizes waterfowl migration activity (i.e., abundance, species composition, distribution on refuges, and chronology) over four time periods—the long-term (1953-2001), early (1953-76), recent (1977-2001), and the most recent (1998-2001)—to describe changing patterns of migration on Klamath Basin refuges from autumn 1953 to spring 2001.

  2. Modeling river dune evolution using a parameterization of flow separation

    NARCIS (Netherlands)

    Paarlberg, Andries J.; Dohmen-Janssen, C. Marjolein; Hulscher, Susanne J.M.H.; Termes, Paul

    2009-01-01

    This paper presents an idealized morphodynamic model to predict river dune evolution. The flow field is solved in a vertical plane assuming hydrostatic pressure conditions. The sediment transport is computed using a Meyer-Peter–Müller type of equation, including gravitational bed slope effects and a

  3. Langrangian model of nitrogen kinetics in the Chattahoochee river

    Science.gov (United States)

    Jobson, H.E.

    1987-01-01

    A Lagrangian reference frame is used to solve the convection-dispersion equation and interpret water-quality obtained from the Chattahoochee River. The model was calibrated using unsteady concentrations of organic nitrogen, ammonia, and nitrite plus nitrate obtained during June 1977 and verified using data obtained during August 1976. Reaction kinetics of the cascade type are shown to provide a reasonable description of the nitrogen-species processes in the Chattahoochee River. The conceptual model is easy to visualize in the physical sense and the output includes information that is not easily determined from an Eulerian approach, but which is very helpful in model calibration and data interpretation. For example, the model output allows one to determine which data are of most value in model calibration or verification.

  4. a Linear Model for Meandering Rivers with Arbitrarily Varying Width

    Science.gov (United States)

    Frascati, A.; Lanzoni, S.

    2011-12-01

    Alluvial rivers usually exhibit quite complex planforms, characterized by a wide variety of alternating bends, that have attracted the interest of a large number of researchers. Much less attention has been paid to another striking feature observed in alluvial rivers, namely the relatively regular spatial variations attained by the channel width. Actively meandering channels, in fact, generally undergo spatial oscillations systematically correlated with channel curvature, with cross sections wider at bends than at crossings. Some other streams have been observed to exhibit irregular width variations. Conversely, rivers flowing in highly vegetated flood plains, i.e. canaliform rivers, may exhibit an opposite behavior, owing to the combined effects of bank erodibility and floodplain depositional processes which, in turn, are strictly linked to vegetation cover. Similarly to streamline curvatures induced by bends, the presence of along channel width variations may have remarkable effects on the flow field and sediment dynamics and, thereby, on the equilibrium river bed configuration. In particular, spatial distribution of channel curvature typically determines the formation of a rhythmic bar-pool pattern in the channel bed strictly associated with the development of river meanders. Channel width variations are on the contrary characterized by a sequence of narrowing, yielding a central scour, alternated to the downstream development of a widening associated with the formation of a central bar. Here we present a morphodynamic model that predict at a linear level the spatial distribution of the flow field and the equilibrium bed configuration of an alluvial river characterized by arbitrary along channel distributions of both the channel axis curvature and the channel width. The mathematical model is averaged over the depth and describes the steady, non-uniform flow and sediment transport in sinuous channels with a noncohesive bed. The governing two-dimensional equations

  5. Parsimonious catchment and river flow modelling

    NARCIS (Netherlands)

    Khatibi, R.H.; Moore, R.J.; Booij, Martijn J.; Cadman, D.; Boyce, G.; Rizzoli, A.E.; Jakeman, A.J.

    2002-01-01

    It is increasingly the case that models are being developed as “evolving” products rather than one-off application tools, such that auditable modelling versus ad hoc treatment of models becomes a pivotal issue. Auditable modelling is particularly vital to “parsimonious modelling” aimed at meeting

  6. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.F.

    1999-05-13

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.

  7. Coupling hydraulic and hydrological models to simulate the streamflow of a large arctic river: The case of the Mackenzie River

    Science.gov (United States)

    Elshamy, M.; Pietroniro, A.; Wheater, H. S.

    2016-12-01

    Accurate simulation of river streamflow is essential for water resources management and climate change impact studies. Hydrological models often route the streamflow using simple hydrological routing techniques that does not consider the characteristics of river channels or complex morphology present in certain rivers. Yet, for large river systems, as well as for regional and global modelling, routing effects can have a very significant impact on the magnitude of flood peaks and the timing of flows to seas and oceans. In this study, an approach to couple the MESH (Modélisation Environmentale Communautaire-Surface and Hydrology) model, which embeds the Canadian land surface scheme (CLASS), with a one-dimensional river hydraulic model (River-1D) of the main Mackenzie river and the 3 of its main tributaries (Peace, Athabasca, and Slave) is reported. Of particular interest is ensuring the complexity of dealing with the large delta environment where flow reversal and overbank storage is possible and can be a significant part of the water budget. Inflows at designated locations on those rivers are generated by the MESH hydrologic model run at 0.125° spatial resolution and 30 minutes temporal resolution. The one-dimensional hydraulic model simulates the routing along the river in a one-way coupling mode with due consideration to river ice processes including freeze-up and break-up. This approach improves the accuracy of river flow simulations along the main stem of the Mackenzie and its main tributes and allows for studying sediment transport and dynamic events, such as dam breaches or ice jam release and formation events.

  8. River water quality model no. 1 (RWQM1): I. Modelling approach

    DEFF Research Database (Denmark)

    Shanahan, P.; Borchardt, D.; Henze, Mogens

    2001-01-01

    Successful river water quality modelling requires the specification of an appropriate model structure and process formulation. Both must be related to the compartment structure of running water ecosystems including their longitudinal, vertical, and lateral zonation patterns. Furthermore, the temp...

  9. River water quality model no. 1 (RWQM1): I. Modelling approach

    DEFF Research Database (Denmark)

    Shanahan, P.; Borchardt, D.; Henze, Mogens

    2001-01-01

    Successful river water quality modelling requires the specification of an appropriate model structure and process formulation. Both must be related to the compartment structure of running water ecosystems including their longitudinal, vertical, and lateral zonation patterns. Furthermore...

  10. Modeling Nitrogen Processing in Northeast US River Networks

    Science.gov (United States)

    Whittinghill, K. A.; Stewart, R.; Mineau, M.; Wollheim, W. M.; Lammers, R. B.

    2013-12-01

    Due to increased nitrogen (N) pollution from anthropogenic sources, the need for aquatic ecosystem services such as N removal has also increased. River networks provide a buffering mechanism that retains or removes anthropogenic N inputs. However, the effectiveness of N removal in rivers may decline with increased loading and, consequently, excess N is eventually delivered to estuaries. We used a spatially distributed river network N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES) to examine the geography of N removal capacity of Northeast river systems under various land use and climate conditions. FrAMES accounts for accumulation and routing of runoff, water temperatures, and serial biogeochemical processing using reactivity derived from the Lotic Intersite Nitrogen Experiment (LINX2). Nonpoint N loading is driven by empirical relationships with land cover developed from previous research in Northeast watersheds. Point source N loading from wastewater treatment plants is estimated as a function of the population served and the volume of water discharged. We tested model results using historical USGS discharge data and N data from historical grab samples and recently initiated continuous measurements from in-situ aquatic sensors. Model results for major Northeast watersheds illustrate hot spots of ecosystem service activity (i.e. N removal) using high-resolution maps and basin profiles. As expected, N loading increases with increasing suburban or agricultural land use area. Network scale N removal is highest during summer and autumn when discharge is low and river temperatures are high. N removal as the % of N loading increases with catchment size and decreases with increasing N loading, suburban land use, or agricultural land use. Catchments experiencing the highest network scale N removal generally have N inputs (both point and non-point sources) located in lower order streams. Model results can be used to better

  11. Nonlinear stochastic modeling of river dissolved-oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Tabios, G.Q. III.

    1984-01-01

    An important aspect of water quality modeling is forecasting water quality variables for real-time management and control applications to enhance, maintain and sustain desirable water qualities. The major objective of this research is to develop daily time series models for forecasting river dissolved-oxygen (DO). The modeling approach adopted herein combines deterministic and stochastic concepts for determining properties of the DO process based on time series data and dynamic mechanisms governing the said process. This is accomplished by deriving a general DO stochastic model structure based on a modified Streeter-Phelps DO-BOD dynamic model. Then some types of nonlinear models namely, self-exciting threshold autoregressive-moving average (SETARMA), amplitude-dependent autoregressive (ADAR) and bilinear (BL) models, and the class of linear autoregressive-moving average (ARMA) models are adopted for model identification and parameter estimation. Six stream-water quality gaging stations located in the eastern portion of the continental U.S.A. are utilized in this study. Various orders of ARMA, SETARMA, ADAR and BL models are fitted to the data. Results obtained indicated that ADAR and BL models are superior for one-step ahead forecasts, while SETARMA models are better for forecasts of longer lead times. In general, the SETARMA, ADAR and BL models show promise as alternative models for river DO time series modeling and forecasting with unique advantages in each.

  12. Comparison of Conventional and ANN Models for River Flow Forecasting

    Science.gov (United States)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  13. Modelling of vegetation-driven morphodynamics in braided rivers.

    Science.gov (United States)

    Stecca, Guglielmo; Fedrizzi, Davide; Hicks, Murray; Measures, Richard; Zolezzi, Guido; Bertoldi, Walter; Tal, Michal

    2017-04-01

    River planform results from the complex interaction between flow, sediment transport and vegetation, and can evolve following a change in these controls. The braided planform of New Zealand's Lower Waitaki River, for instance, is endangered by the action of artificially-introduced alien vegetation, which spread across the braidplain following the reduction in magnitude of floods by hydropower dam construction. This vegetation, by encouraging flow concentration into the main channel, would likely promote a shift towards a single-thread morphology if it was not artificially removed within a central fairway. The purpose of this work is to study the evolution of braided rivers such as the Waitaki under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not yet readily available. Our starting point is the physics-based GIAMT2D numerical model, which solves two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We have further developed this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, adjusting local flow roughness, critical shear stress for sediment transport, and bank erodibility accordingly. Our goal is to use the model to study decadal-scale evolution of a reach on the Waitaki River and predict planform characteristics under different vegetation management scenarios. Here we present the results of a preliminary application of the model to reproduce the morphodynamic evolution of a braided channel in a set of flume experiments that used alfalfa as vegetation. The experiments began with a braided morphology that spontaneoulsy formed at constant flow over a bed of bare uniform sand. The planform transitioned towards single-thread when this discharge was repeatedly

  14. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    Science.gov (United States)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  15. Water quality modelling for ephemeral rivers: Model development and parameter assessment

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-11-01

    SummaryRiver water quality models can be valuable tools for the assessment and management of receiving water body quality. However, such water quality models require accurate model calibration in order to specify model parameters. Reliable model calibration requires an extensive array of water quality data that are generally rare and resource-intensive, both economically and in terms of human resources, to collect. In the case of small rivers, such data are scarce due to the fact that these rivers are generally considered too insignificant, from a practical and economic viewpoint, to justify the investment of such considerable time and resources. As a consequence, the literature contains very few studies on the water quality modelling for small rivers, and such studies as have been published are fairly limited in scope. In this paper, a simplified river water quality model is presented. The model is an extension of the Streeter-Phelps model and takes into account the physico-chemical and biological processes most relevant to modelling the quality of receiving water bodies (i.e., degradation of dissolved carbonaceous substances, ammonium oxidation, algal uptake and denitrification, dissolved oxygen balance, including depletion by degradation processes and supply by physical reaeration and photosynthetic production). The model has been applied to an Italian case study, the Oreto river (IT), which has been the object of an Italian research project aimed at assessing the river's water quality. For this reason, several monitoring campaigns have been previously carried out in order to collect water quantity and quality data on this river system. In particular, twelve river cross sections were monitored, and both flow and water quality data were collected for each cross section. The results of the calibrated model show satisfactory agreement with the measured data and results reveal important differences between the parameters used to model small rivers as compared to

  16. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  17. Topological phase transition in the Scheidegger model of river networks

    Science.gov (United States)

    Oppenheim, Jacob N.; Magnasco, Marcelo O.

    2012-08-01

    Transport networks are found at the heart of myriad natural systems, yet are poorly understood, except for the case of river networks. The Scheidegger model, in which rivers are convergent random walks, has been studied only in the case of flat topography, ignoring the variety of curved geometries found in nature. Embedding this model on a cone, we find a convergent and a divergent phase, corresponding to few, long basins and many, short basins, respectively, separated by a singularity, indicating a phase transition. Quantifying basin shape using Hacks law l˜ah gives distinct values for h, providing a method of testing our hypotheses. The generality of our model suggests implications for vascular morphology, in particular, differing number and shapes of arterial and venous trees.

  18. Modeling and forecasting the peak flows of a river

    Directory of Open Access Journals (Sweden)

    Mario Lefebvre

    2002-01-01

    Full Text Available A stochastic model is found for the value of the peak flows of the Mistassibi river in Québec, Canada, when the river is in spate. Next, the objective is to forecast the value of the coming peak flow about four days in advance, when the flow begins to show a marked increase. Both the stochastic model proposed in the paper and a model based on linear regression are used to produce the forecasts. The quality of the forecasts is assessed by considering the standard errors and the peak criterion. The forecasts are much more accurate than those obtained by taking the mean value of the previous peak flows.

  19. City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Brian Brown, PE; Stephen Anderson, PE, Bety Riley

    2011-07-31

    The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the

  20. Implementation and implications of macrophyte reconfiguration in hydraulic river modeling

    Science.gov (United States)

    Verschoren, Veerle; Schoelynck, Jonas; Buis, Kerst; Meire, Dieter; Bal, Kris; Meire, Patrick; Temmerman, Stijn

    2014-05-01

    In lowland rivers, abundant macrophyte growth can often be observed. The aquatic vegetation has an impact on the flow by creating friction which results in increased water levels and decreased flow velocities. At the same time submerged macrophytes are susceptible to hydrodynamic forces of the water. Their morphology is therefore often flexible and streamlined so that it enables reconfiguration (i.e. bending of macrophytes with water flow) and decreases potential damage at high flow velocities. Knowledge of these mutual interactions is crucial in order to model water flow in vegetated rivers. A correct estimation of flow velocity and water height is indispensable for the calculation of hydraulic, ecological and geomorphological parameters. The total resistance to water flow in a river can be described by a Manning coefficient. This value is influenced by river characteristics as well as by the presence of macrophytes. In this study a simple method is developed to quantify the resistance created by macrophytes after reconfiguration of their canopy. In order to achieve this we derive model formulations and plant parameters for three different macrophyte species and compare model simulation with measured flow velocity data for two case studies. Furthermore, the effect of macrophyte reconfiguration is investigated by modeling the same case studies with and without the implementation of macrophyte reconfiguration. It was found that the local resistance created by the vegetation was overestimated when reconfiguration was not considered. This resulted in an overestimation of stream velocity adjacent to the vegetation and an underestimation of the stream velocity within and behind the vegetation. Another effect was a higher water level gradient and consequently a higher Manning coefficient in the scenario without reconfiguration compared to the scenario with reconfiguration. Reconfiguration had also an influence on ecological and geomorphological parameters. It was found

  1. Bedrock river erosion measurements and modelling along a river of the Frontal Himalaya

    Science.gov (United States)

    Lave, Jerome; Dubille, Matthieu

    2017-04-01

    River incision is a key process in mountains denudation and therefore in landscape evolution models. Despite its importance, most incision models for mountain rivers rely on simplified, or quite empirical relations, and generally only consider annual average values for water discharge and sediment flux. In contrast, very few studies consider mechanistic models at the timescale of a flood, and try to bridge the gap between experimental or theoretical approaches and long term river incision studies. In this contribution, we present observations made during 7 monsoon seasons on fluvial bedrock erosion along the Bakeya river across the Frontal Himalaya in Central Nepal. Along its lower gorge, this river incises alternation of indurated sandstone and less resistant claystone, at Holocene rates larger than 10mm/yr. More importantly, its upper drainage mostly drains through non-cohesive conglomerate which allows, in this specific setting, estimating the bedload characteristics and instantaneous fluxes, i.e. a pre-requisite to test mechanistic models of fluvial erosion. During the study period, we monitored and documented the channel bank erosion in order to understand the amplitude of the erosion processes, their occurrence in relation with hydrology, in order to test time-integrated models of erosion. Besides hydrologic monitoring, erosion measurements were threefold: (1) at the scale of the whole monsoon, plucking and block removal by repeated photo surveys of a 400m long channel reach, (2) detailed microtopographic surveys of channel bedrock elevation along a few sandstone bars to document their abrasion, (3) real time measurement of fluvial bedrock wear to document erosion timing using a new erosion sensor. Results indicate that: 1. Erosion is highly dependent on rock resistance, but on average block detachment and removal is a more efficient process than bedrock attrition, and operates at a rate that permit channel banks downcutting to keep pace with Holocene uplift

  2. Monte Carlo Simulation of River Meander Modelling

    Science.gov (United States)

    Posner, A. J.; Duan, J. G.

    2010-12-01

    This study first compares the first order analytical solutions for flow field by Ikeda et. al. (1981) and Johanesson and Parker (1989b). Ikeda et. al.’s (1981) linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g. cohesiveness, stratigraphy, vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations. Several measures are formulated in order to determine which of the resulting planform is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model. Quasi-2D Ikeda (1989) flow solution with Monte Carlo Simulation of Bank Erosion Coefficient.

  3. River water temperature and fish growth forecasting models

    Science.gov (United States)

    Danner, E.; Pike, A.; Lindley, S.; Mendelssohn, R.; Dewitt, L.; Melton, F. S.; Nemani, R. R.; Hashimoto, H.

    2010-12-01

    Water is a valuable, limited, and highly regulated resource throughout the United States. When making decisions about water allocations, state and federal water project managers must consider the short-term and long-term needs of agriculture, urban users, hydroelectric production, flood control, and the ecosystems downstream. In the Central Valley of California, river water temperature is a critical indicator of habitat quality for endangered salmonid species and affects re-licensing of major water projects and dam operations worth billions of dollars. There is consequently strong interest in modeling water temperature dynamics and the subsequent impacts on fish growth in such regulated rivers. However, the accuracy of current stream temperature models is limited by the lack of spatially detailed meteorological forecasts. To address these issues, we developed a high-resolution deterministic 1-dimensional stream temperature model (sub-hourly time step, sub-kilometer spatial resolution) in a state-space framework, and applied this model to Upper Sacramento River. We then adapted salmon bioenergetics models to incorporate the temperature data at sub-hourly time steps to provide more realistic estimates of salmon growth. The temperature model uses physically-based heat budgets to calculate the rate of heat transfer to/from the river. We use variables provided by the TOPS-WRF (Terrestrial Observation and Prediction System - Weather Research and Forecasting) model—a high-resolution assimilation of satellite-derived meteorological observations and numerical weather simulations—as inputs. The TOPS-WRF framework allows us to improve the spatial and temporal resolution of stream temperature predictions. The salmon growth models are adapted from the Wisconsin bioenergetics model. We have made the output from both models available on an interactive website so that water and fisheries managers can determine the past, current and three day forecasted water temperatures at

  4. Watershed modelling in the Iguazú river basin

    Science.gov (United States)

    Venencio, M.; Garcia, N. O.

    2006-12-01

    This paper tries to associate the temporal and spatial climatic variability to the variability of streamflow. Therefore, the objective is to obtain tools in order to forsee the hydrologic variability in the context of the climatic variability from Iguazú river flows. The data at the gauging stations are supposed to be affected only by natural causes (climatic variability), because all flow data series were naturalised. A monthly water balance model used by Arnell [1] was applied to the whole Iguazu river basin, which extends approximately over 65000 km2. The area was not divided in subbasins because a homogeneous monthly mean precipitation was used as input to the model over this region. Monthly average temperature series for evapotranspiration (ET) calculations were generated by averaging recorded temperatures at several climatological gauging stations. Streamflows data at Capanema gauging station, upstream of the Iguazú falls, were used to analyse model results. Calculated and observed streamflows were compared. It can be said that the fitting is good, and the model reproduces the monthly flow pattern adequately. The correlation coefficient between the simulated and the observed monthly mean flows can be considered satisfactory in the Iguazú river basin.

  5. A RIVER FLOW ROUTING MODEL BASED ON DIGITAL DRAINAGE NETWORK

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; REN Li-liang; YU Zhong-bo; XU Jing

    2005-01-01

    On the basis of Digital Elevation Model (DEM) data, watershed delineation and spatial topological relationship were proposed by the Digital Elevation Drainage Network Model (DEDNM) for the area upstream of the Hanzhong Hydrological Station in the Hanjiang River in China. Then, the Muskingum-Cunge method considering lateral flow into the river was applied to flood routing on the platform of digital basin derived from DEDNM. Because of considering lateral flow into the river, the Muskingum-Cunge method performs better than the Muskingum method in terms of the Nash-Sutcliffe model efficiency coefficient and the relative error of flood discharge peak value. With a routing-after-superposition algorithm, the Muskingum-Cunge method performs better than the Muskingum method in terms of the Nash-Sutcliffe model efficiency coefficient and the relative error of flood discharge peak value. As a result, the digital basin coupled with the Muskingum-Cunge method provides a better platform for water resources management and flood control.

  6. River meander modeling and confronting uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Posner, Ari J. (University of Arizona Tucson, AZ)

    2011-05-01

    This study examines the meandering phenomenon as it occurs in media throughout terrestrial, glacial, atmospheric, and aquatic environments. Analysis of the minimum energy principle, along with theories of Coriolis forces (and random walks to explain the meandering phenomenon) found that these theories apply at different temporal and spatial scales. Coriolis forces might induce topological changes resulting in meandering planforms. The minimum energy principle might explain how these forces combine to limit the sinuosity to depth and width ratios that are common throughout various media. The study then compares the first order analytical solutions for flow field by Ikeda, et al. (1981) and Johannesson and Parker (1989b). Ikeda's et al. linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g., cohesiveness, stratigraphy, or vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of a meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations several measures are formulated in order to determine which of the resulting planforms is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model.

  7. Validation of the physical modeling approach for braided rivers

    Science.gov (United States)

    Rosatti, Giorgio

    2002-12-01

    Laboratory channels are often used to study the complexity of braiding mechanisms for the advantages with respect to field studies. Nevertheless, the extensive use of experimental data raises the question of how representative laboratory braided channels are as compared to real braided rivers. This study verifies to what extent laboratory braided patterns reproduce the main features of braided rivers. Experimental data display isotropic and anisotropic scaling of braided patterns, state-space plot of total widths, anisotropic scaling of islands, and statistical distribution of island areas that are similar to those observed in real rivers. Moreover, the data reveals scaling in the perimeter-area relation. These results support both the reliability of experimental braided channels as physical models of braided rivers and also the possibility of investigating some aspects of braiding in the laboratory that are difficult to address in the field. The lack of preferential scales in island characteristics suggests that other phenomena must play a key role in generating island shapes besides classical sediment transport-based mechanisms which tend to select well-defined length scales.

  8. A stochastic physical system approach to modeling river water quality

    Science.gov (United States)

    Curi, W. F.; Unny, T. E.; Kay, J. J.

    1995-06-01

    In this paper, concepts of network thermodynamics are applied to a river water quality model, which is based on Streeter-Phelps equations, to identify the corresponding physical components and their topology. Then, the randomness in the parameters, input coefficients and initial conditions are modeled by Gaussian white noises. From the stochastic components of the physical system description of problem and concepts of physical system theory, a set of stochastic differential equations can be automatically generated in a computer and the recent developments on the automatic formulation of the moment equations based on Ito calculus can be used. This procedure is illustrated through the solution of an example of stochastic river water quality problem and it is also shown how other related problems with different configurations can be automatically solved in a computer using just one software.

  9. GIS-ROUT: a river model for watershed planning

    OpenAIRE

    Xinhao Wang; Charlotte White-Hull; Scott Dyer; Ying Yang

    2000-01-01

    Previous studies have shown that significant environmental changes are the result of human activities such as urbanization occurring at the spatial scale of landscapes. The challenge faced by many planners today is how to understand such relationships in order to support integrated watershed planning and management. Although many mathematical models have been developed to simulate the chemical transport process in a river, few are actually used in watershed assessment and management. Recently...

  10. Reference Inflow Characterization for River Resource Reference Model (RM2)

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  11. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  12. Muskingum equation based downstream sediment flow simulation models for a river system

    Institute of Scientific and Technical Information of China (English)

    Briti Sundar Sil; Parthasarathi Choudhury

    2016-01-01

    Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.

  13. River channel's predisposition to ice jams: a geospatial model

    Science.gov (United States)

    De Munck, S.; Gauthier, Y.; Bernier, M.; Légaré, S.

    2012-04-01

    When dynamic breakup occurs on rivers, ice moving downstream may eventually stop at an obstacle when the volume of moving ice exceeds the transport capacity of the river, resulting into an ice jam. The suddenness and unpredictability of these ice jams are a constant danger to local population. Therefore forecasting methods are necessary to provide an early warning to these population. Nonetheless the morphological and hydrological factors controlling where and how the ice will jam are numerous and complex. Existing studies which exist on this topic are highly site specific. Therefore, the goal of this work is to develop a simplified geospatial model that would estimate the predisposition of any river channel to ice jams. The question here is not to predict when the ice will break up but rather to know where the released ice would be susceptible to jam. This paper presents the developments and preliminary results of the proposed approach. The initial step was to document the main factors identified in the literature, as potential cause for an ice jam. First, several main factors identified in the literature as potential cause for an ice jam have been selected: presence of an island, narrowing of the channel, sinuosity, presence of a bridge, confluence of rivers and slope break. The second step was to spatially represent, in 2D, the physical characteristics of the channel and to translate these characteristics into potential ice jamming factors. The Chaudiere River, south of Quebec City (Canada), was chosen as a test site. Tools from the GIS-based FRAZIL system have been used to generate these factors from readily available geospatial data and calcutate an "ice jam predisposition index" over regular-spaced segments along the entire channel. The resulting map was validated upon historical observations and local knowledge, collected in relationship with the Minister of Public Security.

  14. Modeling shallow-water hydrodynamics: Rotations, rips, and rivers

    Science.gov (United States)

    Long, Joseph W.

    for alongshore uniform beaches. Through comparisons with remote sensing observations, the model proves it is capable of predicting rip currents when they are observed. Analysis suggests that the direction of the offshore wave spectra will dictate when and where rip currents will appear. We also find that for bi-modal offshore spectra, the relative amount of energy in each spectral mode is a better predictor of rip current development than the peak spectral characteristics. Finally, some preliminary work to estimate water depths from the combination of hydrodynamic models and available data is also presented. We focus this work in a river meander for our initial tests. A simple analytical model shows skill in predicting the water depth at only one of the two river meanders considered. This discrepancy appears to be related to river curvature and as curvature weakens, the model accuracy decreases. This is hypothesized to be the result of dispersive mixing which is not accounted for in this simple model but confirmation is still required. At the same time, we perform simulations within a river meander to determine the efficacy of using coastal hydrodynamic models in riverine environments where the principles governing the flow are the same. Our initial tests of the Regional Ocean Modeling System (ROMS) suggests that it is able to reproduce the flow through a river meander which opens the door to developing one model that can simulate conditions from upland rivers out to the continental shelf.

  15. D GIS for Flood Modelling in River Valleys

    Science.gov (United States)

    Tymkow, P.; Karpina, M.; Borkowski, A.

    2016-06-01

    The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  16. 3D GIS FOR FLOOD MODELLING IN RIVER VALLEYS

    Directory of Open Access Journals (Sweden)

    P. Tymkow

    2016-06-01

    Full Text Available The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  17. Water temperature modeling in the Garonne River (France

    Directory of Open Access Journals (Sweden)

    Larnier K.

    2010-10-01

    Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.

  18. Stochastic modeling for river pollution of Sungai Perlis

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia,81310 Johor Bahru, Johor (Malaysia); Bahar, Arifah [UTM-Centre of Industrial and Applied Mathematics (UTM-CIAM) Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted due to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)

  19. A Neogene structural dome in the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Mortimer, N.; Coleman, R. G.

    1985-04-01

    Regional structural doming of Neogene age has affected rocks of the Klamath and Cascade mountains near the California-Oregon border. Evidence for this is seen in (1) subannular outcrop patterns of pre-Cretaceous lithotectonic units, (2) a crude pattern of radially oriented high-angle faults, (3) tilted Jurassic plutons, (4) tilted Cretaceous to Miocene strata, and (5) various geomorphological features. The age of doming is constrained by a major middle Miocene to earliest Pliocene angular unconformity within the Cascade Mountains and uplifted upper Miocene marine beds on the western edge of the Klamath Mountains. Uplift and doming may be the result of shortening in the Cascade fore-arc region or, more speculatively, the recent accretion of subducted material to the North American plate beneath the Klamath Mountains. *Present addresses: Mortimer, Department of Geological Sciences, University of British Columbia, Vancouver, British Columbia V6T 2B4, Canada; Coleman, U.S. Geological Survey, Menlo Park, California 94025

  20. A modelling framework to assess the effect of pressures on river abiotic habitat conditions and biota

    NARCIS (Netherlands)

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a model

  1. Construction of river model biofilm for assessing pesticide effects.

    Science.gov (United States)

    Hayashi, Shohei; Jang, Ji Eun; Itoh, Kazuhito; Suyama, Kousuke; Yamamoto, Hiroki

    2011-01-01

    Due to the high importance of biofilms on river ecosystems, assessment of pesticides' adverse effects is necessary but is impaired by high variability and poor reproducibility of both natural biofilms and those developed in the laboratory. We constructed a model biofilm to evaluate the effects of pesticides, consisting in cultured microbial strains, Pedobacter sp. 7-11, Aquaspirillum sp. T-5, Stenotrophomonas sp. 3-7, Achnanthes minutissima N71, Nitzschia palea N489, and/or Cyclotella meneghiniana N803. Microbial cell numbers, esterase activity, chlorophyll-a content, and the community structure of the model biofilm were examined and found to be useful as biological factors for evaluating the pesticide effects. The model biofilm was formed through the cooperative interaction of bacteria and diatoms, and a preliminary experiment using the herbicide atrazine, which inhibits diatom growth, indicated that the adverse effect on diatoms inhibited indirectly the bacterial growth and activity and, thus, the formation of the model biofilm. Toxicological tests using model biofilms could be useful for evaluating the pesticide effects and complementary to studies on actual river biofilms.

  2. Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2014-10-01

    Full Text Available Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, which was driven by the tidal elevation at the open boundaries and freshwater discharge at the upriver boundary. The model was validated against the observed water levels for three typhoon events. The simulation results for the model were in reasonable agreement with the observational data. The model was then applied to investigate the effects of a storm surge, freshwater discharge, and a storm surge combined with freshwater discharge during an extreme typhoon event. The super Typhoon Haiyan (2013 was artificially shifted to hit Taiwan: the modeling results showed that the inundation area and depth would cause severe overbank flow and coastal flooding for a 200 year return period flow. A high-resolution grid model is essential for the accurate simulation of storm surges and inundation.

  3. Geothermal heat for Presbyterian Intercommunity Hospital and Klamath County Nursing Home

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R.L. (Presbyterian Intercommunity Hospital, Klamath Falls, OR); Hubbard, K.; Rosecrans, D.

    1977-08-01

    The geology and hydrology of the Klamath Falls area is discussed briefly. The geothermal heating system which serves the Presbyterian Intercommunity Hospital and the Klamath County Nursing Home is shown in photographs and schematic drawing. The system consists basically of a well, settling tank, various heat exchangers, pumps, piping, and controls to move the water. From the heat exchangers system water is pumped to the terminal units, where it is used for space heating, domestic hot water, and a glycol snow melting system. The operation of the various parts of the system is described. (MHR)

  4. Identification of an appropriate low flow forecast model for the Meuse River

    NARCIS (Netherlands)

    Demirel, Mehmet C.; Booij, Martijn J.; Cluckie, Ian; Chen, Yangbo; Babovic, Vladan; Konikow, Lenny; Mynett, Arthur; Demuth, Siegfried; Savic, Dragan A.

    2009-01-01

    This study investigates the selection of an appropriate low flow forecast model for the Meuse River based on the comparison of output uncertainties of different models. For this purpose, three data driven models have been developed for the Meuse River: a multivariate ARMAX model, a linear regression

  5. Evaluation of alternative groundwater-management strategies for the Bureau of Reclamation Klamath Project, Oregon and California

    Science.gov (United States)

    Wagner, Brian J.; Gannett, Marshall W.

    2014-01-01

    The water resources of the upper Klamath Basin, in southern Oregon and northern California, are managed to achieve various complex and interconnected purposes. Since 2001, irrigators in the Bureau of Reclamation Klamath Irrigation Project (Project) have been required to limit surface-water diversions to protect habitat for endangered freshwater and anadromous fishes. The reductions in irrigation diversions have led to an increased demand for groundwater by Project irrigators, particularly in drought years. The potential effects of sustained pumping on groundwater and surface-water resources have caused concern among Federal and state agencies, Indian tribes, wildlife groups, and groundwater users. To aid in the development of a viable groundwater-management strategy for the Project, the U.S. Geological Survey, in collaboration with the Klamath Water and Power Agency and the Oregon Water Resources Department, developed a groundwater-management model that links groundwater simulation with techniques of constrained optimization. The overall goal of the groundwater-management model is to determine the patterns of groundwater pumping that, to the extent possible, meet the supplemental groundwater demands of the Project. To ensure that groundwater development does not adversely affect groundwater and surface-water resources, the groundwater-management model includes constraints to (1) limit the effects of groundwater withdrawal on groundwater discharge to streams and lakes that support critical habitat for fish listed under the Endangered Species Act, (2) ensure that drawdowns do not exceed limits allowed by Oregon water law, and (3) ensure that groundwater withdrawal does not adversely affect agricultural drain flows that supply a substantial portion of water for irrigators and wildlife refuges in downslope areas of the Project. Groundwater-management alternatives were tested and designed within the framework of the Klamath Basin Restoration Agreement (currently [2013

  6. Klamath County YMCA geothermal heating project environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, J.H. (ed.)

    1979-07-10

    The YMCA Geothermal Heating project proposes to obtain approximately 57% of the total facility energy usage through direct application of the Klamath Falls KGRA. This will be accomplished through the design and construction of a retrofit and injection system for the utilization of an existing 110/sup 0/F geothermal energy source at the project site. The existing 2016 foot well will be outfitted with a turbine pump with variable speed drive. The well head will be enclosed by a 10' x 10' building. The geothermal fluid, pumped at a peak rate of 350 gpm will be transported to the YMCA Facility through 5'' diameter schedule 40 black iron pipe fitted with victaulic couplings for expansion. All underground supply pipes will be equipped with magnesium anodes for galvaic protection and will be insulted with 1'' thick calcium silicate insulation, with two layers of 45 number roofing felt applied with asphaltic compound. All supply lines within the building will be insulated with 1'' fiberglass insulation material with a cloth jacket. The fluids will pass through a heating coil and heat exchanger system to provide heat for the 30,000 square foot YMCA facility as well as for the 90,000 gallon swimming pool. The spent geothermal fluids will then be conveyed through a 4'' black iron return pipe to be returned to an acceptable aquifer through the 1500 foot injection well.

  7. Modelling the fate of the Tijuana River discharge plume

    Science.gov (United States)

    van Ormondt, M.; Terrill, E.; Hibler, L. F.; van Dongeren, A. R.

    2010-12-01

    After rainfall events, the Tijuana River discharges excess runoff into the ocean in a highly turbid plume. The runoff waters contain large suspended solids concentrations, as well as high levels of toxic contaminants, bacteria, and hepatitis and enteroviruses. Public health hazards posed by the effluent often result in beach closures for several kilometers northward along the U.S. shoreline. A Delft3D model has been set up to predict the fate of the Tijuana River plume. The model takes into account the effects of tides, wind, waves, salinity, and temperature stratification. Heat exchange with the atmosphere is also included. The model consists of a relatively coarse outer domain and a high-resolution surf zone domain that are coupled with Domain Decomposition. The offshore boundary conditions are obtained from the larger NCOM SoCal model (operated by the US Navy) that spans the entire Southern California Bight. A number of discharge events are investigated, in which model results are validated against a wide range of field measurements in the San Diego Bight. These include HF Radar surface currents, REMUS tracks, drifter deployments, satellite imagery, as well as current and temperature profile measurements at a number of locations. The model is able to reproduce the observed current and temperature patterns reasonably well. Under calm conditions, the model results suggest that the hydrodynamics in the San Diego Bight are largely governed by internal waves. During rainfall events, which are typically accompanied by strong winds and high waves, wind and wave driven currents become dominant. An analysis will be made of what conditions determine the trapping and mixing of the plume inside the surfzone and/or the propagation of the plume through the breakers and onto the coastal shelf. The model is now also running in operational mode. Three day forecasts are made every 24 hours. This study was funded by the Office of Naval Research.

  8. BLAM (Benthic Light Availability Model): A Proposed Model of Hydrogeomorphic Controls on Light in Rivers

    Science.gov (United States)

    Julian, J. P.; Doyle, M. W.; Stanley, E. H.

    2006-12-01

    Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).

  9. Regional scale groundwater modelling study for Ganga River basin

    Science.gov (United States)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  10. River salinity on a mega-delta, an unstructured grid model approach.

    Science.gov (United States)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  11. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    Science.gov (United States)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river

  12. River Water Quality Model Based on Remote Sensing Information Methods--A Case Study of Lijing River in Guilin City

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    River water quality models based on remote sensing information models are superior to pure water quality models because they combine the inevitability and risk of geographical phenomena and can take complex geographical characteristics into account. A water quality model for forecasting COD has been established with remote sensing information modeling methods by monitoring and analyzing water quantity and water quality of the Lijing River reach which flows through a complicated Karst mountain area. This model provides a good tool to predict water quality of complex rivers. It is validated by simulating contaminant concentrations of the study area. The results show that remote sensing information models are suitable for complex geography. It is not only a combined model of inevitability and risk of the geographical phenomena, but also a semi-theoretical and semi-empirical formula, providing a good tool to study organic contaminants in complicated rivers. The coefficients and indices obtained have limited value and the model is not suitable for all situations. Some improvements are required.

  13. Modelling nitrogen dynamics and distributions in the River Tweed, Scotland: an application of the INCA model

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie

    2002-01-01

    Full Text Available The INCA (Integrated Nitrogen in Catchments model was applied to the River Tweed in the Scottish Borders, a large-scale (4400km2, spatially heterogeneous catchment, draining a wide range of agricultural land-use types, and which contributes approximately 20% of UK river flows to the North Sea. The model was calibrated for the first four years' data record (1994 to 1997 and tested over the following three years (1998 to 2000. The model calibration and testing periods incorporated a high degree of variability in climatic conditions and river flows within the Tweed catchment. The ability of the INCA model to reproduce broad-scale spatial patterns and seasonal dynamics in river flows and nitrate concentrations suggests that the processes controlling first order variability in river water nitrate concentrations have been represented successfully within the model. The tendency of the model to overestimate summer/early autumn baseflow nitrate concentrations during dry years may be linked to the operation of aquatic plant uptake effects. It is, therefore, suggested that consideration be given to incorporating a spatially and temporally variable in-stream plant uptake term for the application of INCA to lowland eutrophic rivers. Scenarios to examine possible impacts of environmental change on nitrate concentrations on the Tweed are examined. These include the effects of (i implementing different recommendations for fertiliser use and land use change under the Nitrate Sensitive Areas (NSA Scheme and the Scottish Code of Good Agricultural Practice, (ii worst case scenario changes linked to a dramatic reduction in livestock numbers as a result of a crisis in UK livestock farming and (iii changes in atmospheric nitrogen deposition. Keywords: Nitrate, nitrogen, modelling, Tweed, INCA

  14. Modeling downstream fining in sand-bed rivers. II: Application

    Science.gov (United States)

    Wright, S.; Parker, G.

    2005-01-01

    In this paper the model presented in the companion paper, Wright and Parker (2005) is applied to a generic river reach typical of a large, sand-bed river flowing into the ocean in order to investigate the mechanisms controlling longitudinal profile development and downstream fining. Three mechanisms which drive downstream fining are studied: a delta prograding into standing water, sea-level rise, and tectonic subsidence. Various rates of sea-level rise (typical of the late Holocene) and tectonic subsidence are modeled in order to quantify their effects on the degree of profile concavity and downstream fining. Also, several other physical mechanisms which may affect fining are studied, including the relative importance of the suspended versus bed load, the effect of the loss of sediment overbank, and the influence of the delta bottom slope. Finally, sensitivity analysis is used to show that the grain-size distribution at the interface between the active layer and substrate has a significant effect on downstream fining. ?? 2005 International Association of Hydraulic Engineering and Research.

  15. A 2D hydrodynamic-sedimentological model for gravel bed rivers. Part II, Case study: the Brenta River in Italy

    Directory of Open Access Journals (Sweden)

    Gabriel Kaless

    2013-09-01

    Full Text Available A 2D depth average model has been used to simulate water and sediment flow in the Brenta River so as to interpret channel changes and to assess model predictive capabilities. The Brenta River is a gravel bed river located in Northern Italy. The study reach is 1400 long and has a mean slope of 0.0056. High resolution digital terrain models has been produced combining laser imaging detection and ranging data with colour bathymetry techniques. Extensive field sedimentological surveys have been also carried out for surface and subsurface material. The data were loaded in the model and the passage of a high intense flood (R.I. > 9 years was simulated. The model was run under the hypothesis of a substantial equilibrium between sediment input and transport capacity. In this way, the model results were considered as a reference condition, and the potential trend of the reach was assessed. Low-frequency floods (R.I. » 1.5 years are expected to produce negligible changes in the channel while high floods may focalize erosion on banks instead than on channel bed. Furthermore, the model predicts well the location of erosion and siltation areas and the results promote its application to other reaches of the Brenta River in order to assess their stability and medium-term evolution.

  16. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Science.gov (United States)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  17. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. Zuliziana

    2015-07-01

    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  18. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for June 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  19. Klamath Basin Restoration Agreement Off-Project Water Program Sub-basin Analysis Flow Statistics

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  20. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for April 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  1. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for July 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  2. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for April 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  3. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for May 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  4. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for October 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  5. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for May 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  6. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for June 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  7. Klamath Basin Restoration Agreement Off-Project Water Program Distance to Gaining Streams and Lakes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  8. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for September 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  9. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for August 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  10. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for October 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  11. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for September 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  12. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for July 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  13. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for August 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  14. Klamath Basin Restoration Agreement Off-Project Water Program Distance to Perennial Streams and Lakes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  15. 78 FR 24717 - Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project...

    Science.gov (United States)

    2013-04-26

    ... Marsh, one of the largest high elevation wetland/marsh complexes in the continental United States. In... Forest Service Crescent Ranger District; Deschutes National Forest; Klamath County, Oregon; Marsh Project... statement (EIS) for a project called Marsh, in the southwestern portion of the Crescent Ranger District...

  16. Obsidian hydration rate for the klamath basin of california and Oregon.

    Science.gov (United States)

    Johnson, L

    1969-09-26

    A hydration rate for obsidian of 3.5(4) microns squared per 1000 radio-carbon years has been established at the Nightfire Island archeological site in northern California and provides a means to date other prehistoric Klamath Basin sites. The new rate follows the form of the hydration equation formulated by Friedman and helps to refute claims made for other hydration equations.

  17. Numerical modelling of channel migration with application to laboratory rivers

    Institute of Scientific and Technical Information of China (English)

    Jian SUN; Bin-liang LIN; Hong-wei KUANG

    2015-01-01

    The paper presents the development of a morphological model and its application to experimental model rivers. The model takes into account the key processes of channel migration, including bed deformation, bank failure and wetting and drying. Secondary flows in bends play an important role in lateral sediment transport, which further affects channel migration. A new formula has been derived to predict the near-bed secondary flow speed, in which the magnitude of the speed is linked to the lateral water level gradient. Since only non-cohesive sediment is considered in the current study, the bank failure is modelled based on the concept of submerged angle of repose. The wetting and drying process is modelled using an existing method. Comparisons between the numerical model predictions and experimental observations for various discharges have been made. It is found that the model predicted channel planform and cross-sectional shapes agree generally well with the laboratory observations. A scenario analysis is also carried out to investigate the impact of secondary flow on the channel migration process. It shows that if the effect of secondary flow is ignored, the channel size in the lateral direction will be seriously underestimated.

  18. Mathematical model of the Savannah River Site waste tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.G. III.

    1991-07-15

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers.

  19. Application of CryoSat-2 altimetry data for river analysis and modelling

    Science.gov (United States)

    Schneider, Raphael; Nygaard Godiksen, Peter; Villadsen, Heidi; Madsen, Henrik; Bauer-Gottwein, Peter

    2017-02-01

    Availability of in situ river monitoring data, especially of data shared across boundaries, is decreasing, despite growing challenges for water resource management across the entire globe. This is especially valid for the case study of this work, the Brahmaputra Basin in South Asia. Commonly, satellite altimeters are used in various ways to provide information about such river basins. Most missions provide virtual station time series of water levels at locations where their repeat orbits cross rivers. CryoSat-2 is equipped with a new type of altimeter, providing estimates of the actual ground location seen in the reflected signal. It also uses a drifting orbit, challenging conventional ways of processing altimetry data to river water levels and their incorporation in hydrologic-hydrodynamic models. However, CryoSat-2 altimetry data provides an unprecedentedly high spatial resolution. This paper suggests a procedure to (i) filter CryoSat-2 observations over rivers to extract water-level profiles along the river, and (ii) use this information in combination with a hydrologic-hydrodynamic model to fit the simulated water levels with an accuracy that cannot be reached using information from globally available digital elevation models (DEMs) such as from the Shuttle Radar Topography Mission (SRTM) only. The filtering was done based on dynamic river masks extracted from Landsat imagery, providing spatial and temporal resolutions high enough to map the braided river channels and their dynamic morphology. This allowed extraction of river water levels over previously unmonitored narrow stretches of the river. In the Assam Valley section of the Brahmaputra River, CryoSat-2 data and Envisat virtual station data were combined to calibrate cross sections in a 1-D hydrodynamic model of the river. The hydrologic-hydrodynamic model setup and calibration are almost exclusively based on openly available remote sensing data and other global data sources, ensuring transferability of

  20. Modelling of tidally affected river reaches with data assimilation for flood warning purposes: An example on the River Dee, UK

    Science.gov (United States)

    Smith, P. J.; Beven, K.; Horsburgh, K.; Cullen, J.

    2012-04-01

    On rivers where the flow regime is influenced by a tidal signal the provision of accurate forecasts requires the careful coupling of predictive models for both the tidal signal and the rainfall driven river system. This paper discusses such a coupled modelling system constructed for the River Dee (UK). A series of parsimonious, physically interpretable time series models are used to represent the dynamics of the river water level at several gauging sites on the flood plain. These gauges are used operationally to help in determining the issuing of flood warnings. The simplified models are coupled and cast into a state space form. The assimilation of the observed water levels at the gauge sites to inform future forecasts is then a non-linear filter a solution to which is readily approximated. Assessment of the model forecasts against the observed data is carried out using a number of existing metrics. These suggest the model forecasts are a useful guide to the future water level. The representation of the forecast and its uncertainty to the operational staff is considered. A prototype of the sequential decision making process; based on the relative cost of 'true' or 'false' warnings; and designed to help guide the catchment manager in issuing warnings is presented.

  1. River Export of Plastic from Land to Sea: A Global Modeling Approach

    Science.gov (United States)

    Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte

    2016-04-01

    Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.

  2. Rainfall-runoff modelling for estimating Latonyanda River flow contributions to Luvuvhu River downstream of Albasini Dam

    Science.gov (United States)

    Odiyo, J. O.; Phangisa, J. I.; Makungo, R.

    Rainfall-runoff modelling was conducted to estimate the flows that Latonyanda River contribute to Luvuvhu River downstream of Albasini Dam. The confluence of Latonyanda and Luvuvhu Rivers is ungauged. The contributed flows compensate for upstream water abstractions and periodic lack of releases from Albasini Dam. The flow contributions from tributaries to Luvuvhu River are important for ecosystem sustenance, meeting downstream domestic and agricultural water demand and ecological water requirements particularly in Kruger National Park. The upper Latonyanda River Quaternary Catchment (LRQC), with streamflow gauging station number A9H027 was delineated and used for rainfall-runoff modelling. The simulation was done using Mike 11 NAM rainfall-runoff model. Calibration and verification runs of Mike 11 NAM rainfall-runoff model were carried out using data for periods of 4 and 2 years, respectively. The model was calibrated using shuffled complex evolution optimizer. The model efficiency was tested using coefficient of determination (R2), root mean square error (RMSE), overall water balance error (OWBE) and percentage bias (PBIAS). The model parameters obtained from the upper LRQC were transferred and used together with rainfall and evaporation data for 40 years period in the simulation of runoff for the LRQC. The flows that Latonyanda River contribute to Luvuvhu River were computed by subtracting irrigation abstractions and runoff drained to Tshakhuma Dam from the simulated runoff time series of the LRQC. The observed and the simulated runoff showed similar trends and measures of performances for both calibration and verification runs fell within acceptable ranges. The pairs of values obtained for R2, RMSE, OWBE and PBIAS for calibration and verification were 0.86 and 0.73, 0.21 and 0.2, 2.1 and 1.3, and 4.1 and 3.4, respectively. The simulated runoff for LRQC correlated well with the areal rainfall showing that the results are reasonable. The mean and maximum daily

  3. Using radar altimetry to update a routing model of the Zambezi River Basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2012-01-01

    Satellite radar altimetry allows for the global monitoring of lakes and river levels. However, the widespread use of altimetry for hydrological studies is limited by the coarse temporal and spatial resolution provided by current altimetric missions and the fact that discharge rather than level...... is needed for hydrological applications. To overcome these limitations, altimetry river levels can be combined with hydrological modeling in a dataassimilation framework. This study focuses on the updating of a river routing model of the Zambezi using river levels from radar altimetry. A hydrological model...... of the basin was built to simulate the land phase of the water cycle and produce inflows to a Muskingum routing model. River altimetry from the ENVISAT mission was then used to update the storages in the reaches of the Muskingum model using the Extended Kalman Filter. The method showed improvements in modeled...

  4. Generic 2-D River Network Modeling of Flow and Sediment Transports

    Science.gov (United States)

    Guo, W.; Wang, C.; Xiang, X.; Ma, T.

    2012-04-01

    A generic 2D river network model of flow and sediment transports is proposed for the flow and sediment simulation in the complex river network. The paper expands the three-step method adopted in the 1D river network to the 2D river network simulation. A 2D river network model is divided into several cells, including single river cell, "tree-like" river cell, "ring-like" river cell and "cross-like" river cell, which can reflect the interactive influence of flow field in the bifurcated channel and applies to generic 2D simulation. Based on equation of the 2D shallow water and unsteady non-uniform suspended sediment, the relationship between the variables (water level, discharge and sediment concentration) of each section and those of the boundaries are obtained through the full implicit matrix chase-after method. Through the conservation of water and sediment on the boundaries, the water level and sediment concentration on the nodes can be got by solving the irregular sparse matrix of conservation equation, so as to implement the coupled simulation of flow and sediment in the whole river network. The paper take the Chengtong River Reach located in the low reaches of Yangtze River as the example of "cross-like" river to verify the algorithm. The model is calibrated using the measured data. A comparison of calculated water level, discharge and sediment concentration shows that the generic model can reflex the interactive influence of flow field, with reasonable accuracy, especially in the bifurcated channel.

  5. Pesticide impact assessment in Tule Lake and Lower Klamath National Wildlife Refuges : April 10, 2000 through September 29, 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The 2000 field season was the third and final year of the Pesticide Impact Monitoring Study at Tule Lake NWR and Lower Klamath NWR. The objectives of this study were...

  6. Intra-service section 7 biological evaluation : prescribed and wildfire suppression on the Klamath Basin National Wildlife Refuge complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This evaluation represents an assessment of potential effects to listed and candidate species from implementation of the Fire Management Plan for the Klamath Basin...

  7. Modeling of Nitrogen in River Water Using a Detailed and a Simplified Model

    Directory of Open Access Journals (Sweden)

    Mona Radwan

    2001-01-01

    Full Text Available To model catchment surface water quantity and quality, different model types are available. They vary from detailed physically based models to simplified conceptual and empirical models. The most appropriate model type for a certain application depends on the project objectives and the data availability. The detailed models are very useful for short-term simulations of representative events. They cannot be used for long-term statistical information or as a management tool. For those purposes, more simplified (conceptual or meta- models must be used. In this study, nitrogen dynamics are modeled in a river in Flanders. Nitrogen sources from agricultural leaching and domestic point sources are considered. Based on this input, concentrations of ammonium (NH4-N and nitrate (NO3-N in the river water are modeled in MIKE 11 by taking into consideration advection and dispersion and the most important biological and chemical processes. Model calibration was done on the basis of available measured water quality data. To this detailed model, a more simplified model was calibrated with the objective to more easily yield long-term simulation results that can be used in a statistical analysis. The results show that the conceptual simplified model is 1800 times faster than the MIKE 11 model. Moreover the two models have almost the same accuracy. The detailed models are recommended for short-term simulations unless there are enough data for model input and model parameters. The conceptual simplified model is recommended for long-term simulations.

  8. Development of conceptual ecological models linking management of the Missouri River to pallid sturgeon population dynamics

    Science.gov (United States)

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2015-01-01

    This report documents the process of developing and refining conceptual ecological models (CEMs) for linking river management to pallid sturgeon (Scaphirhynchus albus) population dynamics in the Missouri River. The refined CEMs are being used in the Missouri River Pallid Sturgeon Effects Analysis to organize, document, and formalize an understanding of pallid sturgeon population responses to past and future management alternatives. The general form of the CEMs, represented by a population-level model and component life-stage models, was determined in workshops held in the summer of 2013. Subsequently, the Missouri River Pallid Sturgeon Effects Analysis team designed a general hierarchical structure for the component models, refined the graphical structure, and reconciled variation among the components and between models developed for the upper river (Upper Missouri & Yellowstone Rivers) and the lower river (Missouri River downstream from Gavins Point Dam). Importance scores attributed to the relations between primary biotic characteristics and survival were used to define a candidate set of working dominant hypotheses about pallid sturgeon population dynamics. These CEMs are intended to guide research and adaptive-management actions to benefit pallid sturgeon populations in the Missouri River.

  9. Modelling and Simulation of a River-Crossing Operation via Discrete Event Simulation with Engineering Details

    Directory of Open Access Journals (Sweden)

    Chungjo Jung

    2015-04-01

    Full Text Available From a military standpoint, a river is an area that should be avoided in a potential engagement because of lack of cover and the necessity of dividing the unit while crossing. Thus, a key point of a river-crossing operation is speed. Many efforts have been made to enable faster river crossing by improvement of tactics, techniques, and procedures (TTP. However, improvements in TTP are evaluated by modelling and simulation much less frequently than are the toe-to-toe engagements between two opposing forces, and to our knowledge, this is the first simulation model of brigade-level river crossing with engineering details. This study presents a simulation model of the river-crossing operation, applies real world parameters, and evaluates which tactics are preferable in a particular operational environments. This analysis has led to new operational methods of river crossing that have been suggested by experienced subject-matter experts. For instance, the current Republic of Korea Army Field Manual dictates to rotate river-crossing rafts in all situations, but our experiment suggests that no rotation is preferable when the width of river is less than 400 m based on the statistical analyses, which includes the regression-based meta-modelling and the ANOVA, of our simulation model that embodies the engineering details of river-crossing equipment.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.135-143, DOI:http://dx.doi.org/10.14429/dsj.65.8141

  10. Application Study of Empirical Model and Xiaohuajian Flood Forecasting Model in the Middle Yellow River

    Science.gov (United States)

    Hu, Caihong

    2013-04-01

    Xiaolandi-Huayuankou region is an important rainstorm centre in the middle Yellow river, which drainage area of 35883km2. A set of forecasting methods applied in this region was formed throughout years of practice. The Xiaohuajian flood forecasting model and empirical model were introduced in this paper. The simulated processes of the Xiaohuajian flood forecasting model include evapotranspiration, infiltration, runoff, river flow. Infiltration and surface runoff are calculated utilizing the Horton model for infiltration into multilayered soil profiles. Overland flow is routed by Nash instantaneous unit hydrograph and Section Muskingum method. The empirical model are simulated using P~Pa~R and empirical relation approach for runoff generation and concentration. The structures of these two models were analyzed and compared in detail. Yihe river basin located in Xiaolandi-Huayuankou region was selected for the purpose of the study. The results show that the accuracy of the two methods are similar, however, the accuracy of Xiaohuajian flood forecasting model for flood forecasting is relatively higher, especially the process of the flood; the accuracy of the empirical methods is much worse, but it can also be accept. The two models are both practicable, so the two models can be combined to apply. The result of the Xiaohuajian flood forecasting model can be used to guide the reservoir for flood control, and the result of empirical methods can be as a reference.

  11. Use of remote sensing data in distributed hydrological models: Applications in the Senegal river basin

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, Jens; Dybkjær, Gorm Ibsen;

    1999-01-01

    Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she......Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she...

  12. A NUMERICAL MODEL OF FAR-FIELD COD CONCENTRATION DISTRIBUTION FOR NATURAL RIVER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A far-field numerical model is developed to simulate jet pollution into natural rivers. Its character is to compute the velocity and pollution concentration separately. The velocity is computed by SIMPLEC algorithm in boundary-fitted coordinate systems. The pollution concentration distribution is computed by developed QUAL-IIm and QAIIL 2D program. The present model was applied to the Xiantao section of the Hanjiang River a tributary of Yangtze River, and Xiangjiang River. The flow field and COD distribution are in good agreement with field data.

  13. Colonial waterbird predation on Lost River and shortnose suckers based on recoveries of passive integrated transponder tags

    Science.gov (United States)

    Evans, Allen; Payton, Quinn; Cramer, Bradley D.; Collis, Ken; Hewitt, David A.; Roby, Daniel D.

    2015-01-01

    We evaluated predation on Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris), both listed under the Endangered Species Act (ESA), from American white pelicans (Pelecanus erythrorhynchos) and double-crested cormorants (Phalacrocorax auritus) nesting at mixed species colonies on Clear Lake Reservoir, CA and Upper Klamath Lake, OR during 2009-2014. Predation was evaluated by recovering passive integrated transponder (PIT) tags that were implanted in suckers, subsequently consumed by pelicans or cormorants, and deposited on the birds’ nesting colonies. Data from PIT tag recoveries were used to estimate predation rates (proportion of available tagged suckers consumed) by birds to evaluate the relative susceptibility of suckers to avian predation in Upper Klamath Basin. Data on the size of pelican and cormorant colonies (number of breeding adults) at Clear Lake and Upper Klamath Lake were also collected and reported in the context of predation on suckers.

  14. River

    Directory of Open Access Journals (Sweden)

    Morel Mathieu

    2016-01-01

    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  15. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.

    Science.gov (United States)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-08-15

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients to seAs (MARINA) for China. The MARINA Nutrient Model quantifies river export of nutrients by source at the sub-basin scale as a function of human activities on land. MARINA is a downscaled version for China of the Global NEWS-2 (Nutrient Export from WaterSheds) model with an improved approach for nutrient losses from animal production and population. We use the model to quantify dissolved inorganic and organic nitrogen (N) and phosphorus (P) export by six large rivers draining into the Bohai Gulf (Yellow, Hai, Liao), Yellow Sea (Yangtze, Huai) and South China Sea (Pearl) in 1970, 2000 and 2050. We addressed uncertainties in the MARINA Nutrient model. Between 1970 and 2000 river export of dissolved N and P increased by a factor of 2-8 depending on sea and nutrient form. Thus, the risk for coastal eutrophication increased. Direct losses of manure to rivers contribute to 60-78% of nutrient inputs to the Bohai Gulf and 20-74% of nutrient inputs to the other seas in 2000. Sewage is an important source of dissolved inorganic P, and synthetic fertilizers of dissolved inorganic N. Over half of the nutrients exported by the Yangtze and Pearl rivers originated from human activities in downstream and middlestream sub-basins. The Yellow River exported up to 70% of dissolved inorganic N and P from downstream sub-basins and of dissolved organic N and P from middlestream sub-basins. Rivers draining into the Bohai Gulf are drier, and thus transport fewer nutrients. For the future we calculate further increases in river export of nutrients. The MARINA Nutrient model quantifies the main sources of coastal water pollution for sub-basins. This information can contribute to formulation of

  16. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  17. Modelling seasonal N and P loads in three contrasting large river basins using global datasets - Mississippi, Mekong and Rhine River

    NARCIS (Netherlands)

    Loos, S.; Middelkoop, H.; Perk, M. van der; Beek, L.P.H. van

    2011-01-01

    Nutrients are important components of the global biochemical cycle, and are key controls of the quality of inland and coastal waters. Quantification of the nutrient fluxes from large river basins to the oceans still relies on long-term yearly-load estimates; existing models are essentially empirical

  18. Appendix E: Research papers. Manual versus digital LANDSAT analysis for modeling river flooding. [Black River, New York

    Science.gov (United States)

    Philipson, W. R. (Principal Investigator); Hafker, W. R.

    1980-01-01

    The comparative value of manual versus digital image analysis for determining flood boundaries is being examined in a study of the use of LANDSAT data for modeling flooding of the Black River, in northern New York. The work is an extension of an earlier study in which Black River flooding was assessed through visually interpreted, multi-date LANDSAT band 7 images. Based on the results to date, it appears that neither color-additive viewing nor digital analysis of LANDSAT data provide improvement in accuracy over visual analysis of band 7 images, for delineating the boundaries of flood-affected areas.

  19. Forecasting river discharge using coupled WRF-NMM meteorological model and HBV runoff model, case studies

    Science.gov (United States)

    Dekić, L.; Mihalović, A.; Jovičić, I.; Vladiković, D.; Jerinić, J.; Ivković, M.

    2012-04-01

    This paper examines two episodes of heavy rainfall and significantly increased water levels. The first case relates to the period including the beginning and the end of the third decade of June 2010 at the Kolubara river basin, where extreme rainfall led to two big flood waves on the Kolubara river, whereat water levels exceeded both regular and extraordinary flood defence and approached their historical maximum. The second case relates to the period including the end of November and the beginning of December 2010 at the Jadar river basin, where heavier precipitation caused the water levels of the basin to reach and surpass the occurrence limit (warning level). The HBV (Hydrological Bureau Waterbalance-section) rainfall/snowmelt - runoff model installed at the RHMSS uses gridded quantitative precipitation and air temperature forecast for 72 hours in advance based on meteorological weather forecast WRF-NMM mesoscale model. Nonhydrostatic Mesoscale Model (NMM) core of the Weather Research and Forecasting (WRF) system is flexible state-of-the-art numerical weather prediction model capable to describe and estimate powerful nonhydrostatic mechanism in convective clouds that cause heavy rain. The HBV model is a semi-distributed conceptual catchment model in which the spatial structure of a catchment area is not explicitly modelled. Instead, the sub-basin represents a primary modelling unit while the basin is characterised by area-elevation distribution and classification of vegetation cover and land use distributed by height zone. WRF-NMM forecast shows very good agreement with observations in terms of timing, location and amount of precipitation. They are used as input for HBV model, forecasted discharges at the output profile of the selected river basin represent model output for consideration. 1 Republic Hydrometeorological Service of Serbia

  20. Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System

    National Research Council Canada - National Science Library

    Stephan Fuchs; Maria Kaiser; Lisa Kiemle; Steffen Kittlaus; Shari Rothvoß; Snezhina Toshovski; Adrian Wagner; Ramona Wander; Tatyana Weber; Sara Ziegler

    2017-01-01

    .... The river basin management system MoRE (Modeling of Regionalized Emissions) was developed as a flexible open-source instrument which is able to model pathway-specific emissions and river loads on a catchment scale...

  1. Computational modeling of 137Cs contaminant transfer associated with sediment transport in Abukuma River.

    Science.gov (United States)

    Iwasaki, T; Nabi, M; Shimizu, Y; Kimura, I

    2015-01-01

    A numerical model capable of simulating the transfer of (137)Cs in rivers associated with transport of fine sediment is presented. The accident at Fukushima Dai-ichi Nuclear Power Plant (FDNPP) released radionuclides into the atmosphere, and after fallout several radionuclides in them, such as radiocesium ((134)Cs, (137)Cs) and radioiodine ((131)I) were adsorbed on surface soil particles around FDNPP and transported by surface water. To understand the transport and deposition of the radioactive contaminant along with surface soil particles and its flux to the ocean, we modeled the transport of the (137)Cs contaminant by computing the water flow and the associated washload and suspended load transport. We have developed a two-dimensional model to simulate the plane flow structure, sediment transport and associated (137)Cs contaminant transport in rivers by combining a shallow water flow model and an advection-diffusion equation for the transport of sediment. The proposed model has been applied to the lower reach of Abukuma River, which is the main river in the highly contaminated area around FDNPP. The numerical results indicate that most (137)Cs supplied from the upstream river reach with washload would directly reach to Pacific Ocean. In contrast, washload-oriented (137)Cs supplied from the upstream river basin has a limited role in the radioactive contamination in the river. The results also suggest that the proposed framework of computational model can be a potential tool for understanding the sediment-oriented (137)Cs behavior in rivers.

  2. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin

    Science.gov (United States)

    Motovilov, Yury; Kalugin, Andrey; Gelfan, Alexander

    2017-04-01

    A physically-based distributed model of runoff generation has been developed for the Mackenzie River basin (the catchment area is 1 660 000 km2). The model is based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform and describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and ground flow, flow routing through a channel network accounting for flow regulation by lakes and reservoirs. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The Mackenzie basin's schematization was performed on the basis of the global DEM data (1-km resolution) from the HYDRO1K database of the U.S. Geological Survey. Most of the model parameters are physically meaningful and derived through the global datasets of the basin characteristics: FAO/IIASA Harmonized World Soil Database, USGS EROS Global Land Cover Characteristics project, etc. The 0.5ox0.5o WATCH reanalysis daily precipitation, air temperature and air humidity data were used as the model input for the period of 1971-2002. The daily discharge data provided by the Water Survey of Canada for 10 streamflow gauges, which are located at the Mackenzie River and the main tributaries (Peel River, Great Bear River, Liard River, Slave River and Athabasca River), were used for calibration (1991-2001) and validation (1971-1990) of the model. The gauges' catchment areas vary from 70600 km2 (Peel River above Fort Mopherson) to 1 660 000 km2 (Mackenzie River at Arctic Red River). The model demonstrated satisfactory performance in terms of Nash-and Sutcliffe efficiency (NSE(daily)0.60 and NSE(monthly)0.70) and percent bias

  3. Applying a Model of Curvature-Driven Bend Migration Developed for Alluvial Rivers to a Gravel-Bedded River With Reaches of Exposed Bedrock

    Science.gov (United States)

    Narinesingh, P.; Pizzuto, J. E.

    2009-12-01

    The South River, Virginia, a sinuous, gravel-bedded river influenced by frequent bedrock exposures, appears at first glance to be meandering. However, when its planform statistics are compared to a freely meandering river (the Teklanika River, Alaska), systematic differences become apparent. Bends of the South River have shorter lengths, longer radii of curvatures, a distinctive meander wavelength spectrum, and a lower fractal dimension of D = 1.11 than those of the Teklanika River. Sixty five percent of the length of South River in the study area consists of sections with exposed bedrock (either on the bed or the banks) and islands. Alluvial floodplains of varying lengths are scattered between sections of bedrock and islands, accounting for the remaining 35% of the study reach. In these areas, the South River displays sinuosity values that may be as high as 2.5. Within the alluvial reaches, aerial photographs from 1937 and 2005 document significant channel migration. Driven by the need to quantify the flux of mercury-contaminated sediments entering the river through bank erosion, we applied the bend migration model of Johannesson and Parker (1989). The model, when schematized for hydraulics of the alluvial sections of the South River and calibrated to the total area of erosion mapped from aerial photographs, correctly predicts 45% of the observed locations of erosion as mapped from the aerial photographs and observed in the field. The total area of erosion computed using the predicted near-bank excess velocity is within 14% of that mapped. According to a non-parametric Kruskal-Wallis test, the predicted areas of erosion along the river are not significantly different from those defined by the historical aerial photographs (P >= 0.05, two tailed test). These results suggest that curvature dependent hydraulic models for alluvial rivers may provide useful predictions of total erosion of alluvium on mixed bedrock/alluvial rivers like the South River. However, improved

  4. Intercomparison of global river discharge simulations focusing on dam operation—multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado

    Science.gov (United States)

    Masaki, Yoshimitsu; Hanasaki, Naota; Biemans, Hester; Müller Schmied, Hannes; Tang, Qiuhong; Wada, Yoshihide; Gosling, Simon N.; Takahashi, Kiyoshi; Hijioka, Yasuaki

    2017-05-01

    We performed an intercomparison of river discharge regulated by dams under four meteorological forcings among five global hydrological models for a historical period by simulation. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri-Mississippi and Green-Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river's course to critically examine the performance of hydrological models because the performance can vary with the locations.

  5. Spatial and temporal dynamics of cyanotoxins and their relation to other water quality variables in Upper Klamath Lake, Oregon, 2007-09

    Science.gov (United States)

    Eldridge, Sara L. Caldwell; Wood, Tamara M.; Echols, Kathy R.

    2012-01-01

    Phytoplankton blooms dominated by cyanobacteria that occur annually in hypereutrophic Upper Klamath Lake, Oregon, produce microcystins at concentrations that may contribute to the decline in populations of endangered Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers. During 2007–09, water samples were collected from Upper Klamath Lake to determine the presence and concentrations of microcystins and cylindrospermopsins and to relate the spatial and temporal occurrences of microcystins to water quality and other environmental variables. Samples were analyzed for intracellular (particulate) and extracellular (dissolved) microcystins and cylindrospermopsins using enzyme-linked immunosorbent assays (ELISA). Samples contained the highest and most variable concentrations of microcystins in 2009, the year in which an earlier and heavier Aphanizomenon flos-aquae-dominated phytoplankton bloom occurred. Concentrations were lowest in 2008 when the bloom was lighter, overall, and delayed by nearly 1 month. Microcystins occurred primarily in dissolved and large (> 63 μm) particulate forms in all years of the study, and overall, concentrations were highest at MDT (the deepest site in the study) and HDB, although HDB was sampled only in 2007 and MDT was not sampled in 2008. Comparisons among daily median total microcystin concentrations; chlorophyll a concentrations; total, dissolved, and particulate nutrient concentrations; and nutrient ratios measured in 2009 and between 2007 and 2009 indicate that microcystin concentrations generally increase following the decline of the first A. flos-aquae-dominated bloom of each season in response to an increase in bioavailable nitrogen and phosphorus. Nitrogen fixation by A. flos-aquae early in the sample season appears to provide new nitrogen for growth of toxigenic Microcystis aeruginosa, whereas, later in the season, these species appear to co-exist. Understanding the ecological interactions between these

  6. Predicting river water temperatures using stochastic models: case study of the Moisie River (Québec, Canada)

    Science.gov (United States)

    Ahmadi-Nedushan, Behrouz; St-Hilaire, André; Ouarda, Taha B. M. J.; Bilodeau, Laurent; Robichaud, Élaine; Thiémonge, Nathalie; Bobée, Bernard

    2007-01-01

    Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short-term variations, which were obtained by subtracting the seasonal components from water temperature time-series. The first three models, a multiple regression, a second-order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root-mean-square error (RMSE) for these models varied between 0.53 and 1.70 °C and the second-order autoregressive model provided the best results.A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0.51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive

  7. Comparative modeling analyses of Cs-137 fate in the rivers impacted by Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Kivva, S. [Institute of Environmental Radioactivity, Fukushima University (Japan)

    2014-07-01

    The consequences of two largest nuclear accidents of the last decades - at Chernobyl Nuclear Power Plant (ChNPP) (1986) and at Fukushima Daiichi NPP (FDNPP) (2011) clearly demonstrated that radioactive contamination of water bodies in vicinity of NPP and on the waterways from it, e.g., river- reservoir water after Chernobyl accident and rivers and coastal marine waters after Fukushima accident, in the both cases have been one of the main sources of the public concerns on the accident consequences. The higher weight of water contamination in public perception of the accidents consequences in comparison with the real fraction of doses via aquatic pathways in comparison with other dose components is a specificity of public perception of environmental contamination. This psychological phenomenon that was confirmed after these accidents provides supplementary arguments that the reliable simulation and prediction of the radionuclide dynamics in water and sediments is important part of the post-accidental radioecological research. The purpose of the research is to use the experience of the modeling activities f conducted for the past more than 25 years within the Chernobyl affected Pripyat River and Dnieper River watershed as also data of the new monitoring studies in Japan of Abukuma River (largest in the region - the watershed area is 5400 km{sup 2}), Kuchibuto River, Uta River, Niita River, Natsui River, Same River, as also of the studies on the specific of the 'water-sediment' {sup 137}Cs exchanges in this area to refine the 1-D model RIVTOX and 2-D model COASTOX for the increasing of the predictive power of the modeling technologies. The results of the modeling studies are applied for more accurate prediction of water/sediment radionuclide contamination of rivers and reservoirs in the Fukushima Prefecture and for the comparative analyses of the efficiency of the of the post -accidental measures to diminish the contamination of the water bodies. Document

  8. A critical perspective on 1-D modeling of river processes : gravel load and aggradation in lower Fraser River.

    OpenAIRE

    R.; Ferguson; Church, M.

    2009-01-01

    We investigate how well a width-averaged morphodynamic model can simulate gravel transport and aggradation along a highly irregular 38-km reach of lower Fraser River and discuss critical issues in this type of modeling. Bed load equations with plausible parameter values predict a gravel input consistent with direct measurements and a sediment budget. Simulations using spatially varying channel width, and forced by dominant discharge or a 20-year hydrograph, match the observed downstream finin...

  9. river basin, north eastern nigeria, using swat model *ejieji

    African Journals Online (AJOL)

    USER

    2016-03-29

    Mar 29, 2016 ... Hade ia-:ama are-Komadugu-Yobe River basin (H:KYRB) is one of the ma or .... Prediction of the Streamflow of Hadejia-Jama are-Komadugu-Yobe-River. ..... Assessment Tool Input/Output documentation version 2009. Texas.

  10. Modeling potential river management conflicts between frogs and salmonids

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Sarah J. Kupferberg; Margaret M. Lang; Scott McBain; Hart H. Welsh

    2016-01-01

    Management of regulated rivers for yellow-legged frogs (Rana boylii) and salmonids exemplifies potential conflicts among species adapted to different parts of the natural flow and temperature regimes. Yellow-legged frogs oviposit in rivers in spring and depend on declining flows and warming temperatures for egg and tadpole survival and growth,...

  11. Fluid temperatures: Modeling the thermal regime of a river network

    Science.gov (United States)

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  12. Modelling Nitrate uptake in river networks using the new mHM water quality model

    Science.gov (United States)

    Yang, Xiaoqiang; Sinha, Sumit; Samaniego, Luis; Kumar, Rohini; Jomaa, Seifeddine; Rode, Michael

    2016-04-01

    To understand the spatial distribution and temporal dynamics of nitrate uptake in river networks under different land use are critical for the protection of river ecosystem and drinking water supply. To this end, distributed grid-based hydrological water quality models are required. The multi-scale Hydrological Model (mHM) was integrated with the nitrate transport and reaction (NTR) routines. The main equations of NTR routines were introduced from the HYPE (Hydrological Predictions for the Environment) model, which has been fully verified in the literature. The new coupled mHM model with the NTR routines is able to calculate the hydrographs at any point and also the distribution of state variables, which makes it possible to present the distribution of inorganic nitrogen uptake in the whole river network. First, the model is successfully calibrated and validated in the Selke catchment (463 km2) using three gauging stations during the period of 1994-2004 in terms of hydrographs and inorganic nitrogen concentrations. Then, the model performance for in-stream Nitrate uptake predictions are presented and analyzed temporally and spatially, considering the Selke river network characteristics. Particularly, how much the land use affects the amount and the intra-annual dynamics of in-stream uptake are discussed using one forest-dominant sub-catchment (Meisdorf, where forest share is about 72%) with another agriculture-dominant sub-catchment (Hausneindorf, where agriculture share is about 76%). In addition, the seasonal variation of model in-stream nitrate uptake predictions are compared with calculated values using the nitrate assimilatory uptake approach generated from high frequency sensor measurements.

  13. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry...

  14. Modeling sediment transport in the lower Yellow River and dynamic equilibrium threshold value

    Institute of Scientific and Technical Information of China (English)

    HU; Chunhong; GUO; Qingchao

    2004-01-01

    A major problem in the lower Yellow River is the insufficient incoming water and excessive sediment supply, which results in serious deposition, continuous rise of the river bed, and austere flood control situation. To understand the sediment transport regularity of the lower Yellow River and determine the relationship between sedimentation,incoming water and sediment, and zone water diversion, a mathematical model of the sediment suitable for the characteristics of the lower Yellow River has been developed.This model is first rated and verified by large quantity of observed data, and it is then used to analyze silting reduction for the lower Yellow River by Xiaolangdi Reservoir's operation,the relationship between zone water diversion and channel sedimentation, and critical equilibrium of sedimentation in the lower Yellow River. The threshold values of equilibrium of sedimentation in the lower Yellow River are estimated and they suggest that deposition in the lower Yellow River can be effectively reduced by the operation of regulating flow and sediment from Xiaolangdi Reservoir, water-soil conservation, and controlling water diversion along the lower Yellow River.

  15. EVALUATION OF THE QUALITY AND SELF PURIFICATION POTENTIAL OF TAJAN RIVER USING QUAL2E MODEL

    Directory of Open Access Journals (Sweden)

    N. Mehrdadi, M. Ghobadi, T. Nasrabadi, H. Hoveidi

    2006-07-01

    Full Text Available Tajan River is among significant rivers of Caspian Sea water basin. Pollution sources that threaten the quality of water in Tajan River may be classified in to two categories namely point and non-point sources. Major pollutants of latter category are Mazandaran wood and pulp, Paksar dairy products and Sari Antibiotic production factories, as well as 600-dastgah residential area. On the other hand, non-point sources whose waste is considered as a distributed load consist of Sari municipal wastewater and agriculture-related pollutants that are drained towards the river. In order to model the quality of river flow, Qual2E model is taken in to consideration. Considering TDS, the river quality is completely acceptable in cold seasons. However, in spring and summer the value of this parameter is increased and this causes some restrictions in the use of this water for irrigation of specific sensitive crops. Agricultural activities and consequent irrigated waters are the major causes of higher reported TDS values in warm seasons. Current status of DO is completely acceptable and this is highly related to the relative high value of width on depth ratio along the river. BOD and COD locate in a fairly poor condition. Quality deterioration is more noticeable in cold seasons. Higher rate of precipitation and consequent greater runoff generation towards the river basin justify the relative increase of mentioned parameters in fall and winter. Generally, non-point pollution sources are more contributed in deterioration of Tajan River water quality.

  16. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L.R.; Trefry, M.G.; Barr, A.D. [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S. [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M. [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan)] [and others

    1992-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  17. Dynamic Modeling and Grid Interaction of a Tidal and River Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2017-07-13

    This presentation provides a high-level overview of the deployment of a river generator installed in a small system. The turbine dynamics of a river generator, electrical generator, and power converter are modeled in detail. Various simulations can be exercised, and the impact of different control algorithms, failures of power switches, and corresponding impacts can be examined.

  18. Height and wavelength of alternate bars in rivers: Modelling vs. laboratory experiments

    NARCIS (Netherlands)

    Knaapen, M.A.F.; Hulscher, S.J.M.H.; Vriend, de H.J.; Harten, van A.

    2001-01-01

    Alternate bars are large wave patterns in sandy beds of rivers and channels. The crests and troughs alternate between the banks of the channel. These bars, which move downstream several meters per day, reduce the navigability of the river. Recent modelling of alternate bars has focused on stability

  19. Automated upscaling of river networks for macroscale hydrological modeling

    Science.gov (United States)

    Wu, Huan; Kimball, John S.; Mantua, Nate; Stanford, Jack

    2011-03-01

    We developed a hierarchical dominant river tracing (DRT) algorithm for automated extraction and spatial upscaling of basin flow directions and river networks using fine-scale hydrography inputs (e.g., flow direction, river networks, and flow accumulation). In contrast with previous upscaling methods, the DRT algorithm utilizes information on global and local drainage patterns from baseline fine-scale hydrography to determine upscaled flow directions and other critical variables including upscaled basin area, basin shape, and river lengths. The DRT algorithm preserves the original baseline hierarchical drainage structure by tracing each entire flow path from headwater to river mouth at fine scale while prioritizing successively higher order basins and rivers for tracing. We applied the algorithm to produce a series of global hydrography data sets from 1/16° to 2° spatial scales in two geographic projections (WGS84 and Lambert azimuthal equal area). The DRT results were evaluated against other alternative upscaling methods and hydrography data sets for continental U.S. and global domains. These results show favorable DRT upscaling performance in preserving baseline fine-scale river network information including: (1) improved, automated extraction of flow directions and river networks at any spatial scale without the need for manual correction; (2) consistency of river network, basin shape, basin area, river length, and basin internal drainage structure between upscaled and baseline fine-scale hydrography; and (3) performance largely independent of spatial scale, geographic region, and projection. The results of this study include an initial set of DRT upscaled global hydrography maps derived from HYDRO1K baseline fine-scale hydrography inputs; these digital data are available online for public access at ftp://ftp.ntsg.umt.edu/pub/data/DRT/.

  20. IMPROVED NUMERICAL METHODS FOR MODELING RIVER-AQUIFER INTERACTION.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Sue Tillery; Phillip King

    2008-09-01

    A new option for Local Time-Stepping (LTS) was developed to use in conjunction with the multiple-refined-area grid capability of the U.S. Geological Survey's (USGS) groundwater modeling program, MODFLOW-LGR (MF-LGR). The LTS option allows each local, refined-area grid to simulate multiple stress periods within each stress period of a coarser, regional grid. This option is an alternative to the current method of MF-LGR whereby the refined grids are required to have the same stress period and time-step structure as the coarse grid. The MF-LGR method for simulating multiple-refined grids essentially defines each grid as a complete model, then for each coarse grid time-step, iteratively runs each model until the head and flux changes at the interfacing boundaries of the models are less than some specified tolerances. Use of the LTS option is illustrated in two hypothetical test cases consisting of a dual well pumping system and a hydraulically connected stream-aquifer system, and one field application. Each of the hypothetical test cases was simulated with multiple scenarios including an LTS scenario, which combined a monthly stress period for a coarse grid model with a daily stress period for a refined grid model. The other scenarios simulated various combinations of grid spacing and temporal refinement using standard MODFLOW model constructs. The field application simulated an irrigated corridor along the Lower Rio Grande River in New Mexico, with refinement of a small agricultural area in the irrigated corridor.The results from the LTS scenarios for the hypothetical test cases closely replicated the results from the true scenarios in the refined areas of interest. The head errors of the LTS scenarios were much smaller than from the other scenarios in relation to the true solution, and the run times for the LTS models were three to six times faster than the true models for the dual well and stream-aquifer test cases, respectively. The results of the field

  1. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    Science.gov (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  2. Distributed hydrological modelling of the Senegal river basin - model construction and validation

    DEFF Research Database (Denmark)

    Andersen, J.; Refsgaard, J.C.; Jensen, Karsten Høgh

    2001-01-01

    A modified version of the physically-based distributed MIKE SHE model code was applied to the 375,000 km(2) Senegal River Basin. On the basis of conventional data from meteorological stations and readily accessible databases on topography, soil types, vegetation type, etc. three models....... Further calibration against additional discharge stations improved the performance levels of the validation for the different subcatchments. Although there may be good reasons to believe that the model operating on a model grid of 4 x 4 km(2) to a large extent reflects held conditions at a scale smaller...

  3. Mathematical model for flood routing in Jingjiang River and Dongting Lake network

    Directory of Open Access Journals (Sweden)

    Zuo-tao XIE

    2012-09-01

    Full Text Available The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (1-D mathematical model for flood routing in the river network of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.

  4. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  5. Modelling CSO impacts on the river Miño (Lugo)

    OpenAIRE

    José Anta Álvarez; Bermúdez, M.; Cea, L.; J. Suárez; P. Ures; J. Puertas

    2015-01-01

    This study presents an integrated modelling approach to estimate dissolved oxygen and ammonia impacts of CSO of the city of Lugo sewer network in the Miño river. Sewer network modelling was performed with the SWMM software package, while Iber 2D shallow water code was used for river quality modelling. CSO impacts were evaluated by means of Emission Standards (CSO spill frequency/volume), and the Environmental Quality Standards presented in the Urban Pollution Manual were applied to evaluate t...

  6. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2010-08-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  7. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  8. DEVELOPMENT OF TWO-DIMENSIONAL HYDRODYNAMIC AND WATER QUALITY MODEL FOR HUANGPU RIVER

    Institute of Scientific and Technical Information of China (English)

    Xu Zu-xin; Yin Hai-long

    2003-01-01

    Based on numerical computation model RMA2 and RMA4 with open source code, finite element meshes representing the study domain are created, then the finite element hydrodynamic and water quality model for Huangpu River is developed and calibrated, and the simulation results are analyzed. This developed hydrodynamic and water quality model is used to analyze the influence of discharged wastewater from planning Wastwater Treatment Plant (WWTP) on Huangpu River's water quality.

  9. Modeling discharge, temperature, and water quality in the Tualatin River, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Wood, Tamara M.; Lynch, Dennis D.

    1999-01-01

    The discharge, water temperature, and water quality of the Tualatin River in northwestern Oregon was simulated with CE-QUAL-W2, a two-dimensional, laterally averaged model developed by the U.S. Army Corps of Engineers. The model was calibrated for May through October periods of 1991, 1992, and 1993. Nine hypothetical scenarios were tested with the model to provide insight for river managers and regulators.

  10. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  11. Upscaling river networks for use in climate models

    Science.gov (United States)

    Arora, Vivek K.; Harrison, Stephen

    2007-11-01

    Upscaling fine resolution river networks in a realistic manner is a cumbersome process and manual corrections are difficult to avoid. A modified algorithm is presented that offers improvement over the existing approaches and requires comparatively fewer manual corrections. The algorithm uses fine resolution flow directions to find the adjacent coarse resolution grid cell in which the majority of water drains and then corrects for increased occurrences of river flow through the sides of the grid cells. Visual comparison remains an acceptable way to assess the success of various upscaling algorithms given the complex nature of rivers and in the absence of a method for comprehensive quantitative comparison. Here, the fraction of ordinal river flow directions (a measure of side-to-corner preference) and the fraction of grid cells that only drain themselves (a measure of connectivity of low order river segments) are used to provide information about the nature of upscaled coarse resolution river networks in comparison to the fine resolution networks. For both visual evaluation and these more quantitative measures, the modified algorithm presented here yields the best comparison with the 0.5° resolution river networks on which the upscaled coarse resolution networks are based.

  12. Organic matter and modeling redox reactions during river bank filtration in an alluvial aquifer of the Lot River, France.

    Science.gov (United States)

    Kedziorek, Monika A M; Geoffriau, Stephane; Bourg, Alain C M

    2008-04-15

    A 3 year study of the infiltration of Lot River water into a well field located in an adjacent gravel and clay alluvial aquifer was conducted to assess the importance of organic matter regarding the redox processes which influence groundwater quality in a positive (denitrification) or negative (Mn dissolution) manner. Chloride was used to quantify the mixing of river water with groundwater. According to modeling with PHREEQC, the biodegradation of the infiltrated dissolved organic carbon (DOCi) is not sufficient to explain the observed consequences of the redox reactions (dissolved O2 depletion, denitrification, Mn dissolution). Another electron donor source must therefore be involved: we propose solid organic carbon (SOC) as a likely candidate, if made available for degradation by prior hydrolysis. Its contribution to redox reactions could be significant (30-80% of the total organic carbon consumed by redox reactions during river bank filtration). We show here also that even though the first few meters of infiltration are highly reactive, significant redox reactions can take place further in the aquifer, possibly affecting groundwater quality away from the river bank.

  13. An integrated modelling framework for regulated river systems in Land Surface Hydrological Models

    Science.gov (United States)

    Rehan Anis, Muhammad; razavi, Saman; Wheater, Howard

    2017-04-01

    Many of the large river systems around the world are highly regulated with numerous physical flow control and storage structures as well as a range of water abstraction rules and regulations. Most existing Land Surface Models (LSM) do not represent the modifications to the hydrological regimes introduced by water management (reservoirs, irrigation diversions, etc.). The interactions between natural hydrological processes and changes in water and energy fluxes and storage due to human interventions are important to the understanding of how these systems may respond to climate change amongst other drivers for change as well as to the assessment of their feedbacks to the climate system at regional and global scales. This study presents an integrated modelling approach to include human interventions within natural hydrological systems using a fully coupled modelling platform. The Bow River Basin in Alberta (26,200 km2), one of the most managed Canadian rivers, is used to demonstrate the approach. We have dynamically linked the MESH modelling system, which embeds the Canadian Land Surface Scheme (CLASS), with the MODSIM-DSS water management modelling tool. MESH models the natural hydrology while MODSIM optimizes the reservoir operation of 4 simulated reservoirs to satisfy demands within the study basin. MESH was calibrated for the catchments upstream the reservoirs and gave good performance (NSE = 0.81) while BIAS was only 2.3% at the catchment outlet. Without coupling with MODSIM (i.e. no regulation), simulated hydrographs at the catchment outlet were in complete disagreement with observations (NSE = 0.28). The coupled model simulated the optimization introduced by the operation of the multi-reservoir system in the Bow river basin and shows excellent agreement between observed and simulated hourly flows (NSE = 0.98). Irrigation demands are fully satisfied during summer, however, there are some shortages in winter demand from industries, which can be rectified by

  14. THREE DIMENSIONAL NUMERICAL MODELLING OF FLOW AND SEDIMENT TRANSPORT IN RIVERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The 3D numerical model, ECOMSED (open source code), was used to simulate flow and sediment transport in rivers. The model has a long history of successful applications to oceanic, coastal and estuarine waters. Improvements in the advection scheme, treatment of river roughness parameterization and shear stress partitioning were necessary to reproduce realistic and comparable results in a river application. To account for the dynamics of the mobile bed boundary, a model for the bed load transport was included in the code. The model reproduced observed secondary currents,bed shear stress distribution and erosion-deposition patterns on a curved channel. The model also successfully predicted the general flow patterns and sediment transport characteristics ora l-km long reach of the River Klar(a)lven, located in the north of the county of V(a)rmland, Sweden.

  15. The Transition of Benthic Nutrient Sources after Planned Levee Breaches Adjacent to Upper Klamath and Agency Lakes, Oregon

    Science.gov (United States)

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Parcheso, Francis; Cameron, Jason M.; Asbill, Jessica R.; Fend, Steven V.; Duff, John H.; Engelstad, Anita C.

    2010-01-01

    Four sampling trips were coordinated after planned levee breaches that hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. Sets of nonmetallic pore-water profilers were deployed during these trips in November 2007, June 2008, May 2009, and July 2009. Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos-aquae (AFA) and spatially involved three lake and four wetland sites. Profilers, typically deployed in triplicate at each lake or wetland site, provided high-resolution (centimeter-scale) estimates of the vertical concentration gradients for diffusive-flux determinations. Estimates based on molecular diffusion may underestimate benthic flux because solute transport across the sediment-water interface can be enhanced by processes including bioturbation, bioirrigation and groundwater advection. Water-column and benthic samples were also collected to help interpret spatial and temporal trends in diffusive-flux estimates. Data from these samples complement taxonomic and geochemical analyses of bottom-sediments taken from Upper Klamath Lake (UKL) in prior studies. This ongoing study provides information necessary for developing process-interdependent solute-transport models for the watershed (that is, models integrating physical, geochemical, and biological processes) and supports efforts to evaluate remediation or load-allocation strategies. To augment studies funded by the U.S. Bureau of Reclamation (USBR), the Department of the Interior supported an additional full deployment of pore-water profilers in November 2007 and July 2009, immediately following the levee breaches and after the crash of the annual summer AFA bloom. As observed consistently since 2006, benthic flux of 0.2-micron filtered, soluble reactive phosphorus (that is, biologically available phosphorus, primarily as orthophosphate; SRP) was consistently positive (that is, out of the sediment into the overlying water column) and

  16. Reduced-complexity modeling of braided rivers: Assessing model performance by sensitivity analysis, calibration, and validation

    Science.gov (United States)

    Ziliani, L.; Surian, N.; Coulthard, T. J.; Tarantola, S.

    2013-12-01

    paper addresses an important question of modeling stream dynamics: How may numerical models of braided stream morphodynamics be rigorously and objectively evaluated against a real case study? Using simulations from the Cellular Automaton Evolutionary Slope and River (CAESAR) reduced-complexity model (RCM) of a 33 km reach of a large gravel bed river (the Tagliamento River, Italy), this paper aims to (i) identify a sound strategy for calibration and validation of RCMs, (ii) investigate the effectiveness of multiperformance model assessments, (iii) assess the potential of using CAESAR at mesospatial and mesotemporal scales. The approach used has three main steps: first sensitivity analysis (using a screening method and a variance-based method), then calibration, and finally validation. This approach allowed us to analyze 12 input factors initially and then to focus calibration only on the factors identified as most important. Sensitivity analysis and calibration were performed on a 7.5 km subreach, using a hydrological time series of 20 months, while validation on the whole 33 km study reach over a period of 8 years (2001-2009). CAESAR was able to reproduce the macromorphological changes of the study reach and gave good results as for annual bed load sediment estimates which turned out to be consistent with measurements in other large gravel bed rivers but showed a poorer performance in reproducing the characteristics of the braided channel (e.g., braiding intensity). The approach developed in this study can be effectively applied in other similar RCM contexts, allowing the use of RCMs not only in an explorative manner but also in obtaining quantitative results and scenarios.

  17. Monitoring, assessment and modelling using water quality data in the Saale River Basin, Germany.

    Science.gov (United States)

    Bongartz, Klaus; Steele, Timothy D; Baborowski, Martina; Lindenschmidt, Karl-Erich

    2007-12-01

    The European Water Framework Directive (WFD) is the overall driver for this environmental study and currently requires the identification of patterns and sources of pollution (monitoring) to support objective ecological sound decision making and specific measures to enhance river water quality (modelling). The purpose of this paper is to demonstrate in a case study the interrelationship between (1) hydrologic and water quality monitoring data for river basin characterization and (2) modelling applications to assess resources management alternatives. The study deals with monitoring assessment and modelling of river water quality data of the main stem Saale River and its principal tributaries. For a period of 6 years the data, which was sampled by Environmental Agencies of the German states of Thuringia, Saxony and Saxony-Anhalt, was investigated to assess sources and indicators of pollution. In addition to the assessment a modelling exercise of the routing of different pollutants was carried out in the lower part of the test basin. The modelling is a tool to facilitate the evaluation of alternative measures to reduce contaminant loadings and improve ecological status of a water body as required by WFD. The transport of suspended solids, salts and heavy metals was modelled along a selected Saale reach under strong anthropogenic influence in terms of contaminants and river morphology between the city of Halle and the confluence with the Elbe River. The simulations were carried out with the model WASP5 which is a dynamic flood-routing and water quality model package developed by the US Environmental Protection Agency.

  18. Numerical Modeling of Trinity River Shoaling below Wallisville, Texas

    Science.gov (United States)

    2015-02-01

    Authority (CWA) canal withdrawals ................................................................... 43 Boundary condition inflow uncertainties...m .. __ -- ERDC/CHL TR-15-1 6 Figure 2-2. Drainage basin for the Trinity River. Tides The tides in the study area propagate across...Notice the very large time lag in high water (HW) for Round Point in Trinity Bay, which shows the effect of the tide propagating against the river flow

  19. Isopycnal deepening of an under-ice river plume in coastal waters: Field observations and modeling

    Science.gov (United States)

    Li, S. Samuel; Ingram, R. Grant

    2007-07-01

    The Great Whale River, located on the southeast coast of Hudson Bay in Canada, forms a large river plume under complete landfast ice during early spring. Short-term fluctuations of plume depth have motivated the present numerical study of an under-ice river plume subject to tidal motion and friction. We introduce a simple two-layer model for predicting the vertical penetration of the under-ice river plume as it propagates over a deepening topography. The topography is idealized but representative. Friction on the bottom surface of the ice cover, on the seabed, and at the plume interface is parameterized using the quadratic friction law. The extent of the vertical penetration is controlled by dimensionless parameters related to tidal motion and river outflow. Model predictions are shown to compare favorably with under-ice plume measurements from the river mouth. This study illustrates that isopycnal deepening occurs when the ice-cover vertical motion creates a reduced flow cross-section during the ebbing tide. This results in supercritical flow and triggers the downward plume penetration in the offshore. For a given river discharge, the freshwater source over a tidal cycle is unsteady in terms of discharge velocity because of the variation in the effective cross-sectional area at the river mouth, through which freshwater flows.

  20. An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK.

    Science.gov (United States)

    Whitehead, P G; Leckie, H; Rankinen, K; Butterfield, D; Futter, M N; Bussi, G

    2016-12-01

    Pathogens are an ongoing issue for catchment water management and quantifying their transport, loss and potential impacts at key locations, such as water abstractions for public supply and bathing sites, is an important aspect of catchment and coastal management. The Integrated Catchment Model (INCA) has been adapted to model the sources and sinks of pathogens and to capture the dominant dynamics and processes controlling pathogens in catchments. The model simulates the stores of pathogens in soils, sediments, rivers and groundwaters and can account for diffuse inputs of pathogens from agriculture, urban areas or atmospheric deposition. The model also allows for point source discharges from intensive livestock units or from sewage treatment works or any industrial input to river systems. Model equations are presented and the new pathogens model has been applied to the River Thames in order to assess total coliform (TC) responses under current and projected future land use. A Monte Carlo sensitivity analysis indicates that the input coliform estimates from agricultural sources and decay rates are the crucial parameters controlling pathogen behaviour. Whilst there are a number of uncertainties associated with the model that should be accounted for, INCA-Pathogens potentially provides a useful tool to inform policy decisions and manage pathogen loading in river systems. Copyright © 2016. Published by Elsevier B.V.

  1. Floods simulation in the Crişul Alb River Basin using hydrological model CONSUL

    Science.gov (United States)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2016-04-01

    For the simulation of floods, in the Crişul Alb River Basin, Romanian hydrological model CONSUL with lumped parameters was used. This deterministic mathematical rainfall-runoff model compute discharge hydrographs on configured river sub-basins, their channel routing and composition on the main river and tributaries and finally their routing and mitigation through reservoirs, according to the schematic representation (topological modelling) of how water flows and integrate in a river basin. After topological modelling 42 sub-basins and 19 river reaches resulted for the Crişul Alb River Basin model configuration, established according to the position of tributaries, hydrometric stations and reservoirs that influence flow. The CONSUL model used as input data, for each sub-basin, average values of precipitation and air temperature determined based on the measured values of weather stations in the basin. Calculation of average values was performed using a pre-processing program of meteorological data from rectangular grid nodes corresponding to Crişul Alb River Basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. Calibration of model parameters was performed by the simulation of 25 rainfall-runoff events from the period 1975 - 2010, chosen to cover a wide range of possible situations in the case of floods formation. By simulating floods from the hydrometric stations located in the closing sections of river sub-basins were determined the infiltration and unit hydrograph parameters and by simulating floods from the hydrometric stations located in the downstream sections of the river reaches hydrometrically controlled were determined the routing equation parameters. The parameters thus determined allow building some generalization relationships of these parameters according to the morphometric characteristics of the river sub-basins (surface, slope) or river reaches (length, slope). Based on these

  2. Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September...

  3. Digital elevation models (DEMs) of the Elwha River delta, Washington, May 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in May 2011....

  4. Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2011....

  5. Digital elevation models (DEMs) of the Elwha River delta, Washington, July 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in July 2016....

  6. Digital elevation models (DEMs) of the Elwha River delta, Washington, September 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in September...

  7. Digital elevation models (DEMs) of the Elwha River delta, Washington, August 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release presents a digital elevation model (DEM) derived from bathymetry and topography data of the Elwha River delta collected in August 2012....

  8. MODELING THE FATE AND TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN AN UNSTEADY RIVER-ESTUARINE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Su-Chin CHEN; Jan-Tai KUO

    2002-01-01

    This research develops a generalized,one-dimensional,finite difference model for simulating the distribution of toxic substances in a river-estuarine system. The three sub-models for unsteady flow,sediment transport,and the reaction of toxic substances are also presented using an uncoupled numerical method. The paper also includes experimental work for sorption/desorption,field measurements of organic carbon content in the heavily polluted Keelung River,and a laboratory study of cohesive sediment transport for the model calibration and verification. In addition,this study simulates the polycyclic aromatic hydrocarbons (PAHs) in the Keelung River in northern Taiwan as a case study. Encouraging results are obtained,and suggest that the modeling approach could be extended to simulate the fate and transport of sorbed pollutants in tidal river.

  9. Annual Report: Connecticut River Pilot - Modeling Migratory Landbird Stopover Habitat Using Nanotags

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project will identify, document and model important habitat in the Connecticut River Watershed (CRW) as part of a broader Conservation Design Pilot Project led...

  10. DEVELOPING A WATER QUALITY MANAGEMENT MODEL FOR KARUN AND DEZ RIVERS

    Directory of Open Access Journals (Sweden)

    M. Afkhami, M. Shariat, N. Jaafarzadeh, H. Ghadiri, R. Nabizadeh

    2007-04-01

    Full Text Available The Karun and Dez rivers basin are the largest rivers basin in Iran which are situated in the south west of the country. Karun River originates from Zagros mountain ranges and passing through Khuzestan plain, reaches the Persian Gulf. Several cities lie along its path of them the most important is Ahvaz, the center of Khuzestan province. To achieve water quality goals in Karun and Dez rivers, a water quality management model has been developed through the GIS approach and a mathematical water quality model. In Karun and Dez rivers, water quality has decreased due to heavy pollution loads from Khuzestan province cities and surrounding areas. In this survey, pollution sources, land use, geographic features and measured water quality data of the river basin were incorporated into the Arc-view geographic information system database. With the database, the model calculated management type and cost for each management project in the river basin. Until now, river management policy for polluted rivers in Iran has been first of all to get penalties from pollution sources and secondarily, to construct treatment plants for the pollution sources whose wastewater is released untreated and for which the wastewater quality goal of the Iranian Department of the Environment is not met. Different management projects with a time program were proposed and they were compared with the results of the river quality without any management approach. It became clear that the results based on the management approach were much better than those for the unmanaged condition from the viewpoint of the achievement of water quality goals and cost optimization.

  11. A model study of the Haihe river passenger ferry risk based on AHP

    Science.gov (United States)

    Du, Jinyin; Xu, Yanming; Du, Chunzhi; Jin, Zhenhua

    2017-05-01

    The core function of maritime is water safety supervision, whose emphasis and difficulty is ferry. In combination with the practical situation of Haihe river passenger ferry operation management, this paper analyzes Haihe river passenger ferry risk from four aspects "human, machinery, environment and management", and establishes the ferry risk index system. By using AHP (Analytic Hierarchy Process), the ferry risk evaluation model is established. By using the ferry model, the application of Ferry Zhengyanfa7 in Tianjin Haihe river crossing is evaluated, whose safety situation is verified to be between "relatively high risk" and "high risk".

  12. Mathematical Modeling of Self- Purification Capacity of Surface Currents. Study Case: Portoviejo River, Ecuador

    Directory of Open Access Journals (Sweden)

    Luis Santiago Quiroz Fernández

    2016-11-01

    Full Text Available It is proposed a phenomenological model to describe the behavior of oxygen concentration with respect to distance from wastewater loading into the river. It taken into account processes associated with con-taminants biodegradation and oxygen transfer through interface air-water. The model was used to study contamination of Portoviejo River, Manabí, Ecuador. Experimental results were adjusted to an approx-imate solution of the obtained no-linear equations system, and it was possible to estimate parameters which are related with the capacity of self-purification of two river zones. 

  13. Fe and Mn Transport and Settling Modelling in the Upper Course of the Lerma River

    OpenAIRE

    García-Aragón Juan Antonio; Zarazúa-Ortega Graciela; Díaz-Palomarez Víctor; Tejeda-Vega Samuel; Ávila-Pérez Pedro

    2013-01-01

    A metal transport and deposition model together with concentration measurements of Fe and Mn was developed in the Upper Course of the Lerma River, Mexico State. The hydraulic sections of 27.9 km of the Lerma River were measured in the field in order to supply the numerical model. A general mass balance equation considering full mixing in selected reaches of the Lerma River was developed and solved using the finite-difference method. At the same time a sampling campaign of water and sediment a...

  14. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  15. Performance of a coupled lagged ensemble weather and river runoff prediction model system for the Alpine Ammer River catchment

    Science.gov (United States)

    Smiatek, G.; Kunstmann, H.; Werhahn, J.

    2012-04-01

    The Ammer River catchment located in the Bavarian Ammergau Alps and alpine forelands, Germany, represents with elevations reaching 2185 m and annual mean precipitation between1100 and 2000 mm a very demanding test ground for a river runoff prediction system. Large flooding events in 1999 and 2005 motivated the development of a physically based prediction tool in this area. Such a tool is the coupled high resolution numerical weather and river runoff forecasting system AM-POE that is being studied in several configurations in various experiments starting from the year 2005. Corner stones of the coupled system are the hydrological water balance model WaSiM-ETH run at 100 m grid resolution, the numerical weather prediction model (NWP) MM5 driven at 3.5 km grid cell resolution and the Perl Object Environment (POE) framework. POE implements the input data download from various sources, the input data provision via SOAP based WEB services as well as the runs of the hydrology model both with observed and with NWP predicted meteorology input. The one way coupled system utilizes a lagged ensemble prediction system (EPS) taking into account combination of recent and previous NWP forecasts. Results obtained in the years 2005-2011 reveal that river runoff simulations depict high correlation with observed runoff when driven with monitored observations in hindcast experiments. The ability to runoff forecasts is depending on lead times in the lagged ensemble prediction and shows still limitations resulting from errors in timing and total amount of the predicted precipitation in the complex mountainous area. The presentation describes the system implementation, and demonstrates the application of the POE framework in networking, distributed computing and in the setup of various experiments as well as long term results of the system application in the years 2005 - 2011.

  16. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of transported pollutant load

    Science.gov (United States)

    Galván, L.; Olías, M.; Fernandez de Villarán, R.; Domingo Santos, J. M.; Nieto, J. M.; Sarmiento, A. M.; Cánovas, C. R.

    2009-10-01

    SummaryThe Meca River is highly contaminated by acid mine drainage coming from the Tharsis mining district, belonging to the Iberian Pyrite Belt. This river is regulated by the Sancho reservoir (58 hm 3), with a pH close to 4.2. In this work, the load transported by the Meca River to the Sancho reservoir has been assessed. Due to the lack of streamflow data, the hydrological behaviour of the Meca River basin has been simulated using the SWAT model. The model has been calibrated against registered daily inflows of the Sancho reservoir (1982-2000), excluding the hydrological years 2000/2001 and 2001/2002 that were kept for the validation. The results were satisfactory; the evaluation coefficients for monthly calibration were: r = 0.85 (Pearson's correlation coefficient), NSE = 0.83 (Nash-Sutcliffe coefficient) and DV = 1.08 (runoff volume deviation). The main uncertainty was the calibration during low water because of the poor accuracy in the measurement of the inputs to the reservoir in these conditions. Discharge and dissolved concentration relationships for different elements were obtained from hydrochemical samplings, which allowed us to estimate the element pollutant load transported to the reservoir: 418 ton/year of Al, 8024 ton/year of SO 4, 121 ton/year of Zn, etc. Based on these loads, concentrations in the reservoir were calculated for some elements. Apart from Mn and Sr, good adjustment between calculated and measured values was observed (±20% for Ca, Co, Li, Mg, Na, Ni, Zn and SO 4). Capsule: Hydrological model combined with water quality data show how pollution by AMD can generate huge loads of contaminants acidifying streams and reservoirs.

  17. Neural network approach to stream-aquifer modeling for improved river basin management

    Science.gov (United States)

    Triana, Enrique; Labadie, John W.; Gates, Timothy K.; Anderson, Charles W.

    2010-09-01

    SummaryArtificial neural networks (ANNs) are applied to efficient modeling of stream-aquifer responses in an intensively irrigated river basin under a variety of water management alternatives for improving irrigation efficiency, reducing soil water salinity, increasing crop yields, controlling nonbeneficial consumptive use, and decreasing salt loadings to the river. Two ANNs for the main stem river and the tributary regime are trained and tested using solution datasets from a high resolution, finite difference MODFLOW-MT3DMS groundwater flow and contaminant transport model of a representative subregion within the river basin. Stream-aquifer modeling in the subregion is supported by a dense field data collection network with the ultimate goal of extending knowledge gained from the subregion modeling to the sparsely monitored remainder of the river basin where data insufficiency precludes application of MODFLOW-MT3DMS at the desired spatial resolution. The trained and tested ANNs capture the MODFLOW-MT3DMS modeled subregion stream-aquifer responses to system stresses using geographic information system (GIS) processed explanatory variables correlated with irrigation return flow quantity and quality for basin-wide application. The methodology is applied to the Lower Arkansas River basin in Colorado by training and testing ANNs derived from a MODFLOW-MT3DMS modeled subregion of the Lower Arkansas River basin in Colorado, which includes detailed unsaturated and saturated zone modeling and calibration to the extensive field data monitoring network in the subregion. Testing and validation of the trained ANNs shows good performance in predicting return flow quantities and salinity concentrations. The ANNs are linked with the GeoMODSIM river basin network flow model for basin-wide evaluation of water management alternatives.

  18. Hydrogeological modeling of water exchange between a river valley aquifer and the Colorado River at a riparian corridor of the Colorado River Delta

    Science.gov (United States)

    Perez-Gonzalez, D.; Ramirez-Hernandez, J.; Zamora, F.

    2008-05-01

    The Colorado River Delta has shown a high capacity of regeneration in spite of the drastic reduction of the freshwater flows. This river has an important ecological value for the remaining ecosystems at the regional and continental level. It is not known when this river will present again surpluses of superficial water in the basin, as it happened in the decades of 1980 and 1990. The ecosystems of the Delta depend on the availability of groundwater to survive. The practices of blanket irrigation in the Valley of Mexicali have favored the vertical refill of the aquifer. Part of this water that infiltrates the ground is captured by the Colorado River (CR). As a consequence, even in years in which the CR has not received surpluses of superficial water low flow can be observed in the river, especially in the area of our study that comprises 12 km of the CR between the interception of the railroad with the river and the entrance to Carranza City. This low flow provides water to maintain the riparian vegetation of the zone. For this reason, it is important to know the hydrologic relationship between the river aquifer and the CR. The purpose of this work is to determine the volumes of water supplied by the aquifer to the riparian system and its relationship with the vegetation. Measurements of the fluctuations of the freatic level (FL) in 27 boreholes located in 8 cross sections during more than 2 years have been used for this study. The system was modelled using the program MODFLOW considering diverse water levels in the CR and flow exchange with the aquifer. The hydrogeological properties of the aquifer were found from slug tests and correlations with the textures of 100 soil samples. The modeling results allow to separate the zone of study in three sections. The first one extends 5km from the railroad to the south. In this section the CR receives water from the aquifer producing the observed water in the river bed all the year. The second section, of approximately 2 km

  19. Imitation modeling of ice dams (case study of Tom’ River, Western Siberia

    Directory of Open Access Journals (Sweden)

    V. A. Zemtsov

    2014-01-01

    Full Text Available The factors of ice jam formations in the lower flow of the Tom River (Siberia are investigated. A length of the main channel under investigation is about 120 km. Approaches to solution of the problem of the jam formation control and, as a consequence, the jam induced floods are considered on the basis of the imitative computer modeling of stream dynamics and ice jams. The simulation makes it possible to analyze different scenarios of initial forcing and to predict reactions of the river bed system to the effects. On the basis of 1D models developed in the HEC-RAS 4.0 modeling system for the Tom River at the city of Tomsk we investigated a possibility of the ice jam localization, probability of which at different parts of river flow varies in time according to change of the river water discharge, stream hydraulics, and ice cover thickness. The 2D hydrodynamic model of the Tom River channel system in the SMS 9.2 modeling system has been developed. It allows simulating effects of ice jams located in different sections of the river flow on the run-off redistribution between the main channel and other river branches. It makes possible to estimate hazards and risks of ice jam floods and probable effects of ice jams on formation of the river channel system. As a result it becomes possible to regulate the safe spring ice transit through populated areas.Analysis of factors of the ice jam formations has demonstrated that due to increasing anthropogenic influence changes of hydro-meteorological and geomorphologic conditions lead to more frequent occurrence of jam floods for the last 25 years as compared to previous 40-year period. The imitative computer models are proposed to be used for planning anti-jam measures since they make possible to create a whole system of the channel structure, a relief of channel and floodplain, a flow velocity field including dangerous hydrologic processes. Similar system would allow predicting both consequences of local

  20. Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method

    Science.gov (United States)

    Ridolfi, E.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F.

    2016-06-01

    The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existing guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers' cross-sectional spacing.

  1. A distributed hydrological model with its application to the Jinghe watershed in the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhonggen; ZHENG; Hongxing; LIU; Changming; WU; Xian

    2004-01-01

    For the purpose of water resources management in the Yellow River Basin with highly spatial difference, a daily distributed hydrological model was proposed, of which the determination of spatially-distributed parameters and model inputs processing were performed by means of GIS/RS. In the model, the computation of runoff yield was based on the topography index method and flow routing was modeled by Maskingum method. The operation of the model is followed by means of "command structure"technique based upon the topography of river network. A case study using the model was conducted for the Jinghe watershed, which locates at the middle Yellow River Basin. The simulation of the hydrological processes in 1996 has shown that water quantity balance errors were less than 5% and the Nash-Sutcliffe coefficient arrived at 0.7, indicating that the model structure is justifiable, and the precision of the model can satisfy the purpose of water resources management.

  2. Modeling a tropical rainforest river basin in the Philippines using the distributed hydrologic model MOBIDIC

    Science.gov (United States)

    Castillo, A. E.

    2013-12-01

    The MOdello Bilancio Idrologico DIstributo e Continuo (MOBIDIC), a distributed physics-based hydrologic model that solves both mass and energy balance, was used to investigate a 103 sq. km. mountainous river basin in southern Philippines. The basin is covered by tropical rain forest (TRF) with small patches of upland crop cultivation, and underlain by thin clayey soil over porous volcanic tuff geology. Aside from being the first application of MOBIDIC on a TRF basin, this paper also demonstrates how a sophisticated hydrologic model can be developed using freely- and globally-available remotely-sensed data, plus only minimal field observations and streamflow measurements. Based on simulation of water years 2009-2012, the average annual rainfall of 3,877 mm was partitioned into 22% quick flow, 38% base flow, 37% evapotranspiration, and 3% recharge to the regional groundwater system. The vegetation intercepts about 12% of the total rainfall, and the soil layer is almost always at or above field capacity. Simulations of some scenarios indicate that climate change will have greater impact than loss of vegetative cover, and the impact is more signicant on the low flow than the peak flow regime. Hopefully, these insights will be of use to local decision makers as they improve their systems for water supply, watershed management, and climate change impact mitigation. Maps of the Tamugan River Basin showing the location, topography, river network and hydromet stations Effects of loss of vegetation

  3. Application of Water Quality Model of Jordan River to Evaluate Climate Change Effects on Eutrophication

    Science.gov (United States)

    Van Grouw, B.

    2016-12-01

    The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.

  4. Modeling the impact of river discharge and wind on the hypoxia off Yangtze Estuary

    Science.gov (United States)

    Zheng, Jingjing; Gao, Shan; Liu, Guimei; Wang, Hui; Zhu, Xueming

    2016-12-01

    The phenomenon of low dissolved oxygen (known as hypoxia) in a coastal ocean system is closely related to a combination of anthropogenic and natural factors. Marine hypoxia occurs in the Yangtze Estuary, China, with high frequency and long persistence. It is related primarily to organic and nutrient enrichment influenced by river discharges and physical factors, such as water mixing. In this paper, a three-dimensional hydrodynamic model was coupled to a biological model to simulate and analyze the ecological system of the East China Sea. By comparing with the observation data, the model results can reasonably capture the physical and biochemical dynamics of the Yangtze Estuary. In addition, the sensitive experiments were also used to examine the role of physical forcing (river discharge, wind speed, wind direction) in controlling hypoxia in waters adjacent to the Yangtze Estuary. The results showed that the wind field and river discharge have significant impact on the hypoxia off the Yangtze Estuary. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in the river discharge, but integrated hypoxic areas were sensitive to the whole magnitude of river discharge. Increasing the river discharge was shown to increase hypoxic areas, while decreasing the river discharge tended to decrease hypoxic areas. The variations of wind speed and direction had a great impact on the integrated hypoxic areas.

  5. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  6. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  7. Combined calibration and sensitivity analysis for a water quality model of the Biebrza River, Poland

    NARCIS (Netherlands)

    Perk, van der M.; Bierkens, M.F.P.

    1995-01-01

    A study was performed to quantify the error in results of a water quality model of the Biebrza River, Poland, due to uncertainties in calibrated model parameters. The procedure used in this study combines calibration and sensitivity analysis. Finally,the model was validated to test the model capabil

  8. Effect of the river discharge implementation in an operational model for the West Iberia coastal area.

    Science.gov (United States)

    Campuzano, Francisco; Brito, David; Juliano, Manuela; Fernandes, Rodrigo; Neves, Ramiro

    2015-04-01

    In the Iberian Peninsula, most of the largest rivers discharge on the Atlantic coast draining almost two thirds of the territory. It is an important source of nutrients and sediments to these coastal areas. Rivers discharges in the Atlantic area when compared with the ones in the Mediterranean side present the particularity that their water before is released into the ocean is previously mixed in their estuaries in a different ratio depending of the estuarine residence time and the discharged flow. In order to evaluate the relative importance of the inland waters in the circulation patterns of Western Iberia, the rivers discharges were implemented in the PCOMS model application (Portuguese Coast Operational Modelling System). To reproduce the water continuum including the different spatial and temporal scales, a methodology consisting in a system of integrated models using the Mohid model was designed. At the watershed level, the Mohid Land model calculated operationally water flow and properties, including nutrients, for the main river catchments of Western Iberian with a 2 km horizontal resolution. Downstream, several operational hydrodynamic and biological estuarine applications used those outcomes as model inputs, filling the gaps in the observation network. From the estuarine models, the tidally modulated water and properties fluxes to the coast were obtained. These fluxes were finally imposed in the Portuguese Coast Operational Modelling System (PCOMS), a fully 3D baroclinic hydrodynamic and ecological regional model that covers the Iberian Atlantic front. The fate of the rivers discharges were analysed by integrating model results in boxes, comparing the climatologies obtained with and without rivers and the rivers area of influence was obtained by lagrangian tracers simulations.

  9. NUMERICAL MODELING OF HEAVY METAL POLLUTANT TRANSPORT-TRANSFORMATION IN FLUVIAL RIVERS:A REVIEW

    Institute of Scientific and Technical Information of China (English)

    S. L. HUANG; Z. H. WAN; P. SMITH

    2007-01-01

    A detailed discussion of existing three kinds of mathematical models of heavy metal pollutant transport-transformation in fluvial rivers is presented, with an emphasis on the mathematical model of heavy metal pollutant transport-transformation dynamics. The imperfection of two kinds of mathematical models, that is, mathematical model of chemical thermodynamic equilibrium and that of chemical reaction kinetics, and the shortcoming of existing mathematical models of heavy metal pollutant transport-transformation dynamics are pointed out. Furthermore, the structure of mathematical model of heavy metal pollutant transport-transformation dynamics in fluvial rivers is suggested. Equations in the mathematical model of heavy metal pollutant transport-transformation dynamics in fluvial rivers will be discussed in the following paper.

  10. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.

    Science.gov (United States)

    de Lima Barros, Alessandra Maciel; do Carmo Sobral, Maria; Gunkel, Günter

    2013-01-01

    Emissions of pollutants and nutrients are causing several problems in aquatic ecosystems, and in general an excess of nutrients, specifically nitrogen and phosphorus, is responsible for the eutrophication process in water bodies. In most developed countries, more attention is given to diffuse pollution because problems with point pollution have already been solved. In many non-developed countries basic data for point and diffuse pollution are not available. The focus of the presented studies is to quantify nutrient emissions from point and diffuse sources in the Ipojuca river basin, Pernambuco State, Brazil, using the Moneris model (Modelling Nutrient Emissions in River Systems). This model has been developed in Germany and has already been implemented in more than 600 river basins. The model is mainly based on river flow, water quality and geographical information system data. According to the Moneris model results, untreated domestic sewage is the major source of nutrients in the Ipojuca river basin. The Moneris model has shown itself to be a useful tool that allows the identification and quantification of point and diffuse nutrient sources, thus enabling the adoption of measures to reduce them. The Moneris model, conducted for the first time in a tropical river basin with intermittent flow, can be used as a reference for implementation in other watersheds.

  11. Unstructured-mesh modeling of the Congo river-to-sea continuum

    Science.gov (United States)

    Bars, Yoann Le; Vallaeys, Valentin; Deleersnijder, Éric; Hanert, Emmanuel; Carrere, Loren; Channelière, Claire

    2016-04-01

    With the second largest outflow in the world and one of the widest hydrological basins, the Congo River is of a major importance both locally and globally. However, relatively few studies have been conducted on its hydrology, as compared to other great rivers such as the Amazon, Nile, Yangtze, or Mississippi. The goal of this study is therefore to help fill this gap and provide the first high-resolution simulation of the Congo river-estuary-coastal sea continuum. To this end, we are using a discontinuous-Galerkin finite element marine model that solves the two-dimensional depth-averaged shallow water equations on an unstructured mesh. To ensure a smooth transition from river to coastal sea, we have considered a model that encompasses both hydrological and coastal ocean processes. An important difficulty in setting up this model was to find data to parameterize and validate it, as it is a rather remote and understudied area. Therefore, an important effort in this study has been to establish a methodology to take advantage of all the data sources available including nautical charts that had to be digitalized. The model surface elevation has then been validated with respect to an altimetric database. Model results suggest the existence of gyres in the vicinity of the river mouth that have never been documented before. The effect of those gyres on the Congo River dynamics has been further investigated by simulating the transport of Lagrangian particles and computing the water age.

  12. A statistical forecast model for Tropical Cyclone Rainfall and flood events for the Hudson River

    Science.gov (United States)

    Cioffi, Francesco; Conticello, Federico; Hall, Thimoty; Lall, Upmanu; Orton, Philip

    2014-05-01

    Tropical Cyclones (TCs) lead to potentially severe coastal flooding through wind surge and also through rainfall-runoff processes. There is growing interest in modeling these processes simultaneously. Here, a statistical approach that can facilitate this process is presented with an application to the Hudson River Basin that is associated with the New York City metropolitan area. Three submodels are used in sequence. The first submodel is a stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones developed by Hall and Yonekura (2011). It uses archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and of sea surface temperature (SST). The second submodel translates the attributes of a tropical cyclone simulated by the first model to rainfall intensity at selected stations within the watershed of Hudson River. Two different approaches are used and compared: artificial neural network (ANN) and k-nearest neighbor (KNN). Finally, the third submodel transforms, once again, by using an ANN approach and KNN, the rainfall intensities, calculated for the ensemble of the stations, to the streamflows at specific points of the tributaries of the Hudson River. These streamflows are to be used as inputs in a hydrodynamic model that includes storm surge surge dynamics for the simulation of coastal flooding along the Hudson River. Calibration and validation of the model is carried out by using, selected tropical cyclone data since 1950, and hourly station rainfall and streamflow recorded for such extreme events. Four stream gauges (Troy dam, Mohawk River at Cohoes, Mohawk River diversion at Crescent Dam, Hudson River above lock one nr Waterford), a gauge from a tributary in the lower Hudson River, and over 20 rain gauges are used. The performance of the proposed model as tool for storm events is then analyzed and discussed.

  13. Optimisation of LiDAR derived terrain models for river flow modelling

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2008-12-01

    Full Text Available Airborne LiDAR (Light Detection And Ranging combines cost efficiency, high degree of automation, high point density of typically 1–10 points per m2 and height accuracy of better than ±15 cm. For all these reasons LiDAR is particularly suitable for deriving precise Digital Terrain Models (DTM as geometric basis for hydrodynamic-numerical (HN simulations. The application of LiDAR for river flow modelling requires a series of preprocessing steps. Terrain points have to be filtered and merged with river bed data, e.g. from echo sounding. Then, a smooth Digital Terrain Model of the Watercourse (DTM-W needs to be derived, preferably considering the random measurement error during surface interpolation. In a subsequent step, a hydraulic computation mesh has to be constructed. Hydraulic simulation software is often restricted to a limited number of nodes and elements, thus, data reduction and data conditioning of the high resolution LiDAR DTM-W becomes necessary. We will present a DTM thinning approach based on adaptive TIN refinement which allows a very effective compression of the point data (more than 95% in flood plains and up to 90% in steep areas while preserving the most relevant topographic features (height tolerance ±20 cm. Traditional hydraulic mesh generators focus primarily on physical aspects of the computation grid like aspect ratio, expansion ratio and angle criterion. They often neglect the detailed shape of the topography as provided by LiDAR data. In contrast, our approach considers both the high geometric resolution of the LiDAR data and additional mesh quality parameters. It will be shown that the modelling results (flood extents, flow velocities, etc. can vary remarkably by the availability of surface details. Thus, the inclusion of such geometric details in the hydraulic computation meshes will gain importance for river flow modelling in the future.

  14. Development of a spatially distributed model of fish population density for habitat assessment of rivers

    Science.gov (United States)

    Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro

    2013-04-01

    Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum

  15. Performance Evaluation of Linear (ARMA and Threshold Nonlinear (TAR Time Series Models in Daily River Flow Modeling (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam

    Directory of Open Access Journals (Sweden)

    Farshad Fathian

    2017-01-01

    Full Text Available Introduction: Time series models are generally categorized as a data-driven method or mathematically-based method. These models are known as one of the most important tools in modeling and forecasting of hydrological processes, which are used to design and scientific management of water resources projects. On the other hand, a better understanding of the river flow process is vital for appropriate streamflow modeling and forecasting. One of the main concerns of hydrological time series modeling is whether the hydrologic variable is governed by the linear or nonlinear models through time. Although the linear time series models have been widely applied in hydrology research, there has been some recent increasing interest in the application of nonlinear time series approaches. The threshold autoregressive (TAR method is frequently applied in modeling the mean (first order moment of financial and economic time series. Thise type of the model has not received considerable attention yet from the hydrological community. The main purposes of this paper are to analyze and to discuss stochastic modeling of daily river flow time series of the study area using linear (such as ARMA: autoregressive integrated moving average and non-linear (such as two- and three- regime TAR models. Material and Methods: The study area has constituted itself of four sub-basins namely, Saghez Chai, Jighato Chai, Khorkhoreh Chai and Sarogh Chai from west to east, respectively, which discharge water into the Zarrineh Roud dam reservoir. River flow time series of 6 hydro-gauge stations located on upstream basin rivers of Zarrineh Roud dam (located in the southern part of Urmia Lake basin were considered to model purposes. All the data series used here to start from January 1, 1997, and ends until December 31, 2011. In this study, the daily river flow data from January 01 1997 to December 31 2009 (13 years were chosen for calibration and data for January 01 2010 to December 31 2011

  16. Controlling River Eutrophication under Conflicts of Interests—A GIS Modeling Approach

    Directory of Open Access Journals (Sweden)

    Mark Honti

    2015-09-01

    Full Text Available Stream networks are highly complex systems, in which spatially complicated and temporally varying water quality patterns develop. River eutrophication is underlain by nutrient inputs across the entire stream network and is controlled by many interacting factors in an ever moving and renewing medium. These complex features must be perceived as a whole entity to control river eutrophication. The Szamos River is one of the largest tributaries of the Tisza River in Eastern Europe. It delivers high loads of nutrients and algal biomass and fundamentally influences the hydro-morphological, chemical and ecological status of the Tisza River. To improve the ecological status of the recipient river, nutrient and phytoplankton inputs from the tributary should be controlled, yet the two rivers belong to different countries, which are reluctant to harmonize management plans. This study aims at modeling trophic status of the tributary with the PhosFate nutrient emission model to outline a set of management measures that would satisfy both countries. Four management alternatives are analysed with altered landuse patterns, and management options. Each of these alternatives is evaluated against the present conditions.

  17. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.

    2014-09-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  18. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  19. Cost-effective solutions for water quality improvement in the Dommel River supported by sewer-WWTP-river integrated modelling.

    Science.gov (United States)

    Benedetti, Lorenzo; Langeveld, Jeroen; van Nieuwenhuijzen, Arjen F; de Jonge, Jarno; de Klein, Jeroen; Flameling, Tony; Nopens, Ingmar; van Zanten, Oscar; Weijers, Stefan

    2013-01-01

    This project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the Dommel River (The Netherlands). Within the project, both acute and long-term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied with a monitoring campaign in the urban wastewater system (wastewater treatment plant and sewers) and in the receiving surface water system. An integrated model, which proved to be a powerful tool to analyse the interactions within the integrated urban wastewater system, was first used to evaluate measures in the urban wastewater system using the existing infrastructure and new real-time control strategies. As the latter resulted to be beneficial but not sufficient, this paper investigated the use of additional infrastructural measures to improve the system cost-effectively and have it meet the Directive's goals. Finally, an uncertainty analysis was conducted to investigate the impact of uncertainty in the main model assumptions and model parameters on the performance robustness of the selected set of measures. Apart from some extreme worst-case scenarios, the proposed set of measures turned out to be sufficiently robust. Due to the substantial savings obtained with the results of this project, the pay-back time of the whole monitoring and modelling work proved to be less than 5 months. This illustrates the power of mathematical modelling for decision support in the context of complex urban water systems.

  20. Development of roughness updating based on artificial neural network in a river hydraulic model for flash flood forecasting

    Indian Academy of Sciences (India)

    J C Fu; M H Hsu; Y Duann

    2016-02-01

    Flood is the worst weather-related hazard in Taiwan because of steep terrain and storm. The tropical storm often results in disastrous flash flood. To provide reliable forecast of water stages in rivers is indispensable for proper actions in the emergency response during flood. The river hydraulic model based on dynamic wave theory using an implicit finite-difference method is developed with river roughness updating for flash flood forecast. The artificial neural network (ANN) is employed to update the roughness of rivers in accordance with the observed river stages at each time-step of the flood routing process. Several typhoon events at Tamsui River are utilized to evaluate the accuracy of flood forecasting. The results present the adaptive n-values of roughness for river hydraulic model that can provide a better flow state for subsequent forecasting at significant locations and longitudinal profiles along rivers.

  1. hydrological and hydrodynamic modeling on la plata river basin using mgb-iph

    Science.gov (United States)

    Pontes, Paulo; Collischonn, Walter; Paiva, Rodrigo; Fan, Fernando

    2015-04-01

    In this paper, we present an improving of Large Scale Hydrological Model (MGB-IPH). The improving consists in implementing a new hydrodynamic model (Inertial) and considering of flooded areas. The Inertial model, which is a simplification of Saint-Venant equations, replaced the Muskingum-Cunge flow routing model. The Inertial equation allows represent the flow in low slope rivers, the backwater, and the tide effects. We tested the model on La Plata River Basin (3,100,000 km²) which is a complex hydrological system located on South America. The aim of this paper is assess the MGB-IPH with the Inertial model and identify regions where is required new modification on model to represent others hydrological process. Furthermore, we developed an algorithm to extract of the Digital Elevation Model the required information about unit catchment, river length and river slope, flooded areas and cross section information. For this, we used available global data, as DEM of Shuttle Radar Topography Mission and HYDROSHEDS flow direction map. We used climate data available on Climate Research Unit and satellite precipitation (MERGE). The results show that this new version of MGB-IPH can reproduce the flow on La Plata river Basin.

  2. Modeling transportation of suspended solids in Zhujiang River estuary, South China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaohong; CHEN Yongqin; LAI Guoyou

    2005-01-01

    A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25-26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of suspended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.

  3. A comprehensive one-dimensional numerical model for solute transport in rivers

    Science.gov (United States)

    Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal

    2017-01-01

    One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

  4. Parameterization Method for Compartmental Water Quality Models with Respect to River Network Structure and Parameter Variability

    Science.gov (United States)

    Riml, J.; Wörman, A.

    2009-12-01

    Knowledge about both hydrochemical processes and watershed characteristics are key factors when trying to model transportation and retention of nutrients in a river system. The proposed parameterization method opens for the possibility to introduce independently measured parameters in lumped (compartmental) models. The analysis provides a better understanding of the model structure and aids in the calculation of optimal parameter values. The investigation uses a 1D distributed network model and parameterizes the result in a form appropriate for a compartmental model structure that has been developed for Swedish conditions during decades. The main tool for the analysis is the comparison of temporal moments between the two model structures. The parameterization gives information about the importance of river hydraulics but also about the effect of geomorphological processes such as the river network structure and parameter variability within the watershed. The methodology does also reveal information about predominating processes during distinctive hydrological conditions.

  5. DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    XU Zu-xin; YIN Hai-long

    2004-01-01

    Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.

  6. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  7. Water quality modelling of the river Yamuna (India) using QUAL2E-UNCAS.

    Science.gov (United States)

    Paliwal, Ritu; Sharma, Prateek; Kansal, Arun

    2007-04-01

    This paper describes the utility of QUAL2E as a modelling package in the evaluation of a water quality improvement programme. In this study, QUAL2E was applied to determine the pollution loads in the river Yamuna during its course through the national capital territory of Delhi, India. The study aimed at examining the influence of different scenarios on river water quality. Four different pollution scenarios were analysed besides the 'business as usual' situation. The study revealed that it was necessary to treat the discharge from drains to the river Yamuna and diversion of a substantial load to the Agra canal for further treatment was also essential. It was also established through this study that maintaining a flow rate of more than 10 m(3)/s in the river could also help preserve the river's water quality. To clearly display the model outcomes and demarcate polluted zones in the river stretch, model results were interfaced with a Geographical Information System (GIS) to produce cartographic outputs. In addition, uncertainty analysis in the form of first-order error analysis and Monte Carlo analysis was performed, to realise the effect of each model parameter on DO and BOD predictions. The uncertainty analysis gave satisfactory results on simulated data.

  8. Bagley Fire Sediment Study: Shasta-Trinity National Forest, Eastern Klamath Mountains, Northern California

    Science.gov (United States)

    Bachmann, S.; De La Fuente, J. A.; Hill, B.; Mai, C.; Mikulovsky, R. P.; Mondry, Z.; Rust, B.; Young, D.

    2013-12-01

    The US Forest Service is conducting a study of sediment mobilization, transport, and deposition on the Bagley Fire, which burned about 18,000 hectares in late summer, 2012, on the Shasta-Trinity National Forest, south of McCloud, CA. The fire area is in steep terrain of the Eastern Klamath Mountains that are underlain primarily by metasedimentary rock. The watersheds affected drain into the headwaters of Squaw Creek, along with small streams tributary to the McCloud and Pit Rivers, all of which flow into Shasta Lake Reservoir. In November and December of 2012, intense storms occurred over the fire area with estimated return intervals of 25-50 years, based on 4-day storm totals in ranging from 38 to 56 cm. The Squaw Creek storm response was unique for this area, in that it remained turbid for about 2 months following the storms. Subsequent small storms through June, 2013 have also generated prolonged turbidity. This may be attributable to the remobilization of fine particles temporarily stored in the channel network. Preliminary observations from field reconnaissance include the following: a) Erosional processes were dominated by sheet, rill, and gully erosion, and the resulting sediment delivered to channels was rich in fine particles and gravels; b) Landslides were infrequent, and as a result, a limited amount of large rock and logs were delivered to channels; c) Sediment laden flows occurred in most burned low order channels, but classic debris flows, those scouring all vegetation from channel bottoms, were very uncommon; d) Most road stream crossing culverts failed in high severity burn areas; e) Low gradient stream reaches in Squaw Creek were aggraded with fine sediment; f) Sustained high levels of turbidity occurred in the main stem of Squaw Creek. The goals of this study are to characterize relative roles of surface erosion, landslides, and debris flows in delivering sediment to streams after the fire, and if possible, to develop a rough sediment budget

  9. Appropriate models in decision support systems for river basin management

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Morell, M.; Todorovik, O.; Dimitrov, D.; Selenica, A.; Spirkovski, Z.

    2004-01-01

    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the

  10. Simulating river discharge in a snowy region of Japan using output from a regional climate model

    Science.gov (United States)

    Ma, X.; Kawase, H.; Adachi, S.; Fujita, M.; Takahashi, H. G.; Hara, M.; Ishizaki, N.; Yoshikane, T.; Hatsushika, H.; Wakazuki, Y.; Kimura, F.

    2013-07-01

    Snowfall amounts have fallen sharply along the eastern coast of the Sea of Japan since the mid-1980s. Toyama Prefecture, located approximately in the center of the Japan Sea region, includes high mountains of the northern Japanese Alps on three of its sides. The scarcity of meteorological observation points in mountainous areas limits the accuracy of hydrological analysis. With the development of computing technology, a dynamical downscaling method is widely applied into hydrological analysis. In this study, we numerically modeled river discharge using runoff data derived by a regional climate model (4.5-km spatial resolution) as input data to river networks (30-arcseconds resolution) for the Toyama Prefecture. The five main rivers in Toyama (the Oyabe, Sho, Jinzu, Joganji, and Kurobe rivers) were selected in this study. The river basins range in area from 368 to 2720 km2. A numerical experiment using climate comparable to that at present was conducted for the 1980s and 1990s. The results showed that seasonal river discharge could be represented and that discharge was generally overestimated compared with measurements, except for Oyabe River discharge, which was always underestimated. The average correlation coefficient for 10-year average monthly mean discharge was 0.8, with correlation coefficients ranging from 0.56 to 0.88 for all five rivers, whereas the Nash-Sutcliffe efficiency coefficient indicated that the simulation accuracy was insufficient. From the water budget analysis, it was possible to speculate that the lack of accuracy of river discharge may be caused by insufficient accuracy of precipitation simulation.

  11. Modeling inundation of seasonally flooded wetlands at McCarran Ranch on Truckee River, USA

    Science.gov (United States)

    Chen, X.; Chen, L.; Zhao, J.; Yu, Z.

    2014-05-01

    This paper among the first presents the application and validation of a hydrodynamic model (Adaptive Hydraulics model, AdH) of the McCarran ranch. We use the AdH model with topographic data by combining the DEM data from USGS seamless server and the ESRI tin data from United States Army Corps of Engineers (USACE) to predict floodplain inundation for a river reach of ~10 km located at lower Truckee River in Nevada state. We tested the mesh independence, sensitivity of input parameters and time steps, and then compared the modeling results to the existing gauged data (both the discharge and water stage heights). Results show that the accuracy of prediction from AdH model can decline slightly at higher discharge and water levels. The modeling results are much sensitive to the roughness coefficient of main channel, suggesting the model calibration should give priority to the main channel roughness. The simulation results suggest that large flood events could lead to a significantly higher proportion of total flow that routed through the floodplains. During peak discharge, a river channel constriction diverted as much as 65% of the river's 512.3 m3s-1 discharge into the floodplain. During the overbank flow, the transboundary flux ratio is about 5-45% of the total river discharge. Results also showed that both the relation of inundation area and volume between the discharge exhibit an apparent looped curve form.

  12. Modelling white-water rafting suitability in a hydropower regulated Alpine River.

    Science.gov (United States)

    Carolli, Mauro; Zolezzi, Guido; Geneletti, Davide; Siviglia, Annunziato; Carolli, Fabiano; Cainelli, Oscar

    2017-02-01

    Cultural and recreational river ecosystem services and their relations with the flow regime are still poorly investigated. We develop a modelling-based approach to assess recreational flow requirements and the spatially distributed river suitability for white-water rafting, a typical service offered by mountain streams, with potential conflicts of interest with hydropower regulation. The approach is based on the principles of habitat suitability modelling using water depth as the main attribute, with preference curves defined through interviews with local rafting guides. The methodology allows to compute streamflow thresholds for conditions of suitability and optimality of a river reach in relation to rafting. Rafting suitability response to past, present and future flow management scenarios can be predicted on the basis of a hydrological model, which is incorporated in the methodology and is able to account for anthropic effects. Rafting suitability is expressed through a novel metric, the "Rafting hydro-suitability index" (RHSI) which quantifies the cumulative duration of suitable and optimal conditions for rafting. The approach is applied on the Noce River (NE Italy), an Alpine River regulated by hydropower production and affected by hydropeaking, which influences suitability at a sub-daily scale. A dedicated algorithm is developed within the hydrological model to resemble hydropeaking conditions with daily flow data. In the Noce River, peak flows associated with hydropeaking support rafting activities in late summer, highlighting the dual nature of hydropeaking in regulated rivers. Rafting suitability is slightly reduced under present, hydropower-regulated flow conditions compared to an idealized flow regime characterised by no water abstractions. Localized water abstractions for small, run-of-the-river hydropower plants are predicted to negatively affect rafting suitability. The proposed methodology can be extended to support decision making for flow

  13. Modeling Water-Quality Loads to the Reservoirs of the Upper Trinity River Basin, Texas, USA

    OpenAIRE

    Taesoo Lee; Xiuying Wang; Michael White; Pushpa Tuppad; Raghavan Srinivasan; Balaji Narasimhan; Darrel Andrews

    2015-01-01

    The Upper Trinity River Basin (TRB) is the most populated river basin and one of the largest water suppliers in Texas. However, sediment and nutrient loads are reducing the capacity of reservoirs and degrading water quality. The objectives of this study are to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for ten study watersheds within the Upper TRB in order to assess nutrient loads into major reservoirs in the basin and to predict the effects of point source elimina...

  14. The identifiability of parameters in a water quality model of the Biebrza River, Poland

    NARCIS (Netherlands)

    Perk, van der M.; Bierkens, M.F.P.

    1997-01-01

    The identifiability of model parameters of a steady state water quality model of the Biebrza River and the resulting variation in model results was examined by applying the Monte Carlo method which combines calibration, identifiability analysis, uncertainty analysis, and sensitivity analysis. The wa

  15. Neural Network Model for Prediction of Discharged from the Catchments of Langat River, Malaysia

    OpenAIRE

    2010-01-01

    Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also th...

  16. FUZZY MODEL FOR TWO-DIMENSIONAL RIVER WATER QUALITY SIMULATION UNDER SUDDEN POLLUTANTS DISCHARGED

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the fuzziness and impreciseness of water environmental system, the fuzzy arithmetic was used to simulate the fuzzy and imprecise relations in modeling river water quality. By defining the parameters of water quality model as symmetrical triangular fuzzy numbers, a two-dimensional fuzzy water quality model for sudden pollutant discharge is established. From the fuzzy model, the pollutant concentrations, corresponding to the specified confidence level of α, can be obtained by means of the α-cut technique and arithmetic operations of triangular fuzzy numbers. Study results reveal that it is feasible in theory and reliable on calculation applying triangular fuzzy numbers to the simulation of river water quality.

  17. Columbia River Estuary Hybrid Model Studies. Report 1. Verification of Hybrid Modeling of the Columbia River Mouth.

    Science.gov (United States)

    1983-09-01

    King, J.M., and Carlson, P.R. 1966. " Seismic Reflection Studies of Buried Channels off the Columbia River," Ore Bin, Vol. 28, Aug. 12. Boone, C.G...Adjacent Ocean Waters, University of Washington Press, Seattle, WA. 64. Foster, R.F. 1972. The History of Hanford and Its Contribution of Radionuclides...Corvallis, OR. 81. Hanson, P.J., and Forster, W.O. 1969. "Measurement of Columbia River Flow Time from Hanford Reactors to Astoria, Oregon - Summer

  18. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter

    2011-01-01

    and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time radar altimetry measurements over reservoirs. We present a lumped, conceptual, river basin water balance modeling...... evapotranspiration was derived from temperature data. The Ensemble Kalman Filter was used to assimilate radar altimetry (ERS2 and Envisat) measurements of reservoir water levels. The modeling approach was applied to the Syr Darya River Basin, a snowmelt-dominated basin with large topographical variability, several...... large reservoirs and scarce hydrometeorological data that is located in Central Asia and shared between 4 countries with conflicting water management interests. The modeling approach was tested over a historical period for which in-situ reservoir water levels were available. Assimilation of radar...

  19. Explaining the internal behaviour of artificial neural network river flow models

    Science.gov (United States)

    Sudheer, K. P.; Jain, Ashu

    2004-03-01

    A novel method of visualizing and understanding the internal functional behaviour of an artificial neural network (ANN) river flow model is presented. The method hypothesizes that an ANN is able to map a function similar to the flow duration curve while modelling the river flow. A mathematical analysis of the hypothesis is presented, and a case study of an ANN river flow model confirms its significance. The proposed approach is also useful within other models that improve the performance of an ANN. The reasons why these models improve a raw ANN can be clearly understood using this approach. While the field of ANN knowledge-extraction is one that continues to attract considerable interest, it is anticipated that the current approach will initiate further research and make ANNs more useful to the hydrologic community.

  20. Water-sediment flow models for river reaches sediment related pollution control.

    Science.gov (United States)

    Sil, Briti Sundar; Choudhury, Parthasarathi

    2012-07-01

    Hybrid water-sediment flow models for river reaches have been for predicting sediment and sediment related pollutions in water courses. The models are developed by combining sediment rating model and the Muskingum model applicable for a reach. The models incorporate sediment concentration and water discharge variables for a river reach; allow defining downstream sediment rating curve in terms of upstream water discharges. The model is useful in generating sediment concentration graph for a station having no water discharge records. The hybrid models provide forecasting forms that can be used to forecast downstream sediment concentration/water discharges 2kx time unit ahead. The forecasting models are useful for applications in real time namely, in the real time management of sediment related pollution in water courses and in issuing flood warning. Integration of sediment rating model and the Muskingum model increases model parameters and nonlinearity requiring efficient estimation technique for parameter identification. To identify parameters in the hybrid models genetic algorithm (GA) based optimization technique can be used. The new model relies on the Muskingum model, obey continuity requirement and the parameters can be used in the Muskingum model with water discharges to estimate/predict downstream water discharge values. The proposed model formulations are demonstrated for simulating and forecasting sediment concentration and water discharges in the Mississippi River Basin, USA. Model parameters are estimated using non-dominated sorting Genetic Algorithm II (NSGA-II). Model results show satisfactory model performances.

  1. A Stochastic Model Approach for Optimisation of Lowland River Restoration Works

    Institute of Scientific and Technical Information of China (English)

    Saskia van Vuren; Huib de Vriend; Hermjan Barneveld

    2016-01-01

    ABSTRACT:Over the course of centuries, river systems have been heavily trained for the purpose of safe discharge of water, sediment and ice, and improves navigation. Traditionally, dikes are used to be reinforced and heightened to protect countries from ever higher flood levels. Other types of solutions than technical engineering solutions, such as measures to increase the flood conveyance capacity (e.g., lowering of groynes and floodplains, setting back dikes) become more popular. These solutions may however increase the river bed dynamics and thus impact negatively navigation, maintenance dredging and flood safety. A variety of numerical models are available to predict the impact of river restoration works on river processes. Often little attention is paid to the assessment of uncertainties. In this paper, we show how we can make uncertainty explicit using a stochastic approach. This approach helps identi-fying uncertainty sources and assessing their contribution to the overall uncertainty in river processes. The approach gives engineers a better understanding of system behaviour and enables them to inter-vene with the river system, so as to avoid undesired situations. We illustrate the merits of this stochastic approach for optimising lowland river restoration works in the Rhine in the Netherlands.

  2. Legitimising neural network river forecasting models: a new data-driven mechanistic modelling framework

    Science.gov (United States)

    Mount, N. J.; Dawson, C. W.; Abrahart, R. J.

    2013-01-01

    In this paper we address the difficult problem of gaining an internal, mechanistic understanding of a neural network river forecasting (NNRF) model. Neural network models in hydrology have long been criticised for their black-box character, which prohibits adequate understanding of their modelling mechanisms and has limited their broad acceptance by hydrologists. In response, we here present a new, data-driven mechanistic modelling (DDMM) framework that incorporates an evaluation of the legitimacy of a neural network's internal modelling mechanism as a core element in the model development process. The framework is exemplified for two NNRF modelling scenarios, and uses a novel adaptation of first order, partial derivate, relative sensitivity analysis methods as the means by which each model's mechanistic legitimacy is explored. The results demonstrate the limitations of standard, goodness-of-fit validation procedures applied by NNRF modellers, by highlighting how the internal mechanisms of complex models that produce the best fit scores can have much lower legitimacy than simpler counterparts whose scores are only slightly inferior. The study emphasises the urgent need for better mechanistic understanding of neural network-based hydrological models and the further development of methods for elucidating their mechanisms.

  3. DEVELOPMENT AND APPLICATION OF A EUTROPHICATION WATER QUALITY MODEL FOR RIVER NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Preissmann implicit scheme was used to discretize the one-dimensional Saint-Venant equations, the river-junction-river method was applied to resolve the hydrodynamic and water quality model for river networks, and the key issues on the model were expatiated particularly in this article. This water quality module was designed to compute time dependent concentrations of a series of constituents, which are primarily governed by the processes of advection, dispersion and chemical reactions. Based on the theory of Water Quality Analysis Simulation Program (WASP) water quality model, emphasis was given to the simulation of the biogeochemical transformations that determine the fate of nutrients, in particular, the simulation of the aquatic cycles of nitrogen and phosphorus compounds. This model also includes procedures for the determination of growth and death of phytoplankton. This hydrodynamic and water quality model was applied to calculate two river networks. As illustrated by the numerical examples, the calculated water level and discharge agree with the measured data and the simulated trends and magnitudes of water quality constituents are generally in good agreement with field observations. It is concluded that the presented model is useful in the pollutant control and in the determination of pollutant-related problems for river networks.

  4. Numerical modelling of sedimentary structures in rivers on Titan and Earth

    Science.gov (United States)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-04-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. 2. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. 3. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. 4. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. 5. Results and Conclusions The results of our simulation show the differences in behaviour of the flow and of sedimentation on Titan and on the Earth. Our

  5. Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2017-01-01

    Full Text Available Statistical post-processing for multi-model grand ensemble (GE hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA to statistically post-process raw GE runoff forecasts in the Fu River basin in China, at lead times ranging from 6 to 120 h. The raw forecasts were generated by running the Xinanjiang hydrologic model with ensemble forecasts (164 forecast members, using seven different “THORPEX Interactive Grand Global Ensemble” (TIGGE weather centres as forcing inputs. Some measures, such as data transformation and high-dimensional optimization, were included in the experiment after considering the practical water regime and data conditions. The results indicate that the BMA post-processing method is capable of improving the performance of raw GE runoff forecasts, yielding more calibrated and sharp predictive probability density functions (PDFs, over a range of lead times from 24 to 120 h. The analysis of percentile forecasts in two different flood events illustrates the great potential and prospects of BMA GE probabilistic river discharge forecasts, for taking precautions against severe flooding events.

  6. Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan

    Directory of Open Access Journals (Sweden)

    Chih‐Hua Chang

    2015-12-01

    Full Text Available This study examines the impacts of storm‐triggered landslides on downstream sediment and turbidity responses in the Gaoping River Basin, Taiwan using the Soil and Water Assessment Tool (SWAT. Attention is given to analyzing the increased and altered baseline of suspended sediment load and turbidity after the disturbances caused by the rainfall and landslides associated with Typhoon Morakot in 2009. SWAT parameters were calibrated by the observed hydrometric data from 1999 to 2003 using the log‐scale root‐mean‐square error (log‐RMSE and Nash‐Sutcliffe Model Efficiency. Both parameter sets were applied for the simulation of suspended sediment yield and turbidity with annual updated landslide inventories for the period 2004–2012. The landslide updating mirrors the physical land‐cover changes and has slightly improved the model performance, yet landslides alone cannot explain the difference between Morakot‐induced and SWAT‐simulated sediment discharge. The set of parameters calibrated by log‐RMSE can better approximate the increased baseline and typhoon induced alterations. The results show alterations in sediment erosion and transport: (1 drastically increased the turbidity baseline and occurrence of high‐turbidity; (2 altered coefficient and exponent values of the sediment rating curve; and (3 altered relationship between rainfall and induced turbidity during major rainfall events. The research in this study provides an improved modeling approach to typhoon‐induced alterations on river sediment loads and turbidity.

  7. Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report

    Science.gov (United States)

    Turner, James F.

    1972-01-01

    Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a

  8. Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin

    Science.gov (United States)

    de Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Collischonn, Walter; Bonnet, Marie-Paule; Frappart, Frédéric; Calmant, Stephane; Bulhões Mendes, Carlos André

    2013-03-01

    In this paper, a hydrologic/hydrodynamic modeling of the Amazon River basin is presented using the MGB-IPH model with a validation using remotely sensed observations. Moreover, the sources of model errors by means of the validation and sensitivity tests are investigated, and the physical functioning of the Amazon basin is also explored. The MGB-IPH is a physically based model resolving all land hydrological processes and here using a full 1-D river hydrodynamic module with a simple floodplain storage model. River-floodplain geometry parameters were extracted from the SRTM digital elevation model, and the model was forced using satellite-derived rainfall from TRMM3B42. Model results agree with observed in situ daily river discharges and water levels and with three complementary satellite-based products: (1) water levels derived from ENVISAT altimetry data; (2) a global data set of monthly inundation extent; and (3) monthly terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate Experimental mission. However, the model is sensitive to precipitation forcing and river-floodplain parameters. Most of the errors occur in westerly regions, possibly due to the poor quality of TRMM 3B42 rainfall data set in these mountainous and/or poorly monitored areas. In addition, uncertainty in river-floodplain geometry causes errors in simulated water levels and inundation extent, suggesting the need for improvement of parameter estimation methods. Finally, analyses of Amazon hydrological processes demonstrate that surface waters govern most of the Amazon TWS changes (56%), followed by soil water (27%) and ground water (8%). Moreover, floodplains play a major role in stream flow routing, although backwater effects are also important to delay and attenuate flood waves.

  9. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota.

    Directory of Open Access Journals (Sweden)

    Jochem Kail

    Full Text Available River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact

  10. Model-based analysis of nutrient retention and management for a lowland river

    Directory of Open Access Journals (Sweden)

    D. Kneis

    2005-11-01

    Full Text Available In the context of the European Water Framework Directive options for improving the water quality of the lowland river Havel (Germany were assessed. The lower section of this river is actually a polytrophic river-lake system suffering from high external nutrient loading and exhibiting significant in-river turnover. In order to gain a better understanding of present conditions and to allow integrated scenarios of nutrient management to be evaluated the catchment models SWIM and ArcEGMO-Urban were coupled with a simple, newly developed nutrient TRAnsport Model (TraM. Using the TraM model, the retention of nitrogen and phosphorus in a 55 km reach of the Lower Havel River was quantified and its temporal variation was analyzed. It was examined that about 30% of the external nitrogen input to the Lower Havel is retained within the surveyed river section. A comparison of simulation results generated with and without consideration of phosphorus retention/release revealed that summer TP concentrations are currently increased by 100–200% due to internal loading. Net phosphorus release rates of about 20 mg P m−2 d-1 in late summer were estimated for the Havel lakes. Scenario simulations with lowered external nutrient inputs revealed that persistent phosphorus limitation of primary production cannot be established within the next decade. It was shown that a further reduction in nitrogen concentrations requires emissions to be reduced in all inflows. Though the TraM model needs further extension it proved to be appropriate for conducting integrated catchment and river modeling.

  11. Initial Sediment Transport Model of the Mining-Affected Aries River Basin, Romania

    Science.gov (United States)

    Friedel, Michael J.; Linard, Joshua I.

    2008-01-01

    The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

  12. Incorporating sorption/desorption of organic pollutants into river water quality model

    Institute of Scientific and Technical Information of China (English)

    LOU Bao-feng; ZHU Li-zhong; YANG Kun

    2004-01-01

    Preliminary research was conducted about how to incorporate sorption/desorption of organic pollutants with suspended solids and sediments into single-chemical and one-dimensional water quality model of Jinghang Canal.Sedimentation-resuspension coefficient k3 was deduced; characteristics of organic pollutants, concentrations and components of suspended solids/sediments and hydrological and hydraulic conditions were integrated into k3 and further into river water quality model; impact of sorption/desorption of organic pollutants with suspended solids and sediments on prediction function of the model was discussed. Results demonstrated that this impact is pronounced for organic pollutants with relatively large Koc and Kow, especially when they are also conservative and foc of river suspended solids/sediments is high, and that incorporation of sorption/ desorption of organic pollutants into river water quality model can improve its prediction accuracy.

  13. RESEARCH ON HYDRODYNAMIC AND WATER QUALITY MODEL FOR TIDAL RIVER NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Xu Zu-xin; Lu Shi-qiang

    2003-01-01

    Hydrodynamic and water quality model for tidal river network is set up with MIKE11 modeling system, according to the features of tidal river networks in plain area. The model was calibrated using the hydrological and water quality data of 1999, and the results show that the simulated values agree with the measured data very well. This model is used to numerically analyze the effects of low flow augmentation on hydrodynamic and water quality conditions of Suzhou Creek. The simulation results show that the flow augmentation can increase net discharge of Suzhou Creek and improve its ability of re-aeration; and its concentration of dissolved oxygen in the river networks can also increase correspondingly.

  14. An ecological response model for the Cache la Poudre River through Fort Collins

    Science.gov (United States)

    Shanahan, Jennifer; Baker, Daniel; Bledsoe, Brian P.; Poff, LeRoy; Merritt, David M.; Bestgen, Kevin R.; Auble, Gregor T.; Kondratieff, Boris C.; Stokes, John; Lorie, Mark; Sanderson, John

    2014-01-01

    The Poudre River Ecological Response Model (ERM) is a collaborative effort initiated by the City of Fort Collins and a team of nine river scientists to provide the City with a tool to improve its understanding of the past, present, and likely future conditions of the Cache la Poudre River ecosystem. The overall ecosystem condition is described through the measurement of key ecological indicators such as shape and character of the stream channel and banks, streamside plant communities and floodplain wetlands, aquatic vegetation and insects, and fishes, both coolwater trout and warmwater native species. The 13- mile-long study area of the Poudre River flows through Fort Collins, Colorado, and is located in an ecological transition zone between the upstream, cold-water, steep-gradient system in the Front Range of the Southern Rocky Mountains and the downstream, warm-water, low-gradient reach in the Colorado high plains.

  15. Geomorphic and Land Management Effects on Channel Altering Events in the Klamath Mountain, Northern California

    Science.gov (United States)

    Bell, A.; Mikulovsky, R. P.

    2012-12-01

    Channel altering events have many impacts on stream channels and can be the result of debris flows, hyper-concentrated flows or severe flooding. They play a major role in coarse woody debris delivery to fish bearing streams and provide a mix of sediment to the higher order streams. Channel altering events can reduce or even temporarily eliminate riparian vegetation along the stream channel and create changes in the stream bed such as aggradation and degradation. These processes are a natural part of steep, rugged landscapes such as that of the Klamath Mountains and have long-term benefits to the stream systems. The process can be accelerated however, by land management activities or severe wildfire events. Previous investigations have focused on the impacts to landsliding rates as a result of timber harvest, wildfire and forest roads. These studies are limited in spatial extent and have not combined timber harvest, wildfire, forest roads, storm intensity and geomorphic characteristics in the same investigation. In addition, previous studies have not included areas where landslides did not occur for comparison. This study investigates the relationships between landform, timber harvest, forest roads, wildfire, and storm intensity over the Klamath Mountains in Northern California. The study investigates the initiation points of channel altering events that occurred in the flood of December 1996/January 1997. Channel altering event initiation points are the uppermost point of an altered channel segment (highest elevation) as apparent on aerial photos. The initiation points are compared to stratified random points in and near channels where no channel altering event occurred. The initiation points and random points were attributed with information such as aspect, hillslope gradient, elevation, bedrock type, landform, storm intensity and land management practices. A logistic regression analysis will determine if there is a suite of characteristics that separated the

  16. Model evaluation of faecal contamination in coastal areas affected by urban rivers receiving combined sewer overflows.

    Science.gov (United States)

    Shibata, T; Kojima, K; Lee, S A; Furumai, H

    2014-01-01

    Odaiba seaside park is one of the most popular waterfronts in Tokyo Bay, but is easily affected by wet weather pollutant loads through combined sewer overflows (CSOs). The monitoring data of Escherichia coli clearly showed high faecal contamination after a rainfall event on 9-11 November 2007. We estimated the amounts of discharge volume and E. coli pollutant loads of urban rivers receiving CSO from rainfall chambers as well as pumping stations and primary effluent discharge. The result suggested that Sumida River and Meguro River were more influential to the Odaiba coastal area than other sources including the nearest wastewater treatment plant. Subsequently, we simulated the dynamic behaviour of E. coli by a three-dimensional (3D) hydro-dynamic and water quality model. The model simulation reproduced that E. coli concentration after the rainfall event increased rapidly at first and later gradually decreased. The simulations with and without inflow pollutant loads from urban rivers suggested that the E. coli concentration can be influenced by the Meguro River just after the rainfall event and Sumida River about 1 week later. From the spatial and temporal distribution of surface E. coli concentration, after at least 6 days from the rainfall event, high faecal contamination spread to the whole of the coastal area.

  17. Path Loss Channel Model for Inland River Radio Propagation at 1.4 GHz

    Directory of Open Access Journals (Sweden)

    Junyi Yu

    2017-01-01

    Full Text Available In this paper, a propagation path loss model for inland river is proposed by three improvements compared with the Round Earth Loss (REL model for open-sea environment. Specifically, parameters optimization uses Okumura-Hata model in dB scale to replace the equation transformed from the free space loss in REL model; secondly, diffraction loss caused by the obstacles (e.g., large buildings, bridges, or some other facilities near the river bank is also taken into account; mixed-path methodology as another improvement is used for Inland River (IR model because the actual propagation environment between transmitter (TX antenna and receiver (RX antenna contains both land part and water part. The paper presents a set of 1.4 GHz measurements conducted along the Yangtze River in Wuhan. According to the comparison between path loss models and experimental results, IR model shows a good matching degree. After that, Root Mean Square Error (RMSE, Grey Relation Grade and Mean Absolute Percentage Error (GRG-MAPE, Pearson Correlation Coefficient, and Mean Absolute Percentage Error (PCC-MAPE are employed to implement quantitative analysis. The results prove that IR model with consideration of mixed path and deterministic information is more accurate than other classic empirical propagation models for these scenarios.

  18. The Effects of Spatial Resolution and Dimensionality on Modeling Braided River Hydraulics

    Science.gov (United States)

    Altenau, E. H.; Pavelsky, T.; Bates, P. D.

    2015-12-01

    Braided rivers are challenging features to quantify due to their dynamic morphology and dominance in remote locations. Advances in hydrodynamic modeling and remote sensing over the past few decades offer opportunities to explore braided river processes at finer resolutions with increased efficiency. These methods allow us to address questions such as: What model structure is necessary to accurately reproduce inundation extent and water surface elevations in a braided river? What effects do the smaller channels within a braided river have on simulating wave propagation and slope? How much accuracy is lost as model resolution and dimension are decreased? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate water surface elevations, inundation extent, and slope at various resolutions and dimensions over a ~90 km reach of the Tanana River, Alaska. Model input and validation data were collected during two field campaigns in the summers of 2013 and 2015. Field data included water surface elevation, discharge, velocity, slope, and bathymetric measurements. Six models are run to simulate flood waves across the study reach over a two-month timespan. The model structures vary in complexity from a full 2D model at 10 m resolution to a coupled 1D/2D model at 100 m resolution where the channel is represented in 1D by an effective centerline within a 2D floodplain grid. Results from the different models are compared to assess the effects on inundation extent, wave celerity, water elevations and slope. Digital elevation model (DEM) quality and resolution have major effects on inundation extent and water surface elevations, while model dimensionality has a larger effect on wave celerity and slope. Future work will compare model outputs with AirSWOT data, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  19. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  20. Development of a river-groundwater interaction model and its application to a catchment in Northwestern China

    Science.gov (United States)

    Hu, Litang; Xu, Zongxue; Huang, Weidong

    2016-12-01

    The river-groundwater interaction is an important component of the hydrological cycle. This study develops an integrated river-GW model that uses a one-dimensional open channel flow model and a three-dimensional saturated GW flow model to describe the dynamic river-GW relationship at the basin scale, as well as groundwater flow and streamflow in arid regions. The model is tested with three cases, and the good agreement between the simulated and observed results demonstrates that the model can be used to simulate river-GW interactions. The integrated river-GW model is applied to the middle reaches of the Heihe River Basin and is calibrated using multi-source field data, including hydraulic heads from observation wells, streamflow, and spring flow. The case studies in the Heihe River Basin find that the following: (1) the river-GW relationships vary seasonally and spatially and depend on many factors, such as the river flow and GW uses; (2) in the middle reaches, the annual mean river-groundwater flux exchange from Yinluoxia to the Heihe Bridge is approximately 17% of the mean streamflow and increases to more than 49% from the Heihe Bridge to Zhengyixia; and (3) after the implementation of the water reallocation plan in 2000, the river-GW relationship in some reaches changed from a gaining stream to a losing stream due to the increase of GW abstraction. These findings suggest that GW pumpage should be controlled rationally and demonstrate that the integrated river-GW model can be used to analyse the temporal-spatial trends of river-groundwater interaction in arid regions.

  1. Development and application of a large scale river system model for National Water Accounting in Australia

    Science.gov (United States)

    Dutta, Dushmanta; Vaze, Jai; Kim, Shaun; Hughes, Justin; Yang, Ang; Teng, Jin; Lerat, Julien

    2017-04-01

    Existing global and continental scale river models, mainly designed for integrating with global climate models, are of very coarse spatial resolutions and lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing water accounts, which have become increasingly important for water resources planning and management at regional and national scales. A continental scale river system model called Australian Water Resource Assessment River System model (AWRA-R) has been developed and implemented for national water accounting in Australia using a node-link architecture. The model includes major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. Two key components of the model are an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. The results in the Murray-Darling Basin shows highly satisfactory performance of the model with median daily Nash-Sutcliffe Efficiency (NSE) of 0.64 and median annual bias of less than 1% for the period of calibration (1970-1991) and median daily NSE of 0.69 and median annual bias of 12% for validation period (1992-2014). The results have demonstrated that the performance of the model is less satisfactory when the key processes such as overbank flow, groundwater seepage and irrigation diversion are switched off. The AWRA-R model, which has been operationalised by the Australian Bureau of Meteorology for continental scale water accounting, has contributed to improvements in the national water account by substantially reducing accounted different volume (gain/loss).

  2. NUMERICAL MODELING OF DNEPR RIVER WATER POLLUTION AFTER EMERGENCY LEAKAGE FROM THE AMMONIA PIPE "TOLYATTI – ODESSA"

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-01-01

    Full Text Available The 2D numerical model was developed and used to simulate river pollution after accident on the ammonia pipe over Dnipro River. The model is based on the numerical integration of the K-gradient transport model and potential flow. The results of numerical experiment are presented.

  3. Modelling runoff dynamics from information on river network and shape of catchment area

    Science.gov (United States)

    Skaugen, T.

    2009-12-01

    In a new approach, the dynamics of discharge is derived from the distribution of distances to the nearest river reach within a natural catchment. The river network and the shape of catchment provide a unique distribution function for each catchment which can be determined from a GIS. The distribution can be considered as a detailed description of the drainage density, where the location of the river relative to the catchment is taken into account. Within a fixed time interval, water flows through the catchment a certain distance which defines a fractional area. This fraction is estimated as an area enveloping the river network, whose width, perpendicular to the river network, is determined for the time interval of interest by the flow velocity. For a constant flow velocity, the time steps define adjacent areas which , for a sufficient number of time intervals, cover the entire catchment. For different flow velocities, we have different horizontal layers and the total discharge is the sum of discharge from each of the layers for each time step. The proposed principle for modelling the dynamics of discharge is implemented in the Swedish HBV model. The new model, named 3D (distance distribution dynamics), has the same precision as the HBV model but requires fewer parameters and represents thus a step in the right direction for meeting the challenge of predictions in ungauged basins.

  4. Efficient pan-European river flood hazard modelling through a combination of statistical and physical models

    Science.gov (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo; Jonkman, Sebastiaan N.

    2017-07-01

    Flood hazard is currently being researched on continental and global scales, using models of increasing complexity. In this paper we investigate a different, simplified approach, which combines statistical and physical models in place of conventional rainfall-run-off models to carry out flood mapping for Europe. A Bayesian-network-based model built in a previous study is employed to generate return-period flow rates in European rivers with a catchment area larger than 100 km2. The simulations are performed using a one-dimensional steady-state hydraulic model and the results are post-processed using Geographical Information System (GIS) software in order to derive flood zones. This approach is validated by comparison with Joint Research Centre's (JRC) pan-European map and five local flood studies from different countries. Overall, the two approaches show a similar performance in recreating flood zones of local maps. The simplified approach achieved a similar level of accuracy, while substantially reducing the computational time. The paper also presents the aggregated results on the flood hazard in Europe, including future projections. We find relatively small changes in flood hazard, i.e. an increase of flood zones area by 2-4 % by the end of the century compared to the historical scenario. However, when current flood protection standards are taken into account, the flood-prone area increases substantially in the future (28-38 % for a 100-year return period). This is because in many parts of Europe river discharge with the same return period is projected to increase in the future, thus making the protection standards insufficient.

  5. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment

    Science.gov (United States)

    Andrés-Doménech, I.; Múnera, J. C.; Francés, F.; Marco, J. B.

    2010-10-01

    Since Water Framework Directive (WFD) was passed in year 2000, the conservation of water bodies in the EU must be understood in a completely different way. Regarding to combined sewer overflows (CSOs) from urban drainage networks, the WFD implies that we cannot accept CSOs because of their intrinsic features, but they must be assessed for their impact on the receiving water bodies in agreement with specific environmental aims. Consequently, both, urban system and the receiving water body must be jointly analysed to evaluate the environmental impact generated on the latter. In this context, a coupled scheme is presented in this paper to assess the CSOs impact on a river system in Torrelavega (Spain). First, a urban model is developed to statistically characterise the CSOs frequency, volume and duration. The main feature of this first model is the fact of being event-based: the system is modelled with some built synthetic storms which cover adequately the probability range of the main rainfall descriptors, i.e., rainfall event volume and peak intensity. Thus, CSOs are characterised in terms of their occurrence probability. Secondly, a continuous and distributed basin model is built to assess river response at different points in the river network. This model was calibrated initially on a daily scale and downscaled later to hourly scale. The main objective of this second element of the scheme is to provide the most likely state of the receiving river when a CSO occurs. By combining results of both models, CSO and river flows are homogeneously characterised from a statistical point of view. Finally, results from both models were coupled to estimate the final concentration of some analysed pollutants (biochemical oxygen demand, BOD, and total ammonium, NH4+), within the river just after the spills.

  6. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment

    Directory of Open Access Journals (Sweden)

    I. Andrés-Doménech

    2010-10-01

    Full Text Available Since Water Framework Directive (WFD was passed in year 2000, the conservation of water bodies in the EU must be understood in a completely different way. Regarding to combined sewer overflows (CSOs from urban drainage networks, the WFD implies that we cannot accept CSOs because of their intrinsic features, but they must be assessed for their impact on the receiving water bodies in agreement with specific environmental aims. Consequently, both, urban system and the receiving water body must be jointly analysed to evaluate the environmental impact generated on the latter. In this context, a coupled scheme is presented in this paper to assess the CSOs impact on a river system in Torrelavega (Spain. First, a urban model is developed to statistically characterise the CSOs frequency, volume and duration. The main feature of this first model is the fact of being event-based: the system is modelled with some built synthetic storms which cover adequately the probability range of the main rainfall descriptors, i.e., rainfall event volume and peak intensity. Thus, CSOs are characterised in terms of their occurrence probability. Secondly, a continuous and distributed basin model is built to assess river response at different points in the river network. This model was calibrated initially on a daily scale and downscaled later to hourly scale. The main objective of this second element of the scheme is to provide the most likely state of the receiving river when a CSO occurs. By combining results of both models, CSO and river flows are homogeneously characterised from a statistical point of view. Finally, results from both models were coupled to estimate the final concentration of some analysed pollutants (biochemical oxygen demand, BOD, and total ammonium, NH4+, within the river just after the spills.

  7. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment

    Directory of Open Access Journals (Sweden)

    I. Andrés-Doménech

    2010-05-01

    Full Text Available Since the Water Framework Directive (WFD was passed in year 2000, the protection of water bodies in the EU must be understood in a completely different way. Regarding to combined sewer overflows (CSOs from urban drainage networks, the WFD implies that CSOs cannot be accepted because of their intrinsic features, but must be assessed for their impact on the receiving water bodies in agreement with specific environmental aims. Consequently, both, the urban system and the receiving one must be jointly analysed to evaluate their impact. In this context, a coupled scheme is presented in this paper to assess the CSOs impact in a river system in Torrelavega (Spain. First, an urban model is developed to characterise statistically the CSOs frequency, volume and duration. The main feature of this first model is the fact of being event-based: the system is modelled with some built synthetic storms which cover adequately the probability range of the main rainfall descriptors, i.e., rainfall event volume and peak intensity. Thus, CSOs are characterised in terms of their occurrence probability. Secondly, a continuous and distributed basin model is built to assess the river response at different points in the river network. This model was calibrated initially on a daily scale and downscaled later to the hourly scale. The main objective of this second element of the scheme is to provide the most likely state of the receiving river when a CSO occurs. By combining results of both models, CSO and river flows are homogeneously characterised from a statistical point of view. Finally, results from both models were coupled to estimate the final concentration of some analysed pollutants (the biochemical oxygen demand, BOD, and the total ammonium, NH4+, in the river just after the spills.

  8. Applications of GSTARS Computer Models for Solving River and Reservoir Sedimentation Problems

    Institute of Scientific and Technical Information of China (English)

    YANG Chih Ted

    2008-01-01

    GSTARS (Generalized Sediment Transport model for Alluvial River Simulation) is a series of computer models developed by the U.S. Bureau of Reclamation while the author was employed by that agency. The stream tube concept is used in all GSTARS models which allow us to solve one-dimensional equations for each stream tube independently and obtain semi-two-dimensional variation of the hydraulic conditions along and across stream tubes for rivers and reservoirs. Sedi-ment transport, scour, and deposition processes are simulated along each stream tube independ-ently to give us a semi-three-dimensional variation of the bed geometry. Most sediment transport computer models assume that channel width is given and cannot change during the simulation process. GSTARS models apply the theory of minimum stream power to the determination of op-timum channel width and channel geometry. The concepts of channel side stability, and active,inactive, and armoring layers are used in all GSTARS models for realistic long-term simulation and prediction of the scour and deposition processes in rivers and reservoirs.GSTARS models have been applied in many countries for solving a wide range of river and reservoir sedimentation prob-lems. Case studies will be used to illustrate the applications of GSTARS computer models.

  9. A Model of Biocomplexity in River Networks - Part I: General Theory

    Science.gov (United States)

    Thorp, J. H.; Thoms, M. C.; Delong, M. D.

    2005-05-01

    We are proposing an integrated, heuristic model of lotic biocomplexity that encompasses spatiotemporal scales from headwaters to large rivers and from main channels to floodplains. Our hope is that this model will provide a foundation for understanding both broad, often discontinuous patterns along longitudinal and lateral dimensions of river networks and local ecological patterns across various temporal and smaller spatial scales. The model represents a conceptual marriage of eco-geomorphology with a terrestrial landscape model describing hierarchical patch dynamics (HPD). Contrasting with a common view of rivers as continuous, longitudinal gradients in physical conditions, our model portrays rivers as downstream arrays of large hydrogeomorphic patches formed by catchment geomorphology and climate. Unique "functional process zones" (FPZs) will be formed within individual types of hydrogeomorphic patches because of physiochemical habitat differences affecting ecosystem structure and function. Our conceptual model blends our perspectives on biocomplexity with aspects of aquatic models proposed from 1980-2004. In Part I of our oral presentation, we will give an overview of this biocomplexity model and discuss how it varies from our perspectives on the ecology of lotic ecosystems.

  10. A predictive model for floating leaf vegetation in the St. Louis River Estuary

    Science.gov (United States)

    In July 2014, USEPA staff was asked by MPCA to develop a predictive model for floating leaf vegetation (FLV) in the St. Louis River Estuary (SLRE). The existing model (Host et al. 2012) greatly overpredicts FLV in St. Louis Bay probably because it was based on a limited number of...

  11. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  12. River water quality model no. 1 (RWQM1): III. Biochemical submodel selection

    DEFF Research Database (Denmark)

    Vanrolleghem, P.; Borchardt, D.; Henze, Mogens

    2001-01-01

    The new River Water Quality Model no.1 introduced in the two accompanying papers by Shanahan et al. and Reichert et al. is comprehensive. Shanahan et al. introduced a six-step decision procedure to select the necessary model features for a certain application. This paper specifically addresses on...

  13. River water quality model no. 1 (RWQM1): III. Biochemical submodel selection

    DEFF Research Database (Denmark)

    Vanrolleghem, P.; Borchardt, D.; Henze, Mogens;

    2001-01-01

    The new River Water Quality Model no.1 introduced in the two accompanying papers by Shanahan et al. and Reichert et al. is comprehensive. Shanahan et al. introduced a six-step decision procedure to select the necessary model features for a certain application. This paper specifically addresses one...

  14. Subsurface transport modeling of the Savannah River and Yucca Mountain Sites

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, B.E.; Pepper, D.W. [Univ. of Nevada, Las Vegas, NV (United States); Stephenson, D.E. [Westinghouse Res. Tech. Center, Aiken, SC (United States)

    1994-12-31

    An adaptive two-dimensional finite element method is used to model groundwater flow and contaminant transport in variably saturated porous media. The model is applied to known groundwater contamination at the Savannah River Site, which consists of multiple ground strata. A simulation of the proposed Yucca Mountain Repository Site is also executed to assess potential burial of radioactive waste.

  15. Deterministic-statistical model coupling in a DSS for river-basin management

    NARCIS (Netherlands)

    de Kok, Jean-Luc; Booij, Martijn J.

    2009-01-01

    This paper presents a method for appropriate coupling of deterministic and statistical models. In the decision-support system for the Elbe river, a conceptual rainfall-runoff model is used to obtain the discharge statistics and corresponding average number of flood days, which is a key input

  16. Modelling CSO impacts on the river Miño (Lugo

    Directory of Open Access Journals (Sweden)

    José Anta Álvarez

    2015-04-01

    Full Text Available This study presents an integrated modelling approach to estimate dissolved oxygen and ammonia impacts of CSO of the city of Lugo sewer network in the Miño river. Sewer network modelling was performed with the SWMM software package, while Iber 2D shallow water code was used for river quality modelling. CSO impacts were evaluated by means of Emission Standards (CSO spill frequency/volume, and the Environmental Quality Standards presented in the Urban Pollution Manual were applied to evaluate the receiving water quality. The main results show that the studied river reach is not suitable for salmonid fishery in terms of dissolved oxygen concentrations, whereas total ammonia limitations are verified throughout the reach.

  17. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    Science.gov (United States)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  18. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    Science.gov (United States)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  19. Stochastic modeling and its applications in selected sites in the Colorado River

    Science.gov (United States)

    He, Xiaotian

    Deposition is an important process in shaping the earth's surface. Most depositional processes involving turbulent flows in rivers, lakes and ocean margins are stochastic processes. Basic laws of fluid dynamics are reviewed as well as the scientific literature on fluid modeling to improve our understanding of the underlying dynamics of deposition of sediment in both theory and numerical experiments. Based upon probabilistic theory, fluid dynamics, and empirical formulas, a nonlinear partial differential equation (PDE) model of stochastic processes is developed. The model illustrates time-dependent stochastic processes in detail. Development of the model starts with a one-dimensional simple random walk and ends with a three-dimensional random walk that incorporates turbulence and drift terms. For processes that are simple random walk, the model's underlying equation becomes the familiar heat equation. The major advantage of the stochastic model is that through the introduction of randomness, it can simulate turbulence. The stochastic model is used to examine the effect of drift on the diffusion process. Deposition, erosion, and river flow patterns are discussed. The stochastic model is modified to incorporate erosion and other geological factors. The numerical implementation of the mathematical model is discussed in detail. Due to computational stability, the fully implicit scheme is selected. Historical data at three selected sites along the Grand Canyon part of the Colorado River is applied to investigate the "trustworthiness" of the mathematical model developed in this research. The three sites River Mile 1.5, River Mile 18.0 (also called Eighteen Mile Wash), and River Mile 72.4 (referred as to Unkar Creek) represent three typically different fluvial depositional environments, which are channel marginal depositional environment, flow separation depositional environment and lateral accumulative depositional environment. The first two sites are numerically

  20. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    Science.gov (United States)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous