WorldWideScience

Sample records for modeling kinetically controlled

  1. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  2. Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems.

    Science.gov (United States)

    Bianca, Carlo

    2013-01-01

    This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.

  3. Equivalent Models and Exact Linearization by the Optimal Control of Monod Kinetics Models

    Directory of Open Access Journals (Sweden)

    Krassimira Ljakova

    2004-10-01

    Full Text Available The well-known global biotechnological models are non-linear and nonstationary. In addition the process variables are difficult to measure, the model parameters are time varying, the measurement noise and measurement delay increase the control problems, etc. One possible way to solve some of these problems is to determine the most simple and easy for use equivalent models. The differential geometric approach [DGA] and especially the exact linearization permit an easy application of the optimal control. The approach and its application in the control of the biotechnological process are discussed in the paper. The optimization technique is used for fed-batch and continuos biotechnological processes when the specific growth rate is described by the Monod kinetics.

  4. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Passalia, Claudio; Alfano, Orlando M. [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina); Brandi, Rodolfo J., E-mail: rbrandi@santafe-conicet.gov.ar [INTEC - Instituto de Desarrollo Tecnologico para la Industria Quimica, CONICET - UNL, Gueemes 3450, 3000 Santa Fe (Argentina); FICH - Departamento de Medio Ambiente, Facultad de Ingenieria y Ciencias Hidricas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000 Santa Fe (Argentina)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Indoor pollution control via photocatalytic reactors. Black-Right-Pointing-Pointer Scaling-up methodology based on previously determined mechanistic kinetics. Black-Right-Pointing-Pointer Radiation interchange model between catalytic walls using configuration factors. Black-Right-Pointing-Pointer Modeling and experimental validation of a complex geometry photocatalytic reactor. - Abstract: A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO{sub 2} as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%.

  5. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan B.; Ivanov, Sergei; Siefert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M.

    2017-09-04

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand’s role in controlling the rates of nucleation and growth still remains elusive. In this work, we conducted a mechanistic investigation and kinetic modeling of the role of trioctylphosphine (TOP) in controlling the size of Pd nanoparticles in different solvents using in-situ small angle x-ray scattering (SAXS). In both pyridine and toluene, slow nucleation which overlapped fast growth was observed under various synthetic conditions demonstrating the significant deviation of the particle formation pathway from the classical LaMer mechanism. We developed a novel kinetic model that, for the first time, accounts for both the nucleation and growth events through simultaneous fitting of number of nanoparticles (nucleation event) and their diameter (increase in number of atoms in nanoparticles from both nucleation and growth events) measured from in-situ SAXS. We show that the binding of TOP to both the Pd precursor and surface of Pd nanoparticles controls the nucleation and growth rates and is necessary to capture the evolution of diameter and number of particles during synthesis. The kinetic model was used to predict the synthetic conditions to control the Pd nanoparticle size from 1.1 to 4.6 nm, and the experimental results showed an excellent quantitative agreement. Additionally, our model was used to quantitatively explain the effect of ligand/metal ratio on the final size of Pd and Au nanoparticles reported in the literature. More importantly, we demonstrate that the final nanoparticle size can be determined using a single unique kinetic descriptor: Growth-to-Nucleation rate ratio to the power of 1/3, which is model independent, and remarkably applies to all the conditions studied in this work and several results from the literature despite the very different ligands, solvents and concentrations used. Our kinetic model, while simple, can

  6. KINETIC MODEL FOR DIFFUSION-CONTROLLED INTERMOLECULAR REACTION OF HOMOGENOUS POLYMER UNDER STEADY SHEAR

    Institute of Scientific and Technical Information of China (English)

    Meng-ge Liu; Wei Yu; Chi-xing Zhou

    2006-01-01

    The kinetic model for diffusion-controlled intermolecular reaction of homogenous polymer under steady shear was theoretically studied. The classic formalism and the concept of conformation ellipsoids were integrated to get a new equation, which directly correlates the rate constant with shear rate. It was found that the rate constant is not monotonic with shear rate. The scale of rate constant is N-1.5 (N is the length of chains), which is in consistent with de Gennes's result.

  7. Adjusting kinematics and kinetics in a feedback-controlled toe walking model

    Directory of Open Access Journals (Sweden)

    Olenšek Andrej

    2012-08-01

    Full Text Available Abstract Background In clinical gait assessment, the correct interpretation of gait kinematics and kinetics has a decisive impact on the success of the therapeutic programme. Due to the vast amount of information from which primary anomalies should be identified and separated from secondary compensatory changes, as well as the biomechanical complexity and redundancy of the human locomotion system, this task is considerably challenging and requires the attention of an experienced interdisciplinary team of experts. The ongoing research in the field of biomechanics suggests that mathematical modeling may facilitate this task. This paper explores the possibility of generating a family of toe walking gait patterns by systematically changing selected parameters of a feedback-controlled model. Methods From the selected clinical case of toe walking we identified typical toe walking characteristics and encoded them as a set of gait-oriented control objectives to be achieved in a feedback-controlled walking model. They were defined as fourth order polynomials and imposed via feedback control at the within-step control level. At the between-step control level, stance leg lengthening velocity at the end of the single support phase was adaptively adjusted after each step so as to facilitate gait velocity control. Each time the gait velocity settled at the desired value, selected intra-step gait characteristics were modified by adjusting the polynomials so as to mimic the effect of a typical therapeutical intervention - inhibitory casting. Results By systematically adjusting the set of control parameters we were able to generate a family of gait kinematic and kinetic patterns that exhibit similar principal toe walking characteristics, as they were recorded by means of an instrumented gait analysis system in the selected clinical case of toe walking. We further acknowledge that they to some extent follow similar improvement tendencies as those which one can

  8. Chemical kinetics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  9. Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis.

    Science.gov (United States)

    Hoefnagel, Marcel H N; Starrenburg, Marjo J C; Martens, Dirk E; Hugenholtz, Jeroen; Kleerebezem, Michiel; Van Swam, Iris I; Bongers, Roger; Westerhoff, Hans V; Snoep, Jacky L

    2002-04-01

    Everyone who has ever tried to radically change metabolic fluxes knows that it is often harder to determine which enzymes have to be modified than it is to actually implement these changes. In the more traditional genetic engineering approaches 'bottle-necks' are pinpointed using qualitative, intuitive approaches, but the alleviation of suspected 'rate-limiting' steps has not often been successful. Here the authors demonstrate that a model of pyruvate distribution in Lactococcus lactis based on enzyme kinetics in combination with metabolic control analysis clearly indicates the key control points in the flux to acetoin and diacetyl, important flavour compounds. The model presented here (available at http://jjj.biochem.sun.ac.za/wcfs.html) showed that the enzymes with the greatest effect on this flux resided outside the acetolactate synthase branch itself. Experiments confirmed the predictions of the model, i.e. knocking out lactate dehydrogenase and overexpressing NADH oxidase increased the flux through the acetolactate synthase branch from 0 to 75% of measured product formation rates.

  10. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  11. Modelling heart rate kinetics.

    Science.gov (United States)

    Zakynthinaki, Maria S

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women).

  12. Modelling heart rate kinetics.

    Directory of Open Access Journals (Sweden)

    Maria S Zakynthinaki

    Full Text Available The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise. Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual's cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women.

  13. Modelling Heart Rate Kinetics

    Science.gov (United States)

    Zakynthinaki, Maria S.

    2015-01-01

    The objective of the present study was to formulate a simple and at the same time effective mathematical model of heart rate kinetics in response to movement (exercise). Based on an existing model, a system of two coupled differential equations which give the rate of change of heart rate and the rate of change of exercise intensity is used. The modifications introduced to the existing model are justified and discussed in detail, while models of blood lactate accumulation in respect to time and exercise intensity are also presented. The main modification is that the proposed model has now only one parameter which reflects the overall cardiovascular condition of the individual. The time elapsed after the beginning of the exercise, the intensity of the exercise, as well as blood lactate are also taken into account. Application of the model provides information regarding the individual’s cardiovascular condition and is able to detect possible changes in it, across the data recording periods. To demonstrate examples of successful numerical fit of the model, constant intensity experimental heart rate data sets of two individuals have been selected and numerical optimization was implemented. In addition, numerical simulations provided predictions for various exercise intensities and various cardiovascular condition levels. The proposed model can serve as a powerful tool for a complete means of heart rate analysis, not only in exercise physiology (for efficiently designing training sessions for healthy subjects) but also in the areas of cardiovascular health and rehabilitation (including application in population groups for which direct heart rate recordings at intense exercises are not possible or not allowed, such as elderly or pregnant women). PMID:25876164

  14. Kinetics and Modeling of Chemical Leaching of Sphalerite Concentrate Using Ferric Iron in a Redox-controlled Reactor

    Institute of Scientific and Technical Information of China (English)

    宋健; 高玲; 林建群; 吴洪斌; 林建强

    2013-01-01

    This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+concentration and Fe3+/Fe2+ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.

  15. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  16. Onsager reciprocity principle for kinetic models and kinetic schemes

    CERN Document Server

    Mahendra, Ajit Kumar

    2013-01-01

    Boltzmann equation requires some alternative simpler kinetic model like BGK to replace the collision term. Such a kinetic model which replaces the Boltzmann collision integral should preserve the basic properties and characteristics of the Boltzmann equation and comply with the requirements of non equilibrium thermodynamics. Most of the research in development of kinetic theory based methods have focused more on entropy conditions, stability and ignored the crucial aspect of non equilibrium thermodynamics. The paper presents a new kinetic model formulated based on the principles of non equilibrium thermodynamics. The new kinetic model yields correct transport coefficients and satisfies Onsager's reciprocity relationship. The present work also describes a novel kinetic particle method and gas kinetic scheme based on this linkage of non-equilibrium thermodynamics and kinetic theory. The work also presents derivation of kinetic theory based wall boundary condition which complies with the principles of non-equili...

  17. Cell cycle kinetics with supramitotic control, two cell types, and unequal division: a model of transformed embryonic cells.

    Science.gov (United States)

    Kimmel, M; Arino, O

    1991-06-01

    We develop a mathematical model of cell cycle kinetics of transformed embryonic cells. The model includes supramitotic regulation, in which decisions regarding growth control are made at a point inside the cell division cycle and their impact extends to the next decision point, located in the next division cycle. Another feature is the presence of two varieties of cells, which switch from one to the other with given transition probabilities. The third factor considered is unequal division of cells, also defined in probabilistic terms. We provide a rigorous description of the model and derivation of its equations and analyze its asymptotic properties by defining and investigating an abstract semigroup of positive linear operators in appropriate state space. The spectral properties of the semigroup yield the balanced exponential growth law for the model. To compare the model to experimental data, we derive basic pedigree statistics, beta curves, and generation time correlations. We present numerical calculations based on measurements available for the embryonic cells. We conclude that to yield the experimentally obtained pedigree statistics, switches from one cell variety to the other must be quite infrequent.

  18. Kinetics Modeling of Cancer Immunology.

    Science.gov (United States)

    1986-05-09

    CANCER IMMUNOLOGY -1 DTICS ELECTED SEP 9 8 UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND V ,1986 %,e docment ha le approved for public A." I and sale...1986 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED KINETICS MODELING OF CANCER IMMUNOLOGY Final: 1985/1986 6. PERFORMING ORG. REPORT...137 (1986) "Kinetics Modeling of Cancer Immunology " A Trident Scholar Project Report by Midn I/C Scott Helmers, Class of 1986 United States Naval

  19. Crystallization Kinetics within a Generic Modelling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist

    2013-01-01

    An existing generic modelling framework has been expanded with tools for kinetic model analysis. The analysis of kinetics is carried out within the framework where kinetic constitutive models are collected, analysed and utilized for the simulation of crystallization operations. A modelling...... procedure is proposed to gain the information of crystallization operation kinetic model analysis and utilize this for faster evaluation of crystallization operations....

  20. First-order kinetics-controlled multiple species reactive transport of dissolved organic compounds in groundwater: Development and application of a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W.W. Jr.

    1990-05-01

    Reactive chemical transport models developed over the past decade have generally relied on the assumption that local thermodynamic equilibrium is achieved at all times between aqueous species in a given system. Consequently, homogeneous aqueous systems characterized by a number of kinetically slow reactions, particularly problems involving organic species, cannot be satisfactorily modeled. In this study, we present a prototype computer model, KINETRAN, which is designed to handle kinetically-controlled homogeneous reactions in the aqueous phase, along with the transport of the various species involved, through geologic media. 31 refs., 53 figs., 10 tabs.

  1. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  2. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  3. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor

    Science.gov (United States)

    Takizuka, T.

    2017-03-01

    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  4. A kinetic model for impact/sliding wear of pressurized water reactor internal components. Application to rod cluster control assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Zbinden, M.; Durbec, V.

    1996-12-01

    A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which corresponds to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work. (author). 34 refs.

  5. Kinetic Modeling of Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Petzold, Linda; Pettigrew, Michel F.

    2009-04-21

    The dynamics of how its constituent components interact define the spatio-temporal response of a natural system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided.

  6. Computational model for Halorhodopsin photocurrent kinetics

    Science.gov (United States)

    Bravo, Jaime; Stefanescu, Roxana; Talathi, Sachin

    2013-03-01

    Optogenetics is a rapidly developing novel optical stimulation technique that employs light activated ion channels to excite (using channelrhodopsin (ChR)) or suppress (using halorhodopsin (HR)) impulse activity in neurons with high temporal and spatial resolution. This technique holds enormous potential to externally control activity states in neuronal networks. The channel kinetics of ChR and HR are well understood and amenable for mathematical modeling. Significant progress has been made in recent years to develop models for ChR channel kinetics. To date however, there is no model to mimic photocurrents produced by HR. Here, we report the first model developed for HR photocurrents based on a four-state model of the HR photocurrent kinetics. The model provides an excellent fit (root-mean-square error of 3.1862x10-4, to an empirical profile of experimentally measured HR photocurrents. In combination, mathematical models for ChR and HR photocurrents can provide effective means to design test light based control systems to regulate neural activity, which in turn may have implications for the development of novel light based stimulation paradigms for brain disease control. I would like to thank the University of Florida and the Physics Research Experience for Undergraduates (REU) program, funded through NSF DMR-1156737. This research was also supported through start-up funds provided to Dr. Sachin Talathi

  7. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch. A

  8. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  9. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...dominate the metal’s cathodic behavior. Within an alkaline environment, we expect the following reduction reactions to be catalyzed on the oxide

  10. Kinetic models of conjugated metabolic cycles

    Science.gov (United States)

    Ershov, Yu. A.

    2016-01-01

    A general method is developed for the quantitative kinetic analysis of conjugated metabolic cycles in the human organism. This method is used as a basis for constructing a kinetic graph and model of the conjugated citric acid and ureapoiesis cycles. The results from a kinetic analysis of the model for these cycles are given.

  11. Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle.

    Science.gov (United States)

    Scholes, Clarissa; DePace, Angela H; Sánchez, Álvaro

    2017-01-25

    Cells decide when, where, and to what level to express their genes by "computing" information from transcription factors (TFs) binding to regulatory DNA. How is the information contained in multiple TF-binding sites integrated to dictate the rate of transcription? The dominant conceptual and quantitative model is that TFs combinatorially recruit one another and RNA polymerase to the promoter by direct physical interactions. Here, we develop a quantitative framework to explore kinetic control, an alternative model in which combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Kinetic control can generate a wide range of analog and Boolean computations without requiring the input TFs to be simultaneously bound to regulatory DNA. We propose experiments that will illuminate the role of kinetic control in transcription and discuss implications for deciphering the cis-regulatory "code."

  12. A model of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.S.; Thompson, B.R.

    1988-09-01

    The analytical model of nuclear reactor transients, incorporating both mechanical and nuclear effects, simulates reactor kinetics. Linear analysis shows the stability borderline for small power perturbations. In a stable system, initial power disturbances die out with time. With an unstable combination of nuclear and mechanical characteristics, initial disturbances persist and may increase with time. With large instability, oscillations of great magnitude occur. Stability requirements set limits on the power density at which particular reactors can operate. The limiting power density depends largely on the product of two terms: the fraction of delayed neutrons and the frictional damping of vibratory motion in reactor core components. As the fraction of delayed neutrons is essentially fixed, mechanical damping largely determines the maximum power density. A computer program, based on the analytical model, calculates and plots reactor power as a nonlinear function of time in response to assigned values of mechanical and nuclear characteristics.

  13. IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2001-02-01

    Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.

  14. Kinetics model for lutate dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.F.; Mesquita, C.H., E-mail: mflima@ipen.br, E-mail: chmesqui@ipen.br [Instituto de Pesquisas Energeticas (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp Registered-Sign . The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)

  15. Crystallization Kinetics within a Generic Modeling Framework

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.

    2014-01-01

    to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter...

  16. Programmable energy landscapes for kinetic control of DNA strand displacement.

    Science.gov (United States)

    Machinek, Robert R F; Ouldridge, Thomas E; Haley, Natalie E C; Bath, Jonathan; Turberfield, Andrew J

    2014-11-10

    DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.

  17. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  18. Development of Integrated Magnetic and Kinetic Control-oriented Transport Model for q-profile Response Prediction in EAST Discharges

    Science.gov (United States)

    Wang, Hexiang; Schuster, Eugenio; Rafiq, Tariq; Kritz, Arnold; Ding, Siye

    2016-10-01

    Extensive research has been conducted to find high-performance operating scenarios characterized by high fusion gain, good confinement, plasma stability and possible steady-state operation. A key plasma property that is related to both the stability and performance of these advanced plasma scenarios is the safety factor profile. A key component of the EAST research program is the exploration of non-inductively driven steady-state plasmas with the recently upgraded heating and current drive capabilities that include lower hybrid current drive and neutral beam injection. Anticipating the need for tight regulation of the safety factor profile in these plasma scenarios, a first-principles-driven (FPD)control-oriented model is proposed to describe the safety factor profile evolution in EAST in response to the different actuators. The TRANSP simulation code is employed to tailor the FPD model to the EAST tokamak geometry and to convert it into a form suitable for control design. The FPD control-oriented model's prediction capabilities are demonstrated by comparing predictions with experimental data from EAST. Supported by the US DOE under DE-SC0010537,DE-FG02-92ER54141 and DE-SC0013977.

  19. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  20. Modeling of Reactor Kinetics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  1. An equilibrium and kinetic modeling

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Potato dextrose agar medium was prepared by taking 200 g of peeled and sliced potato with .... of glucose as carbon source and ammonium chloride as nitrogen source each. .... Pore and solid diffusion kinetics in fixed bed ...

  2. Kinetic vs. Thermodynamic Control of Bacteriorhodopsin Pumping

    Science.gov (United States)

    Gunner, Marilyn

    2011-03-01

    Bacteriorhodopsin is a transmembrane proton pump that converts light energy to a transmembrane electrochemical gradient. Retinal, bound in the center of the protein, absorbs light and isomerizes from the all-trans to 13-cis configuration. A series of conformational changes and proton transfers then restores the structure to the all-trans ground state while pumping one proton from the high pH cell interior to the low pH exterior, saving energy in an electrochemical gradient. Poorly understood gating elements control key steps where incorrect proton transfer would return the protein to the ground state without pumping. The gate's barrier height determines how much the pump leaks. Analysis of high-resolution structures trapped in different intermediates has produced ideas for how bacteriorhodopsin ensures pumping. There are two contrasting strategies, one primarily thermodynamic and the other relying on kinetic control to ensure that protons are moved uphill. With thermodynamic control, residue protonation states always remain in quasi-equilibrium. Relatively slow conformational changes shift the energy landscape modifying site pKas. Residues then change ionization remaining in equilibrium in each metastable intermediate. The sequence of intermediates imparts the directionality to the transfers. Alternatively, the direction of transfer is determined by the accessibility of low energy pathways so is thus is under kinetic control. We will discuss which steps in the bacteriorhodopsin photocycle are under thermodynamic or under kinetic control. The role of three specific conformational changes (retinal isomerization, Arg82 reorientation and Glu194 and 204 separations) on the degree of proton transfer will be described. Supported by NFS MCB 1022208. Carried out with Yifan Song now at the University of Washington Department of Biochemistry.

  3. Kinetic exchange models for social opinion formation

    CERN Document Server

    Lallouache, Mehdi; Chakrabarti, Bikas K

    2010-01-01

    We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society.

  4. Modeling Biodegradation Kinetics on Benzene and Toluene and Their Mixture

    Directory of Open Access Journals (Sweden)

    Aparecido N. Módenes

    2007-10-01

    Full Text Available The objective of this work was to model the biodegradation kinetics of toxic compounds toluene and benzene as pure substrates and in a mixture. As a control, Monod and Andrews models were used. To predict substrates interactions, more sophisticated models of inhibition and competition, and SKIP (sum kinetics interactions parameters model were applied. The models evaluation was performed based on the experimental data from Pseudomonas putida F1 activities published in the literature. In parameter identification procedure, the global method of particle swarm optimization (PSO was applied. The simulation results show that the better description of the biodegradation process of pure toxic substrate can be achieved by Andrews' model. The biodegradation process of a mixture of toxic substrates is modeled the best when modified competitive inhibition and SKIP models are used. The developed software can be used as a toolbox of a kinetics model catalogue of industrial wastewater treatment for process design and optimization.

  5. A new kinetic model based on the remote control mechanism to fit experimental data in the selective oxidation of propene into acrolein on biphasic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Abdeldayem, H.M.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Thyrion, F.C. [Unite des Procedes Faculte des Sciences Appliquees, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)

    1998-12-31

    A new kinetic model for a more accurate and detailed fitting of the experimental data is proposed. The model is based on the remote control mechanism (RCM). The RCM assumes that some oxides (called `donors`) are able to activate molecular oxygen transforming it to very active mobile species (spillover oxygen (O{sub OS})). O{sub OS} migrates onto the surface of the other oxide (called `acceptor`) where it creates and/or regenerates the active sites during the reaction. The model contains tow terms, one considering the creation of selective sites and the other the catalytic reaction at each site. The model has been tested in the selective oxidation of propene into acrolein (T=380, 400, 420 C; oxygen and propene partial pressures between 38 and 152 Torr). Catalysts were prepared as pure MoO{sub 3} (acceptor) and their mechanical mixtures with {alpha}-Sb{sub 2}O{sub 4} (donor) in different proportions. The presence of {alpha}-Sb{sub 2}O{sub 4} changes the reaction order, the activation energy of the reaction and the number of active sites of MoO{sub 3} produced by oxygen spillover. These changes are consistent with a modification in the degree of irrigation of the surface by oxygen spillover. The fitting of the model to experimental results shows that the number of sites created by O{sub SO} increases with the amount of {alpha}-Sb{sub 2}O{sub 4}. (orig.)

  6. Brunovsky Normal Form of Monod Kinetics Models and Growth Rate Control of a Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Pavlov Y.

    2007-12-01

    Full Text Available A mathematical methodology that gives assistance to design of fed-batch stabilization and control is presented. The methodology is based both on Utility theory and optimal Control theory. The Utility theory deals with the expressed subjective preferences and allows for the expert preferences to be taken in consideration in complex biotechnological systems as criteria for control and optimization. The Control theory is used for parameters stabilization of a fed-batch cultivation process. The control is written based on information of the growth rate. The simulations show good efficiency of the control laws.

  7. Chemical Kinetic Modeling of Advanced Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  8. Population balance modeling of antibodies aggregation kinetics.

    Science.gov (United States)

    Arosio, Paolo; Rima, Simonetta; Lattuada, Marco; Morbidelli, Massimo

    2012-06-21

    The aggregates morphology and the aggregation kinetics of a model monoclonal antibody under acidic conditions have been investigated. Growth occurs via irreversible cluster-cluster coagulation forming compact, fractal aggregates with fractal dimension of 2.6. We measured the time evolution of the average radius of gyration, , and the average hydrodynamic radius, , by in situ light scattering, and simulated the aggregation kinetics by a modified Smoluchowski's population balance equations. The analysis indicates that aggregation does not occur under diffusive control, and allows quantification of effective intermolecular interactions, expressed in terms of the Fuchs stability ratio (W). In particular, by introducing a dimensionless time weighed on W, the time evolutions of measured under various operating conditions (temperature, pH, type and concentration of salt) collapse on a single master curve. The analysis applies also to data reported in the literature when growth by cluster-cluster coagulation dominates, showing a certain level of generality in the antibodies aggregation behavior. The quantification of the stability ratio gives important physical insights into the process, including the Arrhenius dependence of the aggregation rate constant and the relationship between monomer-monomer and cluster-cluster interactions. Particularly, it is found that the reactivity of non-native monomers is larger than that of non-native aggregates, likely due to the reduction of the number of available hydrophobic patches during aggregation.

  9. A kinetic model for predicting biodegradation.

    Science.gov (United States)

    Dimitrov, S; Pavlov, T; Nedelcheva, D; Reuschenbach, P; Silvani, M; Bias, R; Comber, M; Low, L; Lee, C; Parkerton, T; Mekenyan, O

    2007-01-01

    Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.

  10. Kinetic Modelling of Macroscopic Properties Changes during Crosslinked Polybutadiene Oxidation

    Science.gov (United States)

    Audouin, Ludmila; Coquillat, Marie; Colin, Xavier; Verdu, Jacques; Nevière, Robert

    2008-08-01

    The thermal oxidation of additive free hydroxyl-terminated polybutadiene (HTPB) isocyanate crosslinked rubber bulk samples has been studied at 80, 100 and 120 °C in air. The oxidation kinetics has been monitored by gravimetry and thickness distribution of oxidation products was determined by FTIR mapping. Changes of elastic shear modulus G' during oxidation were followed during oxidation at the same temperatures. The kinetic model established previously for HTPB has been adapted for bulk sample oxidation using previously determined set of kinetic parameters. Oxygen diffusion control of oxidation has been introduced into the model. The mass changes kinetic curves and oxidation products profiles were simulated and adequate fit was obtained. Using the rubber elasticity theory the elastic modulus changes were simulated taking into account the elastically active chains concentration changes due to chain scission and crosslinking reactions. The reasonable fit of G' as a function of oxidation time experimental curves was obtained.

  11. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models.

    Science.gov (United States)

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S

    2009-01-30

    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  12. Transformation kinetics in controlled-power and controlled-temperature cycle testing

    Energy Technology Data Exchange (ETDEWEB)

    Robino, C.V.; Knorovsky, G.; Dykhuizen, R.C.; MacCallum, D.O.; Damkroger, B.K.

    1998-06-01

    On-heating transformation kinetics were investigated for several steels by using a Gleeble capable of programmable power input as well as programmable temperature cycling. Transformation kinetics determined in both modes are reported. The temperature cycles are significantly different between the two modes due to the latent heat associated with the phase transformations. Both diffusion rates and transformation driving force increase with temperature above the eutectoid temperature, therefore the latent heat can potentially have a significant impact on the transformation kinetics. Experiments with plain carbon steels illustrate that the latent heat of austenite formation causes an appreciable temperature arrest during transformation, and the dilatation response is similarly altered. A kinetic transformation model, based on the decomposition of pearlite and the diffusional growth of austenite, reproduced the transient dilatation data obtained from both control modes reasonably well using the same kinetic parameter values.

  13. Thermoluminescence of zircon: a kinetic model

    CERN Document Server

    Turkin, A A; Vainshtein, D I; Hartog, H W D

    2003-01-01

    The mineral zircon, ZrSiO sub 4 , belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such a model. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time anneali...

  14. Shear-Driven Reconnection in Kinetic Models

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.

    2015-12-01

    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  15. Kinetic models with randomly perturbed binary collisions

    CERN Document Server

    Bassetti, Federico; Toscani, Giuseppe

    2010-01-01

    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases.

  16. Kinetic and hydrodynamic models of chemotactic aggregation

    CERN Document Server

    Chavanis, Pierre-Henri

    2007-01-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the anal...

  17. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    Science.gov (United States)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2017-06-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  18. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    Science.gov (United States)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2016-12-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  19. A kinetic model of zircon thermoluminescence

    NARCIS (Netherlands)

    Turkin, A.A.; Es, H.J. van; Vainshtein, D.I.; Hartog, H.W. den

    A kinetic model of zircon thermoluminescence (TL) has been constructed to simulate the processes and stages relevant to thermoluminescent dating such as: filling of electron and hole traps during the excitation stage both for natural and laboratory irradiation; the time dependence of fading after

  20. Kinetic modeling of reactions in Foods

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2008-01-01

    The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to effec

  1. Gaussian kinetic model for granular gases.

    Science.gov (United States)

    Dufty, James W; Baskaran, Aparna; Zogaib, Lorena

    2004-05-01

    A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of overpopulation at large velocities, are reproduced by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.

  2. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  3. Kinetics model development of cocoa bean fermentation

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  4. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  5. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    , the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  6. Reduced Chemical Kinetic Model for Titan Entries

    Directory of Open Access Journals (Sweden)

    Romain Savajano

    2011-01-01

    Full Text Available A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs simulations.

  7. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H

    1983-01-01

    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  8. Computer-Aided Construction of Chemical Kinetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.

  9. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson

    2008-01-01

    particles and coarsening of MX, M23C6 and Laves phase particles. The modelling provided new insight into the long term stability of new steels. Modelling of the detrimental precipitation of Z phase Cr(V,Nb)N is described, which points to new approaches in alloy development for higher temperatures......The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...

  10. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  11. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    Science.gov (United States)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  12. Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions

    Science.gov (United States)

    Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.

  13. A kinetic model for chemical neurotransmission

    Science.gov (United States)

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  14. MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2015-06-01

    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  15. Modeling Kinetics of Distortion in Porous Bi-layered Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus;

    2013-01-01

    Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential shrinkage...... because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...

  16. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

  17. An autocatalytic kinetic model for describing microbial growth during fermentation.

    Science.gov (United States)

    Ibarz, Albert; Augusto, Pedro E D

    2015-01-01

    The mathematical modelling of the behaviour of microbial growth is widely desired in order to control, predict and design food and bioproduct processing, stability and safety. This work develops and proposes a new semi-empirical mathematical model, based on an autocatalytic kinetic, to describe the microbial growth through its biomass concentration. The proposed model was successfully validated using 15 microbial growth patterns, covering the three most important types of microorganisms in food and biotechnological processing (bacteria, yeasts and moulds). Its main advantages and limitations are discussed, as well as the interpretation of its parameters. It is shown that the new model can be used to describe the behaviour of microbial growth.

  18. Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans

    NARCIS (Netherlands)

    van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C

    2016-01-01

    CONTEXT: No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. OBJECTIVE: Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that c

  19. Kinetic Model for a Spherical Rolling Robot with Soft Shell in a Beeline Motion

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2014-02-01

    Full Text Available A simplified kinetic model called Spring Pendulum is developed for a spherical rolling robot with soft shell in order to meet the needs of attitude stabilization and controlling for the robot. The elasticity and plasticity of soft shell is represented by some uniform springs connected to the bracket in this model. The expression of the kinetic model is deduced from Newtonian mechanics principles. Testing data of the driving angle acquired from a prototype built by authors indicate that testing data curve accords to the theoretic kinetic characteristic curve, so the kinetic model is validated

  20. A kinetic model of plasma turbulence

    Science.gov (United States)

    Servidio, S.; Valentini, F.; Perrone, D.; Greco, A.; Califano, F.; Matthaeus, W. H.; Veltri, P.

    2015-01-01

    A Hybrid Vlasov-Maxwell (HVM) model is presented and recent results about the link between kinetic effects and turbulence are reviewed. Using five-dimensional (2D in space and 3D in the velocity space) simulations of plasma turbulence, it is found that kinetic effects (or non-fluid effects) manifest through the deformation of the proton velocity distribution function (DF), with patterns of non-Maxwellian features being concentrated near regions of strong magnetic gradients. The direction of the proper temperature anisotropy, calculated in the main reference frame of the distribution itself, has a finite probability of being along or across the ambient magnetic field, in general agreement with the classical definition of anisotropy T ⊥/T ∥ (where subscripts refer to the magnetic field direction). Adopting the latter conventional definition, by varying the global plasma beta (β) and fluctuation level, simulations explore distinct regions of the space given by T ⊥/T ∥ and β∥, recovering solar wind observations. Moreover, as in the solar wind, HVM simulations suggest that proton anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. The role of alpha particles is reviewed using multi-ion kinetic simulations, revealing a similarity between proton and helium non-Maxwellian effects. The techniques presented here are applied to 1D spacecraft-like analysis, establishing a link between non-fluid phenomena and solar wind magnetic discontinuities. Finally, the dimensionality of turbulence is investigated, for the first time, via 6D HVM simulations (3D in both spaces). These preliminary results provide support for several previously reported studies based on 2.5D simulations, confirming several basic conclusions. This connection between kinetic features and turbulence open a new path on the study of processes such as heating, particle acceleration, and temperature

  1. Mathematical Modelling of Thermal Degradation Kinetics of Ascorbic ...

    African Journals Online (AJOL)

    However, adequate study has not been conducted to exploit the potential of this ... of ascorbic acid in yeabesha gomen fitted first-order reaction kinetic model ... Activation energy for ascorbic degeneration kinetics of yeabesha gomen was ...

  2. Thermodynamic and kinetic modeling of transcriptional pausing.

    Science.gov (United States)

    Tadigotla, Vasisht R; O Maoiléidigh, Dáibhid; Sengupta, Anirvan M; Epshtein, Vitaly; Ebright, Richard H; Nudler, Evgeny; Ruckenstein, Andrei E

    2006-03-21

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA-DNA, DNA-RNA, and RNA-RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the associated DNA-RNA hybrid; and (iii) changes in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable parameters except for a cutoff used to discriminate paused from nonpaused complexes. When applied to 100 experimental pauses in transcription elongation by Escherichia coli RNA polymerase on 10 DNA templates, the approach produces statistically significant results. We also present a kinetic model for the rate of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic barriers to backtracking resulting from steric clashes of EC with the cotranscriptionally generated RNA secondary structure, an aspect not included explicitly in previous attempts at modeling the transcription elongation process.

  3. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  4. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  5. Potential and kinetic shaping for control of underactuated mechanical systems

    OpenAIRE

    Bloch, Anthony M.; Leonard, Naomi Ehrich; Chang, Dong Eui; Marsden, Jerrold E.

    2000-01-01

    This paper combines techniques of potential shaping with those of kinetic shaping to produce some new methods for stabilization of mechanical control systems. As with each of the techniques themselves, our method employs energy methods and the LaSalle invariance principle. We give explicit criteria for asymptotic stabilization of equilibria of mechanical systems which, in the absence of controls, have a kinetic energy function that is invariant under an Abelian group.

  6. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  7. MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE

    Directory of Open Access Journals (Sweden)

    VEACESLAV ZELENTSOV

    2017-03-01

    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  8. Kinetic depletion model for pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  9. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  10. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica.

    Science.gov (United States)

    Saavedra, Emma; Marín-Hernández, Alvaro; Encalada, Rusely; Olivos, Alfonso; Mendoza-Hernández, Guillermo; Moreno-Sánchez, Rafael

    2007-09-01

    Glycolysis in the human parasite Entamoeba histolytica is characterized by the absence of cooperative modulation and the prevalence of pyrophosphate-dependent (over ATP-dependent) enzymes. To determine the flux-control distribution of glycolysis and understand its underlying control mechanisms, a kinetic model of the pathway was constructed by using the software gepasi. The model was based on the kinetic parameters determined in the purified recombinant enzymes, and the enzyme activities, and steady-state fluxes and metabolite concentrations determined in amoebal trophozoites. The model predicted, with a high degree of accuracy, the flux and metabolite concentrations found in trophozoites, but only when the pyrophosphate concentration was held constant; at variable pyrophosphate, the model was not able to completely account for the ATP production/consumption balance, indicating the importance of the pyrophosphate homeostasis for amoebal glycolysis. Control analysis by the model revealed that hexokinase exerted the highest flux control (73%), as a result of its low cellular activity and strong AMP inhibition. 3-Phosphoglycerate mutase also exhibited significant flux control (65%) whereas the other pathway enzymes showed little or no control. The control of the ATP concentration was also mainly exerted by ATP consuming processes and 3-phosphoglycerate mutase and hexokinase (in the producing block). The model also indicated that, in order to diminish the amoebal glycolytic flux by 50%, it was required to decrease hexokinase or 3-phosphoglycerate mutase by 24% and 55%, respectively, or by 18% for both enzymes. By contrast, to attain the same reduction in flux by inhibiting the pyrophosphate-dependent enzymes pyrophosphate-phosphofructokinase and pyruvate phosphate dikinase, they should be decreased > 70%. On the basis of metabolic control analysis, steps whose inhibition would have stronger negative effects on the energy metabolism of this parasite were identified

  11. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    Science.gov (United States)

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings.

  12. Kinetic modelling of coupled transport across biological membranes.

    Science.gov (United States)

    Korla, Kalyani; Mitra, Chanchal K

    2014-04-01

    In this report, we have modelled a secondary active co-transporter (symport and antiport), based on the classical kinetics model. Michaelis-Menten model of enzyme kinetics for a single substrate, single intermediate enzyme catalyzed reaction was proposed more than a hundred years ago. However, no single model for the kinetics of co-transport of molecules across a membrane is available in the literature We have made several simplifying assumptions and have followed the basic Michaelis-Menten approach. The results have been simulated using GNU Octave. The results will be useful in general kinetic simulations and modelling.

  13. Electrothermal Model of Kinetic Inductance Detectors

    CERN Document Server

    Thomas, Christopher N; Goldie, David J

    2014-01-01

    An electrothermal model of Kinetic Inductance Detectors (KIDs) is described. The non-equilibrium state of the resonator's quasiparticle system is characterized by an effective temperature, which because of readout-power heating is higher than that of the bath. By balancing the flow of energy into the quasiparticle system, it is possible to calculate the steady-state large-signal, small-signal and noise behaviour. Resonance-curve distortion and hysteretic switching appear naturally within the framework. It is shown that an electrothermal feedback process exists, which affects all aspects of behaviour. It is also shown that generation-recombination noise can be interpreted in terms of the thermal fluctuation noise in the effective thermal conductance that links the quasiparticle and phonon systems of the resonator. Because the scheme is based on electrothermal considerations, multiple elements can be added to simulate the behaviour of complex devices, such as resonators on membranes, again taking into account r...

  14. Effect of heating rate and kinetic model selection on activation energy of nonisothermal crystallization of amorphous felodipine.

    Science.gov (United States)

    Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin

    2014-12-01

    The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    Science.gov (United States)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  16. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    Science.gov (United States)

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  17. Biodegradable kinetics of plastics under controlled composting conditions.

    Science.gov (United States)

    Leejarkpai, Thanawadee; Suwanmanee, Unchalee; Rudeekit, Yosita; Mungcharoen, Thumrongrut

    2011-06-01

    This study models and evaluates the kinetics of C-CO(2) evolution during biodegradation of plastic materials including Polyethylene (PE), PE/starch blend (PE/starch), microcrystalline cellulose (MCE), and Polylactic acid (PLA). The aerobic biodegradation under controlled composting conditions was monitorated according to ISO 14855-1, 2004. The kinetics model was based on first order reaction in series with a flat lag phase. A non-linear regression technique was used to analyze the experimental data. SEM studies of the morphology of the samples before and after biodegradation testing were used to confirm the biodegradability of plastics and the accuracy of the model. The work showed that MCE and PLA produced the high amounts of C-CO(2) evolution, which gave readily hydrolysable carbon values of 55.49% and 40.17%, respectively with readily hydrolysis rates of 0.338 day(-1) and 0.025 day(-1), respectively. Whereas, a lower amount of C-CO(2) evolution was found in PE/starch, which had a high concentration of moderately hydrolysable carbon of 97.74% and a moderate hydrolysis rate of 0.00098 day(-1). The mineralization rate of PLA was 0.500 day(-1) as a lag phase was observed at the beginning of the biodegradability test. No lag phase was observed in the biodegradability testing of the PE/starch and MCE. The mineralization rates of the PE/starch and MCE were found to be 1.000 day(-1), and 1.234 day(-1), respectively. No C-CO(2) evolution was observed during biodegradability testing of PE, which was used for reference as a non-biodegradable plastics sample.

  18. A review on solar wind modeling: kinetic and fluid aspects

    CERN Document Server

    Echim, Marius; Lie-Svendsen, Oystein

    2013-01-01

    We review the main advantages and limitations of the kinetic exospheric and fluid models of the solar wind (SW). We discuss the hydrostatic model imagined by Chapman, the first supersonic hydrodynamic models published by Parker and the first generation subsonic kinetic model proposed by Chamberlain. It is shown that a correct estimation of the electric field as in the second generation kinetic exospheric models developed by Lemaire and Scherer, provides a supersonic expansion of the corona, reconciling the hydrodynamic and the kinetic approach. The third generation kinetic exospheric models considers kappa velocity distribution function (VDF) instead of a Maxwellian at the exobase and in addition they treat a non-monotonic variation of the electric potential with the radial distance; the fourth generation exospheric models include Coulomb collisions based on the Fokker--Planck collision term. Multi-fluid models of the solar wind provide a coarse grained description and reproduce with success the spatio-tempor...

  19. Chemical Kinetic Modeling of Biofuel Combustion

    Science.gov (United States)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  20. Kinetic modelling of krypton fluoride laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Jancaitis, K.S.

    1983-11-01

    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  1. Kinetic model of sucrose accumulation in maturing sugarcane culm tissue.

    Science.gov (United States)

    Uys, Lafras; Botha, Frederik C; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M

    2007-01-01

    Biochemically, it is not completely understood why or how commercial varieties of sugarcane (Saccharum officinarum) are able to accumulate sucrose in high concentrations. Such concentrations are obtained despite the presence of sucrose synthesis/breakdown cycles (futile cycling) in the culm of the storage parenchyma. Given the complexity of the process, kinetic modelling may help to elucidate the factors governing sucrose accumulation or direct the design of experimental optimisation strategies. This paper describes the extension of an existing model of sucrose accumulation (Rohwer, J.M., Botha, F.C., 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437-445) to account for isoforms of sucrose synthase and fructokinase, carbon partitioning towards fibre formation, and the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent PFK and aldolase. Moreover, by including data on the maximal activity of the enzymes as measured in different internodes, a growth model was constructed that describes the metabolic behaviour as sugarcane parenchymal tissue matures from internodes 3-10. While there was some discrepancy between modelled and experimentally determined steady-state sucrose concentrations in the cytoplasm, steady-state fluxes showed a better fit. The model supports a hypothesis of vacuolar sucrose accumulation against a concentration gradient. A detailed metabolic control analysis of sucrose synthase showed that each isoform has a unique control profile. Fructose uptake by the cell and sucrose uptake by the vacuole had a negative control on the futile cycling of sucrose and a positive control on sucrose accumulation, while the control profile for neutral invertase was reversed. When the activities of these three enzymes were changed from their reference values, the effects on futile cycling and sucrose accumulation were amplified. The model can be run online at the JWS Online

  2. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    OpenAIRE

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-01-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation f...

  3. Kinetics of diffuesion-controlled oxygen ordering in a lattic-gas model of YBa2Cu3O7-δ

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Bohr, Henrik; Mouritsen, Ole G.

    1990-01-01

    Nonequilibrium properties of oxygen ordering in high-Tc superconductors of the Y-Ba-Cu-O type are studied via computer simulation of an anisotropic two-dimensional lattice-gas model in which the ordering processes are controlled by diffusion across the sample edges. With a view to designing optimal...

  4. Mechanism of controlled release kinetics from medical devices

    Directory of Open Access Journals (Sweden)

    A. Raval

    2010-06-01

    Full Text Available Utilization of biodegradable polymers for controlled drug delivery has gained immense attention in the pharmaceutical and medical device industry to administer various drugs, proteins and other bio-molecules both systematically and locally to cure several diseases. The efficacy and toxicity of this local therapeutics depends upon drug release kinetics, which will further decide drug deposition, distribution, and retention at the target site. Drug Eluting Stent (DES presently possesses clinical importance as an alternative to Coronary Artery Bypass Grafting due to the ease of the procedure and comparable safety and efficacy. Many models have been developed to describe the drug delivery from polymeric carriers based on the different mechanisms which control the release phenomenon from DES. Advanced characterization techniques facilitate an understanding of the complexities behind design and related drug release behavior of drug eluting stents, which aids in the development of improved future drug eluting systems. This review discusses different drug release mechanisms, engineering principles, mathematical models and current trends that are proposed for drug-polymer coated medical devices such as cardiovascular stents and different analytical methods currently utilized to probe diverse characteristics of drug eluting devices.

  5. Fully implicit kinetic modelling of collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.

  6. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  7. Conformation-controlled binding kinetics of antibodies

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  8. A Review of Kinetic Modeling Methodologies for Complex Processes

    Directory of Open Access Journals (Sweden)

    de Oliveira Luís P.

    2016-05-01

    Full Text Available In this paper, kinetic modeling techniques for complex chemical processes are reviewed. After a brief historical overview of chemical kinetics, an overview is given of the theoretical background of kinetic modeling of elementary steps and of multistep reactions. Classic lumping techniques are introduced and analyzed. Two examples of lumped kinetic models (atmospheric gasoil hydrotreating and residue hydroprocessing developed at IFP Energies nouvelles (IFPEN are presented. The largest part of this review describes advanced kinetic modeling strategies, in which the molecular detail is retained, i.e. the reactions are represented between molecules or even subdivided into elementary steps. To be able to retain this molecular level throughout the kinetic model and the reactor simulations, several hurdles have to be cleared first: (i the feedstock needs to be described in terms of molecules, (ii large reaction networks need to be automatically generated, and (iii a large number of rate equations with their rate parameters need to be derived. For these three obstacles, molecular reconstruction techniques, deterministic or stochastic network generation programs, and single-event micro-kinetics and/or linear free energy relationships have been applied at IFPEN, as illustrated by several examples of kinetic models for industrial refining processes.

  9. SATL MODEL LESSON IN CHEMICAL KINETICS

    African Journals Online (AJOL)

    Preferred Customer

    Department of Chemistry, The Federal Urdu University of Arts, Science and ... are several strategies, through which teaching and learning of scientific subjects in ... the linear relationships among various factors involved in chemical kinetics.

  10. Innovative first order elimination kinetics working model for easy learning

    Directory of Open Access Journals (Sweden)

    Navin Budania

    2016-06-01

    Conclusions: First order elimination kinetics is easily understood with the help of above working model. More and more working models could be developed for teaching difficult topics. [Int J Basic Clin Pharmacol 2016; 5(3.000: 862-864

  11. Symmetrical kinematics does not imply symmetrical kinetics in people with transtibial amputation using cycling model.

    Science.gov (United States)

    Childers, W Lee; Kogler, Géza F

    2014-01-01

    People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.

  12. Kinetic modelling of cytochrome c adsorption on SBA-15.

    Science.gov (United States)

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  13. MODELLING OF BACTERIAL SULPHATE REDUCTION IN ANAEROBIC PONDS : KINETIC INVESTIGATIONS

    OpenAIRE

    Harerimana, Casimir; Vasel, Jean-Luc; Jupsin, Hugues; Ouali, Amira

    2011-01-01

    The aim of the study was first to develop a simple and practical model of anaerobic digestion including sulphate-reduction in anaerobic ponds. The basic microbiology of our model consists of three steps, namely, acidogenesis, methanogenesis, and sulphate reduction. This model includes multiple reaction stoichiometry and substrate utilization kinetics. The second aim was to determine some kinetic parameters associated with this model. The values of these parameters for sulfidogenic bacteria ar...

  14. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...

  15. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.

    2013-01-01

    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  16. Upper D region chemical kinetic modeling of LORE relaxation times

    Science.gov (United States)

    Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.

    2016-04-01

    The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.

  17. A Photochemical Kinetic Model for Solid Dosage Forms.

    Science.gov (United States)

    Carvalho, Thiago C; La Cruz, Thomas E; Tabora, Jose E

    2017-08-20

    Photochemical kinetics models for pharmaceutical compounds in solution have been extensively investigated, but not in solid phase upon exposure to different light sources. The objective of this study was to develop a mathematical model to describe the solid state photodegradation of pharmaceutical powder materials under different area/volumetric scales and light exposure conditions. The model considered the previous formalism presented for photodegradation kinetics in solution phase with important elements applied to static powder material being irradiated with a polychromatic light source. The model also included the influence of optical phenomena (i.e. reflectance, scattering factors, etc.) by applying Beer-Lambert law to light attenuation, including effects of powder density. Drug substance and drug product intermediates (blends and tablet cores) were exposed to different light sources and intensities. The model reasonably predicted the photodegradation levels of powder beds of drug substance and drug product intermediates under white and yellow lights with intensities around 5 to 11 kLux. Importantly, the model estimates demonstrated that the reciprocity law for photoreactions was held. Further model evaluation showed that, due to light attenuation, the powder bed is in virtual darkness at cake depths greater than 500 μm. At 100 μm, the photodegradation of the investigated compound is expected to be close to 100% in 10 days under white fluorescent halophosphate light at 9.5 kLux. For tablets, defining the volume over exposed surface area ratio is more challenging. Nevertheless, the model can consider a bracket between worst and best cases to provide a reasonable photodegradation estimate. This tool can be significantly leveraged to simulate different light exposure scenarios while assessing photostability risk in order to define appropriate Control Strategy in manufacturing. Copyright © 2017. Published by Elsevier B.V.

  18. Aromatization of light naphtha fractions on zeolites 1: Kinetic model

    Directory of Open Access Journals (Sweden)

    Rovenskaja Svetlana A.

    2003-01-01

    Full Text Available On the basis of analyzing kinetic experimental data performed in laboratory integral reactors a lumping kinetic model of the "Zeoforming" process was developed. A reaction scheme of the lumped components was proposed, that was adapted to the technological requirements. The reaction rate constants and activation energies were estimated, that are valid for certain feed compositions. The model is intended for further modeling and optimization of the process.

  19. Kinetic derivation of a Hamilton-Jacobi traffic flow model

    CERN Document Server

    Borsche, Raul; Kimathi, Mark

    2012-01-01

    Kinetic models for vehicular traffic are reviewed and considered from the point of view of deriving macroscopic equations. A derivation of the associated macroscopic traffic flow equations leads to different types of equations: in certain situations modified Aw-Rascle equations are obtained. On the other hand, for several choices of kinetic parameters new Hamilton-Jacobi type traffic equations are found. Associated microscopic models are discussed and numerical experiments are presented discussing several situations for highway traffic and comparing the different models.

  20. Lumping procedure for a kinetic model of catalytic naphtha reforming

    Directory of Open Access Journals (Sweden)

    H. M. Arani

    2009-12-01

    Full Text Available A lumping procedure is developed for obtaining kinetic and thermodynamic parameters of catalytic naphtha reforming. All kinetic and deactivation parameters are estimated from industrial data and thermodynamic parameters are calculated from derived mathematical expressions. The proposed model contains 17 lumps that include the C6 to C8+ hydrocarbon range and 15 reaction pathways. Hougen-Watson Langmuir-Hinshelwood type reaction rate expressions are used for kinetic simulation of catalytic reactions. The kinetic parameters are benchmarked with several sets of plant data and estimated by the SQP optimization method. After calculation of deactivation and kinetic parameters, plant data are compared with model predictions and only minor deviations between experimental and calculated data are generally observed.

  1. Modelling atypical CYP3A4 kinetics: principles and pragmatism.

    Science.gov (United States)

    Houston, J Brian; Galetin, Aleksandra

    2005-01-15

    The Michaelis-Menten model, and the existence of a single active site for the interaction of substrate with drug metabolizing enzyme, adequately describes a substantial number of in vitro metabolite kinetic data sets for both clearance and inhibition determination. However, in an increasing number of cases (involving most notably, but not exclusively, CYP3A4), atypical kinetic features are observed, e.g., auto- and heteroactivation; partial, cooperative, and substrate inhibition; concentration-dependent effector responses (activation/inhibition); limited substrate substitution and inhibitory reciprocity necessitating sub-group classification. The phenomena listed above cannot be readily interpreted using single active site models and the literature indicates that three types of approaches have been adopted. First the 'nai ve' approach of using the Michaelis-Menten model regardless of the kinetic behaviour, second the 'empirical' approach (e.g., employing the Hill or uncompetitive inhibition equations to model homotropic phenomena of sigmoidicity and substrate inhibition, respectively) and finally, the 'mechanistic' approach. The later includes multisite kinetic models derived using the same rapid equilibrium/steady-state assumptions as the single-site model. These models indicate that 2 or 3 binding sites exist for a given CYP3A4 substrate and/or effector. Multisite kinetic models share common features, depending on the substrate kinetics and the nature of the effector response observed in vitro, which allow a generic model to be proposed. Thus although more complex than the other two approaches, they show more utility and can be comprehensively applied in relatively simple versions that can be readily generated from generic model. Multisite kinetic features, observed in isolated hepatocytes as well as in microsomes from hepatic tissue and heterologous expression systems, may be evident in substrate depletion-time profiles as well as in metabolite formation rates

  2. Modeling the kinetics of carbon coagulation in explosives detonation

    Science.gov (United States)

    Ree, F. H.; Viecelli, J. A.; Glosli, J. N.

    1998-05-01

    A typical insensitive high explosive such as LX-17 has a large carbon content. The detonation behavior of these explosives is affected by a slow coagulation of carbon atoms by diffusion and their possible transformation from one chemical bonding type to another. We have used the Brenner bond order potential to compute the melting line of diamond at high pressure and high temperature by molecular dynamics and Monte Carlo simulations, with the goal to refine the potential for the study of the kinetics of the graphite diamond transition. The slow diffusion-controlled kinetics of carbon clusters has been examined by including a time-dependent surface correction to the Gibbs free energy of these clusters in the nonequilibrium CHEQ code. We also propose a new explosive burn model which incorporates a partial release of the heat of detonation in a fast reaction zone, followed by a diffusion-limited release of the remaining energy. Hydrodynamic applications of the new burn model to LX-17 show that computed expansion and compression results both agree closely with experimental data.

  3. Biomass torrefaction: modeling of volatile and solid product evolution kinetics.

    Science.gov (United States)

    Bates, Richard B; Ghoniem, Ahmed F

    2012-11-01

    The aim of this work is the development of a kinetics model for the evolution of the volatile and solid product composition during torrefaction conditions between 200 and 300°C. Coupled to an existing two step solid mass loss kinetics mechanism, this model describes the volatile release kinetics in terms of a set of identifiable chemical components, permitting the solid product composition to be estimated by mass conservation. Results show that most of the volatiles released during the first stage include highly oxygenated species such as water, acetic acid, and carbon dioxide, while volatiles released during the second step are composed primarily of lactic acid, methanol, and acetic acid. This kinetics model will be used in the development of a model to describe reaction energy balance and heat release dynamics.

  4. Kinetic, equilibrium and thermodynamic modelling of the sorption of ...

    African Journals Online (AJOL)

    Kinetic, equilibrium and thermodynamic modelling of the sorption of metals ... Batch sorption studies were conducted to assess the potential of a ... negative Ea values, indicating their preference to bind to low-energy sites. ... Article Metrics.

  5. Measurements of control rod worth by modified inverse kinetic method

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, A. A.; Lebedev, G. V., E-mail: lgv2004@mail.ru; Nechaev, Yu. A. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2011-12-15

    Results of control rod worth measurements on the Astra critical assembly at the Russian Research Centre Kurchatov Institute are presented. The measurements were carried out by the modified inverse kinetics method, which is based on the use of experimental information about the variation of neutron detector readings only after introducing a reactivity perturbation. Calculated corrections are not required. The results of measurements do not depend on the neutron detector position.

  6. Jellium-with-gap model applied to semilocal kinetic functionals

    Science.gov (United States)

    Constantin, Lucian A.; Fabiano, Eduardo; Śmiga, Szymon; Della Sala, Fabio

    2017-03-01

    We investigate a highly nonlocal generalization of the Lindhard function, given by the jellium-with-gap model. We find a band-gap-dependent gradient expansion of the kinetic energy, which performs noticeably well for large atoms. Using the static linear response theory and the simplest semilocal model for the local band gap, we derive a nonempirical generalized gradient approximation (GGA) of the kinetic energy. This GGA kinetic-energy functional is remarkably accurate for the description of weakly interacting molecular systems within the subsystem formulation of density functional theory.

  7. Kinetic models in industrial biotechnology - Improving cell factory performance.

    Science.gov (United States)

    Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats

    2014-07-01

    An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.

  8. An integral representation of functions in gas-kinetic models

    Science.gov (United States)

    Perepelitsa, Misha

    2016-08-01

    Motivated by the theory of kinetic models in gas dynamics, we obtain an integral representation of lower semicontinuous functions on {{{R}}^d,} {d≥1}. We use the representation to study the problem of compactness of a family of the solutions of the discrete time BGK model for the compressible Euler equations. We determine sufficient conditions for strong compactness of moments of kinetic densities, in terms of the measures from their integral representations.

  9. Kinetic Modelling of Pesticidal Degradation and Microbial Growth in Soil

    Institute of Scientific and Technical Information of China (English)

    LIUDUO-SEN; WANGZONG-SHENG; 等

    1994-01-01

    This paper discusses such models for the degradation kinetics of pesticides in soil as the model expressing the degradation rate as a function of two varables:the pesticide concentration and the number of pesticide degrading microorganisms,the model expressing the pesticide concentration as explicit or implicit function of time ,and the model exprssing the pesticide loss rate constants as functions of temperature,These models may interpret the degradation curves with an inflection point.A Kinetic model describing the growth processes of microbial populations in a closed system is reported as well.

  10. New mass loss kinetic model for thermal decomposition of biomass

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on non-isothermal experimental results for eight Chinese biomass species, a new kinetic model,named as the "pseudo bi-component separate-stage model (PBSM)", is developed in this note to describe the mass loss behavior of biomass thermal decomposition. This model gains an advantage over the commonly used "pseudo single-component overall model (PSOM)" and "pseudo multi-component overall model (PMOM)". By means of integral analysis it is indicated that the new model is suitable to describe the mass loss kinetics of wood and leaf samples under relatively low heating rates (e.g. 10°C/rin, used in this work).``

  11. Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silke, E J; Pitz, W J; Westbrook, C K; Ribaucour, M

    2006-11-10

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Reaction rate constant rules are developed for the low temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Since cyclohexane produces only one type of cyclohexyl radical, much of the low temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical + O{sub 2} through five, six and seven membered ring transition states. The direct elimination of cyclohexene and HO{sub 2} from RO{sub 2} is included in the treatment using a modified rate constant of Cavallotti et al. Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments can not be simulated based on the current understanding of low temperature chemistry. Possible 'alternative' H-atom isomerizations leading to different products from the parent O{sub 2}QOOH radical were included in the low temperature chemical kinetic mechanism and were found to play a significant role.

  12. Kinetic modelling of the Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gambaro, C.; Pollesel, P.; Zennaro, R. [Eni S.p.A., San Donato Milanese (Italy); Lietti, L.; Tronconi, E. [Politecnico di Milano (Italy)

    2006-07-01

    In this work the development of a CO conversion kinetic model of the Fischer-Tropsch process will be presented. Kinetic data were produced testing a Co-based catalyst on two lab units, equipped with a slurry autoclave and a fixed bed reactor respectively. Accordingly, information on the catalytic performances of the same catalyst in two reactor configurations were also obtained. The experimental results were then analyzed with different kinetic models, available in the literature: two mechanistic models, derived by Sarup-Wojciechowski and Yates-Satterfield, and a simple power law rate expression were compared. The parameters of the different rate expressions were estimated by non-linear regression of the kinetic data collected on the two lab units. (orig.)

  13. Development, validation and application of multi-point kinetics model in RELAP5 for analysis of asymmetric nuclear transients

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)

    2016-04-15

    Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model

  14. Power distribution control of CANDU reactors based on modal representation of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Lingzhi, E-mail: lxia4@uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Luxat, John C., E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-10-15

    Highlights: • Linearization of the modal synthesis model of neutronic kinetic equations for CANDU reactors. • Validation of the linearized dynamic model through closed-loop simulations by using the reactor regulating system. • Design of a LQR state feedback controller for CANDU core power distribution control. • Comparison of the results of this new controller against those of the conventional reactor regulation system. - Abstract: Modal synthesis representation of a neutronic kinetic model for a CANDU reactor core has been utilized in the analysis and synthesis for reactor control systems. Among all the mode shapes, the fundamental mode of the power distribution, which also coincides with the desired reactor power distribution during operation, is used in the control system design. The nonlinear modal models are linearized around desired operating points. Based on the linearized model, linear quadratic regulator (LQR) control approach is used to synthesize a state feedback controller. The performance of this controller has been evaluated by using the original nonlinear models under load-following conditions. It has been demonstrated that the proposed reactor control system can produce more uniform power distribution than the traditional reactor regulation systems (RRS); in particular, it is more effective in compensating the Xenon induced transients.

  15. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda

    2016-01-01

    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  16. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  17. Kinetic and thermodynamic aspects of enzyme control and regulation.

    Science.gov (United States)

    Rohwer, Johann M; Hofmeyr, Jan-Hendrik S

    2010-12-16

    This paper develops concepts for assessing and quantifying the regulation of the rate of an enzyme-catalyzed reaction. We show how generic reversible rate equations can be recast in two ways, one making the distance from equilibrium explicit, thereby allowing the distinction between kinetic and thermodynamic control of reaction rate, as well as near-equilibrium and far-from-equilibrium reactions. Recasting in the second form separates mass action from rate capacity and quantifies the degree to which intrinsic mass action contributes to reaction rate and how regulation of an enzyme-catalyzed reaction either enhances or counteracts this mass-action behavior. The contribution of enzyme binding to regulation is analyzed in detail for a number of enzyme-kinetic rate laws, including cooperative reactions.

  18. Chemical Kinetic Models for HCCI and Diesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  19. Kinetic modeling and sensitivity analysis of plasma-assisted combustion

    Science.gov (United States)

    Togai, Kuninori

    Plasma-assisted combustion (PAC) is a promising combustion enhancement technique that shows great potential for applications to a number of different practical combustion systems. In this dissertation, the chemical kinetics associated with PAC are investigated numerically with a newly developed model that describes the chemical processes induced by plasma. To support the model development, experiments were performed using a plasma flow reactor in which the fuel oxidation proceeds with the aid of plasma discharges below and above the self-ignition thermal limit of the reactive mixtures. The mixtures used were heavily diluted with Ar in order to study the reactions with temperature-controlled environments by suppressing the temperature changes due to chemical reactions. The temperature of the reactor was varied from 420 K to 1250 K and the pressure was fixed at 1 atm. Simulations were performed for the conditions corresponding to the experiments and the results are compared against each other. Important reaction paths were identified through path flux and sensitivity analyses. Reaction systems studied in this work are oxidation of hydrogen, ethylene, and methane, as well as the kinetics of NOx in plasma. In the fuel oxidation studies, reaction schemes that control the fuel oxidation are analyzed and discussed. With all the fuels studied, the oxidation reactions were extended to lower temperatures with plasma discharges compared to the cases without plasma. The analyses showed that radicals produced by dissociation of the reactants in plasma plays an important role of initiating the reaction sequence. At low temperatures where the system exhibits a chain-terminating nature, reactions of HO2 were found to play important roles on overall fuel oxidation. The effectiveness of HO2 as a chain terminator was weakened in the ethylene oxidation system, because the reactions of C 2H4 + O that have low activation energies deflects the flux of O atoms away from HO2. For the

  20. Hybrid fluid/kinetic model for parallel heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J.D.; Hegna, C.C.; Held, E.D. [Univ. of Wisconsin, Madison, WI (United States)

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  1. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  2. Hindered rotor models with variable kinetic functions for accurate thermodynamic and kinetic predictions

    Science.gov (United States)

    Reinisch, Guillaume; Leyssale, Jean-Marc; Vignoles, Gérard L.

    2010-10-01

    We present an extension of some popular hindered rotor (HR) models, namely, the one-dimensional HR (1DHR) and the degenerated two-dimensional HR (d2DHR) models, allowing for a simple and accurate treatment of internal rotations. This extension, based on the use of a variable kinetic function in the Hamiltonian instead of a constant reduced moment of inertia, is extremely suitable in the case of rocking/wagging motions involved in dissociation or atom transfer reactions. The variable kinetic function is first introduced in the framework of a classical 1DHR model. Then, an effective temperature and potential dependent constant is proposed in the cases of quantum 1DHR and classical d2DHR models. These methods are finally applied to the atom transfer reaction SiCl3+BCl3→SiCl4+BCl2. We show, for this particular case, that a proper accounting of internal rotations greatly improves the accuracy of thermodynamic and kinetic predictions. Moreover, our results confirm (i) that using a suitably defined kinetic function appears to be very adapted to such problems; (ii) that the separability assumption of independent rotations seems justified; and (iii) that a quantum mechanical treatment is not a substantial improvement with respect to a classical one.

  3. Breakdown parameter for kinetic modeling of multiscale gas flows.

    Science.gov (United States)

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  4. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  5. Kinetic exchange models: From molecular physics to social science

    Science.gov (United States)

    Patriarca, Marco; Chakraborti, Anirban

    2013-08-01

    We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.

  6. Kinetic exchange models: From molecular physics to social science

    CERN Document Server

    Patriarca, Marco

    2013-01-01

    We discuss several multi-agent models that have their origin in the kinetic exchange theory of statistical mechanics and have been recently applied to a variety of problems in the social sciences. This class of models can be easily adapted for simulations in areas other than physics, such as the modeling of income and wealth distributions in economics and opinion dynamics in sociology.

  7. Physiologically based kinetic modeling of the bioactivation of myristicin

    NARCIS (Netherlands)

    Al-Malahmeh, Amer J.; Al-Ajlouni, Abdelmajeed; Wesseling, Sebastiaan; Soffers, Ans E.M.F.; Al-Subeihi, A.; Kiwamoto, Reiko; Vervoort, Jacques; Rietjens, Ivonne M.C.M.

    2016-01-01

    The present study describes physiologically based kinetic (PBK) models for the alkenylbenzene myristicin that were developed by extension of the PBK models for the structurally related alkenylbenzene safrole in rat and human. The newly developed myristicin models revealed that the formation of th

  8. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-09-01

    Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.

  9. A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions

    OpenAIRE

    Chang, Ivan; Baldi, Pierre

    2013-01-01

    Motivation: Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation–reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus imp...

  10. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  11. Application of Detailed Chemical Kinetics to Combustion Instability Modeling

    Science.gov (United States)

    2016-01-04

    under two different conditions corresponding to marginally stable and unstable operation in order to evaluate the performance of the chemical kinetics...instability is a complex interaction between acoustics and the heat release due to combustion.In rocket engines, which are acoustically compact, there is...and amplitudes remains a challenge. The present article is an attempt towards addressing such discrepancies by enhancing the chemical kinetics model

  12. Kinetic model for hydroisomerization reaction of C8-aromatics

    Institute of Scientific and Technical Information of China (English)

    Ouguan XU; Hongye SU; Xiaoming JIN; Jian CHU

    2008-01-01

    Based on the reported reaction networks, a novel six-component hydroisomerization reaction net-work with a new lumped species including C8-naphthenes and Cs-paraffins is proposed and a kinetic model for a commercial unit is also developed. An empirical catalyst deactivation function is incorporated into the model accounting for the loss in activity because of coke forma-tion on the catalyst surface during the long-term opera-tion. The Runge-Kutta method is used to solve the ordinary differential equations of the model. The reaction kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential vari-able metric optimization method (BFGS). The kinetic model is validated by an industrial unit with sets of plant data under different operating conditions and simulation results show a good agreement between the model predic-tions and the plant observations.

  13. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  14. Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study

    KAUST Repository

    Wang, Zhandong

    2015-07-01

    Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.

  15. Systematic construction of kinetic models from genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Natalie J Stanford

    Full Text Available The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments.

  16. Modelling of gas-liquid reactors - stability and dynamic behaviour of a hydroformylation reactor, influence of mass transfer in the kinetics controlled regime

    NARCIS (Netherlands)

    Elk, E.P. van; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.

    2001-01-01

    On behalf of the development of new hydroformylation reactors, a research project was initiated to examine the dynamics of hydroformylation processes. The current paper presents the results of applying the rigorous reactor model and the approximate reactor model on a new, to be developed, hydroformy

  17. Convergent synthesis of proteins by kinetically controlled ligation

    Science.gov (United States)

    Kent, Stephen; Pentelute, Brad; Bang, Duhee; Johnson, Erik; Durek, Thomas

    2010-03-09

    The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.

  18. Repopulation Kinetics and the Linear-Quadratic Model

    Science.gov (United States)

    O'Rourke, S. F. C.; McAneney, H.; Starrett, C.; O'Sullivan, J. M.

    2009-08-01

    The standard Linear-Quadratic (LQ) survival model for radiotherapy is used to investigate different schedules of radiation treatment planning for advanced head and neck cancer. We explore how these treament protocols may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al. [1], which was concerned with the case of exponential repopulation between treatments. Treatment schedules investigated include standarized and accelerated fractionation. Calculations based on the present work show, that even with growth laws scaled to ensure that the repopulation kinetics for advanced head and neck cancer are comparable, considerable variation in the survival fraction to orders of magnitude emerged. Calculations show that application of the Gompertz model results in a significantly poorer prognosis for tumour eradication. Gaps in treatment also highlight the differences in the LQ model with the effect of repopulation kinetics included.

  19. Kinetic modeling of the Townsend breakdown in argon

    Science.gov (United States)

    Macheret, S. O.; Shneider, M. N.

    2013-10-01

    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  20. Hard-sphere kinetic models for inert and reactive mixtures

    Science.gov (United States)

    Polewczak, Jacek

    2016-10-01

    I consider stochastic variants of a simple reacting sphere (SRS) kinetic model (Xystris and Dahler 1978 J. Chem. Phys. 68 387-401, Qin and Dahler 1995 J. Chem. Phys. 103 725-50, Dahler and Qin 2003 J. Chem. Phys. 118 8396-404) for dense reacting mixtures. In contrast to the line-of-center models of chemical reactive models, in the SRS kinetic model, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the SRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard sphere-like. I consider a four component mixture A, B, A *, B *, in which the chemical reactions are of the type A+B\\rightleftharpoons {{A}\\ast}+{{B}\\ast} , with A * and B * being distinct species from A and B. This work extends the joined works with George Stell to the kinetic models of dense inert and reactive mixtures. The idea of introducing smearing-type effect in the collisional process results in a new class of stochastic kinetic models for both inert and reactive mixtures. In this paper the important new mathematical properties of such systems of kinetic equations are proven. The new results for stochastic revised Enskog system for inert mixtures are also provided.

  1. Modeling of hydrogen production methods: Single particle model and kinetics assessment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Institute of Technology, Pasadena, CA (United States)

    1996-10-01

    The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.

  2. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    2014-01-01

    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate...

  3. Some models for the adsorption kinetics of pesticides in soil

    NARCIS (Netherlands)

    Leistra, M.; Dekkers, W.A.

    1977-01-01

    Three models describing adsorption‐desorption kinetics of pesticides in soil, that could be incorporated into computer programs on pesticide movement in soil, were discussed, the first model involved single first‐order rate equations for adsorption and desorption. Results from an analytical and a

  4. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, Anders; Lynggaard, Hasse Harloff; Stegelmann, Carsten;

    2005-01-01

    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5–23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  5. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.;

    2005-01-01

    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  6. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models.

    Science.gov (United States)

    Ocampo-Perez, Raul; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa M

    2011-12-01

    The concentration decay curves for the adsorption of phenol on organobentonite were obtained in an agitated tank batch adsorber. The experimental adsorption rate data were interpreted with diffusional models as well as first-order, second-order and Langmuir kinetic models. The surface diffusion model adjusted the data quite well, revealing that the overall rate of adsorption was controlled by surface diffusion. Furthermore, the surface diffusion coefficient increased raising the mass of phenol adsorbed at equilibrium and was independent of the particle diameter in the range 0.042-0.0126 cm. It was demonstrated that the overall rate of adsorption was essentially not affected by the external mass transfer. The second-order and the Langmuir kinetic models fitted the experimental data quite well; however, the kinetic constants of both models varied without any physical meaning while increasing the particle size and the mass of phenol adsorbed at equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Kinetic model of the Buyers’ market

    Science.gov (United States)

    Zhykharsky, Alexander V.

    2013-09-01

    In this work the following results are received. The closed mathematical apparatus describing the process of interaction of the Buyers’ market with retail Shop is created. The “statistical analogy” between the vacuum electrostatic diode and the Buyers’ market co-operating with retail Shop is considered. On the basis of the spent analysis the closed mathematical apparatus describing process of interaction of the Buyers’ market with retail Shop is created. The analytical expressions connecting a stream of Buyers, come to Shop, and a stream of the gain of Shop, with parameters of the Buyers’ market are received. For check of adequacy of the received model it is solved of some real “market” problems. On the basis of the spent researches principles of construction of Information-analytical Systems of new type which provide direct measurements of parameters of the Buyers’ market are developed. Actually these Systems are devices for measurement of parameters of this market. In this work it is shown that by means of the device developed for measurement of parameters of the Buyers’ market, creation of a new science-“demandodynamics” the Buyers’ market, is possible. Here the term “demandodynamics the Buyers’ market” is accepted by analogy to the term “thermodynamics” in physics. (In this work it is shown that for the Buyers’ market concept “demand” is similar to concept “temperature” in physics.) The construction methodology “demandodynamics” the Buyers’ market is defined and is shown that within the limits of this science working out of a technique of a direct control by a condition of the Buyers’ market is possible.

  8. Label-free solution-based kinetic study of aptamer-small molecule interactions by kinetic capillary electrophoresis with UV detection revealing how kinetics control equilibrium.

    Science.gov (United States)

    Bao, Jiayin; Krylova, Svetlana M; Reinstein, Oren; Johnson, Philip E; Krylov, Sergey N

    2011-11-15

    Here we demonstrate a label-free solution-based approach for studying the kinetics of biopolymer-small molecule interactions. The approach utilizes kinetic capillary electrophoresis (KCE) separation and UV light absorption detection of the unlabeled small molecule. In this proof-of-concept work, we applied KCE-UV to study kinetics of interaction between a small molecule and a DNA aptamer. From the kinetic analysis of a series of aptamers, we found that dissociation rather than binding controls the stability of the complex. Because of its label-free features and generic nature, KCE-UV promises to become a practical tool for challenging kinetic studies of biopolymer-small molecule interactions.

  9. Information cascade, Kirman's ant colony model, and kinetic Ising model

    CERN Document Server

    Hisakado, Masato

    2014-01-01

    In this paper, we discuss a voting model in which voters can obtain information from a finite number of previous voters. There exist three groups of voters: (i) digital herders and independent voters, (ii) analog herders and independent voters, and (iii) tanh-type herders. In our previous paper, we used the mean field approximation for case (i). In that study, if the reference number r is above three, phase transition occurs and the solution converges to one of the equilibria. In contrast, in the current study, the solution oscillates between the two equilibria, that is, good and bad equilibria. In this paper, we show that there is no phase transition when r is finite. If the annealing schedule is adequately slow from finite r to infinite r, the voting rate converges only to the good equilibrium. In case (ii), the state of reference votes is equivalent to that of Kirman's ant colony model, and it follows beta binomial distribution. In case (iii), we show that the model is equivalent to the finite-size kinetic...

  10. Comparison of linear modes in kinetic plasma models

    CERN Document Server

    Camporeale, Enrico

    2016-01-01

    We compare, in an extensive and systematic way, linear theory results obtained with the hybrid (ion-kinetic and electron-fluid), the gyrokinetic and the fully-kinetic plasma models. We present a test case with parameters that are relevant for solar wind turbulence at small scales, which is a topic now recognized to need a kinetic treatment, to a certain extent. We comment on the comparison of low-frequency single modes (Alfv\\'{e}n/ion-cyclotron, ion-acoustic, and fast modes) for a wide range of propagation angles, and on the overall spectral properties of the linear operators, for quasi-perpendicular propagation. The methodology and the results presented in this paper will be valuable when choosing which model should be used in regimes where the assumptions of each model are not trivially satisfied.

  11. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, I., E-mail: innocentoboh@uniuyo.edu.ng [Department of Chemical and Petroleum Engineering, University of Uyo, Uyo (Nigeria); Aluyor, E.; Audu, T. [Department of Chemical Engineering, University of Uyo, BeninCity, BeninCity (Nigeria)

    2015-03-30

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R{sup 2}), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem.

  12. Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis

    KAUST Repository

    Eldeeb, Mazen A.

    2016-08-30

    A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.

  13. A Detailed Chemical Kinetic Model for TNT

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K

    2005-01-13

    A detailed chemical kinetic mechanism for 2,4,6-tri-nitrotoluene (TNT) has been developed to explore problems of explosive performance and soot formation during the destruction of munitions. The TNT mechanism treats only gas-phase reactions. Reactions for the decomposition of TNT and for the consumption of intermediate products formed from TNT are assembled based on information from the literature and on current understanding of aromatic chemistry. Thermodynamic properties of intermediate and radical species are estimated by group additivity. Reaction paths are developed based on similar paths for aromatic hydrocarbons. Reaction-rate constant expressions are estimated from the literature and from analogous reactions where the rate constants are available. The detailed reaction mechanism for TNT is added to existing reaction mechanisms for RDX and for hydrocarbons. Computed results show the effect of oxygen concentration on the amount of soot precursors that are formed in the combustion of RDX and TNT mixtures in N{sub 2}/O{sub 2} mixtures.

  14. Kinetic models for irreversible processes on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N.O.

    1979-04-01

    The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism.

  15. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P;

    1994-01-01

    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....

  16. Plasma interfacial mixing layers: Comparisons of fluid and kinetic models

    Science.gov (United States)

    Vold, Erik; Yin, Lin; Taitano, William; Albright, B. J.; Chacon, Luis; Simakov, Andrei; Molvig, Kim

    2016-10-01

    We examine plasma transport across an initial discontinuity between two species by comparing fluid and kinetic models. The fluid model employs a kinetic theory approximation for plasma transport in the limit of small Knudsen number. The kinetic simulations include explicit particle-in-cell simulations (VPIC) and a new implicit Vlasov-Fokker-Planck code, iFP. The two kinetic methods are shown to be in close agreement for many aspects of the mixing dynamics at early times (to several hundred collision times). The fluid model captures some of the earliest time dynamic behavior seen in the kinetic results, and also generally agrees with iFP at late times when the total pressure gradient relaxes and the species transport is dominated by slow diffusive processes. The results show three distinct phases of the mixing: a pressure discontinuity forms across the initial interface (on times of a few collisions), the pressure perturbations propagate away from the interfacial mixing region (on time scales of an acoustic transit) and at late times the pressure relaxes in the mix region leaving a non-zero center of mass flow velocity. The center of mass velocity associated with the outward propagating pressure waves is required to conserve momentum in the rest frame. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  17. Insulin kinetics and the Neonatal Intensive Care Insulin-Nutrition-Glucose (NICING) model.

    Science.gov (United States)

    Dickson, J L; Pretty, C G; Alsweiler, J; Lynn, A; Chase, J G

    2017-02-01

    Models of human glucose-insulin physiology have been developed for a range of uses, with similarly different levels of complexity and accuracy. STAR (Stochastic Targeted) is a model-based approach to glycaemic control. Elevated blood glucose concentrations (hyperglycaemia) are a common complication of stress and prematurity in very premature infants, and have been associated with worsened outcomes and higher mortality. This research identifies and validates the model parameters for model-based glycaemic control in neonatal intensive care. C-peptide, plasma insulin, and BG from a cohort of 41 extremely pre-term (median age 27.2 [26.2-28.7] weeks) and very low birth weight infants (median birth weight 839 [735-1000] g) are used alongside C-peptide kinetic models to identify model parameters associated with insulin kinetics in the NICING (Neonatal Intensive Care Insulin-Nutrition-Glucose) model. A literature analysis is used to determine models of kidney clearance and body fluid compartment volumes. The full, final NICING model is validated by fitting the model to a cohort of 160 glucose, insulin, and nutrition data records from extremely premature infants from two different NICUs (neonatal intensive care units). Six model parameters related to insulin kinetics were identified. The resulting NICING model is more physiologically descriptive than prior model iterations, including clearance pathways of insulin via the liver and kidney, rather than a lumped parameter. In addition, insulin diffusion between plasma and interstitial spaces is evaluated, with differences in distribution volume taken into consideration for each of these spaces. The NICING model was shown to fit clinical data well, with a low model fit error similar to that of previous model iterations. Insulin kinetic parameters have been identified, and the NICING model is presented for glycaemic control neonatal intensive care. The resulting NICING model is more complex and physiologically relevant, with no

  18. Thermodynamic and Kinetic Modeling of Transcriptional Pausing

    National Research Council Canada - National Science Library

    Vasisht R. Tadigotla; Dáibhid Ó. Maoiléidigh; Anirvan M. Sengupta; Vitaly Epshtein; Richard H. Ebright; Evgeny Nudler; Andrei E. Ruckenstein

    2006-01-01

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC...

  19. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  20. 3D Building Model Fitting Using A New Kinetic Framework

    CERN Document Server

    Brédif, Mathieu; Pierrot-Deseilligny, Marc; Maître, Henri

    2008-01-01

    We describe a new approach to fit the polyhedron describing a 3D building model to the point cloud of a Digital Elevation Model (DEM). We introduce a new kinetic framework that hides to its user the combinatorial complexity of determining or maintaining the polyhedron topology, allowing the design of a simple variational optimization. This new kinetic framework allows the manipulation of a bounded polyhedron with simple faces by specifying the target plane equations of each of its faces. It proceeds by evolving continuously from the polyhedron defined by its initial topology and its initial plane equations to a polyhedron that is as topologically close as possible to the initial polyhedron but with the new plane equations. This kinetic framework handles internally the necessary topological changes that may be required to keep the faces simple and the polyhedron bounded. For each intermediate configurations where the polyhedron looses the simplicity of its faces or its boundedness, the simplest topological mod...

  1. A kinetic model of carbon burnout in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Jian-Kuan Sun; Lunden, M. [Brown University, Providence, RI (United States). Division of Engineering

    1998-04-01

    The degree of carbon burnout is an important operating characteristic of full-scale suspension-fired coal combustion systems affecting boiler efficiency, electrostatic precipitator operation and the value of fly ash as a saleable product. Prediction of carbon loss requires special char combustion kinetics valid through the very high conversions targeted in industry (typically {gt} 99.5%), and valid for a wide-range of particle temperature histories occurring in full-scale furnaces. The paper presents high-temperature kinetic data for five coal chars in the form of time-resolved burning profiles that include the late stages of combustion. It then describes the development and validation of the Carbon Burnout Kinetic Model (CBK), a coal-general kinetics package that is specifically designed to predict the total extent of carbon burnout and ultimate fly ash carbon content for prescribed temperature/oxygen histories typical of pulverized coal combustion systems. The model combines the single-film treatment of cha oxidation with quantitative descriptions of thermal annealing, statistical kinetics, statistical densities, and ash inhibition in the late stages of combustion. In agreement with experimental observations, the CBK model predicts (1) low reactivities for unburned carbon residues extracted from commercial ash samples, (2) reactivity loss in the late stages of laboratory combustion, (3) the observed sensitivity of char reactivity to high-temperature heat treatment on second and subsecond time scales, and (4) the global reaction inhibition by mineral matter in the late stages of combustion observed in single-particle imaging studies. The model ascribes these various char deactivation phenomena to the combined effects of thermal annealing, ash inhibition, and the preferential consumption of more reactive particles (statistical kinetics), the relative contributions of which vary greatly with combustion conditions. 39 refs., 4 figs., 4 tabs., 1 app.

  2. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    Science.gov (United States)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J.-P.

    2017-07-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasma, including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these discharges. Two kinds of TVWs are considered, valleys-to-peaks and saw-tooth, with amplitude and slope asymmetry respectively. By tailoring the voltage waveform only, it is possible to exert substantial control over the peak density and position of negative ions inside the discharge volume. This control is particularly effective for saw-tooth waveforms. Insight into the mechanisms allowing this control is provided by an analysis of the model results. This reveals the roles of the vibrational distribution function and of the electron energy distribution and their correlations, as well as changes in the negative ion transport in the electric field when using different TVWs. Considering the chemical reactivity of H- ions, the possibility of a purely electrical control of the negative ion cloud in a reactor operating with a feedstock gas diluted by hydrogen may find interesting applications. This is the first study of vibrational kinetics in the context of TVWs in molecular gases.

  3. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  4. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  5. A physical model of nicotinic ACh receptor kinetics

    OpenAIRE

    Nurowska, Ewa; Bratiichuk, Mykola; Dworakowska, Beata; Nowak, Roman J.

    2008-01-01

    We present a new approach to nicotinic receptor kinetics and a new model explaining random variabilities in the duration of open events. The model gives new interpretation on brief and long receptor openings and predicts (for two identical binding sites) the presence of three components in the open time distribution: two brief and a long. We also present the physical model of the receptor block. This picture naturally and universally explains receptor desensitization, the phenomenon of centra...

  6. A Discrete Velocity Traffic Kinetic Model Including Desired Speed

    Directory of Open Access Journals (Sweden)

    Shoufeng Lu

    2013-05-01

    Full Text Available We introduce the desired speed variable into the table of games and formulate a new table of games and the corresponding discrete traffic kinetic model. We use the hybrid programming technique of VB and MATLAB to develop the program. Lastly, we compared the proposed model result and the detector data. The results show that the proposed model can describe the traffic flow evolution.

  7. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  8. Phenobarbital loaded microemulsion: development, kinetic release and quality control

    Directory of Open Access Journals (Sweden)

    Kayo Alves Figueiredo

    Full Text Available ABSTRACT This study aimed to obtain and characterize a microemulsion (ME containing phenobarbital (PB. The PB was incorporated in the proportion of 5% and 10% in a microemulsion system containing Labrasol(r, ethanol, isopropyl myristate and purified water. The physicochemical characterization was performed and the primary stability of the ME was evaluated. An analytical method was developed using spectrophotometry in UV = 242 nm. The kinetics of the in vitro release (Franz model of the ME and the emulsion (EM containing PB was evaluated. The incorporation of PB into ME at concentrations of 5 and 10% did not change pH and resistance to centrifugation. There was an increase in particle size, a decrease of conductivity and a change in the refractive index in relation to placebo ME. The ME remained stable in preliminary stability tests. The analytical method proved to be specific, linear, precise, accurate and robust. Regarding the kinetics of the in vitro release, ME obtained an in vitro release profile greater than the EM containing PB. Thus, the obtained ME has a potential for future transdermal application, being able to compose a drug delivery system for the treatment of epilepsy.

  9. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    Science.gov (United States)

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  10. A Kinetic Model for Vapor-liquid Flows

    Science.gov (United States)

    2005-07-13

    A Kinetic Model for Vapor-liquid Flows Aldo Frezzotti, Livio Gibelli and Silvia Lorenzani Dipartimento di Matematica del Politecnico di Milano Piazza...ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32 - 20133 Milano - Italy 8. PERFORMING ORGANIZATION REPORT NUMBER

  11. Development of simple kinetic models and parameter estimation for ...

    African Journals Online (AJOL)

    PANCHIGA

    Key words: Exponential feed, growth modeling, Monod kinetic equation, Pichia pastoris, recombinant human ... Author(s) agree that this article remains permanently open access under the terms of the Creative Commons .... Methanol was the only energy and carbon source ..... A potential explanation for the decline in cell.

  12. Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling.

    Science.gov (United States)

    Noé, Frank; Banisch, Ralf; Clementi, Cecilia

    2016-11-08

    Identification of the main reaction coordinates and building of kinetic models of macromolecular systems require a way to measure distances between molecular configurations that can distinguish slowly interconverting states. Here we define the commute distance that can be shown to be closely related to the expected commute time needed to go from one configuration to the other, and back. A practical merit of this quantity is that it can be easily approximated from molecular dynamics data sets when an approximation of the Markov operator eigenfunctions is available, which can be achieved by the variational approach to approximate eigenfunctions of Markov operators, also called variational approach of conformation dynamics (VAC) or the time-lagged independent component analysis (TICA). The VAC or TICA components can be scaled such that a so-called commute map is obtained in which Euclidean distance corresponds to the commute distance, and thus kinetic models such as Markov state models can be computed based on Euclidean operations, such as standard clustering. In addition, the distance metric gives rise to a quantity we call total kinetic content, which is an excellent score to rank input feature sets and kinetic model quality.

  13. Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens;

    2016-01-01

    A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests, or p...

  14. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models.

    Science.gov (United States)

    Battin-Leclerc, Frédérique; Blurock, Edward; Bounaceur, Roda; Fournet, René; Glaude, Pierre-Alexandre; Herbinet, Olivier; Sirjean, Baptiste; Warth, V

    2011-09-01

    In the context of limiting the environmental impact of transportation, this critical review discusses new directions which are being followed in the development of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels. In the first part, the performance of current models, especially in terms of the prediction of pollutant formation, is evaluated. In the next parts, recent methods and ways to improve these models are described. An emphasis is given on the development of detailed models based on elementary reactions, on the production of the related thermochemical and kinetic parameters, and on the experimental techniques available to produce the data necessary to evaluate model predictions under well defined conditions (212 references). This journal is © The Royal Society of Chemistry 2011

  15. Modeling on the Effect of Coal Loads on Kinetic Energy of Balls for Ball Mills

    Directory of Open Access Journals (Sweden)

    Yan Bai

    2015-07-01

    Full Text Available This paper presents a solution for the detection and control of coal loads that is more accurate and convenient than those currently used. To date, no research has addressed the use of a grinding medium as the controlled parameter. To improve the accuracy of the coal load detection based on the kinetic energy of balls in a tubular ball mill, a Discrete Element Method (DEM model for ball kinematics based on coal loads is proposed. The operating process for a ball mill and the ball motion, as influenced by the coal quality and the coal load, was analyzed carefully. The relationship between the operating efficiency of a coal pulverizing system, coal loads, and the balls’ kinetic energy was obtained. Origin and Matlab were utilized to draw the variation of parameters with increasing coal loads in the projectile and cascading motion states. The parameters include the balls’ real-time kinetic energy, the friction energy consumption, and the mill’s total work. Meanwhile, a method of balanced adjacent degree and a physical experiment were proposed to verify the considerable effect of the balls’ kinetic energy on coal loads. The model and experiment results indicate that a coal load control method based on the balls’ kinetic energy is therefore feasible for the optimized operation of a coal pulverizing system.

  16. Second order kinetic Kohn-Sham lattice model

    CERN Document Server

    Solorzano, Sergio; Herrmann, Hans

    2016-01-01

    In this work we introduce a new semi-implicit second order correction scheme to the kinetic Kohn-Sham lattice model. The new approach is validated by performing realistic exchange-correlation energy calculations of atoms and dimers of the first two rows of the periodic table finding good agreement with the expected values. Additionally we simulate the ethane molecule where we recover the bond lengths and compare the results with standard methods. Finally, we discuss the current applicability of pseudopotentials within the lattice kinetic Kohn-Sham approach.

  17. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  18. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  19. Kinetically controlled growth of gallium on stepped Si (553) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh; Pasha, Syed Khalid; Govind,, E-mail: govind@nplindia.org

    2013-10-15

    Kinetically controlled growth of gallium (Ga) metal has been reported on high index stepped Si (553) surface and its thermal stability with various novel superstructural phases has been analyzed. Auger electron spectroscopy studies revealed that the adsorption of Ga at room temperature (RT) follows Frank–van der Merwe (FM) growth mode while for higher substrate temperature, Ga adsorption remains within the submonolayer range. Thermal desorption and low energy electron diffraction studies investigated the formation of thermally stable Ga-islands and the various Ga induced superstructural phase on Si (553). During room temperature adsorption, (1 1 1)7 × 7 facet of Si (553) reconstructed into (1 1 1)6 × 6 facet while during desorption process, stable (1 1 1)6 × 6 and (1 1 1)√3 × √3-R30° surface reconstructions has been observed.

  20. Diffusion Controlled Reactions, Fluctuation Dominated Kinetics, and Living Cell Biochemistry

    CERN Document Server

    Konkoli, Zoran

    2009-01-01

    In recent years considerable portion of the computer science community has focused its attention on understanding living cell biochemistry and efforts to understand such complication reaction environment have spread over wide front, ranging from systems biology approaches, through network analysis (motif identification) towards developing language and simulators for low level biochemical processes. Apart from simulation work, much of the efforts are directed to using mean field equations (equivalent to the equations of classical chemical kinetics) to address various problems (stability, robustness, sensitivity analysis, etc.). Rarely is the use of mean field equations questioned. This review will provide a brief overview of the situations when mean field equations fail and should not be used. These equations can be derived from the theory of diffusion controlled reactions, and emerge when assumption of perfect mixing is used.

  1. Kinetically controlled growth of gallium on stepped Si (553) surface

    Science.gov (United States)

    Kumar, Mukesh; Pasha, Syed Khalid; Govind

    2013-10-01

    Kinetically controlled growth of gallium (Ga) metal has been reported on high index stepped Si (553) surface and its thermal stability with various novel superstructural phases has been analyzed. Auger electron spectroscopy studies revealed that the adsorption of Ga at room temperature (RT) follows Frank-van der Merwe (FM) growth mode while for higher substrate temperature, Ga adsorption remains within the submonolayer range. Thermal desorption and low energy electron diffraction studies investigated the formation of thermally stable Ga-islands and the various Ga induced superstructural phase on Si (553). During room temperature adsorption, (1 1 1)7 × 7 facet of Si (553) reconstructed into (1 1 1)6 × 6 facet while during desorption process, stable (1 1 1)6 × 6 and (1 1 1)√3 × √3-R30° surface reconstructions has been observed.

  2. Laplace transform in tracer kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica

    2013-07-01

    The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)

  3. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  4. Phase transformations in low-carbon steels; modelling the kinetics in terms of the interface mobility

    Energy Technology Data Exchange (ETDEWEB)

    Leeuwen, Y. van; Kop, T.A.; Sietsma, J.; Zwaag, S. van der [Technische Univ. Delft (Netherlands). Lab. of Materials Science

    1999-09-01

    The mechanical properties of steel are determined by the microstructure that develops during the production process and is a joint result of effects of chemical composition and of heat treatment. This paper deals with the kinetics of the phase transformation between the high temperature FCC-phase austenite and the low temperature BCC-phase ferrite as it occurs during controlled cooling. In order to predict the transformation kinetics, a physical model has been developed that considers both composition effects and the actual lattice transformation rate. The model is verified against experimental dilatometry data for three lean carbon-manganese steel grades. Notwithstanding the model having no adjustable parameters, it yields adequate simulations of the transformation kinetics. (orig.)

  5. Intrinsic Kinetic Modeling of Thermal Dimerization of C5 Fraction

    Institute of Scientific and Technical Information of China (English)

    Guo Liang; Wang Tiefeng; Li Dongfeng; Wang Jinfu

    2016-01-01

    This work aims to investigate the intrinsic kinetics of thermal dimerization of C5 fraction in the reactive distilla-tion process. Experiments are conducted in an 1000-mL stainless steel autoclave under some selected design conditions. By means of the weighted least squares method, the intrinsic kinetics of thermal dimerization of C5 fraction is established, and the corresponding pre-exponential factor as well as the activation energy are determined. For example, the pre-exponential factor A is equal to 4.39×105 and the activation energy Ea is equal to 6.58×104 J/mol for the cyclopentadiene dimerization re-action. The comparison between the experimental and calculated results shows that the kinetics model derived in this work is accurate and reliable, which can be used in the design of reactive distillation columns.

  6. Kinetics of Model Reactions for Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Henry Hall

    2012-02-01

    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  7. Thermodynamic and kinetic modeling of transcriptional pausing

    OpenAIRE

    Tadigotla, Vasisht R.; Maoiléidigh, Dáibhid Ó; Sengupta, Anirvan M.; Epshtein, Vitaly; Ebright, Richard H.; Nudler, Evgeny; Ruckenstein, Andrei E.

    2006-01-01

    We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA–DNA, DNA–RNA, and RNA–RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the as...

  8. Kinetic theories for spin models for cooperative relaxation dynamics

    Science.gov (United States)

    Pitts, Steven Jerome

    The facilitated kinetic Ising models with asymmetric spin flip constraints introduced by Jackle and co-workers [J. Jackle, S. Eisinger, Z. Phys. B 84, 115 (1991); J. Reiter, F. Mauch, J. Jackle, Physica A 184, 458 (1992)] exhibit complex relaxation behavior in their associated spin density time correlation functions. This includes the growth of relaxation times over many orders of magnitude when the thermodynamic control parameter is varied, and, in some cases, ergodic-nonergodic transitions. Relaxation equations for the time dependence of the spin density autocorrelation function for a set of these models are developed that relate this autocorrelation function to the irreducible memory function of Kawasaki [K. Kawasaki, Physica A 215, 61 (1995)] using a novel diagrammatic series approach. It is shown that the irreducible memory function in a theory of the relaxation of an autocorrelation function in a Markov model with detailed balance plays the same role as the part of the memory function approximated by a polynomial function of the autocorrelation function with positive coefficients in schematic simple mode coupling theories for supercooled liquids [W. Gotze, in Liquids, Freezing and the Glass Transition, D. Levesque, J. P. Hansen, J. Zinn-Justin eds., 287 (North Holland, New York, 1991)]. Sets of diagrams in the series for the irreducible memory function are summed which lead to approximations of this type. The behavior of these approximations is compared with known results from previous analytical calculations and from numerical simulations. For the simplest one dimensional model, relaxation equations that are closely related to schematic extended mode coupling theories [W. Gotze, ibid] are also derived using the diagrammatic series. Comparison of the results of these approximate theories with simulation data shows that these theories improve significantly on the results of the theories of the simple schematic mode coupling theory type. The potential

  9. Homogeneous gas phase models of relaxation kinetics in neon afterglow

    Directory of Open Access Journals (Sweden)

    Marković Vidosav Lj.

    2007-01-01

    Full Text Available The homogeneous gas phase models of relaxation kinetics (application of the gas phase effective coefficients to represent surface losses are applied for the study of charged and neutral active particles decay in neon afterglow. The experimental data obtained by the breakdown time delay measurements as a function of the relaxation time td (τ (memory curve is modeled in early, as well as in late afterglow. The number density decay of metastable states can explain neither the early, nor the late afterglow kinetics (memory effect, because their effective lifetimes are of the order of milliseconds and are determined by numerous collision quenching processes. The afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular neon Ne2 + and nitrogen ions N2 + (present as impurities and the approximate value of N2 + ambipolar diffusion coefficient is determined. After the charged particle decay, the secondary emitted electrons from the surface catalyzed excitation of nitrogen atoms on the cathode determine the breakdown time delay down to the cosmic rays and natural radioactivity level. Due to the neglecting of number density spatial profiles, the homogeneous gas phase models give only the approximate values of the corresponding coefficients, but reproduce correctly other characteristics of afterglow kinetics from simple fits to the experimental data.

  10. Enzymatic hydrolysis of protein:mechanism and kinetic model

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; He Zhimin

    2006-01-01

    The bioreaction mechanism and kinetic behavior of protein enzymatic hydrolysis for preparing active peptides were investigated to model and characterize the enzymatic hydrolysis curves.Taking into account single-substrate hydrolysis,enzyme inactivation and substrate or product inhibition,the reaction mechanism could be deduced from a series of experimental results carried out in a stirred tank reactor at different substrate concentrations,enzyme concentrations and temperatures based on M-M equation.An exponential equation dh/dt = aexp(-bh) was also established,where parameters a and b have different expressions according to different reaction mechanisms,and different values for different reaction systems.For BSA-trypsin model system,the regressive results agree with the experimental data,i.e.the average relative error was only 4.73%,and the reaction constants were determined as Km = 0.0748 g/L,Ks = 7.961 g/L,kd = 9.358/min,k2 =38.439/min,Ea= 64.826 kJ/mol,Ed= 80.031 kJ/mol in accordance with the proposed kinetic mode.The whole set of exponential kinetic equations can be used to model the bioreaction process of protein enzymatic hydrolysis,to calculate the thermodynamic and kinetic constants,and to optimize the operating parameters for bioreactor design.

  11. Vlasov models for kinetic Weibel-type instabilities

    Science.gov (United States)

    Ghizzo, A.; Sarrat, M.; Del Sarto, D.

    2017-02-01

    The Weibel instability, driven by a temperature anisotropy, is investigated within different kinetic descriptions based on the semi-Lagrangian full kinetic and relativistic Vlasov-Maxwell model, on the multi-stream approach, which is based on a Hamiltonian reduction technique, and finally, with the full pressure tensor fluid-type description. Dispersion relations of the Weibel instability are derived using the three different models. A qualitatively different regime is observed in Vlasov numerical experiments depending on the excitation of a longitudinal plasma electric field driven initially by the combined action of the stream symmetry breaking and weak relativistic effects, in contrast with the existing theories of the Weibel instability based on their purely transverse characters. The multi-stream model offers an alternate way to simulate easily the coupling with the longitudinal electric field and particularly the nonlinear regime of saturation, making numerical experiments more tractable, when only a few moments of the distribution are considered. Thus a numerical comparison between the reduced Hamiltonian model (the multi-stream model) and full kinetic (relativistic) Vlasov simulations has been investigated in that regime. Although nonlinear simulations of the fluid model, including the dynamics of the pressure tensor, have not been carried out here, the model is strongly relevant even in the three-dimensional case.

  12. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  13. Sonolytic degradation of dimethoate: kinetics, mechanisms and toxic intermediates controlling.

    Science.gov (United States)

    Yao, Juan-Juan; Hoffmann, Michael R; Gao, Nai-Yun; Zhang, Zhi; Li, Lei

    2011-11-15

    The sonolytic degradation of aqueous solutions of dimethoate, O,O-dimethyl S-[2-(methylamino)-2-oxoethyl]dithiophosphate, was examined. Optimal degradation rates were obtained at 619 kHz for continuous sonolysis and 406 kHz for pulse sonolysis. The primary pathways for degradation include hydroxyl radical oxidation, hydrolysis and pyrolysis on collapsing cavitation bubble interfaces. Reaction mechanisms coupled with the corresponding kinetic models are proposed to reproduce the observed concentration versus time profiles for dimethoate, omethoate and N-(methyl) mercaptoacetamide during sonolysis. The oxidation and hydrolysis of dimethoate and omethoate occurred at the water-bubble interface was the rate-determining step for sonolytic overall degradation of dimethoate. More than 90% toxicity of dimethoate was reduced within 45 min ultrasonic irradiation. Ferrous ion at micro molar level can significantly enhance the sonolytic degradation of dimethoate and effectively reduce the yields of toxic intermediate omethoate.

  14. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute....... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...

  15. Kinetic model for the pathogenesis of radiation lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H. (Institute of Cancer Research, Sutton (UK). Surrey Branch)

    1982-09-01

    The development of radiation-induced lung damage can be explained by a kinetic model, based on the assumption that this damage becomes manifest only when a critical proportion (K) of essential cells have ceased to function, and that the rate of loss of these cells following irradiation is linear and dose-dependent. The kinetic model relates the surviving fraction to the time to manifestation of radiation-induced lung damage and to constants, K and the cell cycle time, T. Predictions made from the model about the nature of the response to irradiation are, for the most part, fulfilled. The model can also be used to interpret the response to combined treatment with irradiation and cytotoxic drugs, including the much earlier manifestation of lung damage sometimes seen with such treatment.

  16. Study on Kinetics for Desulfurization of Model Diesel

    Institute of Scientific and Technical Information of China (English)

    Qian Jianhua; Zhou Yuenan; Liu Lin; Wang Yue; Xing Jinjuan; Lü Hong

    2009-01-01

    In this study, by means of the experiments for desulfurization of model diesel through oxi-dative extraction, the changes associated with the rate of desulfurization of diesel and the mechanism for oxidation of sulfides in diesel were explored. Through studying the mechanism for oxidation of sulfides and the principle of solvent extraction, the kinetic equation of desulfurization via oxidative extraction were determined. By means of the evaluation of model parameters and curve fitting, the reaction order between organic sulfide and sulfone, the intrinsic oxidation rate constant of organic sulfide and sulfone, and the equilibrium constant between suifone in model diesel and extractive sol-vent were determined. The experimental values of the desulfurization rate and the theoretical values of the corresponding model equation had closely demonstrated that the desulfurization reaction rate had high accuracy. And the reaction kinetics could provide an important basis for diesel desulfurization process in the future.

  17. Cleaner combustion developing detailed chemical kinetic models

    CERN Document Server

    Battin-Leclerc, Frédérique; Blurock, Edward

    2013-01-01

    This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the  formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of min

  18. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    Science.gov (United States)

    Hankel, Marlies; Zhang, Hong; Nguyen, Thanh X; Bhatia, Suresh K; Gray, Stephen K; Smith, Sean C

    2011-05-07

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H(2)/D(2) and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D(2) transport is dramatically favored over H(2). However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients-implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H(2)/D(2) in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage through the pore mouth, is also

  19. Agent dynamics in kinetic models of wealth exchange

    CERN Document Server

    Chatterjee, Arnab

    2010-01-01

    We study the dynamics of individual agents in some kinetic models of wealth exchange, particularly, the models with savings. For the model with uniform savings, agents perform simple random walks in the `"wealth space". On the other hand, we observe ballistic diffusion in the model with distributed savings. There is an associated skewness in the gain-loss distribution which explains the steady state behavior in such models. We find that in general an agent gains while interacting with an agent with a larger saving propensity.

  20. Extraction of lycopene from tomato processing waste: kinetics and modelling.

    Science.gov (United States)

    Poojary, Mahesha M; Passamonti, Paolo

    2015-04-15

    Lycopene, a nutraceutical compound, was extracted from tomato processing waste, an abundantly available food industry by-product in Italy. The extraction kinetics was mathematically described using the first order kinetic model, the mass transfer model and Peleg's model to understand the physicochemical behaviour of the extraction. Samples were extracted using acetone/n-hexane mixtures at different ratios (1:3, 2:2 and 3:1, v/v) and at different temperatures (30, 40 and 50 °C) and simultaneously analysed using UV-VIS spectrophotometry. The lycopene yield was in the range 3.47-4.03 mg/100g, which corresponds to a percentage recovery of 65.22-75.75. All kinetic models gave a good fit to the experimental data, but the best one was Peleg's model, having the highest RAdj(2) and the lowest RMSE, MBE and χ(2) values. All the models confirmed that a temperature of 30 °C and solvent mixture of acetone/n-hexane 1:3 (v/v) provided optimal conditions for extraction of lycopene.

  1. Construction of reduced transport model by gyro-kinetic simulation with kinetic electrons in helical plasmas

    Science.gov (United States)

    Toda, S.; Nakata, M.; Nunami, M.; Ishizawa, A.; Watanabe, T.-H.; Sugama, H.

    2016-10-01

    A reduced model of the turbulent ion heat diffusivity is proposed by the gyrokinetic simulation code (GKV-X) with the adiabatic electrons for the high-Ti Large Helical Device discharge. The plasma parameter region of the short poloidal wavelength is studied, where the ion temperature gradient mode becomes unstable. The ion heat diffusivity by the nonlinear simulation with the kinetic electrons is found to be several times larger than the simulation results using the adiabatic electrons in the radial region 0.46 ion energy flux. The model of the turbulent diffusivity is derived as the function of the squared electrostatic potential fluctuation and the squared zonal flow potential. Next, the squared electrostatic potential fluctuation is approximated with the mixing length estimate. The squared zonal flow potential fluctuation is shown as the linear zonal flow response function. The reduced model of the turbulent diffusivity is derived as the function of the physical parameters by the linear GKV-X simulation with the kinetic electrons. This reduced model is applied to the transport code with the same procedure as.

  2. Kinetic Model of Biodiesel Processing Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Bambang Susilo

    2009-04-01

    Full Text Available Ultrasound is predicted to be able to accelerate the chemical reaction, to increase the conversion of plant oil into biodiesel, and to decrease the need of catalyst and energy input. The application of ultrasound for processing of biodiesel and the mathematical model were conducted in this research. The result of the experiments showed that the ultrasound increased reaction rate and the conversion of palm oil into biodiesel up to 100%. It was better than the process with mechanical stirrer that the conversion was just 96%. The duration to complete the process using ultrasound was 1 minute. It was 30 to 120 times faster than that with mechanical stirrer. Ultrasound transforms mechanical energy into inner energy of the fluids and causes an increasing of temperature. Simultaneously, natural mixing process undergo because of acoustic circulation. Simulation with experiment data showed that the acceleration of transesterification with ultrasound was affected not only by natural mixing and increasing temperature. The cavitation, surface tension of micro bubble, and hot spot accelerate chemical reaction. In fact, transesterification of palm oil with ultrasound still needs catalyst. It needs only about 20% of catalyst compared to the process with mechanical stirrer.

  3. Kinetic model of induced codeposition of Ni-Mo alloys

    Institute of Scientific and Technical Information of China (English)

    ZENG, Yue; MA, Ming; XIAO, Xiao-Ming; LI, Ze-Lin; LIAN, Shi-Xun; ZHOU, Shao-Min

    2000-01-01

    The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrodeposition. Ihe molybdate (MoO42-) could be firstly electrochemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys.The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1 ( E ) = 1. 23 × 10-9 CNexp( - 0. 198FE/ RT )mol/(dm2. s), k2 (E) = 3.28 × 10-10 CMoexp ( - 0.208FE/RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/RT) mol/(dm2 ·s), where CN and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs, saturated calornel electrode (SCE).The codeposition process could be well simulated by this model.

  4. Kinetic models for historical processes of fast invasion and aggression

    Science.gov (United States)

    Aristov, Vladimir V.; Ilyin, Oleg V.

    2015-04-01

    In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.

  5. Kinetic Modeling of Paraffin Aromatization over Zeolites: A Design Perspective

    Science.gov (United States)

    Bhan, Aditya; Katare, Santhoji; Caruthers, James; Lauterbach, Jochen; Venkatasubramanian, Venkat; Delgass, Nicholas

    2002-03-01

    A generic framework for catalyst design involving the solution of a forward predictive problem using hybrid models and the inverse problem using evolutionary algorithms has been proposed. In that context, we investigate the aromatization of light paraffins over HZSM-5 to obtain the catalyst descriptors and associated kinetic parameters that predict performance. A detailed kinetic model that can fundamentally quantify the catalytic properties of acid sites in terms of intrinsic parameters such as rate constants and activation energies of elementary steps is developed on the basis of the following types of reactions: adsorption/desorption, oligomerization/ beta-scission, hydride transfer, protolysis and aromatization. The reaction network so generated has been grouped under various reaction families taking into account the different stabilities and reactivities of the adsorbed carbenium/carbonium ions. The detailed parameterization of each reaction type, optimizing fits to data, linking catalyst descriptors to performance, and means of improving the robustness of the model will be presented.

  6. 5-Lump kinetic model for gas oil catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Ancheyta-Juarez, Jorge; Aguilar-Rodriguez, Enrique [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico 07730 DF (Mexico); Lopez-Isunza, Felipe [Universidad Autonoma Metropolitana-Iztapalapa, Mexico 09340 DF (Mexico)

    1999-02-22

    A new 5-lump kinetic model is proposed to describe the gas oil catalytic cracking (FCC) process. The model contains eight kinetic constants, including one for catalyst deactivation, taking into account LPG (combined C{sub 3}-C{sub 4}), dry gas (C{sub 2} and lighter) and coke yields separately from other lumps (unconverted gas oil and gasoline). Apparent activation energies were determined from experiments obtained in a microactivity reactor (MAT) at temperatures: 480C, 500C and 520C; for a catalyst-to-oil ratio of 5 using vacuum gas oil and equilibrium catalyst, both recovered from an industrial FCC unit. Product yields predicted by this model show good agreement with experimental data

  7. Pre-reheating magnetogenesis in the kinetic coupling model

    Science.gov (United States)

    Fujita, Tomohiro; Namba, Ryo

    2016-08-01

    Recent blazar observations provide growing evidence for the presence of magnetic fields in the extragalactic regions. While natural speculation is to associate the production with inflationary physics, it is known that magnetogenesis solely from inflation is quite challenging. We therefore study a model in which a noninflaton field χ coupled to the electromagnetic field through its kinetic term, -I2(χ )F2/4 , continues to move after inflation until the completion of reheating. This leads to a postinflationary amplification of the electromagnetic field. We compute all the relevant contributions to the curvature perturbation, including gravitational interactions, and impose the constraints from the CMB scalar fluctuations on the strength of magnetic fields. We, for the first time, explicitly verify both the backreaction and CMB constraints in a simple yet successful magnetogenesis scenario without invoking a dedicated low-scale inflationary model in the weak-coupling regime of the kinetic coupling model.

  8. Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chiarioni, A.; Reverberi, A.P.; Dovi, V.G. [Universita degli Studi di Genova (Italy). Dipartimento di Ingegneria Chimica e di Processo ' G.B. Bonino' ; El-Shaarawi, A.H. [National Water Research Institute, Burlington, Ont. (Canada)

    2003-10-01

    The main objective of this work is focused on the modelling of a steady-state reactor where an automotive shredder residue (ASR) is subject to pyrolysis. The gas and solid temperature inside the reactor and the relevant density profiles of both phases are simulated for fixed values of the geometry of the apparatus and a lumped kinetic model is adopted to take into account the high heterogeneity of the ASR material. The key elements for the simulation are the inlet solid temperature and the outlet gas temperature. The problem is modelled by a system of first-order boundary-value ordinary differential equations and it is solved by means of a relaxation technique owing to the nonlinearities contained in the chemical kinetic expression. (author)

  9. Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization

    Science.gov (United States)

    Ruslanov, Anatole D.; Bashylau, Anton V.

    2010-06-01

    We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.

  10. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)

    2013-10-15

    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  11. Stochastic effects in a discretized kinetic model of economic exchange

    Science.gov (United States)

    Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.

    2017-04-01

    Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.

  12. Kinetic modelling of enzyme inactivation Kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F.

    NARCIS (Netherlands)

    Schokker, E.P.

    1997-01-01

    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused by intermolecular autoproteolysis, where unfolded

  13. Ordering kinetics in model systems with inhibited interfacial adsorption

    DEFF Research Database (Denmark)

    Willart, J.-F.; Mouritsen, Ole G.; Naudts, J.

    1992-01-01

    The ordering kinetics in two-dimensional Ising-like spin moels with inhibited interfacial adsorption are studied by computer-simulation calculations. The inhibited interfacial adsorption is modeled by a particular interfacial adsorption condition on the structure of the domain wall between...... neighboring domains. This condition can be either hard, as modeled by a singularity in the domain-boundary potential, or soft, as modeled by a version of the Blume-Capel model. The results show that the effect of the steric hindrance, be it hard or soft, is only manifested in the amplitude, A...

  14. Modelling on corrosion inhibitor kinetics in carbon steel pipe used in oil industry

    Science.gov (United States)

    Hasmi, A. N.; Nuraini, N.; Wahyuningrum, D.; Sumarti, N.; Bunjali, B.

    2014-02-01

    A model to explain the kinetics of corrosion inhibitor is proposed here. The model is based on Transition State Theory. Our model has many similarities with Michelis-Menten Kinetics. The kinetics difference between uninhibited corrosion and inhibited corrosion is presented. Our model showed the inhibitor could suppress the corrosion rate.

  15. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  16. Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products

    DEFF Research Database (Denmark)

    Hereu, A.; Dalgaard, Paw; Garriga, M.;

    2012-01-01

    provided the best fit to the HP-inactivation kinetics. The relationships between the primary kinetic parameters (log kmax and log Nres) and pressure treatments were described by a polynomial secondary model. To estimate HP-inactivation of L. monocytogenes in log (N/N0) over time, a one-step global fitting...... procedure was applied. The secondary model was integrated into the primary model and the combined equation was fitted to the entire data-set to readjust parameter values. Validation of the developed models both under dynamic conditions and using external independent data supported their suitability...... for predictive purposes, e.g., to set the process criteria required to meet food safety objectives. Industrial relevanceQuantitative mathematical models for predicting inactivation of pathogens by HPP provide useful tools for a process optimization and real time control of a unit operation. The developed models...

  17. Kinetic models of gene expression including non-coding RNAs

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  18. Modeling organic micro pollutant degradation kinetics during sewage sludge composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2014-11-01

    Degradation of 13 different organic micro-pollutants in sewage sludge during aerobic composting at 5 different temperatures over a 52 day period was investigated. Adequacy of two kinetic models: a single first order, and a dual first order expression (using an early (first 7 days) and a late-time (last 45 days) degradation coefficient), for describing micro-pollutant degradation, and kinetic constant dependency on composting temperature were evaluated. The results showed that both models provide relatively good descriptions of the degradation process, with the dual first order model being most accurate. The single first order degradation coefficient was 0.025 d(-1) on average across all compounds and temperatures. At early times, degradation was about three times faster than at later times. Average values of the early and late time degradation coefficients for the dual first order model were 0.066 d(-1) and 0.022 d(-1), respectively. On average 30% of the initial micro-pollutant mass present in the compost was degraded rapidly during the early stages of the composting process. Single first order and late time dual first order kinetic constants were strongly dependent on composting temperature with maximum values at temperatures of 35-65°C. In contrast the early time degradation coefficients were relatively independent of composting temperature.

  19. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson;

    2012-01-01

    Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several...

  20. A kinetic model for the first stage of pygas upgrading

    Directory of Open Access Journals (Sweden)

    J. L. de Medeiros

    2007-03-01

    Full Text Available Pyrolysis gasoline - PYGAS - is an intermediate boiling product of naphtha steam cracking with a high octane number and high aromatic/unsaturated contents. Due to stabilization concerns, PYGAS must be hydrotreated in two stages. The first stage uses a mild trickle-bed conversion for removing extremely reactive species (styrene, dienes and olefins prior to the more severe second stage where sulfured and remaining olefins are hydrogenated in gas phase. This work addresses the reaction network and two-phase kinetic model for the first stage of PYGAS upgrading. Nonlinear estimation was used for model tuning with kinetic data obtained in bench-scale trickle-bed hydrogenation with a commercial Pd/Al2O3 catalyst. On-line sampling experiments were designed to study the influence of variables - temperature and spatial velocity - on the conversion of styrene, dienes and olefins.

  1. Stochastic kinetic models: Dynamic independence, modularity and graphs

    CERN Document Server

    Bowsher, Clive G

    2010-01-01

    The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition $[A,D,B]$ of the vertices, the graphical separation $A\\perp B|D$ in the undirected KIG has an intuitive chemical interpretation and implies that $A$ is locally independent of $B$ given $A\\cup D$. It is proved that this separation also results in global independence of the internal histories of $A$ and $B$ conditional on a history of the jumps in $D$ which, under conditions we derive, corresponds to the internal history of $D$. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Gra...

  2. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH

    2001-01-01

    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  3. Kinetic model of metabolic network for xiamenmycin biosynthetic optimisation.

    Science.gov (United States)

    Xu, Min-juan; Chen, Yong-cong; Xu, Jun; Ao, Ping; Zhu, Xiao-mei

    2016-02-01

    Xiamenmycins, a series of prenylated benzopyran compounds with anti-fibrotic bioactivities, were isolated from a mangrove-derived Streptomyces xiamenensis. To fulfil the requirements of pharmaceutical investigations, a high production of xiamenmycin is needed. In this study, the authors present a kinetic metabolic model to evaluate fluxes in an engineered Streptomyces lividans with xiamenmycin-oriented genetic modification based on generic enzymatic rate equations and stability constraints. Lyapunov function was used for a viability optimisation. From their kinetic model, the flux distributions for the engineered S. lividans fed on glucose and glycerol as carbon sources were calculated. They found that if the bacterium can utilise glucose simultaneously with glycerol, xiamenmycin production can be enhanced by 40% theoretically, while maintaining the same growth rate. Glycerol may increase the flux for phosphoenolpyruvate synthesis without interfering citric acid cycle. They therefore believe this study demonstrates a possible new direction for bioengineering of S. lividans.

  4. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Directory of Open Access Journals (Sweden)

    Nag Ambarish

    2011-06-01

    Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to

  5. A model for recovery kinetics of aluminum after large strain

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2012-01-01

    A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness...... for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization. Furthermore...

  6. Modeling physiological processes in plankton on enzyme kinetic principles

    Directory of Open Access Journals (Sweden)

    Ted Packard

    2004-04-01

    Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.

  7. Kinetics and specificity of nickel hypersensitivity in the murine model.

    Science.gov (United States)

    Siller, G M; Seymour, G J

    1994-01-01

    Nickel contact dermatitis appears to be almost exclusively a disease of females despite the increasing exposure of males to nickel. Successful murine models of nickel allergic contact dermatitis have been described. The purpose of this study is to investigate the kinetics and specificity of the response in this model and to examine if any differences exist between male and female. Mice were sensitised epicutaneously with nickel sulphate in aqueous solution of varying concentration, volume and duration of application. Following intradermal challenge, dose dependent response kinetics which approximated linearity were demonstrated upto the point of toxicity. Sensitised mice were challenged with Cobaltous chloride, Chromic chloride and Cupric sulphate and demonstrated no evidence of cross sensitivity to cobalt or chrome. Copper produced an irritant response making interpretation difficult. Earlier and stronger responses were observed in female mice, however these differences fell short of statistical significance. The results of the present study therefore establishes a reliable model for nickel hypersensitivity, that demonstrates both specificity and dose dependent kinetics without significant sex differences.

  8. Kinetic model on coke oven gas with steam reforming

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-yuan; ZHOU Jie-min; YAN Hong-jie

    2008-01-01

    The effects of factors such as the molar ratio of H2O to CH4 (n(H2O)/n(CH4)), methane conversion temperature and time on methane conversion rate were investigated to build kinetic model for reforming of coke-oven gas with steam. The results of experiments show that the optimal conditions for methane conversion are that the molar ratio of H2O to CH4 varies from 1.1 to 1.3and the conversion temperature varies from 1 223 to 1 273 K. The methane conversion rate is more than 95% when the molar ratio ofH2O to CH4 is 1.2, the conversion temperature is above 1 223 K and the conversion time is longer than 0.75 s. Kinetic model of methane conversion was proposed. All results demonstrate that the calculated values by the kinetic model accord with the experimental data well, and the error is less than 1.5%.

  9. Simulation of DME synthesis from coal syngas by kinetics model

    Energy Technology Data Exchange (ETDEWEB)

    Shim, H.M.; Lee, S.J.; Yoo, Y.D.; Yun, Y.S.; Kim, H.T. [Ajou University, Suwon (Republic of Korea)

    2009-05-15

    DME (Dimethyl Ether) has emerged as a clean alternative fuel for diesel. In this study it is developed a simulation model through a kinetics model of the ASPEN plus simulator, performed to detect operating characteristics of DME direct synthesis. An overall DME synthesis process is referenced by experimental data of 3 ton/day (TPD) coal gasification pilot plant located at IAE in Korea. Supplying condition of DME synthesis model is equivalently set to 80 N/m{sup 3} of syngas which is derived from a coal gasification plant. In the simulation it is assumed that the overall DME synthesis process proceeds with steady state, vapor-solid reaction with DME catalyst. The physical properties of reactants are governed by Soave-Redlich-Kwong (SRK) EOS in this model. A reaction model of DME synthesis is considered that is applied with the LHHW (Langmuir-Hinshelwood Hougen Watson) equation as an adsorption-desorption model on the surface of the DME catalyst. After adjusting the kinetics of the DME synthesis reaction among reactants with experimental data, the kinetics of the governing reactions inner DME reactor are modified and coupled with the entire DME synthesis reaction. For validating simulation results of the DME synthesis model, the obtained simulation results are compared with experimental results: conversion ratio, DME yield and DME production rate. Then, a sensitivity analysis is performed by effects of operating variables such as pressure, temperature of the reactor, void fraction of catalyst and H{sub 2}/CO ratio of supplied syngas with modified model. According to simulation results, optimum operating conditions of DME reactor are obtained in the range of 265-275{sup o}C and 60 kg/cm{sup 2}. And DME production rate has a maximum value in the range of 1-1.5 of H{sub 2}/CO ratio in the syngas composition.

  10. Kinetic models for fermentative hydrogen production: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianlong; Wan, Wei [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2009-05-15

    The kinetic models were developed and applied for fermentative hydrogen production. They were used to describe the progress of a batch fermentative hydrogen production process, to investigate the effects of substrate concentration, inhibitor concentration, temperatures, pH, and dilution rates on the process of fermentative hydrogen production, and to establish the relationship among the substrate degradation rate, the hydrogen-producing bacteria growth rate and the product formation rate. This review showed that the modified Gompertz model was widely used to describe the progress of a batch fermentative hydrogen production process, while the Monod model was widely used to describe the effects of substrate concentration on the rates of substrate degradation, hydrogen-producing bacteria growth and hydrogen production. Arrhenius model was used a lot to describe the effects of temperature on fermentative hydrogen production, while modified Han-Levenspiel model was used to describe the effects of inhibitor concentration on fermentative hydrogen production. The Andrew model was used to describe the effects of H{sup +} concentration on the specific hydrogen production rate, while the Luedeking-Piret model and its modified form were widely used to describe the relationship between the hydrogen-producing bacteria growth rate and the product formation rate. Finally, some suggestions for future work with these kinetic models were proposed. (author)

  11. Recovering kinetics from a simplified protein folding model using replica exchange simulations: a kinetic network and effective stochastic dynamics.

    Science.gov (United States)

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M

    2009-08-27

    We present an approach to recover kinetics from a simplified protein folding model at different temperatures using the combined power of replica exchange (RE), a kinetic network, and effective stochastic dynamics. While RE simulations generate a large set of discrete states with the correct thermodynamics, kinetic information is lost due to the random exchange of temperatures. We show how we can recover the kinetics of a 2D continuous potential with an entropic barrier by using RE-generated discrete states as nodes of a kinetic network. By choosing the neighbors and the microscopic rates between the neighbors appropriately, the correct kinetics of the system can be recovered by running a kinetic simulation on the network. We fine-tune the parameters of the network by comparison with the effective drift velocities and diffusion coefficients of the system determined from short-time stochastic trajectories. One of the advantages of the kinetic network model is that the network can be built on a high-dimensional discretized state space, which can consist of multiple paths not consistent with a single reaction coordinate.

  12. Empirical modeling the ultrasound-assisted base-catalyzed sunflower oil methanolysis kinetics

    Directory of Open Access Journals (Sweden)

    Avramović Jelena M.

    2012-01-01

    Full Text Available The ultrasound-assisted sunflower oil methanolysis catalyzed by KOH was studied to define a simple empirical kinetic model useful for reactor design without complex computation. It was assumed that the neutralization of free fatty acids and the saponification reaction were negligible. The methanolysis process rate was observed to be controlled by the mass transfer limitation in the initial heterogeneous regime and by the chemical reaction in the later pseudo-homogeneous regime. The model involving the irreversible second-order kinetics was established and used for simulation of the triacylglycerol conversion and the fatty acid methyl esters formation in the latter regime. A good agreement between the proposed model and the experimental data in the chemically controlled regime was found.

  13. Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach.

    Science.gov (United States)

    Zhou, Yao; Wang, Huixuan; Lin, Wenshuang; Lin, Liqin; Gao, Yixian; Yang, Feng; Du, Mingming; Fang, Weiping; Huang, Jiale; Sun, Daohua; Li, Qingbiao

    2013-10-01

    Lacking of quantitative experimental data and/or kinetic models that could mathematically depict the redox chemistry and the crystallization issue, bottom-to-up formation kinetics of gold nanoparticles (GNPs) remains a challenge. We measured the dynamic regime of GNPs synthesized by l-ascorbic acid (representing a chemical approach) and/or foliar aqueous extract (a biogenic approach) via in situ spectroscopic characterization and established a redox-crystallization model which allows quantitative and separate parameterization of the nucleation and growth processes. The main results were simplified as the following aspects: (I) an efficient approach, i.e., the dynamic in situ spectroscopic characterization assisted with the redox-crystallization model, was established for quantitative analysis of the overall formation kinetics of GNPs in solution; (II) formation of GNPs by the chemical and the biogenic approaches experienced a slow nucleation stage followed by a growth stage which behaved as a mixed-order reaction, and different from the chemical approach, the biogenic method involved heterogeneous nucleation; (III) also, biosynthesis of flaky GNPs was a kinetic-controlled process favored by relatively slow redox chemistry; and (IV) though GNPs formation consists of two aspects, namely the redox chemistry and the crystallization issue, the latter was the rate-determining event that controls the dynamic regime of the whole physicochemical process.

  14. Multiensemble Markov models of molecular thermodynamics and kinetics.

    Science.gov (United States)

    Wu, Hao; Paul, Fabian; Wehmeyer, Christoph; Noé, Frank

    2016-06-07

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model.

  15. Kinetic models for nucleocytoplasmic transport of messenger RNA.

    Science.gov (United States)

    Schröder, H C; Müller, W E; Agutter, P S

    1995-05-21

    Much is known about the mechanism by which mRNAs cross the nuclear envelope (the translocation stage of nucleocytoplasmic transport), but far less is known about the preceding (intranuclear migration/release) and succeeding (cytoplasmic binding) stages. Therefore, existing information suffices for articulating detailed kinetic models of translocation, but not models for the overall mRNA transport process. In this paper, we show that simple kinetic models of translocation can (i) accommodate data about nucleocytoplasmic distributions of endogenous transcripts; (ii) predict the overall effects on these distributions of effectors such as insulin and epidermal growth factor; (iii) throw some light on the mechanism(s) of action of the HIV-1 protein Rev and produce experimentally testable predictions about this mechanism; and (iv) account for the action of influenza virus NS1 protein. However, the simplest forms of translocation models apparently fail to account for some properties of viral regulators such as HIV Rev and adenovirus E1B-E4 complex. To elucidate these topics, less narrowly focused models of mRNA transport are required, describing intranuclear binding/release as well as translocation. On the basis of our examination of translocation models, we suggest some criteria that the requisite broadly based models must satisfy.

  16. Study on kinetic model of microwave thermocatalytic treatment of biomass tar model compound.

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z A

    2014-01-01

    Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.

  17. Kinetic modelling of the demineralization of shrimp exoskeleton using citric acid

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2014-11-01

    Full Text Available Citric acid was used in the demineralization of shrimp exoskeleton and the kinetics of the demineralization process was studied. Kinetic data was obtained by demineralisation using five acid concentrations (0.1, 0.2, 0.3, 0.4 and 0.5M. The obtained kinetic data were fitted to the shrinking core model for fluid particle reactions. The concentration of calcium was found to decrease with time. For all acid concentrations considered, the best predictive mechanism for the demineralization process was determined to be Ash Layer Diffusion Control Mechanism. This was indicated by the high R2 values obtained (0.965 with 150% excess of citric acid.

  18. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    Science.gov (United States)

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-07

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.

  19. Alkaline Hydrolysis Kinetics Modeling of Bagasse Pentosan Dissolution

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2013-11-01

    Full Text Available The main pentosan components of sugarcane bagasse, which can be subjected to alkaline hydrolysis, are xylose, arabinose, glucose, and galactose. The pentosan reaction mechanism was considered for alkali-treated bagasse with variation of temperature and time. The kinetics of pentosan degradation were studied concurrently at temperatures of 50 °C, 70 °C, and 90 °C, with a solid-liquid mass ratio of 1:15, a stirring speed of 500 revolutions/min, and different holding times for bagasse alkali pre-extraction. With respect to residual pentosan content and the losses of raw material, the hydrolysis rates of alkali pre-extraction and pentosan degradation reactions of bagasse all followed pseudo-first-order kinetic models. Finally, the main degradation activation energy was determined to be 20.86 KJ/mol, and the residual degradation activation energy was 28.75 KJ/mol according to the Arrhenius equation.

  20. Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts

    KAUST Repository

    Atanda, Luqman

    2011-07-01

    Kinetics of ethylbenzene dehydrogenation to styrene was investigated over a series of quaternary mixed oxides of Mg3Fe0.25Me0.25Al0.5 (Me=Co, Mn and Ni) catalysts prepared by calcination of hydrotalcite-like compounds and compared with commercial catalyst. The study was carried out in the absence of steam using a riser simulator at 400, 450, 500 and 550°C for reaction times of 5, 10, 15 and 20s. Mg3Fe0.25Mn0.25Al0.5 afforded the highest ethylbenzene conversion of 19.7% at 550°C. Kinetic parameters for the dehydrogenation process were determined using the catalyst deactivation function based on reactant conversion model. The apparent activation energies for styrene production were found to decrease as follows: E1-Ni>E1-Co>E1-Mn. © 2011 Elsevier B.V.

  1. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  2. An enhanced Brinson model with modified kinetics for martensite transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Jin; Lee, Jung Ju [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Ju-Won [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Lim, Jae Hyuk [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-03-15

    We propose an enhanced Brinson model with modified kinetics for martensite transformation. Two additional material constants are considered to follow the stress-temperature diagram above austenite start temperature (As) along with treatment to keep the continuity of the martensite volume fraction and the path dependency of the phase transformation. To demonstrate the performance of the proposed model, we implement this algorithm into ABAQUS user subroutine, then conduct several numerical simulations and compare their results with SMA wire experiments as well as those of three-dimensional SMA constitutive models. From the results, it turns out that the proposed model is as accurate as the three-dimensional models and shows better accuracy over original Brinson model in terms of recovery stress.

  3. Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence

    Science.gov (United States)

    Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto

    1990-01-01

    The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.

  4. Web-based kinetic modelling using JWS Online.

    Science.gov (United States)

    Olivier, Brett G; Snoep, Jacky L

    2004-09-01

    JWS Online is a repository of kinetic models, describing biological systems, which can be interactively run and interrogated over the Internet. It is implemented using a client-server strategy where the clients, in the form of web browser based Java applets, act as a graphical interface to the model servers, which perform the required numerical computations. The JWS Online website is publicly accessible at http://jjj.biochem.sun.ac.za/ with mirrors at http://www.jjj.bio.vu.nl/ and http://jjj.vbi.vt.edu/

  5. Kinetic model for microbial growth and desulphurisation with Enterobacter sp.

    Science.gov (United States)

    Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin

    2015-02-01

    Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".

  6. Small velocity and finite temperature variations in kinetic relaxation models

    KAUST Repository

    Markowich, Peter

    2010-01-01

    A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.

  7. Numerical Comparison of Solutions of Kinetic Model Equations

    Directory of Open Access Journals (Sweden)

    A. A. Frolova

    2015-01-01

    Full Text Available The collision integral approximation by different model equations has created a whole new trend in the theory of rarefied gas. One widely used model is the Shakhov model (S-model obtained by expansion of inverse collisions integral in a series of Hermite polynomials up to the third order. Using the same expansion with another value of free parameters leads to a linearized ellipsoidal statistical model (ESL.Both model equations (S and ESL have the same properties, as they give the correct relaxation of non-equilibrium stress tensor components and heat flux vector, the correct Prandtl number at the transition to the hydrodynamic regime and do not guarantee the positivity of the distribution function.The article presents numerical comparison of solutions of Shakhov equation, ESL- model and full Boltzmann equation in the four Riemann problems for molecules of hard spheres.We have considered the expansion of two gas flows, contact discontinuity, the problem of the gas counter-flows and the problem of the shock wave structure. For the numerical solution of the kinetic equations the method of discrete ordinates is used.The comparison shows that solution has a weak sensitivity to the form of collision operator in the problem of expansions of two gas flows and results obtained by the model and the kinetic Boltzmann equations coincide.In the problem of the contact discontinuity the solution of model equations differs from full kinetic solutions at the point of the initial discontinuity. The non-equilibrium stress tensor has the maximum errors, the error of the heat flux is much smaller, and the ESL - model gives the exact value of the extremum of heat flux.In the problems of gas counter-flows and shock wave structure the model equations give significant distortion profiles of heat flux and non-equilibrium stress tensor components in front of the shock waves. This behavior is due to fact that in the models under consideration there is no dependency of the

  8. Nominal model predictive control

    OpenAIRE

    Grüne, Lars

    2013-01-01

    5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...

  9. Nominal Model Predictive Control

    OpenAIRE

    Grüne, Lars

    2014-01-01

    5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.); International audience; Model Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nomina...

  10. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    Science.gov (United States)

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.

  11. Modeling Heavy Metal Sorption Kinetics Using Fractional Calculus

    Directory of Open Access Journals (Sweden)

    V. C. Friesen

    2015-01-01

    Full Text Available Heavy metals are commonly regarded as environmentally aggressive and hazardous to human health. Among the different metals, lead plays an important economic role due to its large use in the automotive industry, being an essential component of batteries. Different approaches have been reported in the literature aimed at lead removal, and among them a very successful one considers the use of water hyacinths for sorption-based operation. The modeling of the metal sorption kinetics is a fundamental step towards in-depth studies and proper separation equipment design and optimization. Fractional calculus represents a novel approach and a growing research field for process modeling, which is based on the successful use of derivatives of arbitrary order. This paper reports the modeling of the kinetics of lead sorption by water hyacinths (Eichhornia crassipes using a fractional calculus. A general procedure on error analysis is also employed to prove the actual fractional nature of the proposed model by the use of parametric variance analysis, which was carried out using two different approaches (with the complete Hessian matrix and with a simplified Hessian matrix. The joint parameter confidence regions were generated, allowing to successfully show the fractional nature of the model and the sorption process.

  12. Kinetic model of ductile iron solidification with experimental verification

    Directory of Open Access Journals (Sweden)

    W. Kapturkiewicz

    2009-10-01

    Full Text Available A solidification model for ductile iron, including Weibull formula for nodule count has been presented. From this model, the following can be determined: cooling curves, kinetics of austenite and eutectic nucleation, austenite and eutectic growth velocity, volume fraction, distribution of Si and P both in austenite and eutectic grain with distribution in casting section.In the developed model of nodular graphite iron casting solidification, the correctness of the mathematical model has been experimentally verified in the range of the most significant factors, which include temperature field, the value of maximum undercooling, and the graphite nodule count interrelated with the casting cross-section. Literature offers practically no data on so confronted process model and simulation program.

  13. Langrangian model of nitrogen kinetics in the Chattahoochee river

    Science.gov (United States)

    Jobson, H.E.

    1987-01-01

    A Lagrangian reference frame is used to solve the convection-dispersion equation and interpret water-quality obtained from the Chattahoochee River. The model was calibrated using unsteady concentrations of organic nitrogen, ammonia, and nitrite plus nitrate obtained during June 1977 and verified using data obtained during August 1976. Reaction kinetics of the cascade type are shown to provide a reasonable description of the nitrogen-species processes in the Chattahoochee River. The conceptual model is easy to visualize in the physical sense and the output includes information that is not easily determined from an Eulerian approach, but which is very helpful in model calibration and data interpretation. For example, the model output allows one to determine which data are of most value in model calibration or verification.

  14. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  15. Kinetic equations modelling wealth redistribution: a comparison of approaches.

    Science.gov (United States)

    Düring, Bertram; Matthes, Daniel; Toscani, Giuseppe

    2008-11-01

    Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply, e.g., to the market model with risky investments [S. Cordier, L. Pareschi, and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [A. Chatterjee, B. K. Chakrabarti, and S. S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.

  16. 7-lump kinetic model for residual oil catalytic cracking

    Institute of Scientific and Technical Information of China (English)

    XU Ou-guan; SU Hong-ye; MU Sheng-jing; CHU Jian

    2006-01-01

    In this paper a novel 7-lump kinetic model is proposed to describe residual oil catalytic cracking, in which coke is lumped separately for accurate prediction. The reactor block is modeled as a combination of an ideal pipe flow reactor (PFR)and a continuously stirred tank reactor (CSTR). Unit factors are designed to correct the deviation between model predictions and practical plant data and tuned by modified Levenberg-Marquardt algorithm. The parameters estimated are reliable and good agreement between the model predictions and plant observations is observed. The model helps us get good insight into the performance of an industrial riser reactor that would be useful for optimization of residual oil catalytic cracking.

  17. Phase field model for strong anisotropy of kinetic and highly anisotropic interfacial energy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-wei; HOU Hua; CHENG Jun

    2006-01-01

    A phase-field model was established for simulating pure materials, which was calculated effectively and taken into account the strong anisotropy of kinetic and highly anisotropic interfacial energy. The anisotropy (strong kinetic and highly interfacial energy) of various degrees was simulated with numerical calculation. During a variety of interfacial anisotropy coefficient, equilibrium crystal shape varies from smoothness to corner. There has a critical value during the course of the transformation. When the anisotropy coefficenct is lower than the critical value, the growth velocity v increases monotonically with the increase of it. Whereas the anisotropy coefficent is higher than the critical value, the growth velocity decreases with the increases of it. During a variety of degree of supercooling, the growth velocity is under control from thermal diffusion to kinetics. Under the control of thermal diffusion, the growth velocity increases with the increase of degree of supercooling and tip radius R decreases with the increase of temperature. Under the control of kinetics, with the increase of degree of supercooling both V and R, which can not fit the traditional microcosmic theory.

  18. Pathway kinetics and metabolic control analysis of a high-yielding strain of Penicillium chrysogenum during fed-batch cultivations

    DEFF Research Database (Denmark)

    Pissarra, Pedro de N.; Nielsen, Jens Bredal; Bazin, M. J.

    1996-01-01

    on the rate of the reaction catalyzed by this enzyme, and consequently as an enhancer of the specific rate of penicillin production. Using the kinetic model, metabolic control analysis (MCA) of the pathway was performed. The determined flux control coefficients suggested that, during the production phase......A kinetic model representing the pathway for the biosynthesis of penicillin by P. chrysogenum has been developed. The model is capable of describing the flux through the biosynthetic pathway, and model simulations correspond well with measurements of intermediates and end products. One feature......, the flux is controlled by IPNS as this enzyme becomes saturated with tripeptide delta-(L-alpha-amino-adipyl)-L-cysteinyl-D-valine (LLD-ACV). In the simulations, oxygen was shown to be a bottleneck alleviator by stimulating the rate of IPNS which prevents the accumulation of LLD-ACV. As a consequence...

  19. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    Science.gov (United States)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  20. Kinetic modelling of cadmium and lead removal by aquatic mosses

    Directory of Open Access Journals (Sweden)

    R. J. E. Martins

    2014-03-01

    Full Text Available Because biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In the present study, the performance of the aquatic moss Fontinalis antipyretica for removing cadmium and lead from simulated wastewaters has been evaluated. Five kinetic models (first-order, pseudo-first-order, Elovich, modified Ritchie second-order and pseudo-second-order were fitted to the experimental data and compared. Previously, the effect of parameters such as the initial solution pH, contact time, and initial metal ion concentration on biosorption was investigated. The initial pH of the solution was found to have an optimum value in the range of 4.0-6.0. The equilibrium sorption capacity of cadmium and lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L-1, the uptake capacity of the moss, at equilibrium, is the same for both metals (4.8 mg g-1. Nevertheless, when the initial concentration increases up to 100 mg L-1, the uptake of Pb(II was higher than 78%. The pseudo-second order biosorption kinetics provided the better correlation with the experimental data (R² ≥ 0.999.

  1. Kinetic model for astaxanthin aggregation in water-methanol mixtures

    Science.gov (United States)

    Giovannetti, Rita; Alibabaei, Leila; Pucciarelli, Filippo

    2009-07-01

    The aggregation of astaxanthin in hydrated methanol was kinetically studied in the temperature range from 10 °C to 50 °C, at different astaxanthin concentrations and solvent composition. A kinetic model for the formation and transformation of astaxanthin aggregated has been proposed. Spectrophotometric studies showed that monomeric astaxanthin decayed to H-aggregates that after-wards formed J-aggregates when water content was 50% and the temperature lower than 20 °C; at higher temperatures, very stable J-aggregates were formed directly. Monomer formed very stable H-aggregates when the water content was greater than 60%; in these conditions H-aggregates decayed into J-aggregates only when the temperature was at least 50 °C. Through these findings it was possible to establish that the aggregation reactions took place through a two steps consecutive reaction with first order kinetic constants and that the values of these depended on the solvent composition and temperature.

  2. Kinetic Model for 1D aggregation of yeast ``prions''

    Science.gov (United States)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  3. Kinetic models for the VASIMR thruster helicon plasma source

    Science.gov (United States)

    Batishchev, Oleg; Molvig, Kim

    2001-10-01

    Helicon gas discharge [1] is widely used by industry because of its remarkable efficiency [2]. High energy and fuel efficiencies make it very attractive for space electrical propulsion applications. For example, helicon plasma source is used in the high specific impulse VASIMR [3] plasma thruster, including experimental prototypes VX-3 and upgraded VX-10 [4] configurations, which operate with hydrogen (deuterium) and helium plasmas. We have developed a set of models for the VASIMR helicon discharge. Firstly, we use zero-dimensional energy and mass balance equations to characterize partially ionized gas condition/composition. Next, we couple it to one-dimensional hybrid model [6] for gas flow in the quartz tube of the helicon. We compare hybrid model results to a purely kinetic simulation of propellant flow in gas feed + helicon source subsystem. Some of the experimental data [3-4] are explained. Lastly, we discuss full-scale kinetic modeling of coupled gas and plasmas [5-6] in the helicon discharge. [1] M.A.Lieberman, A.J.Lihtenberg, 'Principles of ..', Wiley, 1994; [2] F.F.Chen, Plas. Phys. Contr. Fus. 33, 339, 1991; [3] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [4] J.Squire et al., Bull. APS 45 (7) 130, 2000; [5] O.Batishchev et al, J. Plasma Phys. 61, part II, 347, 1999; [6] O.Batishchev, K.Molvig, AIAA technical paper 2000-3754, -14p, 2001.

  4. Economic inequality and mobility in kinetic models for social sciences

    Science.gov (United States)

    Letizia Bertotti, Maria; Modanese, Giovanni

    2016-10-01

    Statistical evaluations of the economic mobility of a society are more difficult than measurements of the income distribution, because they require to follow the evolution of the individuals' income for at least one or two generations. In micro-to-macro theoretical models of economic exchanges based on kinetic equations, the income distribution depends only on the asymptotic equilibrium solutions, while mobility estimates also involve the detailed structure of the transition probabilities of the model, and are thus an important tool for assessing its validity. Empirical data show a remarkably general negative correlation between economic inequality and mobility, whose explanation is still unclear. It is therefore particularly interesting to study this correlation in analytical models. In previous work we investigated the behavior of the Gini inequality index in kinetic models in dependence on several parameters which define the binary interactions and the taxation and redistribution processes: saving propensity, taxation rates gap, tax evasion rate, welfare means-testing etc. Here, we check the correlation of mobility with inequality by analyzing the mobility dependence from the same parameters. According to several numerical solutions, the correlation is confirmed to be negative.

  5. Effects of three heavy metals on the bacteria growth kinetics. A bivariate model for toxicological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rial, Diego; Vazquez, Jose Antonio; Murado, Miguel Anxo [Instituto de Investigacions Marinas (CSIC), Vigo (ES). Grupo de Reciclado y Valorizacion de Materiales Residuales (REVAL)

    2011-05-15

    The effects of three heavy metals (Co, Ni and Cd) on the growth kinetics of five bacterial strains with different characteristics (Pseudomonas sp., Phaeobacter sp. strain 27-4, Listonella anguillarum, Carnobacterium piscicola and Leuconostoc mesenteroides subsp. lysis) were studied in a batch system. A bivariate model, function of time and dose, is proposed to describe simultaneously all the kinetic profiles obtained by incubating a microorganism at increasing concentrations of individual metals. This model combines the logistic equation for describing growth, with a modification of the cumulative Weibull's function for describing the dose-dependent variations of growth parameters. The comprehensive model thus obtained - which minimizes the effects of the experimental error - was statistically significant in all the studied cases, and it raises doubts about toxicological evaluations that are based on a single growth parameter, especially if it is not obtained from a kinetic equation. In lactic acid bacteria cultures (C. piscicola and L. mesenteroides), Cd induced remarkable differences in yield and time course of characteristic metabolites. A global parameter is defined (ED{sub 50,{tau}}: dose of toxic chemical that reduces the biomass of a culture by 50% compared to that produced by the control at the time corresponding to its semi maximum biomass) that allows comparing toxic effects on growth kinetics using a single value. (orig.)

  6. Investigation of kinetics model of dc reactive sputtering

    Institute of Scientific and Technical Information of China (English)

    朱圣龙; 王福会; 吴维叓

    1996-01-01

    A novel physical sputtering kinetics model for reactive sputtering is presented.Reactive gas gettering effects and interactions among the characteristic parameters have been taken into account in the model.The data derived from the model accorded fairly well with experimental results.The relationship between the values of initial oxide coverage on the target and the ready states was depicted in the model.This relationship gives reasons for the difference of the threshold of reactive gas fluxes (Q) from the metal sputtering region to the oxide sputtering region and in reverse direction.The discontinuities in oxide coverage on the target surface (θ) versus reactive gas fluxes (Q) are referred to as the effects of reactive gas partial pressure (p) upon the forming rates of oxide on the surfaces of target (V0).The diversity of the oxygen flux threshold results from the variance of the initial values of oxide coverage on target.

  7. Control the kinetics and pathway of insulin fibril formation

    Science.gov (United States)

    Zheng, Zhongli; Jing, Benxin; Zhu, Y. Elaine

    2012-02-01

    Protein fibrils have been proposed as possible toxic agents for many amyloid related diseases, such as Alzheimer's disease, however the reaction pathway toward the amyloid fibrillation remain inadequately understood. In this work, we examine the conformational transition of human insulin as the model amyloid protein by single-molecule fluorescence spectroscopy and imaging. By controlling the pH cycling, insulin monomer and oligomers are indentified at given pH variation condition. Furthermore, low frequency ac-electric fields are employed to control the insulin aggregation from its monomers in a microchannel. It is observed that lag time to induce insulin fibrillation can be significantly shortened, in compassion to the commonly used cooling and seeding methods, and exhibits a strong dependence on applied ac-field strength. Additionally, the structure of insulin aggregates under ac-electric fields is observed to be drastically different from that under the temperature control.

  8. Study on Lumped Kinetic Model for FDFCC II. Validation and Prediction of Model

    Institute of Scientific and Technical Information of China (English)

    Wu Feiyue; Weng Huixin; Luo Shixian

    2008-01-01

    On the basis of formulating the 9-lump kinetic model for gasoline catalytic upgrading and the 12-lump kinetic model for heavy oil FCC, this paper is aimed at development of a combined kinetic model for a typical FDFCC process after analyzing the coupled relationship and combination of these two models. The model is also verified by using commercial data, the results of which showed that the model can better predict the product yields and their quality, with the relative errors between the main products of the unit and commercial data being less than five percent. Furthermore, the combined model is used to predict and optimize the operating conditions for gasoline riser and heavy oil riser in FDFCC. So this paper can offer some guidance for the processing of FDFCC and is instructive to model research and development of such multi-reactor process and combined process.

  9. Adequacy indices for dialysis in acute renal failure: kinetic modeling.

    Science.gov (United States)

    Debowska, Malgorzata; Lindholm, Bengt; Waniewski, Jacek

    2010-05-01

    Many aspects of the management of renal replacement therapy in acute renal failure (ARF), including the appropriate assessment of dialysis adequacy, remain unresolved, because ARF patients often are not in a metabolic steady state. The aim of this study was to evaluate a system of adequacy indices for dialysis in ARF patients using urea and creatinine kinetic modeling. Kinetic modeling was performed for two different fictitious patients (A and B) with characteristics described by the average parameters for two patient groups and for two blood purification treatments: sustained low efficiency daily dialysis (SLEDD) in Patient A and continuous venovenous hemofiltration (CVVH) in Patient B, based on data from a clinical report. Urea and creatinine generation rates were estimated according to the clinical data on the solute concentrations in blood. Then, using estimated generation rates, two hypothetical treatments were simulated, CVVH in Patient A and SLEDD in Patient B. KT/V, fractional solute removal (FSR) and equivalent renal clearance (EKR) were calculated according to the definitions developed for metabolically unstable patients. CVVH appeared as being more effective than SLEDD because KT/V, FSR, and EKR were higher for CVVH than SLEDD in Patients A and B. Creatinine KT/V, FSR, and EKR were lower and well correlated to the respective indices for urea. Urea and creatinine generation rates were overestimated more than twice in Patient A and by 30-40% in Patient B if calculated assuming the metabolically stable state than if estimated by kinetic modeling. Adequacy indices and solute generation rates for ARF patients should be estimated using the definition for unsteady metabolic state. EKR and FSR were higher for urea and creatinine with CVVH than with SLEDD, because of higher K.T and minimized compartmental effects for CVVH.

  10. Kinetics of solid state phase transformations: Measurement and modelling of some basic issues

    Indian Academy of Sciences (India)

    S Raju; E Mohandas

    2010-01-01

    A brief review of the issues involved in modelling of the solid state transformation kinetics is presented. The fact that apart from the standard thermodynamic parameters, certain path variables like heating or cooling rate can also exert a crucial influence on the kinetic outcome is stressed. The kinetic specialties that are intrinsic to phase changes proceeding under varying thermal history are enumerated. A simple and general modelling methodology for understanding the kinetics of non-isothermal transformations is outlined.

  11. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability

    Science.gov (United States)

    Sourbron, S. P.; Buckley, D. L.

    2012-01-01

    The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.

  12. A spatial kinetic model for simulating VVER-1000 start-up transient

    Energy Technology Data Exchange (ETDEWEB)

    Kashi, Samira [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Moghaddam, Nader Maleki, E-mail: nader.moghaddam@gmail.com [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriari, Majid [Department of Nuclear Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2011-06-15

    Research highlights: > A spatial kinetic model of a VVER-1000 reactor core is presented. > The reactor power is tracked using the point kinetic equations from 100 W to 612 kW. > The lamped parameter approximation is used for solving the energy balance equations. > The value of reactivity related to feedback effects of core elements is calculated. > The main neutronic parameters during the transient are calculated. - Abstract: An accurate prediction of reactor core behavior in transients depends on how much it could be possible to exactly determine the thermal feedbacks of the core elements such as fuel, clad and coolant. In short time transients, results of these feedbacks directly affect the reactor power and determine the reactor response. Such transients are commonly happened during the start-up process which makes it necessary to carefully evaluate the detail of process. Hence this research evaluates a short time transient occurring during the start up of VVER-1000 reactor. The reactor power was tracked using the point kinetic equations from HZP state (100 W) to 612 kW. Final power (612 kW) was achieved by withdrawing control rods and resultant excess reactivity was set into dynamic equations to calculate the reactor power. Since reactivity is the most important part in the point kinetic equations, using a Lumped Parameter (LP) approximation, energy balance equations were solved in different zones of the core. After determining temperature and total reactivity related to feedbacks in each time step, the exact value of reactivity is obtained and is inserted into point kinetic equations. In reactor core each zone has a specific temperature and its corresponding thermal feedback. To decrease the effects of point kinetic approximations, these partial feedbacks in different zones are superposed to show an accurate model of reactor core dynamics. In this manner the reactor point kinetic can be extended to the whole reactor core which means 'Reactor spatial

  13. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    Science.gov (United States)

    Neilson, James R.

    2011-12-01

    A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition

  14. Comparison of Mathematical Equation and Neural Network Modeling for Drying Kinetic of Mendong in Microwave Oven

    Science.gov (United States)

    Maulidah, Rifa'atul; Purqon, Acep

    2016-08-01

    Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.

  15. Model-free kinetics applied to sugarcane bagasse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ramajo-Escalera, B.; Espina, A.; Garcia, J.R. [Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo (Spain); Sosa-Arnao, J.H. [Mechanical Engineering Faculty, State University of Campinas (UNICAMP), P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Nebra, S.A. [Interdisciplinary Center of Energy Planning, State University of Campinas (UNICAMP), R. Shigeo Mori 2013, 13083-770 Campinas, SP (Brazil)

    2006-09-15

    Vyazovkin's model-free kinetic algorithms were applied to determine conversion, isoconversion and apparent activation energy to both dehydration and combustion of sugarcane bagasse. Three different steps were detected with apparent activation energies of 76.1+/-1.7, 333.3+/-15.0 and 220.1+/-4.0kJ/mol in the conversion range of 2-5%, 15-60% and 70-90%, respectively. The first step is associated with the endothermic process of drying and release of water. The others correspond to the combustion (and carbonization) of organic matter (mainly cellulose, hemicellulose and lignin) and the combustion of the products of pyrolysis. (author)

  16. Fluctuation dissipation ratio in the one dimensional kinetic Ising model

    OpenAIRE

    Lippiello, E.; Zannetti, M.

    2000-01-01

    The exact relation between the response function $R(t,t^{\\prime})$ and the two time correlation function $C(t,t^{\\prime})$ is derived analytically in the one dimensional kinetic Ising model subjected to a temperature quench. The fluctuation dissipation ratio $X(t,t^{\\prime})$ is found to depend on time through $C(t,t^{\\prime})$ in the time region where scaling $C(t,t^{\\prime}) = f(t/t^{\\prime})$ holds. The crossover from the nontrivial form $X(C(t,t^{\\prime}))$ to $X(t,t^{\\prime}) \\equiv 1$ t...

  17. Large Scale Simulations of the Kinetic Ising Model

    Science.gov (United States)

    Münkel, Christian

    We present Monte Carlo simulation results for the dynamical critical exponent z of the two- and three-dimensional kinetic Ising model. The z-values were calculated from the magnetization relaxation from an ordered state into the equilibrium state at Tc for very large systems with up to (169984)2 and (3072)3 spins. To our knowledge, these are the largest Ising-systems simulated todate. We also report the successful simulation of very large lattices on a massively parallel MIMD computer with high speedups of approximately 1000 and an efficiency of about 0.93.

  18. Kinetic Relations for a Lattice Model of Phase Transitions

    Science.gov (United States)

    Schwetlick, Hartmut; Zimmer, Johannes

    2012-11-01

    The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi-Pasta-Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.

  19. A generic 3D kinetic model of gene expression

    Science.gov (United States)

    Zhdanov, Vladimir

    2012-04-01

    Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.

  20. Kinetic mixing effect in the 3 -3 -1 -1 model

    Science.gov (United States)

    Dong, P. V.; Si, D. T.

    2016-06-01

    We show that the mixing effect of the neutral gauge bosons in the 3 -3 -1 -1 model comes from two sources. The first one is due to the 3 -3 -1 -1 gauge symmetry breaking as usual, whereas the second one results from the kinetic mixing between the gauge bosons of U (1 )X and U (1 )N groups, which are used to determine the electric charge and baryon minus lepton numbers, respectively. Such mixings modify the ρ -parameter and the known couplings of Z with fermions. The constraints that arise from flavor-changing neutral currents due to the gauge boson mixings and nonuniversal fermion generations are also given.

  1. Warped Higgsless Models with IR-Brane Kinetic Terms

    CERN Document Server

    Davoudiasl, H; Lillie, Benjamin Huntington; Rizzo, T G

    2004-01-01

    We examine a warped Higgsless $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ model in 5--$d$ with IR(TeV)--brane kinetic terms. It is shown that adding a brane term for the $U(1)_{B-L}$ gauge field does not affect the scale ($\\sim 2-3$ TeV) where perturbative unitarity in $W_L^+ W_L^- \\to W_L^+ W_L^-$ is violated. This term could, however, enhance the agreement of the model with the precision electroweak data. In contrast, the inclusion of a kinetic term corresponding to the $SU(2)_D$ custodial symmetry of the theory delays the unitarity violation in $W_L^\\pm$ scattering to energy scales of $\\sim 6-7$ TeV for a significant fraction of the parameter space. This is about a factor of 4 improvement compared to the corresponding scale of unitarity violation in the Standard Model without a Higgs. We also show that null searches for extra gauge bosons at the Tevatron and for contact interactions at LEP II place non-trivial bounds on the size of the IR-brane terms.

  2. Kinetic modeling of 3D equilibria in a tokamak

    Science.gov (United States)

    Albert, C. G.; Heyn, M. F.; Kasilov, S. V.; Kernbichler, W.; Martitsch, A. F.; Runov, A. M.

    2016-11-01

    External resonant magnetic perturbations (RMPs) can modify the magnetic topology in a tokamak. In this case the magnetic field cannot generally be described by ideal MHD equilibrium equations in the vicinity of resonant magnetic surfaces where parallel and perpendicular relaxation timescales are comparable. Usually, resistive MHD models are used to describe these regions. In the present work, a kinetic model is used for this purpose. Within this model, plasma response, current and charge density are computed with help of a Monte Carlo method, where guiding center orbit equations are solved using a semianalytical geometrical integrator. Besides its higher efficiency in comparison to usual integrators this method is not sensitive to noise in field quantities. The computed charges and currents are used to calculate the electromagnetic field with help of a finite element solver. A preconditioned iterative scheme is applied to search for a self-consistent solution. The discussed method is aimed at the nonlinear kinetic description of RMPs in experiments on Edge Localized Mode (ELM) mitigation by external perturbation coil systems without simplification of the device geometry.

  3. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  4. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics.

    Science.gov (United States)

    Genot, Anthony J; Zhang, David Yu; Bath, Jonathan; Turberfield, Andrew J

    2011-02-23

    Hybridization of DNA strands can be used to build molecular devices, and control of the kinetics of DNA hybridization is a crucial element in the design and construction of functional and autonomous devices. Toehold-mediated strand displacement has proved to be a powerful mechanism that allows programmable control of DNA hybridization. So far, attempts to control hybridization kinetics have mainly focused on the length and binding strength of toehold sequences. Here we show that insertion of a spacer between the toehold and displacement domains provides additional control: modulation of the nature and length of the spacer can be used to control strand-displacement rates over at least 3 orders of magnitude. We apply this mechanism to operate displacement reactions in potentially useful kinetic regimes: the kinetic proofreading and concentration-robust regimes.

  5. Kinetic modeling of ethane pyrolysis at high conversion.

    Science.gov (United States)

    Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M

    2011-09-29

    The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential

  6. Kinetic and Stochastic Models of 1D yeast ``prions"

    Science.gov (United States)

    Kunes, Kay

    2005-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  7. The Origin of the RNA World a Kinetic Model

    CERN Document Server

    Wattis, J A D; Wattis, Jonathan A. D.; Coveney, Peter V.

    1999-01-01

    The aims of this paper are to propose, construct and analyse microscopic kinetic models for the emergence of long chains of RNA from monomeric beta-D-ribonucleotide precursors in prebiotic circumstances. Our theory starts out from similar but more general chemical assumptions to those of Eigen, namely that catalytic replication can lead to a large population of long chains. In particular, our models incorporate the possibility of (i) direct chain growth, (ii) template-assisted synthesis and (iii) catalysis by RNA replicase ribozymes, all with varying degrees of efficiency. However, in our models the reaction mechanisms are kept `open'; we do not assume the existence of closed hypercycles which sustain a population of long chains. Rather it is the feasibility of the initial emergence of a self-sustaining set of RNA chains from monomeric nucleotides which is our prime concern. We confront directly the central nonlinear features of the problem, which have often been overlooked in previous studies. Our detailed m...

  8. Reduced Models in Chemical Kinetics via Nonlinear Data-Mining

    Directory of Open Access Journals (Sweden)

    Eliodoro Chiavazzo

    2014-01-01

    Full Text Available The adoption of detailed mechanisms for chemical kinetics often poses two types of severe challenges: First, the number of degrees of freedom is large; and second, the dynamics is characterized by widely disparate time scales. As a result, reactive flow solvers with detailed chemistry often become intractable even for large clusters of CPUs, especially when dealing with direct numerical simulation (DNS of turbulent combustion problems. This has motivated the development of several techniques for reducing the complexity of such kinetics models, where, eventually, only a few variables are considered in the development of the simplified model. Unfortunately, no generally applicable a priori recipe for selecting suitable parameterizations of the reduced model is available, and the choice of slow variables often relies upon intuition and experience. We present an automated approach to this task, consisting of three main steps. First, the low dimensional manifold of slow motions is (approximately sampled by brief simulations of the detailed model, starting from a rich enough ensemble of admissible initial conditions. Second, a global parametrization of the manifold is obtained through the Diffusion Map (DMAP approach, which has recently emerged as a powerful tool in data analysis/machine learning. Finally, a simplified model is constructed and solved on the fly in terms of the above reduced (slow variables. Clearly, closing this latter model requires nontrivial interpolation calculations, enabling restriction (mapping from the full ambient space to the reduced one and lifting (mapping from the reduced space to the ambient one. This is a key step in our approach, and a variety of interpolation schemes are reported and compared. The scope of the proposed procedure is presented and discussed by means of an illustrative combustion example.

  9. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    NARCIS (Netherlands)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J. P.

    2017-01-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasmas (CCP), including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these

  10. Effects of Oxygen Transfer Limitation and Kinetic Control on Biomimetic Catalytic Oxidation of Toluene

    Institute of Scientific and Technical Information of China (English)

    罗伟平; 刘大为; 孙俊; 邓伟; 盛文兵; 刘强; 郭灿城

    2014-01-01

    Under oxygen transfer limitation and kinetic control, liquid-phase catalytic oxidation of toluene over metalloporphyrin was studied. An improved technique of measuring dissolved oxygen levels for gas-liquid reaction at the elevated temperature and pressure was used to take the sequential data in the oxidation of toluene catalyzed by metalloporphyrin. By this technique the corresponding control step of toluene oxidation could be obtained by varying reaction conditions. When the partial pressure of oxygen in the feed is lower than or equal to 0.070 MPa at 463 K, the oxidation of toluene would be controlled by oxygen transfer, otherwise the reaction would be controlled by kinetics. The effects of both oxygen transfer and kinetic control on the toluene conversion and the selectivity of benzaldehyde and benzyl alcohol in biomimetic catalytic oxidation of toluene were systematically investigated. Three conclusions have been made from the experimental results. Firstly, under the oxygen transfer limitation the toluene conversion is lower than that under kinetic control at the same oxidation conditions. Secondly, under the oxygen transfer limitation the total selectivity of benzaldehyde and benzyl alcohol is lower than that under kinetic control with the same conversion of toluene. Finally, under the kinetics control the oxidation rate of toluene is zero-order with respect to oxygen. The experimental results are identical with the biomimetic catalytic mechanism of toluene oxidation over metalloporphyrins.

  11. Control of DNA replication by anomalous reaction-diffusion kinetics

    Science.gov (United States)

    Bechhoefer, John; Gauthier, Michel

    2010-03-01

    DNA replication requires two distinct processes: the initiation of pre-licensed replication origins and the propagation of replication forks away from the fired origins. Experiments indicate that these origins are triggered over the whole genome at a rate I(t) (the number of initiations per unreplicated length per time) that increases throughout most of the synthesis (S) phase, before rapidly decreasing to zero at the end of the replication process. We propose a simple model for the control of DNA replication in which the rate of initiation of replication origins is controlled by protein-DNA interactions. Analyzing recent data from Xenopus frog embryos, we find that the initiation rate is reaction limited until nearly the end of replication, when it becomes diffusion limited. Initiation of origins is suppressed when the diffusion-limited search time dominates. To fit the experimental data, we find that the interaction between DNA and the rate-limiting protein must be subdiffusive.

  12. STOCHASTIC KINETIC MODELS: DYNAMIC INDEPENDENCE, MODULARITY AND GRAPHS.

    Science.gov (United States)

    Bowsher, Clive G

    2010-08-01

    The dynamic properties and independence structure of stochastic kinetic models (SKMs) are analyzed. An SKM is a highly multivariate jump process used to model chemical reaction networks, particularly those in biochemical and cellular systems. We identify SKM subprocesses with the corresponding counting processes and propose a directed, cyclic graph (the kinetic independence graph or KIG) that encodes the local independence structure of their conditional intensities. Given a partition [A, D, B] of the vertices, the graphical separation A ⊥ B|D in the undirected KIG has an intuitive chemical interpretation and implies that A is locally independent of B given A ∪ D. It is proved that this separation also results in global independence of the internal histories of A and B conditional on a history of the jumps in D which, under conditions we derive, corresponds to the internal history of D. The results enable mathematical definition of a modularization of an SKM using its implied dynamics. Graphical decomposition methods are developed for the identification and efficient computation of nested modularizations. Application to an SKM of the red blood cell advances understanding of this biochemical system.

  13. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    Directory of Open Access Journals (Sweden)

    V. Blažica

    2013-03-01

    Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.

  14. The development from kinetic coefficients of a predictive model for the growth of Eichhomia crassipes in the field. I. Generating kinetic coefficients for the model in greenhouse culture

    Directory of Open Access Journals (Sweden)

    C. F. Musil

    1984-12-01

    Full Text Available The kinetics of N- and P- limited growth of Eichhornia crassipes (Mart . Solms were investigated in greenhouse culture with the object of developing a model for predicting population sizes, yields, growth rates and frequencies and amounts of harvest, under varying conditions of nutrient loading and climate, to control both nutrient inputs and excessive growth in eutrophied aquatic systems. The kinetic coefficients, maximum specific growth rate (Umax, half saturation coefficient (Ks and yield coefficient (Yc were measured under N and P limitation in replicated batch culture experiments. Umax values and Ks concentrations derived under N limitation ranged from 5,37 to 8,86% d + and from 400 to 1 506 µg  N ℓ1respectively. Those derived under P limitation ranged from 4,51 to 10,89% d 1 and from 41 to 162 fig P ℓ1 respectively. Yc values (fresh mass basis determined ranged from 1 660 to 1 981 (87 to 98 dry mass basis for N and from 16 431 to 18 671 (867 to 980 dry mass basis for P. The reciprocals of Yc values (dry mass basis, expressed as percentages, adequately estimated the minimum limiting concentrations of N and P {% dry mass in the plant tissues. Kinetic coefficients determined are compared with those reported for algae. The experimental method used and results obtained are critically assessed.

  15. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion.

    Science.gov (United States)

    Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun

    2015-04-01

    To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.

  16. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation.

    Science.gov (United States)

    Henkel, Marius; Schmidberger, Anke; Vogelbacher, Markus; Kühnert, Christian; Beuker, Janina; Bernard, Thomas; Schwartz, Thomas; Syldatk, Christoph; Hausmann, Rudolf

    2014-08-01

    The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.

  17. A study of the kinetic energy generation with general circulation models

    Science.gov (United States)

    Chen, T.-C.; Lee, Y.-H.

    1983-01-01

    The history data of winter simulation by the GLAS climate model and the NCAR community climate model are used to examine the generation of atmospheric kinetic energy. The contrast between the geographic distributions of the generation of kinetic energy and divergence of kinetic energy flux shows that kinetic energy is generated in the upstream side of jets, transported to the downstream side and destroyed there. The contributions from the time-mean and transient modes to the counterbalance between generation of kinetic energy and divergence of kinetic energy flux are also investigated. It is observed that the kinetic energy generated by the time-mean mode is essentially redistributed by the time-mean flow, while that generated by the transient flow is mainly responsible for the maintenance of the kinetic energy of the entire atmospheric flow.

  18. Study on Lumped Kinetic Model for FDFCC I. Establishment of Model

    Institute of Scientific and Technical Information of China (English)

    Wu Feiyue; Weng Huixin; Luo Shixian

    2008-01-01

    According to the process features and the reaction mechanism of FDFCC technology, its two reaction subsystems, one for heavy oil riser reactor, the other for gasoline riser reactor, were respectively studied. Correspondingly, a 12-lump kinetic model for heavy oil FCC and a 9-lump kinetic model for gasoline catalytic upgrading were presented. Based on this work, mathematical correlation of the lumps in the feeds and products involved in the reaction subsystems and those of the overall reaction system were analyzed in detail. Then, a combined kinetic model for FDFCC, which was based on the data recovered from a commercial unit, was put forward. The reaction performance embodied by the kinetic constants for the combined model of FDFCC was in accordance with catalytic cracking reaction mechanism. The model-calculated values were close to the data obtained in commercial scale. The model was easy to be applied in practice and could also provide some theoretical groundwork for further research on kinetic model for FDFCC.

  19. Quantum kinetics and thermalization in a particle bath model.

    Science.gov (United States)

    Alamoudi, S M; Boyanovsky, D; de Vega, H J

    1999-07-01

    We study the dynamics of relaxation and thermalization in an exactly solvable model of a particle interacting with a harmonic oscillator bath. Our goal is to understand the effects of non-Markovian processes on the relaxational dynamics and to compare the exact evolution of the distribution function with approximate Markovian and non-Markovian quantum kinetics. There are two different cases that are studied in detail: (i) a quasiparticle (resonance) when the renormalized frequency of the particle is above the frequency threshold of the bath and (ii) a stable renormalized "particle" state below this threshold. The time evolution of the occupation number for the particle is evaluated exactly using different approaches that yield to complementary insights. The exact solution allows us to investigate the concept of the formation time of a quasiparticle and to study the difference between the relaxation of the distribution of bare particles and that of quasiparticles. For the case of quasiparticles, the exact occupation number asymptotically tends to a statistical equilibrium distribution that differs from a simple Bose-Einstein form as a result of off-shell processes whereas in the stable particle case, the distribution of particles does not thermalize with the bath. We derive a non-Markovian quantum kinetic equation which resums the perturbative series and includes off-shell effects. A Markovian approximation that includes off-shell contributions and the usual Boltzmann equation (energy conserving) are obtained from the quantum kinetic equation in the limit of wide separation of time scales upon different coarse-graining assumptions. The relaxational dynamics predicted by the non-Markovian, Markovian, and Boltzmann approximations are compared to the exact result. The Boltzmann approach is seen to fail in the case of wide resonances and when threshold and renormalization effects are important.

  20. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules.

  1. Developing a computational model of human hand kinetics using AVS

    Energy Technology Data Exchange (ETDEWEB)

    Abramowitz, Mark S. [State Univ. of New York, Binghamton, NY (United States)

    1996-05-01

    As part of an ongoing effort to develop a finite element model of the human hand at the Institute for Scientific Computing Research (ISCR), this project extended existing computational tools for analyzing and visualizing hand kinetics. These tools employ a commercial, scientific visualization package called AVS. FORTRAN and C code, originally written by David Giurintano of the Gillis W. Long Hansen`s Disease Center, was ported to a different computing platform, debugged, and documented. Usability features were added and the code was made more modular and readable. When the code is used to visualize bone movement and tendon paths for the thumb, graphical output is consistent with expected results. However, numerical values for forces and moments at the thumb joints do not yet appear to be accurate enough to be included in ISCR`s finite element model. Future work includes debugging the parts of the code that calculate forces and moments and verifying the correctness of these values.

  2. Ab initio determination of kinetics for atomic layer deposition modeling

    Science.gov (United States)

    Remmers, Elizabeth M.

    A first principles model is developed to describe the kinetics of atomic layer deposition (ALD) systems. This model requires no fitting parameters, as it is based on the reaction pathways, structures, and energetics obtained from quantum-chemical studies. Using transition state theory and partition functions from statistical mechanics, equilibrium constants and reaction rates can be calculated. Several tools were created in Python to aid in the calculation of these quantities, and this procedure was applied to two systems- zinc oxide deposition from diethyl zinc (DEZ) and water, and alumina deposition from trimethyl aluminum (TMA) and water. A Gauss-Jordan factorization is used to decompose the system dynamics, and the resulting systems of equations are solved numerically to obtain the temporal concentration profiles of these two deposition systems.

  3. Kinetic modelling of runaway electrons in dynamic scenarios

    CERN Document Server

    Stahl, A; Papp, G; Landreman, M; Fülöp, T

    2016-01-01

    Improved understanding of runaway-electron formation and decay processes are of prime interest for the safe operation of large tokamaks, and the dynamics of the runaway electrons during dynamical scenarios such as disruptions are of particular concern. In this paper, we present kinetic modelling of scenarios with time-dependent plasma parameters; in particular, we investigate hot-tail runaway generation during a rapid drop in plasma temperature. With the goal of studying runaway-electron generation with a self-consistent electric-field evolution, we also discuss the implementation of a conservative collision operator and demonstrate its properties. An operator for avalanche runaway-electron generation, which takes the energy dependence of the scattering cross section and the runaway distribution into account, is investigated. We show that the simpler avalanche model of Rosenbluth & Putvinskii [Nucl. Fusion 37, 1355 (1997)] can give very inaccurate results for the avalanche growth rate (either lower or hig...

  4. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  5. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL; Frerichs, Joshua T [ORNL; Jagadamma, Sindhu [ORNL

    2012-01-01

    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there is a serious lack of suitable data for model parameterization. This study provides well-documented enzymatic parameters for application in enzyme-driven SOC decomposition models from a compilation and analysis of published measurements. In particular, we developed appropriate kinetic parameters for five typical ligninolytic and cellulolytic enzymes ( -glucosidase, cellobiohydrolase, endo-glucanase, peroxidase, and phenol oxidase). The kinetic parameters included the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menten equation. The activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by fitting an exponential-quadratic function. The Vmax values, often presented in different units under various measurement conditions, were converted into the same units at a reference temperature (20 C) and pHopt. Major conclusions are: (i) Both Vmax and Km were log-normal distributed, with no significant difference in Vmax exhibited between enzymes originating from bacteria or fungi. (ii) No significant difference in Vmax was found between cellulases and ligninases; however, there was significant difference in Km between them. (iii) Ligninases had higher Ea values and lower pHopt than cellulases; average ratio of pHsen to pHopt ranged 0.3 0.4 for the five enzymes, which means that an increase or decrease of 1.1 1.7 pH units from pHopt would reduce Vmax by 50%. (iv) Our analysis indicated that the Vmax values from lab measurements with purified enzymes were 1 2 orders of magnitude higher than those for use in SOC decomposition models under field conditions.

  6. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator.

    Science.gov (United States)

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2013-11-01

    In this study a complementary modeling and experimental approach was used to explore how growth controls the NADPH generation and availability, and the resulting impact on PHB (polyhydroxybutyrate) yields and kinetics. The results show that the anabolic demand allowed the NADPH production through the Entner-Doudoroff (ED) pathway, leading to a high maximal theoretical PHB production yield of 0.89 C mole C mole(-1); whereas without biomass production, NADPH regeneration is only possible via the isocitrate dehydrogenase leading to a theoretical yield of 0.67 C mole C mole(-1). Furthermore, the maximum specific rate of NADPH produced at maximal growth rate (to fulfil biomass requirement) was found to be the maximum set in every conditions, which by consequence determines the maximal PHB production rate. These results imply that sustaining a controlled residual growth improves the PHB specific production rate without altering production yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Kinetic modelling of central carbon metabolism in Escherichia coli.

    Science.gov (United States)

    Peskov, Kirill; Mogilevskaya, Ekaterina; Demin, Oleg

    2012-09-01

    In the present study, we developed a detailed kinetic model of Escherichia coli central carbon metabolism. The main model assumptions were based on the results of metabolic and regulatory reconstruction of the system and thorough model verification with experimental data. The development and verification of the model included several stages, which allowed us to take into account both in vitro and in vivo experimental data and avoid the ambiguity that frequently occurs in detailed models of biochemical pathways. The choice of the level of detail for the mathematical description of enzymatic reaction rates and the evaluation of parameter values were based on available published data. Validation of the complete model of the metabolic pathway describing specific physiological states was based on fluxomics and metabolomics data. In particular, we developed a model that describes aerobic growth of E. coli in continuous culture with a limiting concentration of glucose. Such modification of the model was used to integrate experimental metabolomics data obtained in steady-state conditions for wild-type E. coli and genetically modified strains, e.g. knockout of the pyruvate kinase gene (pykA). Following analysis of the model behaviour, and comparison of the coincidence between predicted and experimental data, it was possible to investigate the functional and regulatory properties of E. coli central carbon metabolism. For example, a novel metabolic regulatory mechanism for 6-phosphogluconate dehydrogenase inhibition by phosphoenolpyruvate was hypothesized, and the flux ratios between the reactions catalysed by enzyme isoforms were predicted. The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/peskov/index.html © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas

    Directory of Open Access Journals (Sweden)

    Roberto Celiberto

    2017-05-01

    Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.

  9. Pyrolysis Kinetic Modelling of Wheat Straw from the Pannonian Region

    Directory of Open Access Journals (Sweden)

    Ivan Pešenjanski

    2016-01-01

    Full Text Available The pyrolysis/devolatilization is a basic step of thermochemical processes and requires fundamental characterization. In this paper, the kinetic model of pyrolysis is specified as a one-step global reaction. This type of reaction is used to describe the thermal degradation of wheat straw samples by measuring rates of mass loss of solid matter at a linear increase in temperature. The mentioned experiments were carried out using a derivatograph in an open-air environment. The influence of different factors was investigated, such as particle size, humidity levels, and the heating rate in the kinetics of devolatilization. As the measured values of mass loss and temperature functions transform in Arrhenius coordinates, the results are shown in the form of saddle curves. Such characteristics cannot be approximated with one equation in the form of Arrhenius law. For use in numerical applications, transformed functions can be approximated by linear regression for three separate intervals. Analysis of measurement resulting in granulation and moisture content variations shows that these factors have no significant influence. Tests of heating rate variations confirm the significance of this impact, especially in warmer regions. The influence of this factor should be more precisely investigated as a general variable, which should be the topic of further experiments.

  10. Integration Strategies for Efficient Multizone Chemical Kinetics Models

    Energy Technology Data Exchange (ETDEWEB)

    McNenly, M J; Havstad, M A; Aceves, S M; Pitz, W J

    2009-10-15

    Three integration strategies are developed and tested for the stiff, ordinary differential equation (ODE) integrators used to solve the fully coupled multizone chemical kinetics model. Two of the strategies tested are found to provide more than an order of magnitude of improvement over the original, basic level of usage for the stiff ODE solver. One of the faster strategies uses a decoupled, or segregated, multizone model to generate an approximate Jacobian. This approach yields a 35-fold reduction in the computational cost for a 20 zone model. Using the same approximate Jacobian as a preconditioner for an iterative Krylov-type linear system solver, the second improved strategy achieves a 75-fold reduction in the computational cost for a 20 zone model. The faster strategies achieve their cost savings with no significant loss of accuracy. The pressure, temperature and major species mass fractions agree with the solution from the original integration approach to within six significant digits; and the radical mass fractions agree with the original solution to within four significant digits. The faster strategies effectively change the cost scaling of the multizone model from cubic to quadratic, with respect to the number of zones. As a consequence of the improved scaling, the 40 zone model offers more than a 250-fold cost savings over the basic calculation.

  11. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  12. Kinetic Model of Biogas Yield Production from Vinasse at Various Initial pH: Comparison between Modified Gompertz Model and First Order Kinetic Model

    Directory of Open Access Journals (Sweden)

    Budiyono

    2014-04-01

    Full Text Available Anaerobic treatment using anaerobic digestion can convert organic materials of vinasse into biogas. The purpose of this study was modeling kinetic of biogas production using modified Gompertz model and first order kinetic model at variation of initial pH. Substrates were consisted of two kinds of compositions, which were vinasse+rumen (VR and vinasse+rumen+urea (VRU. Initial pH in each substrate was 6, 7 and 8. Degradation process was done in 30 days using batch anaerobic digesters at room temperature. Both, at VR and VRU, initial pH of 7 generated the more total biogas than the others two (initial pH of 6 and 8. Biogas formed at substrate of VRU was more than that at substrate of VR. The best condition was substrate of VRU and initial pH of 7. At best condition, kinetic constants of biogas production model using modified Gompertz were ym (biogas production potential = 6.49 mL/g VS; U (maximum biogas production rate = 1.24 mL/g VS. day; &lambda (minimum time to produce biogas = 1.79 days. Whereas kinetic constants of biogas production model using first order kinetic were ym (biogas production potential = 6.78 mL/g VS; k (biogas production rate = 0.176 /day. The difference between the predicted and measured biogas yield (fitting error was higher with the first-order kinetic model (1.54-7.50% than with the modified Gompertz model (0.76-3.14%.

  13. Modeling Adsorption Kinetics of Magnesium and Phosphate Ions on Goethite by Empirical Equations

    Directory of Open Access Journals (Sweden)

    Malihe Talebi Atouei

    2017-06-01

    Full Text Available Introduction: Natural environments, including soils and sediments, are open and complex systems in which physico-chemical reactions are in semi equilibrium state. In these systems, bioavailability of plant nutrients, like phosphate, is influenced by environmental conditions and concentrations of other ions such as calcium and magnesium. Magnesium is a dominant cation in irrigation water and in the soil solution of calcareous soils. Recent evidences show relative increase in the concentration of magnesium in irrigation water. Because of the importance of chemical kinetics in controlling concentrations of these ions in the soil solution and for understanding their effects of adsorption kinetics of magnesium and phosphate ions, in this research, adsorption kinetics of these two ions on goethite is investigated as function of time and pH in single ion and binary ion systems. The experimental data are described by using the adsorption kinetics equations. These data are of the great importance in better understanding adsorption interactions and ion adsorption mechanism.With respect to the importance of these interactions from both economical and environmental point of view, in this research, the kinetics and thermodynamics of phosphate and Mg2adsorption interactions were investigated as function of pH on soil model mineral goethite in both single and binary ion systems. Materials and Methods: Kinetics experiments were performed in the presence of 0.2 mM magnesium and 0.4 mM phosphate in 0.1 M NaCl background solution and 3 g L-1 goethite concentration as function of pH and time (1, 5, 14, 24, 48. 72 and 168 h in single ion and binary ion systems. After reaction time, the suspensions were centrifuged and a sample of supernatant was taken for measuring ions equilibrium concentrations.Phosphate concentration was measured calorimetrically with the ammonium molybdate blue method by spectrophotometer (Jenway-6505 UV/Vis. Magnesium concentration was

  14. Kinetic Modeling of Incremental Ambulatory Peritoneal Dialysis Exchanges.

    Science.gov (United States)

    Guest, Steven; Leypoldt, John K; Cassin, Michelle; Schreiber, Martin

    2017-01-01

    ♦ BACKGROUND: Incremental peritoneal dialysis (PD), the gradual introduction of dialysate exchanges at less than full-dose therapy, has been infrequently described in clinical reports. One concern with less than full-dose dialysis is whether urea clearance targets are achievable with an incremental regimen. In this report, we used a large database of PD patients, across all membrane transport types, and performed urea kinetic modeling determinations of possible incremental regimens for an individual membrane type. ♦ METHODS: Using a modified 3-pore model of peritoneal transport, various incremental manual continuous ambulatory PD (CAPD) exchanges employing glucose and/or icodextrin were evaluated. Peritoneal urea clearances from those simulations were added to residual kidney urea clearance for patients with various glomerular filtration rates (GFRs), and the total weekly urea clearance was then compared to the total weekly urea Kt/V target of 1.7. All 4 peritoneal membrane types were modeled. For each simulated prescription, net ultrafiltration and carbohydrate absorption were also calculated. ♦ RESULTS: Incremental CAPD regimens of 2 exchanges a day met adequacy targets if the GFR was 6 mL/min/1.73 m(2) in all membrane types. For regimens employing 3 exchanges a day, Kt/V targets were achieved at GFR levels of 4 to 5 mL/min/1.73 m(2) in high transporters to low transporters but higher tonicity 2.5% glucose solutions or icodextrin were required in some regimens. ♦ CONCLUSIONS: This work demonstrates that with incremental CAPD regimens, urea kinetic targets are achievable in most new starts to PD with residual kidney function. Incremental PD may be a less intrusive, better accepted initial treatment regime and a cost-effective way to initiate chronic dialysis in the incident patient. The key role of intrinsic kidney function in incremental regimens is highlighted in this analysis and would warrant conscientious monitoring. Copyright © 2017 International

  15. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  16. Adaptation of the microdosimetric kinetic model to hypoxia

    Science.gov (United States)

    Bopp, C.; Hirayama, R.; Inaniwa, T.; Kitagawa, A.; Matsufuji, N.; Noda, K.

    2016-11-01

    Ion beams present a potential advantage in terms of treatment of lesions with hypoxic regions. In order to use this potential, it is important to accurately model the cell survival of oxic as well as hypoxic cells. In this work, an adaptation of the microdosimetric kinetic (MK) model making it possible to account for cell hypoxia is presented. The adaptation relies on the modification of damage quantity (double strand breaks and more complex lesions) due to the radiation. Model parameters such as domain size and nucleus size are then adapted through a fitting procedure. We applied this approach to two cell lines, HSG and V79 for helium, carbon and neon ions. A similar behaviour of the parameters was found for the two cell lines, namely a reduction of the domain size and an increase in the sensitive nuclear volume of hypoxic cells compared to those of oxic cells. In terms of oxygen enhancement ratio (OER), the experimental data behaviour can be reproduced, including dependence on particle type at the same linear energy transfer (LET). Errors on the cell survival prediction are of the same order of magnitude than for the original MK model. Our adaptation makes it possible to account for hypoxia without modelling the OER as a function of the LET of the particles, but directly accounting for hypoxic cell survival data.

  17. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  18. Aeroservoelasticity modeling and control

    CERN Document Server

    Tewari, Ashish

    2015-01-01

    This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing. The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential A...

  19. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence.

    Science.gov (United States)

    Parmar, Jyotsana J; Marko, John F; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted 'barriers' co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that 'statistical' positioning of nucleosomes against 'barriers', hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.

  20. Kinetic effects of adriamycin and bleomycin on two osteosarcoma models.

    Science.gov (United States)

    Bell, D F; Bell, R S; Mankin, H J; Gebhardt, M C; Weltie, F; O'Brien, T

    1988-01-01

    Although chemotherapeutic drugs are frequently administered to patients with osteosarcoma, there has been little research into the effect of cytotoxic drugs on osteosarcoma cell biology. The effect of two drugs (Adriamycin and bleomycin) on cell cycle kinetics was investigated in vitro in an established line of human osteosarcoma cells and in vivo using the Dunn osteosarcoma model. The cell cycle changes were consistent with G2 arrest for both drugs in vivo and in vitro. The alteration in cell cycle distribution was correlated with inhibition of 3H-thymidine incorporation in vitro. In vivo, the greater change in cell cycle distribution caused by Adriamycin was reflected in the increased inhibition of tumor growth found with this drug.

  1. Formulation and kinetic modeling of curcumin loaded intranasal mucoadhesive microemulsion

    Directory of Open Access Journals (Sweden)

    B Mikesh Patel

    2012-01-01

    Full Text Available It is a challenge to develop the optimum dosage form of poorly water-soluble drugs and to target them due to limited bioavailability, intra and inter subject variability. In this investigation, mucoadhesive microemulsion of curcumin was developed by water titration method taking biocompatible components for intranasal delivery and was characterized. Nasal ciliotoxicity studies were carried out using excised sheep nasal mucosa. in vitro release studies of formulations and PDS were performed. Labrafil M 1944 CS based microemulsion was transparent, stable and nasal non-ciliotoxic having particle size 12.32±0.81nm (PdI=0.223 and from kinetic modeling, the release was found to be Fickian diffusion for mucoadhesive microemulsion.

  2. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

    2010-02-19

    Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  3. Testing a dissipative kinetic k-essence model

    CERN Document Server

    Cardenas, V H; Villanueva, J R

    2015-01-01

    In this work, we present a study of a purely kinetic k-essence model, characterized basically by a parameter $\\alpha$ in presence of a bulk dissipative term, whose relationship between viscous pressure $\\Pi$ and energy density $\\rho$ of the background follows a polytropic type law $\\Pi \\propto \\rho^{\\lambda+1/2}$, where $\\lambda$, in principle, is a parameter without restrictions. Analytical solutions for the energy density of the k-essence field are found in two specific cases: $\\lambda=1/2$ and $\\lambda=(1-\\alpha)/2\\alpha$, and then we show that these solutions posses the same functional form than the non-viscous counterpart. Finally, both approach are contrasted with observational data from type Ia supernova, and the most recent Hubble parameter measurements, and therefore, the best values for the parameters of the theory are founds.

  4. Testing a dissipative kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Victor H.; Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Santiago (Chile)

    2015-04-01

    In thiswork,we present a study of a purely kinetic k-essence model, characterized basically by a parameter α in presence of a bulk dissipative term, whose relationship between viscous pressure Π and energy density ρ of the background follows a polytropic type law, Π ∝ ρ{sup λ+1/2}, where λ, in principle, is a parameter without restrictions. Analytical solutions for the energy density of the k-essence field are found in two specific cases: λ = 1/2 and λ = (1 - α)/2α, and then we show that these solutions possess the same functional form as the non-viscous counterpart. Finally, both approaches are contrasted with observational data from type Ia supernova, and the most recent Hubble parameter measurements, and therefore, the best values for the parameters of the theory are found. (orig.)

  5. Phase transition in kinetic exchange opinion models with independence

    CERN Document Server

    Crokidakis, Nuno

    2014-01-01

    In this work we study the critical behavior of a three-state ($+1$, $-1$, $0$) opinion model with independence. Each agent has a probability $q$ to act as independent, i.e., he/she can choose his/her opinion independently of the opinions of the other agents. On the other hand, with the complementary probability $1-q$ the agent interacts with a randomly chosen individual through a kinetic exchange. Our analytical and numerical results show that the independence mechanism acts as a noise that induce an order-disorder transition at critical points $q_{c}$ that depend on the individuals' flexibility. For a special value of this flexibility the system undergoes a transition to an absorbing state with all opinions $0$.

  6. Thermal stability of n-dodecane : experiments and kinetic modelling

    CERN Document Server

    Herbinet, Olivier; Battin-Leclerc, Frédérique; Fournet, René

    2007-01-01

    The thermal decomposition of n-dodecane, a component of some jet fuels, has been studied in a jet-stirred reactor at temperatures from 793 to 1093 K, for residence times between 1 and 5 s and at atmospheric pressure. Thermal decomposition of hydrocarbon fuel prior the entrance in the combustion chamber is an envisaged way to cool the wall of hypersonic vehicles. The products of the reaction are mainly hydrogen, methane, ethane, 1,3-butadiene and 1-alkenes from ethylene to 1-undecene. For higher temperatures and residence times acetylene, allene, propyne, cyclopentene, 1,3-cyclopentadiene and aromatic compounds from benzene to pyrene through naphthalene have also been observed. A previous detailed kinetic model of the thermal decomposition of n-dodecane generated using EXGAS software has been improved and completed by a sub-mechanism explaining the formation and the consumption of aromatic compounds.

  7. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  8. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Directory of Open Access Journals (Sweden)

    Ghanim Ullah

    Full Text Available Amyloid beta (Aβ oligomers associated with Alzheimer's disease (AD form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+ homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  9. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Science.gov (United States)

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; Pearson, John E

    2015-01-01

    Amyloid beta (Aβ) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  10. Generic phase coexistence in the totally asymmetric kinetic Ising model

    Science.gov (United States)

    Godrèche, Claude; Luck, Jean-Marc

    2017-07-01

    The physical analysis of generic phase coexistence in the North-East-Center Toom model was originally given by Bennett and Grinstein. The gist of their argument relies on the dynamics of interfaces and droplets. We revisit the same question for a specific totally asymmetric kinetic Ising model on the square lattice. This nonequilibrium model possesses the remarkable property that its stationary-state measure in the absence of a magnetic field coincides with that of the usual ferromagnetic Ising model. We use both analytical arguments and numerical simulations in order to make progress in the quantitative understanding of the phenomenon of generic phase coexistence. At zero temperature a mapping onto the TASEP allows an exact determination of the time-dependent shape of the ballistic interface sweeping a large square minority droplet of up or down spins. At finite temperature, measuring the mean lifetime of such a droplet allows an accurate measurement of its shrinking velocity v, which depends on temperature T and magnetic field h. In the absence of a magnetic field, v vanishes with an exponent Δ_v≈2.5+/-0.2 as the critical temperature T c is approached. At fixed temperature in the ordered phase, v vanishes at the phase-boundary fields +/- h_b(T) which mark the limits of the coexistence region. The latter fields vanish with an exponent Δ_h≈3.2+/-0.3 as T c is approached.

  11. Detailed kinetic modeling study of n-pentanol oxidation

    KAUST Repository

    Heufer, Karl Alexander

    2012-10-18

    To help overcome the world\\'s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.

  12. Scale-up and kinetic modeling for bioethanol production.

    Science.gov (United States)

    Imamoglu, Esra; Sukan, Fazilet Vardar

    2013-09-01

    Bioethanol was produced from acidic hydrolysate of rice hulls using recombinant Escherichia coli KO11. Two different issues (scale-up and kinetic modeling) were evaluated simultaneously and concomitantly for bioethanol production. During the step-wise scale-up process from 100 mL shaken flask to 10 L stirred-tank bioreactor, the constant Reynolds number and the constant impeller tip speed were evaluated as scale-up methodologies under laboratory conditions. It was determined that the volumetric bioethanol productivity was 88% higher in 10 L bioreactor in comparison to the value of 0.21 g L(-1) h(-1) in shaken flask. The modified Monod and Luedeking-Piret models provided an accurate approach for the modeling of the experimental data. Ethanol concentration reached the maximum level of 29.03 g/L, which was 5% higher than the value of model prediction in 10 L bioreactor. The findings of this research could contribute to the industrial scale productions especially from lignocellulosic raw materials.

  13. Gompertz kinetics model of fast chemical neurotransmission currents.

    Science.gov (United States)

    Easton, Dexter M

    2005-10-01

    At a chemical synapse, transmitter molecules ejected from presynaptic terminal(s) bind reversibly with postsynaptic receptors and trigger an increase in channel conductance to specific ions. This paper describes a simple but accurate predictive model for the time course of the synaptic conductance transient, based on Gompertz kinetics. In the model, two simple exponential decay terms set the rates of development and decline of transmitter action. The first, r, triggering conductance activation, is surrogate for the decelerated rate of growth of conductance, G. The second, r', responsible for Y, deactivation of the conductance, is surrogate for the decelerated rate of decline of transmitter action. Therefore, the differential equation for the net conductance change, g, triggered by the transmitter is dg/dt=g(r-r'). The solution of that equation yields the product of G(t), representing activation, and Y(t), which defines the proportional decline (deactivation) of the current. The model fits, over their full-time course, published records of macroscopic ionic current associated with fast chemical transmission. The Gompertz model is a convenient and accurate method for routine analysis and comparison of records of synaptic current and putative transmitter time course. A Gompertz fit requiring only three independent rate constants plus initial current appears indistinguishable from a Markov fit using seven rate constants.

  14. Genome-scale Metabolic Reaction Modeling: a New Approach to Geomicrobial Kinetics

    Science.gov (United States)

    McKernan, S. E.; Shapiro, B.; Jin, Q.

    2014-12-01

    Geomicrobial rates, rates of microbial metabolism in natural environments, are a key parameter of theoretical and practical problems in geobiology and biogeochemistry. Both laboratory- and field-based approaches have been applied to study rates of geomicrobial processes. Laboratory-based approaches analyze geomicrobial kinetics by incubating environmental samples under controlled laboratory conditions. Field methods quantify geomicrobial rates by observing the progress of geomicrobial processes. To take advantage of recent development in biogeochemical modeling and genome-scale metabolic modeling, we suggest that geomicrobial rates can also be predicted by simulating metabolic reaction networks of microbes. To predict geomicrobial rates, we developed a genome-scale metabolic model that describes enzyme reaction networks of microbial metabolism, and simulated the network model by accounting for the kinetics and thermodynamics of enzyme reactions. The model is simulated numerically to solve cellular enzyme abundance and hence metabolic rates under the constraints of cellular physiology. The new modeling approach differs from flux balance analysis of system biology in that it accounts for the thermodynamics and kinetics of enzymatic reactions. It builds on subcellular metabolic reaction networks, and hence also differs from classical biogeochemical reaction modeling. We applied the new approach to Methanosarcina acetivorans, an anaerobic, marine methanogen capable of disproportionating acetate to carbon dioxide and methane. The input of the new model includes (1) enzyme reaction network of acetoclastic methanogenesis, and (2) representative geochemical conditions of freshwater sedimentary environments. The output of the simulation includes the proteomics, metabolomics, and energy and matter fluxes of M. acetivorans. Our simulation results demonstrate the predictive power of the new modeling approach. Specifically, the results illustrate how methanogenesis rates vary

  15. Construction of the simplest model to explain complex receptor activation kinetics

    DEFF Research Database (Denmark)

    Bywater, RP; Sorensen, A; Røgen, Peter;

    2002-01-01

    We study the mathematical solutions to the kinetic equations arising from various simple ligand-reactor models. Focusing on the prediction of the various models for the activity vs. concentration curve, we find that solutions to the kinetic equations arising from the so-called dimer model exibit...

  16. T-S fuzzy control on nuclear reactor power based on model of point kinetics with one delayed neutron group%基于单组缓发中子模型的反应堆功率T-S模糊控制

    Institute of Scientific and Technical Information of China (English)

    赵伟宁; 栾秀春; 樊达宜; 周杰

    2013-01-01

    The T - S fuzzy controller was designed based on the dynamic model of point kinetics with one delayed neutron group to control the power of nuclear reactor. The simulation result showed the satisfactory performance of the T - S fuzzy controller to control the nuclear reactor power output.%基于T-S模糊模型,针对单组缓发中子点堆动力学方程,设计了T-S模糊控制器来实现对反应堆功率的控制.仿真结果表明,所设计的T-S模糊模型控制器能够较好的控制反应堆功率的输出,取得较好的控制效果.

  17. Mechanism and kinetics model of hydrolysis in anaerobic digestion of kitchen wastes

    Institute of Scientific and Technical Information of China (English)

    吴云; 张代钧; 杨钢

    2009-01-01

    The profile of hydrolysates during the anaerobic digestion of kitchen wastes was investigated. The experimental results show that the hysteresis of hydrolytic rate is mainly controlled by the diffusion effect. The hydrolytic mechanism of kitchen wastes is elaborated by taking the diffusion effect into consideration. A segment model of the hydrolysis for kitchen waste is formulated including the coefficient of diffusion resistance in the model. The coefficients of diffusion resistance for different particle sizes are 1.42,2.12 and 2.78 respectively based on the experimental data,in which the coefficients of diffusion resistance conform an exponential function. So,the partitioning kinetic model could be integrated as a unified experience model. The model is verified with experimental data,which shows that the model could predict the concentration of organic substances during the anaerobic digestion of kitchen wastes.

  18. Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models

    Science.gov (United States)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos

    2017-08-01

    Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.

  19. Model-free control

    Science.gov (United States)

    Fliess, Michel; Join, Cédric

    2013-12-01

    'Model-free control'and the corresponding 'intelligent' PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account. The basics of model-free control is now employing some old functional analysis and some elementary differential algebra. The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PIDs and the great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not only the power of our intelligent controllers but also the great simplicity for tuning them.

  20. Hopping electron model with geometrical frustration: kinetic Monte Carlo simulations

    Science.gov (United States)

    Terao, Takamichi

    2016-09-01

    The hopping electron model on the Kagome lattice was investigated by kinetic Monte Carlo simulations, and the non-equilibrium nature of the system was studied. We have numerically confirmed that aging phenomena are present in the autocorrelation function C ({t,tW )} of the electron system on the Kagome lattice, which is a geometrically frustrated lattice without any disorder. The waiting-time distributions p(τ ) of hopping electrons of the system on Kagome lattice has been also studied. It is confirmed that the profile of p (τ ) obtained at lower temperatures obeys the power-law behavior, which is a characteristic feature of continuous time random walk of electrons. These features were also compared with the characteristics of the Coulomb glass model, used as a model of disordered thin films and doped semiconductors. This work represents an advance in the understanding of the dynamics of geometrically frustrated systems and will serve as a basis for further studies of these physical systems.

  1. Kinetic modelling of runaway electrons in dynamic scenarios

    Science.gov (United States)

    Stahl, A.; Embréus, O.; Papp, G.; Landreman, M.; Fülöp, T.

    2016-11-01

    Improved understanding of runaway-electron formation and decay processes are of prime interest for the safe operation of large tokamaks, and the dynamics of the runaway electrons during dynamical scenarios such as disruptions are of particular concern. In this paper, we present kinetic modelling of scenarios with time-dependent plasma parameters; in particular, we investigate hot-tail runaway generation during a rapid drop in plasma temperature. With the goal of studying runaway-electron generation with a self-consistent electric-field evolution, we also discuss the implementation of a collision operator that conserves momentum and energy and demonstrate its properties. An operator for avalanche runaway-electron generation, which takes the energy dependence of the scattering cross section and the runaway distribution into account, is investigated. We show that the simplified avalanche model of Rosenbluth and Putvinskii (1997 Nucl. Fusion 37 1355) can give inaccurate results for the avalanche growth rate (either lower or higher) for many parameters, especially when the average runaway energy is modest, such as during the initial phase of the avalanche multiplication. The developments presented pave the way for improved modelling of runaway-electron dynamics during disruptions or other dynamic events.

  2. Kinetic Control of Histidine-Tagged Protein Surface Density on Supported Lipid Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Jeffrey A. [Univ. of California, Berkeley, CA (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2008-02-28

    Nickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. In this study, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t1/2 ≈ 6 min), whereas polyvalently bound species remain bound for hours (t1/2 ≈ 12 h). Evolution between surface states is slow, so equilibrium is unlikely to be reached on experimental timescales. However, by tuning incubation conditions, the populations of each species can be kinetically controlled, providing a wide range of protein densities on SLBs with a single concentration of chelator lipid. In conclusion, we propose guidelines for the assembly of SLB surfaces functionalized with specific protein densities and demonstrate their utility in the formation of hybrid immunological synapses.

  3. Kinetic Model of Hypophosphite Oxidation on a Nickel Electrode in D2O Solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Kinetic model of hypophosphite oxidation on a nickel electrode was studied in D2Osolution in order to reach a better understanding of the oxidation mechanism. In the model the electrooxidation of hypophosphite undergo a H abstraction of hypophosphite from the P-H bond to form the phosphorus-centered radical PHO2-, which subsequently is electrochemically reacted with water to form the final product, phosphite. The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The process of hypophosphite electrooxidation could be well simulated by this model

  4. Applicaiton of a Kinetic Multireaction Model for Studying Metolachlor Adsorption in Soil

    Institute of Scientific and Technical Information of China (English)

    ZHUHONGXIA; MALIWANG; 等

    1997-01-01

    Metolachlor retention on a Sharkey clay soil was quantified using a kinetic batch method for different initial solution concentrations.Time-dependent adsorption was carried out by monitoring solution concentration at different reaction times.Adsorption was kinetic multireaction model which includes reverible and irreversible retention processes of the equilibrium and kinetic types,The predictive capability of the model for the dexcription of experimental results for metolachlor retention was examined and proved to be adequate。

  5. A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism.

    Science.gov (United States)

    Savoglidis, Georgios; da Silveira Dos Santos, Aline Xavier; Riezman, Isabelle; Angelino, Paolo; Riezman, Howard; Hatzimanikatis, Vassily

    2016-09-01

    We present a model-based method, designated Inverse Metabolic Control Analysis (IMCA), which can be used in conjunction with classical Metabolic Control Analysis for the analysis and design of cellular metabolism. We demonstrate the capabilities of the method by first developing a comprehensively curated kinetic model of sphingolipid biosynthesis in the yeast Saccharomyces cerevisiae. Next we apply IMCA using the model and integrating lipidomics data. The combinatorial complexity of the synthesis of sphingolipid molecules, along with the operational complexity of the participating enzymes of the pathway, presents an excellent case study for testing the capabilities of the IMCA. The exceptional agreement of the predictions of the method with genome-wide data highlights the importance and value of a comprehensive and consistent engineering approach for the development of such methods and models. Based on the analysis, we identified the class of enzymes regulating the distribution of sphingolipids among species and hydroxylation states, with the D-phospholipase SPO14 being one of the most prominent. The method and the applications presented here can be used for a broader, model-based inverse metabolic engineering approach.

  6. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  7. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  8. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    Science.gov (United States)

    Al-Sabawi, Mustafa N.

    catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.

  9. Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills

    Science.gov (United States)

    Amida, N.; Supriyanti, F. M. T.; Liliasari

    2017-02-01

    This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of average of 0.77. Four indicators classified in the high category are direct observation, causality, symbolic language, and mathematical modeling with the value of 0,73 0,70; 0,96; dan 0,85. Meanwhile, indicator of concepts formation in the medium category with a value of 0.62

  10. Micellization kinetics in block copolymer solutions : Scaling model

    NARCIS (Netherlands)

    Dormidontova, EE

    1999-01-01

    The kinetics of micelle evolution of diblock copolymers from unimers toward the equilibrium state is studied analytically on the basis of consideration of the kinetic equations. The association/dissociation rate constants for unimer insertion/expulsion and micelle fusion/fission are calculated by

  11. Micellization kinetics in block copolymer solutions : Scaling model

    NARCIS (Netherlands)

    Dormidontova, EE

    1999-01-01

    The kinetics of micelle evolution of diblock copolymers from unimers toward the equilibrium state is studied analytically on the basis of consideration of the kinetic equations. The association/dissociation rate constants for unimer insertion/expulsion and micelle fusion/fission are calculated by ap

  12. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  13. MODEL PREDICTIVE CONTROL FUNDAMENTALS

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... paper, we will present an introduction to the theory and application of MPC with Matlab codes written to ... model predictive control, linear systems, discrete-time systems, ... and then compute very rapidly for this open-loop con-.

  14. Kinetic modeling of water sorption by roasted and ground coffee

    Directory of Open Access Journals (Sweden)

    Fernanda Machado Baptestini

    2017-05-01

    Full Text Available The objective of this study was to model the kinetics of water sorption in roasted and ground coffee. Crude Arabica coffee beans with an initial moisture content of 0.1234 kgwkgdm-1 were used. These beans were roasted to a medium roast level (SCCA # 55 and ground at three particle sizes: coarse (1.19 mm, medium (0.84 mm and fine (0.59 mm. To obtain the water sorption isotherms and the isosteric heat, different conditions of temperature and relative humidity were analyzed using the dynamic method at 25ºC (0.50, 0.60, 0.70, and 0.80 of RH and 30°C (0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 of RH and using the static method at 25ºC (0.332 and 0.438 of RH. The GAB model best represented the hygroscopic equilibrium of roasted coffee at every particle size. Isosteric heat of sorption for the fine particle size increased with increments of equilibrium moisture content, indicating a strong bond energy between water molecules and the product components. The Gibbs free energy decreased with the increase in equilibrium moisture content and with temperature.

  15. Fluctuation theorems for discrete kinetic models of molecular motors

    Science.gov (United States)

    Faggionato, Alessandra; Silvestri, Vittoria

    2017-04-01

    Motivated by discrete kinetic models for non-cooperative molecular motors on periodic tracks, we consider random walks (also not Markov) on quasi one dimensional (1d) lattices, obtained by gluing several copies of a fundamental graph in a linear fashion. We show that, for a suitable class of quasi-1d lattices, the large deviation rate function associated to the position of the walker satisfies a Gallavotti-Cohen symmetry for any choice of the dynamical parameters defining the stochastic walk. This class includes the linear model considered in Lacoste et al (2008 Phys. Rev. E 78 011915). We also derive fluctuation theorems for the time-integrated cycle currents and discuss how the matrix approach of Lacoste et al (2008 Phys. Rev. E 78 011915) can be extended to derive the above Gallavotti-Cohen symmetry for any Markov random walk on {Z} with periodic jump rates. Finally, we review in the present context some large deviation results of Faggionato and Silvestri (2017 Ann. Inst. Henri Poincaré 53 46-78) and give some specific examples with explicit computations.

  16. Modeling battery cells under discharge using kinetic and stochastic battery models

    OpenAIRE

    Kaj, Ingemar; Konane, Victorien

    2016-01-01

    In this paper we review several approaches to mathematical modeling of simple battery cells and develop these ideas further with emphasis on charge recovery and the response behavior of batteries to given external load. We focus on models which use few parameters and basic battery data, rather than detailed reaction and material characteristics of a specific battery cell chemistry, starting with the coupled ODE linear dynamics of the kinetic battery model. We show that a related system of PDE...

  17. Modelling, controlling, predicting blackouts

    CERN Document Server

    Wang, Chengwei; Baptista, Murilo S

    2016-01-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids, and another one for smart grids. The control strategie...

  18. Disposition of smoked cannabis with high [Delta]9-tetrahydrocannabinol content: A kinetic model.

    NARCIS (Netherlands)

    Hunault, C.C.; van Eijkeren, J.C.; Mensinga, T.T.; de Vries, I.; Leenders, M.E.C.; Meulenbelt, J.

    2010-01-01

    Introduction No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC).Methods

  19. Disposition of smoked cannabis with high [Delta]9-tetrahydrocannabinol content: A kinetic model.

    NARCIS (Netherlands)

    Hunault, C.C.; van Eijkeren, J.C.; Mensinga, T.T.; de Vries, I.; Leenders, M.E.C.; Meulenbelt, J.

    2010-01-01

    Introduction No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC).Methods Twenty-f

  20. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  1. Predicting individual responses to pravastatin using a physiologically based kinetic model for plasma cholesterol concentrations

    NARCIS (Netherlands)

    Pas, N.C.A. van de; Rullmann, J.A.C.; Woutersen, R.A.; Ommen, B. van; Rietjens, I.M.C.M.; Graaf, A.A. de

    2014-01-01

    We used a previously developed physiologically based kinetic (PBK) model to analyze the effect of individual variations in metabolism and transport of cholesterol on pravastatin response. The PBK model is based on kinetic expressions for 21 reactions that interconnect eight different body

  2. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  3. Controlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement

    Science.gov (United States)

    Sun, Wenjie; Vallooran, Jijo J.; Zabara, Alexandru; Mezzenga, Raffaele

    2014-05-01

    Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them into a highly confined environment. We show that the enzymatic activity of a model enzyme, horseradish peroxidase (HRP), can be accurately controlled by relaxing its confinement within the cubic phases' water channels, when the aqueous channel diameters are systematically swollen with varying amount of hydration-enhancing sugar ester. The in-meso activity and kinetics of HRP are then systematically investigated by UV-vis spectroscopy, as a function of the size of the aqueous mesophase channels. The enzymatic activity of HRP increases with the swelling of the water channels. In swollen mesophases with water channel diameter larger than the HRP size, the enzymatic activity is more than double that measured in standard mesophases, approaching again the enzymatic activity of free HRP in bulk water. We also show that the physically-entrapped enzymes in the mesophases exhibit a restricted-diffusion-induced initial lag period and report the first observation of in-meso enzymatic kinetics significantly deviating from the normal Michaelis-Menten behaviour observed in free solutions, with deviations vanishing when enzyme confinement is released by swelling the mesophase.Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and restrict them

  4. SMC: SCENIC Model Control

    Science.gov (United States)

    Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.

    2015-01-01

    NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in

  5. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  6. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  7. Freed by interaction kinetic states in the Harper model

    Science.gov (United States)

    Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-12-01

    We study the problem of two interacting particles in a one-dimensional quasiperiodic lattice of the Harper model. We show that a short or long range interaction between particles leads to emergence of delocalized pairs in the non-interacting localized phase. The properties of these freed by interaction kinetic states (FIKS) are analyzed numerically including the advanced Arnoldi method. We find that the number of sites populated by FIKS pairs grows algebraically with the system size with the maximal exponent b = 1, up to a largest lattice size N = 10 946 reached in our numerical simulations, thus corresponding to a complete delocalization of pairs. For delocalized FIKS pairs the spectral properties of such quasiperiodic operators represent a deep mathematical problem. We argue that FIKS pairs can be detected in the framework of recent cold atom experiments [M. Schreiber et al., Science 349, 842 (2015)] by a simple setup modification. We also discuss possible implications of FIKS pairs for electron transport in the regime of charge-density wave and high T c superconductivity.

  8. Kinetic modeling for chemiluminescent radicals in acetylene combustion

    Directory of Open Access Journals (Sweden)

    Marques Carla S. T.

    2006-01-01

    Full Text Available Kinetic modeling to reproduce the experimental chemiluminescence of OH*, CHO*, CH* and C2* excited radicals formed in C2H2/O2 combustion in a closed chamber was evaluated. A reaction mechanism with 37 species and 106 elementary reactions for C2H2/O2 combustion at phi=1.00 and phi=1.62 was validated through chemiluminescence measurements, where formation and decay reactions of excited radicals are included. KINAL package was used for simulations. Ordinary differential equations were solved by the DIFF program and production rate analysis were acquired by the ROPA program. There was good agreement between experimental and simulated chemiluminescence profiles of all radicals for both combustions. The results showed CH has a meaningful role in the production of excited radicals. Reactions: H + O2 = OH* + O; CH + O = CHO*; C2H + O2 = CH* + CO2 and CH2 + C = C2* + H2 were the main reactions paths used to reproduce the experimental profiles.

  9. Oil cracking to gases: Kinetic modeling and geological significance

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui; WANG Zhaoming; XIAO Zhongyao; LI Xianqing; XIAO Xianming

    2006-01-01

    ATriassic oil sample from LN14 of Tarim Basin was pyrolyzed using the sealed gold tubes at 200-620℃ under a constant pressure of 50 MPa.The gaseous and residual soluble hydrocarbons were analyzed. The results show that the cracking of oil to gas can be divided into two distinct stages: the primary generation of total C1-5 gases from liquid oil characterized by the dominance of C2-5 hydrocarbons and the secondary or further cracking of C2-5gases to methane and carbon-rich matters leading to the progressive dryness of gases. Based on the experimental data, the kinetic parameters were determined for the primary generation and secondary cracking of oil cracking gases and extrapolated to geological conditions to predict the thermal stability and cracking extent of crude oil. Finally, an evolution model for the thermal destruction of crude oil was proposed and its implications to the migration and accumulation of oil cracking gases were discussed.

  10. Kinetic model of the bichromatic dark trap for atoms

    Science.gov (United States)

    Krasnov, I. V.

    2017-08-01

    A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.

  11. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs.

  12. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans

    NARCIS (Netherlands)

    Pas, van de N.C.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Graaf, de A.A.

    2012-01-01

    Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was dire

  13. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte;

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  14. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans

    NARCIS (Netherlands)

    Pas, N.C.A. van de; Woutersen, R.A.; Ommen, B. van; Rietjens, I.M.C.M.; Graaf, A.A. de

    2012-01-01

    Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was

  15. Controls of Polysaccharide Chemistry on the Kinetics and Thermodynamics of Heterogeneous Calcium Carbonate Nucleation

    Science.gov (United States)

    Giuffre, A. J.; Han, N.; Dove, P. M.

    2011-12-01

    Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x

  16. Decarboxylation of Δ 9-tetrahydrocannabinol: Kinetics and molecular modeling

    Science.gov (United States)

    Perrotin-Brunel, Helene; Buijs, Wim; van Spronsen, Jaap; van Roosmalen, Maaike J. E.; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan

    2011-02-01

    Efficient tetrahydrocannabinol (Δ 9-THC) production from cannabis is important for its medical application and as basis for the development of production routes of other drugs from plants. This work presents one of the steps of Δ 9-THC production from cannabis plant material, the decarboxylation reaction, transforming the Δ 9-THC-acid naturally present in the plant into the psychoactive Δ 9-THC. Results of experiments showed pseudo-first order reaction kinetics, with an activation barrier of 85 kJ mol -1 and a pre-exponential factor of 3.7 × 10 8 s -1. Using molecular modeling, two options were identified for an acid catalyzed β-keto acid type mechanism for the decarboxylation of Δ 9-THC-acid. Each of these mechanisms might play a role, depending on the actual process conditions. Formic acid proved to be a good model for a catalyst of such a reaction. Also, the computational idea of catalysis by water to catalysis by an acid, put forward by Li and Brill, and Churchev and Belbruno was extended, and a new direct keto-enol route was found. A direct keto-enol mechanism catalyzed by formic acid seems to be the best explanation for the observed activation barrier and the pre-exponential factor of the decarboxylation of Δ 9-THC-acid. Evidence for this was found by performing an extraction experiment with Cannabis Flos. It revealed the presence of short chain carboxylic acids supporting this hypothesis. The presented approach is important for the development of a sustainable production of Δ 9-THC from the plant.

  17. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.

    Science.gov (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (mediansegment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies.

  18. Validation of the point kinetic neutronic model of the PBMR / Deon Marais

    OpenAIRE

    Marais, Deon

    2007-01-01

    This study introduces a new method for the validation of the point kinetic neutronic model of the PBMR. In this study the diffusion equation solution, as implemented in the TlNTE PBMR 268 MW reactor model, replaces the point kinetic model, as implemented in the Flownex V502 PBMR plant model. An indirect coupling method is devised and implemented in an external program called Flownex-Tinte-Interface (FTI) to facilitate the data exchange between these two codes. The validation...

  19. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    Science.gov (United States)

    Li, Zhihui; Wu, Junlin; Ma, Qiang; Jiang, Xinyu; Zhang, Hanxin

    2014-12-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  20. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhihui; Ma, Qiang [Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, P.O.Box 211, Mianyang 621000, China and National Laboratory for Computational Fluid Dynamics, No.37 Xueyuan Road, Beijing 100191 (China); Wu, Junlin; Jiang, Xinyu [Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, P.O.Box 211, Mianyang 621000 (China); Zhang, Hanxin [National Laboratory for Computational Fluid Dynamics, No.37 Xueyuan Road, Beijing 100191 (China)

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  1. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.

  2. A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman

    Directory of Open Access Journals (Sweden)

    James Bland

    2013-12-01

    Full Text Available The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM. The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4, followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO. At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.

  3. Mathematical modeling taking into account of intrinsic kinetic properties of cylinder-type vanadium catalyst

    Institute of Scientific and Technical Information of China (English)

    陈振兴; 李洪桂; 王零森

    2004-01-01

    The method to calculate internal surface effective factor of cylinder-type vanadium catalyst Ls-9 was given. Based on hypothesis of subjunctive one dimension diffusion and combined shape adjustment factor with threestep catalytic mechanism model, the macroscopic kinetic model equation about SO2 oxidation on Ls-9 was deduced.With fixed-bed integral reactor and under the conditions of temperature 350 - 410 ℃, space velocity 1 800 - 5 000h-1, SO2 inlet content 7 %- 12%, the macroscopic kinetic data were detected. Through model parameter estimation,the macroscopic kinetic model equation was obtained.

  4. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    Science.gov (United States)

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Control of contents and release kinetics in block copolymer vesicles

    Science.gov (United States)

    Eisenberg, Adi

    2005-03-01

    Block copolymer vesicles have received considerable attention recently because of a wide range of potential applications. In our group, the thermodynamic aspects of vesicle formation, including curvature stabilization, as well as active loading and release from vesicles have been the focus of recent research. The vesicles are prepared from an amphiphilic diblock copolymer such as polystyrene-block-poly(acrylic acid) at a low pH (2.5) by adding water to a solution in a common solvent; then the extenal pH is raised to 6.5, and the compound, such as doxorubicin or another amine, is added. Since the compund inside the vesicle becomes ionized at the low pH, it can only escape at a rate very much slower than that of the loading process. The permeability of the wall can be controlled by the presence of plasticizers for the polystyrene wall; the plasticizers partition between the wall and the external aqueous solution with a known partition coefficient, and can be removed from the wall by dialysis. Release is then studied under perfect sink conditions and is diffusional. It is noteworthy that the rates of both loading and release can be varied by more than two orders of magnitude by controlling the plasticizer content. Also, between the loading and release processes, the vesicle wall can be hardened by removal of the plasticizer by dialysis. This degree of control makes block copolymer vesicles a promising delivery vehicle for a range of materials, including drugs.

  6. A model for the occurrence and analysis of ionic thermocurrent spectrum involving different orders of kinetics

    Indian Academy of Sciences (India)

    Jai Prakash

    2013-01-01

    Ionic thermocurrent (ITC) spectrum is much similar to a thermoluminescence (TL) glow curve involving monomolecular kinetics. It has already been reported that different orders of kinetics are involved in TL processes, which depend specifically on the extent of recombination and simultaneous retrapping. It is found that the involvement of different orders of kinetics in ITC spectrum depends on the experimental conditions of polarization and rate of rapid cooling. Consequently, order of kinetics involved in the ITC spectrum does not represent any specific feature of the system under investigation. An equation is developed which explains the occurrence of ITC spectrum involving any order of kinetics. Dielectric relaxation parameters, order of kinetics and approximate number of dipoles per unit volume are evaluated conveniently and easily following the proposed model.

  7. Kinetic modelling of RDF pyrolysis: Model-fitting and model-free approaches.

    Science.gov (United States)

    Çepelioğullar, Özge; Haykırı-Açma, Hanzade; Yaman, Serdar

    2016-02-01

    In this study, refuse derived fuel (RDF) was selected as solid fuel and it was pyrolyzed in a thermal analyzer from room temperature to 900°C at heating rates of 5, 10, 20, and 50°C/min in N2 atmosphere. The obtained thermal data was used to calculate the kinetic parameters using Coats-Redfern, Friedman, Flylnn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. As a result of Coats-Redfern model, decomposition process was assumed to be four independent reactions with different reaction orders. On the other hand, model free methods demonstrated that activation energy trend had similarities for the reaction progresses of 0.1, 0.2-0.7 and 0.8-0.9. The average activation energies were found between 73-161kJ/mol and it is possible to say that FWO and KAS models produced closer results to the average activation energies compared to Friedman model. Experimental studies showed that RDF may be a sustainable and promising feedstock for alternative processes in terms of waste management strategies.

  8. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  9. Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John

    2014-01-01

    This paper demonstrates the added benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production. For this study, a kinetic model by Fedosov and co-workers is used. For the uncertainty analysis the Monte Carlo procedure was used to statistically quantify...

  10. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  11. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  12. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    Science.gov (United States)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  13. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    mixing model to study the premixed, rich ignition process. Using n-heptane as a representative diesel fuel, they showed that addition of an oxygenated additive, methanol, to the fuel reduced the concentrations of a number of hydrocarbon species in the products of the rich ignition. Specifically, methanol addition reduced the total concentrations of acetylene, ethylene and 1,3-butadiene, as well as propargyl and vinyl radicals, in the ignition products. These are the same species shown in a number of studies [4-6] to be responsible for formation of aromatic and polycyclic aromatic species in flames, species which lead eventually to production of soot. Flynn et al. did not, however, examine the kinetic processes responsible for the computed reduction in production of soot precursor species. At least two hypotheses have been advanced to explain the role that oxygenated species play in diesel ignition and the reduction in the concentrations of these species. The first is that the additive, methanol in the case of Flynn et al., does not contain any C-C bonds and cannot then produce significant levels of the species such as acetylene, ethylene or the unsaturated radicals which are known to lead to aromatic species. The second hypothesis is that the product distribution changes very naturally as oxygen is added and the overall equivalence ratio is reduced. In the present study, we repeat the ignition calculations of Flynn et al. and include a number of other oxygenated species to determine which of these theories is more applicable to this model.

  14. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  15. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Directory of Open Access Journals (Sweden)

    Buljit Buragohain, Sankar Chakma, Peeush Kumar, Pinakeswar Mahanta, Vijayanand S. Moholkar

    2013-01-01

    Full Text Available Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  16. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions...

  17. POSTNATAL GLUCOSE KINETICS IN NEWBORNS OF TIGHTLY CONTROLLED INSULIN-DEPENDENT DIABETIC MOTHERS

    NARCIS (Netherlands)

    Baarsma, R; Reijngoud, DJ; van Asselt, Wilhelmina; van Doormaal, JJ; Berger, Rudolf; Okken, Albert

    1993-01-01

    Infants of diabetic mothers are at risk of developing hypoglycemia postnatally. Strict control of blood glucose during pregnancy might result in adequate glucose homeostasis in the neonate. We followed 15 mother-infant pairs from the beginning of pregnancy until birth. Glucose kinetics in the infant

  18. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities

    NARCIS (Netherlands)

    Junicke, H.; Van Loosdrecht, M.C.M.; Kleerebezem, R.

    2015-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer du

  19. A thermodynamic and kinetic model for paste–aggregate interactions and the alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, George D., E-mail: geo@lanl.gov; Carey, J. William

    2015-10-15

    A new conceptual model is developed for ASR formation based on geochemical principles tied to aqueous speciation, silica solubility, kinetically controlled mineral dissolution, and diffusion. ASR development is driven largely by pH and silica gradients that establish geochemical microenvironments between paste and aggregate, with gradients the strongest within the aggregate adjacent to the paste boundary (i.e., where ASR initially forms). Super-saturation of magadiite and okenite (crystalline ASR surrogates) occurs in the zone defined by gradients in pH, dissolved silica, Na{sup +}, and Ca{sup 2} {sup +}. This model provides a thermodynamic rather than kinetic explanation of why quartz generally behaves differently from amorphous silica: quartz solubility does not produce sufficiently high concentrations of H{sub 4}SiO{sub 4} to super-saturate magadiite, whereas amorphous silica does. The model also explains why pozzolans do not generate ASR: their fine-grained character precludes formation of chemical gradients. Finally, these gradients have interesting implications beyond the development of ASR, creating unique biogeochemical environments.

  20. Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Gharagozloo, Patricia E.

    2013-10-01

    Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.

  1. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands.

    Science.gov (United States)

    Saeed, Tanveer; Sun, Guangzhi

    2011-05-01

    This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.

  2. Kinetic Potential Model of the Cloud-to-Drizzle Transition

    Science.gov (United States)

    McGraw, Robert; Liu, Yangang; Luke, Edward; Senum, Gunnar

    2013-03-01

    It has been nearly a decade since the kinetic potential theory of drizzle formation in warm clouds was introduced [McGraw and Liu, Phys. Rev. Letts. 90, 018501 (2003)], and much progress in understanding the cloud-drizzle transition, especially regarding the role of turbulence, has been achieved within its framework. This poster will begin with an introduction to the kinetic potential idea, working up to the method it provides for predicting drizzle threshold conditions and rates, and concludes with an analysis this year of DOE/ARM cloud parcel vertical velocity measurements - discussing their implications for assessing turbulence fluctuations in water vapor saturation ratio and cloud droplet size.

  3. Fuzzy Logic as a Computational Tool for Quantitative Modelling of Biological Systems with Uncertain Kinetic Data.

    Science.gov (United States)

    Bordon, Jure; Moskon, Miha; Zimic, Nikolaj; Mraz, Miha

    2015-01-01

    Quantitative modelling of biological systems has become an indispensable computational approach in the design of novel and analysis of existing biological systems. However, kinetic data that describe the system's dynamics need to be known in order to obtain relevant results with the conventional modelling techniques. These data are often hard or even impossible to obtain. Here, we present a quantitative fuzzy logic modelling approach that is able to cope with unknown kinetic data and thus produce relevant results even though kinetic data are incomplete or only vaguely defined. Moreover, the approach can be used in the combination with the existing state-of-the-art quantitative modelling techniques only in certain parts of the system, i.e., where kinetic data are missing. The case study of the approach proposed here is performed on the model of three-gene repressilator.

  4. Optimization of a Reduced Chemical Kinetic Model for HCCI Engine Simulations by Micro-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310-375 K and initial pressure 0.1-0.3 MPa. The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.

  5. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions.

    Science.gov (United States)

    Gbureck, Uwe; Vorndran, Elke; Barralet, Jake E

    2008-09-01

    The release kinetics of vancomycin from calcium phosphate dihydrate (brushite) matrices and polymer/brushite composites were compared using different fluid replacement regimes, a regular replacement (static conditions) and a continuous flow technique (dynamic conditions). The use of a constantly refreshed flowing resulted in a faster drug release due to a constantly high diffusion gradient between drug loaded matrix and the eluting medium. Drug release was modeled using the Weibull, Peppas and Higuchi equations. The results showed that drug liberation was diffusion controlled for the ceramics matrices, whereas ceramics/polymer composites led to a mixed diffusion and degradation controlled release mechanism. The continuous flow technique was for these materials responsible for a faster release due to an accelerated polymer degradation rate compared with the regular fluid replacement technique.

  6. Polarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene.

    Science.gov (United States)

    Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2014-02-20

    Spectral and kinetic behavior of thermal cis-to-trans isomerization of 4-aminoazobenzene (AAB) is examined in various solvents of different polarities. In contrast to azobenzene (AB), it is found the rate of thermal isomerization of AAB is highly dependent on solvent polarity. Accelerated rates are observed in polar solvents as compared to nonpolar solvents. Moreover, a decrease in the barrier height with an increase in medium polarity is observed. Our observations suggest that inversion is the preferred pathway in cis-to-trans thermal isomerization in a nonpolar medium; however, in a polar medium, the isomerization path deviates from the inversion route and rotational behavior is incorporated. Differences in the kinetics and in mechanisms of isomerization in different media are rationalized in terms of modulation in barrier height by polarity of the medium and solute-solvent interaction. It is found that kinetics as well as the mechanism of thermal isomerization in AAB is controlled by the polarity of the medium.

  7. Kinetic control on Zn isotope signatures recorded in marine diatoms

    Science.gov (United States)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  8. Modeling the kinetics of the nitriding and nitrocarburizing of iron

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.; Mittemeijer, Eric J.

    1998-01-01

    The growth kinetics of the iron-nitride compound layer during nitriding and nitrocarburizing of pure iron has been investigated for various temperatures and various combinations of imposed nitrogen and carbon activities. The results indicate that no local equilibrium occurs at the gas/solid inter...

  9. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth rat

  10. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca

    NARCIS (Netherlands)

    Eremeeva, Elena V.; Bartsev, Sergey I.; Berkel, van Willem J.H.; Vysotski, Eugene S.

    2017-01-01

    Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated

  11. [Study on simplification of extraction kinetics model and adaptability of total flavonoids model of Scutellariae radix].

    Science.gov (United States)

    Chen, Yang; Zhang, Jin; Ni, Jian; Dong, Xiao-Xu; Xu, Meng-Jie; Dou, Hao-Ran; Shen, Ming-Rui; Yang, Bo-Di; Fu, Jing

    2014-01-01

    Because of irregular shapes of Chinese herbal pieces, we simplified the previously deduced general extraction kinetic model for TCMs, and integrated particle diameters of Chinese herbs that had been hard to be determined in the final parameter "a". The reduction of the direct determination of particle diameters of Chinese herbs was conducive to increase the accuracy of the model, expand the application scope of the model, and get closer to the actual production conditions. Finally, a simplified model was established, with its corresponding experimental methods and data processing methods determined. With total flavonoids in Scutellariae Radix as the determination index, we conducted a study on the adaptability of total flavonoids extracted from Scutellariae Radix with the water decoction method in the model. The results showed a good linear correlation among the natural logarithm value of the mass concentration of total flavonoids in Scutellariae Radix, the time and the changes in the natural logarithm of solvent multiple. Through calculating and fitting, efforts were made to establish the kinetic model of extracting total flavonoids from Scutellariae Radix with the water decoction method, and verify the model, with a good degree of fitting and deviation within the range of the industrial production requirements. This indicated that the model established by the method has a good adaptability.

  12. Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2016-01-01

    for recovery. This approach is applied to commercial purity aluminum (AA1050) cold rolled to ultrahigh strain (99.6 pct reduction in thickness) and annealed at temperatures from 413 K to 493 K (140 A degrees C to 220 A degrees C). The annealing data fit the recovery model well, and the analysis shows......A new approach to analyze recovery kinetics is developed from a recent model, and microstructural observations are introduced to supplement hardness measurements. The approach involves two steps of data fitting, and the second step of fitting enables an estimation of the apparent activation energy...... that the apparent activation energy increases during recovery and approaches 190 kJ/mol at the end of recovery, suggesting that solute drag is an important rate-controlling mechanism. The recovery rate for the highly strained Al is found to be higher than that for Al deformed to a lower strain, an effect which...

  13. Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment

    DEFF Research Database (Denmark)

    Yu, Tianbo; Hansen, Niels

    2016-01-01

    A new approach to analyze recovery kinetics is developed from a recent model, and microstructural observations are introduced to supplement hardness measurements. The approach involves two steps of data fitting, and the second step of fitting enables an estimation of the apparent activation energy...... that the apparent activation energy increases during recovery and approaches 190 kJ/mol at the end of recovery, suggesting that solute drag is an important rate-controlling mechanism. The recovery rate for the highly strained Al is found to be higher than that for Al deformed to a lower strain, an effect which...... is related to an increase in the stored energy (driving force). These findings form the basis for a discussion of recovery mechanisms and the increase in the apparent activation energy during annealing, suggesting an application of the model when optimizing the structure and strength through annealing...

  14. Modeling and control of thermostatically controlled loads

    OpenAIRE

    2011-01-01

    As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for...

  15. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  16. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  17. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  18. A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus.

    Science.gov (United States)

    Divyashree, M Somashekara; Rastogi, Navin K; Shamala, T Ramachandriah

    2009-10-01

    Polyhydroxyalkanoate (PHA), which is produced by several bacteria, is a biodegradable polymer that has many industrial and medical applications. This study deals with development of a simple kinetic model and modification of the logistic equation that can provide an adequate description of PHA formation process by Bacillus flexus. The parameters studied were kinetics of microbial growth, substrate consumption, and product formation. The microbial growth was described by simplification of Monod's model. A simplified Luedeking-Piret type model could be employed to represent the product kinetics. The kinetic constants were evaluated on the basis of non-linear regression and the differential equations were solved using Runge-Kutta algorithm and MATLAB software. A good agreement was found between the experimental and predicted values, which indicated that the model differential equations could describe the PHA formation and fermentation process. In this study, a modification of the logistic equation has also been attempted for describing the growth of B. flexus.

  19. The models of cosmological inflation in the context of kinetic approximation

    Science.gov (United States)

    Fomin, I.

    2016-07-01

    In this work the building of models of cosmological inflation with approximate linear dependence of the scalar field kinetic energy on the state parameter is considered. The key parameters of cosmological perturbations are also calculated.

  20. Analysis of Stability for Gas-Kinetic Non-Local Traffic Model

    Institute of Scientific and Technical Information of China (English)

    SUN Xi-Ming; DONG Yu-Jie

    2006-01-01

    @@ The gas-kinetic non-local traffic model is improved by taking into account the relative velocity of the correlated vehicles. The stability of different relaxation time modes is analytically investigated with the perturbation method.

  1. Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices

    National Research Council Canada - National Science Library

    Darvishi, Hosain; Zarein, Mohammad; Farhudi, Zanyar

    2016-01-01

    This work focused on the effects of the moisture content, slices thickness and microwave power on aspects of energy and exergy, drying kinetics, moisture diffusivity, activation energy, and modeling...

  2. Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics

    DEFF Research Database (Denmark)

    Bordbar, Aarash; McCloskey, Douglas; Zielinski, Daniel C

    2015-01-01

    challenge. Here, we constructed multi-omic, data-driven, personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy individuals based on fasting-state plasma and erythrocyte metabolomics and whole-genome genotyping. We show that personalized kinetic rate constants, rather than......-induced anemia) and how genetic variation (inosine triphosphatase deficiency) may protect against this side effect. This study demonstrates the feasibility of personalized kinetic models, and we anticipate their use will accelerate discoveries in characterizing individual metabolic variation....

  3. Oxygen reduction kinetics on mixed conducting SOFC model cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, F.S.

    2006-07-01

    The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos

  4. TChem - A Software Toolkit for the Analysis of Complex Kinetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Najm, Habib N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Knio, Omar [Johns Hopkins Univ., Baltimore, MD (United States)

    2011-05-01

    The TChem toolkit is a software library that enables numerical simulations using complex chemistry and facilitates the analysis of detailed kinetic models. The toolkit provide capabilities for thermodynamic properties based on NASA polynomials and species production/consumption rates. It incorporates methods that can selectively modify reaction parameters for sensitivity analysis. The library contains several functions that provide analytically computed Jacobian matrices necessary for the efficient time advancement and analysis of detailed kinetic models.

  5. Kinetics modelling of Cu(II) biosorption on to coconut shell and Moringa oleifera seeds from tropical regions.

    Science.gov (United States)

    Acheampong, Mike A; Pereira, Joana P C; Meulepas, Roel J W; Lens, Piet N L

    2012-01-01

    Adsorption kinetic studies are of great significance in evaluating the performance of a given adsorbent and gaining insight into the underlying mechanism. This work investigated the sorption kinetics of Cu(II) on to coconut shell and Moringa oleifera seeds using batch techniques. To understand the mechanisms of the biosorption process and the potential rate-controlling steps, kinetic models were used to fit the experimental data. The results indicate that kinetic data were best described by the pseudo-second-order model with correlation coefficients (R2) of 0.9974 and 0.9958 for the coconut shell and Moringa oleifera seeds, respectively. The initial sorption rates obtained for coconut shell and Moringa oleifera seeds were 9.6395 x 10(-3) and 8.3292 x 10(-2) mg g(-1) min(-1), respectively. The values of the mass transfer coefficients obtained for coconut shell (1.2106 x 10(-3) cm s(-1)) and Moringa oleifera seeds (8.965 x 10(-4) cm s(-1)) indicate that the transport of Cu(II) from the bulk liquid to the solid phase was quite fast for both materials investigated. The results indicate that intraparticle diffusion controls the rate of sorption in this study; however, film diffusion cannot be neglected, especially at the initial stage of sorption.

  6. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  7. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  8. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (I): Model constitution].

    Science.gov (United States)

    Zhang, Chao; Chen, Yin-Guang

    2013-03-01

    Based on activated sludge model No. 2 (ASM2), the anaerobic/aerobic kinetic model of phosphorus-accumulating organisms (PAO) was established with mixed short-chain fatty acids (SCFAs) as the base substance in enhanced biological phosphorus removal process. The characteristic of the PAO model was that the anaerobic metabolism rates of glycogen degradation, poly-beta-hydroxyalkanoates synthesis and polyphosphate hydrolysis were expressed by SCFAs uptake equation, and the effects of anaerobic maintenance on kinetics and stoichiometry were considered. The PAO kinetic model was composed of 3 soluble components, 4 particulate components and a pH parameter, which constituted the matrix of stoichiometric coefficients. On the basis of PAO model, the GAO kinetic model was established, which included 7 processes, and phosphorus content influenced the aerobic metabolism only.

  9. Application of a hybrid kinetic-continuum solver to the near wall modelling

    Science.gov (United States)

    Rovenskaya, O.; Croce, G.

    2014-11-01

    A hybrid method dynamically coupling the direct numerical solution of the S-model kinetic equation and Navier-Stokes equations is applied to a numerical simulation of the flow through the channel of a finite length due to arbitrarily pressure ratios and for a wide range of Knudsen number. The decomposition of the physical domain into kinetic and hydrodynamic sub-domains is updated at each time step. The solution is advanced in time simultaneously in both kinetic and hydrodynamic domains: the coupling is achieved by matching half fluxes at the interface of the kinetic and Navier-Stokes domains, thus taking care of the conservation of momentum, energy and mass through the interface. Solver efficiency is increased via MPI (Message Passing Interface) parallelization. Accuracy and reliability of the method, for different decomposition criteria, are assessed via comparison with a pure kinetic solution.

  10. Application of micro-genetic algorithm for calibration of kinetic parameters in HCCI engine combustion model

    Institute of Scientific and Technical Information of China (English)

    Haozhong HUANG; Wanhua SU

    2008-01-01

    The micro-genetic algorithm (μGA) as a highly effective optimization method, is applied to calibrate to a newly developed reduced chemical kinetic model (40 species and 62 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane to improve its autoignition predictions for different engine operating conditions. The seven kinetic parameters of the calibrated model are determined using a combination of the Micro-Genetic Algorithm and the SENKIN program of CHEMKIN chemical kinetics software package. Simulation results show that the autoignition predictions of the calibrated model agree better with those of the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model over the range of equivalence ratios from 0.1-1.3 and temperature from 300-3 000 K. The results of this study have demonstrated that the μGA is an effective tool to facilitate the calibration of a large number of kinetic parameters in a reduced kinetic model.

  11. Kinetic model for DT ignition and burn in ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, S.I.; Oparin, A.M.; Meyer-ter-Vehn, J. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)]|[L.D. Landau Institute for Theoretical Physics, 117940 Moscow (Russia)

    1996-05-01

    Ignition and burn of DT targets is studied taking into account kinetic effects. Kinetic equations describing the interaction of the high-energy reaction products with target plasma are solved using the particle-in-cell (PIC) code for collisional plasma. Volume and spark ignition configurations are simulated for initial temperatures and {l_angle}{rho}{ital R}{r_angle} values of practical interest and target masses between 0.1 and 10 mg. Optically thick configurations igniting at temperatures below 5 keV are considered. Burn of the targets with reduced tritium content is simulated. It was shown that, for 25{percent} tritium concentration, the energy output is reduced only by 15{percent}. {copyright} {ital 1996 American Institute of Physics.}

  12. Chemical kinetic modeling of H{sub 2} applications

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.; Marinov, N.; Pitz, W.J.; Curran, H. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    This project is intended to develop detailed and simplified kinetic reaction mechanisms for the combustion of practical systems fueled by hydrogen, and then to use those mechanisms to examine the performance, efficiency, pollutant emissions, and other characteristics of those systems. During the last year, a H2/NOx mechanism has been developed that gives much improved predictions of NOx emissions compared to experimental data. Preliminary chemical kinetic and equilibrium calculations have been performed in support of Br2-H2O experiments to be conducted at NREL. Hydrogen, hydrogen/methane and hydrogen/natural gas mixtures have been investigated in a knock-rating engine to assess their automotive knock characteristics. The authors are currently developing the simplified analog reaction mechanisms that are computationally simple, yet still reproduce many of the macroscopic features of flame propagation.

  13. IMPROVE THE KINETIC PERFORMANCE OF THE PUMP CONTROLLED CLAMPING UNIT IN PLASTIC INJECTION MOLDING MACHINE WITH ADAPTIVE CONTROL STRATEGY

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The kinetic characteristics of the clamping unit of plastic injection molding machine that is controlled by close loop with newly developed double speed variable pump unit are investigated.Considering the wide variation of the cylinder equivalent mass caused by the transmission ratio of clamping unit and the severe instantaneous impact force acted on the cylinder during the mold closing and opening process, an adaptive control principle of parameter and structure is proposed to improve its kinetic performance. The adaptive correlation between the acceleration feedback gain and the variable mass is derived. The pressure differential feedback is introduced to improve the dynamic performance in the case of small inertia and heavy impact load. The adaptation of sum pressure to load is used to reduce the energy loss of the system. The research results are verified by the simulation and experiment. The investigation method and the conclusions are also suitable for the differential cylinder system controlled by the traditional servo pump unit.

  14. Kinetic modelling in food science : a case study on chlorophyll degradation in olives

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2000-01-01

    This paper critically reviews the use of kinetics in modelling (bio)chemical changes in foods. Multiresponse modelling (taking more reactants and products of the reaction under study into consideration in the modelling process) is advocated as opposed to uniresponse modelling (in which only one

  15. MACROSCOPIC KINETIC MODELS OF GLYCEROL BATCH FERMENTATION WITH OSMOTOLERANT YEAST

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    l introductionGlycerol production by fermentation has beenwidely investigated to meet the great commercialdemand in last decades and osmotolerant yeast wasthe microorganism studied most. To analyze thefermentation process more efficiently, a kinetic modelshould be established but little works about it werereported because of its complicated metabolism ofglycerol [1-3]. Batch fermentation experiment showedthat low glucose concentration in the latterfermentation stage resulted in decrease in both glucoseconsu...

  16. Detection of Intermediates And Kinetic Control During Assembly of Bacteriophage P22 Procapsid

    Energy Technology Data Exchange (ETDEWEB)

    Tuma, R.; Tsuruta, H.; French, K.H.; Prevelige, P.

    2009-05-26

    Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter {approx} 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibrium (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.

  17. Cell kinetic modelling and the chemotherapy of cancer

    CERN Document Server

    Knolle, Helmut

    1988-01-01

    During the last 30 years, many chemical compounds that are active against tumors have been discovered or developed. At the same time, new methods of testing drugs for cancer therapy have evolved. nefore 1964, drug testing on animal tumors was directed to observation of the incfease in life span of the host after a single dose. A new approach, in which the effects of multiple doses on the proliferation kinetics of the tumor in vivo as well as of cell lines in vitro are investigated, has been outlined by Skipper and his co-workers in a series of papers beginning in 1964 (Skipper, Schabel and Wilcox, 1964 and 1965). They also investigated the influence of the time schedule in the treatment of experimental tumors. Since the publication of those studies, cell population kinetics cannot be left out of any discussion of the rational basis of chemotherapy. When clinical oncologists began to apply cell kinetic concepts in practice about 15 years ago, the theoretical basis was still very poor, in spite of Skipper's pro...

  18. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  19. Inter- versus intra-molecular cyclization of tripeptides containing tetrahydrofuran amino acids: a density functional theory study on kinetic control.

    Science.gov (United States)

    Kumar, N V Suresh; Priyakumar, U Deva; Singh, Harjinder; Roy, Saumya; Chakraborty, Tushar Kanti

    2012-07-01

    Density functional B3LYP method was used to investigate the preference of intra- and inter-molecular cyclizations of linear tripeptides containing tetrahydrofuran amino acids. Two distinct model pathways were conceived for the cyclization reaction, and all possible transition states and intermediates were located. Analysis of the energetics indicate intermolecular cyclization being favored by both thermodynamic and kinetic control. Geometric and NBO analyses were performed to explain the trends obtained along both the reaction pathways. Conceptual density functional theory-based reactive indices also show that reaction pathways leading to intermolecular cyclization of the tripeptides are relatively more facile compared to intramolecular cyclization.

  20. Application of Discrete Lumped Kinetic Modeling on Vacuum Gas Oil Hydrocracking

    Institute of Scientific and Technical Information of China (English)

    Han Longnian; Fang Xiangchen; Peng Chong; Zhao Tao

    2013-01-01

    The kinetic model of vacuum gas oil (VGO) hydrocracking based on discrete lumped approach was investigated, and some improvement was put forward at the same time in this article. A parallel reaction scheme to describe the conver-sion of VGO into products (gases, gasoline, and diesel) proposed by Orochko was used. The different experimental data were analyzed statistically and then the product distribution and kinetic parameters were simulated by available data. Fur-thermore, the kinetic parameters were correlated based on the feed property, reaction temperature, and catalyst activity. An optimization code in Matlab 2011b was written to ifne-tune these parameters. The model had a favorable ability to predict the product distribution and there was a good agreement between the model predictions and experiment data. Hence, the ki-netic parameters indeed had something to do with feed properties, reaction temperature and catalyst activity.

  1. Kinetic modeling of molecular motors: pause model and parameter determination from single-molecule experiments

    Science.gov (United States)

    Morin, José A.; Ibarra, Borja; Cao, Francisco J.

    2016-05-01

    Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model

  2. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    Science.gov (United States)

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  3. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    Directory of Open Access Journals (Sweden)

    İsmail Tosun

    2012-03-01

    Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  4. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    Science.gov (United States)

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  5. Modeling the oxygen uptake kinetics during exercise testing of patients with chronic obstructive pulmonary diseases using nonlinear mixed models

    DEFF Research Database (Denmark)

    Baty, Florent; Ritz, Christian; van Gestel, Arnoldus

    2016-01-01

    regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...

  6. Modeling the oxygen uptake kinetics during exercise testing of patients with chronic obstructive pulmonary diseases using nonlinear mixed models

    DEFF Research Database (Denmark)

    Baty, Florent; Ritz, Christian; van Gestel, Arnoldus;

    2016-01-01

    regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...

  7. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D.

    2010-10-15

    A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p

  8. Kinetic modeling of esterification reaction of surfactin-C₁₅ in methanol solution.

    Science.gov (United States)

    Zhao, Yue; Yang, Shi-Zhong; Mu, Bo-Zhong

    2013-01-01

    Surfactin in methanol solution with acid would be spontaneously esterified into the mono- or dimethyl ester surfactin even at a temperature as low as 4 °C because there were two free carboxyl groups in the peptide loop of surfactin. Using trifluoroacetic acid as the catalyst, the esterification and the contents change in surfactin-C(15), mono- and dimethyl ester surfactin-C(15) with time were investigated at 4, 25, and 45 °C, respectively. The kinetic model was established for prediction of the esterification degree under experimental conditions. At 4, 25, and 45 °C, more than 10 % of the surfactin-C(15) in methanol solution in the presence of 0.05 % trifluoroacetic acid was changed into the esterified surfactin-C(15) after 37.6, 14.1, and 7.4 h, respectively. The maximum of intermediate of the mono-methyl ester surfactin-C(15) was observed at 4, 25, and 45 °C after 25, 10, and 5 days, respectively. Our results indicated that the time for preparation should be strictly controlled to avoid an unexpected esterification of surfactin during its storage and experimental treatment, and the kinetic results could be adopted as the reference condition for preparation of monomethyl ester surfactin-C(15).

  9. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    Science.gov (United States)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  10. A kinetic model for the transport of electrons in a graphene layer

    Science.gov (United States)

    Fermanian Kammerer, Clotilde; Méhats, Florian

    2016-12-01

    In this article, we propose a new numerical scheme for the computation of the transport of electrons in a graphene device. The underlying quantum model for graphene is a massless Dirac equation, whose eigenvalues display a conical singularity responsible for non-adiabatic transitions between the two modes. We first derive a kinetic model which takes the form of two Boltzmann equations coupled by a collision operator modeling the non-adiabatic transitions. This collision term includes a Landau-Zener transfer term and a jump operator whose presence is essential in order to ensure a good energy conservation during the transitions. We propose an algorithmic realization of the semi-group solving the kinetic model, by a particle method. We give analytic justification of the model and propose a series of numerical experiments studying the influences of the various sources of errors between the quantum and the kinetic models.

  11. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  12. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum.

    Science.gov (United States)

    Zhang, Pengcheng; Wang, Buyun; Xiao, Qunfang; Wu, Shan

    2015-08-01

    A simplified kinetics model was built to study the inhibition of glucose on cellulosome of Clostridium thermocellum. Suitable reaction conditions were adopted to evaluate the model. The model was evaluated at different temperatures and further with various activated carbon additions as adsorbent for glucose. Investigation results revealed that the model could describe the hydrolysis kinetics of cellulose by cellulosome quite well. Glucose was found to be an inhibitor for cellulosome based on the kinetics analysis. Inhibition increased with the increase in temperature. Activated carbon as adsorbent could lower the inhibition. Parameters in the model were further discussed based on the experiment. The model might also be used to describe the strong inhibition of cellobiose on cellulosome. Saccharification of cellulose by both cellulosome and C. thermocellum could be enhanced efficiently by activated carbon addition.

  13. Kinetic Modeling of Dye Effluent Biodegradation by Pseudomonas Stutzeri

    Directory of Open Access Journals (Sweden)

    N. Rajamohan

    2013-04-01

    Full Text Available Dye industry waste water is difficult to treat because of the presence of dyes with complex aromatic structure. In this research study, the biodegradation studies of dye effluent were performed utilizing Pseudomonas stutzeri in a controlled laboratory environment under anoxic conditions. The effects of operational parameters like initial pH of the effluent and initial Chemical Oxygen Demand (COD of the effluent on percentage COD removal were studied. A biokinetic model is established giving the dependence of percentage COD removal on biomass concentration and initial COD of the effluent. The biokinetics of the COD removal was found to be first order with respect to both the microbial concentration and initial COD of the effluent. The optimal pH for better bacterial degradation was found to be 8.The specific degradation rate was found to be 0.1417 l/g Dry Cell Mass (DCM h, at 320 C.

  14. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan-De [College of Chemistry, Sichuan University, Chengdu (China); Wang, Jing-Bo; Li, Juan-Qin; Tan, Ning-Xin; Li, Xiang-Yuan [College of Chemical Engineering, Sichuan University, Chengdu (China)

    2011-02-15

    The initiation mechanisms and kinetics of pyrolysis and combustion of n-dodecane are investigated by using the reactive molecular dynamics (ReaxFF MD) simulation and chemical kinetic modeling. From ReaxFF MD simulations, we find the initiation mechanisms of pyrolysis of n-dodecane are mainly through two pathways, (1) the cleavage of C-C bond to form smaller hydrocarbon radicals, and (2) the dehydrogenation reaction to form an H radical and the corresponding n-C{sub 12}H{sub 25} radical. Another pathway is the H-abstraction reactions by small radicals including H, CH{sub 3}, and C{sub 2}H{sub 5}, which are the products after the initiation reaction of n-dodecane pyrolysis. ReaxFF MD simulations lead to reasonable Arrhenius parameters compared with experimental results based on first-order kinetic analysis of n-dodecane pyrolysis. The density/pressure effects on the pyrolysis of n-dodecane are also analyzed. By appropriate mapping of the length and time from macroscopic kinetic modeling to ReaxFF MD, a simple comparison of the conversion of n-dodecane from ReaxFF MD simulations and that from kinetic modeling is performed. In addition, the oxidation of n-dodecane is studied by ReaxFF MD simulations. We find that formaldehyde molecule is an important intermediate in the oxidation of n-dodecane, which has been confirmed by kinetic modeling, and ReaxFF leads to reasonable reaction pathways for the oxidation of n-dodecane. These results indicate that ReaxFF MD simulations can give an atomistic description of the initiation mechanism and product distributions of pyrolysis and combustion for hydrocarbon fuels, and can be further used to provide molecular based robust kinetic reaction mechanism for chemical kinetic modeling of hydrocarbon fuels. (author)

  15. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  16. Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity.

    Science.gov (United States)

    Breit, Marc; Netzer, Michael; Weinberger, Klaus M; Baumgartner, Christian

    2015-08-01

    The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars) were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS) with the concept of stable isotope dilution (SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2), showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P modeling approach demonstrates high potential for dynamic biomarker identification and the investigation of kinetic mechanisms in disease or pharmacodynamics studies using MS data from longitudinal cohort studies.

  17. Modeling Oxidation Kinetics of SiC-Containing Refractory Diborides

    Science.gov (United States)

    2012-01-01

    K. E. Spear, R. E. Tressler, and C. F. Ram- berg, “Passive-Oxidation Kinetics of High - Purity Silicon Carbide from 800 to 1100 C,” J. Am. Ceram. Soc...investigations47–53 in pure oxygen; there is a large scatter in the data. Figure 2 includes data collected on high purity SiC by Ramberg et al.,47 and...mechanism. Data reported for pure SiC in air/oxygen, for ZrB2 containing varying volume fractions of SiC , and for SiC –HfB2 ultra- high temperature

  18. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  19. Modeling and control of thermostatically controlled loads

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott N [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Kundu, S. [UNIV OF MICHIGAN; Hiskens, I. [UNIV OF MICHIGAN

    2011-01-04

    As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for the aggregate power response of a homogeneous population of TCLs to uniform variation of all TCL setpoints. A linearized model of the response is derived, and a linear quadratic regulator (LQR) has been designed. Using the TCL setpoint as the control input, the LQR enables aggregate power to track reference signals that exhibit step, ramp and sinusoidal variations. Although much of the work assumes a homogeneous population of TCLs with deterministic dynamics, we also propose a method for probing the dynamics of systems where load characteristics are not well known.

  20. Towards Kinetic Modeling of Global Metabolic Networks Methylobacterium extorquens AM1 Growth as Validation

    Institute of Scientific and Technical Information of China (English)

    Ping Ao; Lik Wee Lee; Mary E. Lidstrom; Lan Yin; Xiaomei Zhu

    2008-01-01

    Here we report a systematic method for constructing a large scale kinetic metabolic model and its initial application to the modeling of central metabolism of Methylobacterium extorquens AM1, a methylotrophic and environmental important bacterium. Its central metabolic network includes formaldehyde metabolism, serine cycle, citric acid cycle, pentose phosphate pathway, ghiconeogensis, PHB synthesis and acetyl-CoA conversion pathway, respiration and energy metabolism. Through a systematic and consistent procedure of finding a set of parameters in the physiological range we overcome an outstanding difficulty in large scale kinetic modeling: the requirement for a massive number of enzymatic reaction parameters. We are able to construct the kinetic model based on general biological considerations and incomplete experimental kinetic parameters. Our method consists of the following major steps: 1) using a generic enzymatic rate equation to reduce the number of enzymatic parameters to a minimum set while still preserving their characteristics; 2) using a set of steady state fluxes and metabolite concenwations in the physiological range as the expected output steady state fluxes and metabolite concentrations for the kinetic model to restrict the parametric space of enzymatic reactions; 3) choosing enzyme constants K's and K'eqs optimized for reactions under physiological concentrations, if their experimental values are unknown; 4) for models which do not cover the entire metabolic network of the organisms, designing a dynamical exchange for the coupling between the metabolism represented in the model and the rest not included.

  1. Kinetic study of butanol production from various sugars by Clostridium acetobutylicum using a dynamic model

    NARCIS (Netherlands)

    Raganati, Francesca; Procentese, Alessandra; Olivieri, Giuseppe; Götz, Peter; Salatino, Piero; Marzocchella, Antonio

    2015-01-01

    This paper presents a kinetic dynamic model of acetone-butanol-ethanol production by Clostridium acetobutylicum DSM 792 developed with the biochemical networks simulator COPASI. This model is an evolution of previous models described in the literature, updated by including various mono-, di-,

  2. A Bhatnagar-Gross-Krook kinetic model with velocity-dependent collision frequency and corrected relaxation of moments

    Science.gov (United States)

    Alekseenko, Alexander; Euler, Craig

    2016-05-01

    We propose a Bhatnagar-Gross-Krook (BGK) kinetic model in which the collision frequency is a linear combination of polynomials in the velocity variable. The coefficients of the linear combination are determined so as to enforce proper relaxation rates for a selected group of moments. The relaxation rates are obtained by a direct numerical evaluation of the full Boltzmann collision operator. The model is conservative by construction. Simulations of the problem of spatially homogeneous relaxation of hard spheres gas show improvement in accuracy of controlled moments as compared to solutions obtained by the classical BGK, ellipsoidal-statistical BGK and the Shakhov models in cases of strong deviations from continuum.

  3. Computational model, method, and system for kinetically-tailoring multi-drug chemotherapy for individuals

    Science.gov (United States)

    Gardner, Shea Nicole

    2007-10-23

    A method and system for tailoring treatment regimens to individual patients with diseased cells exhibiting evolution of resistance to such treatments. A mathematical model is provided which models rates of population change of proliferating and quiescent diseased cells using cell kinetics and evolution of resistance of the diseased cells, and pharmacokinetic and pharmacodynamic models. Cell kinetic parameters are obtained from an individual patient and applied to the mathematical model to solve for a plurality of treatment regimens, each having a quantitative efficacy value associated therewith. A treatment regimen may then be selected from the plurlaity of treatment options based on the efficacy value.

  4. First-principle based modeling of urea decomposition kinetics in aqueous solutions

    Science.gov (United States)

    Nicolle, André; Cagnina, Stefania; de Bruin, Theodorus

    2016-11-01

    This study aims at validating a multi-scale modeling methodology based on an implicit solvent model for urea thermal decomposition pathways in aqueous solutions. The influence of the number of cooperative water molecules on kinetics was highlighted. The obtained kinetic model is able to accurately reproduce urea decomposition in aqueous phase under a variety of experimental conditions from different research groups. The model also highlights the competition between HNCO desorption to gas phase and hydrolysis in aqueous phase, which may influence SCR depollution process operation.

  5. The adsorptive-kinetic model of in-situ phosphorus doped film polysilicon deposition process

    Directory of Open Access Journals (Sweden)

    Nalivaiko O. Yu.

    2009-11-01

    Full Text Available The investigation of deposition kinetics of in-situ phosphorus doped polysilicon films has been performed. The adsorptive-kinetic model of in-situ phosphorus doped polysilicon deposition has been developed. The values of heterogeneous reaction constants and constants, which describe the desorption process for monosilane and phosphine, have been defined. The optimal process conditions, which provide the acceptable deposition rate, thickness uniformity, high doping level and conformal step coverage, have been founded.

  6. A Model for the Interfacial Kinetics of Phospholipase D Activity on Long-Chain Lipids

    Science.gov (United States)

    2013-07-01

    outer vesicle layer scooting mode hydrolysis to analyze the interfacial kinetics, inhibition, and substrate preferences of bee venom phospholipase A2...California ABSTRACT The membrane -active enzyme phospholipase D (PLD) catalyzes the hydrolysis of the phosphodiester bond in phospholipids and plays a...Recently we showed that planar lipid bilayers, a previously unexplored model membrane for these kinetic studies, can be used for monitoring interfacial

  7. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.

    Science.gov (United States)

    Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M

    2004-09-15

    The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

  8. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L.; Simon, John; Jain, Nikhil; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of the reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.

  9. Biosorption of diazinon by a pre-treated alimentary industrial waste: equilibrium and kinetic modeling

    Science.gov (United States)

    Yeddou Mezenner, N.; Lagha, H.; Kais, H.; Trari, M.

    2017-04-01

    This study explores the feasibility of pre-treated coffee waste (PCW) as biosorbent for the removal of diazinon. The effect of the pesticide concentration (6-20 mg L-1), contact time, adsorbent dose (0.2-1.2 g L-1), solution pH (3-11.5), temperature (15-40 °C) and co-existing inorganic ions (H2PO4 -, NO3 -) on the diazinon biosorption over PCW is investigated. The experimental results indicate an optimal pH of 7.3 for the diazinon elimination on PCW (1 g L-1). The Langmuir model describes well the isotherm data with a high regression coefficient (R 2 > 0.990) and a maximum monolayer biosorption capacity of 18.52 mg g-1 at 15 °C. It is also observed that the intra-particle diffusion is not the rate-controlling step. A comparison is evaluated between the pseudo-second-order and intra-particle diffusion kinetic models; the experimental data are well fitted by the pseudo-second-order kinetic model. The biosorption capacity decreases with increasing temperature for a diazinon concentration of 10 mg L-1. The negative enthalpy ΔH° (-63.57 kJ/mol) indicates that the diazinon biosorption onto PCW is exothermic. Under optimal conditions, the biosorption reaches 95% after 90 min. The removal efficiency decreases from 95 to 65.67 and 48.9% for the diazinon alone and in the presence of NO3 - and H2PO4 - (100 mg L-1), respectively.

  10. Controlling Modelling Artifacts

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew; Nielson, Flemming; Nielson, Hanne Riis

    2011-01-01

    the possible configurations of the system (for example, by counting the number of components in a certain state). We motivate our methodology with a case study of the LMAC protocol for wireless sensor networks. In particular, we investigate the accuracy of a recently proposed high-level model of LMAC......When analysing the performance of a complex system, we typically build abstract models that are small enough to analyse, but still capture the relevant details of the system. But it is difficult to know whether the model accurately describes the real system, or if its behaviour is due to modelling...... artifacts that were inadvertently introduced. In this paper, we propose a novel methodology to reason about modelling artifacts, given a detailed model and a highlevel (more abstract) model of the same system. By a series of automated abstraction steps, we lift the detailed model to the same state space...

  11. A new class of enhanced kinetic sampling methods for building Markov state models

    Science.gov (United States)

    Bhoutekar, Arti; Ghosh, Susmita; Bhattacharya, Swati; Chatterjee, Abhijit

    2017-10-01

    Markov state models (MSMs) and other related kinetic network models are frequently used to study the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often constructed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains a large number of states and kinetic pathways that are not known a priori. However, the resulting network generally encompasses only parts of the configurational space, and regardless of any additional MD performed, several states and pathways will still remain missing. This implies that the duration for which the MSM can faithfully capture the true dynamics, which we term as the validity time for the MSM, is always finite and unfortunately much shorter than the MD time invested to construct the model. A general framework that relates the kinetic uncertainty in the model to the validity time, missing states and pathways, network topology, and statistical sampling is presented. Performing additional calculations for frequently-sampled states/pathways may not alter the MSM validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at targeting rare states/pathways that contribute most to the uncertainty so that the validity time is boosted in an effective manner. Examples including straightforward 1D energy landscapes, lattice models, and biomolecular systems are provided to illustrate the application of the method. Developments presented here will be of interest to the kinetic Monte Carlo community as well.

  12. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  13. Controlling Modelling Artifacts

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew; Nielson, Flemming; Nielson, Hanne Riis

    2011-01-01

    as the high-level model, so that they can be directly compared. There are two key ideas in our approach — a temporal abstraction, where we only look at the state of the system at certain observable points in time, and a spatial abstraction, where we project onto a smaller state space that summarises...... artifacts that were inadvertently introduced. In this paper, we propose a novel methodology to reason about modelling artifacts, given a detailed model and a highlevel (more abstract) model of the same system. By a series of automated abstraction steps, we lift the detailed model to the same state space...

  14. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  15. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    Science.gov (United States)

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  16. An efficient approach to bioconversion kinetic model generation based on automated microscale experimentation integrated with model driven experimental design

    DEFF Research Database (Denmark)

    Chen, B. H.; Micheletti, M.; Baganz, F.;

    2009-01-01

    design. It incorporates a model driven approach to the experimental design that minimises the number of experiments to be performed, while still generating accurate values of kinetic parameters. The approach has been illustrated with the transketolase mediated asymmetric synthesis of L...... experimental design.]it comparison with conventional methodology, the modelling approach enabled a nearly 4-fold decrease in the number of experiments while the microwell experimentation enabled a 45-fold decrease in material requirements and a significant increase in experimental throughput. The approach......Reliable models of enzyme kinetics are required for the effective design of bioconversion processes. Kinetic expressions of the enzyme-catalysed reaction rate however, are frequently complex and establishing accurate values of kinetic parameters normally requires a large number of experiments...

  17. Modelling and Control of TCV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.S.; Limebeer, D.J.N.; Jaimoukha, I.M.; Lister, J.B

    2001-11-01

    A new approach to the modelling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modelling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modelling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalised coprime factorisation controller is developed for the TCV tokamak using the verified linear model. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models. (author)

  18. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Njikam, Eloh, E-mail: ennjikam@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States); Schiewer, Silke, E-mail: sschiewer@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States)

    2012-04-30

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO{sub 3}. The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO{sub 3}, desorption was incomplete and the model fit less perfect. Highlights: Black-Right-Pointing-Pointer Metal desorption was over 90% complete within 50 min for most desorbents. Black-Right-Pointing-Pointer Models for biosorbent desorption kinetics were developed. Black-Right-Pointing-Pointer Desorption kinetics best fit a novel first-order model related to remaining metal bound. Black-Right-Pointing-Pointer Cd uptake after desorption by HNO{sub 3} was similar to the original uptake. Black-Right-Pointing-Pointer The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO{sub 3}, NaNO{sub 3}, Ca(NO{sub 3}){sub 2}, EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by

  19. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.

    Science.gov (United States)

    Juliano, Pablo; Knoerzer, Kai; Fryer, Peter J; Versteeg, Cornelis

    2009-01-01

    High-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first-order kinetic model, the Weibull model, an nth-order model, and a combined discrete log-linear nth-order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90 degrees C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121 degrees C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design.

  20. Explicit equilibria in a kinetic model of gambling

    Science.gov (United States)

    Bassetti, F.; Toscani, G.

    2010-06-01

    We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.