Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations
Energy Technology Data Exchange (ETDEWEB)
Washington, K.E.
1986-05-01
The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.
Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations
International Nuclear Information System (INIS)
Washington, K.E.
1986-05-01
The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations
Incorporation of chemical kinetic models into process control
International Nuclear Information System (INIS)
Herget, C.J.; Frazer, J.W.
1981-01-01
An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor
Modelling of the enzymatic kinetically controlled synthesis of cephalexin
Schroën, C.G.P.H.; Fretz, C.B.; Bruin, de V.H.; Berendsen, W.; Moody, H.M.; Roos, E.C.; Roon, van J.L.; Kroon, P.J.; Strubel, M.; Janssen, A.E.M.; Tramper, J.
2002-01-01
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis
Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; Ivanov, Sergei; Seifert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M
2017-09-21
Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio) 1/3 , despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.
Improved point-kinetics model for the BWR control rod drop accident
International Nuclear Information System (INIS)
Neogy, P.; Wakabayashi, T.; Carew, J.F.
1985-01-01
A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA
Application of a spatial modal kinetic model for determination of control rod worths
International Nuclear Information System (INIS)
Gomez, A.; Waldman, R.M.
1993-01-01
A high-precision rod drop method based on a modal kinetic model, with low dependence on detector location, is proposed to measure the reactivity worth of control rods. This value is obtained from data adjustment for the delayed evolution. It is necessary to maintain the experimental data fluctuation in a small value so that the error of the control rod worth should not be large. A model was developed in order to relate the fluctuation with some parameters which may be modified in the measuring process. The method was applied in the RA-6 reactor to measure control rod worth. For practical purpose it was found that the method can be applied to 15 dollars and it does not depend on relative detector and control rod locations, as the method based on the Point Reactor Model does. (author). 2 refs
Babey, T.; Ginn, T. R.; De Dreuzy, J. R.
2014-12-01
Solute transport in porous media may be structured at various scales by geological features, from connectivity patterns of pores to fracture networks. This structure impacts solute repartition and consequently reactivity. Here we study numerically the influence of the organization of porous volumes within diffusive porosity zones on different reactions. We couple a mobile-immobile transport model where an advective zone exchanges with diffusive zones of variable structure to the geochemical modeling software PHREEQC. We focus on two kinetically-controlled reactions, a linear sorption and a nonlinear dissolution of a mineral. We show that in both cases the structure of the immobile zones has an important impact on the overall reaction rates. Through the Multi-Rate Mass Transfer (MRMT) framework, we show that this impact is very well captured by residence times-based models for the kinetic linear sorption, as it is mathematically equivalent to a modification of the initial diffusive structure; Consequently, the overall reaction rate could be easily extrapolated from a conservative tracer experiment. The MRMT models however struggle to reproduce the non-linearity and the threshold effects associated with the kinetic dissolution. A slower reaction, by allowing more time for diffusion to smooth out the concentration gradients, tends to increase their relevance. Figure: Left: Representation of a mobile-immobile model with a complex immobile architecture. The mobile zone is indicated by an arrow. Right: Total remaining mass of mineral in mobile-immobile models and in their equivalent MRMT models during a flush by a highly under-saturated solution. The models only differ by the organization of their immobile porous volumes.
Energy Technology Data Exchange (ETDEWEB)
Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)
1993-12-01
This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.
Zaidel, Jacob; Russo, David
1994-12-01
Kinetically-controlled volatilization and dissolution of nonaqueous-phase liquids (NAPL's) in the unsaturated (vadose) zone are a more general model as compared to the usually used local equilibrium model of mass transfer. This paper presents a one-dimensional vertical model of kinetically-controlled diffusive transport of organic vapors pertinent to pollution caused by a relatively long, ground surface-originating, mainly horizontally-spread leak of NAPL, the volatile compound of which undergoes sorption and degradation in the soil. Analytical solutions of this model are applicable to homogeneous soils with ground surface fully open to the atmosphere. Application of the solutions to several examples demonstrates the role of kinetically-controlled volatilization and dissolution at both early and advanced stages of the transport process. Asymptotic analysis of the outlined solutions is employed in order to examine the depletion of the contaminant source.
International Nuclear Information System (INIS)
Kimpland, R.H.
1996-01-01
A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented
Colón, Amy Marshall; Sengupta, Neelanjan; Rhodes, David; Dudareva, Natalia; Morgan, John
2010-04-01
In recent years there has been much interest in the genetic enhancement of plant metabolism; however, attempts at genetic modification are often unsuccessful due to an incomplete understanding of network dynamics and their regulatory properties. Kinetic modeling of plant metabolic networks can provide predictive information on network control and response to genetic perturbations, which allow estimation of flux at any concentration of intermediate or enzyme in the system. In this research, a kinetic model of the benzenoid network was developed to simulate whole network responses to different concentrations of supplied phenylalanine (Phe) in petunia flowers and capture flux redistributions caused by genetic manipulations. Kinetic parameters were obtained by network decomposition and non-linear least squares optimization of data from petunia flowers supplied with either 75 or 150 mm(2)H(5)-Phe. A single set of kinetic parameters simultaneously accommodated labeling and pool size data obtained for all endogenous and emitted volatiles at the two concentrations of supplied (2)H(5)-Phe. The generated kinetic model was validated using flowers from transgenic petunia plants in which benzyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (BPBT) was down-regulated via RNAi. The determined in vivo kinetic parameters were used for metabolic control analysis, in which flux control coefficients were calculated for fluxes around the key branch point at Phe and revealed that phenylacetaldehyde synthase activity is the primary controlling factor for the phenylacetaldehyde branch of the benzenoid network. In contrast, control of flux through the beta-oxidative and non-beta-oxidative pathways is highly distributed.
Modeling chemical kinetics graphically
Heck, A.
2012-01-01
In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could
Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.
2015-12-01
Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models
Kornecki, Martin; Strube, Jochen
2018-03-16
Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R² ≥ 0.97) between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R² ≥ 0.92). Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R² ≥ 0.96) glucose concentration based on online cell
MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD
Directory of Open Access Journals (Sweden)
Emir Zafer HOŞGÜN
2013-06-01
Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.
Nuclear reactor kinetics and control
International Nuclear Information System (INIS)
Lewins, J.
1978-01-01
A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)
Chemical kinetics and combustion modeling
Energy Technology Data Exchange (ETDEWEB)
Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.
Comment on the Berkeley kinetic network model
Doeksen, D.K.; Jongschaap, R.J.J.; Kamphuis, H.
1985-01-01
A kinetic model for the rheological behavior of polymeric systems, i.e. the Berkeley kinetic network model, is compared with a generalized transient-network model. It turns out that the Berkeley kinetic network model fits quite well in the framework of the transient-network model. From the point of
Quantum kinetic Heisenberg models: a unique dynamics
International Nuclear Information System (INIS)
Timonen, J.; Pilling, D.J.; Bullough, R.K.
1986-01-01
We suggest that the dynamics Glauber embodied in his kinetic Ising model can be introduced similarly and in an apparently unique way, into the quantum statistical mechanics of the quantum-integrable models like the Heisenberg, sine-Gordon and Massive Thirring models. The latter may suggest an extension of the theory to unique kinetic Ising models in two dimensions. The kinetic repulsive bose gas which is studied in detail in the steady state seems to be a solvable kinetic model. (author)
International Nuclear Information System (INIS)
Zbinden, M.; Durbec, V.
1996-12-01
A new concept of industrial wear model adapted to components of nuclear plants is proposed. Its originality is to be supported, on one hand, by experimental results obtained via wear machines of relatively short operational times, and, on the other hand, by the information obtained from the operating feedback over real wear kinetics of the reactors components. The proposed model is illustrated by an example which corresponds to a specific real situation. The determination of the coefficients permitting to cover all assembly of configurations and the validation of the model in these configurations have been the object of the most recent work. (author)
Kinetic modelling of enzymatic starch hydrolysis
Bednarska, K.A.
2015-01-01
Kinetic modelling of enzymatic starch hydrolysis – a summary
K.A. Bednarska
The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.
Nuclear reactor kinetics and plant control
Oka, Yoshiaki
2013-01-01
Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit
Strigari, L.; Torriani, F.; Manganaro, L.; Inaniwa, T.; Dalmasso, F.; Cirio, R.; Attili, A.
2018-03-01
Few attempts have been made to include the oxygen enhancement ratio (OER) in treatment planning for ion beam therapy, and systematic studies to evaluate the impact of hypoxia in treatment with the beam of different ion species are sorely needed. The radiobiological models used to quantify the OER in such studies are mainly based on the dose-averaged LET estimates, and do not explicitly distinguish between the ion species and fractionation schemes. In this study, a new type of OER modelling, based on the microdosimetric kinetic model, taking into account the specificity of the different ions, LET spectra, tissues and fractionation schemes, has been developed. The model has been benchmarked with published in vitro data, HSG, V79 and CHO cells in aerobic and hypoxic conditions, for different ion irradiation. The model has been included in the simulation of treatments for a clinical case (brain tumour) using proton, lithium, helium, carbon and oxygen ion beams. A study of the tumour control probability (TCP) as a function of oxygen partial pressure, dose per fraction and primary ion type has been performed. The modelled OER depends on both the LET and ion type, also showing a decrease for an increased dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the investigated clinical case, a significant increase in TCP has been found upon increasing the ion charge. Higher OER variations as a function of dose per fraction have also been found for low-LET ions (up to 15% varying from 2 to 8 Gy(RBE) for protons). This model could be exploited in the identification of treatment condition optimality in the presence of hypoxia, including fractionation and primary particle selection.
Kinetics model for lutate dosimetry
International Nuclear Information System (INIS)
Lima, M.F.; Mesquita, C.H.
2013-01-01
The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp®. The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)
Crystallization Kinetics within a Generic Modeling Framework
DEFF Research Database (Denmark)
Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.
2014-01-01
of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages...
IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2001-02-01
Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.
A kinetic model for the penicillin biosynthetic pathway in
DEFF Research Database (Denmark)
Nielsen, Jens; Jørgensen, Henrik
1996-01-01
A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...
Chemical Kinetic Modeling of 2-Methylhexane Combustion
Mohamed, Samah Y.
2015-03-30
Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.
A mathematical model for iodine kinetics
International Nuclear Information System (INIS)
Silva, E.A.T. da.
1976-01-01
A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case [pt
Kinetic model for polyhydroxybutyrate (PHB) production by ...
African Journals Online (AJOL)
USER
2010-05-24
May 24, 2010 ... Key words: Kinetic model, polyhydroxyalkanoates, Hydrogenophaga pseudoflava, logistic model, Monod, biopolymer. INTRODUCTION. Polyhydroxybutyrate (PHB) is a biopolymer that can be used as a biodegradable thermoplastic material for waste management strategies and biocompatibility in medical.
Metal dusting: kinetically or thermodynamically controlled?
Hermse, C.G.M.
2011-01-01
The current paper determines whether the rate of the metal dusting reaction is kinetically or thermodynamically controlled at 600 degrees Celsius. This is done by varying the gas composition, specifically the CO partial pressure and the carbon activity, and comparing the degradation rates of alloy
Modeling of Reactor Kinetics and Dynamics
Energy Technology Data Exchange (ETDEWEB)
Matthew Johnson; Scott Lucas; Pavel Tsvetkov
2010-09-01
In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.
Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko
2015-06-01
The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2
Thermodynamically Feasible Kinetic Models of Reaction Networks
Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts th...
Kinetics interpretation model of isothermal martensite reactions
International Nuclear Information System (INIS)
Guimaraes, J.R.C.
1976-01-01
It was discussed details associated to the interpretation of kinetics of martencite heterogeneous nucleation in isothermal reactions. It was proposed a model which allows compute the variation of concentration of preferencial sites nucleation with a volumetric martencite fraction [pt
Classical Antiferromagnetism in Kinetically Frustrated Electronic Models
Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.
2014-05-01
We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.
Energy Technology Data Exchange (ETDEWEB)
Abdeldayem, H.M.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Thyrion, F.C. [Unite des Procedes Faculte des Sciences Appliquees, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)
1998-12-31
A new kinetic model for a more accurate and detailed fitting of the experimental data is proposed. The model is based on the remote control mechanism (RCM). The RCM assumes that some oxides (called `donors`) are able to activate molecular oxygen transforming it to very active mobile species (spillover oxygen (O{sub OS})). O{sub OS} migrates onto the surface of the other oxide (called `acceptor`) where it creates and/or regenerates the active sites during the reaction. The model contains tow terms, one considering the creation of selective sites and the other the catalytic reaction at each site. The model has been tested in the selective oxidation of propene into acrolein (T=380, 400, 420 C; oxygen and propene partial pressures between 38 and 152 Torr). Catalysts were prepared as pure MoO{sub 3} (acceptor) and their mechanical mixtures with {alpha}-Sb{sub 2}O{sub 4} (donor) in different proportions. The presence of {alpha}-Sb{sub 2}O{sub 4} changes the reaction order, the activation energy of the reaction and the number of active sites of MoO{sub 3} produced by oxygen spillover. These changes are consistent with a modification in the degree of irrigation of the surface by oxygen spillover. The fitting of the model to experimental results shows that the number of sites created by O{sub SO} increases with the amount of {alpha}-Sb{sub 2}O{sub 4}. (orig.)
Directory of Open Access Journals (Sweden)
Pavlov Y.
2007-12-01
Full Text Available A mathematical methodology that gives assistance to design of fed-batch stabilization and control is presented. The methodology is based both on Utility theory and optimal Control theory. The Utility theory deals with the expressed subjective preferences and allows for the expert preferences to be taken in consideration in complex biotechnological systems as criteria for control and optimization. The Control theory is used for parameters stabilization of a fed-batch cultivation process. The control is written based on information of the growth rate. The simulations show good efficiency of the control laws.
Alkylation of Chlorobenzene. An Experiment Illustrating Kinetic versus Thermodynamic Control.
Kolb, Kenneth; And Others
1988-01-01
Describes an experiment which illustrates the kinetic versus thermodynamic control of chemical reactions for organic chemistry students. Considers the laboratory procedures including the isolation of both the kinetic and thermodynamic products. (CW)
Thermodynamic and kinetic modelling: creep resistant materials
DEFF Research Database (Denmark)
Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson
2008-01-01
The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...
PET kinetic analysis. Compartmental model
International Nuclear Information System (INIS)
Watabe, Hiroshi; Ikoma, Yoko; Shidahara, Miho; Kimura, Yuichi; Naganawa, Mika
2006-01-01
Positron emission tomography (PET) enables not only visualization of the distribution of radiotracer, but also has ability to quantify several biomedical functions. Compartmental model is a basic idea to analyze dynamic PET data. This review describes the principle of the compartmental model and categorizes the techniques and approaches for the compartmental model according to various aspects: model design, experimental design, invasiveness, and mathematical solution. We also discussed advanced applications of the compartmental analysis with PET. (author)
Thermoluminescence of zircon: a kinetic model
Turkin, A A; Vainshtein, D I; Hartog, H W D
2003-01-01
The mineral zircon, ZrSiO sub 4 , belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such a model. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time anneali...
Directory of Open Access Journals (Sweden)
Deborah Charych
Full Text Available Cytokines are potent immune modulating agents but are not ideal medicines in their natural form due to their short half-life and pleiotropic systemic effects. NKTR-214 is a clinical-stage biologic that comprises interleukin-2 (IL2 protein bound by multiple releasable polyethylene glycol (PEG chains. In this highly PEG-bound form, the IL2 is inactive; therefore, NKTR-214 is a biologic prodrug. When administered in vivo, the PEG chains slowly release, creating a cascade of increasingly active IL2 protein conjugates bound by fewer PEG chains. The 1-PEG-IL2 and 2-PEG-IL2 species derived from NKTR-214 are the most active conjugated-IL2 species. Free-IL2 protein is undetectable in vivo as it is eliminated faster than formed. The PEG chains on NKTR-214 are located at the region of IL2 that contacts the alpha (α subunit of the heterotrimeric IL2 receptor complex, IL2Rαβγ, reducing its ability to bind and activate the heterotrimer. The IL2Rαβγ complex is constitutively expressed on regulatory T cells (Tregs. Therefore, without the use of mutations, PEGylation reduces the affinity for IL2Rαβγ to a greater extent than for IL2Rβγ, the receptor complex predominant on CD8 T cells. NKTR-214 treatment in vivo favors activation of CD8 T cells over Tregs in the tumor microenvironment to provide anti-tumor efficacy in multiple syngeneic models. Mechanistic modeling based on in vitro and in vivo kinetic data provides insight into the mechanism of NKTR-214 pharmacology. The model reveals that conjugated-IL2 protein derived from NKTR-214 occupy IL-2Rβγ to a greater extent compared to free-IL2 protein. The model accurately describes the sustained in vivo signaling observed after a single dose of NKTR-214 and explains how the properties of NKTR-214 impart a unique kinetically-controlled immunological mechanism of action.
Charych, Deborah; Khalili, Samira; Dixit, Vidula; Kirk, Peter; Chang, Thomas; Langowski, John; Rubas, Werner; Doberstein, Stephen K; Eldon, Michael; Hoch, Ute; Zalevsky, Jonathan
2017-01-01
Cytokines are potent immune modulating agents but are not ideal medicines in their natural form due to their short half-life and pleiotropic systemic effects. NKTR-214 is a clinical-stage biologic that comprises interleukin-2 (IL2) protein bound by multiple releasable polyethylene glycol (PEG) chains. In this highly PEG-bound form, the IL2 is inactive; therefore, NKTR-214 is a biologic prodrug. When administered in vivo, the PEG chains slowly release, creating a cascade of increasingly active IL2 protein conjugates bound by fewer PEG chains. The 1-PEG-IL2 and 2-PEG-IL2 species derived from NKTR-214 are the most active conjugated-IL2 species. Free-IL2 protein is undetectable in vivo as it is eliminated faster than formed. The PEG chains on NKTR-214 are located at the region of IL2 that contacts the alpha (α) subunit of the heterotrimeric IL2 receptor complex, IL2Rαβγ, reducing its ability to bind and activate the heterotrimer. The IL2Rαβγ complex is constitutively expressed on regulatory T cells (Tregs). Therefore, without the use of mutations, PEGylation reduces the affinity for IL2Rαβγ to a greater extent than for IL2Rβγ, the receptor complex predominant on CD8 T cells. NKTR-214 treatment in vivo favors activation of CD8 T cells over Tregs in the tumor microenvironment to provide anti-tumor efficacy in multiple syngeneic models. Mechanistic modeling based on in vitro and in vivo kinetic data provides insight into the mechanism of NKTR-214 pharmacology. The model reveals that conjugated-IL2 protein derived from NKTR-214 occupy IL-2Rβγ to a greater extent compared to free-IL2 protein. The model accurately describes the sustained in vivo signaling observed after a single dose of NKTR-214 and explains how the properties of NKTR-214 impart a unique kinetically-controlled immunological mechanism of action.
A MATLAB toolbox for structural kinetic modeling.
Girbig, Dorothee; Selbig, Joachim; Grimbs, Sergio
2012-10-01
Structural kinetic modeling (SKM) enables the analysis of dynamical properties of metabolic networks solely based on topological information and experimental data. Current SKM-based experiments are hampered by the time-intensive process of assigning model parameters and choosing appropriate sampling intervals for Monte-Carlo experiments. We introduce a toolbox for the automatic and efficient construction and evaluation of structural kinetic models (SK models). Quantitative and qualitative analyses of network stability properties are performed in an automated manner. We illustrate the model building and analysis process in detailed example scripts that provide toolbox implementations of previously published literature models. The source code is freely available for download at http://bioinformatics.uni-potsdam.de/projects/skm. girbig@mpimp-golm.mpg.de.
Thermodynamics, kinetics and process control of nitriding
DEFF Research Database (Denmark)
Mittemeijer, Eric J.; Somers, Marcel A. J.
1999-01-01
As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium ...... been presented. The necessary background has been given for process control of gaseous nitriding, by monitoring the partial pressure of oxygen in the furnace, utilising a solid state electrolyte.......As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...
A kinetic model of zircon thermoluminescence
Turkin, A.A.; Es, H.J. van; Vainshtein, D.I.; Hartog, H.W. den
A kinetic model of zircon thermoluminescence (TL) has been constructed to simulate the processes and stages relevant to thermoluminescent dating such as: filling of electron and hole traps during the excitation stage both for natural and laboratory irradiation; the time dependence of fading after
A MODEL FOR POSTRADIATION STEM CELL KINETICS,
In polycythemic rats observed for 17 days postradiation (300 R, 250 KVP X-rays) it was noted that stem cell release diminished to 8 percent of the...correlate these findings with a kinetic model of erythropoiesis. It was suggested that the initial depression in stem cell release might be due to cellular
Kinetic model for polyhydroxybutyrate (PHB) production by ...
African Journals Online (AJOL)
A kinetic model that describes microbial growth, biopolymer production and substrate consumption is used to predict the performance of batch fermentation of Hydrogenophaga pseudoflava. H. pseudoflava DSMZ 1034 is useful in synthesizing polyhydroxyalkanoates (PHAs).The experimental data was also fitted with the ...
An equilibrium and kinetic modeling
African Journals Online (AJOL)
SERVER
2007-06-18
Jun 18, 2007 ... The Langmuir and Freundlich adsorption models fitted well with the equilibrium data of the process studied. .... dosages. For the determination of adsorption isotherms, 4 g of bio- sorbent was used at five different .... The basic assumption of the Langmuir theory is that ad- sorption takes place at specific sites ...
Mewa-Ngongang, Maxwell; du Plessis, Heinrich W; Hutchinson, Ucrecia F; Mekuto, Lukhanyo; Ntwampe, Seteno Ko
2017-06-01
Biological antimicrobial compounds from yeast can be used to address the critical need for safer preservatives in food, fruit and beverages. The inhibition of Candida guilliermondii, a common fermented beverage spoilage organism, was achieved using antimicrobial compounds produced by Candida pyralidae KU736785. The antimicrobial production system was modelled and optimised using response surface methodology, with 22.5 ℃ and pH of 5.0 being the optimum conditions. A new concept for quantifying spoilage organism inhibition was developed. The inhibition activity of the antimicrobial compounds was observed to be at a maximum after 17-23 h of fermentation, with C. pyralidae concentration being between 0.40 and 1.25 × 10 9 CFU ml -1 , while its maximum specific growth rate was 0.31-0.54 h -1 . The maximum inhibitory activity was between 0.19 and 1.08 l contaminated solidified media per millilitre of antimicrobial compound used. Furthermore, the antimicrobial compound formation rate was 0.037-0.086 l VZI ml -1 ACU h -1 , respectively. The response surface methodology analysis showed that the model developed sufficiently described the antimicrobial compound formation rate 1.08 l VZI ml -1 ACU, as 1.17 l VZI ml -1 ACU, predicted under the optimum production conditions.
Kinetics model development of cocoa bean fermentation
Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny
2015-12-01
Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.
Modeling inhomogeneous DNA replication kinetics.
Directory of Open Access Journals (Sweden)
Michel G Gauthier
Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.
A stochastic model of enzyme kinetics
Stefanini, Marianne; Newman, Timothy; McKane, Alan
2003-10-01
Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.
Compartmental modeling and tracer kinetics
Anderson, David H
1983-01-01
This monograph is concerned with mathematical aspects of compartmental an alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...
Kinetics of diffusion-controlled and ballistically-controlled reactions
International Nuclear Information System (INIS)
Redner, S.
1995-01-01
The kinetics of diffusion-controlled two-species annihilation, A+B → O and single-species ballistically-controlled annihilation, A+A → O are investigated. For two-species annihilation, we describe the basic mechanism that leads to the formation of a coarsening mosaic of A- and B-domains. The implications of this picture on the distribution of reactants is discussed. For ballistic annihilation, dimensional analysis shows that the concentration and rms velocity decay as c∼t -α and v∼t -β , respectively, with α+β = 1 in any spatial dimension. Analysis of the Boltzmann equation for the evolution of the velocity distribution yields accurate predictions for the kinetics. New phenomena associated with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. (author)
Computer-Aided Construction of Chemical Kinetic Models
Energy Technology Data Exchange (ETDEWEB)
Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-12-31
The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.
Controlling vortex motion and vortex kinetic friction
International Nuclear Information System (INIS)
Nori, Franco; Savel'ev, Sergey
2006-01-01
We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves
Controlling vortex motion and vortex kinetic friction
Nori, Franco; Savel'ev, Sergey
2006-05-01
We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.
MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS
Directory of Open Access Journals (Sweden)
G. T. Justino
Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.
A kinetic model for chemical neurotransmission
Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco
Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.
A mathematical model on germinal center kinetics andtermination
DEFF Research Database (Denmark)
Kesmir, Can; De Boer, R.J.
1999-01-01
We devise a mathematical model to study germinal center (GC) kinetics. Earlier models for GC kinetics areextended by explicitly modeling 1) the cell division history of centroblasts, 2) the Ag uptake by centrocytes,and 3) T cell dynamics. Allowing for T cell kinetics and T-B cell interactions, we...
Markley, C. T.; Herbert, B. E.
2004-12-01
Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further
Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do
2017-08-01
As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.
International Nuclear Information System (INIS)
Tormoen, Garth W; Khader, Ayesha; Gruber, András; McCarty, Owen J T
2013-01-01
Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis. (paper)
MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS
Directory of Open Access Journals (Sweden)
Daniele Penteado Rosa
2015-06-01
Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol
Modelling dimercaptosuccinic acid (DMSA) plasma kinetics in humans
van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Meulenbelt, Jan; Hunault, Claudine C
2016-01-01
CONTEXT: No kinetic models presently exist which simulate the effect of chelation therapy on lead blood concentrations in lead poisoning. OBJECTIVE: Our aim was to develop a kinetic model that describes the kinetics of dimercaptosuccinic acid (DMSA; succimer), a commonly used chelating agent, that
Chemical kinetics and modeling of planetary atmospheres
Yung, Yuk L.
1990-01-01
A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.
Kinetic modelling of the Maillard reaction between proteins and sugars
Brands, C.M.J.
2002-01-01
Keywords: Maillard reaction, sugar isomerisation, kinetics, multiresponse modelling, brown colour formation, lysine damage, mutagenicity, casein, monosaccharides, disaccharides, aldoses, ketoses
The aim of this thesis was to determine the kinetics of the Maillard reaction between
An autocatalytic kinetic model for describing microbial growth during fermentation.
Ibarz, Albert; Augusto, Pedro E D
2015-01-01
The mathematical modelling of the behaviour of microbial growth is widely desired in order to control, predict and design food and bioproduct processing, stability and safety. This work develops and proposes a new semi-empirical mathematical model, based on an autocatalytic kinetic, to describe the microbial growth through its biomass concentration. The proposed model was successfully validated using 15 microbial growth patterns, covering the three most important types of microorganisms in food and biotechnological processing (bacteria, yeasts and moulds). Its main advantages and limitations are discussed, as well as the interpretation of its parameters. It is shown that the new model can be used to describe the behaviour of microbial growth.
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
Chemistry resolved kinetic flow modeling of TATB based explosives
Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark
2012-03-01
Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.
On Kinetics Modeling of Vibrational Energy Transfer
Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)
1996-01-01
Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.
Holographic kinetic k-essence model
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl
2009-08-31
We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)
A model to describe Cr(VI) kinetics biosorption.
Poch, Jordi; Villaescusa, Isabel
2010-03-15
In this work, the effect of pH control on kinetics of Cr(VI) sorption onto grape stalks has been studied. A set of experiments were performed at a constant pH 3+/-0.1 which was assured by means of a Programmable Logic Controller (PLC). In a second set of experiments the initial pH was adjusted to pH 3 and then pH was allowed to freely evolve during the sorption process. Both sets of experiments were carried out at different temperatures within the range 5-50 degrees C. Constant temperature was assured by water recirculation from a thermostatic bath. Results demonstrated that pH has high influence on kinetics only at the lowest temperatures studied. A model based on a complex reaction sequence which takes into account Cr(VI) sorption, reduction of Cr(VI) to Cr(III), sorption of the formed Cr(III) which includes the pH variation during the sorption process has been proposed to model Cr(VI) kinetics sorption onto grape stalk waste. Furthermore, the robustness of the model has been tested. (c) 2009 Elsevier B.V. All rights reserved.
A physiologically based model for denitrogenation kinetics
Directory of Open Access Journals (Sweden)
Ira Katz
2017-01-01
Full Text Available Under normal conditions we continuously breathe 78% nitrogen (N2 such that the body tissues and fluids are saturated with dissolved N2. For normobaric medical gas administration at high concentrations, the N2 concentration must be less than that in the ambient atmosphere; therefore, nitrogen will begin to be released by the body tissues. There is a need to estimate the time needed for denitrogenation in the planning of surgical procedures. In this paper we will describe the application of a physiologically based pharmacokinetic model to denitrogenation kinetics. The results are compared to the data resulting from experiments in the literature that measured the end tidal N2 concentration while breathing 100% oxygen in the form of moderately rapid and slow compartment time constants. It is shown that the model is in general agreement with published experimental data. Correlations for denitrogenation as a function of subject weight are provided.
Kinetic depletion model for pellet ablation
Energy Technology Data Exchange (ETDEWEB)
Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)
2001-11-01
A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)
Kinetic model of ammonia synthesis in the solar nebula
Norris, T. L.
1980-03-01
Kinetic model of ammonia formation by iron catalysis in the primordial solar nebula is developed. The maximum time to reach equilibrium concentration is determined for various temperatures between 1000 and 200 K on the basis of reaction rates derived from industrial data on iron catalysts for ammonia. Application of the method for calculating the equilibrium time to an arbitrary nebula cooling model which maximizes the time available for ammonia synthesis results in an upper limit of 3% of the equilibrium value to the proportion of nitrogen in the form of ammonia at the time of planetary accretion, with ammonia abundance decreasing with distance from the sun. It is concluded that kinetic rather than equilibrium considerations control the abundance of ammonia in the solar nebula, and implications of the dominance of nitrogen for the evolution of the atmospheres of the terrestrial and Jovian planets and the composition of comets are indicated.
Thermodynamics, kinetics and process control of nitriding
DEFF Research Database (Denmark)
Mittemeijer, Eric J.; Somers, Marcel A. J.
1997-01-01
As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of the International Federation for Heat Treatment and Surface Engineering held in Brighton, UK on 1-5 September 1996. (C) 1997 The Institute of Materials......., the nitriding result is determined largely by kinetics. Nitriding kinetics are shown to be characterised by local near equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data are presented. The necessary background...
Monochloramination of resorcinol: mechanism and kinetic modeling.
Cimetiere, Nicolas; Dossier-Berne, Florence; De Laat, Joseph
2009-12-15
The kinetics of monochloramination of resorcinol, 4-chlororesorcinol, and 4,6-dichlororesorcinol have been investigated over the pH range of 5-12, at 23 +/- 2 degrees C. Monochloramine solutions were prepared with ammonia-to-chlorine ratios (N/Cl) ranging from 1.08 to 31 mol/mol. Under conditions that minimize free chlorine reactions (N/Cl > 2 mol/mol), the apparent second-order rate constants of monochloramination of resorcinol compounds show a maximum at pH values between 8.6 and 10.2. The intrinsic second-order rate constants for the reaction of monochloramine with the acid-base forms of the dihydroxybenzenes (Ar(OH)(2), Ar(OH)O(-), and Ar(O(-))(2)) were calculated from the apparent second-order rate constants. The stoichiometric coefficients for the formation of 4-chlororesorcinol by monochloramination of resorcinol and 4,6-dichlororesorcinol by monochloramination of 4-chlororesorcinol were found to be equal to 0.66 +/- 0.05 and 0.25 +/- 0.02 mol/mol, respectively at pH 8.6. A kinetic model that incorporates reactions of free chlorine and monochloramine with the different acid-base forms of resorcinol compounds simulated well the initial rates of degradation of resorcinol compounds and was useful to evaluate the contribution of free chlorine reactions to the overall rates of degradation of resorcinol at low N/Cl ratios.
Kinetically controlled thermal response of beta2-microglobulin amyloid fibrils.
Sasahara, Kenji; Naiki, Hironobu; Goto, Yuji
2005-09-23
Calorimetric measurements were carried out using a differential scanning calorimeter in the temperature range from 10 to 120 degrees C for characterizing the thermal response of beta2-microglobulin amyloid fibrils. The thermograms of amyloid fibril solution showed a remarkably large decrease in heat capacity that was essentially released upon the thermal unfolding of the fibrils, in which the magnitude of negative heat capacity change was not explicable in terms of the current accessible surface area model of protein structural thermodynamics. The heat capacity-temperature curve of amyloid fibrils prior to the fibril unfolding exhibited an unusual dependence on the fibril concentration and the heating rate. Particularly, the heat needed to induce the thermal response was found to be linearly dependent on the heating rate, indicating that its thermal response is under a kinetic control and precluding the interpretation in terms of equilibrium thermodynamics. Furthermore, amyloid fibrils of amyloid beta peptides also exhibited a heating rate-dependent exothermic process before the fibril unfolding, indicating that the kinetically controlled thermal response may be a common phenomenon to amyloid fibrils. We suggest that the heating rate-dependent negative change in heat capacity is coupled to the association of amyloid fibrils with characteristic hydration pattern.
A discontinuous Galerkin method on kinetic flocking models
Tan, Changhui
2014-01-01
We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker-Smale and Motsch-Tadmor models. We prove flocking behavior for the kinetic descriptions of flocking systems, which indicates a concentration in velocity variable in infinite time. We propose a discontinuous Galerkin method to treat the asymptotic $\\delta$-singularity, and construct high order positive preserving scheme to solve kinetic flocking systems.
Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin
2014-12-01
The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chemical Kinetic Modeling of Biofuel Combustion
Sarathy, Subram Maniam
Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular
Fully implicit kinetic modelling of collisional plasmas
International Nuclear Information System (INIS)
Mousseau, V.A.
1996-05-01
This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method
Kinetic models of cell growth, substrate utilization and bio ...
African Journals Online (AJOL)
Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction
Cobbs, Gary
2012-01-01
Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most pote...
Performance of neutron kinetics models for ADS transient analyses
International Nuclear Information System (INIS)
Rineiski, A.; Maschek, W.; Rimpault, G.
2002-01-01
Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One
Childers, W Lee; Kogler, Géza F
2014-01-01
People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.
Mechanism of controlled release kinetics from medical devices
Directory of Open Access Journals (Sweden)
A. Raval
2010-06-01
Full Text Available Utilization of biodegradable polymers for controlled drug delivery has gained immense attention in the pharmaceutical and medical device industry to administer various drugs, proteins and other bio-molecules both systematically and locally to cure several diseases. The efficacy and toxicity of this local therapeutics depends upon drug release kinetics, which will further decide drug deposition, distribution, and retention at the target site. Drug Eluting Stent (DES presently possesses clinical importance as an alternative to Coronary Artery Bypass Grafting due to the ease of the procedure and comparable safety and efficacy. Many models have been developed to describe the drug delivery from polymeric carriers based on the different mechanisms which control the release phenomenon from DES. Advanced characterization techniques facilitate an understanding of the complexities behind design and related drug release behavior of drug eluting stents, which aids in the development of improved future drug eluting systems. This review discusses different drug release mechanisms, engineering principles, mathematical models and current trends that are proposed for drug-polymer coated medical devices such as cardiovascular stents and different analytical methods currently utilized to probe diverse characteristics of drug eluting devices.
Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas
International Nuclear Information System (INIS)
Crouseilles, N.
2004-12-01
For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)
Modeling the kinetics of essential oil hydrodistillation from plant materials
Directory of Open Access Journals (Sweden)
Milojević Svetomir Ž.
2013-01-01
Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.
Transformation kinetics of microalloyed steels after hot controlled ...
African Journals Online (AJOL)
Transformation kinetics of austenite into ferrite after controlled hot rolling has been investigated in three microalloyed steels (Nb, Nb-Ti and C-Mn-V) using hot interrupted compression tests on the Gleeble 1500 within the testing temperature range of 875°C-1100°C. Holding times were varied between 0.5 and 30s, strain ...
Preventing Corrosion by Controlling Cathodic Reaction Kinetics
2016-03-25
consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte...the more active material is strongly influenced by, among other conditions such as the presence of aggressive anions , the amount of exposed surface...Our theoretical approach is to extend these free energy based models to titanium based amorphous oxides with the focus on maximizing the band gap
Lumping procedure for a kinetic model of catalytic naphtha reforming
Directory of Open Access Journals (Sweden)
H. M. Arani
2009-12-01
Full Text Available A lumping procedure is developed for obtaining kinetic and thermodynamic parameters of catalytic naphtha reforming. All kinetic and deactivation parameters are estimated from industrial data and thermodynamic parameters are calculated from derived mathematical expressions. The proposed model contains 17 lumps that include the C6 to C8+ hydrocarbon range and 15 reaction pathways. Hougen-Watson Langmuir-Hinshelwood type reaction rate expressions are used for kinetic simulation of catalytic reactions. The kinetic parameters are benchmarked with several sets of plant data and estimated by the SQP optimization method. After calculation of deactivation and kinetic parameters, plant data are compared with model predictions and only minor deviations between experimental and calculated data are generally observed.
Thermodynamics, kinetics and process control of nitriding
DEFF Research Database (Denmark)
Mittemeijer, Eric J.; Somers, Marcel A. J.
1997-01-01
for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft......As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of the International Federation for Heat Treatment and Surface Engineering held in Brighton, UK on 1-5 September 1996. (C) 1997 The Institute of Materials....
COMPARATIVE ANALYSIS OF SOME EXISTING KINETIC MODELS ...
African Journals Online (AJOL)
The biosorption of three heavy metal ions namely; Zn2+, Cu2+ and Mn2+ using five microorganisms namely; Bacillus circulans, Pseudomonas aeruginosa, Staphylococcus xylosus, Streptomyces rimosus and Yeast (Saccharomyces sp.) were studied. In this paper, the effectiveness of six existing and two proposed kinetic ...
Improved Kinetic Models for High-Speed Combustion Simulation
National Research Council Canada - National Science Library
Montgomery, C. J; Tang, Q; Sarofim, A. F; Bockelie, M. J; Gritton, J. K; Bozzelli, J. W; Gouldin, F. C; Fisher, E. M; Chakravarthy, S
2008-01-01
Report developed under an STTR contract. The overall goal of this STTR project has been to improve the realism of chemical kinetics in computational fluid dynamics modeling of hydrocarbon-fueled scramjet combustors...
Mathematical modelling of water radiolysis kinetics under reactor conditions
International Nuclear Information System (INIS)
Khodulev, L.B.; Shapova, E.A.
1989-01-01
Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted
Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinetic modelization of water-rock interaction processes
International Nuclear Information System (INIS)
Pena, J.; Gimeno, M.J.
1994-01-01
A review of basic concepts in kinetics of low temperature natural systems is given: elementary and overall reactions, steady state and reaction mechanism, sequential reactions, parallel reactions and rate-determining step, temperature dependence of rate constant and principle of detailed balancing. The current status of kinetics modeling of water/rock interaction is treated. The comparison of the mean life of the processes with the residence time of the water in the system is very useful to decide the application or not of the kinetics treatment to the water/rock interaction processes. The right application of the kinetics treatment to the water/rock interaction needs the knowledge of the magnitude of the surface through which the water/rock reaction take place and its variation with time. Two ways to treat kinetically the water/rock interaction are the Mass Transfer method and the quasi-stationary state method
Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun
2018-04-01
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.
Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun
2018-01-01
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.
DEFF Research Database (Denmark)
Saa, Pedro A.; Nielsen, Lars K.
2017-01-01
Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive...... capabilities. In this review, we present an overview of the relevant mathematical frameworks for kinetic formulation, construction and analysis. Starting with kinetic formalisms, we next review statistical methods for parameter inference, as well as recent computational frameworks applied to the construction...
Energy Technology Data Exchange (ETDEWEB)
Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)
2016-04-15
Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model
Development of a kinetic model for biological sulphate reduction ...
African Journals Online (AJOL)
Further, in the BSR model the end-product sulphide has a gaseous equilibrium not in the UCTADM1 model, and hence the physical gas exchange for sulphide is included. The BSR biological, chemical and physical processes are integrated with those of the UCTADM1 model, to give a complete kinetic model for competitive ...
Detailed chemical kinetic modeling of cyclohexane oxidation.
Silke, Emma J; Pitz, William J; Westbrook, Charles K; Ribaucour, Marc
2007-05-17
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Rules for reaction rate constants are developed for the low-temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Because cyclohexane produces only one type of cyclohexyl radical, much of the low-temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical with O2 through five-, six-, and seven-membered-ring transition states. The direct elimination of cyclohexene and HO2 from RO2 is included in the treatment using a modified rate constant of Cavallotti et al. (Proc. Combust. Inst. 2007, 31, 201). Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data, are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments cannot be simulated according to the current understanding of low-temperature chemistry. Possible "alternative" H-atom isomerizations leading to different products from the parent O2QOOH radical were included in the low-temperature chemical kinetic mechanism and were found to play a significant role.
A Global Modeling Framework for Plasma Kinetics: Development and Applications
Parsey, Guy Morland
The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization
Kinetic models in spin chemistry. 1. The hyperfine interaction
DEFF Research Database (Denmark)
Mojaza, M.; Pedersen, J. B.
2012-01-01
Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described...... with a very good approximation. The crucial points are: to represents the quantum coherent oscillations by first order rate constants, and to determine the number of kinetic channels corresponding to a given interaction. We consider a radical pair system with spin selective reactions and calculate the spin...
Energy Technology Data Exchange (ETDEWEB)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink
International Nuclear Information System (INIS)
Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques
2002-01-01
In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
PANCHIGA
2016-09-28
Sep 28, 2016 ... by methanol. In this study, the unstructured models based on growth kinetic equation, fed-batch mass balance and constancy of cell and protein yields were developed and constructed following the substrates, glycerol and methanol. The growth model on glycerol is mostly published while the growth model ...
Computer kinetic modelling of radionuclide accumulation in Marine organisms
International Nuclear Information System (INIS)
Quintella, H.M.; Santimateo, D.; Paschoa, A.S.
1977-01-01
Continuous System Modelling Program (CSMP) is used to simulate the first step of the kinetic of a radionuclide in a food chain by using the exponential model of accumulation from water-to-algae based on data found in the literature. The use of computer modelling as a tool for environmental studies is discussed as far as economical advantages and future applications are concerned
Kinetic models and parameters estimation study of biomass and ...
African Journals Online (AJOL)
The growth kinetics and modeling of ethanol production from inulin by Pichia caribbica (KC977491) were studied in a batch system. Unstructured models were proposed using the logistic equation for growth, the Luedeking-Piret equation for ethanol production and modified Leudeking-Piret model for substrate consumption.
Kinetic models and parameters estimation study of biomass and ...
African Journals Online (AJOL)
compaq
2017-01-11
Jan 11, 2017 ... The growth kinetics and modeling of ethanol production from inulin by Pichia caribbica (KC977491) were studied in a batch system. Unstructured models were proposed using the logistic equation for growth, the Luedeking-Piret equation for ethanol production and modified Leudeking-Piret model for.
Reaction Kinetics Model of Polymerization in the Absence of ...
African Journals Online (AJOL)
This paper is on reaction kinetics models for approximating diffuse propagation reaction fronts in one-dimensional gasless combustion type models. This study is carried out in the context of free-radical frontal polymerization (FP) via a propagating, self sustaining reacting front in the absence of material diffusion. The model ...
Chemical kinetic modeling of H{sub 2} applications
Energy Technology Data Exchange (ETDEWEB)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others
1995-09-01
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.
Probabilistic Model Checking of Biological Systems with Uncertain Kinetic Rates
Barbuti, Roberto; Levi, Francesca; Milazzo, Paolo; Scatena, Guido
We present an abstraction of the probabilistic semantics of Multiset Rewriting to formally express systems of reactions with uncertain kinetic rates. This allows biological systems modelling when the exact rates are not known, but are supposed to lie in some intervals. On these (abstract) models we perform probabilistic model checking obtaining lower and upper bounds for the probabilities of reaching states satisfying given properties. These bounds are under- and over-approximations, respectively, of the probabilities one would obtain by verifying the models with exact kinetic rates belonging to the intervals.
Wang, Zhandong
2015-07-01
Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.
Detailed Chemical Kinetic Modeling of Hydrazine Decomposition
Meagher, Nancy E.; Bates, Kami R.
2000-01-01
The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.
Kinetic computer modeling of microwave surface-wave plasma production
International Nuclear Information System (INIS)
Ganachev, Ivan P.
2004-01-01
Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)
[Precision of data from models of sodium kinetics in hemodialysis].
Ahrenholz, P; Falkenhagen, D; Hähling, D; Klinkmann, H
1990-08-01
The 1-pool-model of sodium kinetics during hemodialysis is based upon the assumption of an immediate compensation of osmotic shifts. This assumption is not supported by measurements of plasma sodium, total protein concentration and colloid osmotic pressure kinetics. When a high dialysate sodium concentration is applied, an inflow of sodium into the plasma space occurs, which results in an osmotic suction and thus a plasma dilution. These conditions can be represented by a 2-pool-model taking into consideration capillary filtration. The results indicate that following the first treatment period the sodium kinetics are sufficiently explained by a 1-pool-model with the total body water as distribution volume. Both the plasma sodium concentration and the eliminated sodium at the end of a hemodialysis treatment can be described to an acceptable level by the 1-pool-model. The input of the measured in-vivo sodium dialysance value (or alternatively the urea clearance) is necessary.
Kinetics models describing degradation-relaxation effects in nanoinhomogeneous substances
Shpotyuk, O.; Balitska, V.; Brunner, M.
2017-12-01
The mathematical models of degradation-relaxation kinetics are considered for jammed systems composed of screen-printed spinel Cu0.1Ni0.1Co1.6Mn1.2O4 and conductive Ag or Ag-Pd alloys. Structurally-intrinsic nanoinhomogeneities due to Ag and Ag-Pd diffusants embedded in spinel phase environment are shown to define governing kinetics of thermally-induced degradation obeying an obvious non-exponential behaviour in the resistance drift. The stretched-to-compressed exponential crossover is detected for degradation-relaxation kinetics in these systems with conductive contacts made of Ag-Pd and Ag alloys. Under essential migration of conductive phase, the resulting kinetics is though to be considerable two-step diffusing process originated from Ag penetration deep into spinel ceramics.
A mathematical model of combustion kinetics of municipal solid ...
African Journals Online (AJOL)
Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...
Simplified kinetic models of methanol oxidation on silver
DEFF Research Database (Denmark)
Andreasen, A.; Lynggaard, H.; Stegelmann, C.
2005-01-01
Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...
Fully Kinetic Ion Models for Magnetized Plasma Simulations
Sturdevant, Benjamin J.
This thesis focuses on the development of simulation models, based on fully resolving the gyro-motion of ions with the Lorentz force equations of motion, for studying low-frequency phenomena in well-magnetized plasma systems. Such models, known as fully kinetic ion models, offer formal simplicity over higher order gyrokinetic ion models and may provide an important validation tool or replacement for gyrokinetic ion models in applications where the gyrokinetic ordering assumptions are in question. Methods for dealing with the added difficulty of resolving the short time scales associated with the ion gyro-motion in fully kinetic ion models are explored with the use of graphics processing units (GPUs) and advanced time integration algorithms, including sub-cycling, orbit averaging and variational integrators. Theoretical work is performed to analyze the effects of the ion Bernstein modes, which are known to cause difficulties in simulations based on fully kinetic ion models. In addition, the first simulation results for the ion temperature gradient driven instability in toroidal geometry using a fully kinetic ion model are presented. Finally, during the course of this work, a method for analyzing the effects of a finite time step size and spatial grid in the delta-f approach to the particle-in-cell method was developed for the first time. This method was applied to an implicit time integration scheme and has revealed some unusual numerical properties related to the delta-f method.
Simplified kinetic models of methanol oxidation on silver
DEFF Research Database (Denmark)
Andreasen, Anders; Lynggaard, Hasse Harloff; Stegelmann, Carsten
2005-01-01
Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5–23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...
Strain in the mesoscale kinetic Monte Carlo model for sintering
DEFF Research Database (Denmark)
Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.
2014-01-01
Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate dens...
Kinetic Modelling of Oil Extraction from Neem Seed | Ogunleye ...
African Journals Online (AJOL)
The suitability of three different types of extraction kinetic models (one- step, two –step and three – step models) for neem oil was investigated in this study. Solvent extraction using n-hexane at temperatures range between 303K and 323 K ; 360minutes of extraction time were experimented and the oil yield calculated.
Some models for the adsorption kinetics of pesticides in soil
Leistra, M.; Dekkers, W.A.
1977-01-01
Three models describing adsorption‐desorption kinetics of pesticides in soil, that could be incorporated into computer programs on pesticide movement in soil, were discussed, the first model involved single first‐order rate equations for adsorption and desorption. Results from an analytical and a
Sum rule limitations of kinetic particle-production models
International Nuclear Information System (INIS)
Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.
1988-04-01
Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kruse, A.; Keskin, M.; Faquir, M.; Dahmen, N. [Inst. fuer Technische Chemie, Forschungszentrum Karlsruhe (Germany)
2008-07-01
Hydrothermal biomass gasification is a promising technology to produce hydrogen from wet biomass, i.e. a water content of at least 50 %. This process allows the utilization of agricultural wastes or residuals from biochemical conversions. Since the reaction is highly kinetically controlled, it should be possible to optimimize gas yield and composition with respect to a maximum hydrogen yield. The paper describes the simulation of the process using a kinetic reaction model and experimental data from appropriate test facilities. Experiments were performed for several reactor types and a variety of model systems, like glucose, methane and hydroxy methyl furfural, that were identified as intermediate product for the hydrothermal hydrogen production. The influence of different additive 'catalysts' was tested. It was shown that the biomass composition has an important influence on the gas yield. Alkaline salts can be added to increase the yield. A fast heating and agitation of the biomass are also increasing the gas yield.
Multigeometry Nanoparticle Engineering via Kinetic Control through Multistep assembly
Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Zhang, Fuwu; Mays, Jimmy; Wooley, Karen; Pochan, Darrin
2014-03-01
Organization of block copolymers into complicated multicompartment (MCM) and multigeometry (MGM) nanostructures is of increasing interest. Multistep, co-assembly methods resulting in kinetic control processing was used to produce complex nanoparticles that are not obtained via other assembly methods. Vesicle-cylinder, separate vesicle and cylinder, disk-cylinder, and mixed vesicle nanoparticles were constructed by binary blends of distinct diblock copolymers. Initially, the vesicle former polyacrylic acid-polyisoprene and cylinder former polyacrylic acid-polystyrene which share the same hydrophilic domain but immiscible hydrophobic domain were blended in THF. Secondly, dimaine molecules are added to associate with the common hydrophilic PAA. Importantly, and lastly, by tuning the kinetic addition rate of selective, miscible solvent water, the unlike hydrophobic blocks are kinetically trapped into one particle and eventually nanophase separate to form multiple compartments and multigeometries. The effective bottom-up multistep assembly strategies can be applied in other binary/ternary blends, in which new vesicle-sphere, disk-disk and cylinder-cylinder MCM/MGM nanoparticles were programed. We are grateful for the financial support from the National Science Funding DMR-0906815 (D.J.P. and K.L.W.) and NIST METROLOGY POCHAN 2012.
Khonde, Ruta Dhanram; Chaurasia, Ashish Subhash
2015-04-01
The present study provides the kinetic model to describe the pyrolysis of sawdust, rice-husk and sugarcane bagasse as biomass. The kinetic scheme used for modelling of primary pyrolysis consisting of the two parallel reactions giving gaseous volatiles and solid char. Estimation of kinetic parameters for pyrolysis process has been carried out for temperature range of 773-1,173 K. As there are serious issues regarding non-convergence of some of the methods or solutions converging to local-optima, the proposed kinetic model is optimized to predict the best values of kinetic parameters for the system using three approaches—Two-dimensional surface fitting non-linear regression technique, MS-Excel Solver Tool and COMSOL software. The model predictions are in agreement with experimental data over a wide range of pyrolysis conditions. The estimated value of kinetic parameters are compared with earlier researchers and found to be matching well.
Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis
Eldeeb, Mazen A.
2016-08-30
A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.
Microscopic kinetic model for polymer crystal growth
Hu, Wenbing
2011-03-01
Linear crystal growth rates characterize the net result of competition between growth and melting at the liquid-solid interfaces. The rate equation for polymer crystal growth can be derived with a barrier term for crystal growth and with a driving force term of excess lamellar thickness, provided that growth and melting share the same rate-determining steps at the growth front. Such an ansatz can be verified by the kinetic symmetry between growth and melting around the melting point of lamellar crystals, as made in our recent dynamic Monte Carlo simulations. The profile of the growth/melting front appears as wedge-shaped, with the free energy barrier for intramolecular secondary crystal nucleation at its top, and with the driving force gained via instant thickening at its bottom. Such a scenario explains unique phenomena on polymer crystal growth, such as chain folding, regime transitions, molecular segregation of polydisperse polymers, self-poisoning with integer-number chain-folding of short chains, and colligative growth rates of binary mixtures of two chain lengths. Financial support from NNSFC No. 20825415 and NBRPC No. 2011CB606100 is acknowledged.
Kinetic models for irreversible processes on a lattice
Energy Technology Data Exchange (ETDEWEB)
Wolf, N.O.
1979-04-01
The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism.
Kinetic models for irreversible processes on a lattice
International Nuclear Information System (INIS)
Wolf, N.O.
1979-04-01
The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism
Computer models for kinetic equations of magnetically confined plasmas
International Nuclear Information System (INIS)
Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.
1987-01-01
This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method
Bao, Jiayin; Krylova, Svetlana M; Reinstein, Oren; Johnson, Philip E; Krylov, Sergey N
2011-11-15
Here we demonstrate a label-free solution-based approach for studying the kinetics of biopolymer-small molecule interactions. The approach utilizes kinetic capillary electrophoresis (KCE) separation and UV light absorption detection of the unlabeled small molecule. In this proof-of-concept work, we applied KCE-UV to study kinetics of interaction between a small molecule and a DNA aptamer. From the kinetic analysis of a series of aptamers, we found that dissociation rather than binding controls the stability of the complex. Because of its label-free features and generic nature, KCE-UV promises to become a practical tool for challenging kinetic studies of biopolymer-small molecule interactions.
Kinetic controlled affinity labeling of target enzyme with thioester chemistry.
Tomohiro, Takenori; Nakabayashi, Masahiro; Sugita, Yuka; Morimoto, Shota
2016-08-01
High specificity has been an important feature in affinity labeling for target profiling. Especially, to label targets via rapidly progressing reactions with consumption of ligand (probe), high specificity of reaction with common functional groups of target protein should be achieved without reactions with similar groups of non-target proteins. Herein, we demonstrate the kinetic controlled affinity labeling of acyl CoA synthetase using a fatty acid analogue containing a phenylthioester linkage. High specificity was attained by accelerating the labeling rate in the binding pocket. This approach could be useful for profiling a series of target enzymes and transporters in signal transduction pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Convergent synthesis of proteins by kinetically controlled ligation
Kent, Stephen; Pentelute, Brad; Bang, Duhee; Johnson, Erik; Durek, Thomas
2010-03-09
The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil
2015-02-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.
Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation
Directory of Open Access Journals (Sweden)
Effendy Mohammad
2016-01-01
Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation
Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas
2017-07-19
Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.; Iskra, G.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil Engineering; Szecsody, J.E.; Zachara, J.M.; Streile, G.P. [Pacific Northwest Lab., Richland, WA (United States)
1995-01-01
This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.
Python framework for kinetic modeling of electronically excited reaction pathways
Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew
2012-10-01
The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.
Kinetic modeling of desorption of Cadmium (ii) ion from ...
African Journals Online (AJOL)
Kinetic modeling of desorption of Cadmium (ii) ion from Mercaptoacetic acide modified and unmodified agricultural adsorbents. A A Abia, E D Asuquo. Abstract. No Abstract. Global Journal of Environmental Science Vol. 6 (2) 2007: pp. 89-98. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
In order to describe and predict the growth and expression of recombinant proteins by using a genetically modified Pichia pastoris, we developed a number of unstructured models based on growth kinetic equation, fed-batch mass balance and the assumptions of constant cell and protein yields. The growth of P. pastoris on ...
Kinetic modeling of kraft delignification of Eucalyptus globulus
Energy Technology Data Exchange (ETDEWEB)
Santos, A.; Rodriguez, F.; Gilarranz, M.A.; Moreno, D.; Garcia-Ochoa, F. [Univ. Complutense, Madrid (Spain). Dept. de Ingenieria Quimica
1997-10-01
A kinetic model for the kraft pulping delignification of Eucalyptus globulus is proposed. This model is discriminated among some kinetic expressions often used in the literature, and the kinetic parameters are determined by fitting of experimental results. A total of 25 isothermal experiments at liquor-to-wood ratios of 50 and 5 L/kg have been carried out. Initial, bulk, and residual delignification stages have been observed during the lignin removal, the transitions being, referring to the lignin initial content, about 82 and 3%. Carbohydrate removal and effective alkali-metal and hydrosulfide consumption have been related with the lignin removal by means of effective stoichiometric coefficients for each stage, coefficients also being calculated by fitting of the experimental data. The kinetic model chosen has been used to simulate typical kraft pulping experiments carried out at nonisothermal conditions, using a temperature ramp. The model yields simulated values close to those obtained experimentally for the wood studied and also ably reproduces the trends of the literature data.
Physiologically-based kinetic modelling in risk assessment
The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) hosted a two-day workshop with an aim to discuss the role and application of Physiologically Based Kinetic (PBK) models in regulatory decision making. The EURL ECVAM strategy document on Toxic...
Estimation of Kinetic Parameters in an Automotive SCR Catalyst Model
DEFF Research Database (Denmark)
Åberg, Andreas; Widd, Anders; Abildskov, Jens
2016-01-01
A challenge during the development of models for simulation of the automotive Selective Catalytic Reduction catalyst is the parameter estimation of the kinetic parameters, which can be time consuming and problematic. The parameter estimation is often carried out on small-scale reactor tests...
Study of growth kinetic and modeling of ethanol production by ...
African Journals Online (AJOL)
GREGORY
2011-12-16
Dec 16, 2011 ... oxygen content, octane number and reduction of CO emission (Cardona et al., 2010). Furthermore, E10 (10% ... networks and chemical reaction (Lee, 2008). On the con- trary, structured kinetic models are ... CO2 evolution rate (Sato and Yoshizawa, 1988). In this study, batch ethanol fermentation of glucose ...
Modelling of thermal degradation kinetics of ascorbic acid in ...
African Journals Online (AJOL)
Ascorbic acid (vitamin C) loss in thermally treated pawpaw and potato was modelled mathematically. Isothermal experiments in the temperature range of 50 -80 oC for the drying of pawpaw and 60 -100 oC for the blanch-drying of potato were utilized to determine the kinetics of ascorbic acid loss in both fruit and vegetable.
Modelling of Thermal Degradation Kinetics of Ascorbic Acid in ...
African Journals Online (AJOL)
Ascorbic acid (vitamin C) loss in thermally treated pawpaw and potato was modelled mathematically. Isothermal experiments in the temperature range of 50 -80 oC for the drying of pawpaw and 60 -100 oC for the blanch-drying of potato were utilized to determine the kinetics of ascorbic acid loss in both fruit and vegetable.
Web-based kinetic modelling using JWS Online
Olivier, Brett G.; Snoep, Jacky L.
2004-01-01
Summary: JWS Online is a repository of kinetic models, describing biological systems, which can be interactively run and interrogated over the Internet. It is implemented using a client-server strategy where the clients, in the form of web browser based Java applets, act as a graphical interface to
Kinetic modelling and thermodynamic studies on purification of ...
African Journals Online (AJOL)
Adsorbent capacities have been determined by mathematical fitting of equilibrium data using the most common isotherms: Freundlich isotherm and Langmuir isotherm. Several kinetic models have been applied to the process. Thermodynamic parameters: △So, △Ho, △Go and Ea (kJ/mol) have been determined.
Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling
DEFF Research Database (Denmark)
Bjørgum, Erlend; Chen, De; Bakken, Mari G.
2005-01-01
precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...
Phosphate Kinetic Models in Hemodialysis: A Systematic Review.
Laursen, Sisse H; Vestergaard, Peter; Hejlesen, Ole K
2018-01-01
Understanding phosphate kinetics in dialysis patients is important for the prevention of hyperphosphatemia and related complications. One approach to gain new insights into phosphate behavior is physiologic modeling. Various models that describe and quantify intra- and/or interdialytic phosphate kinetics have been proposed, but there is a dearth of comprehensive comparisons of the available models. The objective of this analysis was to provide a systematic review of existing published models of phosphate metabolism in the setting of maintenance hemodialysis therapy. Systematic review. Hemodialysis patients. Studies published in peer-reviewed journals in English about phosphate kinetic modeling in the setting of hemodialysis therapy. Modeling equations from specific reviewed studies. Changes in plasma phosphate or serum phosphate concentrations. Of 1,964 nonduplicate studies evaluated, 11 were included, comprising 9 different phosphate models with 1-, 2-, 3-, or 4-compartment assumptions. Between 2 and 11 model parameters were included in the models studied. Quality scores of the studies using the Newcastle-Ottawa Scale ranged from 2 to 11 (scale, 0-14). 2 studies were considered low quality, 6 were considered medium quality, and 3 were considered high quality. Only English-language studies were included. Many parameters known to influence phosphate balance are not included in existing phosphate models that do not fully reflect the physiology of phosphate metabolism in the setting of hemodialysis. Moreover, models have not been sufficiently validated for their use as a tool to simulate phosphate kinetics in hemodialysis therapy. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Chemical kinetics and combustion modelling with CFX 4
Energy Technology Data Exchange (ETDEWEB)
Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)
1997-12-31
The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.
Gyrofluid turbulence models with kinetic effects
Energy Technology Data Exchange (ETDEWEB)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u[parallel], T[parallel], and T[perpendicular] along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These FLR phase-mixing'' terms introduce a hyperviscosity-like damping [proportional to] k[sub [perpendicular
Modeling on the Effect of Coal Loads on Kinetic Energy of Balls for Ball Mills
Directory of Open Access Journals (Sweden)
Yan Bai
2015-07-01
Full Text Available This paper presents a solution for the detection and control of coal loads that is more accurate and convenient than those currently used. To date, no research has addressed the use of a grinding medium as the controlled parameter. To improve the accuracy of the coal load detection based on the kinetic energy of balls in a tubular ball mill, a Discrete Element Method (DEM model for ball kinematics based on coal loads is proposed. The operating process for a ball mill and the ball motion, as influenced by the coal quality and the coal load, was analyzed carefully. The relationship between the operating efficiency of a coal pulverizing system, coal loads, and the balls’ kinetic energy was obtained. Origin and Matlab were utilized to draw the variation of parameters with increasing coal loads in the projectile and cascading motion states. The parameters include the balls’ real-time kinetic energy, the friction energy consumption, and the mill’s total work. Meanwhile, a method of balanced adjacent degree and a physical experiment were proposed to verify the considerable effect of the balls’ kinetic energy on coal loads. The model and experiment results indicate that a coal load control method based on the balls’ kinetic energy is therefore feasible for the optimized operation of a coal pulverizing system.
Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles
Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto
2012-01-01
Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767
A kinetic model for flavonoid production in tea cell culture.
Shibasaki-Kitakawa, Naomi; Iizuka, Yasuhiro; Takahashi, Atsushi; Yonemoto, Toshikuni
2017-02-01
As one of the strategies for efficient production of a metabolite from cell cultures, a kinetic model is very useful tool to predict productivity under various culture conditions. In this study, we propose a kinetic model for flavonoid production in tea cell culture based on the cell life cycle and expression of PAL, the gene encoding phenylalanine ammonia-lyase (PAL)-the key enzyme in flavonoid biosynthesis. The flavonoid production rate was considered to be related to the amount of active PAL. Synthesis of PAL was modelled based on a general gene expression/translation mechanism, including the transcription of DNA encoding PAL into mRNA and the translation of PAL mRNA into the PAL protein. The transcription of DNA was assumed to be promoted at high light intensity and suppressed by a feedback regulatory mechanism at high flavonoid concentrations. In the model, mRNA and PAL were considered to self-decompose and to be lost by cell rupture. The model constants were estimated by fitting the experimental results obtained from tea cell cultures under various light intensities. The model accurately described the kinetic behaviors of dry and fresh cell concentrations, glucose concentration, cell viability, PAL specific activity, and flavonoid content under a wide range of light intensities. The model simulated flavonoid productivity per medium under various culture conditions. Therefore, this model will be useful to predict optimum culture conditions for maximum flavonoid productivity in cultured tea cells.
Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles
Directory of Open Access Journals (Sweden)
Gengjie Jia
2012-11-01
Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.
Numerical modelling of multicomponent LNAPL dissolution kinetics ...
Indian Academy of Sciences (India)
Abstract. Characterization of aquifers contaminated by petroleum hydrocarbons is limited by the use of dissolution mass transfer correlations developed for single com- pounds without considering the effects of the mass transfer limitations in presence of other components. A one-dimensional implicit numerical model is ...
Modelling the kinetics of a triple junction
Czech Academy of Sciences Publication Activity Database
Fischer, F. D.; Svoboda, Jiří; Hackl, K.
2012-01-01
Roč. 60, č. 12 (2012), s. 4704-4711 ISSN 1359-6454 R&D Projects: GA ČR GAP108/10/1781 Institutional support: RVO:68081723 Keywords : Phase-field method * Phase transformation * Grain boundary migration * Thermodynamic modelling Subject RIV: BJ - Thermodynamics Impact factor: 3.941, year: 2012
Kinetics and modeling of anaerobic digestion process
DEFF Research Database (Denmark)
Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær
2003-01-01
Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...
Laplace transform in tracer kinetic modeling
International Nuclear Information System (INIS)
Hauser, Eliete B.
2013-01-01
The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [ 18 F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)
Laplace transform in tracer kinetic modeling
Energy Technology Data Exchange (ETDEWEB)
Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica
2013-07-01
The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)
Fluid models for kinetic effects in toroidal plasmas
International Nuclear Information System (INIS)
Smolyakov, A.I.; Hirose, A.; Yagi, M.; Callen, J.D.
1995-01-01
Fluid models for toroidal plasma are considered paying particular attention to the effects of particle motion along the equilibrium magnetic field. It is shown that the basic fluid equations can be obtained either as moments of the drift-kinetic equation, or from the standard fluid equations by expanding them in 1/B small parameter. It is shown that the collisionless gyroviscosity accounts for the effects of the particle magnetic drift in the parallel component of the momentum balance equation. Simple truncated model of the plasma response for arbitrary ω D (magnetic drift frequency) and k parallel V t (parallel transit frequency) is proposed. In the absence of resonances, which can be inhibited by the particle magnetic drift, this model recovers the exact kinetic results with satisfactory accuracy. In general case, the kinetic closure for the effects of the particle motion along the magnetic field is suggested in terms of the parallel viscosity and the heat flux. They are directly calculated from the linear drift-kinetic equation. Simplified expressions in the different asymptotic limits are derived
Gyrofluid turbulence models with kinetic effects
International Nuclear Information System (INIS)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u parallel, T parallel, and T perpendicular along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ''FLR phase-mixing'' terms introduce a hyperviscosity-like damping ∝ k perpendicular 2 |Φ rvec k rvec k x rvec k'| which should provide a physics-based damping mechanism at high k perpendicular ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory
Gyrofluid turbulence models with kinetic effects
Energy Technology Data Exchange (ETDEWEB)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u{parallel}, T{parallel}, and T{perpendicular} along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing`` terms introduce a hyperviscosity-like damping {proportional_to} k{sub {perpendicular}}{sup 2}{vert_bar}{Phi}{sub {rvec k}}{rvec k} {times}{rvec k}{prime}{vert_bar} which should provide a physics-based damping mechanism at high k{perpendicular}{rho} which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.
Developments in kinetic modelling of chalcocite particle oxidation
Energy Technology Data Exchange (ETDEWEB)
Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy
1997-12-31
A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... have been compared to the experimental results of de Wilde and van Tiggelen (1968) who measured the laminar burning velocities for HOCHO flames over a range of stoichiometries and dilution ratios. The modeling predictions are generally satisfactory. The governing reaction mechanisms are outlined based...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Phenobarbital loaded microemulsion: development, kinetic release and quality control
Directory of Open Access Journals (Sweden)
Kayo Alves Figueiredo
Full Text Available ABSTRACT This study aimed to obtain and characterize a microemulsion (ME containing phenobarbital (PB. The PB was incorporated in the proportion of 5% and 10% in a microemulsion system containing Labrasol(r, ethanol, isopropyl myristate and purified water. The physicochemical characterization was performed and the primary stability of the ME was evaluated. An analytical method was developed using spectrophotometry in UV = 242 nm. The kinetics of the in vitro release (Franz model of the ME and the emulsion (EM containing PB was evaluated. The incorporation of PB into ME at concentrations of 5 and 10% did not change pH and resistance to centrifugation. There was an increase in particle size, a decrease of conductivity and a change in the refractive index in relation to placebo ME. The ME remained stable in preliminary stability tests. The analytical method proved to be specific, linear, precise, accurate and robust. Regarding the kinetics of the in vitro release, ME obtained an in vitro release profile greater than the EM containing PB. Thus, the obtained ME has a potential for future transdermal application, being able to compose a drug delivery system for the treatment of epilepsy.
Schokker, E.P.
1997-01-01
The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused
Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization
Ruslanov, Anatole D.; Bashylau, Anton V.
2010-06-01
We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.
Kinetic models for historical processes of fast invasion and aggression
Aristov, Vladimir V.; Ilyin, Oleg V.
2015-04-01
In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.
Stochastic effects in a discretized kinetic model of economic exchange
Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.
2017-04-01
Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.
Kinetic modelling of laccase mediated delignification of Lantana camara.
Gujjala, Lohit K S; Bandyopadhyay, Tapas K; Banerjee, Rintu
2016-07-01
Enzymatic delignification is seen as a green step in biofuels production owing to its specificity towards lignin and its proper understanding requires a kinetic study to decipher intricate details of the process such as thermodynamic parameters viz., activation energy, entropy change and enthalpy change. A system of two coupled kinetic models has been constructed to model laccase mediated delignification of Lantana camara. From the simulated output, activation energy was predicted to be 45.56 and 56.06 kJ/mol, entropy change was observed to be 1.08 × 10(2) and 1.05 × 10(2)cal/mol-K and enthalpy change was determined to be 3.33 × 10(4) and 3.20 × 10(4)cal/mol, respectively from Tessier's and Michaelis Menten model. While comparing the prediction efficiency, it was noticed that Tessier's model gave better performance. Sensitivity analysis was also conducted and it was observed that the model was most sensitive towards temperature dependent kinetic constants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Focuss algorithm application in kinetic compartment modeling for PET tracer
International Nuclear Information System (INIS)
Huang Xinrui; Bao Shanglian
2004-01-01
Molecular imaging is in the process of becoming. Its application mostly depends on the molecular discovery process of imaging probes and drugs, from the mouse to the patient, from research to clinical practice. Positron emission tomography (PET) can non-invasively monitor . pharmacokinetic and functional processes of drugs in intact organisms at tracer concentrations by kinetic modeling. It has been known that for all biological systems, linear or nonlinear, if the system is injected by a tracer in a steady state, the distribution of the tracer follows the kinetics of a linear compartmental system, which has sums of exponential solutions. Based on the general compartmental description of the tracer's fate in vivo, we presented a novel kinetic modeling approach for the quantification of in vivo tracer studies with dynamic positron emission tomography (PET), which can determine a parsimonious model consisting with the measured data. This kinetic modeling technique allows for estimation of parametric images from a voxel based analysis and requires no a priori decision about the tracer's fate in vivo, instead determining the most appropriate model from the information contained within the kinetic data. Choosing a set of exponential functions, convolved with the plasma input function, as basis functions, the time activity curve of a region or a pixel can be written as a linear combination of the basis functions with corresponding coefficients. The number of non-zero coefficients returned corresponds to the model order which is related to the number of tissue compartments. The system macro parameters are simply determined using the focal underdetermined system solver (FOCUSS) algorithm. The FOCUSS algorithm is a nonparametric algorithm for finding localized energy solutions from limited data and is a recursive linear estimation procedure. FOCUSS algorithm usually converges very fast, so demands a few iterations. The effectiveness is verified by simulation and clinical
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
Cobbs, Gary
2012-08-16
Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction
Directory of Open Access Journals (Sweden)
Cobbs Gary
2012-08-01
Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the
Tracer kinetic modelling of receptor data with mathematical metabolite correction
International Nuclear Information System (INIS)
Burger, C.; Buck, A.
1996-01-01
Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)
Development of Detailed Kinetic Models for Fischer-Tropsch Fuels
Energy Technology Data Exchange (ETDEWEB)
Westbrook, C K; Pitz, W J; Carstensen, H; Dean, A M
2008-10-28
Fischer-Tropsch (FT) fuels can be synthesized from a syngas stream generated by the gasification of biomass. As such they have the potential to be a renewable hydrocarbon fuel with many desirable properties. However, both the chemical and physical properties are somewhat different from the petroleum-based hydrocarbons that they might replace, and it is important to account for such differences when considering using them as replacements for conventional fuels in devices such as diesel engines and gas turbines. FT fuels generally contain iso-alkanes with one or two substituted methyl groups to meet the pour-point specifications. Although models have been developed for smaller branched alkanes such as isooctane, additional efforts are required to properly capture the kinetics of the larger branched alkanes. Recently, Westbrook et al. developed a chemical kinetic model that can be used to represent the entire series of n-alkanes from C{sub 1} to C{sub 16} (Figure 1). In the current work, the model is extended to treat 2,2,4,4,6,8,8-heptamethylnonane (HMN), a large iso-alkane. The same reaction rate rules used in the iso-octane mechanism were incorporated in the HMN mechanism. Both high and low temperature chemistry was included so that the chemical kinetic model would be applicable to advanced internal combustion engines using low temperature combustion strategies. The chemical kinetic model consists of 1114 species and 4468 reactions. Concurrently with this effort, work is underway to improve the details of specific reaction classes in the mechanism, guided by high-level electronic structure calculations. Attention is focused upon development of accurate rate rules for abstraction of the tertiary hydrogens present in branched alkanes and properly accounting for the pressure dependence of the ?-scission, isomerization, and R + O{sub 2} reactions.
Comparison of kinetic model for biogas production from corn cob
Shitophyta, L. M.; Maryudi
2018-04-01
Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.
2011-01-01
Background Comprehensive kinetic models of microbial metabolism can enhance the understanding of system dynamics and regulatory mechanisms, which is helpful in optimizing microbial production of industrial chemicals. Clostridium acetobutylicum produces solvents (acetone-butanol–ethanol, ABE) through the ABE pathway. To systematically assess the potential of increased production of solvents, kinetic modeling has been applied to analyze the dynamics of this pathway and make predictive simulations. Up to date, only one kinetic model for C. acetobutylicum supported by experiment has been reported as far as we know. But this model did not integrate the metabolic regulatory effects of transcriptional control and other complex factors. It also left out the information of some key intermediates (e.g. butyryl-phosphate). Results We have developed an improved kinetic model featured with the incorporation of butyryl-phosphate, inclusion of net effects of complex metabolic regulations, and quantification of endogenous enzyme activity variations caused by these regulations. The simulation results of our model are more consistent with published experimental data than the previous model, especially in terms of reflecting the kinetics of butyryl-phosphate and butyrate. Through parameter perturbation analysis, it was found that butyrate kinase has large and positive influence on butanol production while CoA transferase has negative effect on butanol production, suggesting that butyrate kinase has more efficiency in converting butyrate to butanol than CoA transferase. Conclusions Our improved kinetic model of the ABE process has more capacity in approaching real circumstances, providing much more insight in the regulatory mechanisms and potential key points for optimization of solvent productions. Moreover, the modeling strategy can be extended to other biological processes. PMID:21689471
Kinetic modelling of radiochemical ageing of ethylene-propylene copolymers
International Nuclear Information System (INIS)
Colin, Xavier; Richaud, Emmanuel; Verdu, Jacques; Monchy-Leroy, Carole
2010-01-01
A non-empirical kinetic model has been built for describing the general trends of radiooxidation kinetics of ethylene-propylene copolymers (EPR) at low γ dose rate and low temperature. It is derived from a radical chain oxidation mechanism composed of 30 elementary reactions: 19 relative to oxidation of methylene and methyne units plus 11 relative to their eventual cooxidation. The validity of this model has been already checked successfully elsewhere for one homopolymer: polyethylene (PE) (; ). In the present study, it is now checked for polypropylene (PP) and a series of three EPR differing essentially by their mole fraction of ethylene (37%, 73% and 86%) and their crystallinity degree (0%, 5% and 26%). Predicted values of radiation-chemical yields are in good agreement with experimental ones published in the last half past century.
Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena
International Nuclear Information System (INIS)
Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai
2014-01-01
A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Integrating Kinetic Effects into Global Models for Reconnection
Antiochos, S. K.
2012-01-01
Magnetic reconnection is the most striking example of how the coupling between global and kinetic scales can lead to fast energy release. Explosive solar activity, such as coronal mass ejections and flares for example, is widely believed to be due to the release of magnetic energy stored on global scales by magnetic reconnection operating on kinetic scales. Understanding how processes couple across spatial scales is one of the most difficult challenges in all of physics, and is undoubtedly the main obstacle to developing predictive models for the Sun's activity. Consequently, the NASA Living With a Star Program selected a Focused Science Team to attack the problem of cross-scale coupling in reconnection. In this talk I will present some of the results of the Team and review our latest theories and methods for modeling the global-local coupling in solar reconnection.
A kinetic model for the first stage of pygas upgrading
Directory of Open Access Journals (Sweden)
J. L. de Medeiros
2007-03-01
Full Text Available Pyrolysis gasoline - PYGAS - is an intermediate boiling product of naphtha steam cracking with a high octane number and high aromatic/unsaturated contents. Due to stabilization concerns, PYGAS must be hydrotreated in two stages. The first stage uses a mild trickle-bed conversion for removing extremely reactive species (styrene, dienes and olefins prior to the more severe second stage where sulfured and remaining olefins are hydrogenated in gas phase. This work addresses the reaction network and two-phase kinetic model for the first stage of PYGAS upgrading. Nonlinear estimation was used for model tuning with kinetic data obtained in bench-scale trickle-bed hydrogenation with a commercial Pd/Al2O3 catalyst. On-line sampling experiments were designed to study the influence of variables - temperature and spatial velocity - on the conversion of styrene, dienes and olefins.
Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation
Directory of Open Access Journals (Sweden)
Nag Ambarish
2011-06-01
Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to
Cáceres, Lizethly; Escudey, Mauricio; Fuentes, Edwar; Báez, María E
2010-07-15
Metsulfuron-methyl sorption kinetic was studied in Andisol and Ultisol soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Different kinetic models were applied to the experimental results. The pseudo-second-order model fitted sorption kinetics data better than the pseudo-first-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the different behavior of metsulfuron-methyl in both kinds of soils, both parameters being the highest for Andisol. The application of Elovich equation, intraparticle diffusion model and a two-site nonequilibrium model (TSNE) allowed to conclude that: (i) the high organic matter content is the governing factor for Andisols where mass transfer across the boundary layer, and in a lesser degree, intraparticle diffusion were the two processes controlling sorption kinetic and (ii) the mineral composition was more relevant in Ultisols where rate was controlled almost exclusively by intraparticle diffusion into macropores and micropores. The slower sorption rate on Ultisols, the mechanism involved and the lower sorption capacity of this kind of soils must be taken into account to assess leaching behavior of this herbicide. 2010 Elsevier B.V. All rights reserved.
A model for recovery kinetics of aluminum after large strain
DEFF Research Database (Denmark)
Yu, Tianbo; Hansen, Niels
2012-01-01
A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness...... for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization. Furthermore...
Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M
2009-08-27
We present an approach to recover kinetics from a simplified protein folding model at different temperatures using the combined power of replica exchange (RE), a kinetic network, and effective stochastic dynamics. While RE simulations generate a large set of discrete states with the correct thermodynamics, kinetic information is lost due to the random exchange of temperatures. We show how we can recover the kinetics of a 2D continuous potential with an entropic barrier by using RE-generated discrete states as nodes of a kinetic network. By choosing the neighbors and the microscopic rates between the neighbors appropriately, the correct kinetics of the system can be recovered by running a kinetic simulation on the network. We fine-tune the parameters of the network by comparison with the effective drift velocities and diffusion coefficients of the system determined from short-time stochastic trajectories. One of the advantages of the kinetic network model is that the network can be built on a high-dimensional discretized state space, which can consist of multiple paths not consistent with a single reaction coordinate.
An experimental and kinetic modeling study of glycerol pyrolysis
International Nuclear Information System (INIS)
Fantozzi, F.; Frassoldati, A.; Bartocci, P.; Cinti, G.; Quagliarini, F.; Bidini, G.; Ranzi, E.M.
2016-01-01
Highlights: • Glycerol pyrolysis can produce about 44–48%v hydrogen at 750–800 °C. • A simplified 452 reactions kinetic model of glycerol pyrolysis has been developed. • The model has good agreement with experimental data. • Non condensable gas yields can reach 70%. - Abstract: Pyrolysis of glycerol, a by-product of the biodiesel industry, is an important potential source of hydrogen. The obtained high calorific value gas can be used either as a fuel for combined heat and power (CHP) generation or as a transportation fuel (for example hydrogen to be used in fuel cells). Optimal process conditions can improve glycerol pyrolysis by increasing gas yield and hydrogen concentration. A detailed kinetic mechanism of glycerol pyrolysis, which involves 137 species and more than 4500 reactions, was drastically simplified and reduced to a new skeletal kinetic scheme of 44 species, involved in 452 reactions. An experimental campaign with a batch pyrolysis reactor was properly designed to further validate the original and the skeletal mechanisms. The comparisons between model predictions and experimental data strongly suggest the presence of a catalytic process promoting steam reforming of methane. High pyrolysis temperatures (750–800 °C) improve process performances and non-condensable gas yields of 70%w can be achieved. Hydrogen mole fraction in pyrolysis gas is about 44–48%v. The skeletal mechanism developed can be easily used in Computational Fluid Dynamic software, reducing the simulation time.
Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1*
Hu, Hao; Luo, Cheng; Zheng, Y. George
2016-01-01
Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups. PMID:27834681
Zhu, Wen; Liu, Junsheng; Li, Meng
2014-01-01
A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater.
Directory of Open Access Journals (Sweden)
Wen Zhu
2014-01-01
Full Text Available A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models. Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was found that the adsorption of strontium ions on these zwitterionic hybrid membranes fitted well with the Lagergren pseudo-second order model. Mechanism insights suggested that diffusion-chemisorption was one of the main adsorption mechanisms. Boyd equation exhibited that film-diffusion mechanism might be the control process during the starting period. These findings are very useful in strontium removal from the stimulated radioactive wastewater.
Kinetic modelling of the demineralization of shrimp exoskeleton using citric acid
Directory of Open Access Journals (Sweden)
Alewo Opuada AMEH
2014-11-01
Full Text Available Citric acid was used in the demineralization of shrimp exoskeleton and the kinetics of the demineralization process was studied. Kinetic data was obtained by demineralisation using five acid concentrations (0.1, 0.2, 0.3, 0.4 and 0.5M. The obtained kinetic data were fitted to the shrinking core model for fluid particle reactions. The concentration of calcium was found to decrease with time. For all acid concentrations considered, the best predictive mechanism for the demineralization process was determined to be Ash Layer Diffusion Control Mechanism. This was indicated by the high R2 values obtained (0.965 with 150% excess of citric acid.
Kinetic modelling and mechanism of dye adsorption on unburned carbon
Energy Technology Data Exchange (ETDEWEB)
Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering
2007-07-01
Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.
Modeling gas kinetic effects in drop collision and impact
Chubynsky, Mykyta V.; Belousov, Kirill I.; Lockerby, Duncan A.; Sprittles, James E.
2017-11-01
When liquid drops collide with each other (collision) or with a solid surface (impact), the thickness of the intervening gas film (which, in particular, gives rise to bouncing off wettable surfaces) is often comparable to the mean free path of the gas molecules and thus gas kinetic effects are significant. We study drop collision and impact computationally using an interface-tracking finite element approach. The gas film is treated in the lubrication approximation. Gas kinetic effects are taken into account by introducing factors (functions of the Knudsen number) modifying the gas flow rate and shear stress. Our results for drop collision are in excellent agreement with those of Li who modeled the gas using the full Navier-Stokes equations with an effective viscosity. For impact, where Li's approach cannot be used, we obtain good agreement with drop bouncing experiments. We acknowledge the support of the Leverhulme Trust and the EPSRC (EP/N016602/1).
Ordering kinetics in model systems with inhibited interfacial adsorption
DEFF Research Database (Denmark)
Willart, J.-F.; Mouritsen, Ole G.; Naudts, J.
1992-01-01
. The results are related to experimental work on ordering processes in orientational glasses. It is suggested that the experimental observation of very slow ordering kinetics in, e.g., glassy crystals of cyanoadamantane may be a consequence of low-temperature activated processes which ultimately lead......The ordering kinetics in two-dimensional Ising-like spin moels with inhibited interfacial adsorption are studied by computer-simulation calculations. The inhibited interfacial adsorption is modeled by a particular interfacial adsorption condition on the structure of the domain wall between......, of the algebraic growth law, R(t)∼Atn, whereas the growth exponent, n, remains close to the value n=1/2 predicted by the classical Lifshitz-Allen-Cahn growth law for systems with nonconserved order parameter. At very low temperatures there is, however, an effective crossover to a much slower algebraic growth...
Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts
Atanda, Luqman
2011-07-01
Kinetics of ethylbenzene dehydrogenation to styrene was investigated over a series of quaternary mixed oxides of Mg3Fe0.25Me0.25Al0.5 (Me=Co, Mn and Ni) catalysts prepared by calcination of hydrotalcite-like compounds and compared with commercial catalyst. The study was carried out in the absence of steam using a riser simulator at 400, 450, 500 and 550°C for reaction times of 5, 10, 15 and 20s. Mg3Fe0.25Mn0.25Al0.5 afforded the highest ethylbenzene conversion of 19.7% at 550°C. Kinetic parameters for the dehydrogenation process were determined using the catalyst deactivation function based on reactant conversion model. The apparent activation energies for styrene production were found to decrease as follows: E1-Ni>E1-Co>E1-Mn. © 2011 Elsevier B.V.
Modelling the supercritical CO2 extraction kinetics of soybean oil
Directory of Open Access Journals (Sweden)
Sandra Svilović
2015-01-01
Full Text Available Different empirical models were used to describe the supercritical CO2 extraction of soybean oil obtained at series of operational parameters namely pressure, temperature, solvent flow rate and characteristic particle size. Process yields obtained by supercritical CO2 were up to 19.33%. Several kinetic models: Brunner, Kandiah and Spiro, Tan and Liou, Martinez et al. and Esquivel et al. were used to test the experimental yield data. All models were analysed using nonlinear regression method. Also a new model, modified Esquivel et al., was proposed and analysed using nonlinear regression method as well. According to the obtained results for extraction yield of soybean oil, the modified Esquivel et al. model show the best agreement between experimental and model calculated data.
An enhanced Brinson model with modified kinetics for martensite transformation
Energy Technology Data Exchange (ETDEWEB)
Kim, Young-Jin; Lee, Jung Ju [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Ju-Won [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Lim, Jae Hyuk [Chonbuk National University, Jeonju (Korea, Republic of)
2017-03-15
We propose an enhanced Brinson model with modified kinetics for martensite transformation. Two additional material constants are considered to follow the stress-temperature diagram above austenite start temperature (As) along with treatment to keep the continuity of the martensite volume fraction and the path dependency of the phase transformation. To demonstrate the performance of the proposed model, we implement this algorithm into ABAQUS user subroutine, then conduct several numerical simulations and compare their results with SMA wire experiments as well as those of three-dimensional SMA constitutive models. From the results, it turns out that the proposed model is as accurate as the three-dimensional models and shows better accuracy over original Brinson model in terms of recovery stress.
Kinetic Model For Triglyceride Hydrolysis Using Lipase:Review
Directory of Open Access Journals (Sweden)
Heri Hermansyah
2010-10-01
Full Text Available Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food and cosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor for utilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil and water, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that the hydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between the interfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reaction mechanism should be considered in the model.
Small velocity and finite temperature variations in kinetic relaxation models
Markowich, Peter
2010-01-01
A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
NLTE atomic kinetics modeling in ICF target simulations
Patel, Mehul V.; Mauche, Christopher W.; Scott, Howard A.; Jones, Ogden S.; Shields, Benjamin T.
2017-10-01
Radiation hydrodynamics (HYDRA) simulations using recently developed 1D spherical and 2D cylindrical hohlraum models have enabled a reassessment of the accuracy of energetics modeling across a range of NIF target configurations. Higher-resolution hohlraum calculations generally find that the X-ray drive discrepancies are greater than previously reported. We identify important physics sensitivities in the modeling of the NLTE wall plasma and highlight sensitivity variations between different hohlraum configurations (e.g. hohlraum gas fill). Additionally, 1D capsule only simulations show the importance of applying a similar level of rigor to NLTE capsule ablator modeling. Taken together, these results show how improved target performance predictions can be achieved by performing inline atomic kinetics using more complete models for the underlying atomic structure and transitions. Prepared by LLNL under Contract DE-AC52-07NA27344.
Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling
Directory of Open Access Journals (Sweden)
A. S. Almeida
2008-06-01
Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.
Kinetic modelling of cadmium and lead removal by aquatic mosses
Directory of Open Access Journals (Sweden)
R. J. E. Martins
2014-03-01
Full Text Available Because biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In the present study, the performance of the aquatic moss Fontinalis antipyretica for removing cadmium and lead from simulated wastewaters has been evaluated. Five kinetic models (first-order, pseudo-first-order, Elovich, modified Ritchie second-order and pseudo-second-order were fitted to the experimental data and compared. Previously, the effect of parameters such as the initial solution pH, contact time, and initial metal ion concentration on biosorption was investigated. The initial pH of the solution was found to have an optimum value in the range of 4.0-6.0. The equilibrium sorption capacity of cadmium and lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L-1, the uptake capacity of the moss, at equilibrium, is the same for both metals (4.8 mg g-1. Nevertheless, when the initial concentration increases up to 100 mg L-1, the uptake of Pb(II was higher than 78%. The pseudo-second order biosorption kinetics provided the better correlation with the experimental data (R² ≥ 0.999.
Experimental kinetic study and modeling of calcium oxide carbonation
International Nuclear Information System (INIS)
Rouchon, L.
2012-01-01
Anthropogenic carbon dioxide (CO 2 ) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO 2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO 2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO 2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO 2 , so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO 2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO 2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO 3 which causes a change in the
Baldo, Marcello; Grassi, Antonio; Raudino, Antonio
1990-10-01
In this paper we extend a previous model [M. Baldo, A. Grassi, and A. Raudino, J. Chem. Phys. 91, 4658 (1989)] describing the orientational effects in diffusion-controlled enzyme (or membrane surface) reactions. The present generalization takes into account the reactants internal motions involving the interconversion between configurational states, one of them being much more reactive than the others. The problem leads to a system of rotational-translational diffusion equations (RT-DEs) coupled through the interconversion reactions between the conformers. For sake of simplicity, we have restricted the analysis to the case of only two conformational states. The steady-state RT-DE with the proper boundary conditions has been solved by an exact analytical procedure, leading to a set of linear algebraic equations which have been numerically solved. The model allows one to calculate the kinetic constants of the enzyme reactions as a function of available experimental parameters, such as the rotational and translational diffusion coefficients, the reactant's orientational constraints and the rates of interconversion between its different conformations. The numerical results show a monotonous but very nonlinear increasing of the enzyme kinetic constant on raising either the rotational diffusion constant or the interconversion rate between the P+ and P- reactant's conformations. Well-defined regions where the influence of the above parameters on the enzyme kinetics reaches a maximum have been identified.
On the Neutron Kinetics and Control of Accelerator-Driven Systems
International Nuclear Information System (INIS)
Cacuci, D.G.
2004-01-01
This work addresses fundamental aspects of the time- and space-dependent behavior of an Accelerator-Driven Subcritical Core System (ADS) and presents a paradigm ADS neutron kinetics model that is solved exactly. Thus, this paradigm model can serve for benchmarking two- and/or three-dimensional computational tools. Furthermore, this work also proposes a global optimal control theory framework for the operation and control of an ADS. This framework encompasses conceptually the time- and space-dependent behavior of the ADS coupled neutron kinetics/thermal-hydraulic balance equations and aims at the optimal control of ADS operational objectives, which would include minimization of local flux disturbances, load and source following, etc. Importantly, this new conceptual framework makes no use of a 'fictitious ADS steady state' and yields the correct and complete (i.e., including sources) adjoint equations, without leaving any room for ambiguities. Thus, this new conceptual framework provides a natural basis for developing new computational methods and corresponding verification experiments specifically tailored for the control and operation of ADS
Modeling of subtle kinetic processes in plasma simulation
International Nuclear Information System (INIS)
Sydora, R.D.; Decyk, V.K.; Dawson, J.M.
1988-01-01
A new diagnostic method for plasma simulation models is presented which enables one to probe the subtle dielectric properties of the plasma medium. The procedure involves the removal of the background plasma response in order to isolate the effects of small perturbing influences which are externally added. We have found the technique accurately describes fundamental kinetic plasma behavior such as the shielding of individual test charges and currents. Wave emission studies and drag of test particles has been carried out in explicit particle algorithms as well as large time step implicit and gyrokinetic models. Accurate plasma behavior is produced and it is possible to investigate in detail, processes which can be compared with plasma kinetic theory. The technique of subtraction is not only limited to particle simulation models but also can be used in MHD or fluid models where resolution is difficult due to the intensity of the background response relative to the phenomena one is interested in measuring, such as a weakly grouwing instability or nonlinear mode coupling effect. (author)
International Nuclear Information System (INIS)
Bollon, Julien
2012-01-01
Anaerobic digestion is a biological process that converts organic matter into a methane rich gas (biogas). Among industrial technologies, dry processes (above 15 % total solid content) are more and more used because of their advantages in comparison with conventional wet processes. However, dry anaerobic digestion processes are poorly known and studied because of the 'pasty' nature of digestion media (rheological behavior, equilibria, transfers, biological kinetics). This thesis focuses on two major aspects: i) the nature of the chemical equilibria (sorption, diffusion) involved in digestion media, ii) the establishment and application of a kinetic model adapted to dry media. We first demonstrated that the diffusional mass transfer is highly reduced with increasing total solid without any agitation. One of the consequences is the importance of the liquid-gas transfer for the production of biogas. Then, we have developed a dedicated kinetic model that enables to understand the variability of the kinetic with total solid content. The impacts of this work are both at the laboratory scale, especially for the operation of Specific Methanogenic Activity tests, and at industrial scale, with the need to control total solid content for optimal efficiency, and to adapt the agitation to improve degradation yields. The developed model can be useful for the design and operation of bio-methanization facilities. (author) [fr
Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi
2017-09-19
Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.
A generic 3D kinetic model of gene expression
Zhdanov, Vladimir P.
2012-04-01
Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.
Kinetic Ising model for desorption from a chain
Geldart, D. J. W.; Kreuzer, H. J.; Rys, Franz S.
1986-10-01
Adsorption along a linear chain of adsorption sites is considered in an Ising model with nearest neighbor interactions. The kinetics are studied in a master equation approach with transition probabilities describing single spin flips to mimic adsorption-desorption processes. Exchange of two spins to account for diffusion can be included as well. Numerical results show that desorption is frequently of fractional (including zero) order. Only at low coverage and high temperature is desorption a first order process. Finite size effects and readsorption are also studied.
Maulidah, Rifa'atul; Purqon, Acep
2016-08-01
Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.
Molecular mechanisms of protein aggregation from global fitting of kinetic models.
Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J
2016-02-01
The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and
Reduced Models in Chemical Kinetics via Nonlinear Data-Mining
Directory of Open Access Journals (Sweden)
Eliodoro Chiavazzo
2014-01-01
Full Text Available The adoption of detailed mechanisms for chemical kinetics often poses two types of severe challenges: First, the number of degrees of freedom is large; and second, the dynamics is characterized by widely disparate time scales. As a result, reactive flow solvers with detailed chemistry often become intractable even for large clusters of CPUs, especially when dealing with direct numerical simulation (DNS of turbulent combustion problems. This has motivated the development of several techniques for reducing the complexity of such kinetics models, where, eventually, only a few variables are considered in the development of the simplified model. Unfortunately, no generally applicable a priori recipe for selecting suitable parameterizations of the reduced model is available, and the choice of slow variables often relies upon intuition and experience. We present an automated approach to this task, consisting of three main steps. First, the low dimensional manifold of slow motions is (approximately sampled by brief simulations of the detailed model, starting from a rich enough ensemble of admissible initial conditions. Second, a global parametrization of the manifold is obtained through the Diffusion Map (DMAP approach, which has recently emerged as a powerful tool in data analysis/machine learning. Finally, a simplified model is constructed and solved on the fly in terms of the above reduced (slow variables. Clearly, closing this latter model requires nontrivial interpolation calculations, enabling restriction (mapping from the full ambient space to the reduced one and lifting (mapping from the reduced space to the ambient one. This is a key step in our approach, and a variety of interpolation schemes are reported and compared. The scope of the proposed procedure is presented and discussed by means of an illustrative combustion example.
Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering
International Nuclear Information System (INIS)
Chan, W.L.; Chason, Eric
2007-01-01
When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement
Rotational and divergent kinetic energy in the mesoscale model ALADIN
Directory of Open Access Journals (Sweden)
V. Blažica
2013-03-01
Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.
Directory of Open Access Journals (Sweden)
C. F. Musil
1984-12-01
Full Text Available The kinetics of N- and P- limited growth of Eichhornia crassipes (Mart . Solms were investigated in greenhouse culture with the object of developing a model for predicting population sizes, yields, growth rates and frequencies and amounts of harvest, under varying conditions of nutrient loading and climate, to control both nutrient inputs and excessive growth in eutrophied aquatic systems. The kinetic coefficients, maximum specific growth rate (Umax, half saturation coefficient (Ks and yield coefficient (Yc were measured under N and P limitation in replicated batch culture experiments. Umax values and Ks concentrations derived under N limitation ranged from 5,37 to 8,86% d + and from 400 to 1 506 µg N ℓ1respectively. Those derived under P limitation ranged from 4,51 to 10,89% d 1 and from 41 to 162 fig P ℓ1 respectively. Yc values (fresh mass basis determined ranged from 1 660 to 1 981 (87 to 98 dry mass basis for N and from 16 431 to 18 671 (867 to 980 dry mass basis for P. The reciprocals of Yc values (dry mass basis, expressed as percentages, adequately estimated the minimum limiting concentrations of N and P {% dry mass in the plant tissues. Kinetic coefficients determined are compared with those reported for algae. The experimental method used and results obtained are critically assessed.
Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.
Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub
2012-02-14
Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.
Neilson, James R.
2011-12-01
A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition
Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.
Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank
2017-01-01
Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .
Incremental parameter estimation of kinetic metabolic network models
Directory of Open Access Journals (Sweden)
Jia Gengjie
2012-11-01
Full Text Available Abstract Background An efficient and reliable parameter estimation method is essential for the creation of biological models using ordinary differential equation (ODE. Most of the existing estimation methods involve finding the global minimum of data fitting residuals over the entire parameter space simultaneously. Unfortunately, the associated computational requirement often becomes prohibitively high due to the large number of parameters and the lack of complete parameter identifiability (i.e. not all parameters can be uniquely identified. Results In this work, an incremental approach was applied to the parameter estimation of ODE models from concentration time profiles. Particularly, the method was developed to address a commonly encountered circumstance in the modeling of metabolic networks, where the number of metabolic fluxes (reaction rates exceeds that of metabolites (chemical species. Here, the minimization of model residuals was performed over a subset of the parameter space that is associated with the degrees of freedom in the dynamic flux estimation from the concentration time-slopes. The efficacy of this method was demonstrated using two generalized mass action (GMA models, where the method significantly outperformed single-step estimations. In addition, an extension of the estimation method to handle missing data is also presented. Conclusions The proposed incremental estimation method is able to tackle the issue on the lack of complete parameter identifiability and to significantly reduce the computational efforts in estimating model parameters, which will facilitate kinetic modeling of genome-scale cellular metabolism in the future.
Directory of Open Access Journals (Sweden)
Suman Jangra
2016-09-01
Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.
Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas
Directory of Open Access Journals (Sweden)
Roberto Celiberto
2017-05-01
Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.
Pyrolysis Kinetic Modelling of Wheat Straw from the Pannonian Region
Directory of Open Access Journals (Sweden)
Ivan Pešenjanski
2016-01-01
Full Text Available The pyrolysis/devolatilization is a basic step of thermochemical processes and requires fundamental characterization. In this paper, the kinetic model of pyrolysis is specified as a one-step global reaction. This type of reaction is used to describe the thermal degradation of wheat straw samples by measuring rates of mass loss of solid matter at a linear increase in temperature. The mentioned experiments were carried out using a derivatograph in an open-air environment. The influence of different factors was investigated, such as particle size, humidity levels, and the heating rate in the kinetics of devolatilization. As the measured values of mass loss and temperature functions transform in Arrhenius coordinates, the results are shown in the form of saddle curves. Such characteristics cannot be approximated with one equation in the form of Arrhenius law. For use in numerical applications, transformed functions can be approximated by linear regression for three separate intervals. Analysis of measurement resulting in granulation and moisture content variations shows that these factors have no significant influence. Tests of heating rate variations confirm the significance of this impact, especially in warmer regions. The influence of this factor should be more precisely investigated as a general variable, which should be the topic of further experiments.
Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.
Cai, Yongbing; Li, Lulu; Zhang, Hua
2015-11-01
Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers. Copyright © 2015. Published by Elsevier Ltd.
Automated workflows for modelling chemical fate, kinetics and toxicity.
Sala Benito, J V; Paini, Alicia; Richarz, Andrea-Nicole; Meinl, Thorsten; Berthold, Michael R; Cronin, Mark T D; Worth, Andrew P
2017-12-01
Automation is universal in today's society, from operating equipment such as machinery, in factory processes, to self-parking automobile systems. While these examples show the efficiency and effectiveness of automated mechanical processes, automated procedures that support the chemical risk assessment process are still in their infancy. Future human safety assessments will rely increasingly on the use of automated models, such as physiologically based kinetic (PBK) and dynamic models and the virtual cell based assay (VCBA). These biologically-based models will be coupled with chemistry-based prediction models that also automate the generation of key input parameters such as physicochemical properties. The development of automated software tools is an important step in harmonising and expediting the chemical safety assessment process. In this study, we illustrate how the KNIME Analytics Platform can be used to provide a user-friendly graphical interface for these biokinetic models, such as PBK models and VCBA, which simulates the fate of chemicals in vivo within the body and in vitro test systems respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modeling Adsorption Kinetics of Magnesium and Phosphate Ions on Goethite by Empirical Equations
Directory of Open Access Journals (Sweden)
Malihe Talebi Atouei
2017-06-01
Full Text Available Introduction: Natural environments, including soils and sediments, are open and complex systems in which physico-chemical reactions are in semi equilibrium state. In these systems, bioavailability of plant nutrients, like phosphate, is influenced by environmental conditions and concentrations of other ions such as calcium and magnesium. Magnesium is a dominant cation in irrigation water and in the soil solution of calcareous soils. Recent evidences show relative increase in the concentration of magnesium in irrigation water. Because of the importance of chemical kinetics in controlling concentrations of these ions in the soil solution and for understanding their effects of adsorption kinetics of magnesium and phosphate ions, in this research, adsorption kinetics of these two ions on goethite is investigated as function of time and pH in single ion and binary ion systems. The experimental data are described by using the adsorption kinetics equations. These data are of the great importance in better understanding adsorption interactions and ion adsorption mechanism.With respect to the importance of these interactions from both economical and environmental point of view, in this research, the kinetics and thermodynamics of phosphate and Mg2adsorption interactions were investigated as function of pH on soil model mineral goethite in both single and binary ion systems. Materials and Methods: Kinetics experiments were performed in the presence of 0.2 mM magnesium and 0.4 mM phosphate in 0.1 M NaCl background solution and 3 g L-1 goethite concentration as function of pH and time (1, 5, 14, 24, 48. 72 and 168 h in single ion and binary ion systems. After reaction time, the suspensions were centrifuged and a sample of supernatant was taken for measuring ions equilibrium concentrations.Phosphate concentration was measured calorimetrically with the ammonium molybdate blue method by spectrophotometer (Jenway-6505 UV/Vis. Magnesium concentration was
Ramaniuk, O; Černý, M; Krásný, L; Vohradský, J
2017-08-01
This study describes the meta-analysis and kinetic modelling of gene expression control by sigma factor SigA of Bacillus subtilis during germination and outgrowth based on microarray data from 14 time points. The analysis computationally models the direct interaction among SigA, SigA-controlled sigma factor genes (sigM, sigH, sigD, sigX), and their target genes. Of the >800 known genes in the SigA regulon, as extracted from databases, 311 genes were analysed, and 190 were confirmed by the kinetic model as being controlled by SigA. For the remaining genes, alternative regulators satisfying kinetic constraints were suggested. The kinetic analysis suggested another 214 genes as potential SigA targets. The modelling was able to (i) create a particular SigA-controlled gene expression network that is active under the conditions for which the expression time series was obtained, and where SigA is the dominant regulator, (ii) suggest new potential SigA target genes, and (iii) find other possible regulators of a given gene or suggest a new mechanism of its control by identifying a matching profile of unknown regulator(s). Selected predicted regulatory interactions were experimentally tested, thus validating the model. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA
2017-01-01
Kinetically controlled synthesis of AuPt_{x}bi-metallic hydrogels/aerogels was efficiently achieved for the first time
Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling.
Wang, Aijie; Liu, Chunshuang; Ren, Nanqi; Han, Hongjun; Lee, Duujong
2010-06-15
Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S(0)), N(2), and CO(2), or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.51000 mg/L influent sulfide, however, the DSR system will break down. Copyright 2010 Elsevier B.V. All rights reserved.
Wide Temperature Range Kinetics of Elementary Combustion Reactions for Army Models
National Research Council Canada - National Science Library
Fontijn, Arthur
2002-01-01
The goals of this program are to provide accurate kinetic data on isolated elementary reactions at temperatures relevant to Army combustion models, particularly for propellant combustion dark zones...
Apolipoprotein B metabolism: tracer kinetics, models, and metabolic studies.
Burnett, John R; Barrett, P Hugh R
2002-04-01
The study of apolipoprotein (apo) B metabolism is central to our understanding of lipoprotein metabolism. However, the assembly and secretion of apoB-containing lipoproteins is a complex process. Specialized techniques, developed and applied to in vitro and in vivo studies of apoB metabolism, have provided insights into the mechanisms involved in the regulation of this process. Moreover, these studies have important implications for understanding both the pathophysiology as well as the therapeutic options for the dyslipidemias. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the applications of kinetic analysis and multicompartmental modeling to the study of apoB metabolism. New developments and significant advances over the last decade are discussed.
An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion
Energy Technology Data Exchange (ETDEWEB)
Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T
2010-02-19
Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Testing a dissipative kinetic k-essence model
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Victor H.; Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Santiago (Chile)
2015-04-01
In thiswork,we present a study of a purely kinetic k-essence model, characterized basically by a parameter α in presence of a bulk dissipative term, whose relationship between viscous pressure Π and energy density ρ of the background follows a polytropic type law, Π ∝ ρ{sup λ+1/2}, where λ, in principle, is a parameter without restrictions. Analytical solutions for the energy density of the k-essence field are found in two specific cases: λ = 1/2 and λ = (1 - α)/2α, and then we show that these solutions possess the same functional form as the non-viscous counterpart. Finally, both approaches are contrasted with observational data from type Ia supernova, and the most recent Hubble parameter measurements, and therefore, the best values for the parameters of the theory are found. (orig.)
Formulation and kinetic modeling of curcumin loaded intranasal mucoadhesive microemulsion
Directory of Open Access Journals (Sweden)
B Mikesh Patel
2012-01-01
Full Text Available It is a challenge to develop the optimum dosage form of poorly water-soluble drugs and to target them due to limited bioavailability, intra and inter subject variability. In this investigation, mucoadhesive microemulsion of curcumin was developed by water titration method taking biocompatible components for intranasal delivery and was characterized. Nasal ciliotoxicity studies were carried out using excised sheep nasal mucosa. in vitro release studies of formulations and PDS were performed. Labrafil M 1944 CS based microemulsion was transparent, stable and nasal non-ciliotoxic having particle size 12.32±0.81nm (PdI=0.223 and from kinetic modeling, the release was found to be Fickian diffusion for mucoadhesive microemulsion.
Kinetically controlled E-selective catalytic olefin metathesis.
Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H
2016-04-29
A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. Copyright © 2016, American Association for the Advancement of Science.
Orestes Kinetics Model for the Electra KrF Laser
Giuliani, J. L.; Kepple, P.; Lehmberg, R. H.; Myers, M. C.; Sethian, J. D.; Petrov, G.; Wolford, M.; Hegeler, F.
2003-10-01
Orestes is a first principles simulation code for the electron deposition, plasma chemistry, laser transport, and amplified spontaneous emission (ASE) in an e-beam pumped KrF laser. Orestes has been benchmarked against results from Nike at NRL and the Keio laser facility. The modeling tasks are to support ongoing oscillator experiments on the Electra laser ( 500 J), to predict performance of Electra as an amplifier, and to develop scaling relations for larger systems such as envisioned for an inertial fusion energy power plant. In Orestes the energy deposition of the primary beam electrons is assumed to be spatially uniform, but the excitation and ionization of the Ar/Kr/F2 target gas by the secondary electrons is determined from the energy distribution function as calculated by a Boltzmann code. The subsequent plasma kinetics of 23 species subject to over 100 reactions is followed with 1-D spatial resolution along the lasing axis. In addition, the vibrational relaxation among excited electronic states of the KrF molecule are included in the kinetics since lasing at 248 nm can occur from several vibrational lines of the B state. Transport of the lasing photons is solved by the method of characteristics. The time dependent ASE is calculated in 3-D using a ``local look-back'' scheme with discrete ordinates and includes specular reflection off the side walls and rear mirror. Gain narrowing is treated by multi-frequency transport of the ASE. Calculations for the gain, saturation intensity, extraction efficiency, and laser output from the Orestes model will be presented and compared with available data from Electra operated as an oscillator. Potential implications for the difference in optimal F2 concentration will be discussed along with the effects of window transmissivity at 248 nm.
Directory of Open Access Journals (Sweden)
Alina Żogała
2014-01-01
Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.
DEFF Research Database (Denmark)
Chen, B. H.; Micheletti, M.; Baganz, F.
2009-01-01
Reliable models of enzyme kinetics are required for the effective design of bioconversion processes. Kinetic expressions of the enzyme-catalysed reaction rate however, are frequently complex and establishing accurate values of kinetic parameters normally requires a large number of experiments. Th...
Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.
Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer
2017-07-01
Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis
2013-11-01
In this study a complementary modeling and experimental approach was used to explore how growth controls the NADPH generation and availability, and the resulting impact on PHB (polyhydroxybutyrate) yields and kinetics. The results show that the anabolic demand allowed the NADPH production through the Entner-Doudoroff (ED) pathway, leading to a high maximal theoretical PHB production yield of 0.89 C mole C mole(-1); whereas without biomass production, NADPH regeneration is only possible via the isocitrate dehydrogenase leading to a theoretical yield of 0.67 C mole C mole(-1). Furthermore, the maximum specific rate of NADPH produced at maximal growth rate (to fulfil biomass requirement) was found to be the maximum set in every conditions, which by consequence determines the maximal PHB production rate. These results imply that sustaining a controlled residual growth improves the PHB specific production rate without altering production yield. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nitrogen and Phosphorus Biomass-Kinetic Model for Chlorella vulgaris in a Biofuel Production Scheme
2010-03-01
NITROGEN AND PHOSPHORUS BIOMASS-KINETIC MODEL FOR CHLORELLA VULGARIS IN A BIOFUEL PRODUCTION SCHEME THESIS William M. Rowley, Major...States Government. AFIT/GES/ENV/10-M04 NITROGEN AND PHOSPHORUS BIOMASS-KINETIC MODEL FOR CHLORELLA VULGARIS IN A BIOFUEL...MODEL FOR CHLORELLA VULGARIS IN A BIOFUEL PRODUCTION SCHEME William M. Rowley, BS Major, USMC Approved
Detailed kinetic modeling study of n-pentanol oxidation
Heufer, Karl Alexander
2012-10-18
To help overcome the world\\'s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.
Genome-scale Metabolic Reaction Modeling: a New Approach to Geomicrobial Kinetics
McKernan, S. E.; Shapiro, B.; Jin, Q.
2014-12-01
Geomicrobial rates, rates of microbial metabolism in natural environments, are a key parameter of theoretical and practical problems in geobiology and biogeochemistry. Both laboratory- and field-based approaches have been applied to study rates of geomicrobial processes. Laboratory-based approaches analyze geomicrobial kinetics by incubating environmental samples under controlled laboratory conditions. Field methods quantify geomicrobial rates by observing the progress of geomicrobial processes. To take advantage of recent development in biogeochemical modeling and genome-scale metabolic modeling, we suggest that geomicrobial rates can also be predicted by simulating metabolic reaction networks of microbes. To predict geomicrobial rates, we developed a genome-scale metabolic model that describes enzyme reaction networks of microbial metabolism, and simulated the network model by accounting for the kinetics and thermodynamics of enzyme reactions. The model is simulated numerically to solve cellular enzyme abundance and hence metabolic rates under the constraints of cellular physiology. The new modeling approach differs from flux balance analysis of system biology in that it accounts for the thermodynamics and kinetics of enzymatic reactions. It builds on subcellular metabolic reaction networks, and hence also differs from classical biogeochemical reaction modeling. We applied the new approach to Methanosarcina acetivorans, an anaerobic, marine methanogen capable of disproportionating acetate to carbon dioxide and methane. The input of the new model includes (1) enzyme reaction network of acetoclastic methanogenesis, and (2) representative geochemical conditions of freshwater sedimentary environments. The output of the simulation includes the proteomics, metabolomics, and energy and matter fluxes of M. acetivorans. Our simulation results demonstrate the predictive power of the new modeling approach. Specifically, the results illustrate how methanogenesis rates vary
Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.
Junicke, H; van Loosdrecht, M C M; Kleerebezem, R
2016-01-01
Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.
Directory of Open Access Journals (Sweden)
Tae-Yub Kwon
2014-01-01
Full Text Available Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control. The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P>0.05 or significantly larger (P<0.05 than that of the control resin and were related to the polymerization kinetics (P<0.05 rather than the PMMA bead size (P=0.335. Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins.
Application of Detailed Chemical Kinetics to Combustion Instability Modeling
2016-01-04
chemical kinetics of the methane oxidation. Two-dimensional results with global chemistry have shown significantly lower amplitudes than the ex...Conference Paper 3. DATES COVERED (From - To) 12 November 2015 – 04 January 2016 4. TITLE AND SUBTITLE Application of Detailed Chemical Kinetics to...under two different conditions corresponding to marginally stable and unstable operation in order to evaluate the performance of the chemical kinetics
Modeling the kinetics of the nitriding and nitrocarburizing of iron
DEFF Research Database (Denmark)
Somers, Marcel A. J.; Mittemeijer, Eric J.
1998-01-01
The growth kinetics of the iron-nitride compound layer during nitriding and nitrocarburizing of pure iron has been investigated for various temperatures and various combinations of imposed nitrogen and carbon activities. The results indicate that no local equilibrium occurs at the gas....../solid interface during nitriding/nitrocarburizing, due to the slow kinetics of ammonia dissociation, the development and subsequent desorption of molecular nitrogen gas at the surface and, for the case of nitrocarburizing, the fast initial carbon uptake. The kinetics of gaseous nitriding of pure iron can...... change with treatment time and the lack of accurate thermodynamic and kinetic data for Fe-N-C phases....
Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas.
Lizardo-Huerta, Juan-Carlos; Sirjean, Baptiste; Verdier, Laurent; Fournet, René; Glaude, Pierre-Alexandre
2017-05-04
The destruction of stockpiles or unexploded ammunitions of nitrogen mustard (tris(2-chloroethyl)amine, HN-3) requires the development of safe processes. The thermal destruction of this kind of compound is one of the most efficient method of destruction. Because of the high-level of toxicity of this chemical, there is a considerable lack of knowledge on the chemical kinetics at high temperatures. In this study, a detailed chemical kinetic model for the pyrolysis of nitrogen mustard gas is developed based on a large number of thermokinetic parameters calculated with theoretical chemistry. The thermal decomposition of HN-3 is shown to mainly proceed through stepwise dechlorination with Cl-atom being the principal chain carrier. The successive losses of chlorine atom mainly lead to unsaturated amines without chlorine groups. Theoretical calculations demonstrated that the thermal decomposition of these compounds ultimately lead to the formation of pyrrole, which can accumulate at low temperature. At higher temperatures, pyrrole yields HCN and acetylene. Simulations also predict that about 52% of the total flux of decomposition of HN-3 leads to the formation of N,N-diethenyl-2-chloroethylamine (P29), which acts as a chain branching agent because its unimolecular decomposition is preponderant and produces one chlorine and one hydrogen atoms. Comparisons with the simulated reactivity of sulfur mustard gas are also performed and show that HN-3 is more reactive that the former toxic. The higher number of chlorine atoms in HN-3 compared to sulfur mustard (3 vs 2) and the formation of the chain branching intermediate P29 during its decomposition explain this behavior.
Modelling and parallel calculation of a kinetic boundary layer
International Nuclear Information System (INIS)
Perlat, Jean Philippe
1998-01-01
This research thesis aims at addressing reliability and cost issues in the calculation by numeric simulation of flows in transition regime. The first step has been to reduce calculation cost and memory space for the Monte Carlo method which is known to provide performance and reliability for rarefied regimes. Vector and parallel computers allow this objective to be reached. Here, a MIMD (multiple instructions, multiple data) machine has been used which implements parallel calculation at different levels of parallelization. Parallelization procedures have been adapted, and results showed that parallelization by calculation domain decomposition was far more efficient. Due to reliability issue related to the statistic feature of Monte Carlo methods, a new deterministic model was necessary to simulate gas molecules in transition regime. New models and hyperbolic systems have therefore been studied. One is chosen which allows thermodynamic values (density, average velocity, temperature, deformation tensor, heat flow) present in Navier-Stokes equations to be determined, and the equations of evolution of thermodynamic values are described for the mono-atomic case. Numerical resolution of is reported. A kinetic scheme is developed which complies with the structure of all systems, and which naturally expresses boundary conditions. The validation of the obtained 14 moment-based model is performed on shock problems and on Couette flows [fr
Study on kinetic model of microwave thermocatalytic treatment of biomass tar model compound.
Anis, Samsudin; Zainal, Z A
2014-01-01
Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrostatics Control Actin Filament Nucleation and Elongation Kinetics*
Crevenna, Alvaro H.; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L.; Lamb, Don C.; Wedlich-Söldner, Roland
2013-01-01
The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468
Electrostatics control actin filament nucleation and elongation kinetics.
Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland
2013-04-26
The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.
Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
Lin, Jong-Chin; Yoon, Jeseong; Hyeon, Changbong; Thirumalai, D
2015-01-01
Riboswitches, RNA elements found in the untranslated region, regulate gene expression by binding to target metaboloites with exquisite specificity. Binding of metabolites to the conserved aptamer domain allosterically alters the conformation in the downstream expression platform. The fate of gene expression is determined by the changes in the downstream RNA sequence. As the metabolite-dependent cotranscriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate both the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolite. Single molecule force experiments that decipher the free energy landscape of riboswitches from their mechanical responses, theoretical and computational studies have recently shed light on the distinct mechanism of folding dynamics in different classes of riboswitches. Here, we first discuss the dynamics of water around riboswitch, highlighting that water dynamics can enhance the fluctuation of nucleic acid structure. To go beyond native state fluctuations, we used the Self-Organized Polymer model to predict the dynamics of add adenine riboswitch under mechanical forces. In addition to quantitatively predicting the folding landscape of add-riboswitch, our simulations also explain the difference in the dynamics between pbuE adenine- and add adenine-riboswitches. In order to probe the function in vivo, we use the folding landscape to propose a system level kinetic network model to quantitatively predict how gene expression is regulated for riboswitches that are under kinetic control. © 2015 Elsevier Inc. All rights reserved.
Satl model lesson in chemical kinetics | Nazir | African Journal of ...
African Journals Online (AJOL)
Studies in order to pursue kinetics and mechanism of chemical reactions are a vital component of chemical literature. SATL literature is still not available for promoting this vital aspect of chemistry teaching. A lesson pertaining to this important issue has been developed and various parameters of kinetic studies are ...
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Energy Technology Data Exchange (ETDEWEB)
Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)
2013-03-15
Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.
Energy Technology Data Exchange (ETDEWEB)
Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry
2017-08-29
Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.
Electron kinetics modeling in a weakly ionized gas
International Nuclear Information System (INIS)
Boeuf, Jean-Pierre
1985-01-01
This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr
A Kinetics Model for KrF Laser Amplifiers
Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.
1999-11-01
A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.
Thermal degradation kinetics of bixin in an aqueous model system.
Rios, Alessandro de O; Borsarelli, Claudio D; Mercadante, Adriana Z
2005-03-23
The kinetics of the thermal degradation of the natural cis carotenoid bixin in a water/ethanol (8:2) solution was studied as a function of temperature (70-125 degrees C), using high-performance liquid chromatography. The curves for the decay of bixin and formation of products (e.g., di-cis and all-trans isomers and a C17 degradation compound) did not adjust well to a first-order rate law, but very good fits were obtained using a biexponential model. This mathematical modeling gave the rate constant values for the formation of the primary products from bixin, and the energy barrier for each step was obtained. The di-cis isomers were formed immediately (15 kcal/mol) together with the decay of bixin, followed by a slow consumption, indicating their role as reaction intermediates. In fact, the di-cis isomers could easily revert to bixin (Ea approximately 3 kcal/mol) or yield the primary C17 degradation product, with an energy barrier of 6.5 kcal/mol. In turn, 24 kcal/mol was necessary for the Bix --> all-trans step, explaining its slower formation.
Kinetic modeling of water sorption by roasted and ground coffee
Directory of Open Access Journals (Sweden)
Fernanda Machado Baptestini
2017-05-01
Full Text Available The objective of this study was to model the kinetics of water sorption in roasted and ground coffee. Crude Arabica coffee beans with an initial moisture content of 0.1234 kgwkgdm-1 were used. These beans were roasted to a medium roast level (SCCA # 55 and ground at three particle sizes: coarse (1.19 mm, medium (0.84 mm and fine (0.59 mm. To obtain the water sorption isotherms and the isosteric heat, different conditions of temperature and relative humidity were analyzed using the dynamic method at 25ºC (0.50, 0.60, 0.70, and 0.80 of RH and 30°C (0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 of RH and using the static method at 25ºC (0.332 and 0.438 of RH. The GAB model best represented the hygroscopic equilibrium of roasted coffee at every particle size. Isosteric heat of sorption for the fine particle size increased with increments of equilibrium moisture content, indicating a strong bond energy between water molecules and the product components. The Gibbs free energy decreased with the increase in equilibrium moisture content and with temperature.
Challenges for the kinetic unified dark matter model
International Nuclear Information System (INIS)
Giannakis, Dimitrios; Hu, Wayne
2005-01-01
Given that the dark matter and dark energy in the Universe affect cosmological observables only gravitationally, their phenomenology may be described by a single stress-energy tensor. True unification however requires a theory that reproduces the successful phenomenology of ΛCDM and that requirement places specific constraints on the stress structure of the matter. We show that a recently proposed unification through an offset quadratic kinetic term for a scalar field is exactly equivalent to a fluid with a closed-form barotropic equation of state plus cosmological constant. The finite pressure at high densities introduces a cutoff in the linear power spectrum, which may alleviate the dark matter substructure problem; we provide a convenient fitting function for such studies. Given that sufficient power must remain to reionize the Universe, the equation of state today is nonrelativistic with p∝ρ 2 and a Jeans scale in the parsec regime for all relevant densities. Structure may then be evolved into the nonlinear regime with standard hydrodynamic techniques. In fact, the model is equivalent to the well-studied collisional dark matter with negligible mean free path. If recent observations of the triaxiality of dark matter halos and ram pressure stripping in galaxy clusters are confirmed, this model will be ruled out
Disposition of smoked cannabis with high [Delta]9-tetrahydrocannabinol content: A kinetic model.
Hunault, C.C.; van Eijkeren, J.C.; Mensinga, T.T.; de Vries, I.; Leenders, M.E.C.; Meulenbelt, J.
2010-01-01
Introduction No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC).Methods
A kinetic model for the glucose/glycine Maillard reaction pathways
Martins, S.I.F.S.; Boekel, van M.A.J.S.
2005-01-01
A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and
Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics
Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.
2012-12-01
Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.
Pannala, Venkat R; Camara, Amadou K S; Dash, Ranjan K
2016-11-01
Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O 2 to H 2 O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O 2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O 2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent K m of O 2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions. Copyright © 2016 the American Physiological Society.
Kinetic Control of Histidine-Tagged Protein Surface Density on Supported Lipid Bilayers
Energy Technology Data Exchange (ETDEWEB)
Nye, Jeffrey A. [Univ. of California, Berkeley, CA (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2008-02-28
Nickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. In this study, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t_{1/2} ≈ 6 min), whereas polyvalently bound species remain bound for hours (t_{1/2} ≈ 12 h). Evolution between surface states is slow, so equilibrium is unlikely to be reached on experimental timescales. However, by tuning incubation conditions, the populations of each species can be kinetically controlled, providing a wide range of protein densities on SLBs with a single concentration of chelator lipid. In conclusion, we propose guidelines for the assembly of SLB surfaces functionalized with specific protein densities and demonstrate their utility in the formation of hybrid immunological synapses.
Model Process Control Language
National Aeronautics and Space Administration — The MPC (Model Process Control) language enables the capture, communication and preservation of a simulation instance, with sufficient detail that it can be...
Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model
International Nuclear Information System (INIS)
Abdullah, I.
2015-01-01
In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)
Comparison of kinetic and fluid neutral models for attached and detached state
International Nuclear Information System (INIS)
Furubayashi, M.; Hoshino, K.; Toma, M.; Hatayama, A.; Coster, D.; Schneider, R.; Bonnin, X.; Kawashima, H.; Asakura, N.; Suzuki, Y.
2009-01-01
Neutral behavior has an important role in the transport simulations of the edge plasma. Most of the edge plasma transport codes treat neutral particles by a simple fluid model or a kinetic model. The fluid model allows faster calculations. However, the applicability of the fluid model is limited. In this study, simulation results of JT-60U from kinetic neutral model and fluid neutral model are compared under the attached and detached state, using the 2D edge plasma code package, SOLPS5.0. In the SOL region, no significant differences are observed in the upstream plasma profiles between kinetic and fluid neutral models. However, in the divertor region, large differences are observed in plasma and neutral profiles. Therefore, further optimization of the fluid neutral model should be performed. Otherwise kinetic neutral model should be used to analyze the divertor region.
A kinetic model for runaway electrons in the ionosphere
Directory of Open Access Journals (Sweden)
G. Garcia
2006-09-01
Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.
A kinetic model for runaway electrons in the ionosphere
Directory of Open Access Journals (Sweden)
G. Garcia
2006-09-01
Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m^{2}. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.
[Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].
Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan
2015-05-01
The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.
Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces.
Aulin, Christian; Shchukarev, Andrei; Lindqvist, Josefina; Malmström, Eva; Wågberg, Lars; Lindström, Tom
2008-01-15
The wetting of two different model cellulose surfaces has been studied; a regenerated cellulose (RG) surface prepared by spin-coating, and a novel multilayer film of poly(ethyleneimine) and a carboxymethylated microfibrillated cellulose (MFC). The cellulose films were characterized in detail using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM indicates smooth and continuous films on a nanometer scale and the RMS roughness of the RG cellulose and MFC surfaces was determined to be 3 and 6 nm, respectively. The cellulose films were modified by coating with various amounts of an anionic fluorosurfactant, perfluorooctadecanoic acid, or covalently modified with pentadecafluorooctanyl chloride. The fluorinated cellulose films were used to follow the spreading mechanisms of three different oil mixtures. The viscosity and surface tension of the oils were found to be essential parameters governing the spreading kinetics on these surfaces. XPS and dispersive surface energy measurements were made on the cellulose films coated with perfluorooctadecanoic acid. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the contact angle of castor oil on the surface. A dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (theta e>90 degrees ) by castor oil.
Kinetic modeling of formic acid pulping of bagasse.
Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A
2008-05-14
Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.
Kinetics of neptunium(V) sorption and desorption on goethite: An experimental and modeling study
Tinnacher, Ruth M.; Zavarin, Mavrik; Powell, Brian A.; Kersting, Annie B.
2011-11-01
Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad)sorption and desorption behavior and lead to apparent sorption 'asymmetry'. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad)sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter ψ, which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and
International Nuclear Information System (INIS)
Carrette, F.; Guinard, L.; Pieraggi, B.
2002-01-01
The radioactivity in the primary circuit arises mainly from the activation of corrosion products in the core of pressurised water reactors; corrosion products dissolve from the oxide scales developed on steam generator tubes of alloy 690. The controlling and modelling of this process require a detailed knowledge of the microstructure and chemical composition of oxide scales as well as the kinetics of their corrosion and dissolution. Alloy 690 was studied as tubes and sheets, with three various surface states (as-received, cold-worked, electropolished). Corrosion tests were performed at 325 C and 155 bar in primary water conditions (B/Li - 1000/2 ppm, [H 2 ] 30 cm 3 .kg -1 TPN, [O 2 ] < 5 ppb); test durations ranged between 24 and 2160 hours. Corrosion tests in the TITANE loop provided mainly corrosion and oxidation kinetics, and tests in the BOREAL loop yielded release kinetics. This study revealed asymptotic type kinetics. Characterisation of the oxide scales grown in representative conditions of the primary circuit was performed by several techniques (SEM, TEM, SIMS, XPS, GIXRD). These analyses revealed the essential role of the fine grained cold-worked scale present on as-received and cold-worked materials. This scale controls the corrosion and release phenomena. The kinetic study and the characterisation of the oxide scales contributed to the modelling of the corrosion/release process. A growth/dissolution model was proposed for corrosion product scales grown in non-saturated dynamic fluid. This model provided the temporal evolution of oxide scales and release kinetics for different species (Fe, Ni, Cr). The model was validated for several surface states and several alloys. (authors)
Elimination kinetic model for organic chemicals in earthworms.
Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.
2010-01-01
Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of
Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.
Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela
2016-12-01
In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Constructing kinetic models of metabolism at genome-scales: A review.
Srinivasan, Shyam; Cluett, William R; Mahadevan, Radhakrishnan
2015-09-01
Constraint-based modeling of biological networks (metabolism, transcription and signal transduction), although used successfully in many applications, suffer from specific limitations such as the lack of representation of metabolite concentrations and enzymatic regulation, which are necessary for a complete physiologically relevant model. Kinetic models conversely overcome these shortcomings and enable dynamic analysis of biological systems for enhanced in silico hypothesis generation. Nonetheless, kinetic models also have limitations for modeling at genome-scales chiefly due to: (i) model non-linearity; (ii) computational tractability; (iii) parameter identifiability; (iv) estimability; and (v) uncertainty. In order to support further development of kinetic models as viable alternatives to constraint-based models, this review presents a brief description of the existing obstacles towards building genome-scale kinetic models. Specific kinetic modeling frameworks capable of overcoming these obstacles are covered in this review. The tractability and physiological feasibility of these models are discussed with the objective of using available in vivo experimental observations to define the model parameter space. Among the different methods discussed, Monte Carlo kinetic models of metabolism stand out as potentially tractable methods to model genome scale networks while also addressing in vivo parameter uncertainty. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pas, N.C.A. van de; Woutersen, R.A.; Ommen, B. van; Rietjens, I.M.C.M.; Graaf, A.A. de
2012-01-01
Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was
DEFF Research Database (Denmark)
Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte
2013-01-01
Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...
Study and discretization of kinetic models and fluid models at low Mach number
International Nuclear Information System (INIS)
Dellacherie, Stephane
2011-01-01
This thesis summarizes our work between 1995 and 2010. It concerns the analysis and the discretization of Fokker-Planck or semi-classical Boltzmann kinetic models and of Euler or Navier-Stokes fluid models at low Mach number. The studied Fokker-Planck equation models the collisions between ions and electrons in a hot plasma, and is here applied to the inertial confinement fusion. The studied semi-classical Boltzmann equations are of two types. The first one models the thermonuclear reaction between a deuterium ion and a tritium ion producing an α particle and a neutron particle, and is also in our case used to describe inertial confinement fusion. The second one (known as the Wang-Chang and Uhlenbeck equations) models the transitions between electronic quantified energy levels of uranium and iron atoms in the AVLIS isotopic separation process. The basic properties of these two Boltzmann equations are studied, and, for the Wang-Chang and Uhlenbeck equations, a kinetic-fluid coupling algorithm is proposed. This kinetic-fluid coupling algorithm incited us to study the relaxation concept for gas and immiscible fluids mixtures, and to underline connections with classical kinetic theory. Then, a diphasic low Mach number model without acoustic waves is proposed to model the deformation of the interface between two immiscible fluids induced by high heat transfers at low Mach number. In order to increase the accuracy of the results without increasing computational cost, an AMR algorithm is studied on a simplified interface deformation model. These low Mach number studies also incited us to analyse on cartesian meshes the inaccuracy at low Mach number of Godunov schemes. Finally, the LBM algorithm applied to the heat equation is justified
Decarboxylation of Δ 9-tetrahydrocannabinol: Kinetics and molecular modeling
Perrotin-Brunel, Helene; Buijs, Wim; van Spronsen, Jaap; van Roosmalen, Maaike J. E.; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan
2011-02-01
Efficient tetrahydrocannabinol (Δ 9-THC) production from cannabis is important for its medical application and as basis for the development of production routes of other drugs from plants. This work presents one of the steps of Δ 9-THC production from cannabis plant material, the decarboxylation reaction, transforming the Δ 9-THC-acid naturally present in the plant into the psychoactive Δ 9-THC. Results of experiments showed pseudo-first order reaction kinetics, with an activation barrier of 85 kJ mol -1 and a pre-exponential factor of 3.7 × 10 8 s -1. Using molecular modeling, two options were identified for an acid catalyzed β-keto acid type mechanism for the decarboxylation of Δ 9-THC-acid. Each of these mechanisms might play a role, depending on the actual process conditions. Formic acid proved to be a good model for a catalyst of such a reaction. Also, the computational idea of catalysis by water to catalysis by an acid, put forward by Li and Brill, and Churchev and Belbruno was extended, and a new direct keto-enol route was found. A direct keto-enol mechanism catalyzed by formic acid seems to be the best explanation for the observed activation barrier and the pre-exponential factor of the decarboxylation of Δ 9-THC-acid. Evidence for this was found by performing an extraction experiment with Cannabis Flos. It revealed the presence of short chain carboxylic acids supporting this hypothesis. The presented approach is important for the development of a sustainable production of Δ 9-THC from the plant.
Electrical and Kinetic Model of an Atmospheric RF Device for Plasma Aerodynamics Applications
Pinheiro, Mario J.; Martins, Alexandre A.
2009-01-01
The asymmetrically mounted flat plasma actuator is studied using a self-consistent 2-DIM fluid model at atmospheric pressure. The computational model use the drift-diffusion approximation and a simple plasma phenomenological kinetic model. It is investigated its electrical and kinetic properties, and calculated the charged species concentrations, surface charge density, electrohydrodynamic forces and gas speed. The present computational model contributes to understand the main physical mechan...
Wen Zhu; Junsheng Liu; Meng Li
2014-01-01
A series of zwitterionic hybrid membranes were prepared via the ring opening of 1,3-propanesultone with the amine groups in the chains of TMSPEDA and a subsequent sol-gel process. Their kinetic models for strontium removal were investigated using three two-parameter kinetic equations (i.e., Lagergren pseudo-first order, pseudo-second order, and Elovich models). Adsorption mechanism was evaluated using intraparticle diffusion model, diffusion-chemisorption model, and Boyd equation. It was foun...
Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (medianplane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin
2014-01-01
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body
International Nuclear Information System (INIS)
Ciffroy, P.; Siclet, F.; Garnier, J.M.; Pham Mai, K.
1996-01-01
To obtain suitable data for modelling radionuclides migration in freshwater streams, the sorption and desorption kinetics of some radionuclides (54Mn, 58Co, 134Cs) on suspended matter were studied under controlled laboratory conditions. The experimental results show that: -for some radionuclides (58Co, 54Mn), the adsorption process is progressive and slow; after 5 days, an important fraction of the radioactivity is associated to the particles. For 134Cs, very fast sorption is followed by much slower and extended uptake. -the retention of 134Cs, and above all of 54Mn and 58Co, on suspended matter is stronger when the particles have been previously in contact with the radionuclides during a long period. This retention could be due to the slow transfer of 54Mn and 58Co to non-exchangeable sites of the particles. This effect of contact time during preliminary adsorption is less important for 134Cs. The results of uptake and release experiments were used to test models describing the radionuclides interactions with suspended solids. Two kinetic models are compared in this paper. The model taking into account two distinct types of sites on the solid phase and irreversible processes better describes the interactions of radionuclides with suspended matter
A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman
Directory of Open Access Journals (Sweden)
James Bland
2013-12-01
Full Text Available The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM. The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4, followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO. At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.
Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties
Schmid, Sonja; Hugel, Thorsten
2018-03-01
Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.
Controlling Self-Assembly Kinetics of DNA-Functionalized Liposomes Using Toehold Exchange Mechanism.
Parolini, Lucia; Kotar, Jurij; Di Michele, Lorenzo; Mognetti, Bortolo M
2016-02-23
The selectivity of Watson-Crick base pairing has allowed the design of DNA-based functional materials bearing an unprecedented level of accuracy. Examples include DNA origami, made of tiles assembling into arbitrarily complex shapes, and DNA coated particles featuring rich phase behaviors. Frequently, the realization of conceptual DNA-nanotechnology designs has been hampered by the lack of strategies for effectively controlling relaxations. In this article, we address the problem of kinetic control on DNA-mediated interactions between Brownian objects. We design a kinetic pathway based on toehold-exchange mechanisms that enables rearrangement of DNA bonds without the need for thermal denaturation, and test it on suspensions of DNA-functionalized liposomes, demonstrating tunability of aggregation rates over more than 1 order of magnitude. While the possibility to design complex phase behaviors using DNA as a glue is already well recognized, our results demonstrate control also over the kinetics of such systems.
Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart
2018-03-01
In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.
Chen, Xiangjun; Xiao, Namin; Cai, Minghui; Li, Dianzhong; Li, Guangyao; Sun, Guangyong; Rolfe, Bernard F.
2016-09-01
An inverse model is proposed to construct the mathematical relationship between continuous cooling transformation (CCT) kinetics with constant rates and the isothermal one. The kinetic parameters in JMAK equations of isothermal kinetics can be deduced from the experimental CCT kinetics. Furthermore, a generalized model with a new additive rule is developed for predicting the kinetics of nucleation and growth during diffusional phase transformation with arbitrary cooling paths based only on CCT curve. A generalized contribution coefficient is introduced into the new additivity rule to describe the influences of current temperature and cooling rate on the incubation time of nuclei. Finally, then the reliability of the proposed model is validated using dilatometry experiments of a microalloy steel with fully bainitic microstructure based on various cooling routes.
Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI
Grossman, Max; Willacy, Karen; Allen, Mark
2011-01-01
Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.
Calculation Method of Kinetic Constants for the Mathematical Model Peat Pyrolysis
Directory of Open Access Journals (Sweden)
Plakhova Tatyana
2014-01-01
Full Text Available Relevance of the work is related to necessity to simplify the calculation of kinetic constants for the mathematical model peat pyrolysis. Execute transformations of formula Arrhenius law. Degree of conversion is expressed in terms mass changes of sample. The obtained formulas help to calculate the kinetic constants for any type of solid organic fuels
A self-consistent kinetic modeling of a 1-D, bounded, plasma in ...
Indian Academy of Sciences (India)
Abstract. A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle ... This paper reports on the findings of a kinetic code that retains col- lisions and sources, models ..... was used in the runs reported in this paper, the source of particles is modified from the explicit source Л(Ъ).
Modelling fungal solid-state fermentation: The role of inactivation kinetics
Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.
1999-01-01
The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and
DEFF Research Database (Denmark)
Price, Jason Anthony; Nordblad, Mathias; Woodley, John
2014-01-01
This paper demonstrates the added benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production. For this study, a kinetic model by Fedosov and co-workers is used. For the uncertainty analysis the Monte Carlo procedure was used to statistically quantify...
Kinetic model for an up-flow anaerobic packed bed bioreactor: Dairy ...
African Journals Online (AJOL)
Kinetic studies of anaerobic digestion process of cheese whey were conducted in a pilot-scale up-flow anaerobic packed bed bioreactor (UAPB). An influent COD concentration of 59419 mg/l was utilized at steady state condition. Logistic and Monod kinetic models were employed to describe microbial activities of cheese ...
Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong
2017-03-01
Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification
Energy Technology Data Exchange (ETDEWEB)
Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)
2013-07-01
Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.
Body mass index kinetics around adiposity rebound in Anorexia nervosa: A case-control study.
Neveu, Rémi; Neveu, Dorine; Carrier, Edouard; Ourrad, Nadia; Perroud, Alain; Nicolas, Alain
2016-10-01
Anorexia nervosa (AN) is associated with parameters involved in body mass index (BMI) regulation. Contrary to obesity, BMI kinetics around the adiposity rebound is not documented in AN. This study aimed at investigating which characteristics of BMI kinetics around the adiposity rebound are associated with AN. Multicentre case-control study with 101 inpatient women with AN onset after 10 years of age, and 101 healthy women, all free of overweight history and matched for age, level of education and fathers' socio-professional status. Age at adiposity rebound, pre- and post-adiposity rebound BMI velocities and accelerations (change in velocity over time) were estimated with linear mixed models using data recorded between 2 and 10 years of age. Patients had an earlier adiposity rebound (mean (standard deviation (SD)): 5.3 (1.3) vs 5.7 (1.1) years), a larger BMI at adiposity rebound (mean (SD): 15.3 [1] vs 14.9 (0.9) kg/m 2 ) and 29% lower BMI acceleration after adiposity rebound than controls. After adjustment, only BMI at adiposity rebound and BMI acceleration after adiposity rebound were associated with a higher risk of AN (Odds ratio [95% confidence interval]: 2.15 [1.41-3.46] for an increase of 1 kg/m 2 and 2.44 [1.56-4.02] for an increase of 0.1 kg/(m 2 *years 2 ) respectively). These two factors were not correlated in patients (r = 0.007, p = 0.96). A flattened evolution of BMI after adiposity rebound and higher BMI at adiposity rebound were associated with AN. Further prospective study is needed to confirm these findings. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
Fliess, Michel; Join, Cédric
2013-12-01
'Model-free control'and the corresponding 'intelligent' PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account. The basics of model-free control is now employing some old functional analysis and some elementary differential algebra. The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PIDs and the great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not only the power of our intelligent controllers but also the great simplicity for tuning them.
Directory of Open Access Journals (Sweden)
Niklas Hartung
Full Text Available Evolution of metastatic melanoma (MM under B-RAF inhibitors (BRAFi is unpredictable, but anticipation is crucial for therapeutic decision. Kinetics changes in metastatic growth are driven by molecular and immune events, and thus we hypothesized that they convey relevant information for decision making.We used a retrospective cohort of 37 MM patients treated by BRAFi only with at least 2 close CT-scans available before BRAFi, as a model to study kinetics of metastatic growth before, under and after BRAFi. All metastases (mets were individually measured at each CT-scan. From these measurements, different measures of growth kinetics of each met and total tumor volume were computed at different time points. A historical cohort permitted to build a reference model for the expected spontaneous disease kinetics without BRAFi. All variables were included in Cox and multistate regression models for survival, to select best candidates for predicting overall survival.Before starting BRAFi, fast kinetics and moreover a wide range of kinetics (fast and slow growing mets in a same patient were pejorative markers. At the first assessment after BRAFi introduction, high heterogeneity of kinetics predicted short survival, and added independent information over RECIST progression in multivariate analysis. Metastatic growth rates after BRAFi discontinuation was usually not faster than before BRAFi introduction, but they were often more heterogeneous than before.Monitoring kinetics of different mets before and under BRAFi by repeated CT-scan provides information for predictive mathematical modelling. Disease kinetics deserves more interest.
Energy Technology Data Exchange (ETDEWEB)
Salloum, Maher N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gharagozloo, Patricia E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2013-10-01
Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.
Giuffre, A. J.; Han, N.; Dove, P. M.
2011-12-01
Polysaccharide fibrils control the orientation of calcium carbonate (CaCO3) biominerals. Good examples are found in the multilayered extracellular mucilaginous sheath of green algae and cyanobacteria and in specialized vesicles inside coccolithophorids. More complex organisms such as arthropods and mollusks form biomineralized exoskeletons and shells that consist of insoluble polysaccharides and soluble acid-rich proteins. In these structures, CaCO3 mineral orientation occurs along fibers of the polysaccharide chitin. This raises the question of whether polysaccharide chemistry has specific roles in directing biomineralization. The last three decades of research show that acidic proteins influence CaCO3 polymorph selection, crystallographic orientation, and nucleation and growth rates but little is known about the function of polysaccharides. In fact, polysaccharides are long considered an inert component of organic frameworks. In this experimental investigation, we test the hypothesis that polysaccharides have chemistry-specific influences on calcification by measuring the kinetics of calcite nucleation onto three types of polysaccharide films under controlled solution compositions. Characterized polysaccharides of simple repeating monomer sequences were chosen as model compounds to represent the major carbohydrates seen in microbial and calcifying environments: 1) alginic acid with carboxyl groups, 2) hyaluronic acid with alternating carboxyl and acetylamine groups, and 3) chitosan with amine and acetylamine groups. Biosubstrates were prepared by electrodeposition of these compounds as thin gel-like films onto gold-coated silicon wafers. Using a flow-through cell, heterogeneous nucleation rates of calcite were measured for a suite of supersaturation conditions. These rate data were compared to similar measurements for carboxyl- and hydroxyl-terminated self-assembled monolayers. Calcite nucleation rates onto the three polysaccharides vary by a factor of 400x
Semi-continuous and multigroup models in extended kinetic theory
Koller, W
2000-01-01
The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of exte...
International Nuclear Information System (INIS)
De-Santiago, Josue; Cervantes-Cota, Jorge L.
2011-01-01
We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.
Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling
International Nuclear Information System (INIS)
Higgs, J.
2005-01-01
The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)
Influence of the Radio-Oxidation Kinetic Model on the Critical Oxided Thickness
International Nuclear Information System (INIS)
Dely, N
2006-01-01
The diffusion-controlled oxidation (also named physical effect of the dose rate) is an unavoidable phenomenon that occurs in polymers under ionising radiation in presence of oxygen. Indeed, oxygen is consumed inside the polymer consecutively to radio-oxidative processes. When oxygen molecules are consumed faster than they can diffuse inside the sample, oxidation is not homogeneous within the sample thickness. This leads to a heterogeneous oxidation profile with a minimum of oxidation at the centre of the sample. In this context, the concept of critical thickness L c has been introduced. It corresponds to the thickness for which the cumulative oxygen consumption is equal to 90 % of the oxygen consumption which would occur if the oxidation was not limited by the oxygen diffusion. Gillen and Clough have determined a practical way to estimate the value of L c from several parameters linked to the experimental conditions in the frame of the homogeneous steady?state kinetic model simplified by a relation giving the reaction constant for the recombination between the macroradicals, P degree and the peroxyl radicals, POO degree. This common assumption has the unique purpose of providing an analytical solution of the oxidation rate but is in fact unfounded. Consequently, we reconsidered the calculus, still in the frame of the homogeneous steady-state kinetic model, but without this unrealistic hypothesis on the reaction rate between P degree and POO degree. We compared the results obtained in both cases. And it appears that, exception made of the very low oxygen pressure region, L c is not significantly affected by choosing the simplified kinetic model
Gayen, Kalyan; Venkatesh, K V
2007-05-01
Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.
A thermodynamic and kinetic model for paste–aggregate interactions and the alkali–silica reaction
International Nuclear Information System (INIS)
Guthrie, George D.; Carey, J. William
2015-01-01
A new conceptual model is developed for ASR formation based on geochemical principles tied to aqueous speciation, silica solubility, kinetically controlled mineral dissolution, and diffusion. ASR development is driven largely by pH and silica gradients that establish geochemical microenvironments between paste and aggregate, with gradients the strongest within the aggregate adjacent to the paste boundary (i.e., where ASR initially forms). Super-saturation of magadiite and okenite (crystalline ASR surrogates) occurs in the zone defined by gradients in pH, dissolved silica, Na + , and Ca 2 + . This model provides a thermodynamic rather than kinetic explanation of why quartz generally behaves differently from amorphous silica: quartz solubility does not produce sufficiently high concentrations of H 4 SiO 4 to super-saturate magadiite, whereas amorphous silica does. The model also explains why pozzolans do not generate ASR: their fine-grained character precludes formation of chemical gradients. Finally, these gradients have interesting implications beyond the development of ASR, creating unique biogeochemical environments
Evaluation of kinetic uncertainty in numerical models of petroleum generation
Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.
2006-01-01
Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted
Armenise, S; García-Bordejé, E; Valverde, J L; Romeo, E; Monzón, A
2013-08-07
The increasing interest in ammonia decomposition is due to the fact that this compound can be used advantageously as a hydrogen carrier, allowing the development of single-step hydrogen generation systems. With the aim of developing efficient reactors for ammonia decomposition, e.g. for fuel cell applications, it is imperative to investigate the kinetics and reaction mechanism in depth. The main goal of this work is to develop reliable kinetic models that are able to predict the performance obtained using integral reactors, e.g. monoliths. In this case, an almost complete NH3 conversion is obtained, with a high H2 concentration at the exit of the reactor. The operating conditions, mainly the gas composition, are very different along the reactor. In addition, the temperatures needed to attain such large conversions are usually high. The kinetic models developed in this contribution are based on the Langmuir isotherm, considering that all the adsorbed species can be kinetically relevant, that the slow step or steps can be partially reversible, and that the surface can be considered as energetically uniform, i.e. ideal. Among other conclusions, the results obtained indicate that the variable kinetic orders and apparent activation energies frequently reported in the literature can be direct consequences of the data analysis and can therefore also be explained without considering any change in the controlling step with the reaction temperature or in the hydrogen or ammonia concentration.
Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control
Energy Technology Data Exchange (ETDEWEB)
Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB
2017-02-20
Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.
A modified microdosimetric kinetic model for relative biological effectiveness calculation
Chen, Yizheng; Li, Junli; Li, Chunyan; Qiu, Rui; Wu, Zhen
2018-01-01
In the heavy ion therapy, not only the distribution of physical absorbed dose, but also the relative biological effectiveness (RBE) weighted dose needs to be taken into account. The microdosimetric kinetic model (MKM) can predict the RBE value of heavy ions with saturation-corrected dose-mean specific energy, which has been used in clinical treatment planning at the National Institute of Radiological Sciences. In the theoretical assumption of the MKM, the yield of the primary lesion is independent of the radiation quality, while the experimental data shows that DNA double strand break (DSB) yield, considered as the main primary lesion, depends on the LET of the particle. Besides, the β parameter of the MKM is constant with LET resulting from this assumption, which also differs from the experimental conclusion. In this study, a modified MKM was developed, named MMKM. Based on the experimental DSB yield of mammalian cells under the irradiation of ions with different LETs, a RBEDSB (RBE for the induction of DSB)-LET curve was fitted as the correction factor to modify the primary lesion yield in the MKM, and the variation of the primary lesion yield with LET is considered in the MMKM. Compared with the present the MKM, not only the α parameter of the MMKM for mono-energetic ions agree with the experimental data, but also the β parameter varies with LET and the variation trend of the experimental result can be reproduced on the whole. Then a spread-out Bragg peaks (SOBP) distribution of physical dose was simulated with Geant4 Monte Carlo code, and the biological and clinical dose distributions were calculated, under the irradiation of carbon ions. The results show that the distribution of clinical dose calculated with the MMKM is closed to the distribution with the MKM in the SOBP, while the discrepancy before and after the SOBP are both within 10%. Moreover, the MKM might overestimate the clinical dose at the distal end of the SOBP more than 5% because of its
Energy Technology Data Exchange (ETDEWEB)
Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M
2009-03-30
n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.
International Nuclear Information System (INIS)
Kotasidis, F A; Zaidi, H; Matthews, J C; Reader, A J; Angelis, G I
2014-01-01
Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image reconstruction algorithms can potentially improve kinetic parameter precision and accuracy in dynamic PET body imaging. However, construction of a common kinetic model is not always feasible and in contrast to post-reconstruction kinetic analysis, errors in poorly modelled regions may spatially propagate to regions which are well modelled. To reduce error propagation from erroneous model fits, we implement and evaluate a new approach to direct parameter estimation by incorporating a recently proposed kinetic modelling strategy within a direct 4D image reconstruction framework. The algorithm uses a secondary more general model to allow a less constrained model fit in regions where the kinetic model does not accurately describe the underlying kinetics. A portion of the residuals then is adaptively included back into the image whilst preserving the primary model characteristics in other well modelled regions using a penalty term that trades off the models. Using fully 4D simulations based on dynamic [ 15 O]H 2 O datasets, we demonstrate reduction in propagation-related bias for all kinetic parameters. Under noisy conditions, reductions in bias due to propagation are obtained at the cost of increased noise, which in turn results in increased bias and variance of the kinetic parameters. This trade-off reflects the challenge of separating the residuals arising from poor kinetic modelling fits from the residuals arising purely from noise. Nonetheless, the overall root mean square error is reduced in most regions and parameters. Using the adaptive 4D image reconstruction improved model fits can be obtained in poorly modelled regions, leading to reduced errors potentially
Kotasidis, F A; Matthews, J C; Reader, A J; Angelis, G I; Zaidi, H
2014-10-21
Parametric imaging in thoracic and abdominal PET can provide additional parameters more relevant to the pathophysiology of the system under study. However, dynamic data in the body are noisy due to the limiting counting statistics leading to suboptimal kinetic parameter estimates. Direct 4D image reconstruction algorithms can potentially improve kinetic parameter precision and accuracy in dynamic PET body imaging. However, construction of a common kinetic model is not always feasible and in contrast to post-reconstruction kinetic analysis, errors in poorly modelled regions may spatially propagate to regions which are well modelled. To reduce error propagation from erroneous model fits, we implement and evaluate a new approach to direct parameter estimation by incorporating a recently proposed kinetic modelling strategy within a direct 4D image reconstruction framework. The algorithm uses a secondary more general model to allow a less constrained model fit in regions where the kinetic model does not accurately describe the underlying kinetics. A portion of the residuals then is adaptively included back into the image whilst preserving the primary model characteristics in other well modelled regions using a penalty term that trades off the models. Using fully 4D simulations based on dynamic [(15)O]H2O datasets, we demonstrate reduction in propagation-related bias for all kinetic parameters. Under noisy conditions, reductions in bias due to propagation are obtained at the cost of increased noise, which in turn results in increased bias and variance of the kinetic parameters. This trade-off reflects the challenge of separating the residuals arising from poor kinetic modelling fits from the residuals arising purely from noise. Nonetheless, the overall root mean square error is reduced in most regions and parameters. Using the adaptive 4D image reconstruction improved model fits can be obtained in poorly modelled regions, leading to reduced errors potentially propagating
Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca
Eremeeva, Elena V.; Bartsev, Sergey I.; Berkel, van Willem J.H.; Vysotski, Eugene S.
2017-01-01
Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated
Kinetic models of cell growth, substrate utilization and bio ...
African Journals Online (AJOL)
STORAGESEVER
2008-05-02
May 2, 2008 ... Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using. Aspergillus .... (2). Where X0 is inoculum's concentration and S0 is initial substrate concentration in g/l, respectively. Rearranging equation 2 gives: sx sx. Y. X. SY. X. S .... generation and biodecolorization.
Modelling the role of compositional fluctuations in nucleation kinetics
Czech Academy of Sciences Publication Activity Database
Ženíšek, J.; Kozeschnik, E.; Svoboda, Jiří; Fischer, F. D.
2015-01-01
Roč. 91, JUN (2015), s. 365-376 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Kinetics * Nucleation and growth * Precipitates * Interface energy * Fluctuations of chemical composition Subject RIV: BJ - Thermodynamics Impact factor: 5.058, year: 2015
Calcite growth kinetics: Modeling the effect of solution stoichiometry
Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.
2012-01-01
Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth
Unravelling the Maillard reaction network by multiresponse kinetic modelling
Martins, S.I.F.S.
2003-01-01
The Maillard reaction is an important reaction in food industry. It is responsible for the formation of colour and aroma, as well as toxic compounds as the recent discovered acrylamide. The knowledge of kinetic parameters, such as rate constants and activation energy, is necessary to predict its
Validation of kinetic modeling of progesterone release from polymeric membranes
Directory of Open Access Journals (Sweden)
Analia Irma Romero
2018-01-01
Full Text Available Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone (Prg controlled release from poly-3-hydroxybutyric acid (PHB membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion (AIC was used to find the equation with best-fit. A simple relation between mass and drug released rate was found, which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes.
Phase-field modeling of corrosion kinetics under dual-oxidants
Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.
2012-04-01
A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.
Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities
Junicke, H.; Van Loosdrecht, M.C.M.; Kleerebezem, R.
2015-01-01
Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer
Kinetic Modeling of Mineral Sequences on Early Mars Using Fully Open Systems
Uceda, E. R.; Fairén, A. G.; Gil-Lozano, C.; Losa-Adams, E.; Gago-Duport, L.
2017-10-01
We model the formation of mineral sequences known to exist on Mars considering open system conditions both at the atmosphere-water and water-rock interfaces, and implementing a kinetic approach for the dissolution and precipitation of solid phases.
Temperature-Dependent Kinetics of Grape Seed Phenolic Compounds Extraction: Experiment and Model
Czech Academy of Sciences Publication Activity Database
Bucic´-Kojic´, A.; Sovová, Helena; Planinic´, M.; Tomas, S.
2013-01-01
Roč. 136, 3-4 (2013), s. 1136-1140 ISSN 0308-8146 Institutional support: RVO:67985858 Keywords : kinetics modelling * temperature * grape seed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.259, year: 2013
Srivastava, Priyaka; Kraus, Jeff; Murawski, Robert; Golden, Bertsel, Jr.
2015-01-01
NASAs Space Communications and Navigation (SCaN) program manages three active networks: the Near Earth Network, the Space Network, and the Deep Space Network. These networks simultaneously support NASA missions and provide communications services to customers worldwide. To efficiently manage these resources and their capabilities, a team of student interns at the NASA Glenn Research Center is developing a distributed system to model the SCaN networks. Once complete, the system shall provide a platform that enables users to perform capacity modeling of current and prospective missions with finer-grained control of information between several simulation and modeling tools. This will enable the SCaN program to access a holistic view of its networks and simulate the effects of modifications in order to provide NASA with decisional information. The development of this capacity modeling system is managed by NASAs Strategic Center for Education, Networking, Integration, and Communication (SCENIC). Three primary third-party software tools offer their unique abilities in different stages of the simulation process. MagicDraw provides UMLSysML modeling, AGIs Systems Tool Kit simulates the physical transmission parameters and de-conflicts scheduled communication, and Riverbed Modeler (formerly OPNET) simulates communication protocols and packet-based networking. SCENIC developers are building custom software extensions to integrate these components in an end-to-end space communications modeling platform. A central control module acts as the hub for report-based messaging between client wrappers. Backend databases provide information related to mission parameters and ground station configurations, while the end user defines scenario-specific attributes for the model. The eight SCENIC interns are working under the direction of their mentors to complete an initial version of this capacity modeling system during the summer of 2015. The intern team is composed of four students in
Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph
2008-12-25
Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined, thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed, and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant K(s) and the interface Michaelis-Menten constant, K(M). Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about -15RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus, the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM.
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Barari, Ghazal
2017-03-10
Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.
Uncertainty quantification for kinetic models in socio-economic and life sciences
Dimarco, Giacomo; Pareschi, Lorenzo; Zanella, Mattia
2017-01-01
Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronizati...
Oxygen reduction kinetics on mixed conducting SOFC model cathodes
Energy Technology Data Exchange (ETDEWEB)
Baumann, F.S.
2006-07-01
The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos
Treatment of simulated odor from RDF plant using ashumale kinetic modelling
International Nuclear Information System (INIS)
Mohd Nahar Othman; Muhd Noor Muhd Yunus; Ku Halim Ku Hamid
2010-01-01
The impact of ambient odour in the vicinity of the Semenyih MSW processing plant, commonly known as RDF plant, can be very negative to the nearby population, causing public restlessness and consequently affecting the business operation and sustain ability of the plant. The precise source of the odour, types, emission level and the meteorological conditions are needed to predict and established the ambient odour level at the perimeter fence of the plant and address it with respect to the ambient standards. To develop the odour gas model for the purpose of treatment is very compulsory because in MSW odour it contain many component of chemical that contribute the smell. Upon modelling using an established package as well as site measurements, the odour level at the perimeter fence of the plant was deduced and found to be marginally high, above the normal ambient level. Based on this issue, a study was made to evaluate the possibility of treating odour using Electron Beam Process. This paper will address and discuss the measurement of ambient concentration of three chemical components of the odour, namely benzene, dimethyl sulfide and trimethyl amine, the dispersion modeling to establish the critical ambient emission level, as well as and kinetic modeling of the treatment process and its experimental validation using a simulated odour. The focus will be made on exploring the use of Ashmuli kinetic modeling to develop correlations between the odour concentrations, odour chemical compositions and electron beam dose with the treatment efficiency, as well as adapting the model for MSW odour controls. (author)
Kinetic Parameters of Thermal Decomposition Process Analyzed using a Mathematical Model
Nandiyanto, A. B. D.; Ekawati, R.; Wibawa, S. C.
2018-01-01
The purpose of this study was to show a mathematical analysis model for understanding kinetic parameters of thermal decomposition process. The mathematical model was derived based on phenomena happen during the thermal-related reaction. To get the kinetic parameters (i.e. reaction order, activation energy, and Arrhenius constant), the model was combined with the thermal characteristics of material gained from the thermal gravity (TG) and differential thermal analysis (DTA) curves. As an example, the model was used for analyzing the kinetic properties of trinitrotoluene. Interestingly, identical results gained from the present model with current literatures were obtained; in which these were because the present model was derived directly from the analysis of stoichiometrical and thermal analysis of the ideal chemical reaction. Since the present model confirmed to have a good agreement with current theories, further derivation from the present mathematical model can be useful for further development.
Zhang, Chao; Chen, Yin-Guang
2013-03-01
Based on activated sludge model No. 2 (ASM2), the anaerobic/aerobic kinetic model of phosphorus-accumulating organisms (PAO) was established with mixed short-chain fatty acids (SCFAs) as the base substance in enhanced biological phosphorus removal process. The characteristic of the PAO model was that the anaerobic metabolism rates of glycogen degradation, poly-beta-hydroxyalkanoates synthesis and polyphosphate hydrolysis were expressed by SCFAs uptake equation, and the effects of anaerobic maintenance on kinetics and stoichiometry were considered. The PAO kinetic model was composed of 3 soluble components, 4 particulate components and a pH parameter, which constituted the matrix of stoichiometric coefficients. On the basis of PAO model, the GAO kinetic model was established, which included 7 processes, and phosphorus content influenced the aerobic metabolism only.
Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide
2014-02-20
Spectral and kinetic behavior of thermal cis-to-trans isomerization of 4-aminoazobenzene (AAB) is examined in various solvents of different polarities. In contrast to azobenzene (AB), it is found the rate of thermal isomerization of AAB is highly dependent on solvent polarity. Accelerated rates are observed in polar solvents as compared to nonpolar solvents. Moreover, a decrease in the barrier height with an increase in medium polarity is observed. Our observations suggest that inversion is the preferred pathway in cis-to-trans thermal isomerization in a nonpolar medium; however, in a polar medium, the isomerization path deviates from the inversion route and rotational behavior is incorporated. Differences in the kinetics and in mechanisms of isomerization in different media are rationalized in terms of modulation in barrier height by polarity of the medium and solute-solvent interaction. It is found that kinetics as well as the mechanism of thermal isomerization in AAB is controlled by the polarity of the medium.
Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics.
Westbrook, Charles K; Pitz, William J; Mehl, Marco; Glaude, Pierre-Alexandre; Herbinet, Olivier; Bax, Sarah; Battin-Leclerc, Frederique; Mathieu, Olivier; Petersen, Eric L; Bugler, John; Curran, Henry J
2015-07-16
Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed.
Investigation of binary solid phases by calorimetry and kinetic modelling
Matovic, M.
2007-01-01
The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid. For a proper description of the crystallization process the equilibrium approach is insufficient and a kinetic approach is actually required. In this work, we show that during slow crystallizatio...
On coupling fluid plasma and kinetic neutral physics models
Joseph, I.; Rensink, M.E.; Stotler, D.P.; Dimits, A.M.; LoDestro, L.L.; Porter, G.D.; Rognlien, T.D.; Sjogreen, B.; Umansky, M.V.
2017-01-01
The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sa...
Cell kinetic modelling and the chemotherapy of cancer
Knolle, Helmut
1988-01-01
During the last 30 years, many chemical compounds that are active against tumors have been discovered or developed. At the same time, new methods of testing drugs for cancer therapy have evolved. nefore 1964, drug testing on animal tumors was directed to observation of the incfease in life span of the host after a single dose. A new approach, in which the effects of multiple doses on the proliferation kinetics of the tumor in vivo as well as of cell lines in vitro are investigated, has been outlined by Skipper and his co-workers in a series of papers beginning in 1964 (Skipper, Schabel and Wilcox, 1964 and 1965). They also investigated the influence of the time schedule in the treatment of experimental tumors. Since the publication of those studies, cell population kinetics cannot be left out of any discussion of the rational basis of chemotherapy. When clinical oncologists began to apply cell kinetic concepts in practice about 15 years ago, the theoretical basis was still very poor, in spite of Skipper's pro...
International Nuclear Information System (INIS)
Lin Feng; Meyer, Christian
2009-01-01
A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.
Scott, Robert B.
2010-01-01
We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
DEFF Research Database (Denmark)
Baty, Florent; Ritz, Christian; van Gestel, Arnoldus
2016-01-01
BACKGROUND: The six-minute walk test (6MWT) is commonly used to quantify exercise capacity in patients with several cardio-pulmonary diseases. Oxygen uptake ([Formula: see text]O2) kinetics during 6MWT typically follow 3 distinct phases (rest, exercise, recovery) that can be modeled by nonlinear...... regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...
Energy Technology Data Exchange (ETDEWEB)
DePaolo, D.
2010-10-15
A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p
Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates
Energy Technology Data Exchange (ETDEWEB)
Hozé, Nathanaël; Holcman, David
2014-01-24
The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.
Wang, Weicheng
2013-11-01
A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.
Gering, Kevin L.
2013-01-01
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.
Kinetic Modeling of Dye Effluent Biodegradation by Pseudomonas Stutzeri
Directory of Open Access Journals (Sweden)
N. Rajamohan
2013-04-01
Full Text Available Dye industry waste water is difficult to treat because of the presence of dyes with complex aromatic structure. In this research study, the biodegradation studies of dye effluent were performed utilizing Pseudomonas stutzeri in a controlled laboratory environment under anoxic conditions. The effects of operational parameters like initial pH of the effluent and initial Chemical Oxygen Demand (COD of the effluent on percentage COD removal were studied. A biokinetic model is established giving the dependence of percentage COD removal on biomass concentration and initial COD of the effluent. The biokinetics of the COD removal was found to be first order with respect to both the microbial concentration and initial COD of the effluent. The optimal pH for better bacterial degradation was found to be 8.The specific degradation rate was found to be 0.1417 l/g Dry Cell Mass (DCM h, at 320 C.
Frequency control modelling - basics
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Sørensen, Poul Ejnar; Zeni, Lorenzo
2016-01-01
The purpose of this report is to provide an introduction on how the system balance in an island system can be maintained by controlling the frequency. The power balance differential equation, which is fundamental in understanding the effect on the system frequency of the unbalance between...... generation and consumption, is addressed. Basic topics on the main components of a generating unit, such generators, prime movers and governors are presented. A simple dynamic model for an island power system, containing realistic dynamic representations of generators, loads, prime movers, governors...
In silico modelling and analysis of ribosome kinetics and aa-tRNA competition
Bošnački, D.; Pronk, T.E.; de Vink, E.P.
2008-01-01
We present a formal analysis of ribosome kinetics using probabilistic model checking and the tool Prism. We compute different parameters of the model, like probabilities of translation errors and average insertion times per codon. The model predicts strong correlation to the quotient of the
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers
International Nuclear Information System (INIS)
Spasennykh, M.Yu.; Apps, J.A.
1995-05-01
A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)
Al-Musawi, Tariq J; Brouers, Francois; Zarrabi, Mansur
2017-02-01
In this study, the kinetic data of the adsorption of two antibiotics onto three nanoadsorbents was modeled using the Brouers-Sotolongo fractal model. The model parameters were calculated at different initial antibiotic concentrations using various approximations of the kinetic equation for two quantities of practical relevance: the sorption power and the half-time characteristic of the sorption. The merits of the nanomaterial were then compared in terms of their application in the elimination of dangerous antibiotic wastes. We also developed a formula to calculate the effective rate of the best adsorbent. This study presents the modeling method in detail and has a pedagogical value for similar researches.
Siciliano, Alessio; De Rosa, Salvatore
2015-01-01
The present work reports the results of a series of experimental tests performed on cylindrically shaped biological aerated filters (BAFs) to define a new model for reactors design. The nitrification performance was analysed by monitoring a laboratory pilot plant over a six-month period; the dependence of the nitrification rate from the biomass surface density, from ammonia nitrogen concentration and dissolved oxygen concentration was determined using kinetic batch tests. The controls performed on the pilot plant exhibited a nitrification efficiency of approximately 98% at loadings up to [Formula: see text]. Over this value, the pilot plant performance decreased without a correlation with the applied loads. In response to the inlet ammonia loading increase, the bacterial surface density showed a logistic growing trend. The results of kinetic tests proved that the nitrification rate was not affected by the ammonia nitrogen concentration; instead, a first-order kinetic with respect to the dissolved oxygen concentration was detected. Moreover, it was observed that a minimum oxygen concentration, which was proportional to the bacterial surface density, was necessary to initiate the nitrification process. The reaction rate related to bacterial surface density exhibited an increasing trend that was followed by a subsequent decreasing behaviour. The results of kinetic tests and the identification of the relationship between bacterial surface density and ammonia loading permitted the formulation of a mathematical model to predict BAFs' nitrification efficiency.
International Nuclear Information System (INIS)
Lim, T.H.
1978-06-01
The purpose of this study is to investigate whether a valid index of chromium (III) nutritional status can be determined with satisfaction through in vivo kinetic analysis. Three normal subjects and three patients suffering from hemochromatosis were periodically scanned with the Donner Laboratory computerized whole body scanners, starting seconds after radiochromium(III) was administered intravenously, up to a period of 84 days. The activity in the liver, adipose and muscle tissues, spleen and bone was quantitated and corrected, by subtraction of the blood circulation activity in that organ; the major concentration was found in the liver and spleen. From the series of scan images, a kinetic model for the radiochromium(III) metabolic pathway was constructed. Computer analysis showed a significant difference between the two classes of subjects in organs as well as whole body radiochromium(III) transfer. Interpretation of these results showed that in patients with excessive iron stores, a smaller amount of chromium bound to plasma protein was found and a corresponding decrease in transfer of chromium into stores in the liver and other tissues was also found
Directory of Open Access Journals (Sweden)
V. K. Bityukov
2017-01-01
Full Text Available Styrene synthesis process occurring in a two-stage continuous adiabatic reactor is a complex chemical engineering system. It is characterized by indeterminacy, nonstationarity and occurs in permanent uncontrolled disturbances. Therefore, the task of developing the predictive control system of the main product concentration of the dehydrogenation reaction - styrene to maintain this value within a predetermined range throughout the period of operation is important. This solution is impossible without the development of the process model on the basis of the kinetic revised scheme, taking into account the drop of the reactor catalytic bed activity due to coke formation on the surface. The article justifies and proposes: the drop changes dependence of catalyst bed activity as a time of reactor block operation function and improved model of chemical reactions kinetics. The synthesized mathematical model of the process is a system of ordinary differential equations and allows you: to calculate the concentration profiles of reaction mixture components during the passage of the charge through the adiabatic reactor stage, to determine the contact gas composition at the outlet of the reactor stages throughout the cycle of catalytic system, taking into account temperature changes and drop of the catalyst bed activity. The compensation of the decreased catalyst bed activity is carried out by raising the temperature in the reactor block for the duration of the operation. The estimation of the values of chemical reactions rate constants, as well as the calculation and analysis of the main and by-products concentrations of dehydrogenation reactions at the outlet of the reactor plant is curried out. Simulation results show that the change of temperature of the reactor, carried out by the exponential law considering deactivation of the catalyst bed allows the yield in a given range of technological regulations throughout the operation cycle of the reactor block.
Yeddou Mezenner, N.; Lagha, H.; Kais, H.; Trari, M.
2017-11-01
This study explores the feasibility of pre-treated coffee waste (PCW) as biosorbent for the removal of diazinon. The effect of the pesticide concentration (6-20 mg L-1), contact time, adsorbent dose (0.2-1.2 g L-1), solution pH (3-11.5), temperature (15-40 °C) and co-existing inorganic ions (H2PO4 -, NO3 -) on the diazinon biosorption over PCW is investigated. The experimental results indicate an optimal pH of 7.3 for the diazinon elimination on PCW (1 g L-1). The Langmuir model describes well the isotherm data with a high regression coefficient ( R 2 > 0.990) and a maximum monolayer biosorption capacity of 18.52 mg g-1 at 15 °C. It is also observed that the intra-particle diffusion is not the rate-controlling step. A comparison is evaluated between the pseudo-second-order and intra-particle diffusion kinetic models; the experimental data are well fitted by the pseudo-second-order kinetic model. The biosorption capacity decreases with increasing temperature for a diazinon concentration of 10 mg L-1. The negative enthalpy Δ H° (-63.57 kJ/mol) indicates that the diazinon biosorption onto PCW is exothermic. Under optimal conditions, the biosorption reaches 95% after 90 min. The removal efficiency decreases from 95 to 65.67 and 48.9% for the diazinon alone and in the presence of NO3 - and H2PO4 - (100 mg L-1), respectively.
Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.
Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M
2004-09-15
The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.
A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy
Energy Technology Data Exchange (ETDEWEB)
Schulte, Kevin L.; Simon, John; Jain, Nikhil; Young, David L.; Ptak, Aaron J.
2016-11-21
Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of the reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.
Energy Technology Data Exchange (ETDEWEB)
Njikam, Eloh, E-mail: ennjikam@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States); Schiewer, Silke, E-mail: sschiewer@alaska.edu [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775 (United States)
2012-04-30
Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO{sub 3}. The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO{sub 3}, desorption was incomplete and the model fit less perfect. Highlights: Black-Right-Pointing-Pointer Metal desorption was over 90% complete within 50 min for most desorbents. Black-Right-Pointing-Pointer Models for biosorbent desorption kinetics were developed. Black-Right-Pointing-Pointer Desorption kinetics best fit a novel first-order model related to remaining metal bound. Black-Right-Pointing-Pointer Cd uptake after desorption by HNO{sub 3} was similar to the original uptake. Black-Right-Pointing-Pointer The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO{sub 3}, NaNO{sub 3}, Ca(NO{sub 3}){sub 2}, EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by
Explicit equilibria in a kinetic model of gambling
Bassetti, F.; Toscani, G.
2010-06-01
We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.
An exponential integrator for the drift-kinetic model
Crouseilles, Nicolas; Einkemmer, Lukas; Prugger, Martina
2018-03-01
We propose an exponential integrator for the drift-kinetic equation in cylindrical geometry. This approach removes the CFL condition from the linear part of the system (which is often the most stringent requirement in practice) and treats the remainder explicitly using Arakawa's finite difference scheme. The present approach is mass conservative, up to machine precision, and significantly reduces the computational effort per time step. In addition, we demonstrate the efficiency of our method by performing numerical simulations in the context of the ion temperature gradient instability. In particular, we find that our numerical method can take time steps comparable to what has been reported in the literature for the (predominantly used) splitting approach. In addition, the proposed numerical method has significant advantages with respect to conservation of energy and efficient higher order methods can be obtained easily. We demonstrate this by investigating the performance of a fourth order implementation.
DEFF Research Database (Denmark)
Nießen, Frank; Tiedje, Niels Skat; Hald, John
2017-01-01
, equilibrium calculations and the Scheil model in Thermo-Calc, and validated by using microscopy and energy dispersive X-ray spectroscopy for chemical analysis on a cast ingot. The kinetics model showed that micro-segregation from solidification homogenizes within 2–3 s (70 °C) of cooling, and that retained δ......The kinetics model for multi-component diffusion DICTRA was applied to analyze the formation and retainment of δ-ferrite during solidification and cooling of GX4-CrNiMo-16-5-1 cast supermartensitic stainless steel. The obtained results were compared with results from the Schaeffler diagram......-ferrite originates from the incomplete transformation to austenite. The kinetics model predicted the measured amount of δ-ferrite and the partitioning of Cr and Ni reasonably well. Further, it showed that slower cooling for the investigated alloy leads to less retained δ-ferrite, which is in excellent agreement...
Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix
2011-02-01
In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
Martini, Johannes W. R.; Habeck, Michael
2015-03-01
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
Energy Technology Data Exchange (ETDEWEB)
García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
International Nuclear Information System (INIS)
Martini, Johannes W. R.; Habeck, Michael
2015-01-01
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest
Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater.
Nakhla, G; Liu, Victor; Bassi, A
2006-01-01
Batch scale activated sludge kinetic studies were undertaken for the treatment of pet food wastewater characterized by oil and grease concentrations of up to 21,500 mg/L, COD and BOD concentrations of 75,000 and 60,000 mg/L, respectively as well as effluent from the batch dissolved air flotation (DAF) system. The conducted kinetics studies showed that Haldane Model fit the substrates and biomass data better than Monod model in DAF-pretreated wastewater, while the modified hydrolysis Monod model better fit the raw wastewater kinetic data. For the DAF pretreated batches, Haldane Model kinetic coefficients k, K(S), Y and Ki values of 1.28-5.35 g COD/g VSS-d, 17,833-23,477 mg/L, 0.13-0.41 mg VSS/mg COD and 48,168 mg/L, respectively were obtained reflecting the slow biodegradation rate. Modified hydrolysis Monod model kinetic constants for the raw wastewater i.e., k, K(S), Y, and K(H) varied from 1-1.3 g COD/g VSS-d, 5580-5600 mg COD/l, 0.08-0.85 mg VSS/mg COD, and 0.21-0.66 d(-1), respectively.
Mathematical Model of Sorption Kinetics of Crude Oil by Rubber Particles from Scrap Tyres
Directory of Open Access Journals (Sweden)
Felix A. AISIEN
2011-06-01
Full Text Available This paper present an insight into how rubber particles from scrap tyres can be utilized to clean up oil spillages as well as how the process of sorption of crude oil by rubber particles can be stimulated based on sorption kinetics. Crude oil sorption tests using recycled rubber particles (a model absorbent were designed for investigating crude oil concentration profiles. The model based on a linear driving force (LDF was developed using a set of experimental data and multiple regression analysis. The crude oil sorption performance tests were conducted under various operating conditions by varying parameters such as rubber particle size and absorption temperature. The predictive capacity of the kinetic model was evaluated under conditions significantly different from those that have already been measured. The experimental results obtained previously were correlated with the first order sorption kinetics model developed. The results showed that the first order kinetics model accurately correlate the experimental data generated. Also, satisfactory results were obtained from simulation of other operating conditions; hence the crude oil sorption kinetics is first order.
Kinetic model for torrefaction of wood chips in a pilot-scale continuous reactor
DEFF Research Database (Denmark)
Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai
2014-01-01
Torrefaction is a mild thermal treatment (200-300 °C) in an inert atmosphere, known to increase the energy density of biomass by evaporation of water and a proportion of the volatiles. In this work a "two-step reaction in series" model was used to describe the thermal degradation kinetics of pine...... wood. The kinetic parameters were determined using a thermogravimetric analyzer (TGA) and the mass loss during the initial heating period was taken into account when deriving the kinetic parameters. It was shown that the experimental results at different heating rates (10-50 °C min-1) are in good...... the temperature along the reactor and the biomass feeding rate in combination with the kinetic parameters obtained from the tests in the TGA. Together with results from a laboratory scale, batch torrefaction reactor that was used to determine the higher heating value (HHV) and mass loss (y) of the same material...
Energy Technology Data Exchange (ETDEWEB)
Grioui, Najla; Halouani, Kamel [Micro-Electro-Thermal Systems - Industrial Energy Systems Group METS-IESG, Institut Preparatoire aux Etudes d' Ingenieurs de Sfax IPEIS, B.P. 805, 3000 Sfax (Tunisia); Zoulalian, Andre [Laboratoire d' Etudes et de Recherches sur le Materiau Bois LERMAB, Universite Henri Point Carre Nancy 1 UHP, B.P. 239, 54506 Vandoeuvre les Nancy Cedex (France); Halouani, Foued [Ecole Nationale d' Ingenieurs de Sfax ENIS, B.P. 3038, Sfax (Tunisia)
2006-01-01
The kinetics of olive wood carbonization is investigated by means of isothermal thermogravimetric analysis method. Measurements were carried out in a thermobalance for different fixed temperatures between 498 and 648K. A two-stage semi-global kinetic model consisting of four sequential steps was proposed to derive kinetic parameters. The olive wood is classified in three pseudo-components. For the first two, similar thermal degradation mechanisms take place in a single reaction step. For the third, the thermal degradation takes place in two consecutive steps. The isothermal conditions allow the kinetic constants (activation energy and pre-exponential factors) to be estimated by means of the analytical solution of the mass conservation equations. An overall good agreement was obtained with activation energy values available in the literature.
Evaluation of rate law approximations in bottom-up kinetic models of metabolism
DEFF Research Database (Denmark)
Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.
2016-01-01
mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws....... These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction...
Modeling the Emission of CO from Wood Fires using Detailed Chemical Kinetics
DEFF Research Database (Denmark)
Dederichs, Anne
Carbon monoxide is treated as one of the most common and dangerous of gases evolving in fires. Modeling the formation of the toxic gas CO from in fire enclosures using detailed chemical kinetics is the topic of this manuscript. A semi-empirical model is developed to study the formation of CO from...... birch wood using detailed chemical kinetics on the combustion of pyrolysis gas from birch wood. The composition of the pyrolysis gas is taken from the experiment by Zanzi and coworkers. The numerical model applies a counter flow configuration involving 84 chemical species and 804 reactions. Hence...
Hoh, C Y; Cord-Ruwisch, R
1996-09-05
The classical Michaelis-Menten model is widely used as the basis for modeling of a number of biological systems. As the model does not consider the inhibitory effect of endproducts that accumulate in virtually all bioprocesses, it is often modified to prevent the overestimation of reaction rates when products have accumulated. Traditional approaches of model modification use the inclusion of irreversible, competitive, and noncompetitive inhibition factors. This article demonstrates that these inhibition factors are insufficient to predict product inhibition of reactions that are close the dynamic equilibrium. All models investigated were found to violate thermodynamic laws as they predicted positive reaction rates for reactions that were endergonic due to high endproduct concentrations. For modeling of biological processes that operate close to the dynamic equilibrium (e.g., anaerobic processes), it is critical to prevent the prediction of positive reaction rates when the reaction has already reached the dynamic equilibrium. This can be achieved by using a reversible kinetic model. However, the major drawback of the reversible kinetic model is the large number of empirical parameters it requires. These parameters are difficult to determine and prone to experimental error. For this reason, the reversible model is not practical in the modeling of biological processes.This article uses the fundamentals of steady-state kinetics and thermodynamics to establish an equation for the reversible kinetic model that is of practical use in bio-process modeling. The behavior of this equilibrium-based model is compared with Michaelis-Menten-based models that use traditional inhibition factors. The equilibrium-based model did not require any empirical inhibition factor to correctly predict when reaction rates must be zero due to the free energy change being zero. For highly exergonic reactions, the equilibrium-based model did not deviate significantly from the Michaelis
International Nuclear Information System (INIS)
Parisot, M.
2011-01-01
effective on unstructured grids. The originality of the scheme lies in the discretization of the unknown as a digital average value of heat flux on faces of control volumes. The precision of this scheme to capture the specific effects, kinetic by nature that cannot be reproduced by the asymptotic Spitzer-Harm model, as for example the effects called 'anti-diffusion' heat flux. The consistency of this pattern with that of Spitzer-Harm equation is highlighted, paving the way for a strategy of coupling the two models. (author) [fr
Full Tokamak discharge simulation and kinetic plasma profile control for ITER
International Nuclear Information System (INIS)
Hee Kim, S.
2009-10-01
Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode
Systematic identification of crystallization kinetics within a generic modelling framework
DEFF Research Database (Denmark)
Abdul Samad, Noor Asma Fazli Bin; Meisler, Kresten Troelstrup; Gernaey, Krist
2012-01-01
A systematic development of constitutive models within a generic modelling framework has been developed for use in design, analysis and simulation of crystallization operations. The framework contains a tool for model identification connected with a generic crystallizer modelling tool-box, a tool...
Directory of Open Access Journals (Sweden)
L. R. Vottero
2000-03-01
Full Text Available The present work analyzes the solvent effects upon the solvatochromic response models for a set of chemical probes and the kinetic response models for an aromatic nucleophilic substitution reaction, in binary mixtures in which both pure components are able to form intersolvent complexes by hydrogen bonding.
DEFF Research Database (Denmark)
Malaguerra, Flavio; Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup
2011-01-01
been modeled using modified Michaelis–Menten kinetics and has been implemented in the geochemical code PHREEQC. The model have been calibrated using a Shuffled Complex Evolution Metropolis algorithm to observations of chlorinated solvents, organic acids, and H2 concentrations in laboratory batch...
2010-12-27
2010 Interim April 2010 - Sept 2010 4. TITLE AND SUBTITLE Sa . CONTRACT NUMBER A Hybrid Kinetic Model of Asymmetric Thin Current Sheets with Sheared...that charge neutrality is not an explicit assumption in this model. Rather it depends on VAle ¢: 1 and the current sheet thickness being Pa as
Predicting microbial growth kinetics with the use of genetic circuit models
Koutinas, M.; Kiparissides, A.; Lorenzo, de V.; Martins Dos Santos, V.A.P.; Pistikopoulos, E.N.; Mantalaris, A.
2011-01-01
A novel modeling approach for the description of bioprocesses is proposed, linking microbial growth kinetics to gene regulation. An example is given with the development and experimental validation of a dynamic mathematical model of the TOL plasmid of Pseudomonas putida mt-2, which is used for the
Janssen, A.E.M.; Sjursnes, B.J.; Vakunov, A.V.; Halling, P.J.
1999-01-01
The Ping-Pong model (incl. alcohol inhibition) is not the correct model to describe the kinetics of a lipase-catalyzed esterification reaction. The first product, water, is always present at the start of the reaction. This leads to an equation with one extra parameter. This new equation fits our
Growth Kinetics and Modeling of Direct Oxynitride Growth with NO-O2 Gas Mixtures
Energy Technology Data Exchange (ETDEWEB)
Everist, Sarah; Nelson, Jerry; Sharangpani, Rahul; Smith, Paul Martin; Tay, Sing-Pin; Thakur, Randhir
1999-05-03
We have modeled growth kinetics of oxynitrides grown in NO-O_{2} gas mixtures from first principles using modified Deal-Grove equations. Retardation of oxygen diffusion through the nitrided dielectric was assumed to be the dominant growth-limiting step. The model was validated against experimentally obtained curves with good agreement. Excellent uniformity, which exceeded expected walues, was observed.
Kinetic models for detection of toxicity in a microbial fuel cell based biosensor
Stein, N.E.; Keesman, K.J.; Hamelers, H.V.M.; Straten, van G.
2011-01-01
Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to
Equilibrium and kinetic models for colloid release under transient solution chemistry conditions
We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...
High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells
DEFF Research Database (Denmark)
Altintas, Ali; Davidsen, Kristian; Garde, Christian
2016-01-01
- and intra-cellular peroxide we have developed a mathematical model that describes two distinct kinetic processes, an initial rapid degradation in the first 10–20 min followed by a slower process. Using this model, a qualitative comparison allowed us to assign the dependence of temporal events to genetic...
Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.
Chang, On-Kok
1983-01-01
A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)
Thermo-kinetic instabilities in model reactors. Examples in experimental tests
Lavadera, Marco Lubrano; Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele
2017-11-01
The use of advanced combustion technologies (such as MILD, LTC, etc.) is among the most promising methods to reduce emission of pollutants. For such technologies, working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. These peculiar operative conditions also imply strong fuel flexibility, thus allowing the use of low calorific value (LCV) energy carriers with high efficiency. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to features such as the susceptibility to oscillations, which are undesirable during combustion. Therefore, an effective use of advanced combustion technologies requires a thorough analysis of the combustion kinetic characteristics in order to identify optimal operating conditions and control strategies with high efficiency and low pollutant emissions. The present work experimentally and numerically characterized the ignition and oxidation processes of methane and propane, highly diluted in nitrogen, at atmospheric pressure, in a Plug Flow Reactor and a Perfectly Stirred Reactor under a wide range of operating conditions involving temperatures, mixture compositions and dilution levels. The attention was focused particularly on the chemistry of oscillatory phenomena and multistage ignitions. The global behavior of these systems can be qualitatively and partially quantitatively modeled using the detailed kinetic models available in the literature. Results suggested that, for diluted conditions and lower adiabatic flame temperatures, the competition among several pathways, i.e. intermediate- and
Directory of Open Access Journals (Sweden)
Khalifa Riahi
2017-01-01
Full Text Available The removal of phosphates from aqueous solutions by adsorption onto date palm fibers (DPF has been studied in batch mode. The aim of this study was to understand the mechanisms that govern phosphate sorption and find an appropriate model for the kinetics of removal. In order to investigate the mechanism of sorption and potential rate controlling steps, pseudo first-order, pseudo second-order, intra-particle diffusion and the Elovich equations have been used to test experimental data. Kinetic analysis of the four models has been carried out for initial phosphate concentration in the range of 30–110 mg/L. The rate constants for the four models have been determined and the correlation coefficients have been calculated in order to assess which model provides the best fit predicted data with experimental results. Seven statistical functions were used to estimate the error deviations between experimental and theoretically predicted kinetic adsorption values, including the average relative error deviation (ARED, Marquardt’s percent standard error deviation (MPSED, the hybrid fractional error function (HYBRID, the sum of the squares of the errors (SSE and three alternative statistical functions, including the Chi-square test, the F-test and Student’s T-test. The results showed that, both Elovich equation and pseudo second-order equation provide the best fit to experimental data for different initial phosphate concentrations.
International Nuclear Information System (INIS)
Bolton, E.W.; Lasaga, A.C.; Rye, D.M.
1999-01-01
The kinetics of dissolution and precipitation is of central importance to understanding the long-term evolution of fluid flows in crustal environments, with implications for problems as diverse as nuclear waste disposal and crustal evolution. The authors examine the dynamics of such evolution for several geologically relevant permeability distributions (models for en-echelon cracks, an isolated sloping fractured zone, and two sloping high-permeability zones that are close enough together to interact). Although the focus is on a simple quartz matrix system, generic features emerge from this study that can aid in the broader goal of understanding the long-term feedback between flow and chemistry, where dissolution and precipitation is under kinetic control. Examples of thermal convection in a porous medium with spatially variable permeability reveal features of central importance to water-rock interaction. After a transient phase, an accelerated rate of change of porosity may be used with care to decrease computational time, as an alternative to the quasi-stationary state approximation (Lichtner, 1988). Kinetic effects produce features not expected by traditional assumptions made on the basis of equilibrium, for example, that cooling fluids are oversaturated and heating fluids are undersaturated with respect to silicic acid equilibrium. Indeed, the authors observe regions of downwelling oversaturated fluid experiencing heating and regions of upwelling, yet cooling, undersaturated fluid. When oscillatory convection is present, the amplitudes of oscillation generally increase with time in near-surface environments, whereas amplitudes tend to decrease over long times near the heated lower boundary. The authors examine the scaling behavior of characteristic length scales, of terms in the solute equation, and of the typical deviation from equilibrium, each as a function of the kinetic rate parameters
Active control: Wind turbine model
Energy Technology Data Exchange (ETDEWEB)
Bindner, Henrik
1999-07-01
This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.
Active control: Wind turbine model
DEFF Research Database (Denmark)
Bindner, H.
1999-01-01
This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...
Empiric model for mean generation time adjustment factor for classic point kinetics equations
International Nuclear Information System (INIS)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C.
2017-01-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
Empiric model for mean generation time adjustment factor for classic point kinetics equations
Energy Technology Data Exchange (ETDEWEB)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C., E-mail: david.goes@poli.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: alessandro@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2017-11-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
DEFF Research Database (Denmark)
Jødal, Lars; Hansen, Søren B.; Jensen, Svend B.
2016-01-01
Introduction: An important issue in multitracer studies is the separation of signals from the different radiotracers. This is especially the case when an early tracer has a long physical half-life and kinetic modelling has to be performed, because the early tracer can confer a long-lived contamin......Introduction: An important issue in multitracer studies is the separation of signals from the different radiotracers. This is especially the case when an early tracer has a long physical half-life and kinetic modelling has to be performed, because the early tracer can confer a long-lived...... counting of blood samples can lead to a contaminating background not observed in PET imaging and this background can affect kinetic modelling. If the contaminating tracer has a much longer half-life than the foreground tracer, then the problem can be solved by late recounting of the samples....
Robustness in Escherichia coli glutamate and glutamine synthesis studied by a kinetic model.
Lodeiro, Aníbal; Melgarejo, Augusto
2008-04-01
Metabolic control of glutamine and glutamate synthesis from ammonia and oxoglutarate in Escherichia coli is tight and complex. In this work, the role of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) regulation in this control was studied. Both enzymes form a linear pathway, which can also have a cyclic topology if glutamate-oxoglutarate amino transferase (GOGAT) activity is included. We modelled the metabolic pathways in the linear or cyclic topologies using a coupled nonlinear differential equations system. To simulate GS regulation by covalent modification, we introduced a relationship that took into account the levels of oxoglutarate and glutamine as signal inputs, as well as the ultrasensitive response of enzyme adenylylation. Thus, by including this relationship or not, we were able to model the system with or without GS regulation. In addition, GS and GDH activities were changed manually. The response of the model in different stationary states, or under the influence of N-input exhaustion or oscillation, was analyzed in both pathway topologies. Our results indicate a metabolic control coefficient for GDH ranging from 0.94 in the linear pathway with GS regulation to 0.24 in the cyclic pathway without regulation, employing a default GDH concentration of 8 microM. Thus, in these conditions, GDH seemed to have a high degree of control in the linear pathway while having limited influence in the cyclic one. When GS was regulated, system responses to N-input perturbations were more sensitive, especially in the cyclic pathway. Furthermore, we found that effects of regulation against perturbations depended on the relative values of the glutamine and glutamate output first-order kinetic constants, which we named k(6) and k(7), respectively. Effects of regulation grew exponentially with a factor around 2, with linear increases of (k(7) - k(6)). These trends were sustained but with lower differences at higher GS concentration. Hence, GS regulation seemed
Combining Genetic Circuit and Microbial Growth Kinetic Models: A Challenge for Biological Modelling
Koutinas, M.; Kiparissides, A.; Lam, M.C.; Silva-Rocha, R.; Lorenzo, de V.; Martins Dos Santos, V.A.P.; Pistikopoulos, E.N.; Mantalaris, A.
2010-01-01
A modelling framework that consists of model building, validation and analysis, leading to model-based design of experiments and to the application of optimisation-based model-predictive control strategies for the development of optimised bioprocesses is presented. An example of this framework is
Thermodynamic and Kinetic Control of Charged Triblock Copolymer Assembly into Complex Nanostructures
Cui, Honggang; Pochan, Darrin; Chen, Zhiyun; Wooley, Karen
2007-03-01
Self-assembly of poly (acrylic acid)-block-poly (methyl acrylate)-block-polystyrene triblock copolymers produces various ordered nano-domains in THF/water solution through the interaction with organic counterions. These assembled structures include classic micelles (spheres, cylinders and vesicles), and non-classic micelles (disks, toroids, branched micelles and segmented micelles). Each micelle structure is stable and reproducible at different assembly conditions depending on not only solution components (thermodynamics) but also mixing procedure and consequent self-assembly pathway (kinetics). The key factors that determine the thermodynamic interactions that help define the assembled structures and the kinetic assembly process include THF/water ratio, PS block length, the type and amount of organic counterions, and the mixing pathway. The complex phase behavior and controlled morphology production have been studied via in-situ cryogenic transmission electron microscopy in combination with scattering techniques (small angle neutron scattering and light scattering). Delicate control of the interplay of thermodynamics with slow chain kinetics of block copolymers in solution offers a new strategy to create unique, functional nanostructures.
Multigroup perturbation model for kinetic analysis of nuclear reactors
International Nuclear Information System (INIS)
Souza, G.M.
1989-01-01
The scope of this work is the development of a multigroup perturbation theory for the purpose of Kinetic and dynamic analysis of nuclear reactors. The equations that describe the reactor behavior were presented in all generality and written in the shorthand notation of matrices and vectors. In the derivation of those equations indetermined operators and discretizing factors were introduced and then determined by comparision with conventional equations. Fick's Law was developed in higher orders for neutron and importance current density. The solution of the direct and adjoint fields were represented by combination of the eigenfunctions of the B and B* operators and the eigenvalue modulus equality was established mathematically. In the derivation of the reactivity expression the B operator perturbation was split in two non coupled to the flux form and level. The prompt neutrons effective mean life was derived from reactor equations and importance conservation. The establishment of the Nordheim's equation, although modified, was based on Gandini. Finally, a mathematical interpretation of the flux-trap region was avented. (author)
General dynamical properties of cosmological models with nonminimal kinetic coupling
Matsumoto, Jiro; Sushkov, Sergey V.
2018-01-01
We consider cosmological dynamics in the theory of gravity with the scalar field possessing the nonminimal kinetic coupling to curvature given as η Gμνphi,μphi,ν, where η is an arbitrary coupling parameter, and the scalar potential V(phi) which assumed to be as general as possible. With an appropriate dimensionless parametrization we represent the field equations as an autonomous dynamical system which contains ultimately only one arbitrary function χ (x)= 8 π | η | V(x/√8 π) with x=√8 πphi. Then, assuming the rather general properties of χ(x), we analyze stationary points and their stability, as well as all possible asymptotical regimes of the dynamical system. It has been shown that for a broad class of χ(x) there exist attractors representing three accelerated regimes of the Universe evolution, including de Sitter expansion (or late-time inflation), the Little Rip scenario, and the Big Rip scenario. As the specific examples, we consider a power-law potential V(phi)=M4(phi/phi0)σ, Higgs-like potential V(phi)=λ/4(phi2‑phi02)2, and exponential potential V(phi)=M4 e‑phi/phi0.
Kinetics of conformational changes of fibronectin adsorbed onto model surfaces.
Baujard-Lamotte, L; Noinville, S; Goubard, F; Marque, P; Pauthe, E
2008-05-01
Fibronectin (FN), a large glycoprotein found in body fluids and in the extracellular matrix, plays a key role in numerous cellular behaviours. We investigate FN adsorption onto hydrophilic bare silica and hydrophobic polystyrene (PS) surfaces using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) in aqueous medium. Adsorption kinetics using different bulk concentrations of FN were followed for 2h and the surface density of adsorbed FN and its time-dependent conformational changes were determined. When adsorption occurs onto the hydrophilic surface, FN molecules keep their native conformation independent of the adsorption conditions, but the amount of adsorbed FN increases with time and the bulk concentration. Although the protein surface density is the same on the hydrophobic PS surface, this has a strong impact on the average conformation of the adsorbed FN layer. Indeed, interfacial hydration changes induced by adsorption onto the hydrophobic surface lead to a decrease in unhydrated beta-sheet content and cause an increase in hydrated beta-strand and hydrated random domain content of adsorbed FN. This conformational change is mainly dependent on the bulk concentration. Indeed, at low bulk concentrations, the secondary structures of adsorbed FN molecules undergo strong unfolding, allowing an extended and hydrated conformation of the protein. At high bulk concentrations, the molecular packing reduces the unfolding of the stereoregular structures of the FN molecules, preventing stronger spreading of the protein.
Fuzzy Stochastic Petri Nets for Modeling Biological Systems with Uncertain Kinetic Parameters.
Liu, Fei; Heiner, Monika; Yang, Ming
2016-01-01
Stochastic Petri nets (SPNs) have been widely used to model randomness which is an inherent feature of biological systems. However, for many biological systems, some kinetic parameters may be uncertain due to incomplete, vague or missing kinetic data (often called fuzzy uncertainty), or naturally vary, e.g., between different individuals, experimental conditions, etc. (often called variability), which has prevented a wider application of SPNs that require accurate parameters. Considering the strength of fuzzy sets to deal with uncertain information, we apply a specific type of stochastic Petri nets, fuzzy stochastic Petri nets (FSPNs), to model and analyze biological systems with uncertain kinetic parameters. FSPNs combine SPNs and fuzzy sets, thereby taking into account both randomness and fuzziness of biological systems. For a biological system, SPNs model the randomness, while fuzzy sets model kinetic parameters with fuzzy uncertainty or variability by associating each parameter with a fuzzy number instead of a crisp real value. We introduce a simulation-based analysis method for FSPNs to explore the uncertainties of outputs resulting from the uncertainties associated with input parameters, which works equally well for bounded and unbounded models. We illustrate our approach using a yeast polarization model having an infinite state space, which shows the appropriateness of FSPNs in combination with simulation-based analysis for modeling and analyzing biological systems with uncertain information.
Association of footprint measurements with plantar kinetics: a linear regression model.
Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S
2014-03-01
The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability. Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables. The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions. Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.
Energy Technology Data Exchange (ETDEWEB)
Liu, J.; Ukita, M.; Nakanishi, H.; Imai, T. [Yamaguchi University, Yamaguchi (Japan); Fukagawa, M. [Ube Technical College, Yamaguchi (Japan)
1995-08-21
A laboratory study was used to develop a simplified kinetic model, to evaluate the kinetic parameters, and to provide rational design parameters for a pilot plant treating flax retting wastewater by means of the simulation of optimal operation of the UASB reactor. The results indicated that the developed model can be used predicatively for assessing plant performance and when the concentration of the influent is at the range of 5.5-7.3gCOD/l, the concentration of the hard-biodegradable materials is 0.46 gCOD/l. 14 refs., 9 figs., 3 tabs.
Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J
2014-01-01
The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%.
Neff, Kevin L; Offord, Chetan P; Caride, Ariel J; Strehler, Emanuel E; Prendergast, Franklyn G; Bajzer, Zeljko
2011-05-18
Kinetic studies of biochemical reactions are typically carried out in a dilute solution that rarely contains anything more than reactants, products, and buffers. In such studies, mass-action-based kinetic models are used to analyze the progress curves. However, intracellular compartments are crowded by macromolecules. Therefore, we investigated the adequacy of the proposed generalizations of the mass-action model, which are meant to describe reactions in crowded media. To validate these models, we measured time-resolved kinetics for dansylamide binding to carbonic anhydrase in solutions crowded with polyethylene glycol and Ficoll. The measured progress curves clearly show the effects of crowding. The fractal-like model proposed by Savageau was used to fit these curves. In this model, the association rate coefficient k(a) allometrically depends on concentrations of reactants. We also considered the fractal kinetic model proposed by Schnell and Turner, in which k(a) depends on time according to a Zipf-Mandelbrot distribution, and some generalizations of these models. We found that the generalization of the mass-action model, in which association and dissociation rate coefficients are concentration-dependent, represents the preferred model. Other models based on time-dependent rate coefficients were inadequate or not preferred by model selection criteria. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Eichwald, O.; Guntoro, N.A.; Yousfi, M.; Benhenni, M.
2002-01-01
A non-stationary reactive gas dynamics model in a mono-dimensional geometry, including radial mass diffusion, gas temperature variation and chemical kinetics, is developed in this paper. The aim is to analyse the spatio-temporal evolution of the main neutral species involved in a corona discharge used for NO pollution control in polluted air at atmospheric pressure and ambient temperature. The present reactive gas dynamics model takes into account 16 neutral chemical species (including certain metastable species) reacting following 110 selected chemical reactions. The initial concentration of each neutral species is obtained from a 1.5D electrical discharge model. The gas temperature variations are due to direct Joule heating during the discharge phase, and also result from the delayed heating due to the relaxation of the vibrational energy into a random thermal energy during the post-discharge phase. The simulation conditions are those of an existing experimental setup (anode voltage of 10 kV in the case of a point to plane geometry with an interelectrode distance of 10 mm). The obtained results show that the diffusion phenomena and the gas temperature rise affect quite well the gas reactivity and the neutral species evolution. This allows us to better understand the different reaction processes and transport phenomena affecting the NO concentration magnitude inside the discharge channel. (author)
Treatment of tannery effluent by passive uptake-parametric studies and kinetic modeling.
Natarajan, Rajamohan; Manivasagan, Rajasimman
2018-02-01
Galactomyces geotrichum was utilized as a potential biosorbent for the treatment of tannery effluent under controlled environmental conditions. Tannery effluent treatment was studied through parametric experiments to study the effect of effluent pH (3.0-10.0), initial COD (1100-4400 mg/L), and biosorbent dosage (0.3-3.0 g/L).The zeta potential of the biosorbent was determined and found to influence the optimal pH. Increase in effluent COD values resulted in decreased COD removal percentages which attributed to limited availability of surface active sites. The equation relating the COD removal efficiency and biosorbent dose was proposed. Two popular kinetic models, namely pseudo-second order and power function models, were employed to the experimental data. Pseudo-second order model proved to be a good fit with high values of regression coefficient (R 2 > 0.960). Potential application of a fungal biosorption process was explored and the optimal process parameters were identified.
Model tracking controller design of robot manipulator system with disturbances
Directory of Open Access Journals (Sweden)
Dazhong Wang
2015-06-01
Full Text Available In the model tracking control of robot manipulator system, the treatment of nonlinear uncertainty in the system has always been an active research field. This article establishes a kinetic equation for robot manipulator system based on Lagrange equation and proposes a model tracking control system based on differential divisor. On this basis, this article proposes a model tracking control scheme for robot manipulator systems with disturbances. The proposed scheme is robust stable under the external disturbances. At last, the system simulation approach is employed to verify the effectiveness of this scheme on robot manipulator control.
Energy Technology Data Exchange (ETDEWEB)
Perelson, Alan S [Los Alamos National Laboratory; Shudo, Emi [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory
2008-01-01
Mathematical models have proven helpful in analyzing the virological response to antiviral therapy in hepatitis C virus (HCY) infected subjects. Objective: To summarize the uses and limitations of different models for analyzing HCY kinetic data under pegylated interferon therapy. Methods: We formulate mathematical models and fit them by nonlinear least square regression to patient data in order estimate model parameters. We compare the goodness of fit and parameter values estimated by different models statistically. Results/Conclusion: The best model for parameter estimation depends on the availability and the quality of data as well as the therapy used. We also discuss the mathematical models that will be needed to analyze HCV kinetic data from clinical trials with new antiviral drugs.
Measurement and modeling of diffusion kinetics of a lipophilic molecule across rabbit cornea.
Gupta, Chhavi; Chauhan, Anuj; Mutharasan, Raj; Srinivas, Sangly P
2010-04-01
To develop a kinetic model for representing the diffusion and partitioning of Rhodamine B (RhB), a fluorescent lipophilic molecule, across the cornea for gaining insights into pharmacokinetics of topical drugs to the eye. Rabbit corneas mounted underneath a custom-built scanning microfluorometer were perfused with Ringers on both sides of the tissue. After a step change in RhB on the tear side, transients of trans-corneal fluorescence of RhB were measured at a depth resolution approximately 8 microm. RhB distribution exhibited discontinuities at the interface between epithelium and stroma, and between stroma and endothelium. In each of the layers, fluorescence was non-uniform. Fluorescence was elevated in the epithelium and endothelium relative to the stroma. Modeling of RhB transport by diffusion in each layer and stipulation of partitioning of RhB at the cellular interfaces were required to account for trans-corneal penetration kinetics of RhB. The model parameters, estimated using the unsteady state trans-corneal RhB profiles, were found to be sensitive, and the model predicted the experimental profiles accurately. Conventional pharmacokinetic models that depict cornea as a single compartment do not predict the depth-dependent kinetics of RhB penetration. The proposed model incorporates realistic transport mechanisms and thereby highlights the influence of physicochemical properties of drugs on trans-corneal kinetics.
Modeling the Effects of Cyber Operations on Kinetic Battles
2014-06-01
related topics. The use of the prefix “cyber” was first popularized by Norbert Wiener (1965) through his book Cybernetics, or Control and Communication in...Washington, DC. Wiener , Norbert . Cybernetics or Control and Communication in the Animal and the Machine, vol. 25. MIT press, 1965. Winterfeld, S., J
International Nuclear Information System (INIS)
Wuebbles, D.J.
1981-09-01
Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere
Directory of Open Access Journals (Sweden)
Antonio Tripodi
2017-05-01
Full Text Available Process simulation represents an important tool for plant design and optimization, either applied to well established or to newly developed processes. Suitable thermodynamic packages should be selected in order to properly describe the behavior of reactors and unit operations and to precisely define phase equilibria. Moreover, a detailed and representative kinetic scheme should be available to predict correctly the dependence of the process on its main variables. This review points out some models and methods for kinetic analysis specifically applied to the simulation of catalytic processes, as a basis for process design and optimization. Attention is paid also to microkinetic modelling and to the methods based on first principles, to elucidate mechanisms and independently calculate thermodynamic and kinetic parameters. Different case studies support the discussion. At first, we have selected two basic examples from the industrial chemistry practice, e.g., ammonia and methanol synthesis, which may be described through a relatively simple reaction pathway and the relative available kinetic scheme. Then, a more complex reaction network is deeply discussed to define the conversion of bioethanol into syngas/hydrogen or into building blocks, such as ethylene. In this case, lumped kinetic schemes completely fail the description of process behavior. Thus, in this case, more detailed—e.g., microkinetic—schemes should be available to implement into the simulator. However, the correct definition of all the kinetic data when complex microkinetic mechanisms are used, often leads to unreliable, highly correlated parameters. In such cases, greater effort to independently estimate some relevant kinetic/thermodynamic data through Density Functional Theory (DFT/ab initio methods may be helpful to improve process description.
Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.
Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe
2016-01-01
Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.
Modeling of scale-dependent bacterial growth by chemical kinetics approach.
Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas
2014-01-01
We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.
A robust methodology for kinetic model parameter estimation for biocatalytic reactions
DEFF Research Database (Denmark)
Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson
2012-01-01
Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several...... parameters, which are strongly correlated with each other. State-of-the-art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver-Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely...... lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches...
Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics
DEFF Research Database (Denmark)
Bordbar, Aarash; McCloskey, Douglas; Zielinski, Daniel C
2015-01-01
Understanding individual variation is fundamental to personalized medicine. Yet interpreting complex phenotype data, such as multi-compartment metabolomic profiles, in the context of genotype data for an individual is complicated by interactions within and between cells and remains an unresolved...... challenge. Here, we constructed multi-omic, data-driven, personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy individuals based on fasting-state plasma and erythrocyte metabolomics and whole-genome genotyping. We show that personalized kinetic rate constants, rather than......-induced anemia) and how genetic variation (inosine triphosphatase deficiency) may protect against this side effect. This study demonstrates the feasibility of personalized kinetic models, and we anticipate their use will accelerate discoveries in characterizing individual metabolic variation....
Kocadağlı, Tolgahan; Gökmen, Vural
2016-11-15
The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neveux, Laure; Chiche, David; Pérez-Pellitero, Javier; Favergeon, Loïc; Gay, Anne-Sophie; Pijolat, Michèle
2013-02-07
Zinc oxide based materials are commonly used for the final desulfurization of synthesis gas in Fischer-Tropsch based XTL processes. Although the ZnO sulfidation reaction has been widely studied, little is known about the transformation at the crystal scale, its detailed mechanism and kinetics. A model ZnO material with well-determined characteristics (particle size and shape) has been synthesized to perform this study. Characterizations of sulfided samples (using XRD, TEM and electron diffraction) have shown the formation of oriented polycrystalline ZnS nanoparticles with a predominant hexagonal form (wurtzite phase). TEM observations also have evidenced an outward development of the ZnS phase, showing zinc and oxygen diffusion from the ZnO-ZnS internal interface to the surface of the ZnS particle. The kinetics of ZnO sulfidation by H(2)S has been investigated using isothermal and isobaric thermogravimetry. Kinetic tests have been performed that show that nucleation of ZnS is instantaneous compared to the growth process. A reaction mechanism composed of eight elementary steps has been proposed to account for these results, and various possible rate laws have been determined upon approximation of the rate-determining step. Thermogravimetry experiments performed in a wide range of H(2)S and H(2)O partial pressures have shown that the ZnO sulfidation reaction rate has a nonlinear variation with H(2)S partial pressure at the same time no significant influence of water vapor on reaction kinetics has been observed. From these observations, a mixed kinetics of external interface reaction with water desorption and oxygen diffusion has been determined to control the reaction kinetics and the proposed mechanism has been validated. However, the formation of voids at the ZnO-ZnS internal interface, characterized by TEM and electron tomography, strongly slows down the reaction rate. Therefore, the impact of the decreasing ZnO-ZnS internal interface on reaction kinetics has been
Alvanos, Michail; Christoudias, Theodoros
2017-10-01
This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.
Directory of Open Access Journals (Sweden)
M. Alvanos
2017-10-01
Full Text Available This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate–chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC, used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)
1998-07-01
The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.
Directory of Open Access Journals (Sweden)
Ali eKhodayari
2015-01-01
Full Text Available Computational strain design prediction accuracy has been the focus for many recent efforts through the selective integration of kinetic information into metabolic models. In general, kinetic model prediction quality is determined by the range and scope of genetic and/or environmental perturbations used during parameterization. In this effort, we apply the k-OptForce procedure on a kinetic model of E. coli core metabolism constructed using the Ensemble Modeling (EM method and parameterized using multiple mutant strains data under aerobic respiration with glucose as the carbon source. Minimal interventions are identified that improve succinate yield under both aerobic and anaerobic conditions to test the fidelity of model predictions under both genetic and environmental perturbations. Under aerobic condition, k-OptForce identifies interventions that match existing experimental strategies pointing at a number of unexplored flux redirections such as routing glyoxylate flux through the glycerate metabolism to improve succinate yield. Many of the identified interventions rely on the kinetic descriptions and would not be discoverable by a purely stoichiometric description. In contrast, under fermentative (anaerobic conditions, k-OptForce fails to identify key interventions including up-regulation of anaplerotic reactions and elimination of competitive fermentative products. This is due to the fact that the pathways activated under anaerobic conditions were not properly parameterized as only aerobic flux data were used in the model construction. This study shed light on the importance of condition-specific model parameterization and provides insight onto how to augment kinetic models so as to correctly respond to multiple environmental perturbations.
Franz, Silvio; Gradenigo, Giacomo; Spigler, Stefano
2016-03-01
We study how the thermodynamic properties of the triangular plaquette model (TPM) are influenced by the addition of extra interactions. The thermodynamics of the original TPM is trivial, while its dynamics is glassy, as usual in kinetically constrained models. As soon as we generalize the model to include additional interactions, a thermodynamic phase transition appears in the system. The additional interactions we consider are either short ranged, forming a regular lattice in the plane, or long ranged of the small-world kind. In the case of long-range interactions we call the new model the random-diluted TPM. We provide arguments that the model so modified should undergo a thermodynamic phase transition, and that in the long-range case this is a glass transition of the "random first-order" kind. Finally, we give support to our conjectures studying the finite-temperature phase diagram of the random-diluted TPM in the Bethe approximation. This corresponds to the exact calculation on the random regular graph, where free energy and configurational entropy can be computed by means of the cavity equations.
Application of computational modeling to the kinetics of precipitation of aluminum nitride in steels
Directory of Open Access Journals (Sweden)
e Silva Costa A.
2012-01-01
Full Text Available In previous works the possibilities and limitations of the application of calculations in the Al-Fe-N system to describe the precipitation of AlN in steel, both in the solid state and during the solidification were discussed and some difficulties related to the extension of these calculations to more complex steel systems, due to limitations in the thermodynamic data were also presented. Presently, the precipitation kinetics of AlN in ferrite (BCC and austenite (FCC is discussed. The correct description of the precipitation of AlN in both phases is relevant to: (a the precipitation at higher temperatures, in the austenite field, that occurs in some steels, (b the concurrent precipitation of this nitride with the annealing treatment, when the steel is mostly ferritic, used in the processing of some types of deep drawing steels (c the precipitation of this nitride in some silicon alloyed electric steels at relatively high temperatures, when these steels can have significant fractions of BCC and FCC in their microstructure. The precise knowledge of the precipitation-dissolution behavior of AlN in special in these two latter classes of steels is of great importance to their correct processing. In this work, a computational tool for simulating multiparticle precipitation kinetics of diffusion-controlled processes in multi-component and multi-phase alloy systems is employed in an attempt to describe these precipitation processes. The results are compared with experimental data on precipitation. The assumptions necessary for the application of the multi-particle modeling tool are discussed, agreements and discrepancies are identified and some possible reasons for these are indicated. Furthermore, the impact of the use of different sources of data on steel processing development is discussed and the need for further studies highlighted.
Kinetic and allometric models for dosimetry using radiopharmaceuticals labeled with lanthanides
International Nuclear Information System (INIS)
Lima, Marina Ferreira
2012-01-01
This work proposes two models based in compartmental analyses: Animal model and Human model, using images from gamma camera measurements to determinate the kinetic constants of the 177 Lu-DOTATATE to three animal species (rat Wistar, Armenian hamster and Syrian hamster) and to the human in biodistribution studies split in two phases: Phase 1 governed by uptake from the blood and Phase 2 governed by the real excretion. The kinetic constants obtained from the animals' data ere used to build allometric scaling to predict radiopharmaceutical biodistribution in the human employing relations by mass, metabolism, by life span and by physiological parameters. These extrapolation results were compared with the PRRT (Peptide receptor radiotherapy) patients kinetic data calculated using the Human model. The kinetic constants obtained from humans were used in dose assessment to PRRT patients considering MIRD 26 organs and tissues. Dosimetry results were in agreement with available results from literature. For the Phase 1 allometric scaling from kinetic data from the blood to the organs straight responsible for the 177 Lu-DOTATATE metabolism and excretion - liver, kidneys and urinary bladder -show good correlation in the scaling by mass, metabolism and physiological and parameters. For the Phase 2, only the kinetic data from blood to the liver and to the kidneys show good correlation. Based in the anaesthetics inhibitory action over the renal excretion, there is not empirical basis to allow measurement times over 40 minutes in in vivo studies with small animals. Consequently, the Phase 1 results seem enough to make allometric scaling to assessment dose in PRRT. (author)
Directory of Open Access Journals (Sweden)
Marc Breit
2015-08-01
Full Text Available The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS with the concept of stable isotope dilution (SID for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2, showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001. In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001, classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001. These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling
Chen, Jie; Zhao, Bin; An, Qiang; Wang, Xia; Zhang, Yi Xin
2016-04-01
Alcaligenes faecalis strain NR has the capability of simultaneous ammonium and organic carbon removal under sole aerobic conditions. The growth and substrate removal characteristics of A. faecalis strain NR were studied and appropriate kinetic models were developed. The maximum substrate removal rate of NH4 (+)-N and TOC were determined as 2.27 mg NH4 (+)-N/L/h and 30.00 mg TOC/L/h, respectively with initial NH4 (+)-N = 80 mg/L and TOC = 800 mg/L. Single-substrate models and double-substrate models based on Monod, Contois, Moser and Teissier were employed to describe the bioprocess kinetic coefficients. As a result, two double-substrate models, Teissier-Contois and Contois-Contois, were considered to be appropriate to model growth kinetics with both NH4 (+)-N and TOC as limiting substrates. The kinetic constants of maximum growth rate (μ max) and half-saturation constant (K S and B S) were obtained by solving multiple equations with regression. This work can be used to further understand and predict the performance of heterotrophic nitrifiers, and thus provides specific guidance of these functional strains in practical wastewater treatment process.
Van Ende, Marie-Aline; Jung, In-Ho
2017-02-01
The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.
Energy Technology Data Exchange (ETDEWEB)
Touchard, S.
2005-10-15
The irreversible reduction of oil resources, the CO{sub 2} emission control and the application of increasingly strict standards of pollutants emission lead the worldwide researchers to work to reduce the pollutants formation and to improve the engine yields, especially by using homogenous charge combustion of lean mixtures. The numerical simulation of fuel blends oxidation is an essential tool to study the influence of fuel formulation and motor conditions on auto-ignition and on pollutants emissions. The automatic generation helps to obtain detailed kinetic models, especially at low temperature, where the number of reactions quickly exceeds thousand. The main purpose of this study is the generation and the validation of detailed kinetic models for the oxidation of gasoline blends using the EXGAS software. This work has implied an improvement of computation rules for thermodynamic and kinetic data, those were validated by numerical simulation using CHEMKIN II softwares. A large part of this work has concerned the understanding of the low temperature oxidation chemistry of the C5 and larger alkenes. Low and high temperature mechanisms were proposed and validated for 1 pentene, 1-hexene, the binary mixtures containing 1 hexene/iso octane, 1 hexene/toluene, iso octane/toluene and the ternary mixture of 1 hexene/toluene/iso octane. Simulations were also done for propene, 1-butene and iso-octane with former models including the modifications proposed in this PhD work. If the generated models allowed us to simulate with a good agreement the auto-ignition delays of the studied molecules and blends, some uncertainties still remains for some reaction paths leading to the formation of cyclic products in the case of alkenes oxidation at low temperature. It would be also interesting to carry on this work for combustion models of gasoline blends at low temperature. (author)
Energy Technology Data Exchange (ETDEWEB)
Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy
1996-12-31
This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.
A simplified kinetic and mass transfer modelling of the thermal hydrolysis of vegetable oils
DEFF Research Database (Denmark)
Forero-Hernandez, Hector Alexander; Jones, Mark Nicholas; Sarup, Bent
2017-01-01
This work presents a combined modelling approach to investigate the kinetics and masstransfer effects on the hydrolysis of vegetable oils under subcritical conditions. The primary purpose of this simplified model is to interpret experimental data collected from typical batch tests and to estimate...... and improvement accompanied by Monte Carlo uncertainty analysis. Since the lack of experimental data is a crucial issue in the hydrolysis of vegetable oils, this model-based analysis of data is of substantial value to provide necessary information for detailed modeling and characterization of the process....... parameters for the proposed model. Due to its heterogeneous nature, the hydrolysis reaction is affected not only by the chemical kinetics but also by the rate of mass transfer between the oil and water as well as their specific contact area in this two phase emulsion. Considering these properties, a model...
Sarathy, Mani
2018-04-03
Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
Controlling chaos in Internet congestion control model
International Nuclear Information System (INIS)
Chen Liang; Wang Xiaofan; Han Zhengzhi
2004-01-01
The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p max . This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic
Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant
DEFF Research Database (Denmark)
Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar
2016-01-01
Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions...... of the WTGs depending on their stored KE. The proposed KE-based gain scheme aims to make use of the releasable KE in a WPP to raise the frequency nadir. To achieve this, two additional loops for the inertial control are implemented in each DFIG controller: the rate of change of frequency and droop loops....... The proposed scheme adjusts the two loop gains in a DFIG controller depending on its rotor speed so that a DFIG operating at a higher rotor speed releases more KE. The performance of the proposed scheme was investigated under various wind conditions. The results clearly indicate that the proposed scheme...
Practical use of control rod calibration system with the inverse kinetics method
International Nuclear Information System (INIS)
Yamanaka, Haruhiko; Hayashi, Kazuhiko; Motohashi, Jun; Kawashima, Kazuhito; Ichimura, Toshiyuki; Tamai, Kazuo; Takeuti, Mitsuo
2002-01-01
The control rod calibration results in the JRR-3 are used as a reactivity standard to measure and manage the reactivity change in the core. The total travel of all six control rods has been calibrated by an inverse kinetics method (IK method) during an annual maintenance period. The IK method has the great merit in saving measuring time compared with the conventional positive period method (PP method). The JRR-3 control rod calibration system was renovated and put into practical use in order to improve reliability and function by accumulating 10-year experience with the IK method in the JRR-3. The report shows the function, the performance and results of verification of the JRR-3 control rod calibration system. (author)
Energy Technology Data Exchange (ETDEWEB)
Pacheco, Manuel [Department of Refining and Petrochemicals, Center for Research and Development of the Venezuelan Oil Industry (PDVSA-Intevep), Sector el Tambor, P.O. Box 76343, Los Teques, Edo Miranda (Venezuela); Sira, Jorge [Department of Mechanical Engineering, Universidad de los Andes, Merida (Venezuela); Kopasz, John [US Department of Energy, Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2003-09-10
A mathematical model was developed in the framework of the process simulator Aspen Plus in order to describe the reaction kinetics and performance of a fuel processor used for autothermal reforming of liquid hydrocarbons. Experimental results obtained in the facilities of Argonne National Laboratories (ANL) when reforming isooctane using a ceria-oxide catalyst impregnated with platinum were used in order to validate the reactor model. The reaction kinetics and reaction schemes were taken from published literature and most of the chemical reactions were modeled using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formulation to account for the effect of adsorption of reactants and products on the active sites of the catalyst. The water-gas-shift (WGS) reactor used to reduce the concentration of CO in the reformate was also modeled. Both reactor models use a simplified formulation for estimating the effectiveness factor of each chemical reaction in order to account for the effect of intraparticle mass transfer limitations on the reactor performance. Since the data in the literature on kinetics of autothermal reforming of liquid hydrocarbons using CeO{sub 2}-Pt catalyst is scarce, the proposed kinetic model for the reaction network was coupled to the sequential quadratic programming (SQP) algorithm implemented in Aspen Plus in order to regress the kinetic constants for the different reactions. The model describes the trend of the experimental data in terms of hydrogen yield and distribution of products with a relative deviation of {+-}15% for reforming temperatures between 600 and 800C and reactor space velocities between 15000 and 150000h{sup -1}.
Kinetic modelling of plasma near the neutralizer plate in a tokamak divertor
International Nuclear Information System (INIS)
Abou-Assaleh, Z.; Marchand, R.; Matte, J.P.; Johnston, T.W.; Parbhakar, K.J.
1990-01-01
An electron kinetic code is used to simulate longitudinal transport and recycling near the neutralizer plate in a divertor plasma. In addition to the standard features, such as electron-electron and electron-ion Coulomb collisions, transport, ion motion, and a self-consistent electric field, the code now accounts for ionization, excitation, and recycling of hydrogen near the plate. Ions and neutrals are treated as fluids. The kinetic results are compared with those of a one-dimensional, two-temperature fluid code. Some implications of these results for recycling and impurity control in tokamaks are also discussed
Modeling of the devolatilization kinetics during pyrolysis of grape residues.
Fiori, Luca; Valbusa, Michele; Lorenzi, Denis; Fambri, Luca
2012-01-01
Thermo-gravimetric analysis (TGA) was performed on grape seeds, skins, stalks, marc, vine-branches, grape seed oil and grape seeds depleted of their oil. The TGA data was modeled through Gaussian, logistic and Miura-Maki distributed activation energy models (DAEMs) and a simpler two-parameter model. All DAEMs allowed an accurate prediction of the TGA data; however, the Miura-Maki model could not account for the complete range of conversion for some substrates, while the Gaussian and logistic DAEMs suffered from the interrelation between the pre-exponential factor k0 and the mean activation energy E0--an obstacle that can be overcome by fixing the value of k0 a priori. The results confirmed the capabilities of DAEMs but also highlighted some drawbacks in their application to certain thermodegradation experimental data. Copyright © 2011 Elsevier Ltd. All rights reserved.
Controlling Modelling Artifacts
DEFF Research Database (Denmark)
Smith, Michael James Andrew; Nielson, Flemming; Nielson, Hanne Riis
2011-01-01
the possible configurations of the system (for example, by counting the number of components in a certain state). We motivate our methodology with a case study of the LMAC protocol for wireless sensor networks. In particular, we investigate the accuracy of a recently proposed high-level model of LMAC......When analysing the performance of a complex system, we typically build abstract models that are small enough to analyse, but still capture the relevant details of the system. But it is difficult to know whether the model accurately describes the real system, or if its behaviour is due to modelling...... artifacts that were inadvertently introduced. In this paper, we propose a novel methodology to reason about modelling artifacts, given a detailed model and a highlevel (more abstract) model of the same system. By a series of automated abstraction steps, we lift the detailed model to the same state space...
Physiologically based kinetic (PBK) models are used widely throughout a number of working sectors, including academia and industry, to provide insight into the dosimetry related to observed adverse health effects in humans and other species. Use of these models has increased over...
Energy Technology Data Exchange (ETDEWEB)
Yousefi, E. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O.Box 11155-9466, Tehran (Iran, Islamic Republic of); Dolati, A., E-mail: dolati@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O.Box 11155-9466, Tehran (Iran, Islamic Republic of); Imanieh, I. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O.Box 11155-9466, Tehran (Iran, Islamic Republic of); Yashiro, H.; Kure-Chu, S.-Z. [Department of Chemistry and Bioengineering, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551 (Japan)
2017-02-01
Platinum nanotubes (PtNTs) are fabricated by potentiostatic electrodeposition at various overpotentials (−200 up to −400 mV versus SCE) in polycarbonate templates (PCTs) with pore diameter of 200 nm in a solution containing 5 mM H{sub 2}PtCl{sub 6} and 0.1 M H{sub 2}SO{sub 4}. The synthesized PtNTs are characterized by field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The electrochemical growth mechanism within nanoscopic pores and the relationship between morphological variations and kinetic parameters are investigated for the first time. It is shown that more porous structure of nanotubes forms at high overpotentials possibly due to preferably nucleation. The kinetics of electrodeposition process is studied by electrochemical techniques such as voltammetry and chronoamperometry. The linear diffusion coefficient at the early stage of the deposition and the radial diffusion coefficients at steady state regime are calculated as D = 8.39 × 10{sup −5} and 2.33–13.26 × 10{sup −8} cm{sup 2}/s, respectively. The synthesized PtNT electrode is tested as electrocatalyst for hydrogen peroxide oxidation in phosphate buffer solution (PBS) and shows a sensitivity as high as 2.89 mA per 1 μM that is an indication to its enlarged electrochemical surface area. - Highlights: • PtNT is electrodeposited in a 3-aminopropyltrimethoxysilane-modified PCT. • The electrochemical growth mechanism within nanoscopic pores is discussed. • The kinetics of PtNT electrodeposition is studied based on models for UME arrays. • Relationship between morphological variations vs. kinetic parameters is studied.
Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning
Audasso, E.; Nam, S.; Arato, E.; Bosio, B.
2017-06-01
MCFC represents an effective technology to deal with CO2 capture and relative applications. If used for these purposes, due to the working conditions and the possible feeding, MCFC must cope with a different number of poisoning gases such as sulphur compounds. In literature, different works deal with the development of kinetic models to describe MCFC performance to help both industrial applications and laboratory simulations. However, in literature attempts to realize a proper model able to consider the effects of poisoning compounds are scarce. The first aim of the present work is to provide a semi-empirical kinetic formulation capable to take into account the effects that sulphur compounds (in particular SO2) have on the MCFC performance. The second aim is to provide a practical example of how to effectively include the poisoning effects in kinetic models to simulate fuel cells performances. To test the reliability of the proposed approach, the obtained formulation is implemented in the kinetic core of the SIMFC (SIMulation of Fuel Cells) code, an MCFC 3D model realized by the Process Engineering Research Team (PERT) of the University of Genova. Validation is performed through data collected at the Korea Institute of Science and Technology in Seoul.
An experimental and kinetic modeling study of premixed nitroethane flames at low pressure
DEFF Research Database (Denmark)
Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng
2013-01-01
An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome...
Short Communication A Kinetic Model for In-vitro Instestinal Uptake ...
African Journals Online (AJOL)
This study proposes a kinetic model for the uptake of the amino acid L-tyrosine under the influence of the thyroid hormone,L-thyroxine, across rat everted gut sacs. Our results showed that absorption of the amino acid did not remain relativelyconstant along the small intestine. It would appear that a non-energy dependent ...
Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.
2009-01-01
In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and
International Nuclear Information System (INIS)
Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.
2009-01-01
Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments
Recovery Kinetics in Commercial Purity Aluminum Deformed to Ultrahigh Strain: Model and Experiment
DEFF Research Database (Denmark)
Yu, Tianbo; Hansen, Niels
2016-01-01
A new approach to analyze recovery kinetics is developed from a recent model, and microstructural observations are introduced to supplement hardness measurements. The approach involves two steps of data fitting, and the second step of fitting enables an estimation of the apparent activation energ...... of nanostructured materials produced by high strain deformation....
Lifshitz-Allen-Cahn domain-growth kinetics of Ising models with conserved density
DEFF Research Database (Denmark)
Fogedby, Hans C.; Mouritsen, Ole G.
1988-01-01
The domain-growth kinetics of p=fourfold degenerate (2×1) ordering in two-dimensional Ising models with conserved density is studied as a function of temperature and range of Kawasaki spin exchange. It is found by computer simulations that the zero-temperature freezing-in behavior for nearest...
An analytical kinetic model for chemical-vapor deposition of pureB layers from diborane
Mohammadi, V.; De Boer, W.B.; Nanver, L.K.
2012-01-01
In this paper, an analytical model is established to describe the deposition kinetics and the deposition chamber characteristics that determine the deposition rates of pure boron (PureB-) layers grown by chemical-vapor deposition (CVD) from diborane (B2H6) as gas source on a non-rotating silicon
Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System
Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.
2005-01-01
A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after
Vredenberg, W.J.
2011-01-01
In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with
A novel dynamic kinetic model of oxygen isotopic exchange on a supported metal catalyst
Energy Technology Data Exchange (ETDEWEB)
Galdikas, Arvaidas; Duprez, Daniel; Descorme, Claude
2004-09-15
A time-resolved kinetic analysis has been developed for modeling experimental results of {sup 18}O/{sup 16}O isotopic exchange over oxide-supported metal catalysts. Model is based on two very important points: (1) the parallel calculation of surface and bulk diffusion and (2) the implication of certain O species such as superoxides. The model includes adsorption-desorption processes on metal clusters and oxygen spillover from the metal to the surface of support and vice versa. Different mechanisms of exchange were also taken into account via mononuclear (O atoms, O{sup -}, OH) or binuclear (superoxides) oxygen species. A refined model taking into account surface diffusion, direct exchange on surface of support by binuclear oxygen species and bulk diffusion was also developed. Kinetic (reaction rates and diffusion coefficients) as well as thermodynamic parameters (activation energies) were derived by fitting theoretical and experimental curves of {sup 18}O{sub 2}, {sup 18}O{sup 16}O and {sup 16}O{sub 2} gas phase concentrations versus time. The experimental results of Pt/CeZrO{sub 2} catalyst samples obtained in the 200-450 deg. C range of temperatures are examined. The refined model provides a very good fitting of the kinetic curves recorded with ceria-zirconia-supported catalysts. Moreover, values of diffusion coefficients and activation energies are in good agreement with already published values found by other methods. For a better understanding of all the steps of exchange, the kinetics of {sup 18}O and {sup 16}O distribution on the surface of metal clusters and on the surface of support are calculated and analyzed. On the basis of this model, a computer code is developed for analysis and calculations of kinetic and thermodynamic parameters of automotive catalysts.
Modelling and controlling hydropower plants
Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan
2013-01-01
Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance. Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales. Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...
Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation
Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier
2018-04-01
The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations
Physical characterization and kinetic modelling of matrix tablets of ...
African Journals Online (AJOL)
Purpose: To design controlled release ketorolac tromethamol (KT) matrix tablets for increased drug bioavailability. Methods: Waxes (Compritol® ATO 888, Precirol® ATO 5 and stearic acid - SA) and polymers (hydroxypropyl methylcellulose - HPMC and xanthan gum - XG) were used in the preparation of the matrix tablets at ...
Kinetic model development for biogas production from cattle dung
Ghatak, Manjula Das; Mahanta, P.
2017-07-01
Biogas is a mixture of methane, carbon dioxide and traces of numerous trace of elements. It is produced by anaerobic digestion of organic matters including cattle dung which depend upon various factors affecting the population and activity of microorganisms producing biogas. Among the various factors temperature is one of them which play a significant role in biogas production from cattle dung. Biogas production from cattle dung was studied at temperatures 35°C to 55°C at a step of 5°C to study the effect of temperature on biogas production from cattle dung. In this work a mathematical model is developed for evaluating the effect of temperature on the rate of biogas production from cattle dung. The new mathematical model is derived by adding the effect of temperature on the modified Gompertz model. The new model is found to be suitable for predicting the biogas production from cattle dung in the temperature range 35°C to 55°C. The results from the new model are found to be highly correlated to the experimental data of present study.
DEFF Research Database (Denmark)
Hereu, A.; Dalgaard, Paw; Garriga, M.
2012-01-01
provided the best fit to the HP-inactivation kinetics. The relationships between the primary kinetic parameters (log kmax and log Nres) and pressure treatments were described by a polynomial secondary model. To estimate HP-inactivation of L. monocytogenes in log (N/N0) over time, a one-step global fitting......High pressure (HP) inactivation curves of Listeria monocytogenes CTC1034 (ca. 107CFU/g) on sliced RTE cooked meat products (ham and mortadella) were obtained at pressures from 300 to 800MPa. A clear tail shape was observed at pressures above 450MPa and the log-linear with tail primary model...... procedure was applied. The secondary model was integrated into the primary model and the combined equation was fitted to the entire data-set to readjust parameter values. Validation of the developed models both under dynamic conditions and using external independent data supported their suitability...
A Numerical Procedure for Model Identifiability Analysis Applied to Enzyme Kinetics
DEFF Research Database (Denmark)
Daele, Timothy, Van; Van Hoey, Stijn; Gernaey, Krist
2015-01-01
The proper calibration of models describing enzyme kinetics can be quite challenging. In the literature, different procedures are available to calibrate these enzymatic models in an efficient way. However, in most cases the model structure is already decided on prior to the actual calibration...... and Pronzato (1997) and which can be easily set up for any type of model. In this paper the proposed approach is applied to the forward reaction rate of the enzyme kinetics proposed by Shin and Kim(1998). Structural identifiability analysis showed that no local structural model problems were occurring......) identifiability problems. By using the presented approach it is possible to detect potential identifiability problems and avoid pointless calibration (and experimental!) effort....
Directory of Open Access Journals (Sweden)
S. Ghosh
2012-09-01
Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for palm juice vinegar production from palm juice (Borassus flabellifer wine, this biochemical process being aided by Acetobacter aceti (NCIM 2251. The physical parameters of the fermentation conditions such as temperature, pH, and time were investigated by Response Surface Methodology (RSM with 2³ factorial central composite designs (CCD. The optimum pH, temperature and time were 5.5, 30 °C and 72 hrs for the highest yield of acetic acid (68.12 g / L. The quadratic model equation had a R² value of 0.992. RSM played an important role in elucidating the basic mechanisms in a complex situation, thus providing better process control by maximizing acetic acid production with the respective physical parameters. At the optimized conditions of temperature, pH and time and with the help of mathematical kinetic equations, the Monod specific growth rate ( µ max= 0.021 h-1, maximum Logistic specific growth rate ( µ 'max = 0.027 h-1 and various other kinetic parameters were calculated, which helped in validation of the experimental data. Therefore, the established kinetic models may be applied for the production of natural vinegar by fermentation of low cost palm juice.
DEFF Research Database (Denmark)
Pedersen, Michael J.; Born, Stephen; Neuenschwander, Ulrich
2018-01-01
The kinetics of sequential addition of a distinct Grignard species onto a lactone is studied by flow chemistry. The experimental data are shown to be consistent with a kinetic model based on four reaction steps, reaction of ester to magnesium hemiacetal, rearrangement to ketone (forward...... and backward) and reaction of ketone to tertiary alcohol upon quenching. The experimental derived reaction mechanism is supported by ab initio molecular computations, and the predicted activation energy is in good agreement with the experimental observations. The Grignard reaction follows a substrate...
Nonlinear kinetic modeling and simulations of Raman scattering in a two-dimensional geometry
Directory of Open Access Journals (Sweden)
Bénisti Didier
2013-11-01
Full Text Available In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-cell (PIC simulations. These preliminary comparisons are encouraging since our envelope code provides threshold intensities consistent with those of PIC simulations while requiring computational resources reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.
Directory of Open Access Journals (Sweden)
F. Reynaldi
2017-09-01
Full Text Available We compared the kinetic behaviour of tylosin administered to beehives by dusting or paper-pack placement through three treatment protocols (D, PP, CONTROL. D (dusting: tylosin, divided in four portions, was sprinkled over the ends of the hives' top bars weekly for four weeks (n=3; PP (paper-pack placement: tylosin in paper packs was administered at two-week intervals (n=3; CONTROL (control: the hives were left untreated (n=3. In every inspection, from each of the nine hives, fifty young (2-day-old larvae were sampled for drug analysis. The concentration of tylosin in the young larvae was determined by a microbiological assay with Geobacillus stearothermophilus ATCC 12980 as test organism. The (mean±SD maximum concentration (Cmax for D was 136.0±194.0 and for PP – 144.0±187.4 µg/mL; the time to reach Cmax (tmax was 1.5±0.9 h for D and 1.8 ± 1.8 h for PP. The area under the tylosin behaviour kinetics curve between 0–1392 h with D was 308.7±185.2 and with PP: 326.4±141.0 µg/h/mL, indicating no statistical difference between the treatments (P>0.05. The shorter duration of paper-pack-administered tylosin observed in the larvae implied a lower risk of antibiotic residues in the resulting honey
Model Indepedent Vibration Control
Yuan, Jing
2010-01-01
A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is
Energy Technology Data Exchange (ETDEWEB)
Sharma, A.S.; Limebeer, D.J.N.; Jaimoukha, I.M.; Lister, J.B
2001-11-01
A new approach to the modelling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modelling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modelling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalised coprime factorisation controller is developed for the TCV tokamak using the verified linear model. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models. (author)
Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank
2017-10-01
The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.
A general hybrid kinetic-fluid model for collisionless magnetic reconnection
International Nuclear Information System (INIS)
Martinell, Julio J.
2006-01-01
A general set of equations appropriate for the description of the plasma dynamics within a collisionless magnetized plasma during the process of magnetic reconnection is derived. The particular geometry considered is that of a Harris pinch with a guide field and full kinetic equations for the perturbations are found, valid within the singular layer around the reconnecting region. Ion equations take into account finite Larmor radius effects while electron dynamics is based on the gyro-averaged drift kinetic equation. A more manageable model is obtained by resorting to fluid equations for the ions and retaining electron kinetic effects. It is shown that these equations give the same results obtained from the two-fluid theory in the limit of the collisionless tearing mode for different regimes
Predicting kinetics using musculoskeletal modeling and inertial motion capture
Karatsidis, Angelos; Jung, Moonki; Schepers, H. Martin; Bellusci, Giovanni; de Zee, Mark; Veltink, Peter H.; Andersen, Michael Skipper
2018-01-01
Inverse dynamic analysis using musculoskeletal modeling is a powerful tool, which is utilized in a range of applications to estimate forces in ligaments, muscles, and joints, non-invasively. To date, the conventional input used in this analysis is derived from optical motion capture (OMC) and force
Quasilinear kinetic modeling of RMP penetration into a tokamak plasma
International Nuclear Information System (INIS)
Heyn, M.F.; Kernbichler, W.; Leitner, P.; Ivanov, I.B.; Kasilov, S.V.
2013-01-01
The linear as well as the quasilinear problem of RMP penetration in tokamaks is solved consistently with a particle and energy conserving collision operator. The new collision operator ensures the Onsager symmetry of the quasilinear transport coefficient matrix and avoids artifacts such as fake heat convection connected with simplified collision models.
Kinetic modeling of streamer penetration into de-ionized water
Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.
2018-03-01
Interest in plasma-liquid interaction phenomena has grown in recent years due to applications in plasma medicine, water purification, and plasma-hydrocarbon reforming. The plasma in contact with liquid is generated, for example, using the plasma jets or streamer discharges. The interaction between the streamer and water can cause both physical and chemical modifications of the liquid. In this paper, the interaction between an anode-directed streamer and the de-ionized water is studied using one-dimensional particle-in-cell Monte Carlo collisions model. In this model, plasma species in both gas and liquid phase are considered as the macro-particles. We find that the penetration of the streamer head into the liquid causes ionization of water molecules by electron impact, a process which is usually ignored in the fluid models. The main charge carriers in the liquid phase are negative water ions which agree with earlier experimental and computational modeling studies. Additionally, we observe an ion-rich sheath in the vicinity of the water surface on the gas side.
Modeling Kinetics of Distortion in Porous Bi-layered Structures
DEFF Research Database (Denmark)
Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus
2013-01-01
Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential shrinkage...
Knol, J.J.; Linssen, J.P.H.; Boekel, van M.A.J.S.
2010-01-01
A kinetic model for the formation of acrylamide in a fructose–asparagine reaction system at initial pH 5.5 is proposed, based on an approach called multiresponse kinetic modelling. The formation of acetic acid and formic acid from the degradation of fructose and its isomer glucose was included in
International Nuclear Information System (INIS)
Harikrishna, R.; Ponrathnam, S.; Tambe, S.S.
2014-01-01
Highlights: • Photocationic polymerization of alicyclic based diglycidyl ether was carried out. • Kinetic parameters were influenced by gelation and diffusional restrictions. • Applicability of autocatalytic model was established by nonlinear regression. • System showed higher activation energy than cycloaliphatic and aromatic diepoxides. -- Abstract: Photoinitiated cationic polymerization of cycloaliphatic diepoxides had received tremendous attention, while studies with lesser polymerizable diglycidyl ethers are comparatively less reported. The present work deals with the photoinitiated cationic polymerization of cyclohexane dimethanol diglycidyl ether followed by estimation of kinetic parameters. The effects of concentration of photoinitiator and temperature on curing performance were studied using photo differential scanning calorimeter or photo DSC with polychromatic radiation. It was observed that the rate of polymerization as well as ultimate conversion increased with increasing concentration of photoinitiator and temperature. The influences of gelation as well as diffusional restrictions have remarkable effect on cure performance. The kinetic parameters as per autocatalytic kinetic model were studied by Levenberg–Marquardt nonlinear regression method instead of conventional linear method for obtaining more accurate values of apparent rate constant. It was observed that the model fits with data from initial stages to almost towards the end of the reaction. The activation energy was found to be higher than the values reported for more reactive cycloaliphatic diepoxides. The value of pre-exponential factor increased with increase in activation energy showing influence of gelation at early stages of reaction
Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB
Munir, Ahsan; Waseem, Hassan; Williams, Maggie R.; Stedtfeld, Robert D.; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A.
2017-01-01
Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics) to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs). Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131). PMID:28555058
Production of furfural from palm oil empty fruit bunches: kinetic model comparation
Panjaitan, J. R. H.; Monica, S.; Gozan, M.
2017-05-01
Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.
Modeling of the adsorption kinetics of zinc onto granular activated carbon and natural zeolite
Directory of Open Access Journals (Sweden)
VERA D. MESHKO
2006-09-01
Full Text Available The isotherms and kinetics of zinc adsorption from aqueous solution onto granular activated carbon (GAC and natural zeolite were studied using an agitated batch adsorber. The maximum adsorption capacities of GAC and natural zeolite towards zinc(II from Langmuir adsorption isotherms were determined using experimental adsorption equilibrium data. The homogeneous solid diffusion model (HSD-model combined with external mass transfer resistance was applied to fit the experimental kinetic data. The kinetics simulation study was performed using a computer program based on the proposed mathematical model and developed using gPROMS. As the two-mass transfer resistance approach was applied, twomodel parameters were fitted during the simulation study. External mass transfer and solid phase diffusion coefficients were obtained to predict the kinetic curves for varying initial Zn(II concentration at constant agitation speed and constant adsorbent mass. For any particular Zn(II – adsorbent system, kf was constant, except for the lowest initial concentration, while Ds was found to increase with increasing initial Zn(II concentration.
Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB
Directory of Open Access Journals (Sweden)
Ahsan Munir
2017-05-01
Full Text Available Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs. Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131.
Acoustic Propagation Modeling for Marine Hydro-Kinetic Applications
Johnson, C. N.; Johnson, E.
2014-12-01
The combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand. However, in order to deploy and test prototypes, and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines that determine the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. An accurate model for predicting the propagation of a MHK source in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. Paracousti, a finite difference solution to the acoustic equations, was originally developed for sound propagation in atmospheric environments and has been successfully validated for a number of different geophysical activities. The three-dimensional numerical implementation is advantageous over other acoustic propagation techniques for a MHK application where the domains of interest have complex 3D interactions from the seabed, banks, and other shallow water effects. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. This includes a variety of hydrodynamic and physical environments that may be present in a potential MHK application including shallow and deep water, sloping, and canyon type bottoms, with varying sound speed and density profiles. With the model successfully validated for hydro-acoustic environments more complex and realistic MHK sources from turbines and/or arrays can be modeled.
Energy Technology Data Exchange (ETDEWEB)
Teeguarden, Justin G.; Gearhart, Jeffrey; Clewell, III, H. J.; Covington, Tammie R.; Nong, Andy; Anderson, Melvin E.
2007-01-01
assessments (Dixit et al., 2003). With most exogenous compounds, there is often no background exposure and body concentrations are not under active control from homeostatic processes as occurs with essential nutrients. Any complete Mn PBPK model would include the homeostatic regulation as an essential nutritional element and the additional exposure routes by inhalation. Two companion papers discuss the kinetic complexities of the quantitative dose-dependent alterations in hepatic and intestinal processes that control uptake and elimination of Mn (Teeguarden et al., 2006a, b). Radioactive 54Mn has been to investigate the behavior of the more common 55Mn isotope in the body because the distribution and elimination of tracer doses reflects the overall distributional characteristics of Mn. In this paper, we take the first steps in developing a multi-route PBPK model for Mn. Here we develop a PBPK model to account for tissue concentrations and tracer kinetics of Mn under normal dietary intake. This model for normal levels of Mn will serve as the starting point for more complete model descriptions that include dose-dependencies in both oral uptake and and biliary excretion. Material and Methods Experimental Data Two studies using 54Mn tracer were employed in model development. (Furchner et al. 1966; Wieczorek and Oberdorster 1989). In Furchner et al. (1966) male Sprague-Dawley rats received an ip injection of carrier-free 54MnCl2 while maintained on standard rodent feed containing ~ 45 ppm Mn. Tissue radioactivity of 54Mn was measured by liquid scintillation counting between post injection days 1 to 89 and reported as percent of administered dose per kg tissue. 54Mn time courses were reported for liver, kidney, bone, brain, muscle, blood, lung and whole body. Because ip uptake is via the portal circulation to the liver, this data set had information on distribution and clearance behaviors of Mn entering the systemic circulation from liver.
Modeling and Control for Microgrids
Steenis, Joel
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.