Stochastic inverse problems: Models and metrics
International Nuclear Information System (INIS)
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-01-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
Stochastic inverse problems: Models and metrics
Energy Technology Data Exchange (ETDEWEB)
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim [Victor Technologies, LLC, Bloomington, IN 47407-7706 (United States); Aldrin, John C. [Computational Tools, Gurnee, IL 60031 (United States); Annis, Charles [Statistical Engineering, Palm Beach Gardens, FL 33418 (United States); Knopp, Jeremy S. [Air Force Research Laboratory (AFRL/RXCA), Wright Patterson AFB, OH 45433-7817 (United States)
2015-03-31
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
The inverse gravimetric problem in gravity modelling
Sanso, F.; Tscherning, C. C.
1989-01-01
One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang
2014-01-06
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce the computational cost of numerical PDE evaluations in this context.
Stochastic reduced order models for inverse problems under uncertainty.
Warner, James E; Aquino, Wilkins; Grigoriu, Mircea D
2015-03-01
This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well.
Alloy design as an inverse problem of cluster expansion models
DEFF Research Database (Denmark)
Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren
2017-01-01
Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...
An inverse problem for a mathematical model of aquaponic agriculture
Bobak, Carly; Kunze, Herb
2017-01-01
Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
Inverse modeling for heat conduction problem in human abdominal phantom.
Huang, Ming; Chen, Wenxi
2011-01-01
Noninvasive methods for deep body temperature measurement are based on the principle of heat equilibrium between the thermal sensor and the target location theoretically. However, the measurement position is not able to be definitely determined. In this study, a 2-dimensional mathematical model was built based upon some assumptions for the physiological condition of the human abdomen phantom. We evaluated the feasibility in estimating the internal organs temperature distribution from the readings of the temperature sensors arranged on the skin surface. It is a typical inverse heat conduction problem (IHCP), and is usually mathematically ill-posed. In this study, by integrating some physical and physiological a-priori information, we invoked the quasi-linear (QL) method to reconstruct the internal temperature distribution. The solutions of this method were improved by increasing the accuracy of the sensors and adjusting their arrangement on the outer surface, and eventually reached the state of converging at the best state accurately. This study suggests that QL method is able to reconstruct the internal temperature distribution in this phantom and might be worthy of a further study in an anatomical based model.
Mathematical and numerical modeling of inverse heat conduction problem
Directory of Open Access Journals (Sweden)
Sterian DANAILA
2014-12-01
Full Text Available The present paper refers to the assessment of three numerical methods for solving the inverse heat conduction problem: the Alifanov’s iterative regularization method, the Tikhonov local regularization method and the Tikhonov equation regularization method, respectively. For all methods we developed numerical algorithms for reconstruction of the unsteady boundary condition imposing some restrictions for the unsteady temperature field in the interior points. Numerical tests allow evaluating the accuracy of the considered methods.
Sparse optimization for inverse problems in atmospheric modelling
Czech Academy of Sciences Publication Activity Database
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
Inverse logarithmic potential problem
Cherednichenko, V G
1996-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion
Inverse problem for the mean-field monomer-dimer model with attractive interaction
International Nuclear Information System (INIS)
Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia
2017-01-01
The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion. (paper)
Inverse problem for the mean-field monomer-dimer model with attractive interaction
Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia
2017-05-01
The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion.
Applications of Markov random field models for inversion problems in geosciences
Kuwatani, T.; Nagata, K.; Okada, M.; Toriumi, M.
2012-12-01
Recently, a variety of spatial and temporal data sets can be obtained thanks to technological advances of measurement and observation in geosciences. It is very important to inverse spatial or temporal physical variables from these imaging data sets. The Markov random field (MRF) model is a stochastic model using Markov chains that is often applied for image restoration and pattern recognition in information science. In the MRF model, the spatial or temporal variations of physical properties are assumed to be relatively small compared to the observational noise and analytical uncertainty. By the Bayesian approach, the MRF model appropriately filters out high-frequency noise, and we can obtain accurate spatial distributions or time series of physical properties. Furthermore, it has the potential advantage of the incorporation of prior geophysical and geological information through the evaluation function. The purpose of this study is to develop the MRF model in order to apply it to various inversion problems in geosciences. Based on the Bayesian inference, we incorporated the nonlinear generation process of observational data sets into the MRF model. The Markov chain Monte Carlo (MCMC) algorithm was implemented to estimate hyperparameters and optimize target variables. Furthermore, it's important for inversion problems in geosciences to understand discontinuous behavior of physical variables, for example, detection of fault planes and lithospheric boundaries in the earth's interior. By introducing Potts spins as latent variables to the MRF model, we can simultaneously estimate the distributions of continuous and discontinuous variables. For examples of applications, we will introduce two inversion problems: one is a pressure-temperature inversion from compositional data of zoned minerals, and the other is an inversion of fluid distributions from observed seismic velocity structure. Based on these examples, we will discuss effectiveness and broad applicability of the
Numerical Modeling of Inverse Problems under Uncertainty for Damage Detection in Aircraft Structures
2013-08-01
the nature of the physics involved, from the point of view of the inverse problem, the direct model is only a “black box ” to obtain numerical...Campos, Brasil . As results directly related to this research, several publications and monographs were published and /or are being prepared, as
Statistical and Computational Inverse Problems
Kaipio, Jari
2005-01-01
Develops the statistical approach to inverse problems with an emphasis on modeling and computations. The book discusses the measurement noise modeling and Bayesian estimation, and uses Markov Chain Monte Carlo methods to explore the probability distributions. It is for researchers and advanced students in applied mathematics.
Directory of Open Access Journals (Sweden)
Calvez V.
2010-12-01
Full Text Available We consider the radiative transfer equation (RTE with reflection in a three-dimensional domain, infinite in two dimensions, and prove an existence result. Then, we study the inverse problem of retrieving the optical parameters from boundary measurements, with help of existing results by Choulli and Stefanov. This theoretical analysis is the framework of an attempt to model the color of the skin. For this purpose, a code has been developed to solve the RTE and to study the sensitivity of the measurements made by biophysicists with respect to the physiological parameters responsible for the optical properties of this complex, multi-layered material. On étudie l’équation du transfert radiatif (ETR dans un domaine tridimensionnel infini dans deux directions, et on prouve un résultat d’existence. On s’intéresse ensuite à la reconstruction des paramètres optiques à partir de mesures faites au bord, en s’appuyant sur des résultats de Choulli et Stefanov. Cette analyse sert de cadre théorique à un travail de modélisation de la couleur de la peau. Dans cette perspective, un code à été développé pour résoudre l’ETR et étudier la sensibilité des mesures effectuées par les biophysiciens par rapport aux paramètres physiologiques tenus pour responsables des propriétés optiques de ce complexe matériau multicouche.
Inverse problem in hydrogeology
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
EDITORIAL: Inverse Problems in Engineering
West, Robert M.; Lesnic, Daniel
2007-01-01
Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.
Koepke, C.; Irving, J.; Roubinet, D.
2014-12-01
Geophysical methods have gained much interest in hydrology over the past two decades because of their ability to provide estimates of the spatial distribution of subsurface properties at a scale that is often relevant to key hydrological processes. Because of an increased desire to quantify uncertainty in hydrological predictions, many hydrogeophysical inverse problems have recently been posed within a Bayesian framework, such that estimates of hydrological properties and their corresponding uncertainties can be obtained. With the Bayesian approach, it is often necessary to make significant approximations to the associated hydrological and geophysical forward models such that stochastic sampling from the posterior distribution, for example using Markov-chain-Monte-Carlo (MCMC) methods, is computationally feasible. These approximations lead to model structural errors, which, so far, have not been properly treated in hydrogeophysical inverse problems. Here, we study the inverse problem of estimating unsaturated hydraulic properties, namely the van Genuchten-Mualem (VGM) parameters, in a layered subsurface from time-lapse, zero-offset-profile (ZOP) ground penetrating radar (GPR) data, collected over the course of an infiltration experiment. In particular, we investigate the effects of assumptions made for computational tractability of the stochastic inversion on model prediction errors as a function of depth and time. These assumptions are that (i) infiltration is purely vertical and can be modeled by the 1D Richards equation, and (ii) the petrophysical relationship between water content and relative dielectric permittivity is known. Results indicate that model errors for this problem are far from Gaussian and independently identically distributed, which has been the common assumption in previous efforts in this domain. In order to develop a more appropriate likelihood formulation, we use (i) a stochastic description of the model error that is obtained through
Inverse feasibility problems of the inverse maximum flow problems
Indian Academy of Sciences (India)
A linear time method to decide if any inverse maximum ﬂow (denoted General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced. If IMFG does not have solution, methods to transform IMFG into a feasible problem are presented. The methods consist of modifying as little as possible the restrictions to ...
A direct and inverse problem for wave crests modelled by interactions of two solitons
Peterson, P.; van Groesen, Embrecht W.C.
2000-01-01
The paper addresses a new "inverse" problem for reconstructing the amplitudes of 2D surface waves from observation of the wave patterns (formed by wave crests). These patterns will depend on the amplitudes because of nonlinear effects. We show that the inverse problem can be solved when the waves
Al-Ma'shumah, Fathimah; Permana, Dony; Sidarto, Kuntjoro Adji
2015-12-01
Customer Lifetime Value is an important and useful concept in marketing. One of its benefits is to help a company for budgeting marketing expenditure for customer acquisition and customer retention. Many mathematical models have been introduced to calculate CLV considering the customer retention/migration classification scheme. A fairly new class of these models which will be described in this paper uses Markov Chain Models (MCM). This class of models has the major advantage for its flexibility to be modified to several different cases/classification schemes. In this model, the probabilities of customer retention and acquisition play an important role. From Pfeifer and Carraway, 2000, the final formula of CLV obtained from MCM usually contains nonlinear form of the transition probability matrix. This nonlinearity makes the inverse problem of CLV difficult to solve. This paper aims to solve this inverse problem, yielding the approximate transition probabilities for the customers, by applying metaheuristic optimization algorithm developed by Yang, 2013, Flower Pollination Algorithm. The major interpretation of obtaining the transition probabilities are to set goals for marketing teams in keeping the relative frequencies of customer acquisition and customer retention.
Inverse feasibility problems of the inverse maximum flow problems
Indian Academy of Sciences (India)
199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.
A model for the inverse 1-median problem on trees under uncertain costs
Directory of Open Access Journals (Sweden)
Kien Trung Nguyen
2016-01-01
Full Text Available We consider the problem of justifying vertex weights of a tree under uncertain costs so that a prespecified vertex become optimal and the total cost should be optimal in the uncertainty scenario. We propose a model which delivers the information about the optimal cost which respect to each confidence level \\(\\alpha \\in [0,1]\\. To obtain this goal, we first define an uncertain variable with respect to the minimum cost in each confidence level. If all costs are independently linear distributed, we present the inverse distribution function of this uncertain variable in \\(O(n^{2}\\log n\\ time, where \\(n\\ is the number of vertices in the tree.
Identifiability Scaling Laws in Bilinear Inverse Problems
Choudhary, Sunav; Mitra, Urbashi
2014-01-01
A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A key issue that arises for such inverse problems is that of identifiability, i.e. whether the observa...
Gholami, A.; Siahkoohi, H. R.
2009-01-01
In this paper, a new approach is introduced to solve ill-posed linear inverse problems in geophysics. Our method combines classical quadratic regularization and data smoothing by imposing constraints on model and data smoothness simultaneously. When imposing a quadratic penalty term in the data space to control smoothness of the data predicted by classical zero-order regularization, the method leads to a direct regularization in standard form, which is simple to be implemented and ensures that the estimated model is smooth. In addition, by enforcing Tikhonov's predicted data to be sparse in a wavelet domain, the idea leads to an efficient regularization algorithm with two superior properties. First, the algorithm ensures the smoothness of the estimated model while substantially preserving the edges of it, so, it is well suited for recovering piecewise smooth/constant models. Second, parsimony of wavelets on the columns of the forward operator and existence of a fast wavelet transform algorithm provide an efficient sparse representation of the forward operator matrix. The reduced size of the forward operator makes the solution of large-scale problems straightforward, because during the inversion process, only sparse matrices need to be stored, which reduces the memory required. Additionally, all matrix-vector multiplications are carried out in sparse form, reducing CPU time. Applications on both synthetic and real 1-D seismic-velocity estimation experiments illustrate the idea. The performance of the method is compared with that of classical quadratic regularization, total-variation regularization and a two-step, wavelet-based, inversion method.
Inverse problems in systems biology
International Nuclear Information System (INIS)
Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp
2009-01-01
Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)
Inverse problems for Maxwell's equations
Romanov, V G
1994-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Solving inverse problems for biological models using the collage method for differential equations.
Capasso, V; Kunze, H E; La Torre, D; Vrscay, E R
2013-07-01
In the first part of this paper we show how inverse problems for differential equations can be solved using the so-called collage method. Inverse problems can be solved by minimizing the collage distance in an appropriate metric space. We then provide several numerical examples in mathematical biology. We consider applications of this approach to the following areas: population dynamics, mRNA and protein concentration, bacteria and amoeba cells interaction, tumor growth.
An inverse problem approach for structural damage detection - Finite element model refinement
Zimmerman, D. C.; Kaouk, M.
1992-01-01
In this work, a methodology for incorporating measured modal data into an existing refined finite element model is examined with the objective of detecting and locating structural damage. This same algorithm is also useful in terms of finite element model refinement. The algorithm is based on the partial inverse problem, in that only partial spectral information is required. The technique utilizes a symmetric eigenstructure assignment algorithm to perform the partial spectral assignment. Algorithms to enhance mode shape assignability and to preserve sparsity in the updated model are developed. The sparsity preservation is of particular importance when considering damage detection in truss-like structures. Several examples are presented which highlight the key points made within the paper.
Bayesian Approach to Inverse Problems
2008-01-01
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation
Inverse problem in radionuclide transport
International Nuclear Information System (INIS)
Yu, C.
1988-01-01
The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...
Bayes procedures for adaptive inference in inverse problems for the white noise model
Knapik, B.T.; Szabó, B.T.; van der Vaart, A.W.; van Zanten, J.H.
2016-01-01
We study empirical and hierarchical Bayes approaches to the problem of estimating an infinite-dimensional parameter in mildly ill-posed inverse problems. We consider a class of prior distributions indexed by a hyperparameter that quantifies regularity. We prove that both methods we consider succeed
Energy Technology Data Exchange (ETDEWEB)
Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stork, Christopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattingly, John K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-07-01
Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is traditionally solved by finding the set of transport model parameter values that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature pre dicted by the hypothesized model parameters. The weights are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. The traditional implicit (often inaccurate) assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. Here, an alternative method that accounts for correlated errors between channels is described and illustrated using an inverse problem based on the combination of gam ma and neutron multiplicity counting measurements.
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Application of Lead Field Theory and Computerized Thorax Modeling for the ECG Inverse Problem
National Research Council Canada - National Science Library
Puurtinen, H
2001-01-01
.... In this study, one anatomically detailed 3D FDM model of the human thorax as a volume conductor was employed for forward and inverse estimation of ECG potentials and cardiac sources, respectively...
The inverse brachistochrone problem
Gomez, Raul; Gomez, Sandra; Marquina, Vivianne
2004-03-01
Ever since Johan Bernoulli^1 challenge the mathematicians of his time with the problem of finding the least time trajectory (brachistochrone) of a body moving in the uniform gravitational field between two points not in the same vertical line, many papers have been published relating different facets of this problem. In this work we use simplified forms of Euler equations to find the expression that defines the brachistochrone associated with an arbitrary potential energy function and also the expression that determines the potential energy function for which an arbitrary curve would be a brachistochrone, ^1J. Bernoulli. Problema novum ad cujus solutionem mathematice invitantur. Acta Eruditorum Lipsiae, June 1696.
International Nuclear Information System (INIS)
Groh, Andreas; Krebs, Jochen
2012-01-01
In this paper, a population balance equation, originating from applications in chemical engineering, is considered and novel solution techniques for a related inverse problem are presented. This problem consists in the determination of the breakage rate and the daughter drop distribution of an evolving drop size distribution from time-dependent measurements under the assumption of self-similarity. We analyze two established solution methods for this ill-posed problem and improve the two procedures by adapting suitable data fitting and inversion algorithms to the specific situation. In addition, we introduce a novel technique that, compared to the former, does not require certain a priori information. The improved stability properties of the resulting algorithms are substantiated with numerical examples. (paper)
Multiparameter Optimization for Electromagnetic Inversion Problem
Directory of Open Access Journals (Sweden)
M. Elkattan
2017-10-01
Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.
Size Estimates in Inverse Problems
Di Cristo, Michele
2014-01-06
Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded object such as its size. In this talk we review some recent results on several inverse problems. The idea is to provide constructive upper and lower estimates of the area/volume of the unknown defect in terms of a quantity related to the work that can be expressed with the available boundary data.
Inverse problem for a physiologically structured population model with variable-effort harvesting
Directory of Open Access Journals (Sweden)
Andrusyak Ruslan V.
2017-04-01
Full Text Available We consider the inverse problem of determining how the physiological structure of a harvested population evolves in time, and of finding the time-dependent effort to be expended in harvesting, so that the weighted integral of the density, which may be, for example, the total number of individuals or the total biomass, has prescribed dynamics. We give conditions for the existence of a unique, global, weak solution to the problem. Our investigation is carried out using the method of characteristics and a generalization of the Banach fixed-point theorem.
Inverse problems and uncertainty quantification
Litvinenko, Alexander
2013-12-18
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)— the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Inverse Problems and Uncertainty Quantification
Litvinenko, Alexander
2014-01-06
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Inverse source problems in elastodynamics
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
Modeling the density at Merapi volcano area, Indonesia, via the inverse gravimetric problem
Tiede, C.; Camacho, A. G.; Gerstenecker, C.; FernáNdez, J.; Suyanto, I.
2005-09-01
Merapi is a high-risk andesitic volcano in Central Java, Indonesia. Very little information is known about the detailed regional density structure around Merapi and its neighbor volcano Merbabu. We compute a subsurface three-dimensional (3-D) model of anomalous density for the volcanoes Merapi and Merbabu in Central Java, Indonesia, by inversion of the gravity field. As input for the inversion methodology, gravity observations from 443 points, whose 3-D coordinates are determined by GPS, are used. The inversion algorithm is based on an explorative approach to fit a least squares condition, including a balancing factor between the minimization of the residuals and the anomalous mass. A mean density about 2242 kg/m3 for the region of Merapi and Merbabu has been computed by least squares adjustment. Results of the inversion show major low-density contrasts up to -242 kg/m3 and positive structures about +264 kg/m3, referred to the determined mean density. A density anomaly (relative high) with densities up to +264 kg/m3 is connecting the volcanoes in a 152° course from NW to SE and might be built of older basaltic lava. Low-density contrasts about -242 kg/m could be found in agreement with magnetotelluric and electromagnetic results. Generally, the identified high- and low-density bodies are in agreement with the results of other geophysical methods such as electromagnetic and magnetotelluric prospecting or geological formations and structures. A porosity about 21% is derived for the largest negative density bodies about -242 kg/m3. Furthermore, the density model gives some new information about the controversial origin of a hill formation near Merapi and is also used to discuss the possible existence of a shallow magma chamber, which is also a controversial subject. Generally, the density model serves as basic information for the interpretation of geodetic and geophysical observations and confirms existing results from magnetotellurics, electromagnetics, and seismic
Inverse problem in transformation optics
Novitsky, Andrey V.
2011-01-01
The straightforward method of transformation optics implies that one starts from the coordinate transformation and determines the Jacobian matrix, the fields and material parameters of the cloak. However, the coordinate transformation appears as an optional function: it is not necessary to know it. We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This ap...
Inverse problems for difference equations with quadratic ...
African Journals Online (AJOL)
Inverse problems for difference equations with quadratic Eigenparameter dependent boundary conditions. Sonja Currie, Anne D. Love. Abstract. This paper inductively investigates an inverse problem for difference boundary value problems with boundary conditions that depend quadratically on the eigenparameter.
Direct and Inverse problems in Electrocardiography
Boulakia, M.; Fernández, M. A.; Gerbeau, J. F.; Zemzemi, N.
2008-09-01
We present numerical results related to the direct and the inverse problems in electrocardiography. The electrical activity of the heart is described by the bidomain equations. The electrocardiograms (ECGs) recorded in different points on the body surface are obtained by coupling the bidomain equation to a Laplace equation in the torso. The simulated ECGs are quite satisfactory. As regards the inverse problem, our goal is to estimate the parameters of the bidomain-torso model. Here we present some preliminary results of a parameter estimation for the torso model.
Inverse problem in transformation optics
DEFF Research Database (Denmark)
Novitsky, Andrey
2011-01-01
. We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This approach can be useful for finding material parameters for the specified electromagnetic fields......The straightforward method of transformation optics implies that one starts from the coordinate transformation and determines the Jacobian matrix, the fields and material parameters of the cloak. However, the coordinate transformation appears as an optional function: it is not necessary to know it...... in the cloaking shell without knowing the coordinate transformation....
Iterative optimization in inverse problems
Byrne, Charles L
2014-01-01
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more
Introduction to inverse problems for differential equations
Hasanov Hasanoğlu, Alemdar
2017-01-01
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...
International Nuclear Information System (INIS)
Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems
Computationally efficient Bayesian inference for inverse problems.
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.
2007-10-01
Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.
Inverse Problems in Economic Measurements
Shananin, A. A.
2018-02-01
The problem of economic measurements is discussed. The system of economic indices must reflect the economic relations and mechanisms existing in society. An achievement of the XX century is the development of a system of national accounts and the gross domestic product index. However, the gross domestic product index, which is related to the Hamilton-Pontryagin function in extensive economic growth models, turns out to be inadequate under the conditions of structural changes. New problems of integral geometry related to production models that take into account the substitution of production factors are considered.
TOPICAL REVIEW: Inverse problems in elasticity
Bonnet, Marc; Constantinescu, Andrei
2005-04-01
This review is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. These inverse problems are considered mainly for three-dimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview some recent results, in an effort to bridge the gap between studies of a mathematical nature and problems defined from engineering practice. Accordingly, emphasis is given to formulations and solution techniques which are well suited to general-purpose numerical methods for solving elasticity problems on complex configurations, in particular the finite element method and the boundary element method. An underlying thread of the discussion is the fact that useful tools for the formulation, analysis and solution of inverse problems arising in linear elasticity, namely the reciprocity gap and the error in constitutive equation, stem from variational and virtual work principles, i.e., fundamental principles governing the mechanics of deformable solid continua. In addition, the virtual work principle is shown to be instrumental for establishing computationally efficient formulae for parameter or geometrical sensitivity, based on the adjoint solution method. Sensitivity formulae are presented for various situations, especially in connection with contact mechanics, cavity and crack shape perturbations, thus enriching the already extensive known repertoire of such results. Finally, the concept of topological derivative and its implementation for the identification of cavities or inclusions are expounded.
Differential equations inverse and direct problems
Favini, Angelo
2006-01-01
DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA
Elsheikh, Ahmed H.
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.
Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar
2017-07-01
The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.
Koepke, C.; Irving, J.
2015-12-01
Bayesian solutions to inverse problems in near-surface geophysics and hydrology have gained increasing popularity as a means of estimating not only subsurface model parameters, but also their corresponding uncertainties that can be used in probabilistic forecasting and risk analysis. In particular, Markov-chain-Monte-Carlo (MCMC) methods have attracted much recent attention as a means of statistically sampling from the Bayesian posterior distribution. In this regard, two approaches are commonly used to improve the computational tractability of the Bayesian-MCMC approach: (i) Forward models involving a simplification of the underlying physics are employed, which offer a significant reduction in the time required to calculate data, but generally at the expense of model accuracy, and (ii) the model parameter space is represented using a limited set of spatially correlated basis functions as opposed to a more intuitive high-dimensional pixel-based parameterization. It has become well understood that model inaccuracies resulting from (i) can lead to posterior parameter distributions that are highly biased and overly confident. Further, when performing model reduction as described in (ii), it is not clear how the prior distribution for the basis weights should be defined because simple (e.g., Gaussian or uniform) priors that may be suitable for a pixel-based parameterization may result in a strong prior bias when used for the weights. To address the issue of model error resulting from known forward model approximations, we generate a set of error training realizations and analyze them with principal component analysis (PCA) in order to generate a sparse basis. The latter is used in the MCMC inversion to remove the main model-error component from the residuals. To improve issues related to prior bias when performing model reduction, we also use a training realization approach, but this time models are simulated from the prior distribution and analyzed using independent
The factorization method for inverse problems
Kirsch, Andreas
2008-01-01
The factorization method is a relatively new method for solving certain types of inverse scattering problems and problems in tomography. Aimed at students and researchers in Applied Mathematics, Physics and Engineering, this text introduces the reader to this promising approach for solving important classes of inverse problems. The wide applicability of this method is discussed by choosing typical examples, such as inverse scattering problems for the scalar Helmholtz equation, ascattering problem for Maxwell's equation, and a problem in impedance and optical tomography. The last section of the
An Entropic Estimator for Linear Inverse Problems
Directory of Open Access Journals (Sweden)
Amos Golan
2012-05-01
Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.
Solving inverse problems of optical microlithography
Granik, Yuri
2005-05-01
The direct problem of microlithography is to simulate printing features on the wafer under given mask, imaging system, and process characteristics. The goal of inverse problems is to find the best mask and/or imaging system and/or process to print the given wafer features. In this study we will describe and compare solutions of inverse mask problems. Pixel-based inverse problem of mask optimization (or "layout inversion") is harder than inverse source problem, especially for partially-coherent systems. It can be stated as a non-linear constrained minimization problem over complex domain, with large number of variables. We compare method of Nashold projections, variations of Fienap phase-retrieval algorithms, coherent approximation with deconvolution, local variations, and descent searches. We propose electrical field caching technique to substantially speedup the searching algorithms. We demonstrate applications of phase-shifted masks, assist features, and maskless printing.
Metaheuristic optimization of acoustic inverse problems.
van Leijen, A.V.; Rothkrantz, L.; Groen, F.
2011-01-01
Swift solving of geoacoustic inverse problems strongly depends on the application of a global optimization scheme. Given a particular inverse problem, this work aims to answer the questions how to select an appropriate metaheuristic search strategy, and how to configure it for optimal performance.
Approximation of Bayesian Inverse Problems for PDEs
Cotter, S. L.; Dashti, M.; Stuart, A. M.
2010-01-01
Inverse problems are often ill posed, with solutions that depend sensitively on data.n any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well posedness for inverse problems, at the level of probability measures. The stability which results from this well posedness may be used as t...
Inverse problems in classical and quantum physics
International Nuclear Information System (INIS)
Almasy, A.A.
2007-01-01
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Inverse problems in classical and quantum physics
Energy Technology Data Exchange (ETDEWEB)
Almasy, A.A.
2007-06-29
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Adjoint modeling for acoustic inversion
Hursky, Paul; Porter, Michael B.; Cornuelle, B. D.; Hodgkiss, W. S.; Kuperman, W. A.
2004-02-01
The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from a linearized forward propagation model to propagate data-model misfit at the observation points back through the medium to the medium perturbations not being accounted for in the model. This adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint methods are being applied to a variety of inversion problems, but have not drawn much attention from the underwater acoustic community. This paper presents an application of adjoint methods to acoustic inversion. Inversions are demonstrated in simulation for both range-independent and range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity and error analyses are discussed showing how the adjoint model enables calculations to be performed in the space of observations, rather than the often much larger space of model parameters. Using an adjoint model enables directions of steepest descent in the model parameters (what we invert for) to be calculated using far fewer modeling runs than if a forward model only were used.
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Holm Jacobsen, Bo
2014-01-01
of the modeling error was inferred in the form of a correlated Gaussian probability distribution. The key to the method was the ability to generate many realizations from a statistical description of the source of the modeling error, which in this case is the a priori model. The methodology was tested for two...
Inverse Problems in Geosciences: Modelling the Rock Properties of an Oil Reservoir
DEFF Research Database (Denmark)
Lange, Katrine
properties that breaks with the dominating influence of spatial coordinates in traditional interpolation methods. The thesis contains work involving a test case study of the method demonstrating how the interpolation in attribute space ensures the geological structures of the computed models and how...... the probability that a model adhere to prior knowledge by having specific multiple-point statistics, for instance, learned from a training image. Existing methods efficiently sample an a priori probability density function to create a set of acceptable models; but they cannot evaluate the probability of a model...
On the quantum inverse scattering problem
International Nuclear Information System (INIS)
Maillet, J.M.; Terras, V.
2000-01-01
A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0)=P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl n XXZ model, the XYZ spin-((1)/(2)) chain and also to the spin-s Heisenberg chains
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight
Bilinear Inverse Problems: Theory, Algorithms, and Applications
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical
3rd Annual Workshop on Inverse Problem
2015-01-01
This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.
The ocean circulation inverse problem
National Research Council Canada - National Science Library
Wunsch, C
1996-01-01
.... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
Inverse problem in neutron reflection
International Nuclear Information System (INIS)
Zhou, Xiao-Lin; Felcher, G.P.; Chen, Sow-Hsin
1991-05-01
Reflectance and transmittance of neutrons from a thin film deposited on a bulk substrate are derived from solution of Schroedinger wave equation in the material medium with an optical potential. A closed-form solution for the complex reflectance and transmittance is obtained in an approximation where the curvature of the scattering length density profile in the film is small. This closed-form solution reduces to all the known approximations in various limiting cases and is shown to be more accurate than the existing approximations. The closed-form solution of the reflectance is used as a starting point for an inversion algorithm whereby the reflectance data are inverted by a matrix iteration scheme to obtain the scattering length density distribution in the film. A preliminary test showed that the inverted profile is accurate for the linear scattering length density distribution but falls short in the case of an exponential distribution. 30 refs., 7 figs., 1 tab
Directory of Open Access Journals (Sweden)
Richard N Henson
2011-08-01
Full Text Available We review recent methodological developments within a Parametric Empirical Bayesian (PEB framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG and magnetoencephalographic (MEG data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors on this inverse problem, such as those derived from different modalities (e.g., from functional magnetic resonance imaging, fMRI or from multiple replications (e.g., subjects. Using variations of the same basic generative model, we illustrate the application of PEB to three cases: 1 symmetric integration (fusion of MEG and EEG; 2 asymmetric integration of MEG or EEG with fMRI, and 3 group-optimisation of spatial priors across subjects. We evaluate these applications on multimodal data acquired from 18 subjects, focusing on energy induced by face perception within a time-frequency window of 100-220ms, 8-18Hz. We show the benefits of multi-modal, multi-subject integration in terms of the model evidence and the reproducibility (over subjects of cortical responses to faces.
Inverse Variational Problem for Nonstandard Lagrangians
Saha, A.; Talukdar, B.
2014-06-01
In the mathematical physics literature the nonstandard Lagrangians (NSLs) were introduced in an ad hoc fashion rather than being derived from the solution of the inverse problem of variational calculus. We begin with the first integral of the equation of motion and solve the associated inverse problem to obtain some of the existing results for NSLs. In addition, we provide a number of alternative Lagrangian representations. The case studies envisaged by us include (i) the usual modified Emden-type equation, (ii) Emden-type equation with dissipative term quadratic in velocity, (iii) Lotka-Volterra model and (vi) a number of the generic equations for dissipative-like dynamical systems. Our method works for nonstandard Lagrangians corresponding to the usual action integral of mechanical systems but requires modification for those associated with the modified actions like S =∫abe L(x ,x˙ , t) dt and S =∫abL 1 - γ(x ,x˙ , t) dt because in the latter case one cannot construct expressions for the Jacobi integrals.
Numerical Methods for Bayesian Inverse Problems
Ernst, Oliver
2014-01-06
We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.
Molecular seismology: an inverse problem in nanobiology.
Hinow, Peter; Boczko, Erik M
2007-05-07
The density profile of an elastic fiber like DNA will change in space and time as ligands associate with it. This observation affords a new direction in single molecule studies provided that density profiles can be measured in space and time. In fact, this is precisely the objective of seismology, where the mathematics of inverse problems have been employed with success. We argue that inverse problems in elastic media can be directly applied to biophysical problems of fiber-ligand association, and demonstrate that robust algorithms exist to perform density reconstruction in the condensed phase.
Solving Direct and Inverse Heat Conduction Problems
Taler, Jan
2006-01-01
Presents a solution for direct and inverse heat conduction problems. This work discusses the theoretical basis for the heat transfer process in the first part. It presents selected theoretical and numerical problems in the form of exercises with their subsequent solutions in the second part
The philosophical aspect of learning inverse problems of mathematical physics
Directory of Open Access Journals (Sweden)
Виктор Семенович Корнилов
2018-12-01
Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.
Inverse Problem for a Curved Quantum Guide
Directory of Open Access Journals (Sweden)
Laure Cardoulis
2012-01-01
Full Text Available We consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in ℝ n(n=2,3 with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by using either observations of spectral data or a boot-strapping method.
Neural Network Learning as an Inverse Problem
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
2005-01-01
Roč. 13, č. 5 (2005), s. 551-559 ISSN 1367-0751 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : learning from data * generalization * empirical error functional * inverse problem * evaluation operator * kernel methods Subject RIV: BA - General Mathematics Impact factor: 0.382, year: 2005
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Inverse problem in neutron transport and radiation
International Nuclear Information System (INIS)
Barichello, L.B.; Vilhena, M.T. de
1993-01-01
In this work the LTS N method is applied to solve a inverse problem which consists on the determination of the incident angular fluxes at the boundary from the known values of the scalar flux at interior points. Numerical simulations are presented. (author)
Machine Learning and Inverse Problem in Geodynamics
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R.
2017-12-01
During the past few decades numerical modeling and traditional HPC have been widely deployed in many diverse fields for problem solutions. However, in recent years the rapid emergence of machine learning (ML), a subfield of the artificial intelligence (AI), in many fields of sciences, engineering, and finance seems to mark a turning point in the replacement of traditional modeling procedures with artificial intelligence-based techniques. The study of the circulation in the interior of Earth relies on the study of high pressure mineral physics, geochemistry, and petrology where the number of the mantle parameters is large and the thermoelastic parameters are highly pressure- and temperature-dependent. More complexity arises from the fact that many of these parameters that are incorporated in the numerical models as input parameters are not yet well established. In such complex systems the application of machine learning algorithms can play a valuable role. Our focus in this study is the application of supervised machine learning (SML) algorithms in predicting mantle properties with the emphasis on SML techniques in solving the inverse problem. As a sample problem we focus on the spin transition in ferropericlase and perovskite that may cause slab and plume stagnation at mid-mantle depths. The degree of the stagnation depends on the degree of negative density anomaly at the spin transition zone. The training and testing samples for the machine learning models are produced by the numerical convection models with known magnitudes of density anomaly (as the class labels of the samples). The volume fractions of the stagnated slabs and plumes which can be considered as measures for the degree of stagnation are assigned as sample features. The machine learning models can determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at mid-mantle depths. Employing support vector machine (SVM) algorithms we show that SML techniques
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Inverse and Ill-posed Problems Theory and Applications
Kabanikhin, S I
2011-01-01
The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included.
Sanz, E.; Voss, C.I.
2006-01-01
Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only
Analog fault diagnosis by inverse problem technique
Ahmed, Rania F.
2011-12-01
A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.
DEFF Research Database (Denmark)
Lange, Katrine; Frydendall, Jan; Cordua, Knud Skou
2012-01-01
The frequency matching method defines a closed form expression for a complex prior that quantifies the higher order statistics of a proposed solution model to an inverse problem. While existing solution methods to inverse problems are capable of sampling the solution space while taking into account...... solution model to an inverse problem by using a priori information based on multiple point statistics learned from training images. We demonstrate the applicability of the suggested method on a synthetic tomographic crosshole inverse problem....
On some inverse problems in nuclear physics
Belashev, B. Z.; Suleymanov, M. K.
2001-01-01
Some inverse problems in high-energy physics, neutron diffraction and NMR spectroscopy are discussed. To solve them, the Fourier integrated transformation method and the Maximum Entropy Technique (MENT) were used. The integrated images of experimental distributions are shown to be informative when determining the space-time parameters of a particle generation zone and when analysing blurred spectra. The efficiency of the above methods was checked by comparing relevant results with the results...
Reducing complexity of inverse problems using geostatistical priors
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Mosegaard, Klaus; Cordua, Knud Skou
can practically never hope to generate a posterior sample, others are just ’difficult’ and require special methods to become tractable, while others again are easily solved. We discuss how difficult nonlinear inverse problems can be handled such that their complexity, i.e. the time taken to obtain......In a probabilistic formulation of inverse problems the solution can be given as a sample of the posterior probability distribution. All realizations retained in the posterior sample are consistent with both an assumed prior model and observed data. Some inverse problems are unsolvable, in that one......, and another approach makes use of conditional re-simulation to sample the prior that works for both 2-point and multiple point random models. The latter approach is shown to be superior in terms of computational efficiency. We quantify the information content given by a specific choice of prior model...
Dumitru, Mircea; Djafari, Ali-Mohammad
2015-01-01
The recent developments in chronobiology need a periodic components variation analysis for the signals expressing the biological rhythms. A precise estimation of the periodic components vector is required. The classical approaches, based on FFT methods, are inefficient considering the particularities of the data (short length). In this paper we propose a new method, using the sparsity prior information (reduced number of non-zero values components). The considered law is the Student-t distribution, viewed as a marginal distribution of a Infinite Gaussian Scale Mixture (IGSM) defined via a hidden variable representing the inverse variances and modelled as a Gamma Distribution. The hyperparameters are modelled using the conjugate priors, i.e. using Inverse Gamma Distributions. The expression of the joint posterior law of the unknown periodic components vector, hidden variables and hyperparameters is obtained and then the unknowns are estimated via Joint Maximum A Posteriori (JMAP) and Posterior Mean (PM). For the PM estimator, the expression of the posterior law is approximated by a separable one, via the Bayesian Variational Approximation (BVA), using the Kullback-Leibler (KL) divergence. Finally we show the results on synthetic data in cancer treatment applications.
Forward modeling. Route to electromagnetic inversion
Energy Technology Data Exchange (ETDEWEB)
Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)
1996-05-01
Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.
Inverse problems basics, theory and applications in geophysics
Richter, Mathias
2016-01-01
The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.
An inverse problem approach to pattern recognition in industry
Directory of Open Access Journals (Sweden)
Ali Sever
2015-01-01
Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.
Eigenvectors phase correction in inverse modal problem
Qiao, Guandong; Rahmatalla, Salam
2017-12-01
The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.
Inverse scattering problem in turbulent magnetic fluctuations
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
Divergence of finite element formulations for inverse problems treated as optimization problems
International Nuclear Information System (INIS)
Rivas, Carlos; Barbone, Paul; Oberai, Assad
2008-01-01
Many inverse problems are formulated and solved as optimization problems. In this approach, the data mismatch between a predicted field and a measured field is minimized, subject to a constraint. The constraint represents the 'forward' model of the system under consideration. In this paper, the model considered is plane stress incompressible elasticity. This pde is discretized using several standard Galerkin finite element methods. These are known to yield stable and convergent discrete solutions that converge with mesh refinement to the exact solution of the forward problem. It is usually taken for granted that if the constraint equation is discretized by a stable, convergent numerical method, then the inverse problem will also converge to the exact solution with mesh refinement. We show examples in this paper, however, where this is not the case. These are based on inverse problems with interior data, which have provably unique solutions. Even so, the use of classical discretization techniques for the forward constraint within the optimization formulation leads to ill-posed discrete problems. We analyze the discrete systems of equations and show the source of the instability. We discuss variational properties of the continuous inverse optimization problem, and describe a novel B-spline FEM to solve it. We present computational evidence that suggests the B-spline FEM inverse problem solution converges to the exact inverse problem solution with mesh refinement.
Intermediate simulation of the inverse seismic problem
International Nuclear Information System (INIS)
Brolley, J.E.
1980-03-01
An introductory study of the inverse seismic problem is performed. The complex cepstrum of a seismogram generated by the convolution of three factors, the Seggern-Blandford source function of an explosion, the Futterman mantle transfer function, and the SRO seismometer transfer function, is used. For a given Q and yield, a synthetic seismogram is computed. Arbitrary values of Q and yield are introduced, and a search is conducted to find that pair of values that minimized the cepstral difference between the original and arbitrary seismograms. The original values are accurately recovered. Spectral and amplitude characteristics of the various factors are presented. Possible application to the problem of studying a medium intervening between a source and receiver is discussed. 25 figures, 1 table
Inverse problems for partial differential equations
Isakov, Victor
2017-01-01
This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...
International Nuclear Information System (INIS)
Cartalade, Alain
2002-01-01
This research thesis concerns the modelling of aquifer flows under the CEA/Cadarache site. The author reports the implementation of a numerical simulation tool adapted to large scale flows in fractured media, and its application to the Cadarache nuclear site. After a description of the site geological and hydrogeological characteristics, the author presents the conceptual model on which the modelling is based, presents the inverse model which allows a better definition of parameters, reports the validation of the inverse approach by means of synthetic and semi-synthetic cases. Then, he reports experiments and simulation of the Cadarache site
Model-reduced inverse modeling
Vermeulen, P.T.M.
2006-01-01
Although faster computers have been developed in recent years, they tend to be used to solve even more detailed problems. In many cases this will yield enormous models that can not be solved within acceptable time constraints. Therefore, there is a need for alternative methods that simulate such
Application of the kernel method to the inverse geosounding problem.
Hidalgo, Hugo; Sosa León, Sonia; Gómez-Treviño, Enrique
2003-01-01
Determining the layered structure of the earth demands the solution of a variety of inverse problems; in the case of electromagnetic soundings at low induction numbers, the problem is linear, for the measurements may be represented as a linear functional of the electrical conductivity distribution. In this paper, an application of the support vector (SV) regression technique to the inversion of electromagnetic data is presented. We take advantage of the regularizing properties of the SV learning algorithm and use it as a modeling technique with synthetic and field data. The SV method presents better recovery of synthetic models than Tikhonov's regularization. As the SV formulation is solved in the space of the data, which has a small dimension in this application, a smaller problem than that considered with Tikhonov's regularization is produced. For field data, the SV formulation develops models similar to those obtained via linear programming techniques, but with the added characteristic of robustness.
Bayesian inverse problems for functions and applications to fluid mechanics
International Nuclear Information System (INIS)
Cotter, S L; Dashti, M; Robinson, J C; Stuart, A M
2009-01-01
In this paper we establish a mathematical framework for a range of inverse problems for functions, given a finite set of noisy observations. The problems are hence underdetermined and are often ill-posed. We study these problems from the viewpoint of Bayesian statistics, with the resulting posterior probability measure being defined on a space of functions. We develop an abstract framework for such problems which facilitates application of an infinite-dimensional version of Bayes theorem, leads to a well-posedness result for the posterior measure (continuity in a suitable probability metric with respect to changes in data), and also leads to a theory for the existence of maximizing the posterior probability (MAP) estimators for such Bayesian inverse problems on function space. A central idea underlying these results is that continuity properties and bounds on the forward model guide the choice of the prior measure for the inverse problem, leading to the desired results on well-posedness and MAP estimators; the PDE analysis and probability theory required are thus clearly dileneated, allowing a straightforward derivation of results. We show that the abstract theory applies to some concrete applications of interest by studying problems arising from data assimilation in fluid mechanics. The objective is to make inference about the underlying velocity field, on the basis of either Eulerian or Lagrangian observations. We study problems without model error, in which case the inference is on the initial condition, and problems with model error in which case the inference is on the initial condition and on the driving noise process or, equivalently, on the entire time-dependent velocity field. In order to undertake a relatively uncluttered mathematical analysis we consider the two-dimensional Navier–Stokes equation on a torus. The case of Eulerian observations—direct observations of the velocity field itself—is then a model for weather forecasting. The case of
Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrell J; Wang, Dafang F; Steffen, Michael; Brooks, Dana H; van Dam, Peter M; Macleod, Rob S
2012-01-01
Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for Integrative Biomedical Computing (CIBC). A new toolkit within SCIRun provides researchers with essential frameworks for constructing and manipulating electrocardiographic forward and inverse models in a highly efficient and interactive way. The toolkit contains sample networks, tutorials and documentation which direct users through SCIRun-specific approaches in the assembly and execution of these specific problems. PMID:22254301
Atmospheric inverse modeling via sparse reconstruction
Directory of Open Access Journals (Sweden)
N. Hase
2017-10-01
Full Text Available Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4 emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Atmospheric inverse modeling via sparse reconstruction
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
Inverse eigenvalue problems for semilinear elliptic equations
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2009-09-01
Full Text Available We consider the inverse nonlinear eigenvalue problem for the equation $$displaylines{ -Delta u + f(u = lambda u, quad u > 0 quad hbox{in } Omega,cr u = 0 quad hbox{on } partialOmega, } where $f(u$ is an unknown nonlinear term, $Omega subset mathbb{R}^N$ is a bounded domain with an appropriate smooth boundary $partialOmega$ and $lambda > 0$ is a parameter. Under basic conditions on $f$, for any given $alpha > 0$, there exists a unique solution $(lambda, u = (lambda(alpha, u_alpha in mathbb{R}_+ imes C^2(ar{Omega}$ with $|u_alpha|_2 = alpha$. The curve $lambda(alpha$ is called the $L^2$-bifurcation branch. Using a variational approach, we show that the nonlinear term $f(u$ is determined uniquely by $lambda(alpha$.
The inverse problem for Schwinger pair production
Directory of Open Access Journals (Sweden)
F. Hebenstreit
2016-02-01
Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Uhlmann, Gunther
2008-07-01
This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology
Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.
2016-02-13
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Numerical investigation of the inverse blackbody radiation problem
International Nuclear Information System (INIS)
Xin Tan, Guo-zhen Yang, Ben-yuan Gu
1994-01-01
A numerical algorithm for the inverse blackbody radiation problem, which is the determination of the temperature distribution of a thermal radiator (TDTR) from its total radiated power spectrum (TRPS), is presented, based on the general theory of amplitude-phase retrieval. With application of this new algorithm, the ill-posed nature of the Fredholm equation of the first kind can be largely overcome and a convergent solution to high accuracy can be obtained. By incorporation of the hybrid input-output algorithm into our algorithm, the convergent process can be substantially expedited and the stagnation problem of the solution can be averted. From model calculations it is found that the new algorithm can also provide a robust reconstruction of the TDTR from the noise-corrupted data of the TRPS. Therefore the new algorithm may offer a useful approach to solving the ill-posed inverse problem. 18 refs., 9 figs
Piecewise polynomial solutions to linear inverse problems
DEFF Research Database (Denmark)
Hansen, Per Christian; Mosegaard, K.
1996-01-01
We have presented a new algorithm PP-TSVD that computes piecewise polynomial solutions to ill-posed problems, without a priori knowledge about the positions of the break points. In particular, we can compute piecewise constant functions that describe layered models. Such solutions are useful, e.g.......g., in seismological problems, and the algorithm can also be used as a preprocessor for other methods where break points/discontinuities must be incorporated explicitly....
Inverse Problems in Systems Biology: A Critical Review.
Guzzi, Rodolfo; Colombo, Teresa; Paci, Paola
2018-01-01
Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements. Despite the noise certainly is a problem, the inverse problems already involve the inference of missing information, even if the data is entirely reliable. So the addition of a certain limited noise does not fundamentally change the situation but can be used to solve the so-called ill-posed problem, as defined by Hadamard. It can be seen as an extra source of information. Recent studies have shown that complex systems, among others the systems biology, are poorly constrained and ill-conditioned because it is difficult to use experimental data to fully estimate their parameters. For these reasons was born the concept of sloppy models, a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. Furthermore the concept of sloppy models contains also the concept of un-identifiability, because the models are characterized by many parameters that are poorly constrained by experimental data. Then a strategy needs to be designed to infer, analyze, and understand biological systems. The aim of this work is to provide a critical review to the inverse problems in systems biology defining a strategy to determine the minimal set of information needed to overcome the problems arising from dynamic biological models that generally may have many unknown, non-measurable parameters.
Finite element based inversion for time-harmonic electromagnetic problems
Schwarzbach, Christoph; Haber, Eldad
2013-05-01
In this paper we address the inverse problem and present some recent advances in numerical methods to recover the subsurface electrical conductivity from time-harmonic electromagnetic data. We rigorously formulate and discretize both the forward and the inverse problem in the finite element framework. To solve the forward problem, we derive a finite element discretization of the first-order system of Maxwell's equations in terms of the electric field and the magnetic induction. We show that our approach is equivalent to the standard discretization of the vector Helmholtz equation in terms of the electric field and that the discretization of magnetic induction of the same approximation order is hidden in the standard discretization. We implement the forward solver on unstructured tetrahedral meshes using edge elements. Unstructured meshes are not only capable of representing complex geometry. They can also reduce the overall problem size and, thus, the size of the system of linear equations arising from the forward problem such that direct methods for its solution using a sparse matrix factorization become feasible. The inverse problem is formulated as a regularized output least squares problem. We consider two regularization functions. First, we derive a smoothness regularizer using a primal-dual mixed finite element formulation which generalizes the standard Laplacian operator for a piecewise constant conductivity model on unstructured meshes. Secondly, we derive a total variation regularizer for the same class of models. For the choice of the regularization parameter we revisit the so-called dynamic regularization and compare it to a standard regularization scheme with fixed regularization parameter. The optimization problem is solved by the Gauss-Newton method which can be efficiently implemented using sparse matrix-vector operations and exploiting the sparse matrix factorization of the forward problem system matrix. A synthetic data example from marine
Quantum method of the inverse scattering problem. Pt. 1
International Nuclear Information System (INIS)
Sklyamin, E.K.; Takhtadzhyan, L.A.; Faddeev, L.D.
1978-12-01
In this work the authors use a formulation for the method of the inverse scattering problem for quantum-mechanical models of the field theory, that can be found in a quantization of these fully integrable systems. As the most important example serves the system (sinγ) 2 with the movement equation: γtt -γxx + m 2 /β sinβγ = 0 that is known under the specification Sine-Gordon-equation. (orig.) [de
Direct and Inverse Problems in Statistical Wavefields
International Nuclear Information System (INIS)
Wolf, Emil
2002-01-01
In this report account is presented of research carried out during the period September 1, 1999-August 31, 2002 under the sponsorship of the Department of Energy, grant DE-FG02-90ER14119. The research covered several areas of modern optical physics, particularly propagation of partially coherent light and its interaction with deterministic and with random media, spectroscopy with partially coherent light, polarization properties of statistical wave fields, effects of moving diffusers on coherence and on the spectra of light transmitted and scattered by them, reciprocity inequalities involving spatial and angular correlations of partially coherent beams, spreading of partially coherent beams in-random media, inverse source problems, computed and diffraction tomography and partially coherent solitons. We have discovered a new phenomenon in an emerging field of physical optics, known as singular optics; specifically we found that the spectrum of light changes drastically in the neighborhood of points where the intensity has zero value and where, consequently, the phase becomes singular, We noted some potential applications of this phenomenon. The results of our investigations were reported in 39 publications. They are listed on pages 3 to 5. Summaries of these publications are given on pages 6-13. Scientists who have participated in this research are listed on page 14
Including geological information in the inverse problem of palaeothermal reconstruction
Trautner, S.; Nielsen, S. B.
2003-04-01
A reliable reconstruction of sediment thermal history is of central importance to the assessment of hydrocarbon potential and the understanding of basin evolution. However, only rarely do sedimentation history and borehole data in the form of present day temperatures and vitrinite reflectance constrain the past thermal evolution to a useful level of accuracy (Gallagher and Sambridge,1992; Nielsen,1998; Trautner and Nielsen,2003). This is reflected in the inverse solutions to the problem of determining heat flow history from borehole data: The recent heat flow is constrained by data while older values are governed by the chosen a prior heat flow. In this paper we reduce this problem by including geological information in the inverse problem. Through a careful analysis of geological and geophysical data the timing of the tectonic processes, which may influence heat flow, can be inferred. The heat flow history is then parameterised to allow for the temporal variations characteristic of the different tectonic events. The inversion scheme applies a Markov chain Monte Carlo (MCMC) approach (Nielsen and Gallagher, 1999; Ferrero and Gallagher,2002), which efficiently explores the model space and futhermore samples the posterior probability distribution of the model. The technique is demonstrated on wells in the northern North Sea with emphasis on the stretching event in Late Jurassic. The wells are characterised by maximum sediment temperature at the present day, which is the worst case for resolution of the past thermal history because vitrinite reflectance is determined mainly by the maximum temperature. Including geological information significantly improves the thermal resolution. Ferrero, C. and Gallagher,K.,2002. Stochastic thermal history modelling.1. Constraining heat flow histories and their uncertainty. Marine and Petroleum Geology, 19, 633-648. Gallagher,K. and Sambridge, M., 1992. The resolution of past heat flow in sedimentary basins from non-linear inversion
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
PREFACE: International Conference on Inverse Problems 2010
Hon, Yiu-Chung; Ling, Leevan
2011-03-01
Following the first International Conference on Inverse Problems - Recent Theoretical Development and Numerical Approaches held at the City University of Hong Kong in 2002, the fifth International Conference was held again at the City University during December 13-17, 2010. This fifth conference was jointly organized by Professor Yiu-Chung Hon (Co-Chair, City University of Hong Kong, HKSAR), Dr Leevan Ling (Co-Chair, Hong Kong Baptist University, HKSAR), Professor Jin Cheng (Fudan University, China), Professor June-Yub Lee (Ewha Womans University, South Korea), Professor Gui-Rong Liu (University of Cincinnati, USA), Professor Jenn-Nan Wang (National Taiwan University, Taiwan), and Professor Masahiro Yamamoto (The University of Tokyo, Japan). It was agreed to alternate holding the conference among the above places (China, Japan, Korea, Taiwan, and Hong Kong) once every two years. The next conference has been scheduled to be held at the Southeast University (Nanjing, China) in 2012. The purpose of this series of conferences is to establish a strong collaborative link among the universities of the Asian-Pacific regions and worldwide leading researchers in inverse problems. The conference addressed both theoretical (mathematics), applied (engineering) and developmental aspects of inverse problems. The conference was intended to nurture Asian-American-European collaborations in the evolving interdisciplinary areas and it was envisioned that the conference would lead to long-term commitments and collaborations among the participating countries and researchers. There was a total of more than 100 participants. A call for the submission of papers was sent out after the conference, and a total of 19 papers were finally accepted for publication in this proceedings. The papers included in the proceedings cover a wide scope, which reflects the current flourishing theoretical and numerical research into inverse problems. Finally, as the co-chairs of the Inverse Problems
An inverse problem for space and time fractional evolution equation ...
African Journals Online (AJOL)
We consider an inverse problem for a space and time fractional evolution equation, interpolating the heat and wave equations, with an involution. Existence and uniqueness results for the given problem are obtained via the method of separation of variables. Key words: Inverse problem, fractional, fractional evolution ...
Large-Scale Inverse Problems and Quantification of Uncertainty
Biegler, Lorenz; Ghattas, Omar
2010-01-01
Large-scale inverse problems and associated uncertainty quantification has become an important area of research, central to a wide range of science and engineering applications. Written by leading experts in the field, Large-scale Inverse Problems and Quantification of Uncertainty focuses on the computational methods used to analyze and simulate inverse problems. The text provides PhD students, researchers, advanced undergraduate students, and engineering practitioners with the perspectives of researchers in areas of inverse problems and data assimilation, ranging from statistics and large-sca
Two hybrid regularization frameworks for solving the electrocardiography inverse problem
Energy Technology Data Exchange (ETDEWEB)
Jiang Mingfeng; Xia Ling; Shou Guofa; Liu Feng [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia)], E-mail: xialing@zju.edu.cn
2008-09-21
In this paper, two hybrid regularization frameworks, LSQR-Tik and Tik-LSQR, which integrate the properties of the direct regularization method (Tikhonov) and the iterative regularization method (LSQR), have been proposed and investigated for solving ECG inverse problems. The LSQR-Tik method is based on the Lanczos process, which yields a sequence of small bidiagonal systems to approximate the original ill-posed problem and then the Tikhonov regularization method is applied to stabilize the projected problem. The Tik-LSQR method is formulated as an iterative LSQR inverse, augmented with a Tikhonov-like prior information term. The performances of these two hybrid methods are evaluated using a realistic heart-torso model simulation protocol, in which the heart surface source method is employed to calculate the simulated epicardial potentials (EPs) from the action potentials (APs), and then the acquired EPs are used to calculate simulated body surface potentials (BSPs). The results show that the regularized solutions obtained by the LSQR-Tik method are approximate to those of the Tikhonov method, the computational cost of the LSQR-Tik method, however, is much less than that of the Tikhonov method. Moreover, the Tik-LSQR scheme can reconstruct the epcicardial potential distribution more accurately, specifically for the BSPs with large noisy cases. This investigation suggests that hybrid regularization methods may be more effective than separate regularization approaches for ECG inverse problems.
Two hybrid regularization frameworks for solving the electrocardiography inverse problem
Jiang, Mingfeng; Xia, Ling; Shou, Guofa; Liu, Feng; Crozier, Stuart
2008-09-01
In this paper, two hybrid regularization frameworks, LSQR-Tik and Tik-LSQR, which integrate the properties of the direct regularization method (Tikhonov) and the iterative regularization method (LSQR), have been proposed and investigated for solving ECG inverse problems. The LSQR-Tik method is based on the Lanczos process, which yields a sequence of small bidiagonal systems to approximate the original ill-posed problem and then the Tikhonov regularization method is applied to stabilize the projected problem. The Tik-LSQR method is formulated as an iterative LSQR inverse, augmented with a Tikhonov-like prior information term. The performances of these two hybrid methods are evaluated using a realistic heart-torso model simulation protocol, in which the heart surface source method is employed to calculate the simulated epicardial potentials (EPs) from the action potentials (APs), and then the acquired EPs are used to calculate simulated body surface potentials (BSPs). The results show that the regularized solutions obtained by the LSQR-Tik method are approximate to those of the Tikhonov method, the computational cost of the LSQR-Tik method, however, is much less than that of the Tikhonov method. Moreover, the Tik-LSQR scheme can reconstruct the epcicardial potential distribution more accurately, specifically for the BSPs with large noisy cases. This investigation suggests that hybrid regularization methods may be more effective than separate regularization approaches for ECG inverse problems.
Radiative-conductive inverse problem for lumped parameter systems
International Nuclear Information System (INIS)
Alifanov, O M; Nenarokomov, A V; Gonzalez, V M
2008-01-01
The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.
The inverse problems of wing panel manufacture processes
Oleinikov, A. I.; Bormotin, K. S.
2013-12-01
It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.
Jing, Wenjia; Tran, Hung V.; Yu, Yifeng
2017-05-01
The main goal of this paper is to understand finer properties of the effective burning velocity from a combustion model introduced by Majda and Souganidis (1994 Nonlinearity 7 1-30). Motivated by results in Bangert (1994 Calculus Variations PDE 2 49-63) and applications in turbulent combustion, we show that when the dimension is two and the flow of the ambient fluid is either weak or very strong, the level set of the effective burning velocity has flat pieces. Due to the lack of an applicable Hopf-type rigidity result, we need to identify the exact location of at least one flat piece. Implications on the effective flame front and other related inverse type problems are also discussed.
Source localization in electromyography using the inverse potential problem
van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.
2011-02-01
We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.
Source localization in electromyography using the inverse potential problem
International Nuclear Information System (INIS)
Van den Doel, Kees; Ascher, Uri M; Pai, Dinesh K
2011-01-01
We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
Inverse problem of Ocean Acoustic Tomography (OAT) - A numerical experiment
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.
Acoustic model simulation experiments related to the forward and inverse aspects of ocean tomography have been taken up with a view to estimate the vertical sound speed field by inverting the travel time data. Two methods of inversion have been...
The inverse spectral problem for pencils of differential operators
International Nuclear Information System (INIS)
Guseinov, I M; Nabiev, I M
2007-01-01
The inverse problem of spectral analysis for a quadratic pencil of Sturm-Liouville operators on a finite interval is considered. A uniqueness theorem is proved, a solution algorithm is presented, and sufficient conditions for the solubility of the inverse problem are obtained. Bibliography: 31 titles.
Formulas in inverse and ill-posed problems
Anikonov, Yu E
1997-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
International Nuclear Information System (INIS)
Giacobbo, F.; Marseguerra, M.; Zio, E.
2002-01-01
Mathematical models are widely used within the performance assessment of radioactive waste repositories to describe the behaviour of groundwater systems under the various physical conditions encountered throughout the long time scales involved. The effectiveness of such predictive models largely depends on the accuracy with which the involved parameters can be determined. In the present paper, we investigate the feasibility of using genetic algorithms for estimating the parameters of a groundwater contaminant transport model. The genetic algorithms are numerical search tools aiming at finding the global optimum of a given real objective function of one or more real variables, possibly subject to various linear or non linear constraints. The search procedures provided by the genetic algorithms resemble certain principles of natural evolution. In the case study here, the transport of contaminants through a three-layered monodimensional saturated medium is numerically simulated by a monodimensional advection-dispersion model. The associated velocity and dispersivity parameters are estimated by a genetic algorithm whose objective function is the sum of the squared residuals between pseudo-experimental data, obtained with the true values of the parameters, and the concentration profiles computed with the model using the estimated values of the parameters. The results indicate that the method is capable of estimating the parameters values with accuracy, also when in presence of substantial noise. Furthermore, we investigate the possibility of extracting some qualitative information regarding the sensitivity of the model to the unknown input parameters from the speed of convergence and stabilization of the identification procedure
Marmolejo Rivas, Eugenia
2017-01-01
In this paper, we focus our discussion on the strategy we follow to scaffold high school students to successfully build models of a real-life system. Our aim is for students to gradually achieve a higher level of autonomy and to use and further develop their mathematical knowledge. We present work students did when we asked them to build a model…
Inverse radiative transfer problems in two-dimensional heterogeneous media
International Nuclear Information System (INIS)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
Introduction to the 30th volume of Inverse Problems
Louis, Alfred K.
2014-01-01
The field of inverse problems is a fast-developing domain of research originating from the practical demands of finding the cause when a result is observed. The woodpecker, searching for insects, is probing a tree using sound waves: the information searched for is whether there is an insect or not, hence a 0-1 decision. When the result has to contain more information, ad hoc solutions are not at hand and more sophisticated methods have to be developed. Right from its first appearance, the field of inverse problems has been characterized by an interdisciplinary nature: the interpretation of measured data, reinforced by mathematical models serving the analyzing questions of observability, stability and resolution, developing efficient, stable and accurate algorithms to gain as much information as possible from the input and to feedback to the questions of optimal measurement configuration. As is typical for a new area of research, facets of it are separated and studied independently. Hence, fields such as the theory of inverse scattering, tomography in general and regularization methods have developed. However, all aspects have to be reassembled to arrive at the best possible solution to the problem at hand. This development is reflected by the first and still leading journal in the field, Inverse Problems. Founded by pioneers Roy Pike from London and Pierre Sabatier from Montpellier, who enjoyably describes the journal's nascence in his book Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse [1], the journal has developed successfully over the last few decades. Neither the Editors-in-Chief, formerly called Honorary Editors, nor the board or authors could have set the path to success alone. Their fruitful interplay, complemented by the efficient and highly competent publishing team at IOP Publishing, has been fundamental. As such it is my honor and pleasure to follow my renowned colleagues Pierre Sabatier, Mario Bertero, Frank Natterer, Alberto Grünbaum and
Castineira, D.; Jha, B.; Juanes, R.
2016-12-01
Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true
Spectral solution of the inverse Mie problem
Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.
2017-10-01
We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.
Fast computation of the inverse CMH model
Patel, Umesh D.; Della Torre, Edward
2001-12-01
A fast computational method based on differential equation approach for inverse Della Torre, Oti, Kádár (DOK) model has been extended for the inverse Complete Moving Hysteresis (CMH) model. A cobweb technique for calculating the inverse CMH model is also presented. The two techniques differ from the point of view of flexibility, accuracy, and computation time. Simulation results of the inverse computation for both methods are presented.
Applications of elliptic Carleman inequalities to Cauchy and inverse problems
Choulli, Mourad
2016-01-01
This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
International Nuclear Information System (INIS)
Asensio Ramos, A.; Manso Sainz, R.; Martínez González, M. J.; Socas-Navarro, H.; Viticchié, B.; Orozco Suárez, D.
2012-01-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
Topological inversion for solution of geodesy-constrained geophysical problems
Saltogianni, Vasso; Stiros, Stathis
2015-04-01
Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a
Carleman estimates and applications to inverse problems for hyperbolic systems
Bellassoued, Mourad
2017-01-01
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of wh...
The inverse problem of the magnetostatic nondestructive testing
International Nuclear Information System (INIS)
Pechenkov, A.N.; Shcherbinin, V.E.
2006-01-01
The inverse problem of magnetostatic nondestructive testing consists in the calculation of the shape and magnetic characteristics of a flaw in a uniform magnetized body with measurement of static magnetic field beyond the body. If the flaw does not contain any magnetic material, the inverse problem is reduced to identification of the shape and magnetic susceptibility of the substance. This case has been considered in the study [ru
Stability analysis of the inverse transmembrane potential problem in electrocardiography
Burger, Martin; Mardal, Kent-André; Nielsen, Bjørn Fredrik
2010-10-01
In this paper we study some mathematical properties of an inverse problem arising in connection with electrocardiograms (ECGs). More specifically, we analyze the possibility for recovering the transmembrane potential in the heart from ECG recordings, a challenge currently investigated by a growing number of groups. Our approach is based on the bidomain model for the electrical activity in the myocardium, and leads to a parameter identification problem for elliptic partial differential equations (PDEs). It turns out that this challenge can be split into two subproblems: the task of recovering the potential at the heart surface from body surface recordings; the problem of computing the transmembrane potential inside the heart from the potential determined at the heart surface. Problem (1), which can be formulated as the Cauchy problem for an elliptic PDE, has been extensively studied and is well known to be severely ill-posed. The main purpose of this paper is to prove that problem (2) is stable and well posed if a suitable prior is available. Moreover, our theoretical findings are illuminated by a series of numerical experiments. Finally, we discuss some aspects of uniqueness related to the anisotropy in the heart.
A Volunteer Computing Project for Solving Geoacoustic Inversion Problems
Zaikin, Oleg; Petrov, Pavel; Posypkin, Mikhail; Bulavintsev, Vadim; Kurochkin, Ilya
2017-12-01
A volunteer computing project aimed at solving computationally hard inverse problems in underwater acoustics is described. This project was used to study the possibilities of the sound speed profile reconstruction in a shallow-water waveguide using a dispersion-based geoacoustic inversion scheme. The computational capabilities provided by the project allowed us to investigate the accuracy of the inversion for different mesh sizes of the sound speed profile discretization grid. This problem suits well for volunteer computing because it can be easily decomposed into independent simpler subproblems.
Inverse problems in vision and 3D tomography
Mohamad-Djafari, Ali
2013-01-01
The concept of an inverse problem is a familiar one to most scientists and engineers, particularly in the field of signal and image processing, imaging systems (medical, geophysical, industrial non-destructive testing, etc.) and computer vision. In imaging systems, the aim is not just to estimate unobserved images, but also their geometric characteristics from observed quantities that are linked to these unobserved quantities through the forward problem. This book focuses on imagery and vision problems that can be clearly written in terms of an inverse problem where an estimate for the image a
L∞ fitting for inverse problems with uniform noise
Clason, Christian
2012-10-01
For inverse problems where the data are corrupted by uniform noise such as arising from quantization errors, the L∞ norm is a more robust data-fitting term than the standard L2 norm. Well-posedness and regularization properties for linear inverse problems with L∞ data fitting are shown, and the automatic choice of the regularization parameter is discussed. After introducing an equivalent reformulation of the problem and a Moreau-Yosida approximation, a superlinearly convergent semi-smooth Newton method becomes applicable for the numerical solution of L∞ fitting problems. Numerical examples illustrate the performance of the proposed approach as well as the qualitative behavior of L∞ fitting.
Structured Sparsity Regularization Approach to the EEG Inverse Problem
DEFF Research Database (Denmark)
Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Hansen, Lars Kai
2012-01-01
Localization of brain activity involves solving the EEG inverse problem, which is an undetermined ill-posed problem. We propose a novel approach consisting in estimating, using structured sparsity regularization techniques, the Brain Electrical Sources (BES) matrix directly in the spatio......-temporal source space. We use proximal splitting optimization methods, which are efficient optimization techniques, with good convergence rates and with the ability to handle large nonsmooth convex problems, which is the typical scenario in the EEG inverse problem. We have evaluated our approach under a simulated...
Information criteria to estimate hyperparameters in groundwater inverse problems
Zanini, A.; Tanda, M. G.; Woodbury, A. D.
2017-12-01
One of the main issues in groundwater modeling is the knowledge of the hydraulic parameters such as transmissivity and storativity. In literature there are several efficacious inverse methods that are able to estimate these unknown properties. Most methods assume, as a priori knowledge, the form of the variogram (or covariance function) of the unknown parameters. The hyperparameters of the variogram (or covariance function) can be inferred from observations, assumed known or estimated. Information criteria are widely used in inverse problems in several disciplines (such as geophysics, hydrology, ...) to estimate the hyperparameters. In this work, in order to estimate the hyperparameters, we consider the Akaike Information Criterion (AIC) and the Akaike Bayesian Information Criterion (ABIC). AIC is computed as -2 ln[fitted model]+2 number of unknown parameters. The iterative procedure allows to identify the hyperparameters that minimize the AIC. The ABIC is similar to the AIC in form and is computed in terms of the Bayesian likelihood; it is appropriate when prior information is considered in the form of prior probability. ABIC = -2 ln[predictive distribution]+2 (number of hyperparameters). The predictive distribution is the normalizing constant that is at the denominator of the Bayes theorem and represents the pdf of observing the data with the uncertainty in the model parameters marginalized out of consideration. The correct hyperparameters are evaluated at the minimum value of the ABIC. In this work we compare the results obtained from AIC to ABIC, using a literature example and we describe pros and cons of the two approaches.
Automatic Flight Controller With Model Inversion
Meyer, George; Smith, G. Allan
1992-01-01
Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.
Reconstruction Methods for Inverse Problems with Partial Data
DEFF Research Database (Denmark)
Hoffmann, Kristoffer
This thesis presents a theoretical and numerical analysis of a general mathematical formulation of hybrid inverse problems in impedance tomography. This includes problems from several existing hybrid imaging modalities such as Current Density Impedance Imaging, Magnetic Resonance Electrical...... Impedance Tomography, and Ultrasound Modulated Electrical Impedance Tomography. After giving an introduction to hybrid inverse problems in impedance tomography and the mathematical tools that facilitate the related analysis, we explain in detail the stability properties associated with the classification...... of a linearised hybrid inverse problem. This is done using pseudo-differential calculus and theory for overdetermined boundary value problem. Using microlocal analysis we then present novel results on the propagation of singularities, which give a precise description of the distinct features of solutions...
Stabilizing inverse problems by internal data
Kuchment, Peter
2012-07-30
Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low-resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kinds of interior data stabilize the reconstruction, and why. Namely, we show when the linearized problem becomes an elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality. © 2012 IOP Publishing Ltd.
Fixed energy potentials through an auxiliary inverse eigenvalue problem
International Nuclear Information System (INIS)
Pálmai, Tamás; Apagyi, Barnabás
2012-01-01
An inverse scattering method based on an auxiliary inverse Sturm–Liouville problem recently proposed by Horváth and Apagyi (2008 Mod. Phys. Lett. B 22 2137) is examined in various aspects and developed further to (re)construct spherically symmetric fixed energy potentials of compact support realized in the three-dimensional Schrödinger equation. The method is generalized to obtain a family of inverse procedures characterized by two parameters originating, respectively, from the Liouville transformation and the solution of the inverse Sturm–Liouville problem. Both parameters affect the bound states arising in the auxiliary inverse spectral problem and one of them enables us to reduce their number which is assessed by a simple method. Various solution techniques of the underlying moment problem are proposed including the exact Cauchy matrix inversion method, usage of spurious bound state and assessment of the number of bound states. Examples include (re)productions of potentials from phase shifts known theoretically or derived from scattering experiments. (paper)
Wake Vortex Inverse Model User's Guide
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input
Turbulence Nature and the Inverse Problem
Pyatnitsky, L. N
2009-01-01
Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscil...
REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM
DEFF Research Database (Denmark)
Knudsen, Kim; Lassas, Matti; Mueller, Jennifer
2009-01-01
A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...... equation and the scattering transform. It is shown that this leads to a bound on the error in the scattering transform and a stable reconstruction of the conductivity; an explicit rate of convergence in appropriate Banach spaces is derived as well. Numerical results are also included, demonstrating...... the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel...
Coefficient Inverse Problem for Poisson's Equation in a Cylinder
Solov'ev, V. V.
2011-01-01
The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the
Direct and inverse problems of infrared tomography
DEFF Research Database (Denmark)
Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander
2016-01-01
regularization. A software package in MATLAB has been developed. Two numerical examples-with modeled and real input data-were solved. The proposed methodology avoids the necessity of elaborate determination of the absorption coefficient by direct (point) measurements or calculation using spectroscopic databases...
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Inverse planning for x-ray rotation therapy: a general solution of the inverse problem
International Nuclear Information System (INIS)
Oelfke, U.; Bortfeld, T.
1999-01-01
Rotation therapy with photons is currently under investigation for the delivery of intensity modulated radiotherapy (IMRT). An analytical approach for inverse treatment planning of this radiotherapy technique is described. The inverse problem for the delivery of arbitrary 2D dose profiles is first formulated and then solved analytically. In contrast to previously applied strategies for solving the inverse problem, it is shown that the most general solution for the fluence profiles consists of two independent solutions of different parity. A first analytical expression for both fluence profiles is derived. The mathematical derivation includes two different strategies, an elementary expansion of fluence and dose into polynomials and a more practical approach in terms of Fourier transforms. The obtained results are discussed in the context of previous work on this problem. (author)
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Some numerical approaches to solving one-dimensional inverse problems
International Nuclear Information System (INIS)
Hagin, F.
1980-01-01
A class of one-dimensional inverse scattering problems are studied with the goal of reconstructing (say) propagation speed to moderate accuracy as inexpensively as possible. Three alternatives are discussed; all starting from a change to the travel-time variable and converting the problem to integral equation form. The approaches are compared as to their economy of use and the problems for which they are effective. Several numerical examples illustrate these comparisons
Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography
DEFF Research Database (Denmark)
Hoffmann, Kristoffer; Knudsen, Kim
2014-01-01
For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...
Well-posedness of inverse problems for systems with time dependent parameters
DEFF Research Database (Denmark)
Banks, H. T.; Pedersen, Michael
2009-01-01
on the data of the problem. We also consider well-posedness as well as finite element type approximations in associated inverse problems. The problem above is a weak formulation that includes models in abstract differential operator form that include plate, beam and shell equations with several important...
PREFACE: Inverse Problems in Applied Sciences—towards breakthrough
Cheng, Jin; Iso, Yuusuke; Nakamura, Gen; Yamamoto, Masahiro
2007-06-01
These are the proceedings of the international conference `Inverse Problems in Applied Sciences—towards breakthrough' which was held at Hokkaido University, Sapporo, Japan on 3-7 July 2006 (http://coe.math.sci.hokudai.ac.jp/sympo/inverse/). There were 88 presentations and more than 100 participants, and we are proud to say that the conference was very successful. Nowadays, many new activities on inverse problems are flourishing at many centers of research around the world, and the conference has successfully gathered a world-wide variety of researchers. We believe that this volume contains not only main papers, but also conveys the general status of current research into inverse problems. This conference was the third biennial international conference on inverse problems, the core of which is the Pan-Pacific Asian area. The purpose of this series of conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries, and to lead the organization of activities concerning inverse problems centered in East Asia. The first conference was held at City University of Hong Kong in January 2002 and the second was held at Fudan University in June 2004. Following the preceding two successes, the third conference was organized in order to extend the scope of activities and build useful bridges to the next conference in Seoul in 2008. Therefore this third biennial conference was intended not only to establish collaboration and links between researchers in Asia and leading researchers worldwide in inverse problems but also to nurture interdisciplinary collaboration in theoretical fields such as mathematics, applied fields and evolving aspects of inverse problems. For these purposes, we organized tutorial lectures, serial lectures and a panel discussion as well as conference research presentations. This volume contains three lecture notes from the tutorial and serial lectures, and 22 papers. Especially at this
Collage-type approach to inverse problems for elliptic PDEs on perforated domains
Directory of Open Access Journals (Sweden)
Herb E. Kunze
2015-02-01
Full Text Available We present a collage-based method for solving inverse problems for elliptic partial differential equations on a perforated domain. The main results of this paper establish a link between the solution of an inverse problem on a perforated domain and the solution of the same model on a domain with no holes. The numerical examples at the end of the paper show the goodness of this approach.
Geometric MCMC for infinite-dimensional inverse problems
Beskos, Alexandros; Girolami, Mark; Lan, Shiwei; Farrell, Patrick E.; Stuart, Andrew M.
2017-04-01
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon mesh-refinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and thus are expensive as a function of dimension. Recently, a new class of MCMC methods with mesh-independent convergence times has emerged. However, few of them take into account the geometry of the posterior informed by the data. At the same time, recently developed geometric MCMC algorithms have been found to be powerful in exploring complicated distributions that deviate significantly from elliptic Gaussian laws, but are in general computationally intractable for models defined in infinite dimensions. In this work, we combine geometric methods on a finite-dimensional subspace with mesh-independent infinite-dimensional approaches. Our objective is to speed up MCMC mixing times, without significantly increasing the computational cost per step (for instance, in comparison with the vanilla preconditioned Crank-Nicolson (pCN) method). This is achieved by using ideas from geometric MCMC to probe the complex structure of an intrinsic finite-dimensional subspace where most data information concentrates, while retaining robust mixing times as the dimension grows by using pCN-like methods in the complementary subspace. The resulting algorithms are demonstrated in the context of three challenging inverse problems arising in subsurface flow, heat conduction and incompressible flow control. The algorithms exhibit up to two orders of magnitude improvement in sampling efficiency when compared with the pCN method.
A Survey on Inverse Problems for Applied Sciences
Directory of Open Access Journals (Sweden)
Fatih Yaman
2013-01-01
Full Text Available The aim of this paper is to introduce inversion-based engineering applications and to investigate some of the important ones from mathematical point of view. To do this we employ acoustic, electromagnetic, and elastic waves for presenting different types of inverse problems. More specifically, we first study location, shape, and boundary parameter reconstruction algorithms for the inaccessible targets in acoustics. The inverse problems for the time-dependent differential equations of isotropic and anisotropic elasticity are reviewed in the following section of the paper. These problems were the objects of the study by many authors in the last several decades. The physical interpretations for almost all of these problems are given, and the geophysical applications for some of them are described. In our last section, an introduction with many links into the literature is given for modern algorithms which combine techniques from classical inverse problems with stochastic tools into ensemble methods both for data assimilation as well as for forecasting.
A tutorial on inverse problems for anomalous diffusion processes
Jin, Bangti; Rundell, William
2015-03-01
Over the last two decades, anomalous diffusion processes in which the mean squares variance grows slower or faster than that in a Gaussian process have found many applications. At a macroscopic level, these processes are adequately described by fractional differential equations, which involves fractional derivatives in time or/and space. The fractional derivatives describe either history mechanism or long range interactions of particle motions at a microscopic level. The new physics can change dramatically the behavior of the forward problems. For example, the solution operator of the time fractional diffusion diffusion equation has only limited smoothing property, whereas the solution for the space fractional diffusion equation may contain weak singularity. Naturally one expects that the new physics will impact related inverse problems in terms of uniqueness, stability, and degree of ill-posedness. The last aspect is especially important from a practical point of view, i.e., stably reconstructing the quantities of interest. In this paper, we employ a formal analytic and numerical way, especially the two-parameter Mittag-Leffler function and singular value decomposition, to examine the degree of ill-posedness of several ‘classical’ inverse problems for fractional differential equations involving a Djrbashian-Caputo fractional derivative in either time or space, which represent the fractional analogues of that for classical integral order differential equations. We discuss four inverse problems, i.e., backward fractional diffusion, sideways problem, inverse source problem and inverse potential problem for time fractional diffusion, and inverse Sturm-Liouville problem, Cauchy problem, backward fractional diffusion and sideways problem for space fractional diffusion. It is found that contrary to the wide belief, the influence of anomalous diffusion on the degree of ill-posedness is not definitive: it can either significantly improve or worsen the conditioning of
Energy Technology Data Exchange (ETDEWEB)
Jiang Mingfeng [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Xia Ling [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Shou Guofa [Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027 (China); Tang Min [Department of Arrhythmia, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science and Chinese Union Medical College, Beijing 100037 (China)
2007-03-07
Computing epicardial potentials from body surface potentials constitutes one form of ill-posed inverse problem of electrocardiography (ECG). To solve this ECG inverse problem, the Tikhonov regularization and truncated singular-value decomposition (TSVD) methods have been commonly used to overcome the ill-posed property by imposing constraints on the magnitudes or derivatives of the computed epicardial potentials. Such direct regularization methods, however, are impractical when the transfer matrix is large. The least-squares QR (LSQR) method, one of the iterative regularization methods based on Lanczos bidiagonalization and QR factorization, has been shown to be numerically more reliable in various circumstances than the other methods considered. This LSQR method, however, to our knowledge, has not been introduced and investigated for the ECG inverse problem. In this paper, the regularization properties of the Krylov subspace iterative method of LSQR for solving the ECG inverse problem were investigated. Due to the 'semi-convergence' property of the LSQR method, the L-curve method was used to determine the stopping iteration number. The performance of the LSQR method for solving the ECG inverse problem was also evaluated based on a realistic heart-torso model simulation protocol. The results show that the inverse solutions recovered by the LSQR method were more accurate than those recovered by the Tikhonov and TSVD methods. In addition, by combing the LSQR with genetic algorithms (GA), the performance can be improved further. It suggests that their combination may provide a good scheme for solving the ECG inverse problem.
Jiang, Mingfeng; Xia, Ling; Shou, Guofa; Tang, Min
2007-03-01
Computing epicardial potentials from body surface potentials constitutes one form of ill-posed inverse problem of electrocardiography (ECG). To solve this ECG inverse problem, the Tikhonov regularization and truncated singular-value decomposition (TSVD) methods have been commonly used to overcome the ill-posed property by imposing constraints on the magnitudes or derivatives of the computed epicardial potentials. Such direct regularization methods, however, are impractical when the transfer matrix is large. The least-squares QR (LSQR) method, one of the iterative regularization methods based on Lanczos bidiagonalization and QR factorization, has been shown to be numerically more reliable in various circumstances than the other methods considered. This LSQR method, however, to our knowledge, has not been introduced and investigated for the ECG inverse problem. In this paper, the regularization properties of the Krylov subspace iterative method of LSQR for solving the ECG inverse problem were investigated. Due to the 'semi-convergence' property of the LSQR method, the L-curve method was used to determine the stopping iteration number. The performance of the LSQR method for solving the ECG inverse problem was also evaluated based on a realistic heart-torso model simulation protocol. The results show that the inverse solutions recovered by the LSQR method were more accurate than those recovered by the Tikhonov and TSVD methods. In addition, by combing the LSQR with genetic algorithms (GA), the performance can be improved further. It suggests that their combination may provide a good scheme for solving the ECG inverse problem.
Inverse modelling for flow and transport in porous media
International Nuclear Information System (INIS)
Giudici, M.
2004-01-01
The problem of parameter identification for flow and transport model in porous media is discussed in this communication. First, a general framework for the development and application of environmental models is discussed. Then the forward and inverse problems for discrete models are described in detail, introducing fundamental concepts (uniqueness, identifiability, stability, conditioning). The importance of model scales is reviewed and is shown its link with the stability and conditioning issues. Finally some remarks are given to the use of several independent sets of data in inverse modelling
Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion
DEFF Research Database (Denmark)
Zunino, Andrea; Lange, Katrine; Melnikova, Yulia
2014-01-01
We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear,...... constitute samples of the posterior distribution.......We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear......, multi-step forward model (rock physics and seismology) and to provide realistic estimates of uncertainties. To generate realistic models which represent samples of the prior distribution, and to overcome the high computational demand, we reduce the search space utilizing an algorithm drawn from...
A study of an inverse problem for finite range potentials
International Nuclear Information System (INIS)
Coudray, C.
1978-01-01
The spectrum of non-self adjoint operators associated in scattering theory to complex potentials is first studied. Then a work done is summarized: a transformation mapping the results of the inverse problem for a fixed l=0 value of the angular momentum onto similar results at fixed energy concerning a finite range potential has been generalized to complex potentials
Dimensionality Reduction and Uncertainty Quantification for Inverse Problems
van Leeuwen, Tristan
2015-01-01
Many inverse problems in science and engineering involve multi-experiment data and thus require a large number of forward simulations. Dimensionality reduction techniques aim at reducing the number of forward solves by (randomly) subsampling the data. In the special case of non-linear least-squares
A general approach to posterior contraction in nonparametric inverse problems
Knapik, Bartek; Salomond, Jean Bernard
In this paper, we propose a general method to derive an upper bound for the contraction rate of the posterior distribution for nonparametric inverse problems. We present a general theorem that allows us to derive contraction rates for the parameter of interest from contraction rates of the related
Spectral inverse problem for q-deformed harmonic oscillator
Indian Academy of Sciences (India)
perimental data. In quantum theory [1], the spectral inverse problem consists of determining the interparticle forces from the information obtained more or less di- rectly by experiments. Studies along this line have continued and we are convinced that these will be continued both at sophisticated and pedagogical levels [2].
Solution of Milne problem by Laplace transformation with numerical inversion
International Nuclear Information System (INIS)
Campos Velho, H.F. de.
1987-12-01
The Milne problem for monoenergetic neutrons, by Laplace Transform of the neutron transport integral equation with numerical inversion of the transformed solution by gaussian quadrature, using the fatorization of the dispersion function. The resulted is solved compared its analitical solution. (author) [pt
Toward precise solution of one-dimensional velocity inverse problems
International Nuclear Information System (INIS)
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent
Fast breeder reactor kinetics. An inverse problem - 135
International Nuclear Information System (INIS)
Seleznev, E.F.; Belov, A.A.; Mushkaterov, A.A.; Matveenko, I.P.; Zhukov, A.M.; Raskatch, K.F.
2010-01-01
An analysis of solution of the spatial reactor kinetics neutron-transfer equation using a fast reactor as an example is presented in this paper. To solve the spatial reactor kinetics equation in three-dimensional geometry in multi-energy group-diffusion approximation, a program calculated module TIMER was created. The number of groups of delayed neutron precursor concentrations varies from 6 to 8. When solving a transient neutron-transfer problem, two specific tasks are distinguished. The first of them is a direct problem wherein the neutron flux density and its derivatives such as reactor power etc. are determined at each time step. The second (inverse) problem exists for the point-kinetics equation where the reactor reactivity is calculated using the known dependence of reactor power on time. The paper presented focuses on solution of the inverse problem using experiment calculations for BFS-105 critical assembly. (authors)
International Nuclear Information System (INIS)
Kılıç, Emre; Eibert, Thomas F.
2015-01-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained
Comparative study of direct and inverse problems of cracked beams
Directory of Open Access Journals (Sweden)
Mahieddine Chettah
2018-01-01
Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti
2012-05-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.
A methodology for inverse problem solution in inaccessible region
International Nuclear Information System (INIS)
Stantcheva, Rumiana; Iatcheva, Ilona
2002-01-01
This paper presents a methodology for a solution of inverse problem in electromagnetic devices - to predict the profile, the location, the physical material constants and the density of the unknown sources, situated in inaccessible for measuring control regions. The proposed procedure is preferable especially in the case of identifying of a large source region. An application example is given referring to the identification of the shape, dimensions, situation, permittivity and charge of the electrostatic source by means of measuring control in the accessible control points. The control points positions are out of the inaccessible enclosure with the source. The object function is defined on the basis of the comparing the measured and the calculated values at external control points. Approximate description of the field at the control points is used applying the method of the experimental design. Each numerical design experiment includes the solution of the field analysis problem applying FEM. The identification procedure is proposed reducing the object function to its global minimum. At each step secondary to the previous an improved model of the source is introduced. (Author)
Inverse Ising problem in continuous time: A latent variable approach
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Inverse Ising problem in continuous time: A latent variable approach.
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)
2014-10-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the
FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems
Vourc'h, Eric; Rodet, Thomas
2015-11-01
This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods
Statistical method for resolving the photon-photoelectron-counting inversion problem
International Nuclear Information System (INIS)
Wu Jinlong; Li Tiejun; Peng, Xiang; Guo Hong
2011-01-01
A statistical inversion method is proposed for the photon-photoelectron-counting statistics in quantum key distribution experiment. With the statistical viewpoint, this problem is equivalent to the parameter estimation for an infinite binomial mixture model. The coarse-graining idea and Bayesian methods are applied to deal with this ill-posed problem, which is a good simple example to show the successful application of the statistical methods to the inverse problem. Numerical results show the applicability of the proposed strategy. The coarse-graining idea for the infinite mixture models should be general to be used in the future.
SIAM conference on inverse problems: Geophysical applications. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.
Integral geometry and inverse problems for hyperbolic equations
Romanov, V G
1974-01-01
There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...
Upper bound of errors in solving the inverse problem of identifying a voice source
Leonov, A. S.; Sorokin, V. N.
2017-09-01
The paper considers the inverse problem of finding the shape of a voice-source pulse from a specified segment of a speech signal using a special mathematical model that relates these quantities. A variational method for solving the formulated inverse problem for two new parametric classes of sources is proposed: a piecewise-linear source and an A-source. The error in the obtained approximate solutions of the inverse problem is considered, and a technique to numerically estimate this error is proposed, which is based on the theory of a posteriori estimates of the accuracy in solving ill-posed problems. A computer study of the adequacy of the proposed models of sources, and a study of the a posteriori estimates of the accuracy in solving inverse problems for such sources were performed using various types of voice signals. Numerical experiments for speech signals showed satisfactory properties of such a posteriori estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes for the investigated speech material is on average 7%. It is noted that the a posteriori accuracy estimates can be used as a criterion for the quality of determining the voice-source pulse shape in the speaker-identification problem.
International Nuclear Information System (INIS)
Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.
2016-10-01
The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)
Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion
DEFF Research Database (Denmark)
Zunino, Andrea; Lange, Katrine; Melnikova, Yulia
2014-01-01
We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear......, multi-step forward model (rock physics and seismology) and to provide realistic estimates of uncertainties. To generate realistic models which represent samples of the prior distribution, and to overcome the high computational demand, we reduce the search space utilizing an algorithm drawn from...... geostatistics. The geostatistical algorithm learns the multiple-point statistics from prototype models, then generates proposal models which are tested by a Metropolis sampler. The solution of the inverse problem is finally represented by a collection of reservoir models in terms of facies and porosity, which...
A hybrid algorithm for solving inverse problems in elasticity
Directory of Open Access Journals (Sweden)
Barabasz Barbara
2014-12-01
Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.
An agent-oriented hierarchic strategy for solving inverse problems
Directory of Open Access Journals (Sweden)
Smołka Maciej
2015-09-01
Full Text Available The paper discusses the complex, agent-oriented hierarchic memetic strategy (HMS dedicated to solving inverse parametric problems. The strategy goes beyond the idea of two-phase global optimization algorithms. The global search performed by a tree of dependent demes is dynamically alternated with local, steepest descent searches. The strategy offers exceptionally low computational costs, mainly because the direct solver accuracy (performed by the hp-adaptive finite element method is dynamically adjusted for each inverse search step. The computational cost is further decreased by the strategy employed for solution inter-processing and fitness deterioration. The HMS efficiency is compared with the results of a standard evolutionary technique, as well as with the multi-start strategy on benchmarks that exhibit typical inverse problems’ difficulties. Finally, an HMS application to a real-life engineering problem leading to the identification of oil deposits by inverting magnetotelluric measurements is presented. The HMS applicability to the inversion of magnetotelluric data is also mathematically verified.
MAP estimators and their consistency in Bayesian nonparametric inverse problems
Dashti, M.
2013-09-01
We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ0. We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μy. Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager-Machlup functional defined on the Cameron-Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier-Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. © 2013 IOP Publishing Ltd.
2011-06-01
shape of a scatterer from re ected acoustic waves, using a Banach space setting and the Lagrangian approach. The shape Hessian is then analyzed in both H...corresponding to the inverse problem of inferring the shape of a scatterer from reflected acoustic waves, using a Banach space setting and the...compact embeddings in Hölder and Sobolev spaces . These tools allow us to state the shape derivatives in a Banach space setting, and then to analyze the
Solving the Granular Inverse Packing Problem with Artificial Evolution
Miskin, Marc; Jaeger, Heinrich
2014-03-01
If a collection of identical particles is poured into a container, it is obvious that different shapes will fill to different densities. But what is the shape that fills a container as close as possible to a pre-specified, desired density? We demonstrate a solution to this inverse-packing problem by framing it in the context of artificial evolution. By representing shapes as bonded spheres, we show how particles may be mutated, simulated, and selected to produce particularly dense or loose packing aggregates, both with and without friction. Moreover, we show how motifs emerge linking these shapes together. The result is a set of design rules that function as an effective solution to the inverse packing problem for given packing procedures and boundary conditions. Finally, we show that these results may be verified by experiments on 3d printed prototypes used to make packings in the real world.
On multiple level-set regularization methods for inverse problems
International Nuclear Information System (INIS)
DeCezaro, A; Leitão, A; Tai, X-C
2009-01-01
We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional G α based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikhonov method. A multiple level-set algorithm is derived from the first-order optimality conditions for the Tikhonov functional G α , similarly as the iterated Tikhonov method. The proposed multiple level-set method is tested on an inverse potential problem. Numerical experiments show that the method is able to recover multiple objects as well as multiple contrast levels
Solving Inverse Detection Problems Using Passive Radiation Signatures
Energy Technology Data Exchange (ETDEWEB)
Favorite, Jeffrey A. [Los Alamos National Laboratory; Armstrong, Jerawan C. [Los Alamos National Laboratory; Vaquer, Pablo A. [Los Alamos National Laboratory
2012-08-15
The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.
Reducing non-uniqueness in seismic inverse problems
Bernauer, Moritz
2014-01-01
The scientific investigation of the solid Earth's complex processes, including their interactions with the oceans and the atmosphere, is an interdisciplinary field in which seismology has one key role. Major contributions of modern seismology are (1) the development of high-resolution tomographic images of the Earth's structure and (2) the investigation of earthquake source processes. In both disciplines the challenge lies in solving a seismic inverse problem, i.e. in obtaining inform...
Gradiometry - an Inverse Problem in Modern Satellite Geodesy
Freeden, Willi; Schneider, F.; Schreiner, Michael
1996-01-01
Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a co...
Multi-frequency direct sampling method in inverse scattering problem
Kang, Sangwoo; Lambert, Marc; Park, Won-Kwang
2017-10-01
We consider the direct sampling method (DSM) for the two-dimensional inverse scattering problem. Although DSM is fast, stable, and effective, some phenomena remain unexplained by the existing results. We show that the imaging function of the direct sampling method can be expressed by a Bessel function of order zero. We also clarify the previously unexplained imaging phenomena and suggest multi-frequency DSM to overcome traditional DSM. Our method is evaluated in simulation studies using both single and multiple frequencies.
IPDO-2007: Inverse Problems, Design and Optimization Symposium
2007-08-01
NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Inverse problems; design...Benedito Maciel Nei Brasil Neto Felipe Viana Valder Steffen Jr. 149 Sumeet Parashar Nader Fateh 150 Marcelo Colaço George Dulikravich Debasis...PROGRESS REPORT INSTRUCTIONS. MEMORANDUM OF TRANSMITTAL U.S. Army Research Office ATTN: AMSRL-RO-BI (TR) P.O. Box 12211 Research
Some special cases of the electromagnetic inverse problem
Weston, V. H.
1972-01-01
A review of exact techniques for determining the surface of a three-dimensional perfectly conducting body is given, followed by some new results on the uniqueness question concerning the number of measurements that may be required to explicitly determine the surface of the body. It is then shown that the inhomogeneous but spherically symmetric dielectric electromagnetic case is reducible to a scalar inverse problem that can be treated by known techniques.
From inverse problems to learning: a Statistical Mechanics approach
Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo
2018-01-01
We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.
The Neuroelectromagnetic Inverse Problem and the Zero Dipole Localization Error
Directory of Open Access Journals (Sweden)
Rolando Grave de Peralta
2009-01-01
Full Text Available A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem (NIP is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution (ANA attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori information about neural generators that supplements the information contained in the data.
Multiscattering inversion for low-model wavenumbers
Alkhalifah, Tariq Ali
2016-09-21
A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single- or double-scattered wavefield computed from a predicted scatter field acting as secondary sources.We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (highscattering- angle) components are directed to the velocity model. As our background velocity matures, the scatteringangle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy. © 2016 Society of Exploration Geophysicists.
SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Looms, Majken Caroline
2013-01-01
We present an application of the SIPPI Matlab toolbox, to obtain a sample from the a posteriori probability density function for the classical tomographic inversion problem. We consider a number of different forward models, linear and non-linear, such as ray based forward models that rely...
International Nuclear Information System (INIS)
Russenschuck, S.; Tortschanoff, T.; Ijspeert, A.; Perin, R.; Siegel, N.
1994-01-01
After measuring the magnetic field of a model or prototype superconducting magnet for the Large Hadron Collider (LHC) an inverse field problem is formulated in order to explain the origin of the content of unwanted multipole terms. The inverse problem solving is done by means of a least-squares minimization using the Levenberg-Marquard algorithm. Although the uniqueness of the results remains uncertain, useful insights into the causes of measured field imperfections can be deduced. A model dipole magnet, a main quadrupole prototype and a combined dipole-sextupole corrector magnet are given as examples
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Inverse problem for in vivo NMR spatial localization
Energy Technology Data Exchange (ETDEWEB)
Hasenfeld, A.C.
1985-11-01
The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.
Corrado, Cesare; Gerbeau, Jean-Frédéric; Moireau, Philippe
2015-02-01
This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the definition of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed, we aggregate a Luenberger observer for the mechanical state and a Reduced-Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the advantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.
Numerical approach to the inverse convection-diffusion problem
International Nuclear Information System (INIS)
Yang, X-H; She, D-X; Li, J-Q
2008-01-01
In this paper, the inverse problem on source term identification in convection-diffusion equation is transformed into an optimization problem. To reduce the computational cost and improve computational accuracy for the optimization problem, a new algorithm, chaos real-coded hybrid-accelerating evolution algorithm (CRHAEA), is proposed, in which an initial population is generated by chaos mapping, and new chaos mutation and simplex evolution operation are used. With the shrinking of searching range, CRHAEA gradually directs to an optimal result with the excellent individuals obtained by real-coded evolution algorithm. Its convergence is analyzed. Its efficiency is demonstrated by 15 test functions. Numerical simulation shows that CRHAEA has some advantages over the real-coded accelerated evolution algorithm, the chaos algorithm and the pure random search algorithm
The isotope density inverse problem in multigroup neutron transport
International Nuclear Information System (INIS)
Zazula, J.M.
1981-01-01
The inverse problem for stationary multigroup anisotropic neutron transport is discussed in order to search for isotope densities in multielement medium. The spatial- and angular-integrated form of neutron transport equation, in terms of the flux in a group - density of an element spatial correlation, leads to a set of integral functionals for the densities weighted by the group fluxes. Some methods of approximation to make the problem uniquently solvable are proposed. Particularly P 0 angular flux information and the spherically-symetrical geometry of an infinite medium are considered. The numerical calculation using this method related to sooner evaluated direct problem data gives promising agreement with primary densities. This approach would be the basis for further application in an elemental analysis of a medium, using an isotopic neutron source and a moving, energy-dependent neutron detector. (author)
Hansen, T. M.; Cordua, K. S.
2017-12-01
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.
Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art
Directory of Open Access Journals (Sweden)
Herb E. Kunze
2014-01-01
Full Text Available We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of inverse problems for ordinary and partial differential equations. We review several methods based on the Collage Theorem and its extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one considers a collage-based approach for solving inverse problems for partial differential equations on a perforated domain.
Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis
Directory of Open Access Journals (Sweden)
Bárbara D. L. Ferreira
2013-01-01
Full Text Available Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.
The Bayesian formulation and well-posedness of fractional elliptic inverse problems
García Trillos, Nicolás; Sanz-Alonso, Daniel
2017-06-01
We study the inverse problem of recovering the order and the diffusion coefficient of an elliptic fractional partial differential equation from a finite number of noisy observations of the solution. We work in a Bayesian framework and show conditions under which the posterior distribution is given by a change of measure from the prior. Moreover, we show well-posedness of the inverse problem, in the sense that small perturbations of the observed solution lead to small Hellinger perturbations of the associated posterior measures. We thus provide a mathematical foundation to the Bayesian learning of the order—and other inputs—of fractional models.
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
Directory of Open Access Journals (Sweden)
Fatemeh Mohammad
2014-05-01
Full Text Available In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem $Ax = \\lambda Bx$[Q.~Ye and P.~Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011 1697-1715]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
A direct sampling method to an inverse medium scattering problem
Ito, Kazufumi
2012-01-10
In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when the measured data are only available for one or two incident directions. A mathematical derivation is provided for its validation. Two- and three-dimensional numerical simulations are presented, which show that the method is accurate even with a few sets of scattered field data, computationally efficient, and very robust with respect to noises in the data. © 2012 IOP Publishing Ltd.
One-dimensional scattering problem for inverse square potential
International Nuclear Information System (INIS)
Mineev, V.S.
1990-01-01
Analytical continuation of the solution for the Schroedinger equation of inverse square potential, together with the modified method for variation of constants makes it possible to construct admittable self-adjoint extensions and to completely analyze the respective scattering problem along the entire line. In this case, the current density conservation and the wave function continuity when passing through the singular point x=0 require, that a 8-shaped induced potential should be introduced in the Schroedinger equation. The relevant calculations have shown that the potential x -2 can be either absolutely penetrable or absolutely impenetrable. 16 refs
Modeling and Inversion of Scattered Surface waves
Riyanti, C.D.
2005-01-01
In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate
RUMBLE Technical Report on Inversion Models
Simons, Dick G.; Ainslie, Michael A.; Muller, Simonette H. E.; Boek, Wilco
2002-06-01
The performance of long range low frequency active sonar (LFAS) systems in shallow water is very sensitive to the properties of the sea bed, because of the impact of these on propagation, reverberation and (to a lesser extent) ambient noise. Direct measurement of sea bed parameters using cores or grab samples is impractical for covering a wide area, and instead we consider the possibility of using the LFAS system itself to measure its operating environment. The advantages of this approach are that it exploits existing (or planned) equipment and potentially offers a wide coverage. Geo-acoustic inversion methods are reviewed, with particular consideration for the problems associated with inversion of reverberation data. Three global optimisation methods are described, known as "simulated annealing", "genetic algorithms" and "differential evolution". The Levenberg-Marquardt and downhill simplex local methods are also described. The advantages and disadvantages of each individual method, as well as some hybrid combinations, are discussed in the context of geo-acoustic inversion. A new inversion method has been developed that exploits both the shape and height of the reverberation vs time curve to obtain information about the sea bed reflection loss and scattering strength separately. Tests on synthetic reverberation data show that the inversion method is able to extract parameters representing reflection loss and scattering strength, but cannot always unambiguously separate the effects of sediment sound speed and attenuation. The method is robust to small mismatches in water depth, sonar depth, sediment sound speed gradient and wind speed.
An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology
Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca
2017-10-01
In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \
Review on solving the inverse problem in EEG source analysis
Directory of Open Access Journals (Sweden)
Fabri Simon G
2008-11-01
Full Text Available Abstract In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided. This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF, SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF
Efficient generalized Golub-Kahan based methods for dynamic inverse problems
Chung, Julianne; Saibaba, Arvind K.; Brown, Matthew; Westman, Erik
2018-02-01
We consider efficient methods for computing solutions to and estimating uncertainties in dynamic inverse problems, where the parameters of interest may change during the measurement procedure. Compared to static inverse problems, incorporating prior information in both space and time in a Bayesian framework can become computationally intensive, in part, due to the large number of unknown parameters. In these problems, explicit computation of the square root and/or inverse of the prior covariance matrix is not possible, so we consider efficient, iterative, matrix-free methods based on the generalized Golub-Kahan bidiagonalization that allow automatic regularization parameter and variance estimation. We demonstrate that these methods for dynamic inversion can be more flexible than standard methods and develop efficient implementations that can exploit structure in the prior, as well as possible structure in the forward model. Numerical examples from photoacoustic tomography, space-time deblurring, and passive seismic tomography demonstrate the range of applicability and effectiveness of the described approaches. Specifically, in passive seismic tomography, we demonstrate our approach on both synthetic and real data. To demonstrate the scalability of our algorithm, we solve a dynamic inverse problem with approximately 43 000 measurements and 7.8 million unknowns in under 40 s on a standard desktop.
A reduced computational and geometrical framework for inverse problems in hemodynamics.
Lassila, Toni; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi
2013-07-01
The solution of inverse problems in cardiovascular mathematics is computationally expensive. In this paper, we apply a domain parametrization technique to reduce both the geometrical and computational complexities of the forward problem and replace the finite element solution of the incompressible Navier-Stokes equations by a computationally less-expensive reduced-basis approximation. This greatly reduces the cost of simulating the forward problem. We then consider the solution of inverse problems both in the deterministic sense, by solving a least-squares problem, and in the statistical sense, by using a Bayesian framework for quantifying uncertainty. Two inverse problems arising in hemodynamics modeling are considered: (i) a simplified fluid-structure interaction model problem in a portion of a stenosed artery for quantifying the risk of atherosclerosis by identifying the material parameters of the arterial wall on the basis of pressure measurements; (ii) a simplified femoral bypass graft model for robust shape design under uncertain residual flow in the main arterial branch identified from pressure measurements. Copyright © 2013 John Wiley & Sons, Ltd.
Reconstructing the Hopfield network as an inverse Ising problem
International Nuclear Information System (INIS)
Huang Haiping
2010-01-01
We test four fast mean-field-type algorithms on Hopfield networks as an inverse Ising problem. The equilibrium behavior of Hopfield networks is simulated through Glauber dynamics. In the low-temperature regime, the simulated annealing technique is adopted. Although performances of these network reconstruction algorithms on the simulated network of spiking neurons are extensively studied recently, the analysis of Hopfield networks is lacking so far. For the Hopfield network, we found that, in the retrieval phase favored when the network wants to memory one of stored patterns, all the reconstruction algorithms fail to extract interactions within a desired accuracy, and the same failure occurs in the spin-glass phase where spurious minima show up, while in the paramagnetic phase, albeit unfavored during the retrieval dynamics, the algorithms work well to reconstruct the network itself. This implies that, as an inverse problem, the paramagnetic phase is conversely useful for reconstructing the network while the retrieval phase loses all the information about interactions in the network except for the case where only one pattern is stored. The performances of algorithms are studied with respect to the system size, memory load, and temperature; sample-to-sample fluctuations are also considered.
Reconstructing the Hopfield network as an inverse Ising problem
Huang, Haiping
2010-03-01
We test four fast mean-field-type algorithms on Hopfield networks as an inverse Ising problem. The equilibrium behavior of Hopfield networks is simulated through Glauber dynamics. In the low-temperature regime, the simulated annealing technique is adopted. Although performances of these network reconstruction algorithms on the simulated network of spiking neurons are extensively studied recently, the analysis of Hopfield networks is lacking so far. For the Hopfield network, we found that, in the retrieval phase favored when the network wants to memory one of stored patterns, all the reconstruction algorithms fail to extract interactions within a desired accuracy, and the same failure occurs in the spin-glass phase where spurious minima show up, while in the paramagnetic phase, albeit unfavored during the retrieval dynamics, the algorithms work well to reconstruct the network itself. This implies that, as an inverse problem, the paramagnetic phase is conversely useful for reconstructing the network while the retrieval phase loses all the information about interactions in the network except for the case where only one pattern is stored. The performances of algorithms are studied with respect to the system size, memory load, and temperature; sample-to-sample fluctuations are also considered.
Optimization method for an evolutional type inverse heat conduction problem
International Nuclear Information System (INIS)
Deng Zuicha; Yu Jianning; Yang Liu
2008-01-01
This paper deals with the determination of a pair (q, u) in the heat conduction equation u t -u xx +q(x,t)u=0, with initial and boundary conditions u(x,0)=u 0 (x), u x vertical bar x=0 =u x vertical bar x=1 =0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced
NON-INVASIVE INVERSE PROBLEM IN CIVIL ENGINEERING
Directory of Open Access Journals (Sweden)
Jan Havelka
2017-11-01
Full Text Available In this contribution we focus on recovery of spatial distribution of material parameters utilizing only non-invasive boundary measurements. Such methods has gained its importance as imaging techniques in medicine, geophysics or archaeology. We apply similar principles for non-stationary heat transfer in civil engineering. In oppose to standard technique which rely on external loading devices, we assume the natural fluctuation of temperature throughout day and night can provide sufficient information to recover the underlying material parameters. The inverse problem was solved by a modified regularised Gauss-Newton iterative scheme and the underlying forward problem is solved with a finite element space-time discretisation. We show a successful reconstruction of material parameters on a synthetic example with real measurements. The virtual experiment also reveals the insensitivity to practical precision of sensor measurements.
Directory of Open Access Journals (Sweden)
В С Корнилов
2016-12-01
Full Text Available The article presents scientific and methodical aspects of forming the content of education inverse problems for differential equations for students of higher educational institutions of physical, mathematical and natural science training areas. The goals are formulated and the principles of training are the content of learning inverse problems for differential equations. Attention is drawn to the particular issues of teaching courses inverse problems. Describes the classification criteria and target modules that play the role of tools to create and analyze the model and curriculum, forming learning content inverse problems for differential equations. The content classification features and target modules. Formulate conclusions that learning the inverse problems for differential equations has scientific, educational and humanitarian potential of students and as a result of this training they gain the fundamental knowledge in the applied and computational mathematics, and also develop scientific worldview, applied, environmental, information thinking.
Study on Parameter Optimization for Support Vector Regression in Solving the Inverse ECG Problem
Jiang, Mingfeng; Jiang, Shanshan; Zhu, Lingyan; Wang, Yaming; Huang, Wenqing; Zhang, Heng
2013-01-01
The typical inverse ECG problem is to noninvasively reconstruct the transmembrane potentials (TMPs) from body surface potentials (BSPs). In the study, the inverse ECG problem can be treated as a regression problem with multi-inputs (body surface potentials) and multi-outputs (transmembrane potentials), which can be solved by the support vector regression (SVR) method. In order to obtain an effective SVR model with optimal regression accuracy and generalization performance, the hyperparameters of SVR must be set carefully. Three different optimization methods, that is, genetic algorithm (GA), differential evolution (DE) algorithm, and particle swarm optimization (PSO), are proposed to determine optimal hyperparameters of the SVR model. In this paper, we attempt to investigate which one is the most effective way in reconstructing the cardiac TMPs from BSPs, and a full comparison of their performances is also provided. The experimental results show that these three optimization methods are well performed in finding the proper parameters of SVR and can yield good generalization performance in solving the inverse ECG problem. Moreover, compared with DE and GA, PSO algorithm is more efficient in parameters optimization and performs better in solving the inverse ECG problem, leading to a more accurate reconstruction of the TMPs. PMID:23983808
Inverse problem and uncertainty quantification: application to compressible gas dynamics
International Nuclear Information System (INIS)
Birolleau, Alexandre
2014-01-01
This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr
Inverse problems in nuclear engineering. Old but new approach for bottleneck removal
International Nuclear Information System (INIS)
Itagaki, Masafumi; Kurihara, Kenichi
2002-01-01
Recently, a word of 'inverse problem' can often be heard. This is a problem to search a cause brought on the phenomenon on a base of the observed data. As such idea could be found at dawn age of nuclear energy, recently by feature upgrading of computers and development of numerical analyses, the inverse problem is focused as a new interdisciplinary area. Here were introduced some cases of inverse problem at the field of nuclear energy containing recent hot topics, as well as trying to easily describe inverse problem and inverse analysis. However, there is no generalized inverse analytical method usable for every inverse problems, so it is actual state to find out optimum method corresponding to individual inverse problems. (G.K.)
Data inversion in coupled subsurface flow and geomechanics models
International Nuclear Information System (INIS)
Iglesias, Marco A; McLaughlin, Dennis
2012-01-01
We present an inverse modeling approach to estimate petrophysical and elastic properties of the subsurface. The aim is to use the fully coupled geomechanics-flow model of Girault et al (2011 Math. Models Methods Appl. Sci. 21 169–213) to jointly invert surface deformation and pressure data from wells. We use a functional-analytic framework to construct a forward operator (parameter-to-output map) that arises from the geomechanics-flow model of Girault et al. Then, we follow a deterministic approach to pose the inverse problem of finding parameter estimates from measurements of the output of the forward operator. We prove that this inverse problem is ill-posed in the sense of stability. The inverse problem is then regularized with the implementation of the Newton-conjugate gradient (CG) algorithm of Hanke (1997 Numer. Funct. Anal. Optim. 18 18–971). For a consistent application of the Newton-CG scheme, we establish the differentiability of the forward map and characterize the adjoint of its linearization. We provide assumptions under which the theory of Hanke ensures convergence and regularizing properties of the Newton-CG scheme. These properties are verified in our numerical experiments. In addition, our synthetic experiments display the capabilities of the proposed inverse approach to estimate parameters of the subsurface by means of data inversion. In particular, the added value of measurements of surface deformation in the estimation of absolute permeability is quantified with respect to the standard history matching approach of inverting production data with flow models. The proposed methodology can be potentially used to invert satellite geodetic data (e.g. InSAR and GPS) in combination with production data for optimal monitoring and characterization of the subsurface. (paper)
Soft leptogenesis in the inverse seesaw model
Garayoa, Julia; Concepion Gonzalez-Garcia, Maria; Rius, Nuria
2007-02-01
We consider leptogenesis induced by soft supersymmetry breaking terms (``soft leptogenesis''), in the context of the inverse seesaw mechanism. In this model there are lepton number (L) conserving and L-violating soft supersymmetry-breaking B-terms involving the singlet sneutrinos which, together with the — generically small — L-violating parameter responsible of the neutrino mass, give a small mass splitting between the four singlet sneutrino states of a single generation. In combination with the trilinear soft supersymmetry breaking terms they also provide new CP violating phases needed to generate a lepton asymmetry in the singlet sneutrino decays. We obtain that in this scenario the lepton asymmetry is proportional to the L-conserving soft supersymmetry-breaking B-term, and it is not suppressed by the L-violating parameters. Consequently we find that, as in the standard see-saw case, this mechanism can lead to sucessful leptogenesis only for relatively small value of the relevant soft bilinear coupling. The right-handed neutrino masses can be sufficiently low to elude the gravitino problem. Also the corresponding Yukawa couplings involving the lightest of the right-handed neutrinos are constrained to be ∑|Y1k|2lesssim10-7 which generically implies that the neutrino mass spectrum has to be strongly hierarchical.
Posterior consistency for Bayesian inverse problems through stability and regression results
International Nuclear Information System (INIS)
Vollmer, Sebastian J
2013-01-01
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior. (paper)
Inverse zombies, anesthesia awareness, and the hard problem of unconsciousness.
Mashour, George A; LaRock, Eric
2008-12-01
Philosophical (p-) zombies are constructs that possess all of the behavioral features and responses of a sentient human being, yet are not conscious. P-zombies are intimately linked to the hard problem of consciousness and have been invoked as arguments against physicalist approaches. But what if we were to invert the characteristics of p-zombies? Such an inverse (i-) zombie would possess all of the behavioral features and responses of an insensate being, yet would nonetheless be conscious. While p-zombies are logically possible but naturally improbable, an approximation of i-zombies actually exists: individuals experiencing what is referred to as "anesthesia awareness." Patients under general anesthesia may be intubated (preventing speech), paralyzed (preventing movement), and narcotized (minimizing response to nociceptive stimuli). Thus, they appear--and typically are--unconscious. In 1-2 cases/1000, however, patients may be aware of intraoperative events, sometimes without any objective indices. Furthermore, a much higher percentage of patients (22% in a recent study) may have the subjective experience of dreaming during general anesthesia. P-zombies confront us with the hard problem of consciousness--how do we explain the presence of qualia? I-zombies present a more practical problem--how do we detect the presence of qualia? The current investigation compares p-zombies to i-zombies and explores the "hard problem" of unconsciousness with a focus on anesthesia awareness.
Basis set expansion for inverse problems in plasma diagnostic analysis
Jones, B.; Ruiz, C. L.
2013-07-01
A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.
Modelling and inversion of local magnetic anomalies
International Nuclear Information System (INIS)
Quesnel, Y; Langlais, B; Sotin, C; Galdéano, A
2008-01-01
We present a method—named as MILMA for modelling and inversion of local magnetic anomalies—that combines forward and inverse modelling of aeromagnetic data to characterize both magnetization properties and location of unconstrained local sources. Parameters of simple-shape magnetized bodies (cylinder, prism or sphere) are first adjusted by trial and error to predict the signal. Their parameters provide a priori information for inversion of the measurements. Here, a generalized nonlinear approach with a least-squares criterion is adopted to seek the best parameters of the sphere (dipole). This inversion step allows the model to be more objectively adjusted to fit the magnetic signal. The validity of the MILMA method is demonstrated through synthetic and real cases using aeromagnetic measurements. Tests with synthetic data reveal accurate results in terms of depth source, whatever be the number of sources. The MILMA method is then used with real measurements to constrain the properties of the magnetized units of the Champtoceaux complex (France). The resulting parameters correlate with the crustal structure and properties revealed by other geological and geophysical surveys in the same area. The MILMA method can therefore be used to investigate the properties of poorly constrained lithospheric magnetized sources
Solution accelerators for large scale 3D electromagnetic inverse problems
International Nuclear Information System (INIS)
Newman, Gregory A.; Boggs, Paul T.
2004-01-01
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods
International Nuclear Information System (INIS)
Piskunov, N.E.
1985-01-01
Mathematical formulation of the inverse problem of determination of magnetic field geometry from the polarization profiles of spectral lines is gven. The solving algorithm is proposed. A set of model calculations has shown the effectiveness of the algorithm, the high precision of magnetic star model parameters obtained and also the advantages of the inverse problem method over the commonly used method of interpretation of effective field curves
Application of Hilbert space decomposition to acoustical inverse problems
Lehman, Sean K.
2003-04-01
In a recently developed theory, the forward integral acoustic scattering operator is cast into the formalism of a Hilbert space operator which projects the continuous space scattering object into the discrete measurement space. By determining the singular value decomposition (SVD) of the forward scattering operator, one obtains optimal, orthonormal bases for each of these spaces in the form of the singular vectors. In formulating the inverse scattering problem, it is best to express the unknown object distribution in terms of an expansion of the singular vectors. Using this expansion, the best reconstruction, in a LMS sense, can be obtained from measured scattered field data. We present reconstruction results using this new theory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
The inverse problem of estimating the gravitational time dilation
Energy Technology Data Exchange (ETDEWEB)
Gusev, A. V., E-mail: avg@sai.msu.ru; Litvinov, D. A.; Rudenko, V. N. [Moscow State University, Sternberg Astronomical Institute (Russian Federation)
2016-11-15
Precise testing of the gravitational time dilation effect suggests comparing the clocks at points with different gravitational potentials. Such a configuration arises when radio frequency standards are installed at orbital and ground stations. The ground-based standard is accessible directly, while the spaceborne one is accessible only via the electromagnetic signal exchange. Reconstructing the current frequency of the spaceborne standard is an ill-posed inverse problem whose solution depends significantly on the characteristics of the stochastic electromagnetic background. The solution for Gaussian noise is known, but the nature of the standards themselves is associated with nonstationary fluctuations of a wide class of distributions. A solution is proposed for a background of flicker fluctuations with a spectrum (1/f){sup γ}, where 1 < γ < 3, and stationary increments. The results include formulas for the error in reconstructing the frequency of the spaceborne standard and numerical estimates for the accuracy of measuring the relativistic redshift effect.
On the inverse problem of dissipative scattering theory. 3
International Nuclear Information System (INIS)
Neidhardt, H.
1988-01-01
Considering a scattering theory in the class of contractions on Hilbert spaces one solves the inverse problem in an operaor-theoretical manner. The solution is obtained underthe very general assumptions that the free evolutions are different for different time directions that not only the perturbed or full evolutions but also the free evolutions are given by contractions. It is shown that the class of contractive Hankel operators can be viewed as a set of scattering operators. This implies the possibility that the scattering operator can be compact. Moreover, the result is applied to the so-called Lax-Phillips scattering theory with losses restoring a result of B.S. Pavlov on the completion of this theory in a quite different manner. 15 refs
Active Subspace Methods for Data-Intensive Inverse Problems
Energy Technology Data Exchange (ETDEWEB)
Wang, Qiqi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-04-27
The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.
AMP-Inspired Deep Networks for Sparse Linear Inverse Problems
Borgerding, Mark; Schniter, Philip; Rangan, Sundeep
2017-08-01
Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem, where one seeks to recover a sparse signal from a few noisy linear measurements. In this paper, we propose two novel neural-network architectures that decouple prediction errors across layers in the same way that the approximate message passing (AMP) algorithms decouple them across iterations: through Onsager correction. First, we propose a "learned AMP" network that significantly improves upon Gregor and LeCun's "learned ISTA." Second, inspired by the recently proposed "vector AMP" (VAMP) algorithm, we propose a "learned VAMP" network that offers increased robustness to deviations in the measurement matrix from i.i.d. Gaussian. In both cases, we jointly learn the linear transforms and scalar nonlinearities of the network. Interestingly, with i.i.d. signals, the linear transforms and scalar nonlinearities prescribed by the VAMP algorithm coincide with the values learned through back-propagation, leading to an intuitive interpretation of learned VAMP. Finally, we apply our methods to two problems from 5G wireless communications: compressive random access and massive-MIMO channel estimation.
Analysis of forward and inverse problems in chemical dynamics and spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Rabitz, H. [Princeton Univ., NJ (United States)
1993-12-01
The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.
A general approach to regularizing inverse problems with regional data using Slepian wavelets
Michel, Volker; Simons, Frederik J.
2017-12-01
Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth’s surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples.
Variational approach to direct and inverse problems of atmospheric pollution studies
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2016-04-01
We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition
The inverse problem of constructing a gravimetric geoid
Zlotnicki, V.; Parsons, B.; Wunsch, C.
1982-01-01
Computation of a single geoidal height from gravity acceleration data formally requires that the latter be known everywhere on the earth. A computational procedure based on linear inverse theory for estimating geoidal heights from incomplete sets of data is presented. The same scheme can be used to estimate gravity accelerations from altimetry-derived geoids. The systematic error owing to lack of data and the choice of a particular inverse operator is described by using resolution functions and their spherical harmonic expansions. An rms value of this error is also estimated by assuming a spectrum for the unknown geoid. The influence of the size of the data region, the spacing between data, the filtering applied to the data, and the model weighting function chosen are all quantified in a spherical geometry. The examples presented show that when low degree spherical harmonic coefficients are available - from satellite orbit analysis - a band-passed version of the geoid can be constructed from local gravity data, even with a relatively restricted data set.
Hermite Polynomials and the Inverse Problem for Collisionless Equilibria
Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.
2017-12-01
It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82
Time Traveling Regularization for Inverse Heat Transfer Problems
Directory of Open Access Journals (Sweden)
Elisan dos Santos Magalhães
2018-02-01
Full Text Available This work presents a technique called Time Traveling Regularization (TTR applied to an optimization technique in order to solve ill-posed problems. This new methodology does not interfere in the minimization technique process. The Golden Section method together with TTR are applied only to the objective function which will be minimized. It consists of finding an ideal timeline that minimizes an objective function in a defined future time step. In order to apply the proposed methodology, inverse heat conduction problems were studied. Controlled experiments were performed on 5052 aluminum and AISI 304 stainless steel samples to validate the proposed technique. One-dimensional and three-dimensional heat input experiments were carried out for the 5052 aluminum and AISI 304 stainless steel samples, respectively. The Sequential Function Specification Method (SFSM was also used to be compared with the results of heat flux obtained by TTR. The estimated heat flux presented a good agreement when compared with experimental values and those estimated by SFSM. Moreover, TTR presented lower residuals than the SFSM.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
NUMERICAL ANALYSIS OF AN INVERSE PROBLEM ORIGINATED IN PHENOMENON OF POLLUTION AIR URBAN
Directory of Open Access Journals (Sweden)
Aníbal Coronel
2016-12-01
Full Text Available This paper presents the calibration study of a two - dimensional mathematical model for the problem of urban air pollution. It is mainly assumed that air pollution is afected by wind convection, diffusion and chemical reactions of pollutants. Consequently, a convection-diffusion-reaction equation is obtained as a direct problem. In the inverse problem, the determination of the diffusion is analyzed, assuming that one has an observation of the pollutants in a nite time. To solve it numerically the nite volume method is used, the least squares function is considered as cost function and the gradient is calculated with the sensitivity method.
DEFF Research Database (Denmark)
Oh, Geok Lian
properties such as the elastic wave speeds and soil densities. One processing method is casting the estimation problem into an inverse problem to solve for the unknown material parameters. The forward model for the seismic signals used in the literatures include ray tracing methods that consider only...... density values of the discretized ground medium, which leads to time-consuming computations and instability behaviour of the inversion process. In addition, the geophysics inverse problem is generally ill-posed due to non-exact forward model that introduces errors. The Bayesian inversion method through...... the probability density function permits the incorporation of a priori information about the parameters, and also allow for incorporation of theoretical errors. This opens up the possibilities of application of inverse paradigm in the real-world geophysics inversion problems. In this PhD study, the Bayesian...
Subspace-based analysis of the ERT inverse problem
Ben Hadj Miled, Mohamed Khames; Miller, Eric L.
2004-05-01
In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.
Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations
Aldoghaither, Abeer
2015-11-12
Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final
A neural network approach for the solution of electric and magnetic inverse problems
International Nuclear Information System (INIS)
Coccorese, E.; Morabito, F.C.; Martone, R.
1994-01-01
Multilayer neural networks, trained via the back-propagation rule, are proved to provide an efficient means for solving electric and/or magnetic inverse problems. The underlying model of the system is learned by the network by means of a dataset defining the relationship between input and output parameters. The merits of the method are illustrated at the light of three example cases. The first two samples deal with inverse electrostatic problems which are relevant for nondestructive testing applications. In a first problem, a boss on an earthed plane is identified on the basis of the map of potential produced by a point charge. In the second problem, the geometric parameters of an ellipsoid carrying an electric charge are identified. In both cases, database of simulated measurements has been generated thanks to the available analytical solutions. As a sample magnetic inverse problem, the identification of a circular plasma in a tokamak device from external flux measurements is carried out. The results achieved show that the method here proposed is promising for technically meaningful applications
Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy
2014-05-01
The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for
Direct sampling methods for inverse elastic scattering problems
Ji, Xia; Liu, Xiaodong; Xi, Yingxia
2018-03-01
We consider the inverse elastic scattering of incident plane compressional and shear waves from the knowledge of the far field patterns. Specifically, three direct sampling methods for location and shape reconstruction are proposed using the different component of the far field patterns. Only inner products are involved in the computation, thus the novel sampling methods are very simple and fast to be implemented. With the help of the factorization of the far field operator, we give a lower bound of the proposed indicator functionals for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functionals decay like the Bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functionals continuously dependent on the far field patterns, which further implies that the novel sampling methods are extremely stable with respect to data error. For the case when the observation directions are restricted into the limited aperture, we firstly introduce some data retrieval techniques to obtain those data that can not be measured directly and then use the proposed direct sampling methods for location and shape reconstructions. Finally, some numerical simulations in two dimensions are conducted with noisy data, and the results further verify the effectiveness and robustness of the proposed sampling methods, even for multiple multiscale cases and limited-aperture problems.
Time reversal imaging, Inverse problems and Adjoint Tomography}
Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.
2010-12-01
With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.
Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara
2012-10-01
Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety
Directory of Open Access Journals (Sweden)
Виктор Семенович Корнилов
2017-12-01
Full Text Available In article attention that when training in the inverse problems for differential equations at students scientific and cognitive potential develops is paid. Students realize that mathematical models of the inverse problems for differential equations find the application in economy, the industries, ecology, sociology, biology, chemistry, mathematician, physics, in researches of the processes and the phenomena occurring in water and earth’s environment, air and space.Attention of the reader that in training activity to the inverse problems for differential equations at students the scientific outlook, logical, algorithmic, information thinking, creative activity, independence and ingenuity develop is focused. Students acquire skills to apply knowledge of many physical and mathematical disciplines, to carry out the analysis of the received decision of the reverse task and to formulate logical outputs of application-oriented character. Solving the inverse problems for differential equations, students acquire new knowledge in the field of applied and calculus mathematics, informatics, natural sciences and other knowledge.
Dynamic Inverse Problem Solution Using a Kalman Filter Smoother for Neuronal Activity Estimation
Directory of Open Access Journals (Sweden)
Eduardo Giraldo-Suárez
2011-12-01
Full Text Available This article presents an estimation method of neuronal activity into the brain using a Kalman smoother approach that takes into account in the solution of the inverse problem the dynamic variability of the time series. This method is applied over a realistic head model calculated with the boundary element method. A comparative analysis for the dynamic estimation methods is made up from simulated EEG signals for several noise conditions. The solution of the inverse problem is achieved by using high performance computing techniques and an evaluation of the computational cost is performed for each method. As a result, the Kalman smoother approach presents better performance in the estimation task than the regularized static solution, and the direct Kalman filter.
Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881 (United States)
2015-10-07
Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrasted to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.
Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning
International Nuclear Information System (INIS)
Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K.
2015-01-01
Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrasted to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
Manipulation with heterogeneity within a species population formulated as an inverse problem
Horváth, D.; Brutovsky, B.; Kočišová, J.; Šprinc, S.
2010-11-01
Dependence of the evolutionary dynamics on the population’s heterogeneity has been reliably recognized and studied within the frame of evolutionary optimization theory. As the causal relation between the heterogeneity and dynamics of environment has been revealed, the possibility to influence convergence rate of evolutionary processes by purposeful manipulation with environment emerges. For the above purposes we formulate the task as the inverse problem meaning that desired population heterogeneity, quantified by Tsallis information entropy, represents the model’s input and dynamics of environment leading to desired population heterogeneity is looked for. Here the presented abstract model of evolutionary motion within the inverse model of replicating species is case-independent and it is relevant for the broad range of phenomena observed at cellular, ecological, economic and social scales. We envision relevance of the model for anticancer therapy, in which the effort is to circumvent heterogeneity as it typically correlates with the therapy efficiency.
Computer modeling of inversion layer MOS solar cells and arrays
Ho, Fat Duen
1991-02-01
A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.
A Direct inverse model to determine permeability fields from pressure and flow rate measurements
Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.
2008-01-01
The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard
Inverse Problem Approach for the Alignment of Electron Tomographic Series
International Nuclear Information System (INIS)
Tran, V.D.; Moreaud, M.; Thiebaut, E.; Denis, L.; Becker, J.M.
2014-01-01
In the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physico-chemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nano-tomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Electron Microscope (TEM). This technique provides a real three-dimensional information at the nano-metric scale. A major issue in this method is the misalignment of the projections that contributes to the reconstruction. The current alignment techniques usually employ fiducial markers such as gold particles for a correct alignment of the images. When the use of markers is not possible, the correlation between adjacent projections is used to align them. However, this method sometimes fails. In this paper, we propose a new method based on the inverse problem approach where a certain criterion is minimized using a variant of the Nelder and Mead simplex algorithm. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. In the second step, the pre-registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). At the end of this process, we have a correct reconstruction of the volume, the projections being correctly aligned. Our method is tested on simulated data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms. We
Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems
International Nuclear Information System (INIS)
Haber, E; Horesh, L; Tenorio, L
2010-01-01
Design of experiments for discrete ill-posed problems is a relatively new area of research. While there has been some limited work concerning the linear case, little has been done to study design criteria and numerical methods for ill-posed nonlinear problems. We present an algorithmic framework for nonlinear experimental design with an efficient numerical implementation. The data are modeled as indirect, noisy observations of the model collected via a set of plausible experiments. An inversion estimate based on these data is obtained by a weighted Tikhonov regularization whose weights control the contribution of the different experiments to the data misfit term. These weights are selected by minimization of an empirical estimate of the Bayes risk that is penalized to promote sparsity. This formulation entails a bilevel optimization problem that is solved using a simple descent method. We demonstrate the viability of our design with a problem in electromagnetic imaging based on direct current resistivity and magnetotelluric data
Energy Technology Data Exchange (ETDEWEB)
Tupek, Michael R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-06-30
In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- put parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.
A MATLAB based 3D modeling and inversion code for MT data
Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.
2017-07-01
The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.
Effects of Induced Stress on Seismic Forward Modelling and Inversion
Tromp, Jeroen; Trampert, Jeannot
2018-01-01
We demonstrate how effects of induced stress may be incorporated in seismic modelling and inversion. Our approach is motivated by the accommodation of prestress in global seismology. Induced stress modifies both the equation of motion and the constitutive relationship. The theory predicts that induced pressure linearly affects the unstressed isotropic moduli with a slope determined by their adiabatic pressure derivatives. The induced deviatoric stress produces anisotropic compressional and shear wavespeeds; the latter result in shear-wave splitting. For forward modelling purposes, we determine the weak form of the equation of motion under induced stress. In the context of the inverse problem, we determine induced stress sensitivity kernels, which may be used for adjoint tomography. The theory is illustrated by considering 2D propagation of SH waves and related Fréchet derivatives based on a spectral-element method.
Approximate Bayesian computation for machine learning, inverse problems and big data
Mohammad-Djafari, Ali
2017-06-01
This paper summarizes my tutorial talk in MaxEnt 2016 workshop. Starting from the basics of the Bayesian approach and simple example of low dimensional parameter estimation where almost all the computations can be done easily, we go very fast to high dimensional case. In those real world cases, even for the sample case of linear model with Gaussian prior, where the posterior law is also Gaussian, the cost of the computation of the posterior covariance becomes important and needs approximate and fast algorithms. Different approximation methods for model comparison and model selection in machine learning problems are presented in summary. Among the existing methods, we mention Laplace approximation, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Variational Bayesian Approximation (VBA) Methods. Finally, through two examples of inverse problems in imaging systems: X ray and Diffraction wave Computed Tomography (CT), we show how to handle the real great dimensional problems.
Rosas-Carbajal, M.; Linde, N.; Kalscheuer, T.; Vrugt, J.A.
2014-01-01
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space
An inner-loop free solution to inverse problems using deep neural networks
Wei, Qi; Fan, Kai; Carin, Lawrence; Heller, Katherine A.
2017-01-01
We propose a new method that uses deep learning techniques to accelerate the popular alternating direction method of multipliers (ADMM) solution for inverse problems. The ADMM updates consist of a proximity operator, a least squares regression that includes a big matrix inversion, and an explicit solution for updating the dual variables. Typically, inner loops are required to solve the first two sub-minimization problems due to the intractability of the prior and the matrix inversion. To avoi...
Inverse modeling of April 2013 radioxenon detections
Hofman, Radek; Seibert, Petra; Philipp, Anne
2014-05-01
Significant concentrations of radioactive xenon isotopes (radioxenon) were detected by the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in April 2013 in Japan. Particularly, three detections of Xe-133 made between 2013-04-07 18:00 UTC and 2013-04-09 06:00 UTC at the station JPX38 are quite notable with respect to the measurement history of the station. Our goal is to analyze the data and perform inverse modeling under different assumptions. This work is useful with respect to nuclear test monitoring as well as for the analysis of and response to nuclear emergencies. Two main scenarios will be pursued: (i) Source location is assumed to be known (DPRK test site). (ii) Source location is considered unknown. We attempt to estimate the source strength and the source strength along with its plausible location compatible with the data in scenario (i) and (ii), respectively. We are considering also the possibility of a vertically distributed source. Calculations of source-receptor sensitivity (SRS) fields and the subsequent inversion are aimed at going beyond routine calculations performed by the CTBTO. For SRS calculations, we employ the Lagrangian particle dispersion model FLEXPART with high resolution ECMWF meteorological data (grid cell sizes of 0.5, 0.25 and ca. 0.125 deg). This is important in situations where receptors or sources are located in complex terrain which is the case of the likely source of detections-the DPRK test site. SRS will be calculated with convection enabled in FLEXPART which will also increase model accuracy. In the variational inversion procedure attention will be paid not only to all significant detections and their uncertainties but also to non-detections which can have a large impact on inversion quality. We try to develop and implement an objective algorithm for inclusion of relevant data where samples from temporal and spatial vicinity of significant detections are added in an
International Nuclear Information System (INIS)
Ziqi Sun
1993-01-01
During the past few years a considerable interest has been focused on the inverse boundary value problem for the Schroedinger operator with a scalar (electric) potential. The popularity gained by this subject seems to be due to its connection with the inverse scattering problem at fixed energy, the inverse conductivity problem and other important inverse problems. This paper deals with an inverse boundary value problem for the Schroedinger operator with vector (electric and magnetic) potentials. As in the case of the scalar potential, results of this study would have immediate consequences in the inverse scattering problem for magnetic field at fixed energy. On the other hand, inverse boundary value problems for elliptic operators are of independent interest. The study is partly devoted to the understanding of the inverse boundary value problem for a class of general elliptic operator of second order. Note that a self-adjoint elliptic operator of second order with Δ as its principal symbol can always be written as a Schroedinger operator with vector potentials
Solving inverse problems of mathematical physics by means of the PHOENICS software package
Energy Technology Data Exchange (ETDEWEB)
Matsevity, Y.; Lushpenko, S. [Institute for Problems in Machinery, National Academy of Sciences of Ukraine Pozharskogo, Kharkov (Ukraine)
1997-12-31
Several approaches on organizing solution of inverse problems by means of PHOENICS on the basis of the technique of automated fitting are proposing. A version of a `nondestructive` method of using PHOENICS in the inverse problem solution regime and the ways of altering the program in the case of introducing optimization facilities in it are under consideration. (author) 12 refs.
Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Mosegaard, Klaus
2012-01-01
for applying the sequential Gibbs sampler and illustrate how it works. Through two case studies, we demonstrate the application of the method to a linear image restoration problem and to a non-linear cross-borehole inversion problem. We demonstrate how prior information can reduce the complexity of an inverse...
Basic principles of forward and inverse geochemical modelization
International Nuclear Information System (INIS)
Gimeno, M.J.; Pena, J.
1994-01-01
Geochemical modeling consists in the application of thermodynamic and physicochemical principles in the hydrogeochemical systems interpretation. It has been developed following two different approaches: a) inverse modeling (or mass balance calculations), which uses observed chemical and isotopic data from waters and rocks to identify geochemical reactions responsible of them, in a quantitative way; and b) forward modeling, which attempts to predict water compositions and mass transfer that can result from hypothesized reactions, from observed initial conditions on water-rock system compositions. Both of them have intrinsic uses and limitations which drive to their use in specific problems. For systems with adequate chemical, isotopic, and mineralogic data, the inverse modeling approach of speciation and mass-balance modeling provides the most direct means of determining quantitative geochemical reaction models. In contrast, for systems with missing or inadequate data, reaction-path modeling provides an a priori method of predicting geochemical reactions. In some cases it is useful to combine forward modeling with the results from inverse models. The mass-balance results determine the net mass transfer along the flow path, but these results are only partially constrained by thermodynamics. The forward modeling can be used both, to prove thermodynamic consistency for them, and to predict water quality at points where there are no enough data. Recent advances in geochemical modeling are focused on finding the most efficient numerical procedures for coupling geochemical reactions (both equilibrium and kinetic) with the hydrodynamic transport equations in compositionally-complex systems, on uncertainty analysis, and on model validation for actual geochemical systems
Convergence analysis of surrogate-based methods for Bayesian inverse problems
Yan, Liang; Zhang, Yuan-Xiang
2017-12-01
The major challenges in the Bayesian inverse problems arise from the need for repeated evaluations of the forward model, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. Many attempts at accelerating Bayesian inference have relied on surrogates for the forward model, typically constructed through repeated forward simulations that are performed in an offline phase. Although such approaches can be quite effective at reducing computation cost, there has been little analysis of the approximation on posterior inference. In this work, we prove error bounds on the Kullback–Leibler (KL) distance between the true posterior distribution and the approximation based on surrogate models. Our rigorous error analysis show that if the forward model approximation converges at certain rate in the prior-weighted L 2 norm, then the posterior distribution generated by the approximation converges to the true posterior at least two times faster in the KL sense. The error bound on the Hellinger distance is also provided. To provide concrete examples focusing on the use of the surrogate model based methods, we present an efficient technique for constructing stochastic surrogate models to accelerate the Bayesian inference approach. The Christoffel least squares algorithms, based on generalized polynomial chaos, are used to construct a polynomial approximation of the forward solution over the support of the prior distribution. The numerical strategy and the predicted convergence rates are then demonstrated on the nonlinear inverse problems, involving the inference of parameters appearing in partial differential equations.
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
one defines criterium and method of optimization, the inverse heat transfer prob- lem transforms into extreme case. Now, the task of optimization is to determine most favourable ratio between heat flux parameters in order to preserve exploitation properties of the tool and workpiece. Keywords. Machining process; thermal ...
A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty.
Directory of Open Access Journals (Sweden)
Kai Zhang
Full Text Available In this paper, we investigate the application of a new method, the Finite Difference and Stochastic Gradient (Hybrid method, for history matching in reservoir models. History matching is one of the processes of solving an inverse problem by calibrating reservoir models to dynamic behaviour of the reservoir in which an objective function is formulated based on a Bayesian approach for optimization. The goal of history matching is to identify the minimum value of an objective function that expresses the misfit between the predicted and measured data of a reservoir. To address the optimization problem, we present a novel application using a combination of the stochastic gradient and finite difference methods for solving inverse problems. The optimization is constrained by a linear equation that contains the reservoir parameters. We reformulate the reservoir model's parameters and dynamic data by operating the objective function, the approximate gradient of which can guarantee convergence. At each iteration step, we obtain the relatively 'important' elements of the gradient, which are subsequently substituted by the values from the Finite Difference method through comparing the magnitude of the components of the stochastic gradient, which forms a new gradient, and we subsequently iterate with the new gradient. Through the application of the Hybrid method, we efficiently and accurately optimize the objective function. We present a number numerical simulations in this paper that show that the method is accurate and computationally efficient.
Implementation of probabilistic approach in solving inverse problems as a grid-backed web service.
Kholodkov, K. I.; Aleshin, I. M.; Koryagin, V. N.; Shogin, A. N.; Sukhoroslov, O. V.
2012-04-01
In this work probabilistic approach to inverse problem was adopted. It leads to definition and sampling of a posteriori probability density function (APDF), which combines a priori system information with information, derived from observation data. Use of APDF implies significant computational resourses consumption, even for moderate model parameter count. However the computation of APDF value at different points is carried out completely independently, therefore this problem is considered ideal for loosely coupled distributed computing system. Globus Toolkit middleware was used, including the GridFTP for data transfer and GRAM for execution control, as well as TORQUE resource manager for each computing node. To reduce the hardware cost all grid services, except for GridFTP, run as virtual guests on execution nodes. Due to very insignificant resources utilization the guests make no footprint on node's computation power. To hide complex middleware interface from scientific users, user friendly web interface was created, which provides restricted but sufficient tool set. Determination of seismic anisotropy by wave form inversion was implemented as model problem. The interface allows user to edit model parameters, estimate execution time for specified parameter set, run calculation and perform result visualization. Details of start-up, management and results acquisition are hidden from user. This work was supported by Russian Foundation of Basic Research, grants 10-07-00491-a, 11-05-00988-a and 11-07-12045-ofi-m-2011
An inverse geometry problem in estimating frost growth on an evaporating tube
Energy Technology Data Exchange (ETDEWEB)
Huang, C.H. [Department of Naval Architecture and Marine Engineering, National Cheng Kung University Tainan, Taiwan (Taiwan)
2002-08-01
When humid air comes into contact with a surface whose temperature is below the dew point of water vapor in air and also below the freezing point, frost deposition takes place over the surface. The phenomena of the frost growth are very complicated and therefore it is very difficult to model mathematically the behavior of frost growth and predict it. In the present study a transient inverse geometry heat conduction problem (shape identification problem) is solved using the conjugate gradient method (CGM) and boundary element method (BEM)-based inverse algorithm to estimate the unknown irregular frost thickness and shape. Results obtained by using the CGM to estimate the frost growth are justified based on the numerical experiments. It is concluded that the accurate frost shape can be estimated by the CGM except for the initial and final time. The reason and improvement of this singularity are addressed. Finally the effects of reducing the number of sensors and increasing the measurement errors on the inverse solutions are discussed. (orig.)
Towards inverse modeling of intratumor heterogeneity
Brutovsky, Branislav; Horvath, Denis
2015-08-01
Development of resistance limits efficiency of present anticancer therapies and preventing it remains a big challenge in cancer research. It is accepted, at the intuitive level, that resistance emerges as a consequence of the heterogeneity of cancer cells at the molecular, genetic and cellular levels. Produced by many sources, tumor heterogeneity is extremely complex time dependent statistical characteristics which may be quantified by measures defined in many different ways, most of them coming from statistical mechanics. In this paper, we apply the Markovian framework to relate population heterogeneity to the statistics of the environment. As, from an evolutionary viewpoint, therapy corresponds to a purposeful modi- fication of the cells' fitness landscape, we assume that understanding general relationship between the spatiotemporal statistics of a tumor microenvironment and intratumor heterogeneity will allow to conceive the therapy as an inverse problem and to solve it by optimization techniques. To account for the inherent stochasticity of biological processes at cellular scale, the generalized distancebased concept was applied to express distances between probabilistically described cell states and environmental conditions, respectively.
Energy Technology Data Exchange (ETDEWEB)
Khan, T.; Ramuhalli, Pradeep; Dass, Sarat
2011-06-30
Flaw profile characterization from NDE measurements is a typical inverse problem. A novel transformation of this inverse problem into a tracking problem, and subsequent application of a sequential Monte Carlo method called particle filtering, has been proposed by the authors in an earlier publication [1]. In this study, the problem of flaw characterization from multi-sensor data is considered. The NDE inverse problem is posed as a statistical inverse problem and particle filtering is modified to handle data from multiple measurement modes. The measurement modes are assumed to be independent of each other with principal component analysis (PCA) used to legitimize the assumption of independence. The proposed particle filter based data fusion algorithm is applied to experimental NDE data to investigate its feasibility.
Avdyushev, Victor A.
2017-12-01
Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the
Method of Minimax Optimization in the Coefficient Inverse Heat-Conduction Problem
Diligenskaya, A. N.; Rapoport, É. Ya.
2016-07-01
Consideration has been given to the inverse problem on identification of a temperature-dependent thermal-conductivity coefficient. The problem was formulated in an extremum statement as a problem of search for a quantity considered as the optimum control of an object with distributed parameters, which is described by a nonlinear homogeneous spatially one-dimensional Fourier partial equation with boundary conditions of the second kind. As the optimality criterion, the authors used the error (minimized on the time interval of observation) of uniform approximation of the temperature computed on the object's model at an assigned point of the segment of variation in the spatial variable to its directly measured value. Pre-parametrization of the sought control action, which a priori records its description accurate to assigning parameters of representation in the class of polynomial temperature functions, ensured the reduction of the problem under study to a problem of parametric optimization. To solve the formulated problem, the authors used an analytical minimax-optimization method taking account of the alternance properties of the sought optimum solutions based on which the algorithm of computation of the optimum values of the sought parameters is reduced to a system (closed for these unknowns) of equations fixing minimax deviations of the calculated values of temperature from those observed on the time interval of identification. The obtained results confirm the efficiency of the proposed method for solution of a certain range of applied problems. The authors have studied the influence of the coordinate of a point of temperature measurement on the exactness of solution of the inverse problem.
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Energy Technology Data Exchange (ETDEWEB)
Fowler, Michael James [Clarkson Univ., Potsdam, NY (United States)
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy
New prospects in direct, inverse and control problems for evolution equations
Fragnelli, Genni; Mininni, Rosa
2014-01-01
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
Combining nonlinear dimensionality reduction with wavelet network to solve EEG inverse problem.
Wu, Qing; Shi, Lukui; Wu, Youxi; Xu, Guizhi; Li, Ying; Yan, Weili
2006-01-01
An integrated multi-method system to analyze the neuroelectric source parameters of electroencephalography (EEG) signal is presented. In order to handle the large-scale high dimension data efficiently and provide a real-time localizer in EEG inverse problem, an improved isometric mapping algorithm is used to find the low dimensional manifolds from high dimensional recorded EEG. Then, based on reduced dimension data, a single-scaling radial-basis wavelet network module is employed to determine the parameters of different type of EEG source models. In our simulation experiments, satisfactory results are obtained.
Zhang, Yang; Liu, Guoqiang; Tao, Chunjing; Wang, Hao; He, Wenjing
2009-01-01
The analysis of electromagnetic forward and inverse problems is very important in the process of image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). A new analysis method was introduced in this paper. It breaks through some illogical supposes that the existing methods applied and can improve the spatial resolution of the image availably. Besides it can avoid rotating the static magnetic field which is very difficult to come true in application, therefore the development of MAT-MI technique can be promoted greatly. To test the validity of the new method, two test models were analyzed, and the availability of the method was demonstrated.
Solving inverse problems through a smooth formulation of multiple-point geostatistics
DEFF Research Database (Denmark)
Melnikova, Yulia
In oil and gas sector accurate reservoir description play a crucial role in problems associated with recovery of hydrocarbons, risk estimation and predicting reservoir performance. Knowledge on reservoir properties can be inferred from measurements typically made at the surface by solving...... be inferred, for instance, from a conceptual geological model termed a training image.The main motivation for this study was the challenge posed by history matching, an inverse problem aimed at estimating rock properties from production data. We addressed two main difficulties of the history matching problem...... have proposed a smooth formulation of training-image based priors, which was inspired by the Frequency Matching method developed by our group earlier. The proposed smooth generalization, that integrates data and multiple-point statistics in a probabilistic framework, allows us to find solution by use...
Propagation of Singularities and Some Inverse Problems in Wave Propagation
National Research Council Canada - National Science Library
Symes, William W
1989-01-01
... in various useful coefficient classes, separation of scales,...We explain the essential role of travel time in the study of these problems, and show how its function may be generalized to multidimensional (i.e. non-layered) problems.
Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters
2017-03-07
please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics -based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics -based Inverse Problem to Deduce Marine...19b. TELEPHONE NUMBER (Include area code) 843-349-4087 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Physics -Based Inverse Problem To
Collage-based approaches for elliptic partial differential equations inverse problems
Yodzis, Michael; Kunze, Herb
2017-01-01
The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.
A unified approach to the helioseismic forward and inverse problems of differential rotation
Ritzwoller, Michael H.; Lavely, Eugene M.
1991-01-01
A general, degenerate perturbation theoretic treatment of the helioseismic forward and inverse problem for solar differential rotation is presented. For the forward problem, differential rotation is represented as the axisymmetric component of a general toroidal flow field using velocity spherical harmonics. This approach allows each degree of differential rotation to be estimated independently from all other degrees. In the inverse problem, the splitting caused by differential rotation is expressed as an expansion in a set of orthonormal polynomials that are intimately related to the solution of the forward problem. The combined use of vector spherical harmonics as basis functions for differential ratio and the Clebsch-Gordon coefficients to represent splitting provides a unified approach to the forward and inverse problems of differential rotation which greatly simplify inversion.
Solving inverse two-point boundary value problems using collage coding
Kunze, H.; Murdock, S.
2006-08-01
The method of collage coding, with its roots in fractal imaging, is the central tool in a recently established rigorous framework for solving inverse initial value problems for ordinary differential equations (Kunze and Vrscay 1999 Inverse Problems 15 745-70). We extend these ideas to solve the following inverse problem: given a function u(x) on [A, B] (which may be the interpolation of data points), determine a two-point boundary value problem on [A, B] which admits u(x) as a solution as closely as desired. The solution of such inverse problems may be useful in parameter estimation or determination of potential functional forms of the underlying differential equation. We discuss ways to improve results, including the development of a partitioning scheme. Several examples are considered.
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti
2012-06-26
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique identifiability of the potential is shown for two cases, i.e. the flux at one end and the net flux, provided that the set of input sources forms a complete basis in L 2(0, 1). An algorithm of the quasi-Newton type is proposed for the efficient and accurate reconstruction of the coefficient from finite data, and the injectivity of the Jacobian is discussed. Numerical results for both exact and noisy data are presented. © 2012 IOP Publishing Ltd.
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
A Bayesian setting for an inverse problem in heat transfer
Ruggeri, Fabrizio
2014-01-06
In this work a Bayesian setting is developed to infer the thermal conductivity, an unknown parameter that appears into heat equation. Temperature data are available on the basis of cooling experiments. The realistic assumption that the boundary data are noisy is introduced, for a given prescribed initial condition. We show how to derive the global likelihood function for the forward boundary-initial condition problem, given the values of the temperature field plus Gaussian noise. We assume that the thermal conductivity parameter can be modelled a priori through a lognormal distributed random variable or by means of a space-dependent stationary lognormal random field. In both cases, given Gaussian priors for the time-dependent Dirichlet boundary values, we marginalize out analytically the joint posterior distribution of and the random boundary conditions, TL and TR, using the linearity of the heat equation. Synthetic data are used to carry out the inference. We exploit the concentration of the posterior distribution of , using the Laplace approximation and therefore avoiding costly MCMC computations.
FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)
Blanc-Féraud, Laure; Joubert, Pierre-Yves
2013-10-01
Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational
FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)
Blanc-Féraud, Laure; Joubert, Pierre-Yves
2012-09-01
Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition
jInv: A Modular and Scalable Framework for Electromagnetic Inverse Problems
Belliveau, P. T.; Haber, E.
2016-12-01
Inversion is a key tool in the interpretation of geophysical electromagnetic (EM) data. Three-dimensional (3D) EM inversion is very computationally expensive and practical software for inverting large 3D EM surveys must be able to take advantage of high performance computing (HPC) resources. It has traditionally been difficult to achieve those goals in a high level dynamic programming environment that allows rapid development and testing of new algorithms, which is important in a research setting. With those goals in mind, we have developed jInv, a framework for PDE constrained parameter estimation problems. jInv provides optimization and regularization routines, a framework for user defined forward problems, and interfaces to several direct and iterative solvers for sparse linear systems. The forward modeling framework provides finite volume discretizations of differential operators on rectangular tensor product meshes and tetrahedral unstructured meshes that can be used to easily construct forward modeling and sensitivity routines for forward problems described by partial differential equations. jInv is written in the emerging programming language Julia. Julia is a dynamic language targeted at the computational science community with a focus on high performance and native support for parallel programming. We have developed frequency and time-domain EM forward modeling and sensitivity routines for jInv. We will illustrate its capabilities and performance with two synthetic time-domain EM inversion examples. First, in airborne surveys, which use many sources, we achieve distributed memory parallelism by decoupling the forward and inverse meshes and performing forward modeling for each source on small, locally refined meshes. Secondly, we invert grounded source time-domain data from a gradient array style induced polarization survey using a novel time-stepping technique that allows us to compute data from different time-steps in parallel. These examples both show
A nonlinear inversion for the velocity background and perturbation models
Wu, Zedong
2015-08-19
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.
Incorporating modelled subglacial hydrology into inversions for basal drag
Koziol, Conrad P.; Arnold, Neil
2017-12-01
A key challenge in modelling coupled ice-flow-subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.
Incorporating modelled subglacial hydrology into inversions for basal drag
Directory of Open Access Journals (Sweden)
C. P. Koziol
2017-12-01
Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.
Goal Directed Model Inversion: A Study of Dynamic Behavior
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.
A Direct Solution Approach to the Inverse Shallow-Water Problem
Directory of Open Access Journals (Sweden)
Alelign Gessese
2012-01-01
Full Text Available The study of open channel flow modelling often requires an accurate representation of the channel bed topography to accurately predict the flow hydrodynamics. Experimental techniques are the most widely used approaches to measure the bed topographic elevation of open channels. However, they are usually cost and time consuming. Free surface measurement is, on the other hand, relatively easy to obtain using airborne photographic techniques. We present in this work an easy to implement and fast to solve numerical technique to identify the underlying bedrock topography from given free surface elevation data in shallow open channel flows. The main underlying idea is to derive explicit partial differential equations which govern this inverse reconstruction problem. The technique described here is a “one-shot technique” in the sense that the solution of the partial differential equation provides the solution to the inverse problem directly. The idea is tested on a set of artificial data obtained by first solving the forward problem governed by the shallow-water equations. Numerical results show that the channel bed topographic elevation can be reconstructed with a level of accuracy less than 3%. The method is also shown to be robust when noise is present in the input data.
An inverse problem for a nonlinear porous media equation
International Nuclear Information System (INIS)
Shidfar, A.; Mohseni, K.
1989-02-01
The problem to be discussed in this article pertains to the flow of fluid through one-dimensional porous media in which the diffusivity coefficient of the medium depends in an unknown manner on the volumetric moisture content. Specifically, we use Schauder's fixed point theorem to conclude that an appropriate unique solution to this problem exists. (author). 15 refs
Inverse Problems for the Quadratic Pencil of the Sturm-Liouville Equations with Impulse
Directory of Open Access Journals (Sweden)
Rauf Kh. Amırov
2013-01-01
Full Text Available In this study some inverse problems for a boundary value problem generated with a quadratic pencil of Sturm-Liouville equations with impulse on a finite interval are considered. Some useful integral representations for the linearly independent solutions of a quadratic pencil of Sturm-Liouville equation have been derived and using these, important spectral properties of the boundary value problem are investigated; the asymptotic formulas for eigenvalues, eigenfunctions, and normalizing numbers are obtained. The uniqueness theorems for the inverse problems of reconstruction of the boundary value problem from the Weyl function, from the spectral data, and from two spectra are proved.
Variational methods for direct/inverse problems of atmospheric dynamics and chemistry
Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena
2013-04-01
We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the
Denisov, A. M.; Zakharov, E. V.; Kalinin, A. V.; Kalinin, V. V.
2010-07-01
A numerical method is proposed for solving an inverse electrocardiography problem for a medium with a piecewise constant electrical conductivity. The method is based on the method of boundary integral equations and Tikhonov regularization.
Grigoriev, M.; Babich, L.
2015-09-01
The article represents the main noninvasive methods of heart electrical activity examination, theoretical bases of solution of electrocardiography inverse problem, application of different methods of heart examination in clinical practice, and generalized achievements in this sphere in global experience.
Inverse problem of a hyperbolic equation with an integral overdetermination condition
Directory of Open Access Journals (Sweden)
Taki-Eddine Oussaeif
2016-06-01
Full Text Available In this article we study the inverse problem of a hyperbolic equation with an integral overdetermination condition. The existence, uniqueness and continuous dependence of the solution of the solution upon the data are established.
SQUIDs and inverse problem techniques in nondestructive evaluation of metals
Bruno, A C
2001-01-01
Superconducting Quantum Interference Devices coupled to gradiometers were used to defect flaws in metals. We detected flaws in aluminium samples carrying current, measuring fields at lift-off distances up to one order of magnitude larger than the size of the flaw. Configured as a susceptometer we detected surface-braking flaws in steel samples, measuring the distortion on the applied magnetic field. We also used spatial filtering techniques to enhance the visualization of the magnetic field due to the flaws. In order to assess its severity, we used the generalized inverse method and singular value decomposition to reconstruct small spherical inclusions in steel. In addition, finite elements and optimization techniques were used to image complex shaped flaws.
Cerebellum-inspired neural network solution of the inverse kinematics problem.
Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan
2015-12-01
The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.
International Nuclear Information System (INIS)
Hamman, E.; Zorgati, R.
1995-01-01
Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an 'optimization' type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append
Numerical solution of the right boundary condition inverse problem for the Black-Scholes equation
Georgiev, Slavi G.; Vulkov, Lubin G.
2017-12-01
In this work we report the development of an algorithm to solve inverse problems of determining the right boundary condition according to a measurement inside a truncated domain for the Black-Scholes equation. The difference schemes for the direct and inverse problems are derived on non-uniform Tavella-Randall grids. We propose and discuss results of computational experiments for several European options.
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Review of the inverse scattering problem at fixed energy in quantum mechanics
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
A theoretical formulation of the electrophysiological inverse problem on the sphere.
Riera, Jorge J; Valdés, Pedro A; Tanabe, Kunio; Kawashima, Ryuta
2006-04-07
The construction of three-dimensional images of the primary current density (PCD) produced by neuronal activity is a problem of great current interest in the neuroimaging community, though being initially formulated in the 1970s. There exist even now enthusiastic debates about the authenticity of most of the inverse solutions proposed in the literature, in which low resolution electrical tomography (LORETA) is a focus of attention. However, in our opinion, the capabilities and limitations of the electro and magneto encephalographic techniques to determine PCD configurations have not been extensively explored from a theoretical framework, even for simple volume conductor models of the head. In this paper, the electrophysiological inverse problem for the spherical head model is cast in terms of reproducing kernel Hilbert spaces (RKHS) formalism, which allows us to identify the null spaces of the implicated linear integral operators and also to define their representers. The PCD are described in terms of a continuous basis for the RKHS, which explicitly separates the harmonic and non-harmonic components. The RKHS concept permits us to bring LORETA into the scope of the general smoothing splines theory. A particular way of calculating the general smoothing splines is illustrated, avoiding a brute force discretization prematurely. The Bayes information criterion is used to handle dissimilarities in the signal/noise ratios and physical dimensions of the measurement modalities, which could affect the estimation of the amount of smoothness required for that class of inverse solution to be well specified. In order to validate the proposed method, we have estimated the 3D spherical smoothing splines from two data sets: electric potentials obtained from a skull phantom and magnetic fields recorded from subjects performing an experiment of human faces recognition.
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
DEFF Research Database (Denmark)
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least squares...
Lezina, Natalya; Agoshkov, Valery
2017-04-01
Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).
Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria
2018-04-01
The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.
A hopfield-like artificial neural network for solving inverse radiation transport problems
International Nuclear Information System (INIS)
Lee, Sang Hoon
1997-02-01
In this thesis, we solve inverse radiation transport problems by an Artificial Neural Network(ANN) approach. ANNs have many interesting properties such as nonlinear, parallel, and distributed processing. Some of the promising applications of ANNs are optimization, image and signal processing, system control, etc. In some optimization problems, Hopfield Neural Network(HNN) which has one-layered and fully interconnected neurons with feed-back topology showed that it worked well with acceptable fault tolerance and efficiency. The identification of radioactive source in a medium with a limited number of external detectors is treated as an inverse radiation transport problem in this work. This kind of inverse problem is usually ill-posed and severely under-determined; however, its applications are very useful in many fields including medical diagnosis and nondestructive assay of nuclear materials. Therefore, it is desired to develop efficient and robust solution algorithms. Firstly, we study a representative ANN model which has learning ability and fault tolerance, i.e., feed-forward neural network. It has an error backpropagation learning algorithm processed by reducing error in learning patterns that are usually results of test or calculation. Although it has enough fault tolerance and efficiency, a major obstacle is 'curse of dimensionality'--required number of learning patterns and learning time increase exponentially proportional to the problem size. Therefore, in this thesis, this type of ANN is used as benchmarking the reliability of the solution. Secondly, another approach for solving inverse problems, a modified version of HNN is proposed. When diagonal elements of the interconnection matrix are not zero, HNN may become unstable. However, most problems including this identification problem contain non-zero diagonal elements when programmed on neural networks. According to Soulie et al., discrete random iterations could produce the stable minimum state
Inverse problem for the equation with n-times integrated semigroup
Orlovsky, D. G.
2017-12-01
We consider an abstract differential equation of the first order with unbounded linear operator u‧(t) = Au(t) + f(t) in a Banach space X. For this equation the Cauchy problem is studied with initial data u(0) = x at t = 0. We assume that the operator A generates an n-times integrated semigroup V(t). The inverse problem to determine the nonhomogeneous member is considered under the assumption that this term has the following representation f(t) = p, where p is an unknown element of the space X. This problem belongs to the class of inverse problems. Inverse problems for abstract differential equations was discussed initially with this inhomogeneous structure member but for equations with an operator generating a C 0-semigroup. An additional condition u(T) = y is specified for the determination of the unknown p, where y is a given element of the space X. Thus we get the two-point problem, which had not been considered previously for integrated semigroups. The question of existence and uniqueness of the classical solution of the inverse problem is studied. Sufficient conditions of correct solvability of the inverse problem are obtained. Explicit formula to determine the unknown element in the differential equation is given.
An inverse transmission scattering problem for periodic media
International Nuclear Information System (INIS)
Yang, Jiaqing; Zhang, Bo
2011-01-01
Consider the problem of scattering of time-harmonic waves by a penetrable periodic structure. The structure separates the whole space into three regions: the medium above and below the structure is assumed to be homogeneous, and the medium inside the structure is assumed to be inhomogeneous with the refractive index q(x). Having established the well posedness of the scattering problem, we show that the scattered field measured only above the structure, corresponding to a countably infinite number of quasi-periodic waves, uniquely determine the two grating profiles. Furthermore, we prove that the refractive index q(x) can be uniquely determined from the scattered field measured above and below the structure, corresponding to a countably infinite number of quasi-periodic waves, if q depends only on one direction and if the two grating profiles are known constants. The proofs are based on a priori estimates of the solutions of the direct problem and new mixed reciprocity relations. (paper)
The ''INVERSE PROBLEM'' to the evaluation of magnetic fields
International Nuclear Information System (INIS)
Caspi, S.; Helm, M.; Laslett, L.J.
1996-01-01
In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Biot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative (inverse) procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes then to evaluate the current distribution on the specified winding surface that would provide this desired field. By evaluating the specified potential in the region interior to the winding along the interface, the authors have determined that a relaxation solution to the potential in the region outside the winding can be converged and used to calculate wire location. They have demonstrated this method by applying a slightly modified version of the program POISSON to a periodic alternating sinusoidal quadrupole field
Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain
2018-03-01
The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.
On an inverse problem for scalar conservation laws
International Nuclear Information System (INIS)
Holden, Helge; Priuli, Fabio Simone; Risebro, Nils Henrik
2014-01-01
We study in what sense one can determine the flux functions k = k(x) and f = f(u), k piecewise constant, in the scalar hyperbolic conservation law u t + (k(x)f(u)) x = 0 by observing the solution u(t, ·) of the Cauchy problem with suitable piecewise constant initial data u| t=0 = u o . (paper)
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
The generated thermal energy and the problems of its evacuation from the cutting zone account for high temperatures in machining. These increased temperatures exert a pronounced negative effect on the tool and workpiece. This paper takes a different approach towards identiﬁcation of the thermal process in machining, ...
Uniqueness of inverse scattering problem in local quantum physics
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: schroer@cbpf.br
2001-06-01
It is shown that the a Bisognano-Wichmann-Unruh inspired formulation of local quantum physics which starts from wedge-localized algebras, leads to a uniqueness proof for the scattering problem. The important mathematical tool is the thermal KMS aspect of localization and its strengthening by the requirement of crossing symmetry for generalized formfactors. (author)
Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.
2010-01-01
The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.
An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra
Rundell, William
2013-04-23
A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative: the Dirichlet spectrum from the clamped end-point conditions is insufficient. There are many known ways to add additional information to gain a positive answer, and these include changing one of the boundary conditions and recomputing the spectrum or giving the energy in each eigenmode-the so-called norming constants. We make the assumption that neither of these changes are possible. Instead we will add known mass-densities to the string in a way we can prescribe and remeasure the Dirichlet spectrum. We will not be able to answer the uniqueness question in its most general form, but will give some insight to what "added masses" should be chosen and how this can lead to a reconstruction of the original string density. © 2013 Society for Industrial and Applied Mathematics.
A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data.
Crevecoeur, Guillaume; Hallez, Hans; Van Hese, Peter; D'Asseler, Yves; Dupré, Luc; Van de Walle, Rik
2008-08-01
Epilepsy is a neurological disorder caused by intense electrical activity in the brain. The electrical activity, which can be modelled through the superposition of several electrical dipoles, can be determined in a non-invasive way by analysing the electro-encephalogram. This source localization requires the solution of an inverse problem. Locally convergent optimization algorithms may be trapped in local solutions and when using global optimization techniques, the computational effort can become expensive. Fast recovery of the electrical sources becomes difficult that way. Therefore, there is a need to solve the inverse problem in an accurate and fast way. This paper performs the localization of multiple dipoles using a global-local hybrid algorithm. Global convergence is guaranteed by using space mapping techniques and independent component analysis in a computationally efficient way. The accuracy is locally obtained by using the Recursively Applied and Projected-MUltiple Signal Classification (RAP-MUSIC) algorithm. When using this hybrid algorithm, a four times faster solution is obtained.
A GRASP-Based Heuristic for the Sorting by Length-Weighted Inversions Problem.
Arruda, Thiago da Silva; Dias, Ulisses; Dias, Zanoni
2018-01-01
Genome Rearrangements are large-scale mutational events that affect genomes during the evolutionary process. Therefore, these mutations differ from punctual mutations. They can move genes from one place to the other, change the orientation of some genes, or even change the number of chromosomes. In this work, we deal with inversion events which occur when a segment of DNA sequence in the genome is reversed. In our model, each inversion costs the number of elements in the reversed segment. We present a new algorithm for this problem based on the metaheuristic called Greedy Randomized Adaptive Search Procedure (GRASP) that has been routinely used to find solutions for combinatorial optimization problems. In essence, we implemented an iterative process in which each iteration receives a feasible solution whose neighborhood is investigated. Our analysis shows that we outperform any other approach by significant margin. We also use our algorithm to build phylogenetic trees for a subset of species in the Yersinia genus and we compared our trees to other results in the literature.
Space-time adaptive solution of inverse problems with the discrete adjoint method
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
UCODE, a computer code for universal inverse modeling
Poeter, Eileen P.; Hill, Mary C.
1999-05-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating
Stochastic forward and inverse groundwater flow and solute transport modeling
Janssen, G.M.C.M.
2008-01-01
Keywords: calibration, inverse modeling, stochastic modeling, nonlinear biodegradation, stochastic-convective, advective-dispersive, travel time, network design, non-Gaussian distribution, multimodal distribution, representers
This thesis offers three new approaches that contribute
A formulation with boundary integrals and solution optimization for a heat transfer inverse problem
International Nuclear Information System (INIS)
Honorio, Mario C.F.; Bezerra, Luciano M.
1997-01-01
This paper presents a boundary integral formulation in conjunction with optimization techniques for the solution of inverse thermal design problems. In this type of problems, sometimes it is necessary to determine the appropriate position and shape of an internal cooling/heating channel inside an object so that reference thermal boundary values could be obtained on the outer surface. An initial feasible position of the channel is first guessed by the user. The channel is defined in terms of design variables. The formulation tries to minimize an objective function which measures the difference between model and reference data. The program attempts to minimize the objective function in order to meet the over specified thermal boundary conditions on the outer surface. This minimization or optimization problem is a constrained problem since the cooling/heating channel must be inside the object. In the optimization process, the holes position is iteratively changed. Although more complex in terms of mathematical formulation. the boundary element method is particularly suited for this type of problem involving constant mesh updates. The Boundary Element Method formulation calculates the thermal response which is compared with reference data. The quasi-Newton search algorithm used for objective function optimization needs the response sensitivities with respect to the design variables. The sensitivities are calculated by finite differences and by implicit differentiation of the boundary element equations. Some numerical results are presented and discussed. (author). 10 refs., 8 figs., 2 tabs
Direct and inverse problems in dispersive time-of-flight photocurrent revisited
Sagues, Francesc; Sokolov, Igor M.
2017-10-01
Using the fact that the continuous time random walk (CTRW) scheme is a random process subordinated to a simple random walk under the operational time given by the number of steps taken by the walker up to a given time, we revisit the problem of strongly dispersive transport in disordered media, which first lead Scher and Montroll to introducing the power law waiting time distributions. Using a subordination approach permits to disentangle the complexity of the problem, separating the solution of the boundary value problem (which is solved on the level of normal diffusive transport) from the influence of the waiting times, which allows for the solution of the direct problem in the whole time domain (including short times, out of reach of the initial approach), and simplifying strongly the analysis of the inverse problem. This analysis shows that the current traces do not contain information sufficient for unique restoration of the waiting time probability densities, but define a single-parametric family of functions that can be restored, all leading to the same photocurrent forms. The members of the family have the power-law tails which differ only by a prefactor, but may look astonishingly different at their body. The same applies to the multiple trapping model, mathematically equivalent to a special limiting case of CTRW. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Uniqueness for the inverse backscattering problem for angularly controlled potentials
International Nuclear Information System (INIS)
Rakesh; Uhlmann, Gunther
2014-01-01
We consider the problem of recovering a smooth, compactly supported potential on R 3 from its backscattering data. We show that if two such potentials have the same backscattering data and the difference of the two potentials has controlled angular derivatives, then the two potentials are identical. In particular, if two potentials differ by a finite linear combination of spherical harmonics with radial coefficients and have the same backscattering data then the two potentials are identical. (paper)
Inverse problems in machine learning: An application to brain activity interpretation
International Nuclear Information System (INIS)
Prato, M; Zanni, L
2008-01-01
In a typical machine learning problem one has to build a model from a finite training set which is able to generalize the properties characterizing the examples of the training set to new examples. The model has to reflect as much as possible the set of training examples but, especially in real-world problems in which the data are often corrupted by different sources of noise, it has to avoid a too strict dependence on the training examples themselves. Recent studies on the relationship between this kind of learning problem and the regularization theory for ill-posed inverse problems have given rise to new regularized learning algorithms. In this paper we recall some of these learning methods and we propose an accelerated version of the classical Landweber iterative scheme which results particularly efficient from the computational viewpoint. Finally, we compare the performances of these methods with the classical Support Vector Machines learning algorithm on a real-world experiment concerning brain activity interpretation through the analysis of functional magnetic resonance imaging data.
The measurement problem on classical diffusion process: inverse method on stochastic processes
International Nuclear Information System (INIS)
Bigerelle, M.; Iost, A.
2004-01-01
In a high number of diffusive systems, measures are processed to calculate material parameters such as diffusion coefficients, or to verify the accuracy of mathematical models. However, the precision of the parameter determination or of the model relevance depends on the location of the measure itself. The aim of this paper is first to analyse, for a mono-dimensional system, the precision of the measure in relation with its location by an inverse problem algorithm and secondly to examine the physical meaning of the results. Statistical mechanic considerations show that, passing over a time-distance criterion, measurement becomes uncertain whatever the initial conditions. The criterion proves that this chaotic mode is related to the production of anti-entropy at a mesoscopique scale that is in violation to quantum theory about measurement
Application Of Shared Gamma And Inverse-Gaussian Frailty Models ...
African Journals Online (AJOL)
Shared Gamma and Inverse-Gaussian Frailty models are used to analyze the survival times of patients who are clustered according to cancer/tumor types under Parametric Proportional Hazard framework. The result of the ... However, no evidence is strong enough for preference of either Gamma or Inverse Gaussian Frailty.
Solution of the Cox-Thompson inverse scattering problem using finite set of phase shifts
Apagyi, B; Scheid, W
2003-01-01
A system of nonlinear equations is presented for the solution of the Cox-Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed energy. From a given finite set of phase shifts for physical angular momenta, the nonlinear equations determine related sets of asymptotic normalization constants and nonphysical (shifted) angular momenta from which all quantities of interest, including the inversion potential itself, can be calculated. As a first application of the method we use input data consisting of a finite set of phase shifts calculated from Woods-Saxon and box potentials representing interactions with diffuse or sharp surfaces, respectively. The results for the inversion potentials, their first moments and asymptotic properties are compared with those provided by the Newton-Sabatier quantum inversion procedure. It is found that in order to achieve inversion potentials of similar quality, the Cox-Thompson method requires a smaller set of phase shifts than the Newton-Sabatier procedure.
Material parameter identification and inverse problems in soft tissue biomechanics
Evans, Sam
2017-01-01
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1997-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
Omega-Harmonic Functions and Inverse Conductivity Problems on Networks
National Research Council Canada - National Science Library
Berenstein, Carlos A; Chung, Soon-Yeong
2003-01-01
.... To do this, they introduce an elliptic operator DELTA omega and an omega-harmonic function on the graph, with its physical interpretation being the diffusion equation on the graph, which models an electric network...
A solution to the inverse problem in ocean acoustics
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.; Sastry, J.S.
The methodology and software developed to reconstruct a vertical sound speed profile as a part of studies on the marine acoustic modelling, using the ray path lengths and the travel time perturbations in tomographic layers are outlined. For a...
A gradient based algorithm to solve inverse plane bimodular problems of identification
Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing
2018-02-01
This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.
Two numerical methods for an inverse problem for the 2-D Helmholtz equation
Gryazin, Y A; Lucas, T R
2003-01-01
Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.
Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form
Directory of Open Access Journals (Sweden)
Kairi Kasemets
2013-01-01
Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.
Optimal experimental designs for inverse quadratic regression models
Dette, Holger; Kiss, Christine
2007-01-01
In this paper optimal experimental designs for inverse quadratic regression models are determined. We consider two different parameterizations of the model and investigate local optimal designs with respect to the $c$-, $D$- and $E$-criteria, which reflect various aspects of the precision of the maximum likelihood estimator for the parameters in inverse quadratic regression models. In particular it is demonstrated that for a sufficiently large design space geometric allocation rules are optim...
International Nuclear Information System (INIS)
Algaba, A.; García, C.; Reyes, M.
2012-01-01
We characterize the nilpotent systems whose lowest degree quasi-homogeneous term is (y, σx n ) T , σ = ±1, having a formal inverse integrating factor. We prove that, for n even, the systems with formal inverse integrating factor are formally orbital equivalent to (x . ,y . ) T =(y,x n ) T . In the case n odd, we give a formal normal form that characterizes them. As a consequence, we give the link among the existence of formal inverse integrating factor, center problem and integrability of the considered systems.
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
novel measurement methods, while at the same time focusing on analytical optimization models which can .... temperature or heat flux at each observed point is calculated after a time increment as the result of heat ..... mocouple (type K, φ0,2 mm) built into the workpiece at a specified clearance from the tool/ workpiece ...
Bui-Thanh, T.; Girolami, M.
2014-11-01
We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint
Spetsieris, Konstantinos; Zygourakis, Kyriacos
2011-01-01
The dynamics of isogenic cell populations can be described by cell population balance models that account for phenotypic heterogeneity. To utilize the predictive power of these models, however, we must know the rates of single-cell reaction and division and the bivariate partition probability density function. These three intrinsic physiological state (IPS) functions can be obtained by solving an inverse problem that requires knowledge of the phenotypic distributions for the overall cell popu...
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations
Jeong, C.
2016-07-04
This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.
The inverse problem for definition of the shape of a molten contact bridge
Kharin, Stanislav N.; Sarsengeldin, Merey M.
2017-09-01
The paper presents the results of investigation of bridging phenomenon occurring at opening of electrical contacts. The mathematical model describing the dynamics of metal molten bridge takes into account the Thomson effect. It is based on the system of partial differential equations for temperature and electrical fields of the bridge in the domain containing two moving unknown boundaries. One of them is an interface between liquid and solid zones of the bridge and should be found by the solution of the corresponding Stefan problem. The second free boundary corresponds to the shape of the visible part of a bridge. Its definition is an inverse problem, for which solution it is necessary to find minimum of the energy consuming for the formation of the shape of a quasi-stationary bridge. Three components of this energy, namely surface tension, pinch effect and gravitation, are defined by the functional which minimum gives the required shape of the bridge. The solution of corresponding variation problem is found by the reduction of the problem to the solution of the system of ordinary differential equations. Calculated values of the voltage of the bridge rupture for various metals are in a good agreement with the experimental data. The criteria responsible for the mechanism of molten bridge rupture are introduced in the paper.
THE DIDACTIC ANALYSIS OF STUDIES ON THE INVERSE PROBLEMS FOR THE DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
В С Корнилов
2017-12-01
Full Text Available In article results of the didactic analysis of the organization and carrying out seminar classes in the inverse problems for the differential equations for students of higher educational institutions of the physical and mathematical directions of preparation are discussed. Such analysis includes a general characteristic of mathematical content of seminar occupations, the analysis of structure of seminar occupation, the analysis of realization of the developing and educational purposes, allocation of didactic units and informative means which have to be acquired by students when training each section of content of training in the inverse problems and other important psychology and pedagogical aspects. The attention to establishment of compliance to those of seminar occupations to lecture material and identification of functions in teaching and educational process which are carried out at the solution of the inverse problems, and also is paid to need to show various mathematical receptions and methods of their decision. Such didactic analysis helps not only to reveal such inverse problems at which solution students can collectively join in creative process of search of their decision, but also effectively organize control of assimilation of knowledge and abilities of students on the inverse problems for the differential equations.
An Approach to the Crustal Thickness Inversion Problem
De Marchi, F.; Di Achille, G.
2017-12-01
We describe a method to estimate the crustal thickness of a planet and we apply it to Venus. As in the method of (Parker, 1972), modified by (Wieczorek & Phillips, 1998), the gravity field anomalies of a planet are assumed to be due to the combined effect of topography and relief on the crust-mantle interface. No assumptions on isostasy are necessary. In our case, rather than using the expansion of the powers of the relief in Taylor series, we model the gravitational field of topography/relief by means of a large number of prism-shaped masses covering the whole surface of the planet. Under the hypothesis that crustal and mantle densities are the same everywhere, we solve for the relief depths on the crust-mantle interface by imposing that observed and modeled gravity field at a certain reference spherical surface (external to the planet) must be equal. This method can be extended to the case of non-uniform densities. Finally, we calculate a map of the crustal thickness of Venus and compare our results with those predicted by previous work and with the global distribution of main geological features (e.g. rift zones, tesserae, coronae). We discuss the agremeent between our results and the main geodynamical and crustal models put forth to explain the origin of such features and the applicability of this method in the context of the mission VOX (Venus Origins Explore), proposed for NASA's NF4 call.
Inverse modeling with RZWQM2 to predict water quality
Nolan, Bernard T.; Malone, Robert W.; Ma, Liwang; Green, Christopher T.; Fienen, Michael N.; Jaynes, Dan B.
2011-01-01
reflect the total information provided by the observations for a parameter, indicated that most of the RZWQM2 parameters at the California study site (CA) and Iowa study site (IA) could be reliably estimated by regression. Correlations obtained in the CA case indicated that all model parameters could be uniquely estimated by inverse modeling. Although water content at field capacity was highly correlated with bulk density (−0.94), the correlation is less than the threshold for nonuniqueness (0.95, absolute value basis). Additionally, we used truncated singular value decomposition (SVD) at CA to mitigate potential problems with highly correlated and insensitive parameters. Singular value decomposition estimates linear combinations (eigenvectors) of the original process-model parameters. Parameter confidence intervals (CIs) at CA indicated that parameters were reliably estimated with the possible exception of an organic pool transfer coefficient (R45), which had a comparatively wide CI. However, the 95% confidence interval for R45 (0.03–0.35) is mostly within the range of values reported for this parameter. Predictive analysis at CA generated confidence intervals that were compared with independently measured annual water flux (groundwater recharge) and median nitrate concentration in a collocated monitoring well as part of model evaluation. Both the observed recharge (42.3 cm yr−1) and nitrate concentration (24.3 mg L−1) were within their respective 90% confidence intervals, indicating that overall model error was within acceptable limits.
Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems
Marzouk, Youssef M.; Najm, Habib N.
2009-04-01
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior. We address these challenges by introducing truncated Karhunen-Loève expansions, based on the prior distribution, to efficiently parameterize the unknown field and to specify a stochastic forward problem whose solution captures that of the deterministic forward model over the support of the prior. We seek a solution of this problem using Galerkin projection on a polynomial chaos basis, and use the solution to construct a reduced-dimensionality surrogate posterior density that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion equation with prescribed source terms, inferring the spatially-varying diffusivity of the medium from limited and noisy data.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
Energy Technology Data Exchange (ETDEWEB)
Chartier, Timothy P.
2011-03-08
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.
The inverse problem of brain energetics: ketone bodies as alternative substrates
Energy Technology Data Exchange (ETDEWEB)
Calvetti, D; Occhipinti, R [Case Western Reserve University, Department of Mathematics, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Somersalo, E [Helsinki University of Technology, Institute of Mathematics, P. O. Box 1100, FIN-02015 HUT (Finland)], E-mail: daniela.calvetti@case.edu, E-mail: rossana.occhipinti@case.edu, E-mail: erkki.somersalo@tkk.fi
2008-07-15
Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing.
Optimal Experimental Design for Large-Scale Bayesian Inverse Problems
Ghattas, Omar
2014-01-06
We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Research Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate expressions. The control parameters are the initial mixture composition and the temperature. The approach is based on first building a polynomial based surrogate model for the observables relevant to the shock tube experiments. Based on these surrogates, a novel MAP based approach is used to estimate the expected information gain in the proposed experiments, and to select the best experimental set-ups yielding the optimal expected information gains. The validity of the approach is tested using synthetic data generated by sampling the PC surrogate. We finally outline a methodology for validation using actual laboratory experiments, and extending experimental design methodology to the cases where the control parameters are noisy.
Radiative transport in plant canopies: Forward and inverse problem for UAV applications
Furfaro, Roberto
This dissertation deals with modeling the radiative regime in vegetation canopies and the possible remote sensing applications derived by solving the forward and inverse canopy transport equation. The aim of the research is to develop a methodology (called "end-to-end problem solution") that, starting from first principles describing the interaction between light and vegetation, constructs, as the final product, a tool that analyzes remote sensing data for precision agriculture (ripeness prediction). The procedure begins by defining the equations that describe the transport of photons inside the leaf and within the canopy. The resulting integro-differential equations are numerically integrated by adapting the conventional discrete-ordinate methods to compute the reflectance at the top of the canopy. The canopy transport equation is also analyzed to explore its spectral properties. The goal here is to apply Case's method to determine eigenvalues and eigenfunctions and to prove completeness. A model inversion is attempted by using neural network algorithms. Using input-outputs generated by running the forward model, a neural network is trained to learn the inverse map. The model-based neural network represents the end product of the overall procedure. During Oct 2002, an Unmanned Aerial Vehicles (UAVs) equipped with a camera system, flew over Kauai to take images of coffee field plantations. Our goal is to predict the amount of ripe coffee cherries for optimal harvesting. The Leaf-Canopy model was modified to include cherries as absorbing and scattering elements and two classes of neural networks were trained on the model to learn the relationship between reflectance and percentage of ripe, over-ripe and under-ripe cherries. The neural networks are interfaced with images coming from Kauai to predict ripeness percentage. Both ground and airborne images are considered. The latter were taken from the on-board Helios UAV camera system flying over the Kauai coffee field
Problems in Cybersemiotic Modelling
DEFF Research Database (Denmark)
Brier, Søren
2014-01-01
on the basis of the evolutionary semiotics paradigm of C.S. Peirce . Semiotics underlines realism more, but is also relational in its whole project. In Cybersemiotics the autopoietic model in integrated in the Peircean framework which is of a far greater scope than autopoiesis. Thus in Cybersemiotic we have...... Uexküll’s cybernetic-behavioral model, which has the problem of being placed in a Platonic, static worldview. The Umwelt of an animal is a construction limited of its functional realism of survival. It is connected to the species. 2. Ture von Uexküll and Søren Brier both realized that Maturana and Varela...
Stability of the direct and inverse problems in one-dimensional scattering theory
International Nuclear Information System (INIS)
Moura, C.A. de
1977-01-01
The one-dimensional scattering problem is to relate the potential q in the operator E=f(q), to the so-called scattering data associated with E. It is known that to a certain class of potentials there corresponds a certain class of scattering data, and conversely. The sense in which this correspondence and its inverse are stable is investigated. This question is interesting 'per se' and is particularly important for numerical or experimental approaches to these problems. Appropriate metrics in certain classes of potentials and of scattering data are introduced, and continuity results for both the direct and inverse mappings are proved [pt
Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.
Kalenichenko, V. V.
A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.
Random fixed point equations and inverse problems using "collage method" for contraction mappings
Kunze, H. E.; La Torre, D.; Vrscay, E. R.
2007-10-01
In this paper we are interested in the direct and inverse problems for the following class of random fixed point equations T(w,x(w))=x(w) where is a given operator, [Omega] is a probability space and X is a Polish metric space. The inverse problem is solved by recourse to the collage theorem for contractive maps. We then consider two applications: (i) random integral equations, and (ii) random iterated function systems with greyscale maps (RIFSM), for which noise is added to the classical IFSM.
Iterative method for solving the inverse problem of dynamic diffraction by heterogeneous crystals
International Nuclear Information System (INIS)
Podorov, S.G.; Punegov, V.I.
1997-01-01
The symmetrical Bragg X-ray diffraction from the depth-heterogeneous crystal layer lying on the thick ideal substrate is considered. The inverse problem of the dynamic diffraction by the deformed crystal structure is solved. The iterative formula for numerical solution of the inverse diffraction problem is obtained. This iterative procedure is applied for calculation of parameters for the heterogeneous structure InGaAsSb/AlGaAsSb/(001)GaSb. The information about the distribution of crystal lattice deformations and the amorphism degree is obtained. The mean static Debye-Waller factor of the AlGaAsSb layer is 0.8 [ru
COLLAGE-BASED INVERSE PROBLEMS FOR IFSM WITH ENTROPY MAXIMIZATION AND SPARSITY CONSTRAINTS
Directory of Open Access Journals (Sweden)
Herb Kunze
2013-11-01
Full Text Available We consider the inverse problem associated with IFSM: Given a target function f, find an IFSM, such that its invariant fixed point f is sufficiently close to f in the Lp distance. In this paper, we extend the collage-based method developed by Forte and Vrscay (1995 along two different directions. We first search for a set of mappings that not only minimizes the collage error but also maximizes the entropy of the dynamical system. We then include an extra term in the minimization process which takes into account the sparsity of the set of mappings. In this new formulation, the minimization of collage error is treated as multi-criteria problem: we consider three different and conflicting criteria i.e., collage error, entropy and sparsity. To solve this multi-criteria program we proceed by scalarization and we reduce the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented. Numerical studies indicate that a maximum entropy principle exists for this approximation problem, i.e., that the suboptimal solutions produced by collage coding can be improved at least slightly by adding a maximum entropy criterion.
A generalization of szebehely's inverse problem of dynamics in dimension three
Sarlet, W.; Mestdag, T.; Prince, G.
2017-06-01
Extending a previous paper, we present a generalization in dimension 3 of the traditional Szebehely-type inverse problem. In that traditional setting, the data are curves determined as the intersection of two families of surfaces, and the problem is to find a potential V such that the Lagrangian L = T - V, where T is the standard Euclidean kinetic energy function, generates integral curves which include the given family of curves. Our more general way of posing the problem makes use of ideas of the inverse problem of the calculus of variations and essentially consists of allowing more general kinetic energy functions, with a metric which is still constant, but need not be the standard Euclidean one. In developing our generalization, we review and clarify different aspects of the existing literature on the problem and illustrate the relevance of the newly introduced additional freedom with many examples.
S-Genius, a universal software platform with versatile inverse problem resolution for scatterometry
Fuard, David; Troscompt, Nicolas; El Kalyoubi, Ismael; Soulan, Sébastien; Besacier, Maxime
2013-05-01
S-Genius is a new universal scatterometry platform, which gathers all the LTM-CNRS know-how regarding the rigorous electromagnetic computation and several inverse problem solver solutions. This software platform is built to be a userfriendly, light, swift, accurate, user-oriented scatterometry tool, compatible with any ellipsometric measurements to fit and any types of pattern. It aims to combine a set of inverse problem solver capabilities — via adapted Levenberg- Marquard optimization, Kriging, Neural Network solutions — that greatly improve the reliability and the velocity of the solution determination. Furthermore, as the model solution is mainly vulnerable to materials optical properties, S-Genius may be coupled with an innovative material refractive indices determination. This paper will a little bit more focuses on the modified Levenberg-Marquardt optimization, one of the indirect method solver built up in parallel with the total SGenius software coding by yours truly. This modified Levenberg-Marquardt optimization corresponds to a Newton algorithm with an adapted damping parameter regarding the definition domains of the optimized parameters. Currently, S-Genius is technically ready for scientific collaboration, python-powered, multi-platform (windows/linux/macOS), multi-core, ready for 2D- (infinite features along the direction perpendicular to the incident plane), conical, and 3D-features computation, compatible with all kinds of input data from any possible ellipsometers (angle or wavelength resolved) or reflectometers, and widely used in our laboratory for resist trimming studies, etching features characterization (such as complex stack) or nano-imprint lithography measurements for instance. The work about kriging solver, neural network solver and material refractive indices determination is done (or about to) by other LTM members and about to be integrated on S-Genius platform.
Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S
2013-01-01
Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...
Directory of Open Access Journals (Sweden)
Marc H. V. Van Regenmortel
2018-01-01
Full Text Available Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly
Problems in Cybersemiotic Modelling
DEFF Research Database (Denmark)
Brier, Søren
2014-01-01
’s constructivist biology came closer to a modern version of Jacob von Uexküll’s. Maturana’s model is a relational model. Cognition and communication aims to conserve a viable relation between living system and environment. It is as such not an objective modeling. 3. This model is reinterpreted in biosemiotics......Going from an empirical to an informational paradigm of cognition and communication, does not really help us to analyze, how the living systems manage to make a meaningful interpretation of environment that is useful for their survival and procreation. Other models are needed. 1. There is von...... Uexküll’s cybernetic-behavioral model, which has the problem of being placed in a Platonic, static worldview. The Umwelt of an animal is a construction limited of its functional realism of survival. It is connected to the species. 2. Ture von Uexküll and Søren Brier both realized that Maturana and Varela...
SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Caroline Looms, Majken
2013-01-01
on the solution. The combined states of information (i.e. the solution to the inverse problem) is a probability density function typically referred to as the a posteriori probability density function. We present a generic toolbox for Matlab and Gnu Octave called SIPPI that implements a number of methods...
Stritzel, J; Melchert, O; Wollweber, M; Roth, B
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
Large scale inverse problems computational methods and applications in the earth sciences
Scheichl, Robert; Freitag, Melina A; Kindermann, Stefan
2013-01-01
This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.
An inverse problem for one-dimensional diffusion equation in optical tomography
Directory of Open Access Journals (Sweden)
Mohamed Addam
2019-07-01
Full Text Available In this paper, we study the one-dimensional inverse problem for the diffusion equation based optical tomography. The objective of the present work is a mathematical and numerical analysis concerning one-dimensional inverse problem. In the first stage, the forward diffusion equation with boundary conditions is solved using an intermediate elliptic equation. We give the existence and the uniqueness results of the solution. An approximation of the photon density in frequency-domain is proposed using a Splines Galerkin method. In the second stage, we give theoretical results such as the stability and lipschitz-continuity of the forward solution and the Fréchet differentiability of the Dirichlet-to-Neumann nonlinear map with respect to the optical parameters. The Fréchet derivative is used to linearize the considered inverse problem. The Newton method based on the regularization technique will allow us to compute the approximate solutions of the inverse problem. Several test examples are used to verify high accuracy, effectiveness and good resolution properties for smooth and discontinuous optical property solutions.
On the solution of the inverse scattering problem on a ray
International Nuclear Information System (INIS)
Egikyan, R.S.; Zhidkov, E.P.
1988-01-01
Quantum inverse scattering problem (ISP) is considered within the framework of two-particle scattering for local interaction case depending only on the scattering between particles. Constructing the solution of secondary integral equation solution of ISP is described in the clear image. Numerical calculations are conducted using a direct method
On the Quantum Inverse problem for the continuous Heisenberg spin chain with axial anisotropy
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1986-06-01
We have considered the Quantum Inverse problem for the continuous form of Heisenberg spin chain with anisotropy. The form of quantum R-matrix, the commutation rules for the scattering data, and the explicit structure of the excitation spectrum are obtained. (author)
Presymplectic current and the inverse problem of the calculus of variations
Khavkine, I.
2013-01-01
The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a
On the inverse problem of the calculus of variations in field theory
International Nuclear Information System (INIS)
Henneaux, M.
1984-01-01
The inverse problem of the calculus of variations is investigated in the case of field theory. Uniqueness of the action principle is demonstrated for the vector Laplace equation in a non-decomposable Riemannian space, as well as for the harmonic map equation. (author)
Maximum-entropy principle and its application to the solution of inverse problems
International Nuclear Information System (INIS)
Soroko, L.
1981-01-01
The maximum-entropy principle, which expresses a constraint on the solution to an inverse problem defined by a system of linear equations, is explained. The maximum-entropy principle makes it possible to raise the resolution of an instrument a posteriori and to reconstruct tomographic images from a truncated set of projections
An inverse problem for Maxwell’s equations with Lipschitz parameters
Pichler, Monika
2018-02-01
We consider an inverse boundary value problem for Maxwell’s equations, which aims to recover the electromagnetic material properties of a body from measurements on the boundary. We show that a Lipschitz continuous conductivity, electric permittivity, and magnetic permeability are uniquely determined by knowledge of all tangential electric and magnetic fields on the boundary of the body at a fixed frequency.
Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group
International Nuclear Information System (INIS)
Wang, S.J.
1993-04-01
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)
More Bayesian Transdimensional Inversion for Thermal History Modelling (Invited)
Gallagher, K.
2013-12-01
Since the publication of Dodson (1973) quantifying the relationship between geochronogical ages and closure temperatures, an ongoing concern in thermochronology is reconstruction of thermal histories consistent with the measured data. Extracting this thermal history information is best treated as an inverse problem, given the complex relationship between the observations and the thermal history. When solving the inverse problem (i.e. finding thermal acceptable thermal histories), stochastic sampling methods have often been used, as these are relatively global when searching the model space. However, the issue remains how best to estimate those parts of the thermal history unconstrained by independent information, i.e. what is required to fit the data ? To solve this general problem, we use a Bayesian transdimensional Markov Chain Monte Carlo method and this has been integrated into user-friendly software, QTQt (Quantitative Thermochronology with Qt), which runs on both Macintosh and PC. The Bayesian approach allows us to consider a wide range of possible thermal history as general prior information on time, temperature (and temperature offset for multiple samples in a vertical profile). We can also incorporate more focussed geological constraints in terms of more specific priors. In this framework, it is the data themselves (and their errors) that determine the complexity of the thermal history solutions. For example, more precise data will justify a more complex solution, while more noisy data will be happy with simpler solutions. We can express complexity in terms of the number of time-temperature points defining the total thermal history. Another useful feature of this method is that was can easily deal with imprecise parameter values (e.g. kinetics, data errors), by drawing samples from a user specified probability distribution, rather than using a single value. Finally, the method can be applied to either single samples, or multiple samples (from a borehole or
Chierchia, Giovanni; Pustelnik, Nelly; Pesquet, Jean-Christophe; Pesquet-Popescu, Béatrice
2012-01-01
We propose a proximal approach to deal with a class of convex variational problems involving nonlinear constraints. A large family of constraints, proven to be effective in the solution of inverse problems, can be expressed as the lower level set of a sum of convex functions evaluated over different, but possibly overlapping, blocks of the signal. For such constraints, the associated projection operator generally does not have a simple form. We circumvent this difficulty by splitting the lowe...
Oblique projections and standard-form transformations for discrete inverse problems
DEFF Research Database (Denmark)
Hansen, Per Christian
2013-01-01
This tutorial paper considers a specific computational tool for the numerical solution of discrete inverse problems, known as the standard-form transformation, by which we can treat general Tikhonov regularization problems efficiently. In the tradition of B. N. Datta's expositions of numerical li...... linear algebra, we use the close relationship between oblique projections, pseudoinverses, and matrix computations to derive a simple geometric motivation and algebraic formulation of the standard-form transformation....
An inverse source problem of the Poisson equation with Cauchy data
Directory of Open Access Journals (Sweden)
Ji-Chuan Liu
2017-05-01
Full Text Available In this article, we study an inverse source problem of the Poisson equation with Cauchy data. We want to find iterative algorithms to detect the hidden source within a body from measurements on the boundary. Our goal is to reconstruct the location, the size and the shape of the hidden source. This problem is ill-posed, regularization techniques should be employed to obtain the regularized solution. Numerical examples show that our proposed algorithms are valid and effective.
Solving the Axisymmetric Inverse Heat Conduction Problem by a Wavelet Dual Least Squares Method
Directory of Open Access Journals (Sweden)
Fu Chu-Li
2009-01-01
Full Text Available We consider an axisymmetric inverse heat conduction problem of determining the surface temperature from a fixed location inside a cylinder. This problem is ill-posed; the solution (if it exists does not depend continuously on the data. A special project method—dual least squares method generated by the family of Shannon wavelet is applied to formulate regularized solution. Meanwhile, an order optimal error estimate between the approximate solution and exact solution is proved.
Inverse procedural modeling of facade layouts
Wu, Feng
2014-07-22
In this paper, we address the following research problem: How can we generate a meaningful split grammar that explains a given facade layout? To evaluate if a grammar is meaningful, we propose a cost function based on the description length and minimize this cost using an approximate dynamic programming framework. Our evaluation indicates that our framework extracts meaningful split grammars that are competitive with those of expert users, while some users and all competing automatic solutions are less successful. Copyright © ACM.
Why operational risk modelling creates inverse incentives
Doff, R.
2015-01-01
Operational risk modelling has become commonplace in large international banks and is gaining popularity in the insurance industry as well. This is partly due to financial regulation (Basel II, Solvency II). This article argues that operational risk modelling is fundamentally flawed, despite efforts
International Nuclear Information System (INIS)
Sharma, Pavan K.; Gera, B.; Ghosh, A.K.; Kushwaha, H.S.
2010-01-01
Scalar dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analyses based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. Both forward and backward calculation methods are being developed for atmospheric dispersion around NPPs at BARC Forward modeling methods, which describe the atmospheric transport from sources to receptors, use forward-running transport and dispersion models or computational fluid dynamics models which are run many times, and the resulting dispersion field is compared to observations from multiple sensors. Backward or inverse modeling methods use only one model run in the reverse direction from the receptors to estimate the upwind sources. Inverse modeling methods include adjoint and tangent linear models, Kalman filters, and variational data assimilation, and neural network. The present paper is aimed at developing a new approach where the identified specific signatures at receptor points form the basis for source estimation or inversions. This approach is expected to reduce the large transient data sets to reduced and meaningful data sets. In fact this reduces the inherently transient data set into a time independent mean data set. Forward computation were carried out with CFD code for various case to generate a large set of data to train the ANN. Specific signature analysis was carried out to find the parameters of interest for ANN training like peak concentration, time to reach peak concentration and time to fall, the ANN was trained with data and source strength and location were predicted from ANN. Inverse problem was performed using ANN approach in long range atmospheric dispersion. An illustration of application of CFD code for atmospheric dispersion studies for a hypothetical case is also included in the paper. (author)
Henderson, Laura S.; Subbarao, Kamesh
2017-12-01
This work presents a case wherein the selection of models when producing synthetic light curves affects the estimation of the size of unresolved space objects. Through this case, "inverse crime" (using the same model for the generation of synthetic data and data inversion), is illustrated. This is done by using two models to produce the synthetic light curve and later invert it. It is shown here that the choice of model indeed affects the estimation of the shape/size parameters. When a higher fidelity model (henceforth the one that results in the smallest error residuals after the crime is committed) is used to both create, and invert the light curve model the estimates of the shape/size parameters are significantly better than those obtained when a lower fidelity model (in comparison) is implemented for the estimation. It is therefore of utmost importance to consider the choice of models when producing synthetic data, which later will be inverted, as the results might be misleadingly optimistic.
Forecasting wind-driven wildfires using an inverse modelling approach
Directory of Open Access Journals (Sweden)
O. Rios
2014-06-01
Full Text Available A technology able to rapidly forecast wildfire dynamics would lead to a paradigm shift in the response to emergencies, providing the Fire Service with essential information about the ongoing fire. This paper presents and explores a novel methodology to forecast wildfire dynamics in wind-driven conditions, using real-time data assimilation and inverse modelling. The forecasting algorithm combines Rothermel's rate of spread theory with a perimeter expansion model based on Huygens principle and solves the optimisation problem with a tangent linear approach and forward automatic differentiation. Its potential is investigated using synthetic data and evaluated in different wildfire scenarios. The results show the capacity of the method to quickly predict the location of the fire front with a positive lead time (ahead of the event in the order of 10 min for a spatial scale of 100 m. The greatest strengths of our method are lightness, speed and flexibility. We specifically tailor the forecast to be efficient and computationally cheap so it can be used in mobile systems for field deployment and operativeness. Thus, we put emphasis on producing a positive lead time and the means to maximise it.
Multi-scattering inversion for low model wavenumbers
Alkhalifah, Tariq Ali
2015-08-19
A successful full wavenumber inversion (FWI) implementation updates the low wavenumber model components first for proper wavefield propagation description, and slowly adds the high-wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded data given by direct arrivals or the transmission parts of the single and double-scattering wave-fields developed from a predicted scatter field. We develop a combined inversion of data modeled from the source and those corresponding to single and double scattering to update both the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering angle filter is used to divide the gradient of the combined inversion so initially the high wavenumber (low scattering angle) components of the gradient is directed to the perturbation model and the low wavenumber (high scattering angle) components to the velocity model. As our background velocity matures, the scattering angle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model.
From capture to simulation: connecting forward and inverse problems in fluids
Gregson, James
2014-07-27
We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.
An investigation on the solutions for the linear inverse problem in gamma ray tomography
International Nuclear Information System (INIS)
Araujo, Bruna G.M.; Dantas, Carlos C.; Santos, Valdemir A. dos; Finkler, Christine L.L.; Oliveira, Eric F. de; Melo, Silvio B.; Santos, M. Graca dos
2009-01-01
This paper the results obtained in single beam gamma ray tomography are investigated according to direct problem formulation and the applied solution for the linear system of equations. By image reconstruction based algebraic computational algorithms are used. The sparse under and over-determined linear system of equations was analyzed. Build in functions of Matlab software were applied and optimal solutions were investigate. Experimentally a section of the tube is scanned from various positions and at different angles. The solution, to find the vector of coefficients μ, from the vector of measured p values through the W matrix inversion, constitutes an inverse problem. A industrial tomography process requires a numerical solution of the system of equations. The definition of inverse problem according to Hadmard's is considered and as well the requirement of a well posed problem to find stable solutions. The formulation of the basis function and the computational algorithm to structure the weight matrix W were analyzed. For W full rank matrix the obtained solution is unique as expected. Total Least Squares was implemented which theory and computation algorithm gives adequate treatment for the problems due to non-unique solutions of the system of equations. Stability of the solution was investigating by means of a regularization technique and the comparison shows that it improves the results. An optimal solution as a function of the image quality, computation time and minimum residuals were quantified. The corresponding reconstructed images are shown in 3D graphics in order to compare with the solution. (author)
Making use of a partial order in solving inverse problems: II
International Nuclear Information System (INIS)
Korolev, Yury
2014-01-01
Mathematical formulations of applied inverse problems often involve operator equations in normed functional spaces. In many cases, these spaces can, in addition, be endowed with a partial order relation, which turns them into Banach lattices. The fact that two tools, such as a partial order relation and a monotone (with respect to this partial order) norm, are available to the researchers, gives them a clear advantage of having more freedom in the problem formulations. For instance, errors in the approximate data are sometimes easier to describe in terms of pointwise bounds. Inverse problems in partially ordered normed spaces (Banach lattices) have been studied before in the case when a compact set containing the unknown exact solution is available a priori. It turned out that under this assumption it is possible, even in the ill-posed case, to compute ‘pointwise’ bounds for the unknown exact solution (or rather, bounds by means of the appropriate partial order), thus providing an error estimate by means of the partial order. Also, a useful property of this approach was that one was able to quantify the uncertainty in the operator by means of linear inequalities that were included in the corresponding optimization problems as (linear) constraints and made the computations easier. However, the compactness assumption might sometimes be too demanding in practice. This paper aims at revealing the possibilities and advantages of using partial order in solving inverse problems in the case when no compact set of prior restrictions is available, concentrating on linear inverse (possibly ill-posed) problems. (paper)
The dose-volume constraint satisfaction problem for inverse treatment planning with field segments
International Nuclear Information System (INIS)
Michalski, Darek; Xiao, Ying; Censor, Yair; Galvin, James M
2004-01-01
The prescribed goals of radiation treatment planning are often expressed in terms of dose-volume constraints. We present a novel formulation of a dose-volume constraint satisfaction search for the discretized radiation therapy model. This approach does not rely on any explicit cost function. Inverse treatment planning uses the aperture-based approach with predefined, according to geometric rules, segmental fields. The solver utilizes the simultaneous version of the cyclic subgradient projection algorithm. This is a deterministic iterative method designed for solving the convex feasibility problems. A prescription is expressed with the set of inequalities imposed on the dose at the voxel resolution. Additional constraint functions control the compliance with selected points of the expected cumulative dose-volume histograms. The performance of this method is tested on prostate and head-and-neck cases. The relationships with other models and algorithms of similar conceptual origin are discussed. The demonstrated advantages of the method are: the equivalence of the algorithmic and prescription parameters, the intuitive setup of free parameters, and the improved speed of the method as compared to similar iterative as well as other techniques. The technique reported here will deliver approximate solutions for inconsistent prescriptions
Regularization and Bayesian methods for inverse problems in signal and image processing
Giovannelli , Jean-François
2015-01-01
The focus of this book is on "ill-posed inverse problems". These problems cannot be solved only on the basis of observed data. The building of solutions involves the recognition of other pieces of a priori information. These solutions are then specific to the pieces of information taken into account. Clarifying and taking these pieces of information into account is necessary for grasping the domain of validity and the field of application for the solutions built. For too long, the interest in these problems has remained very limited in the signal-image community. However, the community has si
On solvability for inverse problem of compact support source determination for the heat equation
Soloviev, V. V.; Tkachenko, D. S.
2017-12-01
An inverse problem of reconstructing the source for the heat equations on a plane is considered. As an “overdetermination” (additional information about the solution of the direct problem) a trace of it’s solution is given on a line segment inside of a bounded region. We give sufficient conditions for uniqueness of the solution of the task at hand, prove Fredholm alternative and sufficient conditions for existence and uniqueness of solution of the task. The studying of the problem is performed in the spaces of functions satisfying Hölder condition.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Three-dimensional electromagnetic modeling and inversion on massively parallel computers
Energy Technology Data Exchange (ETDEWEB)
Newman, G.A.; Alumbaugh, D.L. [Sandia National Labs., Albuquerque, NM (United States). Geophysics Dept.
1996-03-01
This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively parallel computer architecture which allows for more realistic solutions that can be achieved with serial machines. While the inversion code has been demonstrated on field data collected at the Richmond field site, techniques for appraising the quality of the reconstructions still need to be developed. Here it is suggested that rather than employing direct matrix inversion to construct the model covariance matrix which would be impossible because of the size of the problem, one can linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to construct it. Using these appraisal and construction tools, it is now necessary to demonstrate 3-D inversion for a variety of EM data sets that span the frequency range from induction sounding to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth`s electrical properties can provide researchers opportunities to infer the flow paths, flow rates and perhaps the chemistry of fluids in geologic mediums. It also offers a means to study the frequency dependence behavior of the properties in situ. This is of significant relevance to the Department of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and gas exploration.
DEFF Research Database (Denmark)
Yoon, Daeung; Zhdanov, Michael; Cai, Hongzhu
2015-01-01
One of the major problems in the modeling and inversion of marine controlled source electromagnetic (MCSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward modeling algorithms...... should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite difference (FD......) and integral equation (IE) methods. In the framework of this approach, we solve the Maxwell's equations for anomalous electric fields using the FD approximation on a staggered grid. Once the unknown electric fields in the computation domain of the FD method are computed, the electric and magnetic fields...
Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling
Deng, F.; Chen, J.; Peters, W.; Krol, M.
2008-12-01
Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).
Directory of Open Access Journals (Sweden)
Ali Mohammad-Djafari
2015-06-01
Full Text Available The main content of this review article is first to review the main inference tools using Bayes rule, the maximum entropy principle (MEP, information theory, relative entropy and the Kullback–Leibler (KL divergence, Fisher information and its corresponding geometries. For each of these tools, the precise context of their use is described. The second part of the paper is focused on the ways these tools have been used in data, signal and image processing and in the inverse problems, which arise in different physical sciences and engineering applications. A few examples of the applications are described: entropy in independent components analysis (ICA and in blind source separation, Fisher information in data model selection, different maximum entropy-based methods in time series spectral estimation and in linear inverse problems and, finally, the Bayesian inference for general inverse problems. Some original materials concerning the approximate Bayesian computation (ABC and, in particular, the variational Bayesian approximation (VBA methods are also presented. VBA is used for proposing an alternative Bayesian computational tool to the classical Markov chain Monte Carlo (MCMC methods. We will also see that VBA englobes joint maximum a posteriori (MAP, as well as the different expectation-maximization (EM algorithms as particular cases.
Seismic Model-Based Inversion Using Matlab
Leite, Emilson Pereira
2010-01-01
A simple methodology for mapping acoustic impedance and effective porosity from 3D seismic amplitude data using MatlabÂ® was presented. This methodology can be used for a quick evaluation of reservoir properties, especially when powerful commercial programs are not available. An example with real data was also presented, showing that consistent 3D acoustic impedance models can be obtained if well-logs and 3D seismic data are available. A further improvement would be to obtain the low-frequenc...
Inverse scattering problem for a magnetic field in the Glauber approximation
International Nuclear Information System (INIS)
Bogdanov, I.V.
1985-01-01
New results in the general theory of scattering are obtained. An inverse problem at fixed energy for an axisymmetric magnetic field is formulated and solved within the frames of the quantum-mechanical Glauber approximation. The solution is found in quadratures in the form of an explicit inversion algorithm reproducing a vector potential by the angular dependence of the scattering amplitude. Extreme transitions from the eikonal inversion method to the classical and Born ones are investigated. Integral and differential equations are derived for the eikonal amplitude that ensure the real value of the vector potential and its energy independence. Magnetoelectric analogies the existence of equivalent axisymmetric electric and magnetic fields scattering charged particles in the same manner both in the Glauber and Born approximation are established. The mentioned analogies permit to simulate ion-potential scattering by potential one that is of interest from the practical viewpoint. Three-dimensional (excentral) eikonal inverse problems for the electric and magnetic fields are discussed. The results of the paper can be used in electron optics
Li, Zhiyuan; Yamamoto, Masahiro
2014-01-01
This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
A multiple-scale Pascal polynomial for 2D Stokes and inverse Cauchy-Stokes problems
Liu, Chein-Shan; Young, D. L.
2016-05-01
The polynomial expansion method is a useful tool for solving both the direct and inverse Stokes problems, which together with the pointwise collocation technique is easy to derive the algebraic equations for satisfying the Stokes differential equations and the specified boundary conditions. In this paper we propose two novel numerical algorithms, based on a third-first order system and a third-third order system, to solve the direct and the inverse Cauchy problems in Stokes flows by developing a multiple-scale Pascal polynomial method, of which the scales are determined a priori by the collocation points. To assess the performance through numerical experiments, we find that the multiple-scale Pascal polynomial expansion method (MSPEM) is accurate and stable against large noise.
Inverse problems for ODEs using contraction maps and suboptimality of the 'collage method'
Kunze, H. E.; Hicken, J. E.; Vrscay, E. R.
2004-06-01
Broad classes of inverse problems in differential and integral equations can be cast in the following framework: the optimal approximation of a target x of a suitable metric space X by the fixed point \\bar x of a contraction map T on X. The 'collage method' attempts to solve such inverse problems by finding an operator Tc that maps the target x as close as possible to itself. In the case of ODEs, the appropriate contraction maps are integral Picard operators. In practice, the target solutions possibly arise from an interpolation of experimental data points. In this paper, we investigate the suboptimality of the collage method. A simple inequality that provides upper bounds on the improvement over collage coding is presented and some examples are studied. We conclude that, at worst, the collage method provides an excellent starting point for further optimization, in contrast to more traditional searching methods that must first select a good starting point.
Kunze, H. E.; La Torre, D.; Vrscay, E. R.
2009-01-01
In this paper we are concerned with differential equations with random coefficients which will be considered as random fixed point equations of the form T([omega],x([omega]))=x([omega]), [omega][set membership, variant][Omega]. Here T:[Omega]×X-->X is a random integral operator, is a probability space and X is a complete metric space. We consider the following inverse problem for such equations: Given a set of realizations of the fixed point of T (possibly the interpolations of different observational data sets), determine the operator T or the mean value of its random components, as appropriate. We solve the inverse problem for this class of equations by using the collage theorem for contraction mappings.
Inverse Tasks In The Tsunami Problem: Nonlinear Regression With Inaccurate Input Data
Lavrentiev, M.; Shchemel, A.; Simonov, K.
problem can be formally propounded this way: A distribution of various combinations of observed values should be estimated. Totality of the combinations is represented by the set of variables. The results of observations determine excerption of outputs. In the scope of the propounded problem continuous (along with its derivations) homomorphic reflec- tion of the space of hidden parameters to the space of observed parameters should be found. It allows to reconstruct lack information of the inputs when the number of the 1 inputs is not less than the number of hidden parameters and to estimate the distribution if information for synonymous prediction of unknown inputs is not sufficient. The following approach to build approximation based on the excerption is suggested: the excerption is supplemented with the hidden parameters, which are distributed uni- formly in a multidimensional limited space. Then one should find correspondence of model and observed outputs. Therefore the correspondence will provide that the best approximation is the most accurate. In the odd iterations dependence between hid- den inputs and outputs is being optimized (like the conventional problem is solved). Correspondence between tasks is changing in the case when the error is reducing and distribution of inputs remains intact. Therefore, a special transform is applied to reduce error at every iteration. If the mea- sure of distribution is constant, then the condition of transformations is simplified. Such transforms are named "canonical" or "volume invariant transforms" and, there- fore, are well known. This approach is suggested for solving main inverse task of the tsunami problem. Basing on registered tsunami in seaside and shelf to estimate parameters of tsunami's hearth. 2
Rostami, Mahboubeh Rahmati; Wu, Jincheng; Tzanakakis, Emmanuel S.
2015-01-01
The cultivation of stem cells as aggregates in scalable bioreactor cultures is an appealing modality for the large-scale manufacturing of stem cell products. Aggregation phenomena are central to such bioprocesses affecting the viability, proliferation and differentiation trajectory of stem cells but a quantitative framework is currently lacking. A population balance equation (PBE) model was used to describe the temporal evolution of the embryonic stem cell (ESC) cluster size distribution by considering collision-induced aggregation and cell proliferation in a stirred-suspension vessel. For ESC cultures at different agitation rates, the aggregation kernel representing the aggregation dynamics was successfully recovered as a solution of the inverse problem. The rate of change of the average aggregate size was greater at the intermediate rate tested suggesting a trade-off between increased collisions and agitation-induced shear. Results from forward simulation with obtained aggregation kernels were in agreement with transient aggregate size data from experiments. We conclude that the framework presented here can complement mechanistic studies offering insights into relevant stem cell clustering processes. More importantly from a process development standpoint, this strategy can be employed in the design and control of bioreactors for the generation of stem cell derivatives for drug screening, tissue engineering and regenerative medicine. PMID:26036699
An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems
International Nuclear Information System (INIS)
Fazli, Roohallah; Nakhkash, Mansor
2012-01-01
This paper presents an analytical method to estimate the location and number of actual small targets in 2D inverse scattering problems. This method is motivated from the exact maximum likelihood estimation of signal parameters in white Gaussian noise for the linear data model. In the first stage, the method uses the MUSIC algorithm to acquire all possible target locations and in the next stage, it employs an analytical formula that works as a spatial filter to determine which target locations are associated to the actual ones. The ability of the method is examined for both the Born and multiple scattering cases and for the cases of well-resolved and non-resolved targets. Many numerical simulations using both the coincident and non-coincident arrays demonstrate that the proposed method can detect the number of actual targets even in the case of very noisy data and when the targets are closely located. Using the experimental microwave data sets, we further show that this method is successful in specifying the number of small inclusions. (paper)
Inverse problems and sharp eigenvalue asymptotics for Euler–Bernoulli operators
International Nuclear Information System (INIS)
Badanin, Andrey; Korotyaev, Evgeny
2015-01-01
We consider Euler–Bernoulli operators with real coefficients on the unit interval. We prove the following results: (i) The Ambarzumyan-type theorem about the inverse problems for the Euler–Bernoulli operator. (ii) The sharp asymptotics of eigenvalues for the Euler–Bernoulli operator when its coefficients converge to the constant function. (iii) The sharp eigenvalue asymptotics for both the Euler–Bernoulli operator and fourth-order operators (with complex coefficients) on the unit interval at high energy. (paper)
Influence of seeing effects on cloud model inversions
Czech Academy of Sciences Publication Activity Database
Tziotziou, K.; Heinzel, Petr; Tsiropoula, G.
2007-01-01
Roč. 472, č. 1 (2007), s. 287-292 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : cloud model * inversions * seeing effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007
inverse gaussian model for small area estimation via gibbs sampling
African Journals Online (AJOL)
ADMIN
(1994) extended the work by Fries and. Bhattacharyya (1983) to include the maximum likelihood analysis of the two-factor inverse. Gaussian model for the unbalanced and interaction case for the estimation of small area parameters in finite populations. The object of this article is to develop a Bayesian approach for small ...
Inverse Gaussian model for small area estimation via Gibbs sampling
African Journals Online (AJOL)
We present a Bayesian method for estimating small area parameters under an inverse Gaussian model. The method is extended to estimate small area parameters for finite populations. The Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the method by application to ...
Constraint on Parameters of Inverse Compton Scattering Model for ...
Indian Academy of Sciences (India)
J. Astrophys. Astr. (2011) 32, 299–300 c Indian Academy of Sciences. Constraint on Parameters of Inverse Compton Scattering Model for PSR B2319+60. H. G. Wang. ∗. & M. Lv. Center for Astrophysics,Guangzhou University, Guangzhou, China. ∗ e-mail: cosmic008@yahoo.com.cn. Abstract. Using the multifrequency radio ...
Greedy solution of ill-posed problems: error bounds and exact inversion
International Nuclear Information System (INIS)
Denis, L; Lorenz, D A; Trede, D
2009-01-01
The orthogonal matching pursuit (OMP) is a greedy algorithm to solve sparse approximation problems. Sufficient conditions for exact recovery are known with and without noise. In this paper we investigate the applicability of the OMP for the solution of ill-posed inverse problems in general, and in particular for two deconvolution examples from mass spectrometry and digital holography, respectively. In sparse approximation problems one often has to deal with the problem of redundancy of a dictionary, i.e. the atoms are not linearly independent. However, one expects them to be approximatively orthogonal and this is quantified by the so-called incoherence. This idea cannot be transferred to ill-posed inverse problems since here the atoms are typically far from orthogonal. The ill-posedness of the operator probably causes the correlation of two distinct atoms to become huge, i.e. that two atoms look much alike. Therefore, one needs conditions which take the structure of the problem into account and work without the concept of coherence. In this paper we develop results for the exact recovery of the support of noisy signals. In the two examples, mass spectrometry and digital holography, we show that our results lead to practically relevant estimates such that one may check a priori if the experimental setup guarantees exact deconvolution with OMP. Especially in the example from digital holography, our analysis may be regarded as a first step to calculate the resolution power of droplet holography
Filippi, Anthony Matthew
For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables
Bergamaschi, Peter; Karstens, Ute; Manning, Alistair J.; Saunois, Marielle; Tsuruta, Aki; Berchet, Antoine; Vermeulen, Alexander T.; Arnold, Tim; Janssens-Maenhout, Greet; Hammer, Samuel; Levin, Ingeborg; Schmidt, Martina; Ramonet, Michel; Lopez, Morgan; Lavric, Jost; Aalto, Tuula; Chen, Huilin; Feist, Dietrich G.; Gerbig, Christoph; Haszpra, László; Hermansen, Ove; Manca, Giovanni; Moncrieff, John; Meinhardt, Frank; Necki, Jaroslaw; Galkowski, Michal; O'Doherty, Simon; Paramonova, Nina; Scheeren, Hubertus A.; Steinbacher, Martin; Dlugokencky, Ed
2018-01-01
We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) Tg CH4 yr-1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr-1 (2006) to 18.8 Tg CH4 yr-1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) Tg CH4 yr-1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon
International Nuclear Information System (INIS)
Stankova, K.
2009-01-01
is NP-hard, we use a neural-networks based solution approach to solve the problem. We compare outcomes of the games with traffic-flow invariant and traffic-flow dependent toll and conclude that the traffic-flow dependent toll can improve the system performance remarkably. Interesting phenomena in this problem and its properties are discussed, too. The electricity markets liberalization problem is defined in this thesis as a non-cooperative game among electricity producers in eight European countries, in which the electricity demand is exogenous. The producers choose among available means of electricity productions and quantities to produce in order to maximize their profit. Different game scenarios are considered: Perfect competition, a game with one leading producer per each country, and a game with two leading producers, playing Nash among themselves, for each country. The transmission of electricity between neighboring countries is allowed and emission constraints are considered. A numerical model, using real data, is developed in order to solve the problem. Our results suggest that liberalization of electricity markets leads to electricity price decrease. Finally, we deal with so-called principal-agent models from the theory of incentives as a specific group of inverse Stackelberg problems. Here the principal as a leader contracts an agent as a follower in order to produce certain goods. The agent can be of different efficiency, often unknown to the principal. The problem of finding the optimal strategy for the principal is dealt with. Interesting phenomena in this game are presented and an optimal strategy for the leader is derived.
Numerical detection and reduction of non-uniqueness in nonlinear inverse problems
International Nuclear Information System (INIS)
Winterfors, Emanuel; Curtis, Andrew
2008-01-01
We present a novel approach to analyze uniqueness in nonlinear inverse problems, using a novel bifocal Newtonian algorithm for identifying pairs of non-unique solutions for any potential data set, prior to any data collection. For the case when the shape of the forward function depends on control parameters that can be tuned to reduce non-uniqueness, we present a second algorithm which minimizes the sum of squared distances between each pair of non-unique solutions. Both algorithms are also relevant in the presence of uncertainty, which we demonstrate by applying them to a simple nonlinear location problem
Directory of Open Access Journals (Sweden)
S.N. Nnamchi
2010-01-01
Full Text Available Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes.
Metropolis-Hastings Algorithms in Function Space for Bayesian Inverse Problems
Ernst, Oliver
2015-01-07
We consider Markov Chain Monte Carlo methods adapted to a Hilbert space setting. Such algorithms occur in Bayesian inverse problems where the solution is a probability measure on a function space according to which one would like to integrate or sample. We focus on Metropolis-Hastings algorithms and, in particular, we introduce and analyze a generalization of the existing pCN-proposal. This new proposal allows to exploit the geometry or anisotropy of the target measure which in turn might improve the statistical efficiency of the corresponding MCMC method. Numerical experiments for a real-world problem confirm the improvement.
Energy Technology Data Exchange (ETDEWEB)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
Modelling and genetic algorithm based optimisation of inverse supply chain
Bányai, T.
2009-04-01
(Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a
Two radiative inverse seesaw models, dark matter, and baryogenesis
International Nuclear Information System (INIS)
Baldes, Iason; Bell, Nicole F.; Petraki, Kalliopi; Volkas, Raymond R.
2013-01-01
The inverse seesaw mechanism allows the neutrino masses to be generated by new physics at an experimentally accessible scale, even with O(1) Yukawa couplings. In the inverse seesaw scenario, the smallness of neutrino masses is linked to the smallness of a lepton number violating parameter. This parameter may arise radiatively. In this paper, we study the cosmological implications of two contrasting radiative inverse seesaw models, one due to Ma and the other to Law and McDonald. The former features spontaneous, the latter explicit lepton number violation. First, we examine the effect of the lepton-number violating interactions introduced in these models on the baryon asymmetry of the universe. We investigate under what conditions a pre-existing baryon asymmetry does not get washed out. While both models allow a baryon asymmetry to survive only once the temperature has dropped below the mass of their heaviest fields, the Ma model can create the baryon asymmetry through resonant leptogenesis. Then we investigate the viability of the dark matter candidates arising within these models, and explore the prospects for direct detection. We find that the Law/McDonald model allows a simple dark matter scenario similar to the Higgs portal, while in the Ma model the simplest cold dark matter scenario would tend to overclose the universe
Non-cavitating propeller noise modeling and inversion
Kim, Dongho; Lee, Keunhwa; Seong, Woojae
2014-12-01
Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.
Approximation in generalized Hardy classes and resolution of inverse problems for tokamaks
International Nuclear Information System (INIS)
Fisher, Y.
2011-11-01
This thesis concerns both the theoretical and constructive resolution of inverse problems for isotropic diffusion equation in planar domains, simply and doubly connected. From partial Cauchy boundary data (potential, flux), we look for those quantities on the remaining part of the boundary, where no information is available, as well as inside the domain. The proposed approach proceeds by considering solutions to the diffusion equation as real parts of complex valued solutions to some conjugated Beltrami equation. These particular generalized analytic functions allow to introduce Hardy classes, where the inverse problem is stated as a best constrained approximation issue (bounded extrema problem), and thereby is regularized. Hence, existence and smoothness properties, together with density results of traces on the boundary, ensure well-posedness. An application is studied, to a free boundary problem for a magnetically confined plasma in the tokamak Tore Supra (CEA Cadarache France). The resolution of the approximation problem on a suitable basis of functions (toroidal harmonics) leads to a qualification criterion for the estimated plasma boundary. A descent algorithm makes it decrease, and refines the estimations. The method does not require any integration of the solution in the overall domain. It furnishes very accurate numerical results, and could be extended to other devices, like JET or ITER. (author)
Dorn, O.; Lesselier, D.
2010-07-01
is represented, overall via 16 contributions with 45 authors in total. This shows, in our opinion, that electromagnetic imaging and inversion remain amongst the most challenging and active research areas in applied inverse problems today. Below, we give a brief overview of the contributions included in this issue, ordered alphabetically by the surname of the leading author. 1. The complexity of handling potential randomness of the source in an inverse scattering problem is not minor, and the literature is far from being replete in this configuration. The contribution by G Bao, S N Chow, P Li and H Zhou, `Numerical solution of an inverse medium scattering problem with a stochastic source', exemplifies how to hybridize Wiener chaos expansion with a recursive linearization method in order to solve the stochastic problem as a set of decoupled deterministic ones. 2. In cases where the forward problem is expensive to evaluate, database methods might become a reliable method of choice, while enabling one to deliver more information on the inversion itself. The contribution by S Bilicz, M Lambert and Sz Gyimóthy, `Kriging-based generation of optimal databases as forward and inverse surrogate models', describes such a technique which uses kriging for constructing an efficient database with the goal of achieving an equidistant distribution of points in the measurement space. 3. Anisotropy remains a considerable challenge in electromagnetic imaging, which is tackled in the contribution by F Cakoni, D Colton, P Monk and J Sun, `The inverse electromagnetic scattering problem for anisotropic media', via the fact that transmission eigenvalues can be retrieved from a far-field scattering pattern, yielding, in particular, lower and upper bounds of the index of refraction of the unknown (dielectric anisotropic) scatterer. 4. So-called subspace optimization methods (SOM) have attracted a lot of interest recently in many fields. The contribution by X Chen, `Subspace-based optimization
Energy Technology Data Exchange (ETDEWEB)
Dobranszky, G.
2005-12-15
Stratigraphic modeling aims at rebuilding the history of the sedimentary basins by simulating the processes of erosion, transport and deposit of sediments using physical models. The objective is to determine the location of the bed-rocks likely to contain the organic matter, the location of the porous rocks that could trap the hydrocarbons during their migration and the location of the impermeable rocks likely to seal the reservoir. The model considered within this thesis is based on a multi-lithological diffusive transport model and applies to large scales of time and space. Due to the complexity of the phenomena and scales considered, none of the model parameters is directly measurable. Therefore it is essential to inverse them. The standard approach, which consists in inverting all the parameters by minimizing a cost function using a gradient method, proved very sensitive to the choice of the parameterization, to the weights given to the various terms of the cost function (hearing on data of very diverse nature) and to the numerical noise. These observations led us to give up this method and to carry out the in-version step by step by decoupling the parameters. This decoupling is not obtained by fixing the parameters but by making several assumptions on the model resulting in a range of reduced but relevant models. In this thesis, we show how these models enable us to inverse all the parameters in a robust and interactive way. (author)
pyGIMLi: An open-source library for modelling and inversion in geophysics
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time
International Nuclear Information System (INIS)
Mareschal, M.
1975-01-01
The major thrust of this dissertation was to test an original method for resolving the current system associated with polar magnetic substorms from ground based magnetic observations. This method is based on a general technique of inversion reviewed by Wiggins in 1972 and appears to give quite satisfactory results, at least, when the current system considered is simulated by a three-dimensional current system consisting of field-aligned currents flowing down to the ionosphere, westward in the ionosphere, and back up again to the magnetosphere. Conclusions suggest that, for the purpose of inverting polar magnetic substorm data with the use of the three-dimensional model of current, the Earth's induction effects can be simulated by introducing a perfectly conducting layer inside the Earth. However, the depth of this equivalent conductor should be allowed to vary with the source frequency as the substorm develops with time. To determine how satisfactorily each model parameter could be expected to be resolved during the process of inversion, a study of the magnetic disturbance variations under specific parameter variations was then performed. The results of that study were encouraging enough to foster the inversion of an actual polar magnetic substorm data, the event of June 15, 1970. Despite the success of the enterprise, it seems reasonable to suggest that the technique of inversion should be further tested before being systematically used to resolve polar magnetic substorms
Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model
Mondal, Anirban
2014-07-03
We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.
Directory of Open Access Journals (Sweden)
Леонид Михайлович Замиховский
2015-04-01
Full Text Available The necessity of technical state control of regenerators during operation of gas pumping unit was proved in the article. Іt was proposed to develop a new method based on the use of methods of mathematical modeling of heat distribution on the surface of the regenerator and hardware methods to determine its temperature. It is considered the regularization algorithm of incorrect inverse problem of heat conduction in the material of regenerator design using values of temperature fields, which were defined experimentally
Why does inverse modeling of drainage inventories work?
White, Nicky; Roberts, Gareth
2016-04-01
We describe and apply a linear inverse model which calculates spatial and temporal patterns of uplift rate by minimizing the misfit between inventories of observed and predicted longitudinal river profiles. This approach builds upon a more general, non-linear, optimization model, which suggests that shapes of river profiles are dominantly controlled by upstream advection of kinematic waves of incision produced by spatial and temporal changes in regional uplift rate. We have tested both algorithms by inverting thousands of river profiles from Africa, Eurasia, the Americas, and Australia. For each continent, the drainage network was constructed from a digital elevation model and the fidelity of river profiles extracted from this network was carefully checked using satellite imagery. Spatial and temporal patterns of both uplift rate and cumulative uplift were calibrated using independent geologic and geophysical observations. Inverse modeling of these substantial inventories of river profiles suggests that drainage networks contain coherent signals that record the regional growth of elevation. In the second part of this presentation, we use spectral analysis of river profiles to suggest why drainage networks behave in a coherent, albeit non-linear, fashion. Our analysis implies that large-scale topographic signals injected into landscapes generate spectral slopes that are usually red (i.e. Brownian). At wavelengths shorter than tens of km, spectral slopes whiten which suggests that coherent topographic signals cease to exist at these shorter length scales. Our results suggest that inverse modeling of drainage networks can reveal useful information about landscape growth through space and time.
Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.
2018-01-01
To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.
All-at-once versus reduced iterative methods for time dependent inverse problems
Kaltenbacher, B.
2017-06-01
In this paper we investigate all-at-once versus reduced regularization of dynamic inverse problems on finite time intervals (0, T). In doing so, we concentrate on iterative methods and nonlinear problems, since they have already been shown to exhibit considerable differences in their reduced and all-at-once versions, whereas Tikhonov regularization is basically the same in both settings. More precisely, we consider Landweber iteration, the iteratively regularized Gauss-Newton method, and the Landweber-Kaczmarz method, the latter relying on cyclic iteration over a subdivision of the problem into subsequent subintervals of (0, T). Part of the paper is devoted to providing an appropriate function space setting as well as establishing the required differentiability results needed for well-definedness and convergence of the methods under consideration. Based on this, we formulate and compare the above mentioned iterative methods in their all-at-once and their reduced version. Finally, we provide some convergence results in the framework of Hilbert space regularization theory and illustrate the convergence conditions by an example of an inverse source problem for a nonlinear diffusion equation.
Tian, X.; Zhang, Y.
2018-03-01
Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.
Anatomy of Higgs mass in supersymmetric inverse seesaw models
Energy Technology Data Exchange (ETDEWEB)
Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-09-07
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Understanding the inverse magnetocaloric effect through a simple theoretical model
Energy Technology Data Exchange (ETDEWEB)
Ranke, P.J. von, E-mail: von.ranke@uol.com.b [Instituto de Fisica Armando Dias Tavares-Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro 20550-013 (Brazil); Alho, B.P.; Nobrega, E.P.; Oliveira, N.A. de [Instituto de Fisica Armando Dias Tavares-Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Rio de Janeiro 20550-013 (Brazil)
2009-10-15
We investigated the inverse magnetocaloric effect using a theoretical magnetic model formed by two coupled magnetic lattices to describe a ferrimagnetic system. The influence of the compensation temperature, and the ferrimagnetic-paramagnetic phase transition on the magnetocaloric effect was analyzed. Also, a relation between the area under the magnetocaloric curve and the net magnetic moment of a ferrimagnetic system was established in this work.
Inverse Modeling of Emissions and their Time Profiles
Czech Academy of Sciences Publication Activity Database
Resler, Jaroslav; Eben, Kryštof; Juruš, Pavel; Liczki, Jitka
2010-01-01
Roč. 1, č. 4 (2010), s. 288-295 ISSN 1309-1042 R&D Projects: GA MŽP SP/1A4/107/07 Grant - others:COST(XE) ES0602 Institutional research plan: CEZ:AV0Z10300504 Keywords : 4DVar * inverse modeling * diurnal time profile of emission * CMAQ adjoint * satellite observations Subject RIV: DG - Athmosphere Sciences, Meteorology
Local sensitivity analysis for inverse problems solved by singular value decomposition
Hill, M.C.; Nolan, B.T.
2010-01-01
Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by
An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems
International Nuclear Information System (INIS)
Zhang Jianzhong; Zhang Liwei
2010-01-01
We consider an inverse quadratic programming (QP) problem in which the parameters in the objective function of a given QP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with a positive semidefinite cone constraint and its dual is a linearly constrained semismoothly differentiable (SC 1 ) convex programming problem with fewer variables than the original one. We demonstrate the global convergence of the augmented Lagrangian method for the dual problem and prove that the convergence rate of primal iterates, generated by the augmented Lagrange method, is proportional to 1/r, and the rate of multiplier iterates is proportional to 1/√r, where r is the penalty parameter in the augmented Lagrangian. As the objective function of the dual problem is a SC 1 function involving the projection operator onto the cone of symmetrically semi-definite matrices, the analysis requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and properties of the projection operator in the symmetric-matrix space. Furthermore, the semismooth Newton method with Armijo line search is applied to solve the subproblems in the augmented Lagrange approach, which is proven to have global convergence and local quadratic rate. Finally numerical results, implemented by the augmented Lagrangian method, are reported.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
Energy Technology Data Exchange (ETDEWEB)
Thimmisetty, Charanraj A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Zhao, Wenju [Florida State Univ., Tallahassee, FL (United States). Dept. of Scientific Computing; Chen, Xiao [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Tong, Charles H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.
Aydin, Umit; Dogrusoz, Yesim Serinagaoglu
2011-09-01
In this article, we aimed to reduce the effects of geometric errors and measurement noise on the inverse problem of Electrocardiography (ECG) solutions. We used the Kalman filter to solve the inverse problem in terms of epicardial potential distributions. The geometric errors were introduced into the problem via wrong determination of the size and location of the heart in simulations. An error model, which is called the enhanced error model (EEM), was modified to be used in inverse problem of ECG to compensate for the geometric errors. In this model, the geometric errors are modeled as additive Gaussian noise and their noise variance is added to the measurement noise variance. The Kalman filter method includes a process noise component, whose variance should also be estimated along with the measurement noise. To estimate these two noise variances, two different algorithms were used: (1) an algorithm based on residuals, (2) expectation maximization algorithm. The results showed that it is important to use the correct noise variances to obtain accurate results. The geometric errors, if ignored in the inverse solution procedure, yielded incorrect epicardial potential distributions. However, even with a noise model as simple as the EEM, the solutions could be significantly improved.
On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs
Karve, Pranav M.
2014-12-28
© 2014, Springer International Publishing Switzerland. We discuss an optimization methodology for focusing wave energy to subterranean formations using strong motion actuators placed on the ground surface. The motivation stems from the desire to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem. The underlying wave propagation problems are abstracted in two spatial dimensions, and the semi-infinite extent of the physical domain is negotiated by a buffer of perfectly-matched-layers (PMLs) placed at the domain’s truncation boundary. We discuss two possible numerical implementations: Their utility for deciding the tempo-spatial characteristics of optimal wave sources is shown via numerical experiments. Overall, the simulations demonstrate the inverse source method’s ability to simultaneously optimize load locations and time signals leading to the maximization of energy delivery to a target formation.
Proximal methods for the resolution of inverse problems: application to positron emission tomography
International Nuclear Information System (INIS)
Pustelnik, N.
2010-12-01
The objective of this work is to propose reliable, efficient and fast methods for minimizing convex criteria, that are found in inverse problems for imagery. We focus on restoration/reconstruction problems when data is degraded with both a linear operator and noise, where the latter is not assumed to be necessarily additive.The reliability of the method is ensured through the use of proximal algorithms, the convergence of which is guaranteed when a convex criterion is considered. Efficiency is sought through the choice of criteria adapted to the noise characteristics, the linear operators and the image specificities. Of particular interest are regularization terms based on total variation and/or sparsity of signal frame coefficients. As a consequence of the use of frames, two approaches are investigated, depending on whether the analysis or the synthesis formulation is chosen. Fast processing requirements lead us to consider proximal algorithms with a parallel structure. Theoretical results are illustrated on several large size inverse problems arising in image restoration, stereoscopy, multi-spectral imagery and decomposition into texture and geometry components. We focus on a particular application, namely Positron Emission Tomography (PET), which is particularly difficult because of the presence of a projection operator combined with Poisson noise, leading to highly corrupted data. To optimize the quality of the reconstruction, we make use of the spatio-temporal characteristics of brain tissue activity. (author)
Ruggeri, Paolo; Irving, James; Holliger, Klaus
2015-08-01
We critically examine the performance of sequential geostatistical resampling (SGR) as a model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic crosshole georadar tomographic examples characterized by different numbers of data, levels of data error and degrees of model parameter spatial correlation, we investigate the efficiency of three different resampling strategies with regard to their ability to generate statistically independent realizations from the Bayesian posterior distribution. Quite importantly, our results show that, no matter what resampling strategy is employed, many of the examined test cases require an unreasonably high number of forward model runs to produce independent posterior samples, meaning that the SGR approach as currently implemented will not be computationally feasible for a wide range of problems. Although use of a novel gradual-deformation-based proposal method can help to alleviate these issues, it does not offer a full solution. Further, we find that the nature of the SGR is found to strongly influence MCMC performance; however no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance rate will allow for the most efficient implementation. We conclude that although the SGR methodology is highly attractive as it allows for the consideration of complex geostatistical priors as well as conditioning to hard and soft data, further developments are necessary in the context of novel or hybrid MCMC approaches for it to be considered generally suitable for near-surface geophysical inversions.
Inverse modeling of biomass smoke emissions using the TOMS AI
Zhang, S. Y.; Penner, J. E.; Torres, O.
2003-12-01
Results of inverse modeling of biomass smoke emissions using the TOMS AI and a three-dimensional transport model are presented. The IMPACT model with DAO meteorology data in 1997 are utilized to obtain aerosol spatial and temporal distributions. Two absorbing aerosol types are considered, including biomass smoke and mineral dust. First, a radiative transfer model is applied to generate the modeled AI. Then a Bayesian inverse technique is applied to optimize the difference between the modeled AI and the EP TOMS AI in the same period by regulating monthly a priori biomass smoke emissions, while the dust emissions are fixed. The modeled AI with a posteriori emissions generally is in better agreement with the EP TOMS AI. The annual global a posteriori source increases by about 13% for the year 1997 (6.31 Tg/yr BC) in the base scenario, with a larger adjustment of monthly regional emissions. Five sensitivity scenarios are carried out, including sensitivity to the a priori uncertainties, the height of the smoke layer, the cloud screening criteria of the daily EP TOMS AI, the adjustment of emissions in a lumped region outside of the major biomass burning regions, and the covariances between observations. Results suggest that a posteriori annual global emissions in the sensitivity scenarios are within 15% of that of the base scenario. However, the difference of annual a posteriori emissions between the sensitivity scenarios and the base scenario can be as large as 50% on regional scale. We are also applying the inverse model technique to the year 2000 to compare with biomass emissions deduced from an analysis based on burned areas.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
International Nuclear Information System (INIS)
Park, Taehoon; Park, Won-Kwang
2015-01-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation. (paper)
An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation
Asiri, Sharefa M.
2015-08-31
Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.
A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach
Directory of Open Access Journals (Sweden)
Davood Abbasi
2013-01-01
Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.
Energy Technology Data Exchange (ETDEWEB)
Lisin, E. A.; Lisina, I. I.; Vaulina, O. S.; Petrov, O. F. [Joint Institute for High Temperatures of the Russian Academy of Sciences, 13 bd.2 Izhorskaya St., Moscow 125412, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700 (Russian Federation)
2015-03-15
Solution of the inverse Langevin problem is presented for open dissipative systems with anisotropic interparticle interaction. Possibility of applying this solution for experimental determining the anisotropic interaction forces between dust particles in complex plasmas with ion flow is considered. For this purpose, we have tested the method on the results of numerical simulation of chain structures of particles with quasidipole-dipole interaction, similar to the one occurring due to effects of ion focusing in gas discharges. Influence of charge spatial inhomogeneity and fluctuations on the results of recovery is also discussed.
Directory of Open Access Journals (Sweden)
Tao Min
2014-01-01
Full Text Available This paper is intended to provide a numerical algorithm involving the combined use of the Levenberg-Marquardt algorithm and the Galerkin finite element method for estimating the diffusion coefficient in an inverse heat conduction problem (IHCP. In the present study, the functional form of the diffusion coefficient is unknown a priori. The unknown diffusion coefficient is approximated by the polynomial form and the present numerical algorithm is employed to find the solution. Numerical experiments are presented to show the efficiency of the proposed method.
Absolute calibration of the mass scale in the inverse problem of the physical theory of fireballs
Kalenichenko, V. V.
1992-08-01
A method of the absolute calibration of the mass scale is proposed for solving the inverse problem of the physical theory of fireballs. The method is based on data on the masses of fallen meteorites whose fireballs have been photographed in flight. The method can be applied to fireballs whose bodies have not experienced significant fragmentation during their flight in the atmosphere and have kept their shape relatively well. Data on the Lost City and Innisfree meteorites are used to calculate the calibration coefficients.
Inverse problem in the complex plane of the Coulomb coupling constant
International Nuclear Information System (INIS)
Poplavskij, I.V.
1984-01-01
The inverse problem of the scattering theory (IPST) in the complex α-phase for a class of complex analytical potentials is considered. Proof of completeness ratio is the main point in solving the IPST. The completeness ratio for the set of functions is establishe where phi is regular solution to the Schroedinger equation. An integral equation of the Gelfand-Levitan type is obtained, the solution of which permits to plot the complex potential of nuclear interaction according to the assigned discrete spectrum in the complex α-plane
International Nuclear Information System (INIS)
Chernichenko, Yu.D.
2005-01-01
Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known