WorldWideScience

Sample records for modeling intense beams

  1. Modeling nitrogen plasmas produced by intense electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.; Hinshelwood, D. D. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mosher, D.; Ottinger, P. F. [Independent contractors for NRL through Engility, Inc., Alexandria, Virginia 22314 (United States)

    2016-05-15

    A new gas–chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm{sup 2} and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D–circuit model using the rigid–beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are in good agreement with experimental measurements of the line–integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.

  2. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand

  3. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP( ) summary.html

  4. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue

    International Nuclear Information System (INIS)

    Wu, Yuqian; Zhang, Yixin; Wang, Qiu; Hu, Zhengda

    2016-01-01

    For Gaussian beams with three different partially coherent models, including Gaussian-Schell model (GSM), Laguerre-Gaussian Schell-model (LGSM) and Bessel-Gaussian Schell-model (BGSM) beams propagating through a biological turbulent tissue, the expression of the spatial coherence radius of a spherical wave propagating in a turbulent biological tissue, and the average intensity and beam spreading for GSM, LGSM and BGSM beams are derived based on the fractal model of power spectrum of refractive-index variations in biological tissue. Effects of partially coherent model and parameters of biological turbulence on such beams are studied in numerical simulations. Our results reveal that the spreading of GSM beams is smaller than LGSM and BGSM beams on the same conditions, and the beam with larger source coherence width has smaller beam spreading than that with smaller coherence width. The results are useful for any applications involved light beam propagation through tissues, especially the cases where the average intensity and spreading properties of the light should be taken into account to evaluate the system performance and investigations in the structures of biological tissue. - Highlights: • Spatial coherence radius of a spherical wave propagating in a turbulent biological tissue is developed. • Expressions of average intensity and beam spreading for GSM, LGSM and BGSM beams in a turbulent biological tissue are derived. • The contrast for the three partially coherent model beams is shown in numerical simulations. • The results are useful for any applications involved light beam propagation through tissues.

  5. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  6. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  7. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    Science.gov (United States)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  8. Intense electron and ion beams

    CERN Document Server

    Molokovsky, Sergey Ivanovich

    2005-01-01

    Intense Ion and Electron Beams treats intense charged-particle beams used in vacuum tubes, particle beam technology and experimental installations such as free electron lasers and accelerators. It addresses, among other things, the physics and basic theory of intense charged-particle beams; computation and design of charged-particle guns and focusing systems; multiple-beam charged-particle systems; and experimental methods for investigating intense particle beams. The coverage is carefully balanced between the physics of intense charged-particle beams and the design of optical systems for their formation and focusing. It can be recommended to all scientists studying or applying vacuum electronics and charged-particle beam technology, including students, engineers and researchers.

  9. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  10. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Science.gov (United States)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  11. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  12. Envelope model for passive magnetic focusing of an intense proton or ion beam propagating through thin foils

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2013-04-01

    Full Text Available Ion beams (including protons with low emittance and high space-charge intensity can be propagated with normal incidence through a sequence of thin metallic foils separated by vacuum gaps of order the characteristic transverse beam extent to transport/collimate the beam or to focus it to a small transverse spot. Energetic ions have sufficient range to pass through a significant number of thin foils with little energy loss or scattering. The foils reduce the (defocusing radial electric self-field of the beam while not altering the (focusing azimuthal magnetic self-field of the beam, thereby allowing passive self-beam focusing if the magnetic field is sufficiently strong relative to the residual electric field. Here we present an envelope model developed to predict the strength of this passive (beam generated focusing effect under a number of simplifying assumptions including relatively long pulse duration. The envelope model provides a simple criterion for the necessary foil spacing for net focusing and clearly illustrates system focusing properties for either beam collimation (such as injecting a laser-produced proton beam into an accelerator or for magnetic pinch focusing to a small transverse spot (for beam driven heating of materials. An illustrative example is worked for an idealization of a recently performed laser-produced proton-beam experiment to provide guidance on possible beam focusing and collimation systems. It is found that foils spaced on the order of the characteristic transverse beam size desired can be employed and that envelope divergence of the initial beam entering the foil lens must be suppressed to limit the total number of foils required to practical values for pinch focusing. Relatively modest proton-beam current at 10 MeV kinetic energy can clearly demonstrate strong magnetic pinch focusing achieving a transverse rms extent similar to the foil spacing (20–50  μm gaps in beam propagation distances of tens of mm

  13. Sheet beam model for intense space charge: Application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2011-05-01

    Full Text Available A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image-charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet-beam model is then applied to analyze several problems of fundamental interest. A sheet-beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- and three-dimensional thermal equilibrium models in terms of the equilibrium structure and Debye screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability relative to beams with weak space-charge.

  14. Empirical modeling of high-intensity electron beam interaction with materials

    Science.gov (United States)

    Koleva, E.; Tsonevska, Ts; Mladenov, G.

    2018-03-01

    The paper proposes an empirical modeling approach to the prediction followed by optimization of the exact shape of the cross-section of a welded seam, as obtained by electron beam welding. The approach takes into account the electron beam welding process parameters, namely, electron beam power, welding speed, and distances from the magnetic lens of the electron gun to the focus position of the beam and to the surface of the samples treated. The results are verified by comparison with experimental results for type 1H18NT stainless steel samples. The ranges considered of the beam power and the welding speed are 4.2 – 8.4 kW and 3.333 – 13.333 mm/s, respectively.

  15. Beam control and matching for the transport of intense beams

    International Nuclear Information System (INIS)

    Li, H.; Bernal, S.; Godlove, T.; Huo, Y.; Kishek, R.A.; Haber, I.; Quinn, B.; Walter, M.; Zou, Y.; Reiser, M.; O'Shea, P.G.

    2005-01-01

    The transport of intense beams for heavy-ion inertial fusion demands tight control of beam characteristics from the source to the target. The University of Maryland Electron Ring (UMER), which uses a low-energy (10 keV), high-current electron beam to model the transport physics of a future recirculator driver, employs real-time beam characterization and control in order to optimize beam quality throughout the strong focusing lattice. We describe the main components and operation of the diagnostics/control system in UMER. It employs phosphor screens, real-time image analysis, quadrupole scans and electronic skew correctors. The procedure is not only indispensable for optimum transport over a long distance, but also provides important insights into the beam physics involved. We discuss control/optimization issues related to beam steering, quadrupole rotation errors and rms envelope matching

  16. Intense nonneutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance

    International Nuclear Information System (INIS)

    Davidson, R.C.; Stoltz, P.; Chen, C.

    1997-08-01

    A macroscopic fluid model is developed to describe the nonlinear dynamics and collective processes in an intense high-current beam propagating in the z-direction through a periodic focusing solenoidal field B z (z + S) = B z (z), where S is the axial periodicity length. The analysis assumes that space-charge effects dominate the effects of thermal beam emittance, Kr b 2 much-gt ε th 2 , and is based on the macroscopic moment-Maxwell equations, truncated by neglecting the pressure tensor and higher-order moments. Assuming a thin beam with r b much-lt S, azimuthally symmetric beam equilibria with ∂/∂t = 0 = ∂/∂θ are investigated. To illustrate the considerable flexibility of the macroscopic formalism, assuming (nearly) uniform axial flow velocity V b over the beam cross section, beam equilibrium properties are calculated for two examples: (a) uniform radial density profile over the interval 0 ≤ r b (z), and (b) an infinitesimally thin annular beam centered at r = r b (z). The analysis generally allows for the azimuthal flow velocity V θb (r,z) to differ from the Larmor frequency, and the model is used to calculate the (leading-order) correction δV zb (r,z) to the axial flow velocity for the step-function density profile in case (a) above

  17. Transport of intense ion beams

    International Nuclear Information System (INIS)

    Lambertson, G.; Laslett, L.J.; Smith, L.

    1977-01-01

    The possibility of using intense bursts of heavy ions to initiate an inertially confined fusion reaction has stimulated interest in the transport of intense unneutralized heavy ion beams by quadrupole or solenoid systems. This problem was examined in some detail, using numerical integration of the coupled envelope equations for the quadrupole case. The general relations which emerge are used to develop examples of high energy transport systems and as a basis for discussing the limitations imposed by a transport system on achievable intensities for initial acceleration

  18. Absolute intensities of supersonic beams

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.; Habets, A.H.M.; Verster, N.F.

    1977-01-01

    In a molecular beam experiment the center-line intensity I(0) (particles s -1 sterad -1 ) and the flow rate dN/dt (particles s -1 ) of a beam source are important features. To compare the performance of different types of beam sources the peaking factor, kappa, is defined as the ratio kappa=π(I(0)/dN/dt). The factor π is added to normalize to kappa=1 for an effusive source. The ideal peaking factor for the supersonic flow from a nozzle follows from continuum theory. Numerical values of kappa are available. Experimental values of kappa for an argon expansion are presented in this paper, confirming these calculations. The actual center-line intensity of a supersonic beam source with a skimmer is reduced in comparison to this ideal intensity if the skimmer shields part of the virtual source from the detector. Experimental data on the virtual source radius are given enabling one to predict this shielding quantitatively. (Auth.)

  19. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  20. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  1. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  2. Beam intensity monitoring for the external proton beam at LAMPF

    International Nuclear Information System (INIS)

    Barrett, R.J.; Anderson, B.D.; Willard, H.B.; Anderson, A.N.; Jarmie, N.

    1975-07-01

    Three different intensity monitors were tested in the external proton beam at LAMPF, and together cover the entire range of beam currents available. A 800 kg Faraday cup was installed and used to measure the absolute intensity to better than 1 percent for beam currents up to several nanoamperes. A high gain ion chamber was used as part of the calibration procedure for the Faraday cup, and was found to be useful when monitoring very small beam intensities, being reliable down to the few picoampere level. A secondary emission monitor was also tested, calibrated, and found to be trustworthy only for beams of greater than 50 pA intensity. (auth)

  3. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  4. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  5. Beam-intensity limitations in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Recent demand for high-intensity beams of various particles has renewed interest in the investigation of beam current and beam quality limits in linear RF and induction accelerators and beam-transport channels. Previous theoretical work is reviewed, and new work on beam matching and stability is outlined. There is a real need for extending the theory to handle the time evolution of beam emittance; some present work toward this goal is described. The role of physical constraints in channel intensity limitation is emphasized. Work on optimizing channel performance, particularly at low particle velocities, has resulted in major technological advances. The opportunities for combining such channels into arrays are discussed. 50 references

  6. Modelling of diffusion in presurface silicon layer under the action of pulsed high-intensity ion beam

    International Nuclear Information System (INIS)

    Aktaev, N.E.; Remnev, G.E.

    2015-01-01

    The influence of the pulsed high-intensity ion beam on the silicon is studied by use the developed theoretical model. The input parameters of the model were the settings of the experimental setup of the TEMP-4. It is shown, that at the short-pulsed implantation regime of the TEMP-4 the silicon surface does not melt. However, the regime leads to the high temperature gradient which promotes the diffusion process from the surface into the depth the silicon simple. The diffused particles are the carbon atoms adsorbed on the silicon surface by the various cases. Thus, it is shown that the carbon atom diffused from the surface make the main contribution to the forming of the concentration profile. The concentration of the implanted carbon ions less more than tree orders compared with the concentration of the diffused carbon atoms. (authors)

  7. A symplectic coherent beam-beam model

    International Nuclear Information System (INIS)

    Furman, M.A.

    1989-05-01

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs

  8. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, K. [Fermilab; Backfish, M. [Fermilab; Moretti, A. [Fermilab; Tollestrup, A. V. [Fermilab; Watts, A. [Fermilab; Zwaska, R. M. [Fermilab; Abrams, R. [MUONS Inc., Batavia; Cummings, M. A.; Dudas, A. [MUONS Inc., Batavia; Johnson, R. P. [MUONS Inc., Batavia; Kazakevich, G. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Liu, Q. [Case Western Reserve U.

    2017-05-01

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  9. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  10. Frontiers of particle beams: Intensity limitations

    International Nuclear Information System (INIS)

    Dienes, M.; Month, M.; Turner, S.

    1992-01-01

    The present volume is the proceedings of the latest of these joint schools, held on Hilton Head Island, South Carolina, in 1990. This course dealt with intensity limitations and was centered on a series of lectures which could be divided into the following main categories: Self and environmental fields, Coherent instabilities and their simulation, Beam-beam interaction, Other multiparticle effects, Beam source limitations, Engineering limitations. (orig.)

  11. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  12. Small scale photon beams measurement and modeling for Intensity-modulated radiotherapy and radio-surgery

    International Nuclear Information System (INIS)

    Abdul Hadi, Talal

    2017-01-01

    The advanced techniques of radiotherapy use very small fields in case small tumors such as in the brain to irradiate precisely the lesion. This work concerns the measurement absorbed dose in small field of 0.5 x 0.5 cm"2 to 3 x 3 cm"2. However, the measurement dose in small fields is characterized by high gradient dose and a leak of lateral electronic equilibrium. That requires use a detector having an adapted sensitive volume and adapted spatial resolution. The detectors marketed are not perfectly compatible with these conditions. Actually, there is no international methodological consensus, nor a metrological reference for measurement dose in small fields. The IAEA (International Atomic Energy Agency) protocol 398 used to calculate the absorbed dose at 10 cm x 10 cm is not suitable for small fields. In absence a referenced detector, the dosimetric data measurement is verified using a Gafchromic films due to its excellent spatial resolution. We measure using conventional detectors (ionization chambers and/or Gafchromic films) the leakage dose at a point outside of irradiated field. The dosimetric data such as output factor (OF), percentage depth dose (PDD) and off-axis ratio (OAR) were also carried out by the diode. The correlation between the on-axis dose and off-axis dose is the subject of our study. This study proposes an experimental method to calculate the on-axis dose in small field for stereotactic radiotherapy. The method is based on the out of field leakage measurement. This model can be used to validate dose and output factor measurement. The experimental validation of the present method was performed for square and rectangular fields with sizes ranging from 0.5 cm x 0.5 cm to 10 cm x 10 cm. (author) [fr

  13. Intense positron beams and possible experiments

    International Nuclear Information System (INIS)

    Lynn, K.G.; Frieze, W.E.

    1983-07-01

    In this paper, we survey some of the ideas that have been proposed regarding the production of intense beams of low energy positrons. Various facilities to produce beams of this type are already under design or construction and other methods beyond those in use have been previously discussed. Moreover, a variety of potential experiments utilizing intense positron beams have been suggested. It is to be hoped that this paper can serve as a useful summary of some of the current ideas, as well as a stimulation for new ideas to be forthcoming at the workshop. 31 references

  14. Simulations of multistage intense ion beam acceleration

    International Nuclear Information System (INIS)

    Slutz, S.A.; Poukey, J.W.

    1992-01-01

    An analytic theory for magnetically insulated, multistage acceleration of high intensity ion beams, where the diamagnetic effect due to electron flow is important, has been presented by Slutz and Desjarlais. The theory predicts the existence of two limiting voltages called V 1 (W) and V 2 (W), which are both functions of the injection energy qW of ions entering the accelerating gap. As the voltage approaches V 1 (W), unlimited beam-current density can penetrate the gap without the formation of a virtual anode because the dynamic gap goes to zero. Unlimited beam current density can penetrate an accelerating gap above V 2 (W), although a virtual anode is formed. It was found that the behavior of these limiting voltages is strongly dependent on the electron density profile. The authors have investigated the behavior of these limiting voltages numerically using the 2-D particle-in-cell (PIC) code MAGIC. Results of these simulations are consistent with the superinsulated analytic results. This is not surprising, since the ignored coordinate eliminates instabilities known to be important from studies of single stage magnetically insulated ion diodes. To investigate the effect of these instabilities the authors have simulated the problem with the 3-D PIC code QUICKSILVER, which indicates behavior that is consistent with the saturated model

  15. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  16. Fan beam intensity modulated proton therapy

    Science.gov (United States)

    Hill, Patrick M.

    A fan beam proton therapy is developed which delivers intensity modulated proton therapy using distal edge tracking. The system may be retrofit onto existing proton therapy gantries without alterations to infrastructure in order to improve treatments through intensity modulation. A novel range and intensity modulation system is designed using acrylic leaves that are inserted or retracted from subsections of the fan beam. Leaf thicknesses are chosen in a base-2 system and motivated in a binary manner. Dose spots from individual beam channels range between 1 and 5 cm. Integrated collimators attempting to limit crosstalk among beam channels are investigated, but found to be inferior to uncollimated beam channel modulators. A treatment planning system performing data manipulation in MATLAB and dose calculation in MCNPX is developed. Beamlet dose is calculated on patient CT data and a fan beam source is manually defined to produce accurate results. An energy deposition tally follows the CT grid, allowing straightforward registration of dose and image data. Simulations of beam channels assume that a beam channel either delivers dose to a distal edge spot or is intensity modulated. A final calculation is performed separately to determine the deliverable dose accounting for all sources of scatter. Treatment plans investigate the effects that varying system parameters have on dose distributions. Beam channel apertures may be as large as 20 mm because the sharp distal falloff characteristic of proton dose provides sufficient intensity modulation to meet dose objectives, even in the presence of coarse lateral resolution. Dose conformity suffers only when treatments are delivered from less than 10 angles. Jaw widths of 1--2 cm produce comparable dose distributions, but a jaw width of 4 cm produces unacceptable target coverage when maintaining critical structure avoidance. Treatment time for a prostate delivery is estimated to be on the order of 10 minutes. Neutron production

  17. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  18. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  19. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  20. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  1. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  2. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  3. Beam intensity increases at the intense pulsed neutron source accelerator

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Norem, J.; Rauchas, A.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has managed a 40% increase in time average beam current over the last two years. Currents of up to 15.6μA (3.25 x 10 12 protons at 30 Hz) have been successfully accelerated and cleanly extracted. Our high current operation demands low loss beam handling to permit hands-on maintenance. Synchrotron beam handling efficiencies of 90% are routine. A new H - ion source which was installed in March of 1983 offered the opportunity to get above 8 μA but an instability caused unacceptable losses when attempting to operate at 10 μA and above. Simple techniques to control the instabilities were introduced and have worked well. These techniques are discussed below. Other improvements in the regulation of various power supplies have provided greatly improved low energy orbit stability and contributed substantially to the increased beam current

  4. Longitudinal Schottky noise of intense beam

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1990-01-01

    Some phenomena, which can be observed in the longitudinal Schottky spectra in storage ring with electron cooling as well as some technical details, which can be useful for the models of fitting are reviewed. Results shows that both the spectra and the power of the Schottky noise of the coasting beam are very sensitive to collective behaviour of the beam. This can be used for fitting of Schottky noise measurements and recalculation of beam parameters, parameters of cooling device. 9 refs.; 4 figs

  5. Intense diagnostic neutral beam development for ITER

    International Nuclear Information System (INIS)

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-μs accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance

  6. Photonuclear physics with low intensity photon beams

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1985-01-01

    Experiments in photonuclear physics are discussed that require a low intensity photon beam and large acceptance detectors. This combination is especially suitable for the investigation of photoprocesses on nucleons and light nuclei. A specific experimental setup for the electron stretcher ring ELSA is presented. (orig.)

  7. Anisotropy-Driven Instability in Intense Charged Particle Beams

    CERN Document Server

    Startsev, Edward; Qin, Hong

    2005-01-01

    In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...

  8. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  9. Linac design for intense hadron beams

    International Nuclear Information System (INIS)

    Zhang, Chuan

    2009-01-01

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-β region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the φ s =0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs, no beam

  10. Damping of coherent oscillations in intense ion beams

    International Nuclear Information System (INIS)

    Karpov, Ivan

    2017-01-01

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  11. Damping of coherent oscillations in intense ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Ivan

    2017-02-06

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  12. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  13. Symmetry tests with intense hadron beams

    International Nuclear Information System (INIS)

    Vogt, E.W.

    1994-08-01

    The Government of Canada has pulled the plug on funding of the KAON facility in Canada. But the science opportunities for symmetry tests with the kinds of beams that KAON would have provided remain. For example, the full intensity of kaons, which KAON would have provided, is needed to find the magnitude and phase of V td and therefore to describe direct CP violation. The combination of K + → π + ν ν - and K L o → π o ν ν - serve this purpose. A variety of other symmetry tests are possible with the kind of intense beams of kaons, antinucleons, other hadrons and neutrinos which KAON would have provided. A perspective will be given for such experiments and their future prospects, now that KAON will not be built. (author). 10 refs., 1 tab., 2 figs

  14. Focusing and guiding intense electron beams by a superconductor tube

    International Nuclear Information System (INIS)

    Roth, P.

    1996-01-01

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs

  15. Focusing and guiding intense electron beams by a superconductor tube

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P

    1997-12-31

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs.

  16. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  17. Intense ion beam neutralization using underdense background plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berdanier, William [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Roy, Prabir K. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kaganovich, Igor [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  18. Formation of an intense proton beam of microsecond duration

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany)

    1997-12-31

    The proton beam facility PROFA serves as a test installation for ion source development and beam transport optimization for an intense pulsed proton beam of low kinetic energy, envisaged for ITER divertor load simulation. The present state of the investigations is discussed with emphasis on the diode operation parameters, beam divergence and beam transport efficiency. (author). 7 figs., 5 refs.

  19. Method of enhancing cyclotron beam intensity

    Science.gov (United States)

    Hudson, Ed D.; Mallory, Merrit L.

    1977-01-01

    When an easily ionized support gas such as xenon is added to the cold cathode in sources of the Oak Ridge Isochronous Cyclotron, large beam enhancements are produced. For example, .sup.20 Ne.sup.7+ is increased from 0.05 enA to 27 enA, and .sup.16 O.sup.5+ intensities in excess of 35 e.mu.A have been extracted for periods up to 30 minutes. Approximately 0.15 cc/min of the easily ionized support gas is supplied to the ion source through a separate gas feed line and the primary gas flow is reduced by about 30%.

  20. Unsteady thermal blooming of intense laser beams

    Science.gov (United States)

    Ulrich, J. T.; Ulrich, P. B.

    1980-01-01

    A four dimensional (three space plus time) computer program has been written to compute the nonlinear heating of a gas by an intense laser beam. Unsteady, transient cases are capable of solution and no assumption of a steady state need be made. The transient results are shown to asymptotically approach the steady-state results calculated by the standard three dimensional thermal blooming computer codes. The report discusses the physics of the laser-absorber interaction, the numerical approximation used, and comparisons with experimental data. A flowchart is supplied in the appendix to the report.

  1. Advances in ion beam intensity at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Bailey, J.E.; Coats, R.S.

    1995-01-01

    In 1993 lithium beam intensities ≥1 TW/cm 2 were achieved and lithium-driven target experiments at the ∼1,400 TW/g level were performed on the Particle Beam Fusion Accelerator II (PBFA II) at Sandia National Laboratories. Hohlraum radiation temperatures of up to 60 eV were achieved using this lithium beam. The 1995 Light-Ion ICF Program milestone of achieving a 100 eV radiation temperature in an ion-driven hohlraum will require a lithium beam intensity of 5 ± 1 TW/cm 2 on a 4 mm diameter cylindrical target; this will require both an increase in coupled lithium power and a decrease in total lithium beam divergence. The lithium beam power has been limited to ∼5--6 TW by a so-called ''parasitic load.'' This parasitic current loss in the ion diodes has recently been identified as being carried by ions that are accelerated from plasmas that are formed when high voltage electrons are lost to anodes with many monolayers of hydrocarbon surface contamination. Control of anode and cathode plasmas on the SABRE accelerator using RF-discharge cleaning, anode heating, and cryogenic cooling of the cathode have increased the efficiency of the production of lithium current by a factor of 2--3. A new ion diode incorporating glow discharge cleaning and titanium gettering pumps has been installed in PBFA II and will be tested in December, 1994. Anode heaters should be available in January, 1995. Circuit model calculations indicate that one can more than double the coupled lithium ion power on PBFA II by eliminating the parasitic current. LiF source divergence presently dominates the total beam divergence. Progress in lithium beam focal intensity using diode cleaning techniques coupled with an active lithium source is reported

  2. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  3. Progress toward a microsecond duration, repetitively pulsed, intense- ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Olson, J.C.; Reass, W.A.; Coates, D.M.; Hunt, J.W.; Schleinitz, H.M.; Greenly, J.B.

    1996-01-01

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. We are developing a 200-250 keV, 15 kA, 1 μs duration, 1-30 Hz intense ion beam accelerator to address these applications

  4. Low-intensity beam diagnostics with particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G. [INFN-LNS, Via S. Sofia 44/A Catania, 95125 (Italy); De Martinis, C.; Giove, D. [INFN-LASA, Via F.lli Cervi 201 Segrate (Midway Islands), 20090 (Italy)

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. {copyright} {ital 1997 American Institute of Physics.}

  5. Low-intensity beam diagnostics with particle detectors

    International Nuclear Information System (INIS)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G.; De Martinis, C.; Giove, D.

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. copyright 1997 American Institute of Physics

  6. Dynamical chaos and beam-beam models

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1990-01-01

    Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs

  7. Intense muon beams and neutrino factories

    International Nuclear Information System (INIS)

    Parsa, Z.

    2000-01-01

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy μ + μ - colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings (μSR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included

  8. Materials processing with intense pulsed ion beams

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-01-01

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 μm) and high-energy density (1-50 J/cm 2 ) of these short-pulsed (≤ 1 μs) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10 10 K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology

  9. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  10. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  11. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  12. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  13. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  14. Intense beams: The past, present, and future

    International Nuclear Information System (INIS)

    Yonas, G.; Sweeney, M.A.

    1998-06-01

    Nobody could have predicted the circuitous course of the last 30 years of progress in intense beams and pulsed power. There were many discoveries and twists and turns along the way, but the steady flow of understanding and technological advances has sustained the field. Pulsed power research began in the early 1960s with the development of the technology to test the reliability of nuclear weapons in a pulsed radiation environment. Because of the effort in the 1970s on an electron beam approach to inertial confinement fusion (ICF) at Sandia National Laboratories and at the Kurchatov Institute, simulation codes, diagnostics, and innovative pulsed power techniques such as self-magnetic insulation were developed. The electron approach ended in 1979, and the more promising ion approach continued. At the same time, z pinches, used since the early 1970s to evaluate the response of materials to keV X rays, were considered as an alternative to drive ICF capsules. The use of z pinches for ICF was discontinued in 1984 because of budget cuts and the belief that ions offered a route to the standoff requirement for energy applications. Now, in 1998, because of budget limitations and the 1995 discovery that the soft x-ray power achievable in a z-pinch implosion can be greatly enhanced, the ion approach has been suspended, and a new facility, X-1, proposed to achieve high yield in the laboratory with z pinches. In this paper the authors review the research paths that led to these changes, describe the present status of z pinches, and predict what the future holds. Although nobody can predict the future, the past 30 years have taught us some lessons that can be applied to the next 30 years. The paper concludes with some of these lessons learned

  15. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  16. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  17. Delivering the world’s most intense muon beam

    Directory of Open Access Journals (Sweden)

    S. Cook

    2017-03-01

    Full Text Available A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4±2.7×10^{5}  muons per watt of proton beam power (μ^{+} and μ^{-}, far in excess of other facilities. At full beam power (400 W, this implies a rate of muons of (4.2±1.1×10^{8}  muons s^{−1}, among the highest in the world. The number of μ^{-} measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  18. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  19. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  20. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  1. A practical method of modeling a treatment couch using cone-beam computed tomography for intensity-modulated radiation therapy and RapidArc treatment delivery

    Energy Technology Data Exchange (ETDEWEB)

    Aldosary, Ghada, E-mail: ghada.aldosary@mail.mcgill.ca [Medical Physics Unit, McGill University Health Centre, Montreal, Quebec (Canada); Nobah, Ahmad; Al-Zorkani, Faisal [Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Devic, Slobodan [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Moftah, Belal [Medical Physics Unit, McGill University Health Centre, Montreal, Quebec (Canada); Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia)

    2015-01-01

    The effect of a treatment couch on dose perturbation is not always fully considered in intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). In the course of inverse planning radiotherapy techniques, beam parameter optimization may change in the absence of the couch, causing errors in the calculated dose distributions. Although modern treatment planning systems (TPS) include data for the treatment couch components, they are not manufactured identically. Thus, variations in their Hounsfield unit (HU) values may exist. Moreover, a radiotherapy facility may wish to have a third-party custom tabletop installed that is not included by the TPS vendor. This study demonstrates a practical and simple method of acquiring reliable computed tomography (CT) data for the treatment couch and shows how the absorbed dose calculated with the modeled treatment couch can differ from that with the default treatment couch found in the TPS. We also experimentally verified that neglecting to incorporate the treatment couch completely in the treatment planning process might result in dose differences of up to 9.5% and 7.3% for 4-MV and 10-MV photon beams, respectively. Furthermore, 20 RapidArc and IMRT cases were used to quantify the change in calculated dose distributions caused by using either the default or modeled couch. From 2-dimensional (2D) ionization chamber array measurements, we observed large dose distribution differences between the measurements and calculations when the couch was omitted that varied according to the planning technique and anatomic site. Thus, incorporating the treatment couch in the dose calculation phase of treatment planning significantly decreases dose calculation errors.

  2. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  3. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  4. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  5. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  6. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Lee, Eva K.; Fox, Tim; Crocker, Ian

    2006-01-01

    Purpose: In current intensity-modulated radiation therapy (IMRT) plan optimization, the focus is on either finding optimal beam angles (or other beam delivery parameters such as field segments, couch angles, gantry angles) or optimal beam intensities. In this article we offer a mixed integer programming (MIP) approach for simultaneously determining an optimal intensity map and optimal beam angles for IMRT delivery. Using this approach, we pursue an experimental study designed to (a) gauge differences in plan quality metrics with respect to different tumor sites and different MIP treatment planning models, and (b) test the concept of critical-normal-tissue-ring-a tissue ring of 5 mm thickness drawn around the planning target volume (PTV)-and its use for designing conformal plans. Methods and Materials: Our treatment planning models use two classes of decision variables to capture the beam configuration and intensities simultaneously. Binary (0/1) variables are used to capture 'on' or 'off' or 'yes' or 'no' decisions for each field, and nonnegative continuous variables are used to represent intensities of beamlets. Binary and continuous variables are also used for each voxel to capture dose level and dose deviation from target bounds. Treatment planning models were designed to explicitly incorporate the following planning constraints: (a) upper/lower/mean dose-based constraints, (b) dose-volume and equivalent-uniform-dose (EUD) constraints for critical structures, (c) homogeneity constraints (underdose/overdose) for PTV, (d) coverage constraints for PTV, and (e) maximum number of beams allowed. Within this constrained solution space, five optimization strategies involving clinical objectives were analyzed: optimize total intensity to PTV, optimize total intensity and then optimize conformity, optimize total intensity and then optimize homogeneity, minimize total dose to critical structures, minimize total dose to critical structures and optimize conformity

  7. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  8. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  9. Ablative acceleration of thin foil targets by intense proton beams

    International Nuclear Information System (INIS)

    Miyamoto, S.; Ozaki, T.; Imasaki, K.; Higaki, S.; Nakai, S.

    1981-01-01

    A focused proton beam of up to 2 x 10 10 w/cm 2 was obtained using pinch-reflex ion diode connected to Reiden IV generator. Experiments of beam target interaction have been done using thin foil targets. In this power range the interaction was explained classically. The experimental dependence of ablation pressure on proton beam intensity was obtained as P sub(a) = 3 x 10 -3 I sup(0.7) bar (I in w/cm 2 ). (author)

  10. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  11. Anomolous, intensity dependent losses in Au(32+) beams

    International Nuclear Information System (INIS)

    Blaskiewicz, M.; Ahrens, L.; Calvani, H.

    1997-01-01

    The AGS Booster is a rapid cycling proton and heavy ion synchrotron. Anomolous, intensity dependent losses in Au(32+) beams have been observed in the AGS Booster. No collective signal is expected, or observed, but increasing the number of injected ions decreases the beam lifetime. The loss rates for Au(32+) are compared with those for Au(15+)

  12. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  13. Intense e-beam interaction with matter

    International Nuclear Information System (INIS)

    Ritchie, R.H.; Crawford, O.H.

    1984-01-01

    This document describes work done in this period on certain nonlinear processes of potential importance at high energy densities in condensed matter, and on the theory of the electron slowing-down-cascade spectrum engendered in solids by e-beams

  14. Ion accumulation and space charge neutralization in intensive electron beams for ion sources and electron cooling

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    The Electron Beam Ion Sources (EBIS), Electron Beam Ion Traps (EBIT) and electron beams for electron cooling application have the beam parameters in the same ranges of magnitudes. EBIS and EBIT produce and accumulate ions in the beam due to electron impact ionization. The cooling electron beam accumulates positive ions from the residual gas in the accelerator chamber during the cooling cycle. The space charge neutralization of cooling beam is also used to reduce the electron energy spread and enhance the cooling ability. The advanced results of experimental investigations and theoretical models of the EBIS electron beams are applied to analyze the problem of beam neutralization in the electron cooling techniques. The report presents the analysis of the most important processes connected with ion production, accumulation and losses in the intensive electron beams of ion sources and electron cooling systems for proton and ion colliders. The inelastic and elastic collision processes of charged particles in the electron beams are considered. The inelastic processes such as ionization, charge exchange and recombination change the charge states of ions and neutral atoms in the beam. The elastic Coulomb collisions change the energy of particles and cause the energy redistribution among components in the electron-ion beams. The characteristic times and specific features of ionization, beam neutralization, ion heating and loss in the ion sources and electron cooling beams are determined. The dependence of negative potential in the beam cross section on neutralization factor is studied. 17 refs., 5 figs., 1 tab

  15. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  16. Charge breeding of intense radioactive beams

    CERN Document Server

    Kester, O

    2001-01-01

    The efficient transformation of radioactive beams by charge breeding devices will critically influence the lay-out of the post accelerator of presently built first generation radioactive ion beam (RIB) facilities as well as new second generation facilities. The size of the post-accelerator needed to bring the unstable nuclei to the energies required to study nuclear reactions depends on the charge state of the radioactive ions. The capability to raise that charge state from 1+ to n+, where n may correspond to a charge-to- mass ratio of 0.15 or higher, will therefore produce an enormous reduction in cost as well as the possibility to accelerate heavier masses. Thus the efficiency of the charge breeding scheme in comparison to the stripping scheme will be explored in the frame of the EU-network charge breeding. The two possible charge breeding schemes using either an Electron Beam Ion Source (EBIS) or an Electron Cyclotron Resonance Ion Source (ECRIS), the demands to the sources and the present status of existi...

  17. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  18. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  19. Ion-beam plasma and propagation of intense compensated ion beams

    International Nuclear Information System (INIS)

    Gabovich, M.D.

    1977-01-01

    Discussed are the results of investigation of plasma properties recieved by neutralization of intensive ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown, that not only dinamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account at solving the problem of obtaining ''superdense'' compensated beams

  20. Ion-beam plasma and propagation of intense compensated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, M D [AN Ukrainskoj SSR, Kiev. Inst. Fiziki

    1977-02-01

    Discussed are the results of investigation of plasma properties received by neutralization of intense ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown that not only dynamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account in solving the problem of obtaining ''superdense'' compensated beams.

  1. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  2. Electron Production and Collective Field Generation in Intense Particle Beams

    International Nuclear Information System (INIS)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-01-01

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R and D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have

  3. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  4. Formation of a laser beam with a doughnut intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1986-02-01

    The conditions of the simultaneous generation of TEM01 and TEM10 modes forming a beam with a doughnut intensity distribution are investigated. In the case of a complete suppression of the TEM00 mode, the ratio of the intensity at the crest of the ring to the intensity at the ring axis reaches 200 and is limited by dispersion in the optical elements of the resonator. Operation with mutual locking of TEM01 and TEM10 modes has been achieved which is characterized by complete spatial coherence of the ring-shaped beam.

  5. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  6. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  7. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  8. Improve beam position stability of SSRF BL15U beamline by using beam intensity feedback

    International Nuclear Information System (INIS)

    Li Guoqiang; Liang Dongxu; Yan Fen; Li Aiguo; Yu Xiaohan

    2013-01-01

    Background: The shaking of micro-focus spot in the vertical direction is found during the energy scan experiments, such as XAFS scan. The beam position of vertical direction changes obviously with the energy. Purpose: In order to make the beam position shaking amplitude less than 1/10 of the beam size. Methods: The beam position stability of SSRF BL15U beamline is improved by using beam intensity feedback. The feedback system include beam intensity monitor of the beamline and fine adjust mechanism of pitch 2 (the pitch angle of the second crystal of the double crystal monochromator). The feedback control of the beam position is realized by adjusting the pitch 2 to fix beam intensity at its maximum value. Results: The test results show that the vertical beam vibration below 10 Hz frequency is significantly reduced and also the beam position stability during photon energy scan is improved by more than 5 times. Conclusions: By adopting the new feedback systems, the stability of the beam spot on the specimen stage was dramatically improved which achieved the anticipated target. (authors)

  9. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  10. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  11. Intense positron beam and its application to surface science

    International Nuclear Information System (INIS)

    Ito, Y.; Hirose, M.; Kanazawa, I.; Sueoka, O.; Takamura, S.; Okada, S.

    1992-01-01

    Intense pulsed slow positron beam has been produced using the 100 MeV electron LINAC of JAERI · Tokai. In order to use the beam for surface studies such as positron diffraction and positron microscopy, it was transferred from the solenoid magnetic field to field free region and then was brightness-enhanced. The beam size was reduced from 10 mmφ (in the magnetic field) to 0.5 mmφ after two stages of re-moderation. Using the intense brightness-enhanced positron beam we have observed for the first time RHEPD (Reflection High-Energy Positron Diffraction) patterns. A design of re-emission positron microscopy is also described. (author)

  12. CAS course on Intensity Limitations in Particle Beams at CERN

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Intensity Limitations in Particle Beams, at CERN from 2 to 11 November, 2015.     Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. This course covered the interaction of beams with their surroundings and with other beams, as well as further collective effects. The lectures on the effects and possible mitigations were complemented by tutorials. The course was very successful, with 66 students representing 14 nationalities attending. Most participants came from European counties, but also from Armenia, China and Russia. Feedback from the participants was positive, reflecting the standard of the lectures and teaching. In addition to the academic pro...

  13. Geometrical theory of nonlinear phase distortion of intense laser beams

    International Nuclear Information System (INIS)

    Glaze, J.A.; Hunt, J.T.; Speck, D.R.

    1975-01-01

    Phase distortion arising from whole beam self-focusing of intense laser pulses with arbitrary spatial profiles is treated in the limit of geometrical optics. The constant shape approximation is used to obtain the phase and angular distribution of the geometrical rays in the near field. Conditions for the validity of this approximation are discussed. Geometrical focusing of the aberrated beam is treated for the special case of a beam with axial symmetry. Equations are derived that show both the shift of the focus and the distortion of the intensity distribution that are caused by the nonlinear index of refraction of the optical medium. An illustrative example treats the case of beam distortion in a Nd:Glass amplifier

  14. High intensity beam profile monitors for the LAMPF primary beam lines

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; van Dyck, O.; Lee, D.; Harvey, A.; Bridge, J.; Cainet, J.

    1979-01-01

    Two types of beam profile monitors are in use at LAMPF to measure the properties of the 800 MeV, 500 μA proton beam external to the linac. Both types use secondary electron emission from a wire to produce a current signal proportional to the amount of proton beam that intercepts the wire. The wire scanner system uses a pair of orthogonal wires which are passed through the beam and the harp system uses two fixed planes of parallel wires. Most of the harps are not retractable and are exposed continuously to the primary beam. The high beam intensities available lead to a number of technical problems for instruments that intercept the beam or are close to primary beam targets. The thermal, electrical, radiation-damage, and material selection problems encountered, and some solutions which have been implemented are discussed

  15. Proposal for an intense slow positron beam facility at PSI

    International Nuclear Information System (INIS)

    Waeber, W.B.; Taqqu, D.; Zimmermann, U.; Solt, G.

    1990-05-01

    In the domain of condensed matter physics and materials sciences monoenergetic slow positrons in the form of highest intensity beams are demonstrated to be extreamly useful and considered to be highly needed. This conclusion has been reached and the scientific relevance of the positron probe has been highlighted at an international workshop in November 1989 at PSI, where the state of the art and the international situation on slow positron beams, the fields of application of intense beams and the technical possibilities at PSI for installing intense positron sources have been evaluated. The participants agreed that a high intensity beam as a large-scale user facility at PSI would serve fundamental and applied research. The analysis of responses given by numerous members of a widespread positron community has revealed a large research potential in the domain of solid-state physics, atomic physics and surface, thin-film and defect physics, for example. The excellent feature of slow positron beams to be a suitable probe also for lattice defects near surfaces or interfaces has attracted the interest not only of science but also of industry.In this report we propose the installation of an intense slow positron beam facility at PSI including various beam lines of different qualities and based on the Cyclotron production of β + emitting source material and on a highest efficiency moderation scheme which exceeds standard moderation efficiencies by two orders of magnitude. In its proposed form, the project is estimated to be realizable in the nineties and costs will amount to between 15 and 20 MSFr. (author) 10 figs., 6 tabs., 78 refs

  16. Measurement of extent of intense ion beam charge neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany). INR

    1997-12-31

    Various diagnostic tools were employed to study and optimize the extent of space charge neutralization in the pulsed intense proton beam facility PROFA, comprising Langmuir probes, capacitive probes, and a novel type of the three electrode collector. The latter does not only allow us to measure ion and electron beam current densities in a high magnetic field environment, but also to deduce the density spectrum of the beam electrons. Appropriate operating conditions were identified to attain a complete space charge neutralisation. (author). 5 figs., 4 refs.

  17. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  18. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  19. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  20. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    Degueurce, L.; Nakach, A.; Sole, J.

    1980-07-01

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  1. Application of Beam Diagnostics for Intense Heavy Ion Beams at the GSI UNILAC

    CERN Document Server

    Barth, W; Glatz, J; Groening, L; Richter, S; Yaramishev, S

    2003-01-01

    With the new High Current Injector (HSI) of the GSI UNILAC the beam pulse intensity had been increased by approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for the synchrotron SIS, especially for high uranium intensities. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (≤12 MeV/u), accelerator components could be destroyed, even during a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. The beam current is mainly measured by beam transformers instead of Faraday cups, beam positions are measured with segmented capacitive pick-ups and secondary beam monitors instead of profile harps. The 24 installed pick-ups are also used to measure intensities, widths and phase of the bunches, as well beam energies by evaluating pick-ups at different positions. The residual gas ionization monitors allow on-line measurements ...

  2. Density and potential measurements in an intense ion-beam-generated plasma

    International Nuclear Information System (INIS)

    Abt, N.E.

    1982-05-01

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented

  3. Optimized simultaneous transverse and longitudinal focusing of intense ion beam pulses for warm dense matter applications

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Davidson, Ronald C.; Kaganovich, Igor D.; Gilson, Erik P.; Roy, Prabir K.; Seidl, Peter A.; Yu, Simon S.; Welch, Dale R.; Rose, David V.; Barnard, John J.

    2007-01-01

    Intense, space-charge-dominated ion beam pulses for warm dense matter and heavy ion fusion applications must undergo simultaneous transverse and longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The longitudinal compression of an ion bunch is achieved by imposing an initial axial velocity tilt on the drifting beam and subsequently neutralizing its space-charge and current in a drift region filled with high-density plasma. The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory has measured a sixty-fold longitudinal current compression of an intense ion beam with pulse duration of a few nanoseconds, in agreement with simulations and theory. A strong solenoid is modeled near the end of the drift region in order to transversely focus the beam to a sub-millimeter spot size coincident with the longitudinal focal plane. The charge and current neutralization provided by the background plasma is critical in determining the total achievable transverse and longitudinal compression of the beam pulse. Numerical simulations show that the current density of an NDCX ion beam can be compressed over a few meters by factors greater than 10 5 with peak beam density in excess of 10 14 cm -3 . The peak beam density sets a lower bound on the local plasma density required near the focal plane for optimal beam compression, since the simulations show stagnation of the compression when n beam >n plasma . Beam-plasma interactions can also have a deleterious effect on the compression physics and lead to the formation of nonlinear wave excitations in the plasma. Simulations that optimize designs for the simultaneous transverse and longitudinal focusing of an NDCX ion beam for future warm dense matter experiments are discussed

  4. Internal dynamics of intense twin beams and their coherence

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2016-01-01

    Roč. 6, Feb (2016), 1-8, č. článku 22320. ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : dynamics of intense * twin beams * pump-depleted parametric * down-conversion * coherence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016

  5. Modulation instability of an intense laser beam in an unmagnetized ...

    Indian Academy of Sciences (India)

    The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and ...

  6. Resonant Self-Trapping and Absorption of Intense Bessel Beams

    International Nuclear Information System (INIS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    2000-01-01

    We report the observation of resonant self-trapping and enhanced laser-plasma heating resulting from propagation of high intensity Bessel beams in neutral gas. The enhancement in absorption and plasma heating is directly correlated to the spatial trapping of laser radiation. (c) 2000 The American Physical Society

  7. Hydrodynamics of layer structured targets impinged by intense ion beams

    International Nuclear Information System (INIS)

    Davila, J.; Barrero, A.

    1989-01-01

    To minimize the energy loss in the corona outflow, a layer structured spherical hollow shell has been proposed to be used as target in inertial confinement fusion. For ion beam drivers, the major part of the beam energy is absorbed in the middle layer, which is called either absorber or pusher. The outer layer, called tamper, slows down the outward expansion of the absorbed low density region. The materials of the tamper and pusher are usually in the inner layer. The knowledge of the hydrodynamics of the interaction of an intense beam with a structured target is then an essential point in order to achieve break-even conditions in ion-beam fusion. (author) 2 refs., 2 figs

  8. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  9. Dosimetric Uncertainties in Verification of Intensity Modulated Photon Beams

    International Nuclear Information System (INIS)

    Jurkovic, S.

    2010-01-01

    The doctoral thesis presents method for the calculation of the compensators' shape to modulate linear accelerators' beams. Characteristic of the method is more strict calculation of the scattered radiation in beams with an inhomogeneous cross-section than it was before. Method could be applied in various clinical situations. It's dosimetric verification was made in phantoms, measuring dose distributions using ionization chambers as well as radiographic film. Therefore, ionization chambers were used for the evaluation of modulator shape and film was used for the evaluation of two-dimensional dose distributions. It is well known that dosimetry of the intensity modulated photon beams is rather complicated regarding inhomogeneity of the dose distribution. The main reason for that is the beam modulator which changes spectral distribution of the beam. Possibility of use different types of detectors for the measurements of dose distributions in modulated photon beams and their accuracy were examined. Small volume ionization chambers, different diodes and amorphus silicon detector and radigraphic film were used. Measured dose distributions were compared between each other as well as with distributions simulated using Monte Carlo particle transport algorithm. In this way the most accurate method for the verification of modulate photon beams is suggested. (author)

  10. Intense Ion Beams for Warm Dense Matter Physics

    International Nuclear Information System (INIS)

    Heimbucher, Lynn; Coleman, Joshua Eugene

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K + ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of

  11. Intense Ion Beam for Warm Dense Matter Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  12. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  13. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  14. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  16. Pulsed hollow cathode discharge: intense electron beam and filamentary plasma

    International Nuclear Information System (INIS)

    Modreanu, Gabriel

    1998-01-01

    This work deals with a transient hollow cathode discharge optimised by a preionization one and providing intense electron beams. It exists a preionization current value for which the pulsed discharge becomes a very straight and bright filament, well collimated on the discharge tube axis for some tenths of centimeters. A remarkable feature of this discharge is that, without internal metallic electrodes very pure plasma could be produced. Using self-biasing by the beam of a Faraday cup placed only few millimeters behind the anode, we deduced the beam electron's distribution function and its temporal behavior for two radial positions, on the axis and 1 millimeter off-axis, respectively. The real advantage of this measurement technique is the transient polarization character, which allows analysis very closely from the electron beam extraction hole. On the other side, using the emission spectroscopy, we have studied the plasma produced in electron beam - gas interaction and deduced the temporal evolution of the electron temperature. The temporal behavior of the filamentary plasma diameter shows a constriction at the last moments of the beam existence, followed by diffusion controlled expansion. The ambipolar diffusion coefficient corresponding to the estimated electron temperature describes quite well this expansion and allows a quantitative interpretation of the measured temperature diminution, with taking into account the preferential fast electrons escape. The analysis of both beam and post-beam plasma phases suggests potential applications of this robust, very reproducible and not expensive discharge also susceptible to be external monitored. The beam - target interaction could be used for PVD, elementary analysis and filamentary or point-like X-ray emission. (author) [fr

  17. Determination of beam polarization from integrated Borrmann intensities

    International Nuclear Information System (INIS)

    Staudenmann, J.L.; Horning, R.D.; Murphy, W.J.; Chapman, L.D.; Liedl, G.L.

    1986-01-01

    The Borrmann effect can be used to determine the extent of beam polarization of any x-ray beam. The method is applicable, without any modification, to any diffractometer equipped with a partial or full Eulerian cradle. It consists of rocking a perfect crystal, in a thick crystal Laue transmission geometry, through the Bragg angle at various values of the azimuthal angle /sub chi/. If the thickness of the perfect crystal is such that μT/sub 0/>10, then it measures directly the polarization of the incident beam. Three different Ge perfect crystals were used to study the amount of polarization of x-rays produced by a MO and a W source, followed by a double crystal graphite monochromator. A 180 0 periodicity in the integrated intensity, as a function of /sub chi/, is observed; the periodic extremes show the extent of beam polarization. Anomalously transmitted integrated intensity ratios between parallel (σ-component) and perpendicular (π-component) scanning directions, with respect to the scattering plane, are used to characterize the polarization since they are quite insensitive to beam divergences, whereas the corresponding peak height radius show very important beam divergence effects. Also, the polarization properties of graphite monochromators can be related to those of a perfect crystal if the (002) lattice planes are used for any excitation line of the W-anode. This is due to the polarization contribution of the intense white radiation spectrum superimposed on that of the line. On the other hand, the same spectrum impinging on the (004) lattice planes produce polarization properties closer to that of the ideally mosaic crystal

  18. Intensity modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Forster, K.; Lee, H.; Lutz, W.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1997-01-01

    Purpose/Objective: The purpose of this study was to evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. The primary goal was to develop an intensity modulated treatment which would substantially decrease the dose to coronary arteries, lung and contralateral breast while still using a standard tangential beam arrangement. Improved target dose homogeneity, within the limits imposed by opposed fields, was also desired. Since a major goal of the study was the development of a technique which was practical for use on a large population of patients, the design of 'standard' intensity profiles analogous in function to conventional wedges was also investigated. Materials and Methods: Three dimensional treatment planning was performed using both conventional and intensity modulated tangential beams. Plans were developed for both the right and left breast for a range of patient sizes and shapes. For each patient, PTV, lung, heart, origin and peripheral branches of the coronary artery, and contralateral breast were contoured. Optimum tangential beam direction and shape were designed using Beams-Eye-View display and then used for both the conventional and intensity modulated plans. For the conventional plan, the optimum wedge combination and beam weighting were chosen based on the dose distribution in a single transverse plane through the field center. Intensity modulated plans were designed using an algorithm which allows the user to specify the prescribed, maximum and minimum acceptable doses and dose volume constraints for each organ of interest. Plans were compared using multiple dose distributions and DVHs. Results: Significant improvements in the doses to critical structures were achieved using the intensity modulated plan. Coronary artery dose decreased substantially for patients treated to the left breast. Ipsilateral lung and contralateral breast doses decreased for all patients. For one patient treated to

  19. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  20. LHC Report: 25 ns spacing yields record beam intensity

    CERN Multimedia

    The LHC team

    2012-01-01

    Over the weekend the LHC broke two records: a record number of 2,748 proton bunches were injected into the accelerator giving a record beam intensity of around 2.7 x 1014 protons in both beams. These beams have yet to face the challenge of "ramping" to high energy.   These very good results were made possible by a new beam configuration: the design value of 25 nanosecond spacing between proton bunches replaced - for the first time – the typical 50 nanosecond spacing. This test run was done at 450 GeV with no collisions. Up to now, the LHC has been running with around 1,380 bunches with 50 nanoseconds between bunches. By going to 25 nanoseconds, the LHC operations team can double the number of bunches to around 2,800. One of the main limitations for this mode of operation is the so-called electron cloud (see Bulletin 15-16/2011) that is strongly enhanced by the reduced spacing among bunches.  The electron cloud has nasty effects on the beam (beam size increase...

  1. Thermal equilibrium properties of an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Davidson, R.C.; Uhm, H.S.

    1979-01-01

    The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0

  2. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  3. Analysis of the dynamic behavior of an intense charged particle beam using the semigroup approach

    International Nuclear Information System (INIS)

    Stafford, M.A.

    1984-01-01

    Dynamic models of a charged particle beam subject to external electromagnetic fields are cast into the abstract Cauchy problem form. Various applications of intense charged particle beams, i.e., beams whose self electromagnetic fields are significant, might require, or be enhanced by, the use of dynamic control constructed from suitably processed measurements of the state of the beam. This research provides a mathematical foundation for future engineering development of estimation and control designs for such beams. Beginning with the Vlasov equation, successively simpler models of intense beams are presented, along with their corresponding assumptions. Expression of a model in abstract Cauchy problem form is useful in determining whether the model is well posed. Solutions of well-posed problems can be expressed in terms of a one-parameter semigroup of linear operators. The semigroup point of view allows the application of the rapidly maturing modern control theory of infinite dimensional system. An appropriate underlying Banach space is identified for a simple, but nontrivial, single degree of freedom model (the electrostatic approximation model), and the associated one-parameter semigroup of linear operators is characterized

  4. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  5. Gaussian representation of high-intensity focused ultrasound beams.

    Science.gov (United States)

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  6. Intensity-modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Spirou, S.; Forster, K.; Lee, H.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1999-01-01

    Purpose: To evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. Methods and Materials: Three-dimensional treatment planning was performed on five left and five right breasts using standard wedged and intensity modulated (IM) tangential beams. Optimal beam parameters were chosen using beams-eye-view display. For the standard plans, the optimal wedge angles were chosen based on dose distributions in the central plane calculated without inhomogeneity corrections, according to our standard protocol. Intensity-modulated plans were generated using an inverse planning algorithm and a standard set of target and critical structure optimization criteria. Plans were compared using multiple dose distributions and dose volume histograms for the planning target volume (PTV), ipsilateral lung, coronary arteries, and contralateral breast. Results: Significant improvements in the doses to critical structures were achieved using intensity modulation. Compared with a standard-wedged plan prescribed to 46 Gy, the dose from the IM plan encompassing 20% of the coronary artery region decreased by 25% (from 36 to 27 Gy) for patients treated to the left breast; the mean dose to the contralateral breast decreased by 42% (from 1.2 to 0.7 Gy); the ipsilateral lung volume receiving more than 46 Gy decreased by 30% (from 10% to 7%); the volume of surrounding soft tissue receiving more than 46 Gy decreased by 31% (from 48% to 33%). Dose homogeneity within the target volume improved greatest in the superior and inferior regions of the breast (approximately 8%), although some decrease in the medial and lateral high-dose regions (approximately 4%) was also observed. Conclusion: Intensity modulation with a standard tangential beam arrangement significantly reduces the dose to the coronary arteries, ipsilateral lung, contralateral breast, and surrounding soft tissues. Improvements in dose homogeneity throughout the target volume can also be

  7. Relativistic focusing and ponderomotive channeling of intense laser beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.

    2000-01-01

    The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society

  8. Self-consistent simulation studies of periodically focused intense charged-particle beams

    International Nuclear Information System (INIS)

    Chen, C.; Jameson, R.A.

    1995-01-01

    A self-consistent two-dimensional model is used to investigate intense charged-particle beam propagation through a periodic solenoidal focusing channel, particularly in the regime in which there is a mismatch between the beam and the focusing channel. The present self-consistent studies confirm that mismatched beams exhibit nonlinear resonances and chaotic behavior in the envelope evolution, as predicted by an earlier envelope analysis [C. Chen and R. C. Davidson, Phys. Rev. Lett. 72, 2195 (1994)]. Transient effects due to emittance growth are studied, and halo formation is investigated. The halo size is estimated. The halo characteristics for a periodic focusing channel are found to be qualitatively the same as those for a uniform focusing channel. A threshold condition is obtained numerically for halo formation in mismatched beams in a uniform focusing channel, which indicates that relative envelope mismatch must be kept well below 20% to prevent space-charge-dominated beams from developing halos

  9. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    International Nuclear Information System (INIS)

    Strasburg, Sean; Davidson, Ronald C.

    2000-01-01

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic perturbations about a waterbag equilibrium

  10. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  11. Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pugachev, A.; Xing, L. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: lei@reyes.stanford.edu

    2001-09-01

    In intensity-modulated radiation therapy (IMRT), the incident beam orientations are often determined by a trial and error search. The conventional beam's-eye view (BEV) tool becomes less helpful in IMRT because it is frequently required that beams go through organs at risk (OARs) in order to achieve a compromise between the dosimetric objectives of the planning target volume (PTV) and the OARs. In this paper, we report a beam's-eye view dosimetrics (BEVD) technique to assist in the selection of beam orientations in IMRT. In our method, each beam portal is divided into a grid of beamlets. A score function is introduced to measure the 'goodness' of each beamlet at a given gantry angle. The score is determined by the maximum PTV dose deliverable by the beamlet without exceeding the tolerance doses of the OARs and normal tissue located in the path of the beamlet. The overall score of the gantry angle is given by a sum of the scores of all beamlets. For a given patient, the score function is evaluated for each possible beam orientation. The directions with the highest scores are then selected as the candidates for beam placement. This procedure is similar to the BEV approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function to take into account the intensity modulation. This technique allows one to select beam orientations without the excessive computing overhead of computer optimization of beam orientation. It also provides useful insight into the problem of selection of beam orientation and is especially valuable for complicated cases where the PTV is surrounded by several sensitive structures and where it is difficult to select a set of 'good' beam orientations. Several two-dimensional (2D) model cases were used to test the proposed technique. The plans obtained using the BEVD-selected beam orientations were compared with the plans obtained using equiangular spaced beams. For

  12. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  13. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  14. Progress of the intense positron beam project EPOS

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Brauer, G.; Jungmann, M.; Krille, A.; Rogov, A.; Noack, K.

    2008-01-01

    EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection

  15. Inertial Fusion Driven By Intense Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  16. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  17. Physics Potential of Very Intense Conventional Neutrino Beams

    CERN Document Server

    Gómez-Cadenas, J J; Burguet-Castell, J; Casper, David William; DOnega, M; Gilardoni, S S; Hernández, Pilar; Mezzetto, Mauro

    2001-01-01

    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.

  18. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  19. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  20. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  1. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  2. Dosimetric comparison between intensity modulated brachytherapy versus external beam intensity modulated radiotherapy for cervix cancer: a treatment planning study

    International Nuclear Information System (INIS)

    Subramani, V.; Sharma, D.N.; Jothy Basu, K.S.; Rath, G.K.; Gopishankar, N.

    2008-01-01

    To evaluate the dosimetric superiority of intensity modulated brachytherapy (IMBT) based on inverse planning optimization technique with classical brachytherapy optimization and also with external beam intensity modulated radiotherapy planning technique in patients of cervical carcinoma

  3. Experimental study of intensive electron beam scattering in melting channel

    International Nuclear Information System (INIS)

    Balagura, V.S.; Kurilko, V.I.; Safronov, B.G.

    1988-01-01

    Multiple scattering of an intensive electron beam at 28 keV energy passing through a melting channel in iron targets is experimentally studied. The dependence of scattering on the melting current value is established. The material density in the channel on the basis of the binary collision method is evaluated. It is shown that these density values are of three orders less than the estimations made on the basis of the data on energy losses of electrons in the channel. 6 refs.; 4 figs

  4. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  5. Self-pinched transport of intense ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Neri, J.M.; Stephanakis, S.J.

    1999-01-01

    Electron beams with substantial net currents have been routinely propagated in the self-pinched mode for the past two decades. However, as the physics of gas breakdown and beam neutralization is different for ion beams, previous predictions indicated insufficient net current for pinching so that ion beam self-pinched transport (SPT) was assumed impossible. Nevertheless, recent numerical simulations using the IPROP code have suggested that ion SPT is possible. These results have prompted initial experiments to investigate SPT of ion beams. A 100-kA, 1.2-MeV, 3-cm-radius proton beam, generated on the Gamble II pulsed-power accelerator at NRL, has been injected into helium in the 30- to 250-mTorr regime to study this phenomenon. Evidence of self-pinched ion beam transport was observed in the 35- to 80-mTorr SPT pressure window predicted by IPROP. Measured signals from a time- and space-resolved scattered proton diagnostic and a time-integrated Li(Cu) nuclear activation diagnostic, both of which measure protons striking a 10-cm diameter target 50 cm into the transport region, are significantly larger in this pressure window than expected for ballistic transport. These results are consistent with significant self-magnetic fields and self-pinching of the ion beam. On the other hand, time-integrated signals from these same two diagnostics are consistent with ballistic transport at pressures above and below the SPT window. Interferometric electron line-density measurements, acquired during beam injection into the helium gas, show insignificant ionization below 35 mTorr, a rapidly rising ionization fraction with pressure in the SPT window, and a plateau in ionization fraction at about 2% for pressures above 80 mTorr. These and other results are consistent with the physical picture for SPT. IPROP simulations, which closely model the Gamble II experimental conditions, produce results that are in qualitative agreement with the experimental results. The advantages of SPT for

  6. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  7. Plasma opening switch for long-pulse intense ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1992-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 600 ns, and open quickly to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Thus, otherwise by virtue of traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 4.75 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening goes by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed

  8. Plasma opening switch for long-pulse intense ion beam

    International Nuclear Information System (INIS)

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1993-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 400 ns, and open quicky to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Using traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 5.0 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening is achieved by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed

  9. Electron energy distribution from intense electron beams in the upper mesosphere and lower thermosphere

    International Nuclear Information System (INIS)

    Martinez-Sanchez, M.; Cheng, Wai; Dvore, D.; Zahniser, M.S.

    1992-01-01

    A model was developed to calculate the electron energy spectrum created by an electron beam in the upper atmosphere. A significant feature of the model is the inclusion of the effects of electron-electron collisions which are important at high beam intensity when the ratio of the electron to ambient gas density is high. Comparing the calculated results for a 2.6-kV, 20-A beam at 110-km altitude from models with and without the electron-electron collision term, the electron-electron collisions have the effect of smoothing out the electron spectrum in the low-energy region ( 2 and O 2 are filled in, resulting in an increase in the calculated production rate of these species compared with model calculations that neglect this effect

  10. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  11. Nonlinear plasma waves excitation by intense ion beams in background plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  12. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  13. An ultra low noise AC beam transformer for deceleration and diagnostics of low intensity beams

    CERN Document Server

    González, C

    1999-01-01

    The design of a broad band ultra-low noise ferrite loaded AC beam transformer is presented. It is designed for use in the CERN Antiproton Decelerator (AD), where beams of a few 107 charges must be decelerated from 3.5 GeV/c to 100 MeV/c. It is used in the RF beam-phase loop, and for intensity and bunch shape measurements during deceleration. When the beam is debunched for cooling on magnetic flat tops, the pick-up is used for measurements of intensity and momentum distribution by means of longitudinal Schottky scans. When used as Schottky pick-up, the signal to noise ratio should be better by about 40 dB than the existing stripline based longitudinal Schottky pick-up. The integrated design of pick-up and associated low-noise amplifier is presented. The achieved noise performance of a few from 1 to 3 MHz is obtained by attaching a low-noise, high-impedance silicon JFET (junction field effect transistor) amplifier to a high-Q resonant ferrite loaded cavity, and then eliminating the resonant response by low-nois...

  14. Doubling Beam Intensity Unlocks Rare Opportunities for Discovery at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Segui, Jennifer A.

    2014-01-01

    Particle accelerators such as the Booster synchrotron at the Fermi National Accelerator Laboratory (FNAL) produce high-intensity proton beams for particle physics experiments that can ultimately reveal the secrets of the universe. High-intensity proton beams are required by experiments at the ''intensity frontier'' of particle physics research, where the availability of more particles improves the chances of observing extremely rare physical processes. In addition to their central role in particle physics experiments, particle accelerators have found widespread use in industrial, nuclear, environmental, and medical applications. RF cavities are essential components of particle accelerators that, depending on the design, can perform multiple functions, including bunching, focusing, decelerating, and accelerating a beam of charged particles. Engineers are working to model the RF cavities required for upgrading the 40-year old Booster synchrotron. It is a rather complicated process to refurbish, test, and qualify the upgraded RF cavities to sustain an increased repetition rate of the RF field required to produce proton beams at double the current intensity. Both multiphysics simulation and physical measurements are used to evaluate the RF, thermal, and mechanical properties of the Booster RF cavities.

  15. Ultrafast Melting of Carbon Induced by Intense Proton Beams

    International Nuclear Information System (INIS)

    Pelka, A.; Guenther, M. M.; Harres, K.; Otten, A.; Roth, M.; Gregori, G.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Kritcher, A. L.; Heathcote, R.; Li, B.; Neely, D.; Kugland, N. L.; Niemann, C.; Makita, M.; Riley, D.; Mithen, J.; Schaumann, G.; Schollmeier, M.

    2010-01-01

    Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

  16. Self magnetic field effects on energy deposition by intense relativistic electron beams

    International Nuclear Information System (INIS)

    Nardi, E.; Peleg, E.; Zinamon, Z.

    1977-01-01

    The effect of the penetration of the self magnetic field of an intense relativsistic electron beam on the process of beam-target interaction is calculated. The diffusion of the magnetic field and the hydrodynamic expansion of the target are dynamically taken into account. It is found that at beam intensities of interest for pellet fusion considerable range shortening occurs by magnetic stopping. (author)

  17. Beam orientation optimization for intensity modulated radiation therapy using adaptive l2,1-minimization

    International Nuclear Information System (INIS)

    Jia Xun; Men Chunhua; Jiang, Steve B; Lou Yifei

    2011-01-01

    Beam orientation optimization (BOO) is a key component in the process of intensity modulated radiation therapy treatment planning. It determines to what degree one can achieve a good treatment plan in the subsequent plan optimization process. In this paper, we have developed a BOO algorithm via adaptive l 2,1 -minimization. Specifically, we introduce a sparsity objective function term into our model which contains weighting factors for each beam angle adaptively adjusted during the optimization process. Such an objective function favors a small number of beam angles. By optimizing a total objective function consisting of a dosimetric term and the sparsity term, we are able to identify unimportant beam angles and gradually remove them without largely sacrificing the dosimetric objective. In one typical prostate case, the convergence property of our algorithm, as well as how beam angles are selected during the optimization process, is demonstrated. Fluence map optimization (FMO) is then performed based on the optimized beam angles. The resulting plan quality is presented and is found to be better than that of equiangular beam orientations. We have further systematically validated our algorithm in the contexts of 5-9 coplanar beams for five prostate cases and one head and neck case. For each case, the final FMO objective function value is used to compare the optimized beam orientations with the equiangular ones. It is found that, in the majority of cases tested, our BOO algorithm leads to beam configurations which attain lower FMO objective function values than those of corresponding equiangular cases, indicating the effectiveness of our BOO algorithm. Superior plan qualities are also demonstrated by comparing DVH curves between BOO plans and equiangular plans.

  18. A scintillating fibre-based profiler for low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Amato, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gu, M. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Raia, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Rovelli, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy)

    1997-01-11

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.).

  19. A scintillating fibre-based profiler for low intensity ion beams

    International Nuclear Information System (INIS)

    Finocchiaro, P.; Amato, A.; Ciavola, G.; Cuttone, G.; Gu, M.; Raia, G.; Rovelli, A.

    1997-01-01

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.)

  20. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward; Davidson, Ronald C.

    2004-01-01

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented

  1. Nanostructured surface processing by an intense pulsed ion beam irradiation

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Masuda, T.; Yamasaki, T.; Uchida, H.; Nobuhara, S.; Hashimoto, Y.; Yoshihara, Y.

    1997-01-01

    Metal surface modification by irradiating an intense pulsed ion beam (IPIB) with short pulse width has been studied experimentally. An IPIB irradiation to a target leads to rapid heating above its melting point. After the beam is turned off, the heated region is immediately cooled by thermal conduction at a cooling rate of typically 10 10 K/s. This rapid cooling and resolidification results in generation of nanostructured phase in the top of surface. The typical hydrogen IPIB parameters are 200 kV of energy, 500 A/cm 2 of current density and 70 ns of pulsewidth. The IPIB was irradiated on a pure titanium to generate nanocrystalline phase. The IPIB-irradiated surface was examined with X-ray diffraction, SEM, and HR-TEM. The randomly oriented lattice fringes as well as a halo diffraction pattern are observed in the HR-TEM micrograph of IPIB-irradiated titanium. The average grain size is found to be 32 nanometers

  2. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  3. The Theory of Coherent Radiation by Intense Electron Beams

    CERN Document Server

    Buts, Vyacheslav A; Kurilko, V.I

    2006-01-01

    Spurred by the development of high-current, high-energy relativistic electron beams this books delves into the foundations of a device and geometry independent theoretical treatment of a large collection of interacting and radiating electron bunches. Part I deals with the basics of the radiation emission of a single charged particle, paying particular attention to the effect of radiation reaction and dwelling on the corresponding well-known paradoxes. Part II investigates the collective behaviour of a high-density electron bunch where both discrete and continous beam modelling is explored. Part III treats the application to modern systems while still keeping the treatment as general as possible. This book will be mandatory reading for anyone working on the foundations of modern devices such as free electron lasers, plasma accelerators, synchroton sources and other modern sources of bright, coherent radiation with high spectral density.

  4. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  5. A high intensity beam handling system at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Minakawa, M.; Yamanoi, Y.

    1991-01-01

    We would like to summarize newly developed technology for handling high-intensity beams. This was practically employed in the beam-handling system of primary protons at the KEK-PS new experimental hall. (author)

  6. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  7. A summary of some beam-beam models

    International Nuclear Information System (INIS)

    Chao, A.W.

    1989-01-01

    Two categories of theoretical models for the beam-beam interaction are reviewed: the linear-lens models and the single-resonance models. In a linear-lens model, the beam-beam force is linearized and represented by a localized linear lens. Analyses of incoherent single particle effects can be performed exactly in these models by using matrix techniques. Although the results do not agree with the experimental observations in many respects, the linear-lens models constitute a starting point of our understanding of the beam-beam interaction. In the single-resonance models, one is concerned with the possible incoherent instabilities as the betatron tune of some of the particles is close to a certain rational number. It is assumed in these models that one and only one such rational number dominates the single-particle beam-beam effects. It is found that static single resonances cannot explain many of the experimental results. Some attempts have been made to modify the static single-resonance theory by including some mechanisms for diffusive tune fluctuations or periodic tune modulations. These modified single-resonance models have met only with some limited qualitative success. 21 refs., 13 figs

  8. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  9. Analysis of intensity variability in multislice and cone beam computed tomography.

    Science.gov (United States)

    Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde

    2011-08-01

    The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.

  10. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  11. Warm-fluid description of intense beam equilibrium and electrostatic stability properties

    International Nuclear Information System (INIS)

    Lund, S.M.; Davidson, R.C.

    1998-01-01

    A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A closed macroscopic model is obtained by truncating the hierarchy of moment equations by the assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij endash Vladimirskij (KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability properties are analyzed in detail for a cold beam with step-function density profile, and then for axisymmetric flute perturbations with ∂/∂θ=0 and ∂/∂z=0 about a warm-fluid KV beam equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV equilibrium is found to be identical to the eigenfunction derived in a full kinetic treatment. However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations. None of the instabilities that are present in a kinetic description are obtained in the fluid model. A careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models is made in order to delineate which stability features of a KV beam are model-dependent and which may have general applicability. copyright 1998 American Institute of Physics

  12. Axial electric wake field inside the induction gap exited by the intense electron beam

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Zhang Huang; Long Jidong; Yang Guojun; He Xiaozhong; Wang Huacen

    2008-01-01

    While an intense electron beam passes through the accelerating gaps of a linear induction accelerator, a strong wake field will be excited. In this paper a relatively simple model is established based on the interaction between the transverse magnetic wake field and the electron beam, and the numerical calculation in succession generates a magnetic wake field distribution along the accelerator and along the beam pulse as well. The axial electric wake field is derived based on the relation between field components of a resonant mode. According to some principles in existence, the influence of this field on the high voltage properties of the induction gap is analyzed. The Dragon-I accelerator is taken as an example, and its maximum electric wake field is about 17 kV/cm, which means the effect of the wake field is noticeable. (authors)

  13. Role of beam orientation optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Li, Jonathan G.; Boyer, Arthur L.; Hancock, Steven L.; Le, Quynh-Thu; Donaldson, Sarah S.; Lei Xing

    2001-01-01

    Purpose: To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. Methods and Materials: A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. Results: For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. Conclusion: The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans

  14. Reliability Modeling of Double Beam Bridge Crane

    Science.gov (United States)

    Han, Zhu; Tong, Yifei; Luan, Jiahui; Xiangdong, Li

    2018-05-01

    This paper briefly described the structure of double beam bridge crane and the basic parameters of double beam bridge crane are defined. According to the structure and system division of double beam bridge crane, the reliability architecture of double beam bridge crane system is proposed, and the reliability mathematical model is constructed.

  15. Phase and synchronous detector theory as applied to beam position and intensity measurements

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1995-01-01

    A popular signal processing technique for beam position measurements uses the principle of amplitude-to-phase (AM/PM) conversion and phase detection. This technique processes position-sensitive beam-image-current probe-signals into output signals that are proportional to the beam's position. These same probe signals may be summed and processed in a different fashion to provide output signals that are proportional to the peak beam current which is typically referred to as beam intensity. This paper derives the transfer functions for the AM/PM beam position and peak beam current processors

  16. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  17. Applications of pulsed intense relativistic electron beam to aquatic conservation

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Imada, Go

    2012-01-01

    In this study, we propose aquatic conservations by using a pulsed intense relativistic electron beam (PIREB). Treatments of introduced species and toxics azo dyes by irradiating PIREB are investigated in this report. Zooplankton contained in water have been inactivated by irradiation of PIREB. A treatment chamber is filled with a solution of 3-wt% salt in water containing Artemia larvae as zooplankton samples, and is irradiated using the PIREB (2 MeV, 0.4 kA, 140 ns). We found that up to 24% of the Artemia are inactivated by firing 10 shots of PIREB irradiation. It is found that pH changes did not affect to inactivate the Artemia larvae during the time scale of PIREB irradiation. The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by PIREB. An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  18. Implosion of multilayered cylindrical targets driven by intense heavy ion beams.

    Science.gov (United States)

    Piriz, A R; Portugues, R F; Tahir, N A; Hoffmann, D H H

    2002-11-01

    An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter experiments to be carried out at the Gesellschaft für Schwerionenforschung, Darmstadt. The model describes the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.

  19. Progress toward a microsecond duration, repetitively pulsed, intense-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H A; Olson, J C; Reass, W A [Los Alamos National Lab., NM (United States); Coates, D M; Hunt, J W; Schleinitz, H M [DuPont Central Research and Development, Wilmington, DE (United States); Lovberg, R H [Univ. of California, San Diego, CA (United States); Greenly, J B [Cornell Univ., Ithaca, NY (United States). Lab. of Plasma Studies

    1997-12-31

    A number of intense ion beams applications are emerging requiring repetitive high-average-power beams. These applications include ablative deposition of thin films, rapid melt and resolidification for surface property enhancement, advanced diagnostic neutral beams for the next generation of Tokamaks, and intense pulsed-neutron sources. A 200-250 keV, 15 kA, 1 {mu}s duration, 1-30 Hz intense ion beam accelerator is being developed to address these applications. (author). 4 figs., 7 refs.

  20. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  1. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  2. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  3. Collisional pumping for the production of intense spin-polarized neutral beams: target considerations. Revision

    International Nuclear Information System (INIS)

    Stearns, J.W.; Burrell, C.F.; Kaplan, S.N.; Pyle, R.V.; Ruby, L.; Schlachter, A.S.

    1985-04-01

    Polarized beams at intensity levels heretofore not considered feasible have recently been proposed for heating and fueling fusion plasmas. Polarized-beam fueling could increase fusion rates by 50% as well as allow control of the directionality of the fusion products. A process which we have recently described, and called collisional pumping, promises to produce beams of polarized ions vastly more intense than producible by current methods

  4. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    Science.gov (United States)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  5. Determination of beam intensity in a single step for IMRT inverse planning

    International Nuclear Information System (INIS)

    Chuang, Keh-Shih; Chen, Tzong-Jer; Kuo, Shan-Chi; Jan, Meei-Ling; Hwang, Ing-Ming; Chen, Sharon; Lin, Ying-Chuan; Wu, Jay

    2003-01-01

    In intensity modulated radiotherapy (IMRT), targets are treated by multiple beams at different orientations each with spatially-modulated beam intensities. This approach spreads the normal tissue dose to a greater volume and produces a higher dose conformation to the target. In general, inverse planning is used for IMRT treatment planning. The inverse planning requires iterative calculation of dose distribution in order to optimize the intensity profile for each beam and is very computation intensive. In this paper, we propose a single-step method utilizing a figure of merit (FoM) to estimate the beam intensities for IMRT treatment planning. The FoM of a ray is defined as the ratio between the delivered tumour dose and normal tissue dose and is a good index for the dose efficacy of the ray. To maximize the beam utility, it is natural to irradiate the tumour with intensity of each ray proportional to the value of the FoM. The nonuniform beam intensity profiles are then fixed and the weights of the beam are determined iteratively in order to yield a uniform tumour dose. In this study, beams are employed at equispaced angles around the patient. Each beam with its field size that just covers the tumour is divided into a fixed number of beamlets. The FoM is calculated for each beamlet and this value is assigned to be the beam intensity. Various weighting factors are incorporated in the FoM computation to accommodate different clinical considerations. Two clinical datasets are used to test the feasibility of the algorithm. The resultant dose-volume histograms of this method are presented and compared to that of conformal therapy. Preliminary results indicate that this method reduces the critical organ doses at a small expense of uniformity in tumour dose distribution. This method estimates the beam intensity in one single step and the computation time is extremely fast and can be finished in less than one minute using a regular PC

  6. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  7. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  8. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Experiments are underway to investigate new diagnostics for electron beams in vacuum and in a plasma background. Measured parameters include temporally resolved beam current profile and beam emittance. These characterizations are being performed during electron beam diode closure experiments (1) and beam-plasma interaction experiments with either of two long-pulse accelerators: MELBA (Michigan Electron Long Beam Accelerator): Voltage = -1 MV, Current = 10 kA, at Pulselength = 0.1 to 1μs (1.4μs) for voltage flat to within +.7% (+.10%). The second accelerator is a long-pulse Febetron with parameters: Voltage = -0.5 MV, Current = 1 kA, and Pulselength = 0.3 s. Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) The threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons, 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system, 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage, 4) Quantitative data is obtained directly

  9. Finite element modelling of composite castellated beam

    Directory of Open Access Journals (Sweden)

    Frans Richard

    2017-01-01

    Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.

  10. Intense beams at the micron level for the Next Linear Collider

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-08-01

    High brightness beams with sub-micron dimensions are needed to produce a high luminosity for electron-positron collisions in the Next Linear Collider (NLC). To generate these small beam sizes, a large number of issues dealing with intense beams have to be resolved. Over the past few years many have been successfully addressed but most need experimental verification. Some of these issues are beam dynamics, emittance control, instrumentation, collimation, and beam-beam interactions. Recently, the Stanford Linear Collider (SLC) has proven the viability of linear collider technology and is an excellent test facility for future linear collider studies

  11. Self-consistent Vlasov-Maxwell description of the longitudinal dynamics of intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2004-02-01

    Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤rbeam intensities (proportional to λ_{b} ranging from low-intensity, emittance-dominated beams, to very-high-intensity, low-emittance beams.

  12. Arc-based smoothing of ion beam intensity on targets

    International Nuclear Information System (INIS)

    Friedman, Alex

    2012-01-01

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  13. Techniques for intense-proton-beam profile measurements

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1998-01-01

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H + cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H - , pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA

  14. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz; Raich, Uli

    2011-10-04

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN†, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC)‡. The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam posi...

  15. Determination of beam intensity and position in a particle accelerator

    CERN Document Server

    Kasprowicz, G

    2011-01-01

    A subject of the thesis is conception, design, implementation, tests and deployment of new position measurement system of particle bunch in the CERN PS circular accelerator. The system is based on novel algorithms of particle position determination. The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajectory and orbit measurement system of the PS is dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors...

  16. Analytical model of impedance in elliptical beam pipes

    CERN Document Server

    Pesah, Arthur Chalom

    2017-01-01

    Beam instabilities are among the main limitations in building higher intensity accelerators. Having a good impedance model for every accelerators is necessary in order to build components that minimize the probability of instabilities caused by the interaction beam-environment and to understand what piece to change in case of intensity increasing. Most of accelerator components have their impedance simulated with finite elements method (using softwares like CST Studio), but simple components such as circular or flat pipes are modeled analytically, with a decreasing computation time and an increasing precision compared to their simulated model. Elliptical beam pipes, while being a simple component present in some accelerators, still misses a good analytical model working for the hole range of velocities and frequencies. In this report, we present a general framework to study the impedance of elliptical pipes analytically. We developed a model for both longitudinal and transverse impedance, first in the case of...

  17. Time dependence of microsecond intense electron beam transport in gases

    International Nuclear Information System (INIS)

    Lucey, R.F. Jr.; Gilgenback, R.M.; Tucker, J.E.; Brake, M.L.; Enloe, C.L.; Repetti, T.E.

    1987-01-01

    The authors present results of long-pulse (0.5 μs) electron beam propagation in the ion focused regime (IFR). Electron beam parameters are 800 kV with several hundred amperes injected current. For injection into air (from 0.7 mTorr to 75 mTorr) and helium (from 14 mTorr to 227 mTorr) the authors observe a ''time-dependent propagation window'' in which efficient (up to 100%) propagation starts at a time comparable to the electron impact ionization time needed to achieve n/sub i/ -- (1/γ/sup 2/)n/sub eb/. The transport goes abruptly to zero about 50-150 ns after this initial propagation. This is followed by erratic propagation often consisting of numerous narrower pulses 10-40 ns wide. In these pulses the transported current can be 100% of the injected current, but is generally lower. As the fill pressure is increased, there are differences in the propagated beam pulse, which can be summarized as follows: 1) the temporal occurrence of the beam propagation window shifts to earlier times, 2) the propagated beam current has much faster risetimes, 3) a larger portion of the injected beam is propagated. Similar results are observed when the electron beam is propagated in helium. However, at a given pressure, the beam transport window occurs at later times and exhibits a slower risetime. These effects are consistent with electron beam-induced ionization. Experiments are being performed to determine if the observed beam instability is due to the ion hose instability or streaming instability

  18. SU-F-T-202: An Evaluation Method of Lifetime Attributable Risk for Comparing Between Proton Beam Therapy and Intensity Modulated X-Ray Therapy for Pediatric Cancer Patients by Averaging Four Dose-Response Models for Carcinoma Induction

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, M; Shirato, H [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Ito, Y [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Sakurai, H; Mizumoto, M; Kamizawa, S [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Murayama, S; Yamashita, H [Proton Therapy Division, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka (Japan); Takao, S; Suzuki, R [Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To examine how much lifetime attributable risk (LAR) as an in silico surrogate marker of radiation-induced secondary cancer would be lowered by using proton beam therapy (PBT) in place of intensity modulated x-ray therapy (IMXT) in pediatric patients. Methods: From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: a) brain, head, and neck, b) thoracic, c) abdominal, and d) whole craniospinal (WCNS) irradiation. IMXT was re-planned using the same computed tomography and region of interest. Using dose volume histogram (DVH) of PBT and IMXT, the LAR of Schneider et al. was calculated for the same patient. The published four dose-response models for carcinoma induction: i) full model, ii) bell-shaped model, iii) plateau model, and ix) linear model were tested for organs at risk. In the case that more than one dose-response model was available, the LAR for this patient was calculated by averaging LAR for each dose-response model. Results: Calculation of the LARs of PBT and IMXT based on DVH was feasible for all patients. The mean±standard deviation of the cumulative LAR difference between PBT and IMXT for the four categories was a) 0.77±0.44% (n=7, p=0.0037), b) 23.1±17.2%,(n=8, p=0.0067), c) 16.4±19.8% (n=8, p=0.0525), and d) 49.9±21.2% (n=3, p=0.0275, one tailed t-test), respectively. The LAR was significantly lower by PBT than IMXT for the the brain, head, and neck region, thoracic region, and whole craniospinal irradiation. Conclusion: In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. This method was suggested to be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques. This research was supported by the Translational Research Network Program, JSPS KAKENHI Grant No. 15H04768 and the Global Institution for

  19. SU-F-T-202: An Evaluation Method of Lifetime Attributable Risk for Comparing Between Proton Beam Therapy and Intensity Modulated X-Ray Therapy for Pediatric Cancer Patients by Averaging Four Dose-Response Models for Carcinoma Induction

    International Nuclear Information System (INIS)

    Tamura, M; Shirato, H; Ito, Y; Sakurai, H; Mizumoto, M; Kamizawa, S; Murayama, S; Yamashita, H; Takao, S; Suzuki, R

    2016-01-01

    Purpose: To examine how much lifetime attributable risk (LAR) as an in silico surrogate marker of radiation-induced secondary cancer would be lowered by using proton beam therapy (PBT) in place of intensity modulated x-ray therapy (IMXT) in pediatric patients. Methods: From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: a) brain, head, and neck, b) thoracic, c) abdominal, and d) whole craniospinal (WCNS) irradiation. IMXT was re-planned using the same computed tomography and region of interest. Using dose volume histogram (DVH) of PBT and IMXT, the LAR of Schneider et al. was calculated for the same patient. The published four dose-response models for carcinoma induction: i) full model, ii) bell-shaped model, iii) plateau model, and ix) linear model were tested for organs at risk. In the case that more than one dose-response model was available, the LAR for this patient was calculated by averaging LAR for each dose-response model. Results: Calculation of the LARs of PBT and IMXT based on DVH was feasible for all patients. The mean±standard deviation of the cumulative LAR difference between PBT and IMXT for the four categories was a) 0.77±0.44% (n=7, p=0.0037), b) 23.1±17.2%,(n=8, p=0.0067), c) 16.4±19.8% (n=8, p=0.0525), and d) 49.9±21.2% (n=3, p=0.0275, one tailed t-test), respectively. The LAR was significantly lower by PBT than IMXT for the the brain, head, and neck region, thoracic region, and whole craniospinal irradiation. Conclusion: In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. This method was suggested to be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques. This research was supported by the Translational Research Network Program, JSPS KAKENHI Grant No. 15H04768 and the Global Institution for

  20. Experimental results of beryllium exposed to intense high energy proton beam pulses

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Butcher, M; Guinchard, M; Calviani, M; Losito, R; Roberts, S; Kuksenko, V; Atherton, A; Caretta, O; Davenne, T; Densham, C; Fitton, M; Loveridge, J; O'Dell, J

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and co...

  1. A target concept for intense radioactive beams in the 132Sn Region

    International Nuclear Information System (INIS)

    Nolen, J.A. Jr.

    1993-01-01

    To produce intense secondary beams of radioactive isotopes, primary beams of up to 100 kW are being proposed at some facilities. There are plans to test production targets with 800 MeV protons at such higher power at the Rutherford Appleton Laboratory. In this paper the use of high energy neutrons as a possible alternative is presented. The concept is to generate an intense beam of neutrons in a well-cooled target with a primary deuteron beam. The neutrons have a high cross section for producing fission fragments in a thick uranium target which is coupled to the ion source for the secondary beams. The effective target thickness is large and the power dissipated in the ISOL target is relatively small, which should lead to intense beams of neutron-rich, intermediate-mass isotopes such as 132 Sn

  2. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  3. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  4. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    International Nuclear Information System (INIS)

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-01-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10 3 compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second

  5. Mean intensity of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    Science.gov (United States)

    Lukin, Igor P.

    2017-11-01

    In the given article mean intensity of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is studied. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian beam of optical radiation. Distributions of mean intensity of a fundamental Bessel- Gaussian beam optical beam in longitudinal and transverse to a direction of propagation of optical radiation are investigated in detail. Influence of atmospheric turbulence on change of radius of the central part of a Bessel optical beam is estimated. Values of parameters at which it is possible to generate in turbulent atmosphere a nondiffracting pseudo-Bessel optical beam by means of a fundamental Bessel-Gaussian optical beam are established.

  6. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  7. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Valero, S.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    A new routine and a computer code (DYNAC) for the calculation of space charge densities in a new generation of linear accelerators for various industrial applications is presented. The new beam dynamics method used in this code, employs a set of quasi-Liouvillian equations, allowing beam dynamics computations in long and complex structures for electrons, as well as protons and ions. With this new beam dynamics method, the coordinates of particles are known at any position in the accelerating elements, allowing multistep space charge calculations. (K.A.)

  8. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  9. Intensity and bunch length measurement for lepton beam in the injection lines of the SPS and LEP

    CERN Document Server

    Boccard, C; Papis, J P; Vos, L

    1995-01-01

    We describe a system which is used operationally to measure the absolute intensity of single lepton bunches in a beam transfer line. It is based on the detailed knowledge of every single item of a complex measuring chain that comprises a beam coupler on one end and an acquisition system on the other end. This knowledge can be acquired by a well tested theoretical model and careful measurement of the transfer function of each processing module. A precision better than 3 % can be obtained and no external calibration is required. A value for the bunch length can be deduced from a spectral intensity measurement at two well chosen frequencies.

  10. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  11. Multi-stage autoacceleration of an intense relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, K; Hasegawa, D; Igarashi, H; Kusunoki, T; Lee, C Y; Koguchi, H; Ando, R; Masuzaki, M [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Two-stage autoacceleration was accomplished by using different length cavities. Two cavities were located with the distance longer than the beam duration. The electron kinetic energy increased from 500 to 700 keV at the first stage and from 700 to 900 keV at the second, while the beam duration decreased 10 to 5 ns at the first stage and 5 to 2.5 ns at the second. (author). 7 figs., 7 refs.

  12. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    International Nuclear Information System (INIS)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  13. Focused transport of intense charged particle beams. Final technical report FY/93

    International Nuclear Information System (INIS)

    1997-01-01

    Many recent developments in accelerator technology have increased the need for a better understanding of the physics of intense-beam transport. Of particular interest to the work described here is the appearance, as beam intensities are increased, of a class of nonlinear phenomena which involve the collective interaction of the beam particles. Beam intensity, used as a measure of the importance of space-charge collective behavior, depends on the ratio of current to emittance. The nonlinear beam dynamics, and any resulting emittance growth, which are characteristic of the intense-beam regime, can therefore occur even at low currents in any accelerator system with sufficiently high intensity, especially in the low beta section. Furthermore, since emittance of a beam is difficult to reduce, the ultimate achievement of necessary beam luminosities requires the consideration of possible causes of longitudinal and transverse emittance growth at every stage of the beam lifetime. The research program described here has addressed the fundamental physics which comes into play during the transport, acceleration and focusing of intense beams. Because of the long term and ongoing nature of the research program discussed here, this report is divided into two sections. The first section constitutes a long term revue of the accomplishments which have resulted from the research effort reported, especially in pioneering the use of particle-in-cell (PIC) computer simulation techniques for simulation of the dynamics of space-charge-dominated beams in particle accelerators. The following section emphasizes, in more detail, the accomplishments of the FY 92/93 period immediately prior to the termination of this particular avenue of support. 41 refs

  14. Spill control and intensity monitoring for the Bevatron--Bevalac external particle beams

    International Nuclear Information System (INIS)

    Barale, J.J.; Crebbin, K.C.

    1975-03-01

    Time-intensity modulation in beam spill can be of primary concern in some experiments. The major source of this beam structure is from main-guide field-magnet power supply ripple. If the time constants are appropriate, then final control of beam structure can be accomplished by closed loop control of the intensity of beam spill. The response characteristics of the feedback system will determine the final structure. At high beam fluxes signal to noise ratio of beam detectors, in the feedback loop, can be improved by at least four orders of magnitude by using photomultiplier tubes and a water Cherenkov counter in place of the normal secondary emission monitor. At beam fluxes below 10 10 particles per second (PPS), a plastic scintillator and photomultiplier tube are used in the feedback system. A plastic scintillator and photomultiplier are also used in the beam as intensity monitors. At intensities below about 10 7 PPS standard counting techniques are used. For intensities between 10 6 to 110 9 PPS, the photomultiplier is used as a current source driving an integrating circuit which is then calibrated to read the number of particles per pulse. (U.S.)

  15. Modeling beams with elements in phase space

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1998-01-01

    Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated

  16. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  17. Determination of Beam Intensity and Position in a Particle Accelerator

    CERN Document Server

    Kasprowicz, Grzegorz

    2010-01-01

    The Proton Synchrotron accelerator (PS), installed at CERN, although commissioned in 1959, still plays a central role in the production of beams for the Antiproton Decelerator, Super Proton Synchrotron, various experimental areas and for the Large Hadron Collider (LHC). The PS produces beams of different types of particles, mainly protons, but also various species of ions. Almost all these particle beams pass through the PS. The quality of the beams delivered to the LHC has a direct impact on the effective luminosity, and therefore the performance of the instrumentation of the PS is of great importance. The old trajec- tory and orbit measurement system of the PS dated back to 1988 and no longer fulfilled present day requirements. It used 40 beam position monitors (BPMs) and an analogue signal processing chain to acquire the trajectory of one single particle bunch out of many, over two consecutive turns at a maximum rate of once every 5ms. The BPMs were in good condition, however the electronics was aging and ...

  18. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  19. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  20. Moessbauer Effect applications using intense radioactive ion beams

    International Nuclear Information System (INIS)

    Taylor, R.D.

    1990-01-01

    The Moessbauer Effect is reviewed as a promising tool for a number of new solid state studies when used in combination with radioactive beam/implantation facilities. The usual Moessbauer Effect involves long-lived radioactive parents (days to years) that populate low-lying nuclear excited states that subsequently decay to the ground state. Resonant emission/absorption of recoil-free gamma rays from these states provide information on a number of properties of the host materials. Radioactive ion beams (RIB) produced on-line allow new Moessbauer nuclei to be studied where there is no suitable parent. The technique allows useful sources to be made having extremely low local concentrations. The ability to separate the beams in both Z and A should provide high specific activity ''conventional'' sources, a feature important in some applications such as Moessbauer studies in diamond anvil high pressure cells. Exotic chemistry is proposed using RIB and certain Krypton and Xenon Moessbauer isotopes

  1. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) the threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons. 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system. 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage. 4) Quantitative data is obtained directly

  2. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  3. Divergence in intense ion beams caused by incomplete charge neutralization

    International Nuclear Information System (INIS)

    Olson, C.L.; Poukey, J.W.

    1993-01-01

    Space charge neutralization for light ion fusion (LIF) ion beam transport is usually assumed to be perfect in the open-quotes charge-neutralclose quotes region of the diode and in the gas transport cell. However, small charge clumps in the beam will not be totally charge-neutralized, and the residual net space charge may contribute to the beam microdivergence θ μ . If the net potential of the clump is limited only by electron trapping, the minimum potential will be eφ ∼ 1/2 m e v i 2 where m e is the electron mass and v i is the ion velocity. For proton beams this leads to θ μ ∼ (m e /M p ) 1/2 ∼ 23 mrad, where M p is the proton rest mass. For non-protonic beams, different results occur. The mechanism predicts (1) no dependence of θ μ on diode voltage, (2) non-protonic θ μ greater than proton θ μ for proton-contaminated beams, and (3) axial energy spread Δε parallel /ε parallel ∼ ±2 θ μ , which are all consistent with present data. Results of analytic studies and computer simulations of this mechanism are presented. Plasma shielding reduces the effects of this mechanism but collisions and magnetic fields reduce the plasma shielding effects. 2-D PIC MAGIC simulations show that this mechanism contributes to θ μ both in the open-quotes charge-neutralclose quotes region and in the gas transport region. It is concluded that this mechanism is especially important in the open-quotes charge-neutralclose quotes region

  4. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  5. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-01-01

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  6. Production and Studies of Photocathodes for High Intensity Electron Beams

    CERN Document Server

    Chevallay, E; Legros, P; Suberlucq, Guy; Trautner, H

    2000-01-01

    For short, high-intensity electron bunches, alkali-tellurides have proved to be a reliable photo-cathode material. Measurements of lifetimes in an rf gun of the CLIC Test Facility II at field strengths greater than 100 MV/m are presented. Before and after using them in this gun, the spectral response of the CS-Te and Rb-Te cathodes were determined with the help of an optical parametric oscillator. The behaviour of both materials can be described by Spicer's 3-step model. Whereas during the use the threshold for photo-emission in Cs-Te was shifted to higher proton energies, that of Rb-Te did not change. Our latest investigations on the stoichiometric ratio of the components are shown. The preparation of the photo-cathodes was monitored with 320 nm wavelength light , with the aim of improving the measurement sensitivity. The latest results on the protection of Cs-Te cathode surfaces with CsBr against pollution are summarized. New investigations on high mean current production are presented.,

  7. Growth rate of non-thermodynamic emittance of intense electron beams

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    The nonlinear free-energy concept has been particularly useful in estimating the emittance growth resulting from any excess energy of electron beams in periodic and uniform channels. However, additional emittance growth, that is geometrical rather than thermodynamic in origin, is induced if the particles have different kinetic energies and axial velocities, which is common for mildly relativistic, very intense electron beams. This effect is especially strong if particles lose or gain significant kinetic energy due to the beam's potential depression, as the beam converges and diverges. In this paper we analyze these geometric emittance growth mechanisms for a uniform, continuous, intense electron beam in a focusing transport channel consisting of discrete solenoidal magnets, over distances short enough that the beam does not reach equilibrium. These emittance growth mechanisms are based on the effects of (1) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (2) an axial velocity shear radially along the beam due to the beam's azimuthal motion in the solenoids, and (3) an energy redistribution of the beam as the beam compresses or expands. The geometric emittance growth is compared in magnitude with that resulting from the nonlinear free energy, for the case of a mismatched beam in a uniform channel, and is shown to dominate for certain experimental conditions. Rules for minimizing the emittance along a beamline are outlined. copyright 1998 The American Physical Society

  8. A beam intensity monitor for the evaluation beamline for soft x-ray optical elements

    International Nuclear Information System (INIS)

    Imazono, Takashi; Moriya, Naoji; Harada, Yoshihisa; Sano, Kazuo; Koike, Masato

    2012-01-01

    Evaluation Beamline for Soft X-Ray Optical Elements (BL-11) at the SR Center of Ritsumeikan University has been operated to measure the wavelength and angular characteristics of soft x-ray optical components in a wavelength range of 0.65-25 nm using a reflecto-diffractometer (RD). The beam intensity monitor that has been equipped in BL-11 has observed the signal of the zero-th order light. For the purpose of more accurate evaluation of the performance of optical components, a new beam intensity monitor to measure the intensity of the first order light from the monochromator in BL-11 has been developed and installed in just front of RD. The strong positive correlation between the signal of the beam monitor and a detector equipped in the RD is shown. It is successful that the beam intensity of the first order light can be monitored in real time.

  9. Analog measurement of delayed antiproton annihilation time spectra in a high intensity pulsed antiproton beam

    International Nuclear Information System (INIS)

    Niestroj, A.; Hayano, R.S.; Ishikawa, T.; Tamura, H.; Torii, H.A.; Morita, N.; Yamazaki, T.; Sugai, I.; Nakayoshi, K.; Horvath, D.; Eades, J.; Widmann, E.

    1996-01-01

    An analog detection system has been developed to measure delayed antiproton annihilation time spectra for laser resonance spectroscopy of metastable antiprotonic helium atoms using the high-intensity pulsed beam of antiprotons from LEAR at CERN. (orig.)

  10. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  11. SPES: A new cyclotron-based facility for research and applications with high-intensity beams

    Science.gov (United States)

    Maggiore, M.; Campo, D.; Antonini, P.; Lombardi, A.; Manzolaro, M.; Andrighetto, A.; Monetti, A.; Scarpa, D.; Esposito, J.; Silvestrin, L.

    2017-06-01

    In 2016, Laboratori Nazionali di Legnaro (Italy) started the commissioning of a new accelerator facility based on a high-power cyclotron able to deliver proton beams up to 70 MeV of energy and 700 μA current. Such a machine is the core of the Selective Production of Exotic Species (SPES) project whose main goal is to provide exotics beam for nuclear and astrophysics research and to deliver high-intensity proton beams for medical applications and neutrons generator.

  12. Three-dimensional numerical studies of the temperature anisotropy instability in intense charged particle beams

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2005-01-01

    In neutral plasmas with a uniform magnetic field and strongly anisotropic distribution function (T parallel /T perpendicular 0 <<1). Such high-intensity beams are relevant to next-step experiments such as the Integrated Beam Experiment (IBX), which would serve as proof-of-principal experiment for heavy-ion fusion

  13. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  14. The wondrous world of transport and acceleration of intense ion beams

    International Nuclear Information System (INIS)

    Siebenlist, F.

    1987-01-01

    A theoretical and experimental study of the transport, bunching and acceleration of intense ion beams in periodic focusing channels is described. The aim is to show the feasibility of accelerating high current ion beams with a Multiple Electrostatic Quadrupole Array Linear ACcelerator (MEQALAC). 83 refs.; 51 figs.; 3 tabs

  15. Engineering the on-axis intensity of Bessel beam by a feedback tuning loop

    Science.gov (United States)

    Li, Runze; Yu, Xianghua; Yang, Yanlong; Peng, Tong; Yao, Baoli; Zhang, Chunmin; Ye, Tong

    2018-02-01

    The Bessel beam belongs to a typical class of non-diffractive optical fields that are characterized by their invariant focal profiles along the propagation direction. However, ideal Bessel beams only rigorously exist in theory; Bessel beams generated in the lab are quasi-Bessel beams with finite focal extensions and varying intensity profiles along the propagation axis. The ability to engineer the on-axis intensity profile to the desired shape is essential for many applications. Here we demonstrate an iterative optimization-based approach to engineering the on-axis intensity of Bessel beams. The genetic algorithm is used to demonstrate this approach. Starting with a traditional axicon phase mask, in the design process, the computed on-axis beam profile is fed into a feedback tuning loop of an iterative optimization process, which searches for an optimal radial phase distribution that can generate a generalized Bessel beam with the desired onaxis intensity profile. The experimental implementation involves a fine-tuning process that adjusts the originally targeted profile so that the optimization process can optimize the phase mask to yield an improved on-axis profile. Our proposed method has been demonstrated in engineering several zeroth-order Bessel beams with customized on-axis profiles. High accuracy and high energy throughput merit its use in many applications.

  16. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  17. High-intensity light-ion beam research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Colombant, D.G.; Barker, R.J.

    1982-01-01

    High-brightness proton beams (.4 MA, 1 MV) have recently been extracted from 20 cm 2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of GT 10 TW/cm 2 rad 2 was achieved in these experiments. A new barrel-shaped equitorial PRD that can be coupled to PBFA-II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominately azimuthally-symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% enhancement in stopping power over that in cold targets when the beam was focused to about .25 MA/cm 2 . Research is also being performed on transporting ion beams in large-diameter channels (>= 2.5 cm) and on a post-transport, plasma-filled, magnetic-focusing section to bring the beam to pellet dimensions. (author)

  18. Emittance scanner for intense low-energy ion beams

    International Nuclear Information System (INIS)

    Allison, P.W.; Sherman, J.D.; Holtkamp, D.B.

    1983-01-01

    An emittance scanner has been developed for use with low-energy H - ion beams to satisfy the following requirements: (1) angular resolution of +-1/2 mrad, (2) small errors from beam space charge, and (3) compact and simple design. The scanner consists of a 10-cm-long analyzer containing two slits and a pair of electric deflection plates driven by a +-500-V linear ramp generator. As the analyzer is mechanically driven across the beam, the front slit passes a thin ribbon of beam through the plates. The ion transit time is short compared with the ramp speed; therefore, the initial angle of the ions that pass through the rear slit is proportional to the instantaneous ramp voltage. The current through the rear slit then is proportional to the phase-space density d 2 i/dxdx'. The data are computer-analyzed to give, for example, rms emittance and phase-space density contours. Comparison of measured data with those calculated from a prepared (collimated) phase space is in good agreement

  19. Proton Drivers for neutrino beams and other high intensity applications

    CERN Document Server

    Garoby, R; Koseki, T; Thomason, J

    2013-01-01

    CERN, Fermilab, J-PARC and RAL tentatively plan to have proton accelerators delivering multi-MW of beam power in view of enhancing their physics reach especially in the domain of neutrinos. These plans are described, together with their benefits for other applications.

  20. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  1. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  2. Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo Seong; Lee, Kwang Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2016-05-15

    The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and photoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1-2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used, where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length α(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

  3. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    Ryabchikov, A.I.

    2007-01-01

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  4. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  5. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  6. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  7. Improved genetic algorithm in optimization of beam orientation in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Ni Xinye; Yang Jianhua; Sun Suping; Yao Yi

    2009-01-01

    Objective: At present beam orientation selection in intensity-modulated radiotherapy (IMRT) is mainly based on empiric knowledge. This study is to evaluate the feasibility of automated beam angle selection. Methods: Genetic algorithm technique which based on beam eye view dose measurement (BEVD-GA) was tested on two clinical cases, including a spine column cancer and a lung cancer. Three plans were obtained under the following different beam configurations: five equiangular-spaced beams, five beams with GA-selected, and five beams with BEVD-GA-selected beams. Then the dose distribution was compared among the three plans. Results: The method, restricting the range of genetic algorithm followed by carrying through genetic operations, not only shortened the optimization time, but also improved the optimization effect. For spine column cancer and lung cancer, the best IMRT plans were obtained with BEVD-GA-selected beams, which used automated beam orientation selection. Conclusions: Comparing with the conventional manual beam orientation selection, beam orientation optimization which is feasible in IMRT planning may significantly improve the efficiency and result. (authors)

  8. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  9. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  10. Intensive beam dosimetry of accelerated electrons of low energy

    International Nuclear Information System (INIS)

    Oproiu, C.

    1984-01-01

    Dosimetric control of electron beams ranging between 0.3 MeV and 10 MeV is treated using proper dosimetric methods relying on calorimetry, Tricke chemical solution, dosimetric film of cellulose triacetate. Proper methods are pointed out for measurements in inhomogeneous fields, bringing into evidence the results obtained in deep dose distributions and on the surface of irradiated material. A measuring method of dose distribution in depth by means of an assembly with calorimetric elements, as well as a practical method to pointing out dose distribution and equidose curves along the depth of irradiated electric cable depth are presented. In order to find out the main sizes of accelerated electron beam one uses proper devices relying on Faraday cylinder, total absorption calorimeter, ionization chambers. (author)

  11. Fast magnetic field penetration into an intense neutralized ion beam

    International Nuclear Information System (INIS)

    Armale, R.

    1992-06-01

    Experiments involving propagation of neutralized ion beams across a magnetic field indicate a magnetic field penetration time determined by the Hall resistivity rather than the Spitzer or Pedersen resistivity. In magnetohydrodynamics the Hall current is negligible because electrons and ions drift together in response to an electric field perpendicular to the magnetic field. For a propagating neutralized ion beam, the ion orbits are completely different from the electron orbits and the Hall current must be considered. There would be no effect unless there is a component of magnetic field normal to the surface which would usually be absent for a good conductor. It is necessary to consider electron inertia and the consequent penetration of the normal component to a depth c/ω p . In addition it is essential to consider a component of magnetic field parallel to the velocity of the beam which may be initially absent, but is generated by the Hall effect. The penetration time is determined by whistler waves rather than diffusion

  12. ORBIT: A CODE FOR COLLECTIVE BEAM DYNAMICS IN HIGH INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, J.F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK, the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  13. ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings

    Science.gov (United States)

    Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-12-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  14. ORBIT: A code for collective beam dynamics in high-intensity rings

    International Nuclear Information System (INIS)

    Holmes, J.A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  15. Gas-breakdown effects associated with the self-pinched transport of intense light-ion beams

    International Nuclear Information System (INIS)

    Ottinger, P.F.; Olson, C.L.; Welch, D.R.; Oliver, B.V.

    1997-01-01

    Self-pinched transport (SPT) of intense light-ion beams is being considered for delivering energy to a high-gain, high-yield inertial confinement fusion target. Proton beam SPT experiments are underway on the Gamble II generators at the Naval Research Laboratory. The physics of SPT in low-pressure gas is being analyzed with analytic theory and numerical simulations. A 1-D theory estimates the net current fraction necessary for stable transport as a function of gas density for a given beam profile. SPT simulations using the 3-D hybrid particle-in-cell (PIC) code IPROP determine the beam profile. Important to both theory and simulations is the inclusion of gas-breakdown physics. A comparison between the theory and the self-consistent simulations using IPROP is made. Additional SPT simulations have been carried out using the 2-D hybrid PIC code SOLENZ which assumes a pre-ionized plasma. This simulation model enables the investigation of long time scale beam propagation issues. A comparison between IPROP and SOLENZ will be presented. SOLENZ simulations with the Gamble I beam parameters demonstrate SPT but point to the need to study the injection conditions to improve beam confinement. Simulations examining beam-to-wall distance and injection conditions will be presented

  16. Design features and performance of the LAMPF high-intensity beam area

    International Nuclear Information System (INIS)

    Agnew, L.; Grisham, D.; Macek, R.J.; Sommer, W.F.; Werbeck, R.D.

    1983-01-01

    LAMPF is a multi-purpose high-intensity meson factory capable of producing a 1 mA beam of 800-MeV protons. The three target cells and the beam stop facilities in the high intensity area have many special design features that are required for operation in the presence of high heat loads and intense radiation fields where accessibility is extremely limited. Reliable targets, beam windows, beam stops, beam transport and diagnostic components, vacuum enclosures, and auxiliary systems have been developed. Sophisticated remote-handling systems are employed for maintenance. Complex protection systems have been developed to guard against damage caused by errant beam. Beam availability approaching 90% has been achieved at currents of 600 to 700 μA. A new facility for direct proton and neutron radiation effects studies will be installed in 1985. The new facility will provide an integrated spallation neutron flux of up to 5 x 10 17 m -2 s -1 and will anable proton irradiation studies in the primary beam

  17. A refined model for piezoelectric composite beams

    International Nuclear Information System (INIS)

    Luschi, Luca; Pieri, Francesco

    2016-01-01

    This work presents and compares few simple one-dimensional models for the piezoelectric actuation and detection of beams. The 1D nature, which allows an easy embedding of the model in the classical Euler-Bernoulli beam equations, is obtained by adopting simplifying assumptions along directions of the cross-sectional plane. By changing such assumptions, different models can be built. Their validity is discussed and compared with results of FEM simulations for varying geometries. We show that commonly adopted models fail in a series of practical cases and propose a new model capable of accurately describing wide beams. (paper)

  18. EPOS-An intense positron beam project at the ELBE radiation source in Rossendorf

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Sachert, S.; Brauer, G.; Rogov, A.; Noack, K.

    2006-01-01

    EPOS, the acronym of ELBE Positron Source, describes a running project to build an intense pulsed beam of mono-energetic positrons (0.2-40 keV) for materials research. Positrons will be created via pair production at a tungsten target using the pulsed 40 MeV electron beam of the superconducting linac electron linac with high brilliance and low emittance (ELBE) at Forschungszentrum Rossendorf (near Dresden, Germany). The chosen design of the system under construction is described and results of calculations simulating the interaction of the electron beam with the target are presented, and positron beam formation and transportation is also discussed

  19. CERN Accelerator School: Intensity Limitations in Particle Beams | 2-11 November

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s specialised course on Intensity Limitations in Particle Beams, to be held at CERN between 2 and 11 November 2015.   This course will mainly be of interest to staff in accelerator laboratories, university departments and companies manufacturing accelerator equipment. Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. The programme for this course will cover the interaction of beams with their surroundings, with other beams and further collective effects. Lectures on the effects and possible mitigations will be complemented by tutorials. Further information can be found at: http://cas.web.cern.ch/cas/Intensity-Limitations-2015/IL-advert.html   http:/...

  20. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  1. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  2. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  3. Reaching for highest ion beam intensities through laser ion acceleration and beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Brabetz, Christian; Blazevic, Abel; Bagnoud, Vincent; Weih, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Jahn, Diana; Ding, Johannes; Roth, Markus [TU Darmstadt (Germany); Kroll, Florian; Schramm, Ulrich; Cowan, Tom [Helmholtzzentrum Dresden Rossendorf (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    Laser ion acceleration provides access to ion sources with unique properties. To use these capabilities the LIGHT collaboration (Laser Ion Generation Handling and Transport) was founded. The aim of this collaboration is the beam transport and manipulation of laser accelerated ions with conventional accelerator structures. Therefor a dedicated beam line has been build up at GSI Helmholtzzentrum fuer Schwerionenforschung. With this beam line the manipulation of the transversal and also the longitudinal beam parameters has been achieved. It has been shown that laser generated ion beams can be transported over more than 6 meters and pulses shorter than 300 ps can be generated at this distance. This Talk will give an overview over the recent developments and plans of the LIGHT collaboration.

  4. Self-Consistent simulations of High-Intensity Beams and E-Clouds with WARP POSINST

    International Nuclear Information System (INIS)

    Vay, J.-L.; Friendman, A.; Grote, D.P.

    2006-01-01

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC codeWARP and the 2-D ''slice'' ecloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). In earlier papers, we described the capabilities and presented recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). We concentrate here on the description of the implementation of the ''quasi-static'' mode of operation, for comparison with other codes, and introduce a new consideration on the estimate of computing time between the quasi-static and the fully self-consistent modes

  5. Numerical simulations of intense charged particle beam propagation in a dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Gai, W.; Kanareykin, A.D.; Kustov, A.L.; Simpson, J.

    1995-01-01

    The propagation of an intense electron beam through a long dielectric tube is a critical issue for the success of the dielectric wakefield acceleration scheme. Due to the head-tail instability, a high current charged particle beam cannot propagate long distance without external focusing. In this paper we examine the beam handling and control problem in the dielectric wakefield accelerator. We show that for the designed 15.6 GHz and 20 GHz dielectric structures a 150 MeV, 40 endash 100 nC beam can be controlled and propagate up to 5 meters without significant particle losses by using external applied focusing and defocusing channel (FODO) around the dielectric tube. Particle dynamics of the accelerated beam is also studied. Our results show that for typical dielectric acceleration structures, the head-tail instabilities can be conveniently controlled in the same way as the driver beam. copyright 1995 American Institute of Physics

  6. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC.

    Science.gov (United States)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-01-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  8. Intensive treatment models and coercion

    DEFF Research Database (Denmark)

    Ohlenschlaeger, Johan; Thorup, Anne; Petersen, Lone

    2007-01-01

    . Hospital-based Rehabilitation, an intensified inpatient treatment model, Integrated Treatment, an intensified model of Assertive Community Treatment, and standard treatment were compared for patients with first-episode schizophrenia-spectrum disorders. Ninety-four patients with first-episode schizophrenia......Little evidence exists concerning the optimal treatment for patients with first-episode schizophrenia-spectrum disorders and the effect on traditional outcomes. The aim was to investigate whether optimal treatment models have an effect on the level of use of coercion and on traditional outcomes......-spectrum disorders estimated to benefit from long-term hospitalization were included consecutively from the Copenhagen OPUS-trial and randomized to the three treatment models. At 1-year follow-up, Hospital-based Rehabilitation and Integrated Treatment had better scores on symptoms in the negative dimension...

  9. Generation and focusing of pulsed intense ion beams. Progress report, April 1, 1979-September 30, 1979

    International Nuclear Information System (INIS)

    Sudan, R.N.; Hammer, D.A.

    1981-04-01

    Theoretical calculations suggest that an intense pulsed approx. 1 MeV proton beam can be used to simulate the characteristics of approx. 1 GeV heavy ion beam propagation in an inertial confinement fusion reactor chamber. Given the present availability of the former beams and the high projected cost for obtaining the latter ones, such experimental simulations appear appropriate. Work was undertaken under the cited contract to apply the technology of intense proton beams to this end. The first task was the development of a high brightness pulsed proton source which could produce a weakly convergent approx. 10 kA proton beam in a field free drift region. This was accomplished at approx. 250 keV, and preliminary beam propagation experiments were performed. It was concluded that a proper simulation experiment would require a higher voltage beam. An upgraded version of the existing generator, which would have produced a 30 kA beam at about 500 keV, and further propagation experiments were proposed as part of our unsuccessful renewal proposal dated October 15, 1979

  10. Generation of intense spin-polarized electron beams at the electron accelerator facility ELSA

    International Nuclear Information System (INIS)

    Heiliger, Dominik

    2014-08-01

    The inverted source of polarized electrons at the electron accelerator ELSA in Bonn routinely provides a pulsed and low energetic beam of polarized electrons (100 mA, 48 keV) by irradiating a GaAs strained-layer superlattice photocathode with laser light. Due to the beam energy of 48 keV the beam transport to the linear accelerator is strongly space charge dominated and the actual beam current has an impact on the beam dynamics. Thus, the optics of the transfer line to the linear accelerator must be optimized with respect to the chosen beam intensity. An intensity upgrade including numerical simulations of the beam transport as well as a generation and a transport of a beam current of nearly 200 mA was successfully operated. In order to enhance the reliability and uptime of the source, a new extreme high vacuum load lock system was installed and commissioned. It consists of an activation chamber for heat cleaning of the photocathodes and activation with cesium and oxygen, a storage in which different types of photocathodes can be stored and a loading chamber in which an atomic hydrogen source is used to remove nearly any remaining surface oxidation. The new cleaning procedure with atomic hydrogen was investigated regarding its potential to restore the initial quantum efficiency of the photocathode after many activations.

  11. Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear Effects

    CERN Document Server

    AUTHOR|(CDS)2160109; Støvneng, Jon Andreas

    2017-08-15

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strength of the beam-beam interactions will be higher after the upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines, as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam Interaction) has been developed to study the limitations caused by the impact of strong beam-beam interactions. In particular, the evolution of the beam emittance and beam intensity has been monitored to study the impact quantitatively...

  12. Intensive treatment models and coercion

    DEFF Research Database (Denmark)

    Ohlenschlaeger, Johan; Thorup, Anne; Petersen, Lone

    2007-01-01

    and on client satisfaction. Integrated Treatment had fewer bed-days, more patients living in non-supervised accommodation, and better score on quality of life. No differences were found as to the use of coercion. This study adds to the evidence that intensified treatment models are superior to standard...

  13. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  14. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations

  15. Paul Trap Simulator Experiment (PTSX) to simulate intense beam propagation through a periodic focusing quadrupole field

    Science.gov (United States)

    Davidson, Ronald C.; Efthimion, Philip C.; Gilson, Erik; Majeski, Richard; Qin, Hong

    2002-01-01

    The Paul Trap Simulator Experiment (PTSX) is under construction at the Princeton Plasma Physics Laboratory to simulate intense beam propagation through a periodic quadrupole magnetic field. In the Paul trap configuration, a long nonneutral plasma column is confined axially by dc voltages on end cylinders at z=+L and z=-L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(t) over 90° segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact laboratory facility. The experimental layout is described, together with the planned experiments to study beam mismatch, envelope instabilities, halo particle production, and collective wave excitations.

  16. Preliminary research results for parameter diagnostics of intense pulsed ion beams

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; He Xiaoping; Tang Junping; Wang Haiyang; Li Jingya; Ren Shuqing; Huang Jianjun; Zhang Jiasheng; Peng Jianchang; Ouyang Xiaoping; Zhang Guoguang; Li Hongyu

    2004-01-01

    The preliminary experimental results for parameter diagnostics of intense pulsed ion beams from the FLASH II accelerator were reported. The ion number of an intense pulsed ion beam were experimentally determined by monitoring delayed radioactivity from protons induced nuclear reactions in a 12 C target. The prompt γ-rays and diode Bremsstrahlung X-rays were measured with PIN semi-conductor detector and a ST401 plastic scintillator detector. The Bremsstrahlung distribution outside of the drift tube was detected with a thermoluminescent detector and the shielding design was also determined. The current densities of beam were measured with biased ion collector array. The ion beams were also recorded with a CR-39 detector. (author)

  17. The key physics and technology issues in the intense-beam proton accelerators

    International Nuclear Information System (INIS)

    Fu Shinian; Fang Shouxian

    2002-01-01

    Beam power is required to raise one order in the next generation spallation neutron source. There are still some physics and technology difficulties need to be overcome, even though no fatal obstacle exists due to the rapid development of the technology in intense-beam accelerator in recent years. Therefore, it is highly demanded to clarify the key issues and to lunch an R and D program to break through the technological barriers before author start to build the expansive machine. The new technological challenge arises from the high beam current, the high accelerator power and the high demand on the reliability and stability of the accelerator operation. The author will discuss these issues and the means to resolve them, as well as the state of the art in a few of major technological disciplines. Finally, the choice the framework of intense-beam accelerator is discussed

  18. Study and realization of a beam analyser of high intensity (10610)

    International Nuclear Information System (INIS)

    Perret-Gallix, D.

    1975-01-01

    A beam analyser working under high-beam intensity in the range of 10 6 to 10 10 particles per burst and giving position profile and intensity of this beam is studied. The reasons of this study, the principle of measurement, the construction of hardware and the different tests carried out on the chamber in order to evaluate the main features are related. The analyser is a multi-cellular ionisation chamber or stripe chamber; each cell made by a copper stripe (0.25mm wide) inserted between two high voltage planes (500V) forms a small independent ionisation chamber. This system, working under the on-line control of a mini-computer allows to associate to each event or event group the instantaneous position and profile of the beam [fr

  19. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  20. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  1. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  2. Optical diagnosis system for intense electron beam diode plasma

    International Nuclear Information System (INIS)

    Yang Jie; Shu Ting; Zhang Jun; Fan Yuwei; Yang Jianhua; Liu Lie; Yin Yi; Luo Ling

    2012-01-01

    A nanosecond time-resolved imaging platform for diode plasmas diagnostics has been constructed based on the pulsed electron beam accelerator and high speed framing camera (HSFC). The accelerator can provide an electrical pulse with voltages of 200-500 kV, rise-time (from 10% to 90% amplitude) of 25 ns and duration of 110 ns. The diode currents up to kA level can be extracted. The trigger signal for camera was picked up by a water-resistor voltage divider after the main switch of the accelerator, which could avoid the disadvantageous influence of the time jitter caused by the breakdown of the gas gaps. Then the sampled negative electrical pulse was converted into a transistor-transistor logic (TTL) signal (5 V) with rise time of about 1.5 ns and time jitter less than 1 ns via a processor. And this signal was taken as the synchronization time base. According to the working characteristics of the camera, the synchronization scheme relying mainly on electrical pulse delay method supplemented by light signal delay method was determined to make sure that the camera can work synchronously with the light production and transportation from the diode plasma within the time scale of nanosecond. Moreover, shielding and filtering methods were used to restrain the interference on the measurement system from the accelerator. Finally, time resolved 2-D framing images of the diode plasma were acquired. (authors)

  3. Intensity limitations of cooled heavy ion beams in the ESR

    International Nuclear Information System (INIS)

    Hofmann, I.; Meyer-Pruessner, R.

    1985-06-01

    We consider the possibility of achieving maximum intensity and phase space density of heavy ions cooled by electrons in the Experimental Storage Ring to be built at GSI. Intrabeam scattering and the longitudinal microwave instability are found to be important limiting effects particularly at low energies. They are evaluated in diagrams, which can serve as a preliminary orientation for the expected performance of experiments. Examples have been calculated for U 92+ at 50 and 500 MeV/u; in the latter case we find that 9 ions at Δp/p=2x10 -4 and epsilon=0.2π mm mrad are on the safe side for an assumed cooling time of 100 msec. We have also analyzed I 20+ as a candidate for generating high energy density in matter. (orig.)

  4. Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2002-01-01

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0

  5. 650 mm long liquid hydrogen target for use in a high intensity electron beam

    International Nuclear Information System (INIS)

    Mark, J.W.

    1983-07-01

    This paper describes a 650 mm long liquid hydrogen target constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center. The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, construction details and operating experience are discussed

  6. The beam intensity and positron monitoring system of the Daresbury Electron Synchrotron (NINA)

    International Nuclear Information System (INIS)

    Poole, D.E.; Ring, T.; Peters, D.G.; Allen, J.

    1976-01-01

    The beam sensing system of NINA has been redesigned and rebuilt to provide comprehensive monitoring of beam intensity and position. The reasons for the change are stated, and the requirements and performance specification for the new system are listed. The report falls under the following heads: the sensing head; the head electronics unit; the line receiver unit; performance of installed monitors; display system and computer interface. The performance of the new system is summarized. (U.K.)

  7. On the fast gas ionization wave in an intense laser beam

    International Nuclear Information System (INIS)

    Fisher, V.I.

    1980-01-01

    The transfer of the adsorption zone of laser radiation along a beam is considered. It is shown that for a sufficiently strong laser beam intensity, q 0 >q tilde, the conditions of wave propagation differ principally from those known previously. In particular, the plasma temperature behind the wave front Tsup(*) decreases with the increase of q 0 , whereas the wave velocity D(q 0 ) grows faster than a linear function. The structure and laws of propagation of the ionization wave are determined

  8. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  9. EBIS/T charge breeding for intense rare isotope beams at MSU

    CERN Document Server

    Schwarz, S; Marrs, R E; Kittimanapun, K; Lapierre, A; Mendez, A J; Ames, F; Beene, J R; Lindroos, M; Ahle, L E; Stracener, D W; Kester, O; Wenander, F; Lopez-Urrutia, J R Crespo; Dilling, J; Bollen, G

    2010-01-01

    Experiments with reaccelerated beams are an essential component of the science program of existing and future rare isotope beam facilities. NSCL is currently constructing ReA3, a reaccelerator for rare isotopes that have been produced by projectile fragmentation and in-flight fission and that have been thermalized in a gas stopper. The resulting low-energy beam will be brought to an Electron Beam Ion Source/Trap (EBIS/T) in order to obtain highly charged ions at an energy of 12 keV/u. This charge breeder is followed by a compact linear accelerator with a maximum beam energy of 3MeV/u for U-238 and higher energies for lighter isotopes. Next-generation rare isotope beam facilities like the Facility for Rare Isotope Beams FRIB, but also existing Isotope Separator On-line (ISOL) facilities are expected to provide rare-isotope beam rates in the order of 10(11) particles per second for reacceleration. At present the most promising scheme to efficiently start the reacceleration of these intense beams is the use of a...

  10. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  11. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  12. Performance analysis of the intense slow-positron beam at the NC State University PULSTAR reactor

    International Nuclear Information System (INIS)

    Moxom, J.; Hathaway, A.G.; Bodnaruk, E.W.; Hawari, A.I.; Xu, J.

    2007-01-01

    An intense positron beam, for application in nanophase characterization, is now under construction at the 1 MW PULSTAR nuclear reactor at North Carolina State University (NCSU). A tungsten converter/moderator is used, allowing positrons to be emitted from the surface with energies of a few electron volts. These slow positrons will be extracted from the moderator and formed into a beam by electrostatic lenses and then injected into a solenoidal magnetic field for transport to one of three experimental stations, via a beam switch. To optimize the performance of the beam and to predict the slow-positron intensity, a series of simulations were performed. A specialized Monte-Carlo routine was integrated into the charged-particle transport calculations to allow accounting for the probabilities of positron re-emission and backscattering from multiple-bank moderator/converter configurations. The results indicate that either a two-bank or a four-bank tungsten moderator/converter system is preferred for the final beam design. The predicted slow-positron beam intensities range from nearly 7x10 8 to 9x10 8 e + /s for the two-bank and the four-bank systems, respectively

  13. High intensity metallic ion beams from an ecr ion source at GANIL

    International Nuclear Information System (INIS)

    Leherissier, P.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lemagnen, F.; Leroy, R.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Jaffres, P.A.

    2001-01-01

    In the recent years, progress concerning the production of high intensity of metallic ions beams ( 58 Ni, 48 Ca, 76 Ge) at Ganil have been performed. The MIV0C method has been successfully used to produce a high intensity nickel beam with the ECR4 ion source: 20 eμA of 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. The oven method has been first tested with natural metallic calcium on the ECR4 ion source, then used to produce a high power beam (740 W on target i.e. 0.13 pμA accelerated up to 60 MeV/u) of 48 Ca still keeping a low consumption (0.09 mg/h). A germanium beam is now under development, using the oven method with germanium oxide. The ionization efficiencies have been measured and compared. (authors)

  14. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  15. Designing and Building a Collimation System for the High-Intensity LHC Beam

    CERN Document Server

    Assmann, R W; Baishev, I S; Bruno, L; Brugger, M; Chiaveri, Enrico; Dehning, Bernd; Ferrari, A; Goddard, B; Jeanneret, J B; Jiménez, M; Kain, V; Kaltchev, D I; Lamont, M; Ruggiero, F; Schmidt, R; Sievers, P; Uythoven, J; Vlachoudis, V; Vos, L; Wenninger, J

    2003-01-01

    The Large Hadron Collider (LHC) will collide proton beams at 14 TeV c.m. with unprecedented stored intensities. The transverse energy density in the beam will be about three orders of magnitude larger than previously handled in the Tevatron or in HERA, if compared at the locations of the betatron collimators. In particular, the population in the beam halo is much above the quench level of the superconducting magnets. Two LHC insertions are dedicated to collimation with the design goals of preventing magnet quenches in regular operation and preventing damage to accelerator components in case of irregular beam loss. We discuss the challenges for designing and building a collimation system that withstands the high power LHC beam and provides the required high cleaning efficiency. Plans for future work are outlined.

  16. A mask for high-intensity heavy-ion beams in the MAYA active target

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Tajes, C., E-mail: rodriguez@ganil.fr [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Pancin, J.; Damoy, S.; Roger, T.; Babo, M. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Caamaño, M. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Farget, F.; Grinyer, G.F.; Jacquot, B.; Pérez-Loureiro, D. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Ramos, D. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Suzuki, D. [Institut de Physique Nucléaire, Université Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France)

    2014-12-21

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a {sup 136}Xe beam are presented.

  17. A stable production of intense electron beam plasma with ion back stream

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1975-12-01

    An intense electron beam is extracted without space charge limit from a dc plasma source along a magnetic field. The beam space charge is neutralized stably through back streaming of self-ionized ions from the beam extracting anode region where a neutral gas is fed locally. In Appendix I, a space charge free electron gun is designed under this neutralization method. In Appendix II, a dynamic discharge through a series resistance is described, where an operative mechanism of the well-known TP-D plasma is clarified. (auth.)

  18. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: muwang@nju.edu.cn; Wang, Mu, E-mail: rwpeng@nju.edu.cn, E-mail: muwang@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-06-27

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  19. Propagation of an intense laser beam in a tapered plasma channel

    International Nuclear Information System (INIS)

    Jha, Pallavi; Singh, Ram Gopal; Upadhyaya, Ajay K.; Mishra, Rohit K.

    2008-01-01

    Propagation characteristics and modulation instability of an intense laser beam propagating in an axially tapered plasma channel, having a parabolic radial density profile, are studied. Using the source-dependent expansion technique, the evolution equation for the laser spot is set up and conditions for propagation of the laser beam with a constant spot size (matched beam) are obtained. Further, the dispersion relation and growth rate of modulation instability of the laser pulse as it propagates through linearly and quadratically tapered plasma channels, have been obtained

  20. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  1. Low energy intense electron beams with extra-low energy spread

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Calabrese, R.; Ciullo, G.; Dikansky, N.S.; Guidi, V.; Kot, N.C.; Kudelainen, V.I.; Lamanna, G.; Lebedev, V.A.; Logachov, P.V.; Tecchio, L.; Yang, B.

    1994-01-01

    Maximum achievable intensity for low energy electron beams is a feature that is not very often compatible with low energy spread. We show that a proper choice of the source and the acceleration optics allows one to match them together. In this scheme, a GaAs photocathode excited by a single-mode infrared laser and adiabatic acceleration in fully magnetised optics enables the production of a low-energy-spread electron beam with relatively high intensity. The technological problems associated with the method are discussed together with its limitations. (orig.)

  2. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  3. STATUS REPORT ON DEVELOPMENT OF A HIGH-SPEED HIGH-INTENSITY MOLECULAR BEAM

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, Eldon L.

    1963-07-15

    Status of a high-speed high-intensity molecular beam under development is described. Bases for designs of the several components are presented. Using an arc-heated source and a hypersonic jet, molecular energies exceeding 1 ev and beam intensities of the order of 10/sup 16/ molecules/ cm/sup 2/ sec are anticipated. A two-disk beam chopper and speed selector provides a means for analyzing the speed distribution in the generated beam, for chopping the beam into bursts of nearly monoenergetic molecules suitable for scattering studies using the time-of-flight technique, and for modulating the beam in order to facilitate detection. A through-flow ionization detector possesses the versatility required for scattering studies using the time-of-flight technique. A sorption pump and a turbo pump serve as central components of alternative pumping systems for the collimating chamber. Using the arc-heated source, the converging nozzle, the conduction-radiation-cooled skimmer, the turbo pump (turning at 3400 rpm), the chopperselector (acting only as a chopper), and the detector, an arc-heated beam is generated and detected. (auth)

  4. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    International Nuclear Information System (INIS)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  5. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  6. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  7. Development of apparatus for high-intensity beam lines at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    The new counter experimental hall was constructed at the KEK 12 GeV Proton Synchrotron (the KEK-PS) in order to handle high-intensity primary proton beams of up to 1 x 10 13 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1 x 10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the new hall construction. A part of our R/D work on handling high intensity beam is briefly reported. (author)

  8. An intense lithium ion beam source using vacuum baking and discharge cleaning techniques

    International Nuclear Information System (INIS)

    Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.; Olson, J.C.

    1991-01-01

    We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm 2 with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 degree C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorine in the 1+ and 2+ charge states was significant (∼25%). The remaining 65% of the beam consisted of Li + ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times

  9. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  10. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  11. Intensities and cross-sections of Ar clusters in a molecular beam, ch. 3

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van; Lumig, A. van; Reuss, J.

    1976-01-01

    Ar-cluster beams were produced by supersonic expansion under various source conditions. The experimental intensities have been scaled such that universal curves are obtained, up to moderate source pressures. The ratio of dimer/monomer cross-sections has been determined. (Auth.)

  12. Spatial and spectral coherence in propagating high-intensity twin beams

    Czech Academy of Sciences Publication Activity Database

    Haderka, O.; Machulka, R.; Peřina ml., Jan; Allevi, A.; Bondani, M.

    2015-01-01

    Roč. 5, Sep (2015), s. 14365 ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : spatial and spectral coherence * high-intensity twin beams Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  13. Analysis of intense beam instability in a general quadrupole focusing channel with image charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in

    2016-02-01

    The stability properties of transverse envelopes of mismatched intense continuous charge particle beam propagating in a general quadrupole focusing channel have been investigated in the presence of image charge effect due to a cylindrical conducting pipe. Phase shifts and growth factors of the envelope oscillations in the case of instability are calculated by numerical evaluation of the eigenvalues of linearly perturbed envelope equations for small deviations from the matched beam conditions. A detailed study on the region of instability and its dependence on the system parameters like occupancy of the quadrupole focusing field, syncopation factor, zero current phase advance, beam intensity etc. have been carried out. It has been found that the strength and regions of envelope instability due to the lattice and confluent resonances in the parametric space are affected by the presence of image charge.

  14. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  15. Control of proton beam divergence in intense-laser foil-plasma interaction

    International Nuclear Information System (INIS)

    Kawata, S.; Sonobe, R.; Miyazaki, S.; Sakai, K.; Kikuchi, T.

    2006-01-01

    Quality of an ion beam is one of the critical factors in intense-laser ion beam generation. A purpose of this study is the suppression of transverse proton divergence by a controlled electron cloud in laser-foil interactions. In this study, the foil target has a hole at the opposite side of the laser illumination. The electrons accelerated by an intense laser are limited in transverse by a neutral plasma at a protuberant part. Therefore the protons are accelerated and also controlled transversely by the electron cloud structure. In our 2.5-dimensional Particle-in-Cell simulations we demonstrate that the transverse shape of the electron cloud is well controlled and the collimated proton beam is generated successfully in the target with the hole. (authors)

  16. Direct measurement of the energy spectrum of an intense proton beam

    International Nuclear Information System (INIS)

    Leeper, R.J.; Lee, J.R.; Kissel, L.; Johnson, D.J.; Stygar, W.A.; Hebron, D.E.; Roose, L.D.

    1983-01-01

    A time-resolved magnetic spectrometer has been used to measure the energy spectrum of an intense (0.5 TW/cm 2 ) proton beam. A thin (2400 A) gold foil placed at the focus of an ion diode Rutherford scattered protons by 90 0 into the spectrometer, reducing the beam intensity to a level suitable for magnetic analysis. The scattered beam was collimated by two 1 mm diameter apertures separated by 12.3 cm. The collimated protons were deflected in a 12.7 cm diameter, 6.65 Kg samarium-cobalt permanent magnet. The deflected protons were recorded simultaneously on CR-39 and eight 1 mm 2 by 35 μm thick PIN diodes. A Monte Carlo computer code was used to calculate the sensitivity and resolution of the spectrometer. Data taken on Proto-I show a 150 keV to 250 keV wide proton energy spectrum at each instant in time

  17. A new model for the collective beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, J.A.; Sobol, A.V. [New Mexico Univ., Albuquerque, NM (United States); Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-09-15

    The Collective Beam-Beam interaction is studied in the framework of maps with a ''kick-lattice'' model in 4-D phase space. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated lineralized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the {pi} and {sigma} modes. The {pi} and {sigma} modes are calculated from the third kind integral equation and results are compared with the kick-lattice model. (orig.)

  18. A new model for the collective beam-beam interaction

    International Nuclear Information System (INIS)

    Ellison, J.A.; Sobol, A.V.; Vogt, M.

    2006-09-01

    The Collective Beam-Beam interaction is studied in the framework of maps with a ''kick-lattice'' model in 4-D phase space. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated lineralized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the π and σ modes. The π and σ modes are calculated from the third kind integral equation and results are compared with the kick-lattice model. (orig.)

  19. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  20. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  1. The Modelling of Axially Translating Flexible Beams

    Science.gov (United States)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  2. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  3. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  4. Heating of a dense plasma with an intense relativistic electron beam: initial observations

    International Nuclear Information System (INIS)

    Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Sheffield, R.L.

    1981-01-01

    A dense (approx. 10 17 cm -3 ) plasma has been heated via the relativistic two-stream instability using a 3 MeV, intense (5 x 10 5 A/cm 2 ) electron beam. Evidence for heating has been obtained with diamagnetic loops, thin-foil witness plates, and a 2-channel, broad-band soft x-ray detector. Measurements of energy loss from the beam using calorimetry techniques have been attempted. The measured strong dependence of heating on beam transverse temperature and the very short interaction length ( 100 ns after the beam pulse are consistent with a plasma temperature <150 eV and line emission near 80 to 90 eV

  5. Quantum and classical correlations of intense beams of light investigated via joint photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Agliati, Andrea [Quanta System S.p.A., Via IV Novembre, 116-21058, Solbiate Olona (Vatican City State, Holy See,) (Italy); Bondani, Maria [INFM/CNR, Unita di Como (Italy); Andreoni, Alessandra [Dipartimento di Fisica e Matematica, Universita degli Studi dell' Insubria, Como (Italy); Cillis, Giovanni De [Dipartimento di Fisica dell' Universita di Milano (Italy); Paris, Matteo G A [Dipartimento di Fisica dell' Universita di Milano (Italy)

    2005-12-01

    We address joint photodetection as a method for discriminating between the classical correlations of a thermal beam divided by a beam splitter and the quantum entanglement of a twin beam obtained by parametric down-conversion. We show that for intense beams of light the detection of the difference photocurrent may be used, in principle, in order to reveal entanglement, while the simple measurement of the correlation coefficient is not sufficient. We have experimentally measured the correlation coefficient and the variance of the difference photocurrent for several classical and quantum states. Results are in good agreement with theoretical predictions taking into account the extra noise in the generated fields that is due to the pump laser fluctuations.

  6. Quantum and classical correlations of intense beams of light investigated via joint photodetection

    International Nuclear Information System (INIS)

    Agliati, Andrea; Bondani, Maria; Andreoni, Alessandra; Cillis, Giovanni De; Paris, Matteo G A

    2005-01-01

    We address joint photodetection as a method for discriminating between the classical correlations of a thermal beam divided by a beam splitter and the quantum entanglement of a twin beam obtained by parametric down-conversion. We show that for intense beams of light the detection of the difference photocurrent may be used, in principle, in order to reveal entanglement, while the simple measurement of the correlation coefficient is not sufficient. We have experimentally measured the correlation coefficient and the variance of the difference photocurrent for several classical and quantum states. Results are in good agreement with theoretical predictions taking into account the extra noise in the generated fields that is due to the pump laser fluctuations

  7. Computer simulations for intense continuous beam transport in electrostatic lens systems

    International Nuclear Information System (INIS)

    Zhao Xiaosong; Lv Jianqin

    2008-01-01

    A code LEADS based on the Lie algebraic analysis for the continuous beam dynamics with space charge effect in beam transport has been developed. The program is used for the simulations of axial-symmetric and unsymmetrical intense continuous beam in the channels including drift spaces, electrostatic lenses and DC electrostatic accelerating tubes. In order to get the accuracy required, all elements are divided into many small segments, and the electric field in the segments is regarded as uniform field, and the dividing points are treated as thin lenses. Iteration procedures are adopted in the program to obtain self-consistent solutions. The code can be used in the designs of low energy beam transport systems, electrostatic accelerators and ion implantation machines. (authors)

  8. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  9. Preliminary experiments on a planar electron beam for an intense free electron maser

    International Nuclear Information System (INIS)

    Kato, Katsumasa; Iwata, Kazuma; Kitamura, Taro; Yamada, Naohisa; Soga, Yukihiro; Kamada, Keiichi; Yoshida, Mitsuhiro; Ginzburg, Naum S.

    2013-01-01

    A planar wiggler magnetic field was used to increase the output power of an intense free electron maser. As a preliminary experiment, a cylindrical electron beam was injected into a planar wiggler field with an axial magnetic field. Without the axial magnetic field, the cylindrical beam could not propagate through the wiggler field with length of 1 m. The microwave with frequency of 40 GHz was observed only when the beam propagates through the wiggler field. The frequency was nearly equal to the expected frequency of the free electron maser interaction. Though a sheet electron beam with nearly the same energy propagated through the planar wiggler field with deformation of its cross section, the microwave with frequency of 40 GHz was not observed. (author)

  10. Review of intense-ion-beam propagation with a view toward measuring ion energy

    International Nuclear Information System (INIS)

    Garcia, M.

    1982-01-01

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements

  11. Beam intensity scanner system for three dimensional dose verification of IMRT

    International Nuclear Information System (INIS)

    Vahc, Young W.; Kwon, Ohyun; Park, Kwangyl; Park, Kyung R.; Yi, Byung Y.; Kim, Keun M.

    2003-01-01

    Patient dose verification is clinically one of the most important parts in the treatment delivery of radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in IMRT. Here we present beam intensity scanner (BInS) system for the pre-treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom-made software for dose conversion of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6 MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera-based scintillator (DVCS) will be processed by our custom made software to reproduce 3D- relative dose distribution. For the intensity modulated beam (IMB), the BInS calculates absorbed dose in absolute beam fluence which is used for the patient dose distribution. Using BInS, we performed various measurements related to IMRT and found the following: (1) The 3D-dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimation of dynamic and/or step MLC system. This is mostly due to leaf transmission, leaf penumbra scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multi leaf opening. These phenomena result in a fluence distribution that can be substantially different from the initial and calculated intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT. (author)

  12. Pertinence analysis of intensity-modulated radiation therapy dosimetry error and parameters of beams

    International Nuclear Information System (INIS)

    Chi Zifeng; Liu Dan; Cao Yankun; Li Runxiao; Han Chun

    2012-01-01

    Objective: To study the relationship between parameter settings in the intensity-modulated radiation therapy (IMRT) planning in order to explore the effect of parameters on absolute dose verification. Methods: Forty-three esophageal carcinoma cases were optimized with Pinnacle 7.6c by experienced physicist using appropriate optimization parameters and dose constraints with a number of iterations to meet the clinical acceptance criteria. The plans were copied to water-phantom, 0.13 cc ion Farmer chamber and DOSE1 dosimeter was used to measure the absolute dose. The statistical data of the parameters of beams for the 43 cases were collected, and the relationships among them were analyzed. The statistical data of the dosimetry error were collected, and comparative analysis was made for the relation between the parameters of beams and ion chamber absolute dose verification results. Results: The parameters of beams were correlated among each other. Obvious affiliation existed between the dose accuracy and parameter settings. When the beam segment number of IMRT plan was more than 80, the dose deviation would be greater than 3%; however, if the beam segment number was less than 80, the dose deviation was smaller than 3%. When the beam segment number was more than 100, part of the dose deviation of this plan was greater than 4%. On the contrary, if the beam segment number was less than 100, the dose deviation was smaller than 4% definitely. Conclusions: In order to decrease the absolute dose verification error, less beam angles and less beam segments are needed and the beam segment number should be controlled within the range of 80. (authors)

  13. Individualized Selection of Beam Angles and Treatment Isocenter in Tangential Breast Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands); Spadola, Sara [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands); Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna (Italy); Breedveld, Sebastiaan; Baaijens, Margreet [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands); Lanconelli, Nico [Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna (Italy); Heijmen, Ben [Department of Radiation Oncology, Erasmus M.C. Cancer Institute, Rotterdam (Netherlands)

    2017-06-01

    Purpose and Objective: Propose a novel method for individualized selection of beam angles and treatment isocenter in tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: For each patient, beam and isocenter selection starts with the fully automatic generation of a large database of IMRT plans (up to 847 in this study); each of these plans belongs to a unique combination of isocenter position, lateral beam angle, and medial beam angle. The imposed hard planning constraint on patient maximum dose may result in plans with unacceptable target dose delivery. Such plans are excluded from further analyses. Owing to differences in beam setup, database plans differ in mean doses to organs at risk (OARs). These mean doses are used to construct 2-dimensional graphs, showing relationships between: (1) contralateral breast dose and ipsilateral lung dose; and (2) contralateral breast dose and heart dose (analyzed only for left-sided). The graphs can be used for selection of the isocenter and beam angles with the optimal, patient-specific tradeoffs between the mean OAR doses. For 30 previously treated patients (15 left-sided and 15 right-sided tumors), graphs were generated considering only the clinically applied isocenter with 121 tangential beam angle pairs. For 20 of the 30 patients, 6 alternative isocenters were also investigated. Results: Computation time for automatic generation of 121 IMRT plans took on average 30 minutes. The generated graphs demonstrated large variations in tradeoffs between conflicting OAR objectives, depending on beam angles and patient anatomy. For patients with isocenter optimization, 847 IMRT plans were considered. Adding isocenter position optimization next to beam angle optimization had a small impact on the final plan quality. Conclusion: A method is proposed for individualized selection of beam angles in tangential breast IMRT. This may be especially important for patients with cardiac risk factors or an

  14. Resolving Tropical Cyclone Intensity in Models

    Science.gov (United States)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  15. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  16. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  17. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    International Nuclear Information System (INIS)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F.; Jaffres, P.A.

    2000-01-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 μA 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  18. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  19. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    a sharp, conical intensity profile resembling a donut, and in the focal region the beam collapses to a central, Lorentz-shaped profile. The Lorentzian intensity profile in the focal region can be explained by considering the frequency-dependent spot size derived from measurements of the Gouy phase shift...... in the focal region, and the transition from the donut profile to a central peak is consistent with propagation of a Bessel–Gauss beam, as shown by simulations based on a recent transient photocurrent model (You et al 2012 Phys. Rev. Lett. 109 183902). We combine our measurements to the first full 3D...

  20. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  1. SLC beam line error analysis using a model-based expert system

    International Nuclear Information System (INIS)

    Lee, M.; Kleban, S.

    1988-02-01

    Commissioning particle beam line is usually a very time-consuming and labor-intensive task for accelerator physicists. To aid in commissioning, we developed a model-based expert system that identifies error-free regions, as well as localizing beam line errors. This paper will give examples of the use of our system for the SLC commissioning. 8 refs., 5 figs

  2. Mathematical models and illustrative results for the RINGBEARER II monopole/dipole beam-propagation code

    International Nuclear Information System (INIS)

    Chambers, F.W.; Masamitsu, J.A.; Lee, E.P.

    1982-01-01

    RINGBEARER II is a linearized monopole/dipole particle simulation code for studying intense relativistic electron beam propagation in gas. In this report the mathematical models utilized for beam particle dynamics and pinch field computation are delineated. Difficulties encountered in code operations and some remedies are discussed. Sample output is presented detailing the diagnostics and the methods of display and analysis utilized

  3. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  4. Workload modelling for data-intensive systems

    CERN Document Server

    Lassnig, Mario

    This thesis presents a comprehensive study built upon the requirements of a global data-intensive system, built for the ATLAS Experiment at CERN's Large Hadron Collider. First, a scalable method is described to capture distributed data management operations in a non-intrusive way. These operations are collected into a globally synchronised sequence of events, the workload. A comparative analysis of this new data-intensive workload against existing computational workloads is conducted, leading to the discovery of the importance of descriptive attributes in the operations. Existing computational workload models only consider the arrival rates of operations, however, in data-intensive systems the correlations between attributes play a central role. Furthermore, the detrimental effect of rapid correlated arrivals, so called bursts, is assessed. A model is proposed that can learn burst behaviour from captured workload, and in turn forecast potential future bursts. To help with the creation of a full representative...

  5. Simulations and experiments of intense ion beam compression in space and time

    International Nuclear Information System (INIS)

    Yu, S.S.; Seidl, P.A.; Roy, P.K.; Lidia, S.M.; Coleman, J.E.; Kaganovich, I.D.; Gilson, E.P.; Welch, Dale Robert; Sefkow, Adam B.; Davidson, R.C.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) (P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)). To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ∼300 keV K + beam and have separately achieved transverse and longitudinal focusing to a radius Z 2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  6. Numerical simulations of self-pinched transport of intense ion beams in low-pressure gases

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Welch, D.R.; Oliver, B.V.; Olson, C.L.

    1999-01-01

    The self-pinched transport of intense ion beams in low-pressure background gases is studied using numerical simulations and theoretical analysis. The simulations are carried out in a parameter regime that is similar to proton beam experiments being fielded on the Gamble II pulsed power generator [J. D. Shipman, Jr., IEEE Trans. Nucl. Sci. NS-18, 243 (1971)] at the Naval Research Laboratory. Simulation parameter variations provide information on scaling with background gas species, gas pressure, beam current, beam energy, injection angles, and boundaries. The simulation results compare well with simple analytic scaling arguments for the gas pressure at which the effective net current should peak and with estimates for the required confinement current. The analysis indicates that the self-pinched transport of intense proton beams produced on Gamble II (1.5 MeV, 100 kA, 3 cm radius) is expected to occur at gas pressures between 30 and 80 mTorr of He or between 3 and 10 mTorr of Ar. The significance of these results to ion-driven inertial confinement fusion is discussed. copyright 1999 American Institute of Physics

  7. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    Science.gov (United States)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  8. Propagation of Gaussian laser beam in cold plasma of Drude model

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Li Lei; Du Yanwei

    2011-01-01

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n 0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  9. Development of Beam Diagnostic Tools for Monitoring Cyclotron Beams at Production Intensities

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mikael [Hevesy Laboratory, Risoe-DTU National Laboratory, DK-4000 Roskilde (Denmark)

    2009-07-01

    This final report for the IAEA-CRP on “Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes” reports the progress made as part of the Danish participation in the above CRP. Some of the work is the result of international, multi-institutional collaboration and/or research student education, and credit is hereby given to my former students Helge Thisgaard and Jesper Jørgensen, Katie Gagnon, student of Tom Ruth at Triumf, Canada, and, last but not least, to Tom himself. The people at the Edmonton PET centre, for beam time. David Schlyer and Rick Carson of BNL for access to the Tandem accelerator calibration shots. (author)

  10. Development of Beam Diagnostic Tools for Monitoring Cyclotron Beams at Production Intensities

    International Nuclear Information System (INIS)

    Jensen, Mikael

    2009-01-01

    This final report for the IAEA-CRP on “Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes” reports the progress made as part of the Danish participation in the above CRP. Some of the work is the result of international, multi-institutional collaboration and/or research student education, and credit is hereby given to my former students Helge Thisgaard and Jesper Jørgensen, Katie Gagnon, student of Tom Ruth at Triumf, Canada, and, last but not least, to Tom himself. The people at the Edmonton PET centre, for beam time. David Schlyer and Rick Carson of BNL for access to the Tandem accelerator calibration shots. (author)

  11. Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma

    International Nuclear Information System (INIS)

    Wang Yunliang; Shukla, P. K.; Eliasson, B.

    2013-01-01

    We consider nonlinear interactions between two relativistically strong laser beams and a quantum plasma composed of degenerate electron fluids and immobile ions. The collective behavior of degenerate electrons is modeled by quantum hydrodynamic equations composed of the electron continuity, quantum electron momentum (QEM) equation, as well as the Poisson and Maxwell equations. The QEM equation accounts the quantum statistical electron pressure, the quantum electron recoil due to electron tunneling through the quantum Bohm potential, electron-exchange, and electron-correlation effects caused by electron spin, and relativistic ponderomotive forces (RPFs) of two circularly polarized electromagnetic (CPEM) beams. The dynamics of the latter are governed by nonlinear wave equations that include nonlinear currents arising from the relativistic electron mass increase in the CPEM wave fields, as well as from the beating of the electron quiver velocity and electron density variations reinforced by the RPFs of the two CPEM waves. Furthermore, nonlinear electron density variations associated with the driven (by the RPFs) quantum electron plasma oscillations obey a coupled nonlinear Schrödinger and Poisson equations. The nonlinearly coupled equations for our purposes are then used to obtain a general dispersion relation (GDR) for studying the parametric instabilities and the localization of CPEM wave packets in a quantum plasma. Numerical analyses of the GDR reveal that the growth rate of a fastest growing parametrically unstable mode is in agreement with the result that has been deduced from numerical simulations of the governing nonlinear equations. Explicit numerical results for two-dimensional (2D) localized CPEM wave packets at nanoscales are also presented. Possible applications of our investigation to intense laser-solid density compressed plasma experiments are highlighted.

  12. Tune measurements with high intensity ion beams at GSI SIS-18

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul [GSI, Darmstadt (Germany); TEMF, TU Darmstadt (Germany); Forck, Peter; Kowina, Piotr; Kaufmann, Wolfgang [GSI, Darmstadt (Germany); Weiland, Thomas [TEMF, TU Darmstadt (Germany)

    2012-07-01

    A precise tune measurement during a full accelerating cycle is required to achieve stable high current operation. A new system has been commissioned at GSI for position, orbit and tune measurements. It consists of three distinct parts; an exciter which provides power to excite coherent betatron oscillations in the bunched beam; Fast ADCs to digitize the BPM signals at 125 MSa/s; the post processing electronics uses digitized BPM signals to acquire one position value per bunch. Subsequently the baseband tune is determined by Fourier transformation of the position data. Experiments were conducted to understand the effects of high beam intensity on tune at injection plateau (11.4 MeV/u) and during acceleration ramp (11.4-600 MeV/u). These experiments were performed with U{sup 73+} and Ar{sup 18+} ion beam at highest achievable intensities of 2.10{sup 9} and 2.5.10{sup 10} respectively. Tune shift with increased intensity was observed. The working principle of the tune measurement system and observed high intensity effects on tune will be reported in this contribution.

  13. Using prepulsing: a useful way for increasing absorption efficiency of high intensity laser beam

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian

    1990-01-01

    Using prepulse to irradiate target for increasing absorption efficiency of high intensity incident laser beam is considered and some theoretical simulations have been done. 1-D non-LTE radiative hydrodynamic code is used to simulate the interactions of laser beam with matter. A gaussian laser prepulse of wavelength 1.06 μm, FWHM 600 ps and peak intensity 1.5 x 10 12 W/cm 2 was used to irradiate 20 μm thick Au plate target, after 3ns a main gaussian pulse with wavelength 1.06 μm, FWHM 600 ps and peak intensity 3.0 x 10 14 W/cm 2 irradiated the expanding Au plasma. The responces of laser-produced plasma conditions are shown. By comparing with without prepulsing, under the condition of same main incident laser pulse, the absorption efficiency is increased from 0.36 to 0.60 and the laser-x-ray conversion efficiency is increased from 0.16 to 0.25. The electron temperature of hot plasma is also higher than without prepulsing, and the x-ray spectrum which is emitted from laser-produced hot plasma is harder and more intense than without prepulsing. The responces of laser-produced plasma for Fe target with prepulsing are shown as well. The conclusion is that using prepulsing is a useful way for getting high absorption laser beam

  14. Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam

    Science.gov (United States)

    Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.

    2018-02-01

    We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.

  15. Double-wall IFR cell for conditioning intense relativistic electron beams

    International Nuclear Information System (INIS)

    Myers, M.C.; Meger, R.A.; Murphy, D.P.; Fernsler, R.F.; Hubbard, R.F.; Slinker, S.P.; Weidman, D.J.

    1994-01-01

    An intense relativistic electron beam (IREB) injected into neutral gas in the high pressure regime characteristically propagates in a self-pinched mode but is susceptible to the resistive hose instability. Typically, beam are conditioned for propagation experiments by reducing the perturbations that may excite resistive hose and by adjusting the emittance profile of the beam such that the convective growth of the instability is decreased. The former has been achieved by applying an anharmonic focusing force as the beam is transported through a conducting tube or cell. The latter has been effectively demonstrated by passing the beam through an ion focus regime (IFR) cell which imposes a head to tail beam emittance variations. However, since the physical parameters of the two types of cells are different, conflicts arise when the cells are coupled sequentially. The double-wall IFR cell described here eliminates these interface difficulties by providing the necessary conditions properties in a single cell. The physics and design of the cell will be introduced and parameter variations explored. The conditioning and propagation measurements will be presented and the results of the experiment will be discussed in relation to theory and simulation

  16. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  17. Modelling and implementation of the “6D” beam-beam interaction

    CERN Document Server

    Iadarola, Giovanni; Papaphilippou, Yannis

    2018-01-01

    These slides illustrate the numerical modelling of a beam-beam interaction using the “Synchro Beam Mapping” approach. The employed description of the strong beam allows correctly accounting for the hour-glass effect as well as for linear coupling at the interaction point. The implementation of the method within the SixTrack code is reviewed and tested.

  18. Research progress in intense ion beam production for inertial confinement fusion at Cornell University

    International Nuclear Information System (INIS)

    Bluhm, H.; Greenly, J.B.; Hammer, D.A.

    1983-01-01

    Recent results obtained in the generation of intense pulsed light ion beams and their application to inertial confinement fusion are described. Studies of time-integrated and time-dependent beam divergence using a magnetically insulated ion diode with a ''flashboard'' anode at 11 W diode power show a directionality which is apparently due to electron dynamics in the diode. Nevertheless, ion beams having divergence angle as small as 0.5 0 have been produced at >10 8 W.cm - 2 . In another experiment with a similar diode, the anode plasma formation time varied with the detailed anode configuration, the diode voltage and the insulating magnetic field, with the longer times obtained at lower voltage and higher insulating magnetic field strength. The anode plasma density was determined to be in the 10 15 cm - 3 density range and to move away from the anode at approx.2 cm.μs - 1 in another similar experiment. Preliminary experiments performed on a 10 12 W accelerator show reasonable power coupling to a magnetically insulated ion diode, with >10 9 W.cm - 2 beams at approx.1.5 MV being generated. Computer simulations suggest that if such a beam can be focused into a plasma channel, most of its energy can be delivered to a pellet one to two metres away. In experiments on the applied Bsub(theta) diode, microwave radiation, ion production efficiency, and ion beam fluctuations all reach a maximum when the insulating magnetic field is about 1.4 times the critical field for magnetic insulation. Finally, relatively pure beams of heavy ions have been produced by making the anode with hydrocarbon-free dielectric material which contains the desired species together with other ions having substantially higher ionization potential. The sum of these results suggests that flashboard anodes operated at the few-MV level can be used to produce beams with properties suitable for inertial confinement fusion experiments on sufficiently powerful pulsed power generators. (author)

  19. Testing proton spin models with polarized beams

    International Nuclear Information System (INIS)

    Ramsey, G.P.

    1991-01-01

    We review models for spin-weighted parton distributions in a proton. Sum rules involving the nonsinglet components of the structure function xg 1 p help narrow the range of parameters in these models. The contribution of the γ 5 anomaly term depends on the size of the integrated polarized gluon distribution and experimental predictions depend on its size. We have proposed three models for the polarized gluon distributions, whose range is considerable. These model distributions give an overall range is considerable. These model distributions give an overall range of parameters that can be tested with polarized beam experiments. These are discussed with regard to specific predictions for polarized beam experiments at energies typical of UNK

  20. Program for calculating multi-component high-intense ion beam transport

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Prejzendorf, V.A.

    1985-01-01

    The CANAL program for calculating transport of high-intense beams containing ions with different charges in a channel consisting of dipole magnets and quadrupole lenses is described. The equations determined by the method of distribution function momenta and describing coordinate variations of the local mass centres and r.m.s. transverse sizes of beams with different charges form the basis of the calculation. The program is adapted for the CDC-6500 and SM-4 computers. The program functioning is organized in the interactive mode permitting to vary the parameters of any channel element and quickly choose the optimum version in the course of calculation. The calculation time for the CDC-6500 computer for the 30-40 m channel at the integration step of 1 cm is about 1 min. The program is used for calculating the channel for the uranium ion beam injection from the collective accelerator into the heavy-ion synchrotron

  1. VME computer monitoring system of KEK-PS fast pulsed magnet currents and beam intensities

    International Nuclear Information System (INIS)

    Kawakubo, T.; Akiyama, A.; Kadokura, E.; Ishida, T.

    1992-01-01

    For beam transfer from the KEK-PS Linac to the Booster synchrotron ring and from the Booster to the Main ring, many pulse magnets have been installed. It is very important for the machine operation to monitor the firing time, rising time and peak value of the pulsed magnet currents. It is also very important for magnet tuning to obtain good injection efficiency of the Booster and the Main ring, and to observe the last circulating bunched beam in the Booster as well as the first circulating in the Main. These magnet currents and beam intensity signals are digitized by a digital oscilloscope with signal multiplexers, and then shown on a graphic display screen of the console via a VME computer. (author)

  2. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  3. Generation of intense ion beams and their application to controlled fusion research

    International Nuclear Information System (INIS)

    Dreike, P.; Ferch, R.L.; Friedman, A.

    1977-01-01

    Successful generation of pulsed multi-kA proton beams in the energy range 0.2 to 1.7 MeV using existing pulsed power technology has been achieved by three different techniques: reflex triodes, pinched electron-beam diodes and magnetically insulated diodes. Peak current densities in excess of 10 kAcm -2 have been observed on the NRL Gamble II machine and over 1.0 kAcm -2 on the Cornell Neptune machine. Peak total ion currents above 200 kA are produced by Gamble II. The potential applications of intense ion beams to magnetic confinement include (i) plasma heating and (ii) ion rings. A summary of continuous theoretical and experimental investigations on these applications is presented. (author)

  4. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  5. Manipulation of the polarization of intense laser beams via optical wave mixing in plasmas

    Science.gov (United States)

    Michel, Pierre; Divol, Laurent; Turnbull, David; Moody, John

    2014-10-01

    When intense laser beams overlap in plasmas, the refractive index modulation created by the beat wave via the ponderomotive force can lead to optical wave mixing phenomena reminiscent of those used in crystals and photorefractive materials. Using a vector analysis, we present a full analytical description of the modification of the polarization state of laser beams crossing at arbitrary angles in a plasma. We show that plasmas can be used to provide full control of the polarization state of a laser beam, and give simple analytical estimates and practical considerations for the design of novel photonics devices such as plasma polarizers and plasma waveplates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  6. Study on the intense relativistic electron beam propagation in a collisionless plasma of small density

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions

  7. Modeling of Flexible Beams for Robotic Manipulators

    International Nuclear Information System (INIS)

    Martins, Jorge; Ayala Botto, Miguel; Costa, Jose sa da

    2002-01-01

    This work treats the problem of modeling robotic manipulators with structural flexibility. A mathematical model of a planar manipulator with a single flexible link is developed. This model is capable of reproducing nonlinear dynamic effects, such as the beam stiffening due to the centrifugal forces induced by the rotation of the joints, giving it the capability to predict reliable dynamic behaviors for a wide range of applications. On the other hand, the model complexity is reduced, in order to keep it amenable for analysis and controller design. The models found in current literature for control design of flexible manipulator arms present dynamic limitations for the sake of real time implementation in a control scheme. These limitations are the result of premature linearization in the formulation of the dynamics equations. In this paper, this common linearization is presented and their dynamic limitations uncovered. An alternative reliable model is then presented. The model is founded on two basic assumptions: inextensibility of the neutral fiber and moderate rotations of the cross sections in order to account for the foreshortening of the beam due to bending. Simulation and experimental results show that the proposed model has the closest dynamic behavior to the real beam

  8. Simulating the Long-Distance Propagation of Intense Beams in the Paul Trap Simulator Experiment

    CERN Document Server

    Gilson, Erik P; Davidson, Ronald C; Efthimion, Philip; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) makes use of a compact Paul trap configuration with quadrupolar oscillating wall voltages to simulate the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient transport systems. The simulation is possible because of the similarity between the transverse dynamics of particles in the two systems. One-component pure cesium ion plasmas have been trapped that correspond to normalized intensity parameters s < 0.8, where s is the ratio of the square of the plasma frequency to twice the square of the average transverse focusing frequency. The PTSX device confines the plasma for hundreds of milliseconds, which is equivalent to beam propagation over tens of kilometers. Results are presented for experiments in which the amplitude of the oscillating confining voltage waveform has been modified as a function of time. A comparison is made between abrupt changes in amplitude and adiabatic changes in amplitude. T...

  9. Interaction of an intense relativistic electron beam with full density air

    International Nuclear Information System (INIS)

    Murphy, D.P.; Pechacek, R.E.; Raleigh, M.; Oliphant, W.F.; Meger, R.A.

    1987-01-01

    The authors report on a study of plasma generation by direct deposition of energy from an intense relativistic electron beam (REB) into full density air. It has been postulated that a sufficiently intense REB can fully ionize the air and produce a 2 eV plasma with Spitzer conductivity. The REB is produced from a field emission diode driven by either the Gamble I or Gamble II generator. Gamble I can produce a 0.60 MV, 300 kA, 50 ns REB and Gamble II can produce a 2.0 MV, 1.0 MA, 50 ns REB. The REB was injected into a short diagnostic cell containing full density air and up to a 14 kG solenoidal magnetic field. The diagnostics include beam and net current measurements, x-ray and visible photography and visible light spectroscopy

  10. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  11. Capacitive divider for output voltage measurement of intense electron beam accelerator

    International Nuclear Information System (INIS)

    Ding Desheng; Yi Lingzhi; Yu Binxiong; Hong Zhiqiang; Liu Jinliang

    2012-01-01

    A kind of simple-mechanism, easy-disassembly self-integrating capacitive divider used for measuring diode output voltage of intense electron beam accelerator (IEBA) is developed. The structure of the capacitive divider is described, and the capacitance value of the capacitive divider is calculated by theoretical analysis and electromagnetic simulation. The dependence of measurement voltage on electrical parameters such as stray capacitance, earth capacitance of front resistance is obtained by PSpice simulation. Measured waveforms appear overshoot phenomenon when stray capacitance of front resistance is larger, and the wavefront will be affected when earth capacitance of front resistance is larger. The diode output voltage waveforms of intense electron beam accelerator, are measured by capacitive divider and calibrated by water resistance divider, which is accordance with that measured by a resistive divider, the division ratio is about 563007. The designed capacitive divider can be used to measure high-voltage pulse with 100 ns full width at half maximum. (authors)

  12. High intensity multi beam design of SANS instrument for Dhruva reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Sohrab, E-mail: abbas@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Désert, S. [Laboratoire Leon Brillouin, CEA, Saclay, 91191 (France)

    2016-05-23

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10{sup −4} Å{sup −1} with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  13. Vacuum thermalization of high intensity laser beams and the uncertainty principle

    International Nuclear Information System (INIS)

    Gupta, R.P.; Bhakar, B.S.; Panarella, E.

    1983-01-01

    This chapter phenomenologically calculates the cross section for photon-photon scattering in high intensity laser beams. The consequence of the Heisenberg uncertainty principle must be taken account in any photon-photon scattering calculation when many photons are present within the uncertainty volume. An exact determination of the number of scattering centers present in the scattering region is precluded when high intensity laser beams are involved in the scattering. Predictions are presented which suggest an upper limit to which the coherent photon densities can be increased either during amplification or focusing before scattering becomes predominant. The results of multiphoton ionization of gases, and laser induced CTR plasmas of the future, may be significantly affected due to the enhancement of the photon scattering investigated

  14. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  15. High intensity uranium beams from the superHILAC and the bevatron: final report

    International Nuclear Information System (INIS)

    1982-03-01

    The two injectors formerly used at the SuperHILAC were a 750-kV air-insulated Cockcroft-Walton (EVE) and a 2.5-MV pressurized HV multiplier (ADAM). The EVE injector can deliver adequate intensities of ions up to mass 40 (argon). The ADAM injector can accelerate ions with lower charge-to-mass ratios, and they can produce beams of heavier ions. The intensity of these beams decreases as the mass number increases, with the lowest practical intensity being achieved with lead beams. Experience with the two existing injectors provided substantial help in defining the general requirements for a new injector which would provide ample beams above mass 40. The requirements for acceptance by the first tank of the SuperHILAC are a particle velocity #betta# = 0.0154 (corresponding to an energy of 113 keV/amu) and a charge-to-mass ratio of 0.046 or larger. Present ion source performance dictates an air-insulated Cockcroft-Walton as a pre-accelerator because of its easy accessibility and its good overall reliability. The low charge state ions then receive further acceleration and, if necessary, subsequent stripping to the required charge state before injection into the SuperHILAC. A low-beta linac of the Widereoe type has been built to perform this acceleration. The injector system described consists of a Cockcroft-Walton pre-injector, injection beam lines and isotope analysis, a low-velocity linear accelerator, and SuperHILAC control center modifications

  16. Non-destructive profile measurement of intensive heavy ion beams; Zerstoerungsfreie Profilmessung intensiver Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Frank

    2010-02-08

    Within the framework of the FAIR-project (Facility for Antiproton and Ion Research) at GSI (Helmholtz Center for Heavy Ion Research), high intensity beams from protons to uranium ions with kinetic energies up to 30 AGeV are foreseen. Present GSI-accelerators like the UNILAC and the Heavy Ion Synchrotron (SIS-18) with a magnetic rigidity of 18 Tm will be used as injectors for the future synchrotron (SIS-100). Their beam current will be increased by up to two orders of magnitude. An accurate beam position and beam profile measurement is mandatory for a safe operation of transport sections, in particular in front of production targets (Fragment Separator (FRS)-target, anti p-production-target and Warm Dense Matter (WDM)-targets). Conventional intercepting profile monitors will not withstand the thermal stress of intensive ion beams, particularly for low energy applications or focused beams. For transverse profile determination a non-intercepting Beam Induced Fluorescence (BIF)-monitor was developed, working with residual gas. The BIF-monitor exploits fluorescence light emitted by residual gas molecules after atomic collisions with beam ions. Fluorescence-images were recorded with an image-intensified camera system, and beam profiles were obtained by projecting these images. Within the scope of this dissertation the following topics have been investigated: The photon yield, profile shape and background contribution were determined for different ion species (H{sup +}, S{sup 6+}, Ar{sup 18+}, K{sup +}, Ni{sup 9+}, Xe{sup 48+}, Ta{sup 24+}, Au{sup 65+}, U{sup 73+}), beam energies (7.7 AkeV-750 AMeV), gas pressures (10{sup -6}-3 mbar) and gas species (N{sub 2}, He, Ne, Ar, Kr, Xe). Applying an imaging spectrograph and narrowband 10 nm interference filters, the spectral response was mapped and associated with the corresponding gas transitions. Spectrally resolved beam profiles were also obtained form the spectrographic images. Major results are the light yield showing a

  17. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    International Nuclear Information System (INIS)

    Murakami, R; Habara, H; Iwawaki, T; Uematsu, Y; Tanaka, K A; Ivancic, S; Anderson, K; Haberberger, D; Stoeckl, C; Theobald, W; Sakagami, H

    2016-01-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation. (paper)

  18. Ionization chambers for monitoring in high-intensity charged particle beams

    CERN Document Server

    McDonald, J; Viren, B; Diwan, M; Erwin, A R; Naples, D; Ping, H

    2003-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility at the Brookhaven National Laboratory. The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline at the Fermi National Accelerator Laboratory. Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  19. Targets for production of high-intensity radioactive ion-beams

    International Nuclear Information System (INIS)

    Hagebo, E.; Hoff, P.; Steffensen, K.

    1991-01-01

    The recent developments of target systems for production of high intensity radioactive ion-beams at the ISOLDE mass separators is described. Methods for chemically selective production through separation of molecular ions are outlined and the effects of the addition of reactive gases has been studied. Results and further possible applications in the light element region are discussed. (author) 10 refs.; 9 figs.; 1 tab

  20. Combined centroid-envelope dynamics of intense, magnetically focused charged beams surrounded by conducting walls

    International Nuclear Information System (INIS)

    Fiuza, K.; Rizzato, F.B.; Pakter, R.

    2006-01-01

    In this paper we analyze the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting walls are absent, it is shown that the envelope and centroid dynamics decouple from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain characteristics of halo formation seen in the full simulations

  1. Description and operation of the LEDA beam-position/intensity measurement module

    International Nuclear Information System (INIS)

    Rose, C.R.; Stettler, M.W.

    1997-01-01

    This paper describes the specification, design and preliminary operation of the beam-position/intensity measurement module being built for the Low Energy Demonstration Accelerator (LEDA) and Accelerator Production of Tritium (APT) projects at Los Alamos National Laboratory. The module, based on the VXI footprint, is divided into three sections: first, the analog front-end which consists of logarithmic amplifiers, anti-alias filters, and digitizers; second, the digital-to-analog section for monitoring signals on the front panel; and third, the DSP, error correction, and VXI-interface section. Beam position is calculated based on the log-ratio transfer function. The module has four, 2-MHz, IF inputs suitable for two-axis position measurements. It has outputs in both digital and analog format for x- and y-position and beam intensity. Real-time error-correction is performed on the four input signals after they are digitized and before calculating the beam position to compensate for drift, offsets, gain non-linearities, and other systematic errors. This paper also describes how the on-line error-correction is implemented digitally and algorithmically

  2. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    Science.gov (United States)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  3. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    International Nuclear Information System (INIS)

    Krantz, Claude

    2009-01-01

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  4. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  5. Direct-aperture optimization applied to selection of beam orientations in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Bedford, J L; Webb, S

    2007-01-01

    Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans

  6. Non-intercepting beam intensity measurements towards pico-ampere. Cryogenic current comparators for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, Febin [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Goethe University, Frankfurt am Main (Germany); Helmholtz Institute Jena (Germany); Schwickert, Marcus; Sieber, Thomas; Kowina, Piotr; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Geithner, Rene; Neubert, Ralf; Seidel, Paul; Golm, Jessica [Friedrich-Schiller-Universitaet Jena (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Helmholtz Institute Jena (Germany); Friedrich-Schiller-Universitaet Jena (Germany)

    2016-07-01

    To satisfy the requirement of non-interceptive measurement of beam intensity down to nA range foreseen in the upcoming FAIR accelerator facility, several Cryogenic Current Comparator (CCC) systems are planned to be installed in its beam transfer lines and storage rings. As a test bench for the development of advanced CCC systems for these installations, the existing CCC system at GSI has been recommissioned and upgraded with advanced sensor components. Successful beam intensity measurements using this upgraded CCC system will be reported in this contribution. Apart from the beam measurements, several operational aspects of the CCC system were investigated, such as the baseline drifts and various noise influences. Combining the operational experiences and boundary conditions given at various installation locations in the FAIR facility, an advanced CCC system is currently under development and is planned to be installed at the Cryring facility at GSI for test measurements. Details on the development of this advanced CCC system will also be presented in this contribution.

  7. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  8. Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams

    CERN Document Server

    Qin, Hong; Hudson, Stuart R; Startsev, Edward

    2005-01-01

    The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. The...

  9. Accurate Profile Measurement of the low Intensity Secondary Beams in the CERN Experimental Areas

    CERN Document Server

    AUTHOR|(CDS)2084531; Tranquille, Gerard

    2018-02-23

    The CERN accelerators deliver a wide spectrum of secondary beams to the Experimental Areas. These beams are composed of hadrons, leptons, and heavy ions that can vary greatly in momentum (1 GeV/c to 400 GeV/c) and intensity (10^2 to 10^8 particles per second). The profile, position, and intensity of these beams are measured utilising particle detectors. However, the current systems show several problems that limit the quality of this kind of monitoring. The aim of this doctoral thesis is to investigate the best detector technology that could replace the existing monitors and build a first prototype of it. A review of the existing detection techniques has led to the choice of Scintillating Fibres (SciFi) read-out with Silicon Photomultipliers (SiPM). This detection technology has the potential to perform better in terms of material budget, range of intensities measured, and active area size. In addition, it has particle counting capabilities, which could extend its application to momentum spectrometry or Time...

  10. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  11. An Efficient Estimation Method for Reducing the Axial Intensity Drop in Circular Cone-Beam CT

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    2008-01-01

    Full Text Available Reconstruction algorithms for circular cone-beam (CB scans have been extensively studied in the literature. Since insufficient data are measured, an exact reconstruction is impossible for such a geometry. If the reconstruction algorithm assumes zeros for the missing data, such as the standard FDK algorithm, a major type of resulting CB artifacts is the intensity drop along the axial direction. Many algorithms have been proposed to improve image quality when faced with this problem of data missing; however, development of an effective and computationally efficient algorithm remains a major challenge. In this work, we propose a novel method for estimating the unmeasured data and reducing the intensity drop artifacts. Each CB projection is analyzed in the Radon space via Grangeat's first derivative. Assuming the CB projection is taken from a parallel beam geometry, we extract those data that reside in the unmeasured region of the Radon space. These data are then used as in a parallel beam geometry to calculate a correction term, which is added together with Hu’s correction term to the FDK result to form a final reconstruction. More approximations are then made on the calculation of the additional term, and the final formula is implemented very efficiently. The algorithm performance is evaluated using computer simulations on analytical phantoms. The reconstruction comparison with results using other existing algorithms shows that the proposed algorithm achieves a superior performance on the reduction of axial intensity drop artifacts with a high computation efficiency.

  12. Use of Intense Ion Beams for Surface Modification and Creation of New Materials

    CERN Document Server

    Renk, T; Prasad, S V; Provencio, P P; Thompson, M

    2002-01-01

    We have conducted surface treatment and alloying experiments with Al, Fe, and Ti-based metals on the RHEPP-1 accelerator (0.8 MV, 20 W, 80 ns FHWM, up to 1 Hz repetition rate) at Sandia National Laboratories. Ions are generated by the MAP gas-breakdown active anode, which can yield a number of different beam species including H, N, and C, depending upon the injected gas. Beams of intense pulsed high-power ion beams have been used to produce surface modification by changes in microstructure caused by rapid heating and cooling of the surface. Increase of beam power leads to ablation of a target surface, and redeposition of ablated material onto a separate substrate. Experiments are described in which ion beams are used in an attempt to increase high-voltage breakdown of a treated surface. Surface alloying of coated Pt and Hf layers is also described. This mixing of a previously deposited thin-film layer into a Ti-alloy substrate leads to significantly enhanced surface wear durability, compared to either untreat...

  13. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  14. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  15. Some aspects of the design of intensity modulated beams for breast radiotherapy

    International Nuclear Information System (INIS)

    Evans, PM; Hansen, VN; Swindell, W

    1995-01-01

    An electronic portal imaging system has been used to design intensity modulated beams to achieve compensation for missing tissue and tissue heterogeneity in tangential irradiation of the breast. A portal image of the breast is calibrated for radiological thickness and an estimate of the outline of lung and soft tissue is made. This is used with the desired dose prescription to design intensity modulated beams, IMBs. The practical implementation of the IMBs may be achieved using a multileaf collimator, MLC. The leaves of the MLC may be scanned dynamically or a set of multiple static fields may be used. We have compared the uniformity of the achievable dose distribution for both cases. In the static case, the effects of varying the number of fields and their relative intensities have been investigated. The use of scanning leaves yields a dose distribution which is close to optimal. Multiple static fields produce results close to optimal if a large number, typically 30 are used. However, even for the more practicable case of 5 fields, the hot and cold spots are significantly reduced compared to a simple wedge. When studying the optimum intensity distribution for the set of static fields, it was found that having the first field with a large intensity irradiating the whole target volume and a set of 'top-up' fields of equal magnitude was best. This study suggests that an MLC may indeed be used to deliver IMBs for radiotherapy of the breast. We can presently deliver the multiple static field technique. For the small number of beams which are presently deliverable, an improvement of dosimetry over the use of a simple wedge is indicated. In the future, with the scanning leaves technique, dose distributions with greatly reduced dose inhomogeneities should be achievable

  16. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  17. Timoshenko beam model for chiral materials

    Science.gov (United States)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  18. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  19. Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams

    International Nuclear Information System (INIS)

    Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.

    2002-01-01

    Production of highly intense ion beams of 48 Ca is one of the main tasks in experiments carried out within the framework of the synthesis of new superheavy elements. 48 Ca is very rare and expensive isotope, therefore there is necessity to reach the high intensity of ion beams of the isotope at a low consumption rate. Analysis and our preliminary experiments have showed that the best way of producing highly intense calcium ion beams is evaporation of metallic calcium in an ECR ion source. So we have developed a technique of metallic 48 Ca production by reducing CaO (this chemical form is available at the market with 40-80% of 48 Ca ) with aluminium powder. We used two tantalum crucibles: a larger, with a mixture of CaO + Al heated up to 1250 deg C, which was connected to the smaller (2 mm I.D. and 30 mm long) in which calcium vapour condensed. The temperature distribution in the small crucible was about 50 deg C at the bottom and about 500 deg C in the middle of the crucible. The pressure inside of the set-up was between 0.1 and 1 Pa. The production rate of metallic 48 Ca was 10-20 mg/h. The crucible with the condensed metallic Ca in argon atmosphere was transferred to the ECR-4M ion source, where it was inserted in a wired tubular oven and the calcium evaporation was controlled through the oven power supply. The application of metallic 48 Ca as the working substance for the ECR-4M ion source of the U-400 cyclotron of allowed us to approach a stable high intensity of 48 Ca ion beams: the intensities for the internal and external beams were 10 13 c -1 and 3.10 12 c -1 , respectively, at a consumption rate about 0.4 mg/h. A technique was developed for the reclamation of 48 Ca from the residue inside of the large crucible and from the inner parts of the ECR ion source. Extracting Ca from the inner parts of the ion source enabled us to save up to some 25% of the calcium used in the ECR ion source, so that the actual consumption rate was about 0.3 mg/h at the highest 48

  20. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    Science.gov (United States)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  1. Clinical Realization of Sector Beam Intensity Modulation for Gamma Knife Radiosurgery: A Pilot Treatment Planning Study

    International Nuclear Information System (INIS)

    Ma, Lijun; Mason, Erica; Sneed, Penny K.; McDermott, Michael; Polishchuk, Alexei; Larson, David A.; Sahgal, Arjun

    2015-01-01

    Purpose: To demonstrate the clinical feasibility and potential benefits of sector beam intensity modulation (SBIM) specific to Gamma Knife stereotactic radiosurgery (GKSRS). Methods and Materials: SBIM is based on modulating the confocal beam intensities from individual sectors surrounding an isocenter in a nearly 2π geometry. This is in contrast to conventional GKSRS delivery, in which the beam intensities from each sector are restricted to be either 0% or 100% and must be identical for any given isocenter. We developed a SBIM solution based on available clinical planning tools, and we tested it on a cohort of 12 clinical cases as a proof of concept study. The SBIM treatment plans were compared with the original clinically delivered treatment plans to determine dosimetric differences. The goal was to investigate whether SBIM would improve the dose conformity for these treatment plans without prohibitively lengthening the treatment time. Results: A SBIM technique was developed. On average, SBIM improved the Paddick conformity index (PCI) versus the clinically delivered plans (clinical plan PCI = 0.68 ± 0.11 vs SBIM plan PCI = 0.74 ± 0.10, P=.002; 2-tailed paired t test). The SBIM plans also resulted in nearly identical target volume coverage (mean, 97 ± 2%), total beam-on times (clinical plan 58.4 ± 38.9 minutes vs SBIM 63.5 ± 44.7 minutes, P=.057), and gradient indices (clinical plan 3.03 ± 0.27 vs SBIM 3.06 ± 0.29, P=.44) versus the original clinical plans. Conclusion: The SBIM method is clinically feasible with potential dosimetric gains when compared with conventional GKSRS

  2. The Impact of Dissociator Cooling on the Beam Intensity and Velocity in the SpinLab ABS

    Science.gov (United States)

    Stancari, M.; Barion, L.; Bonomo, C.; Capiluppi, M.; Contalbrigo, M.; Ciullo, G.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L.; Statera, M.; Wang, M.

    2007-06-01

    At the SpinLab laboratory (University of Ferrara, Italy), a three stage cooling system was installed along the dissociator tube of an atomic beam source (ABS). With this tool, it is possible to observe correlations between the measured temperatures and the atomic beam intensity. The existence of such correlations is suggested by the larger intensity of the RHIC ABS, the only other source with additional cooling stages. An increased intensity at lower cooling temperatures was observed in SpinLab, while no change in the beam's velocity distribution was observed.

  3. Investigation of active structural intensity control in finite beams: theory and experiment

    Science.gov (United States)

    Audrain; Masson; Berry

    2000-08-01

    An investigation of structural intensity control is presented in this paper. As opposed to previous work, the instantaneous intensity is completely taken into account in the control algorithm, i.e., all the terms are considered in the real-time control process and, in particular, the evanescent waves are considered in this approach. A finite difference approach using five accelerometers is used as the sensing scheme. A feedforward filtered-X least mean square algorithm is adapted to this energy-based control problem, involving a nonpositive definite quadratic form in general. In this respect, the approach is limited to cases where the geometry is such that the intensity component will have the same sign for the control source and the primary disturbance. Results from numerical simulations are first presented to illustrate the benefit of using a cost function based on structural intensity. Experimental validation of the approach is conducted on a free-free beam covered with viscoelastic material. A comparison is made between classical acceleration control and structural intensity control and the performance of both approaches is presented. These results confirm that using intensity control allows the error sensors to be placed closer to the control source and the primary disturbance, while preserving a good control performance.

  4. Hadronic models and experimental data for the neutrino beam production

    CERN Document Server

    Collazuol, G; Guglielmi, A M; Sala, P R

    2000-01-01

    The predictions of meson production by 450 GeV/c protons on Be using the Monte Carlo FLUKA standalone and GEANT-FLUKA and GEANT-GHEISHA in GEANT are compared with available experimental measurements. The comparison enlightens the improvements of the hadronic generator models of the present standalone code FLUKA with respect to the 1992 version which is embedded into GEANT-FLUKA. Worse results were obtained with the GHEISHA package. A complete simulation of the SPS neutrino beam line at CERN showed significant variations in the intensity and composition of the neutrino beam when FLUKA standalone instead of the GEANT-FLUKA package is used to simulate particle production in the Be target.

  5. Hadronic models and experimental data for the neutrino beam production

    International Nuclear Information System (INIS)

    Collazuol, G.; Ferrari, A.; Guglielmi, A.; Sala, P.R.

    2000-01-01

    The predictions of meson production by 450 GeV/c protons on Be using the Monte Carlo FLUKA standalone and GEANT-FLUKA and GEANT-GHEISHA in GEANT are compared with available experimental measurements. The comparison enlightens the improvements of the hadronic generator models of the present standalone code FLUKA with respect to the 1992 version which is embedded into GEANT-FLUKA. Worse results were obtained with the GHEISHA package. A complete simulation of the SPS neutrino beam line at CERN showed significant variations in the intensity and composition of the neutrino beam when FLUKA standalone instead of the GEANT-FLUKA package is used to simulate particle production in the Be target

  6. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Lomonosov, I. V.; Shutov, A. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432 Chernogolovka (Russian Federation); Borm, B. [Goethe-Universität Frankfurt, D-60438 Frankfurt (Germany); Piriz, A. R.; Piriz, S. A. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain)

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  7. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    International Nuclear Information System (INIS)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.; Lomonosov, I. V.; Shutov, A.; Borm, B.; Piriz, A. R.; Piriz, S. A.

    2017-01-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  8. A Statistical Model for Energy Intensity

    Directory of Open Access Journals (Sweden)

    Marjaneh Issapour

    2012-12-01

    Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.

  9. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  10. The intensity feedback system at Heidelberg Ion-Beam Therapy Centre

    Energy Technology Data Exchange (ETDEWEB)

    Schoemers, Christian, E-mail: christian.schoemers@med.uni-heidelberg.de; Feldmeier, Eike; Naumann, Jakob; Panse, Ralf; Peters, Andreas; Haberer, Thomas

    2015-09-21

    At Heidelberg Ion-Beam Therapy Centre (HIT), more than 2500 tumour patients have been treated with charged particle beams since 2009 using the raster scanning method. The tumour is irradiated slice-by-slice, each slice corresponding to a different beam energy. For the particle dose of each raster point the pre-irradiation by more distal slices has to be considered. This leads to highly inhomogeneous dose distributions within one iso-energy slice. The particles are extracted from the synchrotron via transverse RF knock-out. A pure feed forward control cannot take into account fluence inhomogeneities or deal with intensity fluctuations. So far, fluctuations have been counteracted by a reduced scanning velocity. We now added a feedback loop to the extraction system. The dose monitoring ionisation chambers in front of the patient have been coupled to the extraction device in the synchrotron. Characterization and implementation of the intensity feedback system into the HIT facility is described here. By its implementation the treatment time has been reduced by 10% in average.

  11. Beam dynamics studies of the ISOLDE post-accelerator for the high intensity and energy upgrade

    CERN Document Server

    Fraser, M A

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  12. Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade

    CERN Document Server

    Fraser, Matthew Alexander; Pasini, M

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  13. Paul trap experiment to simulate intense nonneutral beam propagation through a periodic focusing field configuration

    CERN Document Server

    Davidson, R C; Majeski, R; Qin, H; Shvets, G

    2001-01-01

    This paper describes the design concept for a compact Paul trap experimental configuration that fully simulates the collective processes and nonlinear transverse dynamics of an intense charged particle beam that propagates over large distances through a periodic quadrupole magnetic field. To summarize, a long nonneutral plasma column (L>=r sub p) is confined axially by applied DC voltages V[circ]=const. on end cylinders at z=+-L, and transverse confinement is provided by segmented cylindrical electrodes (at radius r sub w) with applied oscillatory voltages +-V sub 0 (t) over 90 deg. segments. Because the transverse focusing force is similar in waveform to that produced by a discrete set of periodic quadrupole magnets in a frame moving with the beam, the Paul trap configuration offers the possibility of simulating intense beam propagation in a compact experimental facility. The nominal operating parameters in the experimental design are: barium ions (A=137); plasma column length 2L=2 m; wall radius r sub w =10...

  14. Two-stream sausage and hollowing instabilities in high-intensity particle beams

    International Nuclear Information System (INIS)

    Uhm, Han S.; Davidson, Ronald C.; Kaganovich, Igor

    2001-01-01

    Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically by making use of the Vlasov-Maxwell equations in the smooth-focusing approximation. The eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to determine the dispersion relation describing collective stability properties. Stability properties for the sausage and hollowing modes, characterized by radial mode numbers n=1 and n=2, respectively, are investigated, and the dispersion relations are obtained for the complex eigenfrequency ω in terms of the axial wavenumber k and other system parameters. The eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the perturbations exist only inside the beam. Therefore, the location of the conducting wall does not have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the same order of magnitude as that of the hose (dipole-mode) instability. Therefore, it is concluded that the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam propagation when a background component of electrons is presented

  15. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  16. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  17. Modeling space charge in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.

    1995-01-01

    A new analytic model is presented which accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models

  18. Beam halo in high-intensity hadron accelerators caused by statistical gradient errors

    Directory of Open Access Journals (Sweden)

    Frank Gerigk

    2004-06-01

    Full Text Available The particle-core model for a continuous cylindrical beam is used to describe the motion of single particles oscillating in a uniform linear focusing channel. Using a random variation of the focusing forces, the model is deployed as proof of principle for the occurrence of large single particle radii without the presence of initial mismatch of the beam core. Multiparticle simulations of a periodic 3D transport channel are then used to qualify and quantify the effects in a realistic accelerator lattice.

  19. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  20. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  1. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  2. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Chiping Chen

    2006-01-01

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  3. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  4. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  5. Computer generation of cobalt-60 single beam dose distribution using an analytical beam model

    International Nuclear Information System (INIS)

    Jayaraman, S.

    1981-01-01

    A beam dose calculation model based on evaluation of tissue air ratios (TAR) and scatter air ratios (SAR) for cobalt-60 beams of rectangular cross section has been developed. Off-central axis fall-off of primary radiation intensity is derived by an empirical formulation involving an arctangent function with the slope of the geometrical penumbra acting as an essential constant. Central axis TAR and SAR values are assessed by semi-empirical polynomial expressions employing the two sides of the rectangular field as the bariables. The model utilises a minimum number of parametric constants and is useful for computer generation of isodose curves. The model is capable of accounting for situations where wedge filters or split field shielding blocks, are encountered. Further it could be widely applied with minor modifications to several makes of the currently available cobalt-60 units. The paper explains the model and shows examples of the results obtained in comparison with the corresponding experimentally determined dose distributions. (orig.) [de

  6. Proceedings of the workshop on the science of intense radioactive ion beams

    International Nuclear Information System (INIS)

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort

  7. Proceedings of the workshop on the science of intense radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J.B.; Vieira, D.J. (comps.)

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  8. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  9. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  10. High resolution study of the inclusive production of massive muon pairs by intense pion beams

    CERN Multimedia

    2002-01-01

    This experiment measures with high resolution and large acceptance the inclusive production of massive muon pairs with the intense pion beam (up to $10^{10} \\pi/$pulse) in the experimental hall ECN3. The experiment explores extended M$^{2}$/s, x and transverse momentum ranges. The study of the departures of the lepton-pair production cross- section from scaling constitutes a good test of QCD ideas; in the framework of the 'Drell-Yan' process, the experiment allows a detailed study of the pion parton distribution functions. The detector consists of a beam dump, a pulsed toroidal a magnet, MWPC's and scintillator hodoscopes. Its $\\sim 2$% mass resolution at 10 GeV is adequate for the substraction of resonances in the high-mass region.

  11. Virtual-anode formation by an intense pulsed ion beam incident upon a magnetic barrier

    International Nuclear Information System (INIS)

    Robertson, S.; Wessel, F.

    1980-01-01

    An intense, pulsed, initially space-charge-neutral ion beam (100 kV, 1 kA, 600 nsec) has been propagated into a transversely oriented magnetic barrier. When the magnetic field is adjusted so that (rho/sub i/rho/sub e/)/sup 1/2/ very-much-less-than a < rho/sub i/, a virtual anode is formed whose potential oscillates at approx.ω/sub p/i about a value near the ion accelerating potential, where a is the transverse beam dimension, ω/sub tsp/i is the ion plasma frequency, and rho/sub e/ and rho/sub i/ are the electron and ion gyroradii. This behavior is similar to that predicted by Poukey and Rostoker for virtual cathodes

  12. Intense, brilliant micro γ-beams in nuclear physics and applications

    Science.gov (United States)

    Habs, D.; Gasilov, S.; Lang, C.; Thirolf, P. G.; Jentschel, M.; Diehl, R.; Schroer, C.; Barty, C. P. J.; Zamfir, N. V.

    2011-06-01

    The upcoming γ facilities MEGa-Ray (Livermore) and ELI-NP (Bucharest) will have a 105 times higher γ flux F0 = 1013/s and a ~30 times smaller band width (ΔEγ/Eγ = BW ~ 10-3) than the presently best γ beam facility. They will allow to extract a small γ beam of about 30 - 100 μm radius 1 m behind the γ production point, containing the dominant γ energy band width. One can collimate the γ beam down to ΘBW = √ BW/ γe , where γe = Ee/ mec2 is a measure of the energy Ee of the electron beam, from which the γ beam is produced by Compton back-scattering. Due to the γ energy - angle correlation, the angular collimation results at the same time in a reduction of the γ beam band width without loss of "good" γ quanta, however, the primary γ flux F0is reduced to about Fcoll ~ F0 . 1.5 . ΔEγ/Eγ. For γ rays in the (0.1-100) MeV range, the negative real part δ of the index of refraction n = 1- δ + iβ from coherent Rayleigh scattering (virtual photo effect) dominates over the positive δ contributions from coherent virtual Compton scattering and coherent virtual pair creation scattering (Delbrück scattering). The very small absolute value |δ| ~ 10-6 - 10-9 of the index of refraction of matter for hard X-rays and γ-rays and its negative sign--in contrast to usual optics--results in a very different γ-ray optics, e.g. focusing lenses become concave and we use stacks of N optimized lenses. It requires very small radii of curvature of the γ lenses and thus very small γ beam radii. This leads to a technical new solution, where the primary γ beam is subdivided into M γ beamlets, which do not interfere with each other, but contribute with their independent intensities. We send the γ beamlets into a two-dimensional array of closely packed cylindrical parabolic refractive lenses, where N ~ 103 lenses with very small radius of curvature are stacked behind each other, leading to contracted beam spots in one dimension. With a second 1D lens system turned by

  13. Intensity measurements of slowly extracted heavy ion beams from the SIS

    International Nuclear Information System (INIS)

    Heeg, P.; Peters, A.; Strehl, P.

    1994-11-01

    The paper reports about performance tests of newly designed Secondary Electron Monitors (SEM), Ionization Chambers (IC) and Multi Diode Counters (MDC). Especially the linearity of the detectors with respect to the specific energy loss will be discussed. Calibration has been performed by means of scintillation particle counters at the lower end of the intensity region. The status of the Cryogenic Current Comparator (CCC), which is provided for absolute measurements and calibration of detectors above some nA of beam current is reported, too. (orig.)

  14. On the stability of a space vehicle riding on an intense laser beam

    OpenAIRE

    Popova, H.; Efendiev, M.; Gabitov, I.

    2016-01-01

    The Breakthrough Starshot Initiative is suggested to develop the concept of propelling a nano-scale spacecraft by the radiation pressure of an intense laser beam. If such a nanocraft could be accelerated to 20 percent of light speed, it could reach the vicinity of our nearest potentially habitable exoplanet within our life time and capture its images and obtain other scientific data. In this project the nanocraft is a gram-scale robotic spacecraft comprising two main parts: StarChip and Light...

  15. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  16. System for monitoring the position, intensity, uniformity, and directivity of a beam of ionizing radiation

    International Nuclear Information System (INIS)

    Boux, R.

    1976-01-01

    A monitoring device transparent to ionizing radiation, designed to measure the orientation, intensity and uniformity of an incident beam, comprises a cylindrical housing forming at least one ionization chamber with one or more ion-collecting electrodes transverse to the housing axis, each electrode being subdivided into a plurality of mutually insulated conductive elements connected to respective amplifiers. The elements of at least one electrode include one or more outer elements surrounding or bracketing one or more inner elements to measure the radiation in a central zone and a peripheral zone. The outputs of the respective amplifiers are additively and subtractively combined in an evaluation circuit

  17. Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go

    2011-01-01

    The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  18. Electrostatic system of background suppression under detection of low-intensive ion beams

    International Nuclear Information System (INIS)

    Dubrovin, M.M.; Belyaev, V.A.

    2002-01-01

    Paper describes electrostatic system to suppress background at recording of low-intensive particle fluxes with transverse cross section exceeding the area of detector inlet aperture. Electrostatic system comprises 5 electrodes ensuring such spatial distribution of electrostatic field that enables accumulation of beam all ions with 30 x 40 mm 2 cross section at inlet aperture of secondary electron multiplier (SEM) with 9 mm diameter. In this case, ion trajectories prior to enter SEM are turned by 180 deg thus essentially improving signal/background ratio [ru

  19. Generation and acceleration of high intensity beams in the SLC injector

    International Nuclear Information System (INIS)

    Ross, M.C.; Browne, M.J.; Clendenin, J.E.; Jobe, R.K.; Seeman, J.T.; Sheppard, J.C.; Stiening, R.F.

    1985-04-01

    A new gun pulser and substantially increased focusing have been added to the first 100 m of the SLAC linac in order to provide a pair of intense electron bunches to the SLC damping ring. Each bunch from this injector must have 5 x 10 10 electrons, an invariant emittance γepsilon less than or equal to 1.8 x 10 -3 m-rad and the pair must have an energy spread of less than 2%. Wakefield instabilities present in earlier versions of this injector have been controlled by reducing the transverse beam dimension by a factor of 3

  20. Intense, pulsed, charged particle beams and associated applications to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Yatsui, K; Grigoriu, C; Masugata, K; Jiang, W; Sonegawa, T; Nakagawa, Y; Eka Prijono, A C [Nagaoka Univ. of Technology, Niigata (Japan)

    1997-03-01

    We have demonstrated successful preparation of thin films and nanosize powders by using the technique of intense pulsed ion beam evaporation. In this paper, we review the experimental results of thin film deposition of ZnS, YBa{sub 2}Cu{sub 3}O{sub 7-x}, BaTiO{sub 3}, cBN, ZrO{sub 2}, ITO, and apatite, as well as the experimental results of the synthesis of nanosize powders of Al{sub 2}O{sub 3}. (author)

  1. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  2. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  3. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  4. On the control of filamentation of intense laser beams propagating in underdense plasma

    International Nuclear Information System (INIS)

    Williams, E.A.

    2006-01-01

    In indirect drive inertial confinement fusion ignition designs, the laser energy is delivered into the hohlraum through the laser entrance holes (LEHs), which are sized as small as practicable to minimize x-ray radiation losses. On the other hand, deleterious laser plasma processes, such as filamentation and stimulated backscatter, typically increase with laser intensity. Ideally, therefore, the laser spot shape should be a close fit to the LEH, with uniform (envelope) intensity in the spot and minimal energy at larger radii spilling onto the LEH material. This keeps the laser intensity as low as possible, consistent with the area of the LEH aperture and the power requirements of the design. This can be achieved (at least for apertures significantly larger than the laser's aberrated focal spot) by the use of custom-designed phase plates. However, outfitting the 192-beam National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Tech. 26, 755 1994)] laser with multiple sets of phase plates optimized for a variety of different LEH aperture sizes is an expensive proposition. It is thus important to assess the impact on laser-plasma interaction processes of using phase plates with a smaller than optimum focal spot (or even no phase plates at all!) and then defocusing the beam to expand it to fill the LEH and lower its intensity. Significant effects are found from changes in the characteristic sizes of the laser speckle, from the lack of uniformity of the laser envelope out of the focal plane and on the efficacy of additional polarization smoothing and/or smoothing by spectral dispersion (SSD). These effects are quantified with analytic estimates and simulations using PF3D, our laser-plasma interaction code

  5. Generation of an intense stationary wave in modulated beam-plasma systems

    International Nuclear Information System (INIS)

    Jungwirth, K.; Krlin, L.

    1974-03-01

    Basic equations and numerical results describing nonlinear interaction of a weakly modulated electron beam with a single stationary one-dimensional wave excited in a cold plasma without the magnetic field, are presented and discussed. The effect of all possible irreversible processes (e.g., plasma turbulence) accompanying this interaction is simulated by the constant effective collision frequency νsub(eff) of plasma electrons. Starting from the nonlinear Poisson equation, the expression for the amplitude and the phase of the beam-excited wave are derived and solved numerically together with the equations of the beam electron motion. The results are compared with those of a time model. Significant, experimentally detectable differences are established. (author)

  6. Improving intensity-modulated radiation therapy using the anatomic beam orientation optimization algorithm

    International Nuclear Information System (INIS)

    Potrebko, Peter S.; McCurdy, Boyd M. C.; Butler, James B.; El-Gubtan, Adel S.

    2008-01-01

    A novel, anatomic beam orientation optimization (A-BOO) algorithm is proposed to significantly improve conventional intensity-modulated radiation therapy (IMRT). The A-BOO algorithm vectorially analyses polygonal surface mesh data of contoured patient anatomy. Five optimal (5-opt) deliverable beam orientations are selected based on (1) tangential orientation bisecting the target and adjacent organ's-at-risk (OARs) to produce precipitous dose gradients between them and (2) parallel incidence with polygon features of the target volume to facilitate conformal coverage. The 5-opt plans were compared to standard five, seven, and nine equiangular-spaced beam plans (5-equi, 7-equi, 9-equi) for: (1) gastric, (2) Radiation Therapy Oncology Group (RTOG) P-0126 prostate, and (3) RTOG H-0022 oropharyngeal (stage-III, IV) cancer patients. In the gastric case, the noncoplanar 5-opt plan reduced the right kidney V 20 Gy by 32.2%, 23.2%, and 20.6% compared to plans with five, seven, and nine equiangular-spaced beams. In the prostate case, the coplanar 5-opt plan produced similar rectal sparing as the 7-equi and 9-equi plans with a reduction of the V 75, V 70, V 65, and V 60 Gy of 2.4%, 5.3%, 7.0%, and 9.5% compared to the 5-equi plan. In the stage-III and IV oropharyngeal cases, the noncoplanar 5-opt plan substantially reduced the V 30 Gy and mean dose to the contralateral parotid compared to plans with five, seven, and nine equiangular-spaced beams: (stage-III) 7.1%, 5.2%, 6.8%, and 5.1, 3.5, 3.7 Gy and (stage-IV) 10.2%, 10.2%, 9.8% and 7.0, 7.1, 7.2 Gy. The geometry-based A-BOO algorithm has been demonstrated to be robust for application to a variety of IMRT treatment sites. Beam orientations producing significant improvements in OAR sparing over conventional IMRT can be automatically produced in minutes compared to hours with existing dose-based beam orientation optimization methods

  7. Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison

    International Nuclear Information System (INIS)

    Meerleer, Gert O. de; Vakaet, Luc A.M.L.; Gersem, Werner R.T. de; Wagter, Carlos de; Naeyer, Bart de; Neve, Wilfried de

    2000-01-01

    Purpose: To evaluate whether intensity modulated radiotherapy (IMRT) by static segmented beams allows the dose to the main portion of the prostate target to escalate while keeping the maximal dose at the anterior rectal wall at 72 Gy. The value of such IMRT plans was analyzed by comparison with non-IMRT plans using the same beam incidences. Methods and Materials: We performed a planning study on the CT data of 32 consecutive patients with localized adenocarcinoma of the prostate. Three fields in the transverse plane with gantry angles of 0 deg. , 116 deg. , and 244 deg. were isocentered at the center of gravity of the target volume (prostate and seminal vesicles). The geometry of the beams was determined by beam's eye view autocontouring of the target volume with a margin of 1.5 cm. In study 1, the beam weights were determined by a human planner (3D-man) or by computer optimization using a biological objective function with (3D-optim-lim) or without (3D-optim-unlim) a physical term to limit target dose inhomogeneity. In study 2, the 3 beam incidences mentioned above were used and in-field uniform segments were added to allow IMRT. Plans with (IMRT-lim) or without (IMRT-unlim) constraints on target dose inhomogeneity were compared. In the IMRT-lim plan, target dose inhomogeneity was constrained between 15% and 20%. After optimization, plans in both studies were normalized to a maximal rectal dose of 72 Gy. Biological (tumor control probability [TCP], normal tissue complication probability [NTCP]) and physical indices for tumor control and normal tissue complication probabilities were computed, as well as the probability of the uncomplicated local control (P+). Results: The IMRT-lim plan was superior to all other plans concerning TCP (p =no. 89%). For bladder, maximal bladder dose was significantly higher in the IMRT-unlim plan compared to all other plans (p no. <=no. 0.0001). P+ was significantly higher in both IMRT-plans than in all other plans. The 3D

  8. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.; Chimienti, L.; Leonhardt, W.; Monaghan, R.; Ryan, G.; Sandberg, J.; Sims, W.; Smith, G.; Stillman, P.; Thorwarth, H.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10/sup 13/ proton/sec. These systems were designed for simplicity, reliability, and easy replacement.

  9. Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice

    International Nuclear Information System (INIS)

    Qin, Hong; Chung, Moses; Davidson, Ronald C.

    2009-01-01

    In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

  10. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    International Nuclear Information System (INIS)

    Carroll, A.; Chimienti, L.; Leonhardt, W.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10 13 proton/sec. These systems were designed for simplicity, reliability, and easy replacement

  11. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1989-01-01

    Following the ''First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop

  12. Dose determination in radiotherapy for photon beams modified by static intensity modulators

    International Nuclear Information System (INIS)

    Castellanos Lopez, M.E.

    1998-01-01

    The static intensity modulators, used in radiotherapy, modify the spectral composition of the beam and lead to specific problems of the dose calculation. The aim of this work was to establish a three dimensional calculation, global and accurate, adapted to the primary-diffused separation algorithm and valid for any static modulator type. A theoretical study, experimentally verified, allowed the evaluation of the primary fluence, resulting from metallic sheets placed between photons beams of 6 to 23 MV nominal energy. It has been showed that the diffused, coming from the modulators, could be neglected for weak thickness and for the relative dose variation. In return it leads to significant variations of many % on the absolute dose and must be take into account for the bigger thicknesses. Corrective methods for the primary fluence have been proposed. From the energy spectra of the beam, the metallic modulator influence has been studied on the primary and diffused components of the dose and improvements of the calculation method have been proposed. These improvements are based on the modulator representation as a transmission matrix and on semi-empirical corrective factors. (A.L.B.)

  13. Removing roughness on metal surface by irradiation of intense short-pulsed ion beams

    International Nuclear Information System (INIS)

    Hashimoto, Y.

    1995-01-01

    Surface modification of metals with an intense pulsed ion beam (IPIB) was studied experimentally. When the temperature rise of metal surfaces by IPIB irradiation exceeds their boiling point, it is found that machining roughness on surfaces is removed. The experiments were performed with the pulsed power generator HARIMA-II at Himeji Institute of Technology. The main components of the ion beam were carbon and fluorine ions. The IPIB was irradiated to metal plates (Al, Cu and Ti) which were placed at the focal point. Machining roughness on Ti surface was removed after IPIB irradiation, while roughness on Al and Cu plates was not removed. Using the present experimental parameters (beam power density: 32 W/cm 2 , pulse width: 25 ns), the temperature rise of the Ti surface was estimated to be 8,100 K which exceed its boiling point (3,000 K). However, the estimated temperatures of Al and Cu surfaces was 2,500 and 1,500 K, respectively, that are less than their boiling points. These studies above suggests that temperature rise over the boiling point of metals is necessary for removing machining roughness on metal surfaces

  14. On the curvature of transmitted intensity plots in broad beam studies

    International Nuclear Information System (INIS)

    El-Kateb, A.H.

    2000-01-01

    Transmission of a broad beam of gamma rays of 81- and 356-keV energies from 133 Ba is studied singly and dually. This study is the first to deal with the curvatures of the intensity plots. The targets are dextrose solutions of percentage concentrations up to 0.125 and soil containing water with concentrations up to 0.319. The logarithmic intensity plots are expressed in terms of a polynomial in the concentration. The curvatures of the plots are measured and calculated on the basis of the theoretical mass attenuation coefficients. The results are discussed in conjunction with buildup factors and the probability of photoelectric and Compton interactions. The curvatures show maxima when incoherent interaction prevails. This is evidently proved in case of the single 356-keV and of the dual 81- and 356-keV applied energies. Comparison is performed between the measured and calculated curvatures. The concept of curvature is applied and discussed for published results of narrow beam geometry. Correspondingly, this is the first search to introduce curvature instead of buildup as a measure for transmitted collided photons

  15. Liquid-film stripper for high-intensity heavy-ion beams

    International Nuclear Information System (INIS)

    Leemann, B.T.; Merrill, P.; Syversrud, H.K.; Wada, R.; Yourd, R.B.

    1981-03-01

    Electron strippers are widely used in heavy ion accelerators such as tandem Van de Graaff generators and heavy ion linacs. The SuperHILAC at Lawrence Berkeley Laboratory, employs a fluorocarbon oil vapor stripper at 113 keV/A for its high intensity injector ABEL, while after acceleration to 1.199 MeV/A a 35 μg/cm 2 carbon foil stripper is used. At present, the lifetime of these foils is about 1 hour for an 40 Ar beam of approx. 1 μA average particle current. With higher intensity high mass (100 less than or equal to A less than or equal to 238) beams available from ABEL injector the lifetime is expected to drop drastically and might be as low as one minute. A different approach to solve the stripper foil lifetime problem uses a thin free standing oil film spun from the edge of a sharp-edged rotating disc touching the surface of an oil reservoir. Areas of about 10 cm 2 with areal densities down to 20 μg/cm 2 have been reported. The work described here is based on the same concept, and produces a constantly regenerated, stable, free standing oil film of appropriate thickness for use at the SuperHILAC

  16. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  17. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  18. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  19. Investigation of an He-Ne laser generating a beam with a ring-shaped intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1987-02-01

    The paper examines an He-Ne laser regime with the simultaneous generation of TEM(01) and TEM(10) modes, forming a beam with a ring-shaped intensity distribution with total suppression of the TEM(00) mode. The ratio of the intensity at the ring crest to the intensity at the axis reached a value of 200 and was limited by scattering in the optical components of the resonator. A regime of mutual frequency locking of the TEM(01) and TEM(10) modes was achieved with total spatial coherence of the ring-shaped beam. 14 references.

  20. Liquid gallium cooling of silicon crystals in high intensity photon beams

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1989-01-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator

  1. Analytical theory and nonlinear δf perturbative simulations of temperature anisotropy instability in intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Edward A. Startsev

    2003-08-01

    Full Text Available In plasmas with strongly anisotropic distribution functions (T_{∥b}/T_{⊥b}≪1 a Harris-like collective instability may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Such anisotropies develop naturally in accelerators and may lead to a deterioration of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Plasmas 9, 3138 (2002] of the stability properties of intense non-neutral charged particle beams with large temperature anisotropy (T_{⊥b}≫T_{∥b} to allow for nonaxisymmetric perturbations with ∂/∂θ≠0. The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined. The simulation results clearly show that moderately intense beams with s_{b}=ω[over ^]_{pb}^{2}/2γ_{b}^{2}ω_{β⊥}^{2}≳0.5 are linearly unstable to short-wavelength perturbations with k_{z}^{2}r_{b}^{2}≳1, provided the ratio of longitudinal and transverse temperatures is smaller than some threshold value. Here, ω[over ^]_{pb}^{2}=4πn[over ^]_{b}e_{b}^{2}/γ_{b}m_{b} is the relativistic plasma frequency squared, and ω_{β⊥} is the betatron frequency associated with the applied smooth-focusing field. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the essential features of the linear stages of instability. Both the simulations and the analytical theory predict that the dipole mode (azimuthal mode number m=1 is the most unstable mode. In the nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic instability saturates due to resonant wave-particle interactions.

  2. Synchronization trigger for HSFC in the optical diagnosis of intense electron beam cathodes

    International Nuclear Information System (INIS)

    Yang Jie; Shu Ting; Zhang Jun; Yang Jianhua; Liu Lie; Yin Yi; Luo Ling

    2010-01-01

    This paper presents an intense electron beam cathodes optical diagnosis platform, which consists of an accelerator using a water-dielectric helical pulse forming line (PFL) and a high speed framing camera (HSFC-PRO) with an minimum exposure of 3 ns. HSFC-PRO must work synchronously with the explosive process of the intense electron beam cathodes in order to obtain correct data. On one hand, the high voltage electrical pulse from the PFL is delayed by a water-dielectric helix line with a nearly 110ns electrical length. On the other hand, The synchronization trigger signal for the HSFC-PRO is obtained from the pre d elayed high voltage electrical pulse from the PFL. A TTL signal (5 V) with rising edge is required to trigger the HSFC. The rise time (10% to 90%) should be <20ns. As a result, the negative-edge attenuated electrical pulse with a about 25 ns rise time from the PFL can not trigger the HSFC immediately.Consequently, the polarity of the attenuated high voltage electrical pulse from the PFL is reversed by a pulse transformer. Then it is converted subsequently into a TTL signal (5 V) with rising edge via a monostable multivibrator , The rise time (10% to 90%) is <5 ns, which is suitable for HSFC absequently. This established optical diagnosis platform can supply an electrical pulse with its output voltage of 200-400 kV, risetime of ∼35ns and pulse width(FWHM) of ∼110ns. By means of delaying the electrical pulse, the synchronization trigger problem of the HSFC-PRO has been solved properly, with correlative time precision of about ns level, which sets a running start for the following intensive research of explosive emission cathodes. (authors)

  3. An intense plane-beam ion source (1963); Source d'ions intense a faisceau plan (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Deicas, R; Valckx, F P.O. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Experiments are described carried out on the cross-section of a Penning type ion source which is a prototype of the annular ion source intended for the M.M.I.I. device at the Fontenay-aux-Roses Nuclear Research Centre. It is shown that the existence or absence of a very strong concentration depends in particular on the magnetic geometry. With a suitable magnetic and electrical geometry it is possible to concentrate the discharge towards the slit and thus to increase considerably the electrical yield and the gas yield. In pulsed conditions, the current derived from this source can exceed 100 mA with a slit 20 cm long and 0.2 mm wide. The gas yield can attain 20 per cent. The main characteristics of the discharge and of the beam are examined. (authors) [French] On decrit les experiences faites sur une section droite d'une source d'ions type Penning, qui est un prototype pour une source d'ions annulaire, destine au dispositif M.M.I.I. au Centre d'Etudes Nucleaires de Fontenay-aux-Roses. On montre que l'existence ou non d'un regime intense depend surtout de la geometrie magnetique. Avec une geometrie magnetique et electrique convenables on peut concentrer la decharge vers les levres et ainsi augmenter considerablement le rendement electrique et le rendement en gaz. En regime pulse le courant extrait de cette source peut depasser 100 mA avec une fente de 20 cm de long et 0. 2 mm de largeur. Le rendement en gaz peut atteindre 20 pour cent. On etudie les principales caracteristiques de la decharge et du faisceau. (auteurs)

  4. Studies and conception of a radiofrequency cooler for high intensity beams

    International Nuclear Information System (INIS)

    Duval, Florian

    2009-01-01

    The topic of this thesis is the study and the conception of a RFQ Cooler with buffer gas for high intensity radioactive beams. This project is in the frame of the next extension of GANIL, Spiral2, and the future low-energy facility DESIR ('Decay, Excitation and Storage of Radioactive ions'). The goal is to reduce the beams emittance of Spiral2 beams to allow their purification (ideally at isobaric level) with a high resolution separator. This cooler consists on a quadrupolar structure on which ions are confined by RF potential in opposite phase at an energy of 100 eV. A light buffer-gas, typically helium, is injected in the quadrupole and, after each collision, the ion lose a part of its energy and is finally cooled. The main problem on our project concerns the space charge. The existing devices are able to cool currents of few 10 nA whereas we have to treat beam intensities around 1 μA which induce an increase of the Coulomb repulsion between ions. That needs to produce strong RF fields which induce high RF potentials (≅ 10 kV_p_p) and a low inner radius (r_0 ≅ 3 a 5 mm). We have worked on a first prototype, SHIRaC-Phase1 ('Spiral2 High Intensity Radiofrequency Cooler'), with a 3 mm-inner radius, built at CSNSM-Orsay and moved at LPC-Caen at the end of 2007. The main R and D effort concerns the electronic part. A first RF system, based on a LC resonant circuit, has been developed and has provided up to 2500 V_p_p between 4.5 and 6.3 MHz. In these conditions, we have checked that we didn't have strong limitations from electrical breakdown between our electrodes. With this device, we have reduced the beam emittance to a value around 2 π.mm.mrad at 60 keV and the longitudinal energy spread to 146 meV. The maximum transmission of Sodium "2"3Na"+ and Rubidium "8"7Rb"+ is 25% with an ionization source for which the beam quality is better than Spiral2. For this reason, we have conceived a new cooler with an acceptance of 80 π.mm.mrad at 60 keV. This second

  5. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  6. Intense ion beam transport in magnetic quadrupoles: Experiments on electron and gas effects

    International Nuclear Information System (INIS)

    Seidl, P.A.; Molvik, A.W.; Bieniosek, F.M.; Cohen, R.H.; Faltens, A.; Friedman, A.; Kireef Covo, M.; Lund, S.M.; Prost, L.; Vay, J-L.

    2004-01-01

    Heavy-ion induction linacs for inertial fusion energy and high-energy density physics have an economic incentive to minimize the clearance between the beam edge and the aperture wall. This increases the risk from electron clouds and gas desorbed from walls. We have measured electron and gas emission from 1 MeV K + incident on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach values >100, whereas gas desorption coefficients are near 10 4 . Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. We also discuss the results of beam transport (of 0.03-0.18 A K + ) through four pulsed room-temperature magnetic quadrupoles in the HCX at LBNL. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. A coordinated theory and computational effort has made significant progress towards a self-consistent model of positive-ion beam and electron dynamics. We are beginning to compare experimental and theoretical results

  7. Detection of an intense polychromatic gamma beam modulated at 3000 MHz; Detection d'un faisceau intense de gammas polychromatiques module a 3000 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Beil, H; Veyssiere, A; Daujat, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This paper presents two methods of detection of a {gamma} beam modulated at very high frequencies. The intense modulated beam is created by means of Bremsstrahlung in a gold-target, the latter having been placed in the emerging electron beam of the Linac at Saclay. A tentative interpretation of the physical phenomena involved in the detection processes is also given. The empirical data agree reasonably well with numerical evaluations based on well established theoretical concepts concerning these phenomena. (authors) [French] Cet article presente deux facons de detecter un faisceau de {gamma} module a haute frequence. Le faisceau intense de {gamma} est cree par l'impact d'electrons (acceleres dans un accelerateur lineaire) sur une cible en or. Une tentative d'interpretation des phenomenes physiques mis en cause dans le processus de detection est donnee et les valeurs experimentales trouvees s'accordent raisonnablement bien avec les valeurs calculees a partir des considerations theoriques des phenomenes. (auteurs)

  8. Photoneutron intensity variation with field size around radiotherapy linear accelerator 18-MeV X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, H.; Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Maalej, N. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    In X-ray radiotherapy accelerators, neutrons are produced mainly by ({gamma},n) reaction when high energy X-rays interact with high Z materials of the linear accelerator head. These materials include the lead (Pb) used as shielding in the collimator, tungsten (W) target used for the production of X-rays and iron (Fe) in the accelerator head. These unwanted neutrons contaminate the therapeutic beam and contribute to the patient dose during the treatment of a cancer patient. Knowing the neutron distribution around the radiotherapy accelerator is therefore desired. CR-39 nuclear track detectors (NTDs) were used to study the variation of fast and thermal neutron relative intensities around an 18 MeV linear accelerator X-ray beam with the field sizes of 0, 10x10, 20x20, 30x30 and 40x40cm{sup 2}. For fast neutron detection, bare NTDs were used. For thermal neutron detection, NTDs were covered with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters. The NTDs were placed at different locations in the direction perpendicular to the treatment couch (transversal) and in the direction parallel to the treatment couch (longitudinal) with respect to the isocenter of the accelerator. The fast neutron relative intensity is symmetrical about the beam axis and exhibits an exponential-like drop with distance from the isocenter of the accelerator for all the field sizes. At the primary beam (isocenter), the relative fast neutron intensity is highest for 40x40cm{sup 2} field size and decreases linearly with the decrease in the field size. However, fast neutron intensities do not change significantly with beam size for the measurements outside the primary beam. The fast neutron intensity in the longitudinal direction outside the primary beam decreases linearly with the field size. The thermal neutron intensity, at any location, was found to be almost independent of the field size.

  9. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  10. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    Science.gov (United States)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  11. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  12. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  13. Dynamics of intense pulsed proton beam in the Nagaoka ETIGO-I

    International Nuclear Information System (INIS)

    Tanaka, Hajime; Konno, Kohji; Masugata, Katsumi; Yatsui, Kiyoshi; Matsui, Masao

    1982-01-01

    Dynamics of an intense pulsed proton beam have been studied by measuring nuclear reactions as well as by a biased ion-collector (BIC). When the ion-current density (Jsub(i)) is small such that Jsub(i) lt 30 A/cm 2 , the proton numer measured by BIC is in good agreement with that by nuclear activation. Good linearity exists between time integrated gamma -ray signal and proton number measured by the activation. Hence, it would be possible to obtain the proton number quantitatively even when a target ''blow-off'' takes place at Jsub(i) gt 1 kA/cm 2 . Prompt gamma -ray is also measured by the time-of-flight method to yield reasonable agreement with the applied peak potential. (author)

  14. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, Maxence

    2012-07-02

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm{sup 2} Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  15. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    International Nuclear Information System (INIS)

    Vandenbroucke, Maxence

    2012-01-01

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm 2 Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  16. UCN up-scattering as a source of highly intense monochromatic pulsed beams

    International Nuclear Information System (INIS)

    Rauch, H.; Geltenborg, P.; Zimmer, O.

    2011-01-01

    The present proposal opens new possibilities to increase the usable neutron flux by advanced neutron cooling and phase space transformation methods. Thus a new instrument should be installed where the available neutron flux is used more efficiently. The essential point is an increase of phase space density and brilliance due to a more effective production of ultra-cold neutrons and a following transformation of these neutrons to higher energies. Recently reported progresses in the production of UCN's and in the up-scattering of such neutrons make the time mature to step towards a new method to produce high intense pulsed neutron beams. The up-scattering is made by fast moving Bragg crystals

  17. Wakefield and the diffraction model due to a flat beam moving past a conducting wedge

    International Nuclear Information System (INIS)

    Chao, A.W.; Henke, H.

    1995-07-01

    A collimator is often used to clean a beam of its excessive tail particles. If the beam intensity is high enough or if the beam is brought too close to the collimator, however, the wakefields generated by the beam-collimator interaction can cause additional beam tails to grow, thus defeating, or even worsening, the beam-tail cleaning process. The wakefield generated by a sheet beam moving past a conducting wedge has been obtained in closed form by Henke using the method of conformal mapping. This result is applied in the present work to obtain the wake force and the transverse kick received by a test charge moving with the beam. For the beam to be approximated as sheet beams, it is assumed to be flat and the collimator is assumed to have an infinite extent in the flat dimention. We derive an exact expression for the transverse wake force delivered to particles in the beam bunch. Implication of emittance growth as a beam passes closely by a collimator is discussed. We consider two idealized wedge geometries: In Section 2, when the wedge has the geometry as a disrupted beam pipe, and in Section 3, when it is like a semi-infinite screen. Unfortunately, we do not have solutions for more realistic collimator geometries such as when it is tapered to minimize the wakefield effects. However, our results should still serve as pessimistic limiting cases. An interesting opportunity is offered by our exact calculation of the wakefields: it can be used to confront the diffraction model used to estimate the high-frequency impedance of a cavity structure. It is shown that the field pattern, as well as the impedance, agrees with those obtained by the diffraction model in appropriate limits

  18. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    International Nuclear Information System (INIS)

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  19. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    International Nuclear Information System (INIS)

    Rocha, Humberto; Dias, Joana M; Ferreira, Brígida C; Lopes, Maria C

    2013-01-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem. (paper)

  20. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    Science.gov (United States)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.