WorldWideScience

Sample records for modeling intelligent ontology

  1. The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology

    Science.gov (United States)

    Yang, Wang-Dong; Wang, Tao

    On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.

  2. Ontology, Epistemology, and Teleology for Modeling and Simulation Philosophical Foundations for Intelligent M&S Applications

    CERN Document Server

    2013-01-01

    In this book, internationally recognized experts in philosophy of science, computer science, and modeling and simulation are contributing to the discussion on how ontology, epistemology, and teleology will contribute to enable the next generation of intelligent modeling and simulation applications. It is well understood that a simulation can provide the technical means to display the behavior of a system over time, including following observed trends to predict future possible states, but how reliable and trustworthy are such predictions? The questions about what we can know (ontology), how we gain new knowledge (epistemology), and what we do with this knowledge (teleology) are therefore illuminated from these very different perspectives, as each experts uses a different facet to look at these challenges. The result of bringing these perspectives into one book is a challenging compendium that gives room for a spectrum of challenges: from general philosophy questions, such as can we use modeling and simulation...

  3. A Study on Intelligent User-Centric Logistics Service Model Using Ontology

    Directory of Open Access Journals (Sweden)

    Saraswathi Sivamani

    2014-01-01

    Full Text Available Much research has been undergone in the smart logistics environment for the prompt delivery of the product in the right place at the right time. Most of the services were based on time management, routing technique, and location based services. The services in the recent logistics environment aim for situation based logistics service centered around the user by utilizing various information technologies such as mobile devices, computer systems, and GPS. This paper proposes a smart logistics service model for providing user-centric intelligent logistics service by utilizing smartphones in a smart environment. We also develop an OWL based ontology model for the smart logistics for the better understanding among the context information. In addition to basic delivery information, the proposed service model makes use of the location and situation information of the delivery vehicle and user, to draw the route information according to the user’s requirement. With the increase of internet usage, the real-time situations are received which helps to create a more reliable relationship, owing to the Internet of Things. Through this service model, it is possible to engage in the development of various IT and logistics convergence services based on situation information between the deliverer and user which occurs in real time.

  4. A Business Intelligence Model to Predict Bankruptcy using Financial Domain Ontology with Association Rule Mining Algorithm

    OpenAIRE

    Martin, A.; Manjula, M.; Venkatesan, Dr. V. Prasanna

    2011-01-01

    Today in every organization financial analysis provides the basis for understanding and evaluating the results of business operations and delivering how well a business is doing. This means that the organizations can control the operational activities primarily related to corporate finance. One way that doing this is by analysis of bankruptcy prediction. This paper develops an ontological model from financial information of an organization by analyzing the Semantics of the financial statement...

  5. Ontology-based intelligent fuzzy agent for diabetes application

    NARCIS (Netherlands)

    Acampora, G.; Lee, C.-S.; Wang, M.-H.; Hsu, C.-Y.; Loia, V.

    2009-01-01

    It is widely pointed out that classical ontologies are not sufficient to deal with imprecise and vague knowledge for some real world applications, but the fuzzy ontology can effectively solve data and knowledge with uncertainty. In this paper, an ontology-based intelligent fuzzy agent (OIFA),

  6. Sentiment analysis and ontology engineering an environment of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2016-01-01

    This edited volume provides the reader with a fully updated, in-depth treatise on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligence in the realization of concepts and implementation of models of sentiment analysis and ontology –oriented engineering. The volume involves studies devoted to key issues of sentiment analysis, sentiment models, and ontology engineering. The book is structured into three main parts. The first part offers a comprehensive and prudently structured exposure to the fundamentals of sentiment analysis and natural language processing. The second part consists of studies devoted to the concepts, methodologies, and algorithmic developments elaborating on fuzzy linguistic aggregation to emotion analysis, carrying out interpretability of computational sentiment models, emotion classification, sentiment-oriented information retrieval, a methodology of adaptive dynamics in knowledge acquisition. The third part includes a plethora of applica...

  7. Ontology Update in the Cognitive Model of Ontology Learning

    Directory of Open Access Journals (Sweden)

    Zhang De-Hai

    2016-01-01

    Full Text Available Ontology has been used in many hot-spot fields, but most ontology construction methods are semiautomatic, and the construction process of ontology is still a tedious and painstaking task. In this paper, a kind of cognitive models is presented for ontology learning which can simulate human being’s learning from world. In this model, the cognitive strategies are applied with the constrained axioms. Ontology update is a key step when the new knowledge adds into the existing ontology and conflict with old knowledge in the process of ontology learning. This proposal designs and validates the method of ontology update based on the axiomatic cognitive model, which include the ontology update postulates, axioms and operations of the learning model. It is proved that these operators subject to the established axiom system.

  8. Ontology-Based Information Extraction for Business Intelligence

    Science.gov (United States)

    Saggion, Horacio; Funk, Adam; Maynard, Diana; Bontcheva, Kalina

    Business Intelligence (BI) requires the acquisition and aggregation of key pieces of knowledge from multiple sources in order to provide valuable information to customers or feed statistical BI models and tools. The massive amount of information available to business analysts makes information extraction and other natural language processing tools key enablers for the acquisition and use of that semantic information. We describe the application of ontology-based extraction and merging in the context of a practical e-business application for the EU MUSING Project where the goal is to gather international company intelligence and country/region information. The results of our experiments so far are very promising and we are now in the process of building a complete end-to-end solution.

  9. An Intelligent Information Retrieval Approach Based on Two Degrees of Uncertainty Fuzzy Ontology

    Directory of Open Access Journals (Sweden)

    Maryam Hourali

    2011-01-01

    Full Text Available In spite of the voluminous studies in the field of intelligent retrieval systems, effective retrieving of information has been remained an important unsolved problem. Implementations of different conceptual knowledge in the information retrieval process such as ontology have been considered as a solution to enhance the quality of results. Furthermore, the conceptual formalism supported by typical ontology may not be sufficient to represent uncertainty information due to the lack of clear-cut boundaries between concepts of the domains. To tackle this type of problems, one possible solution is to insert fuzzy logic into ontology construction process. In this article, a novel approach for fuzzy ontology generation with two uncertainty degrees is proposed. Hence, by implementing linguistic variables, uncertainty level in domain's concepts (Software Maintenance Engineering (SME domain has been modeled, and ontology relations have been modeled by fuzzy theory consequently. Then, we combined these uncertain models and proposed a new ontology with two degrees of uncertainty both in concept expression and relation expression. The generated fuzzy ontology was implemented for expansion of initial user's queries in SME domain. Experimental results showed that the proposed model has better overall retrieval performance comparing to keyword-based or crisp ontology-based retrieval systems.

  10. Ontologies for Intelligent e-Theraoy: Application to Obesity

    OpenAIRE

    Zaragozá Álvarez, Irene; Guixeres Provinciale, Jaime; Alcañiz Raya, Mariano Luis

    2009-01-01

    [EN] In this paper we propose a new approach for mental e-health treatments named intelligent e-therapy (e-it) with capabilities for ambient intelligence and ubiquitous computing. The proposed e-it system supposes an evolution of cybertherapy and telepsychology tools used up to now. The e-it system is based in a knowledge base that includes all the knowledge related to the disorder and its treatment. We introduce the use of ontologies as the best option for the design of thi...

  11. The ontology supported intelligent system for experiment search in the scientific Research center

    Directory of Open Access Journals (Sweden)

    Cvjetković Vladimir

    2014-01-01

    Full Text Available Ontologies and corresponding knowledge bases can be quite successfully used for many tasks that rely on domain knowledge and semantic structures, which should be available for machine processing and sharing. Using SPARQL queries for retrieval of required elements from ontologies and knowledge bases, can significantly simplify modeling of arbitrary structures of concepts and data, and implementation of required functionalities. This paper describes developed ontology for support of Research Centre for testing of active substances that conducts scientific experiments. According to created ontology corresponding knowledge base was made and populated with real experimental data. Developed ontology and knowledge base are directly used for an intelligent system of experiment search which is based on many criteria from ontology. Proposed system gets the desired search result, which is actually an experiment in the form of a written report. Presented solution and implementation are very flexible and adaptable, and can be used as kind of a template by similar information system dealing with biological or similar complex system.

  12. Elements for an Ontology of Care in the Field of Artificial Intelligence.

    Science.gov (United States)

    González Aguña, Alexandra; Fernández Batalla, Marta; Cercas Duque, Adriana; Herrero Jaén, Sara; Monsalvo San Macario, Enrique; Jiménez Rodríguez, Ma Lourdes; Santamaría García, José Ma; Ramírez Sánchez, Sylvia Claudine; Vialart Vidal, Niurka; Condor Camara, Daniel Flavio

    2018-01-01

    An ontology of care is a formal, explicit specification of a shared conceptualization. Constructing an ontology is a process that requires four elements: knowledge object, subject that knows, knowledge operation and result. These elements configure theframework to generate ontologies that can be used in Artificial Intelligence systems for care.

  13. Model Driven Engineering with Ontology Technologies

    Science.gov (United States)

    Staab, Steffen; Walter, Tobias; Gröner, Gerd; Parreiras, Fernando Silva

    Ontologies constitute formal models of some aspect of the world that may be used for drawing interesting logical conclusions even for large models. Software models capture relevant characteristics of a software artifact to be developed, yet, most often these software models have limited formal semantics, or the underlying (often graphical) software language varies from case to case in a way that makes it hard if not impossible to fix its semantics. In this contribution, we survey the use of ontology technologies for software modeling in order to carry over advantages from ontology technologies to the software modeling domain. It will turn out that ontology-based metamodels constitute a core means for exploiting expressive ontology reasoning in the software modeling domain while remaining flexible enough to accommodate varying needs of software modelers.

  14. Ontology Based Model Transformation Infrastructure

    NARCIS (Netherlands)

    Göknil, Arda; Topaloglu, N.Y.

    2005-01-01

    Using MDA in ontology development has been investigated in several works recently. The mappings and transformations between the UML constructs and the OWL elements to develop ontologies are the main concern of these research projects. We propose another approach in order to achieve the collaboration

  15. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  16. Validating EHR clinical models using ontology patterns.

    Science.gov (United States)

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  18. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  19. Ontological Model of Business Process Management Systems

    Science.gov (United States)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  20. An Intelligent Information Retrieval Approach Based on Two Degrees of Uncertainty Fuzzy Ontology

    OpenAIRE

    Maryam Hourali; Gholam Ali Montazer

    2011-01-01

    In spite of the voluminous studies in the field of intelligent retrieval systems, effective retrieving of information has been remained an important unsolved problem. Implementations of different conceptual knowledge in the information retrieval process such as ontology have been considered as a solution to enhance the quality of results. Furthermore, the conceptual formalism supported by typical ontology may not be sufficient to represent uncertainty information due to the lack of clear-cut ...

  1. Ontology-Based Model Of Firm Competitiveness

    Science.gov (United States)

    Deliyska, Boryana; Stoenchev, Nikolay

    2010-10-01

    Competitiveness is important characteristics of each business organization (firm, company, corporation etc). It is of great significance for the organization existence and defines evaluation criteria of business success at microeconomical level. Each criterium comprises set of indicators with specific weight coefficients. In the work an ontology-based model of firm competitiveness is presented as a set of several mutually connected ontologies. It would be useful for knowledge structuring, standardization and sharing among experts and software engineers who develop application in the domain. Then the assessment of the competitiveness of various business organizations could be generated more effectively.

  2. Menthor Editor: An Ontology-Driven Conceptual Modeling Platform

    NARCIS (Netherlands)

    Moreira, João Luiz; Sales, Tiago Prince; Guerson, John; Braga, Bernardo F.B; Brasileiro, Freddy; Sobral, Vinicius

    2016-01-01

    The lack of well-founded constructs in ontology tools can lead to the construction of non-intended models. In this demonstration we present the Menthor Editor, an ontology-driven conceptual modelling platform which incorporates the theories of the Unified Foundational Ontology (UFO). We illustrate

  3. On Automatic Modeling and Use of Domain-specific Ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Knappe, Rasmus; Bulskov, Henrik

    2005-01-01

    In this paper, we firstly introduce an approach to the modeling of a domain-specific ontology for use in connection with a given document collection. Secondly, we present a methodology for deriving conceptual similarity from the domain-specific ontology. Adopted for ontology representation is a s...

  4. Towards Ontological Foundations for Agent Modeling Concepts using UFO

    NARCIS (Netherlands)

    Guizzardi, G.; Wagner, Gerd

    Foundational ontologies provide the basic concepts upon which any domain-specific ontology is built. This paper presents a new foundational ontology, UFO, and shows how it can be used as a foundation of agent concepts and for evaluating agent-oriented modeling methods. UFO is derived from a

  5. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  6. Discovering Diabetes Complications: an Ontology Based Model.

    Science.gov (United States)

    Daghistani, Tahani; Shammari, Riyad Al; Razzak, Muhammad Imran

    2015-12-01

    Diabetes is a serious disease that spread in the world dramatically. The diabetes patient has an average of risk to experience complications. Take advantage of recorded information to build ontology as information technology solution will help to predict patients who have average of risk level with certain complication. It is helpful to search and present patient's history regarding different risk factors. Discovering diabetes complications could be useful to prevent or delay the complications. We designed ontology based model, using adult diabetes patients' data, to discover the rules of diabetes with its complications in disease to disease relationship. Various rules between different risk factors of diabetes Patients and certain complications generated. Furthermore, new complications (diseases) might be discovered as new finding of this study, discovering diabetes complications could be useful to prevent or delay the complications. The system can identify the patients who are suffering from certain risk factors such as high body mass index (obesity) and starting controlling and maintaining plan.

  7. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    Science.gov (United States)

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  8. A hybrid fuzzy-ontology based intelligent system to determine level of severity and treatment recommendation for Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Torshizi, Abolfazl Doostparast; Zarandi, Mohammad Hossein Fazel; Torshizi, Ghazaleh Doostparast; Eghbali, Kamyar

    2014-01-01

    This paper deals with application of fuzzy intelligent systems in diagnosing severity level and recommending appropriate therapies for patients having Benign Prostatic Hyperplasia. Such an intelligent system can have remarkable impacts on correct diagnosis of the disease and reducing risk of mortality. This system captures various factors from the patients using two modules. The first module determines severity level of the Benign Prostatic Hyperplasia and the second module, which is a decision making unit, obtains output of the first module accompanied by some external knowledge and makes an appropriate treatment decision based on its ontology model and a fuzzy type-1 system. In order to validate efficiency and accuracy of the developed system, a case study is conducted by 44 participants. Then the results are compared with the recommendations of a panel of experts on the experimental data. Then precision and accuracy of the results were investigated based on a statistical analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.

    Science.gov (United States)

    Musen, M A

    1998-01-01

    When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  10. An Ontology for Modeling Complex Inter-relational Organizations

    Science.gov (United States)

    Wautelet, Yves; Neysen, Nicolas; Kolp, Manuel

    This paper presents an ontology for organizational modeling through multiple complementary aspects. The primary goal of the ontology is to dispose of an adequate set of related concepts for studying complex organizations involved in a lot of relationships at the same time. In this paper, we define complex organizations as networked organizations involved in a market eco-system that are playing several roles simultaneously. In such a context, traditional approaches focus on the macro analytic level of transactions; this is supplemented here with a micro analytic study of the actors' rationale. At first, the paper overviews enterprise ontologies literature to position our proposal and exposes its contributions and limitations. The ontology is then brought to an advanced level of formalization: a meta-model in the form of a UML class diagram allows to overview the ontology concepts and their relationships which are formally defined. Finally, the paper presents the case study on which the ontology has been validated.

  11. Modelling intelligent behavior

    Science.gov (United States)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  12. Ontology modeling for generation of clinical pathways

    Directory of Open Access Journals (Sweden)

    Jasmine Tehrani

    2012-12-01

    Full Text Available Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the

  13. Real-time context aware reasoning in on-board intelligent traffic systems: An Architecture for Ontology-based Reasoning using Finite State Machines

    NARCIS (Netherlands)

    Stoter, Arjan; Dalmolen, Simon; Drenth, Eduard; Cornelisse, Erik; Mulder, Wico

    2011-01-01

    In-vehicle information management is vital in intelligent traffic systems. In this paper we motivate an architecture for ontology-based context-aware reasoning for in-vehicle information management. An ontology is essential for system standardization and communication, and ontology-based reasoning

  14. Operational Plan Ontology Model for Interconnection and Interoperability

    Science.gov (United States)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  15. Ontology-driven education: Teaching anatomy with intelligent 3D games on the web

    Science.gov (United States)

    Nilsen, Trond

    Human anatomy is a challenging and intimidating subject whose understanding is essential to good medical practice, taught primarily using a combination of lectures and the dissection of human cadavers. Lectures are cheap and scalable, but do a poor job of teaching spatial understanding, whereas dissection lets students experience the body's interior first-hand, but is expensive, cannot be repeated, and is often imperfect. Educational games and online learning activities have the potential to supplement these teaching methods in a cheap and relatively effective way, but they are difficult for educators to customize for particular curricula and lack the tutoring support that human instructors provide. I present an approach to the creation of learning activities for anatomy called ontology-driven education, in which the Foundational Model of Anatomy, an ontological representation of knowledge about anatomy, is leveraged to generate educational content, model student knowledge, and support learning activities and games in a configurable web-based educational framework for anatomy.

  16. A Simulation Model Articulation of the REA Ontology

    Science.gov (United States)

    Laurier, Wim; Poels, Geert

    This paper demonstrates how the REA enterprise ontology can be used to construct simulation models for business processes, value chains and collaboration spaces in supply chains. These models support various high-level and operational management simulation applications, e.g. the analysis of enterprise sustainability and day-to-day planning. First, the basic constructs of the REA ontology and the ExSpect modelling language for simulation are introduced. Second, collaboration space, value chain and business process models and their conceptual dependencies are shown, using the ExSpect language. Third, an exhibit demonstrates the use of value chain models in predicting the financial performance of an enterprise.

  17. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  18. Derivation of Event-B Models from OWL Ontologies

    Directory of Open Access Journals (Sweden)

    Alkhammash Eman H.

    2016-01-01

    Full Text Available The derivation of formal specifications from large and complex requirements is a key challenge in systems engineering. In this paper we present an approach that aims to address this challenge by building formal models from OWL ontologies. An ontology is used in the field of knowledge representation to capture a clear view of the domain and to produce a concise and unambiguous set of domain requirements. We harness the power of ontologies to handle inconsistency of domain requirements and produce clear, concise and unambiguous set of domain requirements for Event-B modelling. The proposed approach works by generating Attempto Controlled English (ACE from the OWL ontology and then maps the ACE requirements to develop Event-B models. ACE is a subset of English that can be unambiguously translated into first-order logic. There is an injective mapping between OWL ontology and a subset of ACE. ACE is a suitable interlingua for producing the mapping between OWL and Event-B models for many reasons. Firstly, ACE is easy to learn and understand, it hides the math of OWL and would be natural to use by everybody. Secondly ACE has a parser that converts ACE texts into Discourse Representation Structures (DRS. Finally, ACE can be extended to target a richer syntactic subset of Event-B which ultimately would facilitate the translation of ACE requirements to Event-B.

  19. An Ontology-Based Framework for Modeling User Behavior

    DEFF Research Database (Denmark)

    Razmerita, Liana

    2011-01-01

    and classifies its users according to their behavior. The user ontology is the backbone of OntobUMf and has been designed according to the Information Management System Learning Information Package (IMS LIP). The user ontology includes a Behavior concept that extends IMS LIP specification and defines...... characteristics of the users interacting with the system. Concrete examples of how OntobUMf is used in the context of a Knowledge Management (KM) System are provided. This paper discusses some of the implications of ontology-based user modeling for semantically enhanced KM and, in particular, for personal KM....... The results of this research may contribute to the development of other frameworks for modeling user behavior, other semantically enhanced user modeling frameworks, or other semantically enhanced information systems....

  20. Research on Ontology Modeling of Steel Manufacturing Process Based on Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Bao Qing

    2016-01-01

    Full Text Available As an important method that steel industries ride the Indutrie 4.0 wave, knowledge management is expected to be versatile, effective and intelligent. Mechanism modeling difficulties, numerous influencing factors and complex industrial chains hinder the development of knowledge and information integration. Using data potentials, big data analysis can be an effective way to deal with knowledge acquisition as it solves the inaccuracy and imperfection mechanism modeling may lead to. This paper proposes a big data knowledge management system(BDAKMS adhering to data driven, intelligent analysis, service publication, dynamic update principle which can effectively extracts knowledge from mass data. Then, ontology modeling gives the knowledge unified descriptions as well as inference details combined with semantic web techniques.

  1. An ontology-based approach for modelling architectural styles

    OpenAIRE

    Pahl, Claus; Giesecke, Simon; Hasselbring, Wilhelm

    2007-01-01

    peer-reviewed The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework.We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. Architect...

  2. Hysteria, race, and phlogiston. A model of ontological elimination in the human sciences.

    Science.gov (United States)

    Ludwig, David

    2014-03-01

    Elimination controversies are ubiquitous in philosophy and the human sciences. For example, it has been suggested that human races, hysteria, intelligence, mental disorder, propositional attitudes such as beliefs and desires, the self, and the super-ego should be eliminated from the list of respectable entities in the human sciences. I argue that eliminativist proposals are often presented in the framework of an oversimplified "phlogiston model" and suggest an alternative account that describes ontological elimination on a gradual scale between criticism of empirical assumptions and conceptual choices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. An ontology model for execution records of Grid scientific applications

    NARCIS (Netherlands)

    Baliś, B.; Bubak, M.

    2008-01-01

    Records of past application executions are particularly important in the case of loosely-coupled, workflow driven scientific applications which are used to conduct in silico experiments, often on top of Grid infrastructures. In this paper, we propose an ontology-based model for storing and querying

  4. 'Epistemology models ontology'− In gesprek met John Polkinghorne ...

    African Journals Online (AJOL)

    The famous premise of John Polkinghorne, 'epistemology models ontology', has been assessed in this article. It is interpreted that its logic is based on a linear trajectory of knowledge → being. Polkinghorne places much emphasis on the fact that he pursues a 'bottom-up' approach, that is, an inductive way of going about ...

  5. Towards an ontological model defining the social engineering domain

    CSIR Research Space (South Africa)

    Mouton, F

    2014-08-01

    Full Text Available -1 ICT and Society IFIP Advances in Information and Communication Technology Volume 431, 2014, pp 266- 279 Towards an Ontological Model Defining the Social Engineering Domain Francois Mouton 1 , Louise Leenen 1 , Mercia M. Malan 2 , and H...

  6. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  7. Ontological engineering versus metaphysics

    Science.gov (United States)

    Tataj, Emanuel; Tomanek, Roman; Mulawka, Jan

    2011-10-01

    It has been recognized that ontologies are a semantic version of world wide web and can be found in knowledge-based systems. A recent time survey of this field also suggest that practical artificial intelligence systems may be motivated by this research. Especially strong artificial intelligence as well as concept of homo computer can also benefit from their use. The main objective of this contribution is to present and review already created ontologies and identify the main advantages which derive such approach for knowledge management systems. We would like to present what ontological engineering borrows from metaphysics and what a feedback it can provide to natural language processing, simulations and modelling. The potential topics of further development from philosophical point of view is also underlined.

  8. The ontology of Gero's FBS  model of designing

    DEFF Research Database (Denmark)

    Galle, Per

    2009-01-01

    Recent work by Vermaas and Dorst has led to constructive criticism and conceptual clarification of Gero’s FBS (Function-Behaviour-Structure) model of designing. In this paper Vermaas’ and Dorst’s version of the model is scrutinized, with an emphasis on its temporal aspect and ontological implicat......Recent work by Vermaas and Dorst has led to constructive criticism and conceptual clarification of Gero’s FBS (Function-Behaviour-Structure) model of designing. In this paper Vermaas’ and Dorst’s version of the model is scrutinized, with an emphasis on its temporal aspect and ontological...... implications. Regarding the latter, the model is found to be in need of amendment and further refinement to ensure its clarity and logical coherence. To this end, two alternative modifications of the model are developed. These results are not claimed to be of immediate practical use to designers. Rather...

  9. DeMO: An Ontology for Discrete-event Modeling and Simulation

    Science.gov (United States)

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  10. Modelling traffic flows with intelligent cars and intelligent roads

    NARCIS (Netherlands)

    van Arem, Bart; Tampere, Chris M.J.; Malone, Kerry

    2003-01-01

    This paper addresses the modeling of traffic flows with intelligent cars and intelligent roads. It will describe the modeling approach MIXIC and review the results for different ADA systems: Adaptive Cruise Control, a special lane for Intelligent Vehicles, cooperative following and external speed

  11. Proposed actions are no actions: re-modeling an ontology design pattern with a realist top-level ontology.

    Science.gov (United States)

    Seddig-Raufie, Djamila; Jansen, Ludger; Schober, Daniel; Boeker, Martin; Grewe, Niels; Schulz, Stefan

    2012-09-21

    Ontology Design Patterns (ODPs) are representational artifacts devised to offer solutions for recurring ontology design problems. They promise to enhance the ontology building process in terms of flexibility, re-usability and expansion, and to make the result of ontology engineering more predictable. In this paper, we analyze ODP repositories and investigate their relation with upper-level ontologies. In particular, we compare the BioTop upper ontology to the Action ODP from the NeOn an ODP repository. In view of the differences in the respective approaches, we investigate whether the Action ODP can be embedded into BioTop. We demonstrate that this requires re-interpreting the meaning of classes of the NeOn Action ODP in the light of the precepts of realist ontologies. As a result, the re-design required clarifying the ontological commitment of the ODP classes by assigning them to top-level categories. Thus, ambiguous definitions are avoided. Classes of real entities are clearly distinguished from classes of information artifacts. The proposed approach avoids the commitment to the existence of unclear future entities which underlies the NeOn Action ODP. Our re-design is parsimonious in the sense that existing BioTop content proved to be largely sufficient to define the different types of actions and plans. The proposed model demonstrates that an expressive upper-level ontology provides enough resources and expressivity to represent even complex ODPs, here shown with the different flavors of Action as proposed in the NeOn ODP. The advantage of ODP inclusion into a top-level ontology is the given predetermined dependency of each class, an existing backbone structure and well-defined relations. Our comparison shows that the use of some ODPs is more likely to cause problems for ontology developers, rather than to guide them. Besides the structural properties, the explanation of classification results were particularly hard to grasp for 'self-sufficient' ODPs as

  12. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  13. Ontology and modeling patterns for state-based behavior representation

    Science.gov (United States)

    Castet, Jean-Francois; Rozek, Matthew L.; Ingham, Michel D.; Rouquette, Nicolas F.; Chung, Seung H.; Kerzhner, Aleksandr A.; Donahue, Kenneth M.; Jenkins, J. Steven; Wagner, David A.; Dvorak, Daniel L.; hide

    2015-01-01

    This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.

  14. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    Science.gov (United States)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between

  15. UPCaD: A Methodology of Integration Between Ontology-Based Context-Awareness Modeling and Relational Domain Data

    Directory of Open Access Journals (Sweden)

    Vinícius Maran

    2018-01-01

    Full Text Available Context-awareness is a key feature for ubiquitous computing scenarios applications. Currently, technologies and methodologies have been proposed for the integration of context-awareness concepts in intelligent information systems to adapt them to the execution of services, user interfaces and data retrieval. Recent research proposed conceptual modeling alternatives to the integration of the domain modeling in RDBMS and context-awareness modeling. The research described using highly expressiveness ontologies. The present work describes the UPCaD (Unified Process for Integration between Context-Awareness and Domain methodology, which is composed of formalisms and processes to guide the data integration considering RDBMS and context modeling. The methodology was evaluated in a virtual learning environment application. The evaluation shows the possibility to use a highly expressive context ontology to filter the relational data query and discusses the main contributions of the methodology compared with recent approaches.

  16. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  17. Multidimensional Learner Model In Intelligent Learning System

    Science.gov (United States)

    Deliyska, B.; Rozeva, A.

    2009-11-01

    The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.

  18. ONTOLOGICAL MODEL OF STRATEGIC ECONOMIC SECURITY OF ENTERPRISE

    Directory of Open Access Journals (Sweden)

    L. A. Zaporozhtseva

    2014-01-01

    Full Text Available Article explains the necessity the application of the ontological approach to modeling the strategic economic security in the formalization of the basic categories of domain company recognized its benefits. Among the advantages of the model distinguishes its versatility and ability to describe various aspects of strategic security - the system strategies and goals of the organization and business processes; possibility of its use at different levels of detail - from the top-level description of the basic categories of management, to design-level analytic applications; as well as the adaptability of the model, with depth on particular aspects determined by practical necessity and not regulated methodology. The model integrates various aspects of the concept of enterprise architecture and organizes conceptual apparatus. Ontological model easy to understand and adjust as business architects and specialists in designing systems of economic security and offers many categories of verbal representation of the domain of the enterprise. Proved the feasibility of using process-functional approach in providing strategic economic security, according to which the components of such a security company proposed as business processes, finance, staff and contractors. The article presents the author's ontological model of strategic economic security, including endangered sites, the presence of factors that threaten the security of the object and the subject of providing security. Further, it is proved that in the subjects of security impact on the object using the tools, measures and activities within the strategy formed the mechanism is implemented managerial decisions to strengthen the strategic economic security. The process of diagnosis, detection, identification of threats of economic security, and the development of enterprise development strategies, taking into account its level of economic security must be under the constant supervision of the process of

  19. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain.

    Science.gov (United States)

    Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin

    2015-09-22

    Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

  20. An ontology for component-based models of water resource systems

    Science.gov (United States)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  1. Non-monotonic reasoning in conceptual modeling and ontology design: A proposal

    CSIR Research Space (South Africa)

    Casini, G

    2013-06-01

    Full Text Available -1 2nd International Workshop on Ontologies and Conceptual Modeling (Onto.Com 2013), Valencia, Spain, 17-21 June 2013 Non-monotonic reasoning in conceptual modeling and ontology design: A proposal Giovanni Casini1 and Alessandro Mosca2 1...

  2. Ontological model for predicting cyberattacks based on virtualized Honeynets

    Directory of Open Access Journals (Sweden)

    Gaona-García, Pablo

    2016-12-01

    Full Text Available The honeynets security tools are widely used today for the purpose of gathering information from potential attackers about vulnerabilities in our network. For performing correct use of them is necessary to understand the existing types, structures raised, the tools used and current developments. However, poor planning honeypot or honeynet one could provide unwanted users an access point to the network we want to protect. The purpose of this article is to carry out the approach of an ontological model for identifying the most common attacks types from the use of honeynets, and its implementation on working scenarios. This model will facilitate decision-making for the location of elements and components to computer level in an organization.

  3. The ontology model of FrontCRM framework

    Science.gov (United States)

    Budiardjo, Eko K.; Perdana, Wira; Franshisca, Felicia

    2013-03-01

    Adoption and implementation of Customer Relationship Management (CRM) is not merely a technological installation, but the emphasis is more on the application of customer-centric philosophy and culture as a whole. CRM must begin at the level of business strategy, the only level that thorough organizational changes are possible to be done. Changes agenda can be directed to each departmental plans, and supported by information technology. Work processes related to CRM concept include marketing, sales, and services. FrontCRM is developed as framework to guide in identifying business processes related to CRM in which based on the concept of strategic planning approach. This leads to processes and practices identification in every process area related to marketing, sales, and services. The Ontology model presented on this paper by means serves as tools to avoid framework misunderstanding, to define practices systematically within process area and to find CRM software features related to those practices.

  4. Collapse of the wave function models, ontology, origin, and implications

    CERN Document Server

    2018-01-01

    This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...

  5. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    Science.gov (United States)

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  6. Developing ontological model of computational linear algebra - preliminary considerations

    Science.gov (United States)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.

    2013-10-01

    The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.

  7. An organizational model to support the flexible workflow based on ontology

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Zhang Xiankun

    2012-01-01

    Based on ontology theory, the paper addresses an organizational model for flexible workflow. Firstly, the paper describes the conceptual model of the organizational model on ontology chart, which provides a consistent semantic framework of organization. Secondly, the paper gives the formalization of the model and describes the six key ontology elements of the mode in detail. Finally, the paper discusses deeply how the model supports the flexible workflow and indicates that the model has the advantages of cross-area, cross-organization and cross-domain, multi-process support and scalability. Especially, because the model is represented by ontology, the paper produces the conclusion that the model has covered the defect of unshared feature in traditional models, at the same time, it is more capable and flexible. (authors)

  8. Modelling the cybersecurity environment using morphological ontology design engineering

    CSIR Research Space (South Africa)

    Jansen van Vuuren, JC

    2015-03-01

    Full Text Available ). This methodology is based on the combination of three different research methods, i.e. design science, general morphological analysis, and ontology based representation. General morphological analysis offers a solution for extracting meaningful information from...

  9. A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain

    Directory of Open Access Journals (Sweden)

    Shaker El-Sappagh

    2017-06-01

    Full Text Available Knowledge-Intensive Case-Based Reasoning Systems (KI-CBR mainly depend on ontologies. Ontology can play the role of case-base knowledge. The combination of ontology and fuzzy logic reasoning is critical in the medical domain. Case-base representation based on fuzzy ontology is expected to enhance the semantic and storage of CBR knowledge-base. This paper provides an advancement to the research of diabetes diagnosis CBR by proposing a novel case-base fuzzy OWL2 ontology (CBRDiabOnto. This ontology can be considered as the first fuzzy case-base ontology in the medical domain. It is based on a case-base fuzzy Extended Entity Relation (EER data model. It contains 63 (fuzzy classes, 54 (fuzzy object properties, 138 (fuzzy datatype properties, and 105 fuzzy datatypes. We populated the ontology with 60 cases and used SPARQL-DL for its query. The evaluation of CBRDiabOnto shows that it is accurate, consistent, and cover terminologies and logic of diabetes mellitus diagnosis.

  10. Jacob Lorhard’s Ontology: A 17th Century Hypertext on the Reality and Temporality of the World of Intelligibles

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter; Schärfe, Henrik; Uckelman, Sara

    2008-01-01

    , Lorhard’s ontology reflects how the relations between scientific investigation and religious belief were seen. It is also argued that several of the conceptual choices which Lorhard made in order to establish his ontology may still be relevant for modern makers of ontological systems. In particular...

  11. OntoVIP: an ontology for the annotation of object models used for medical image simulation.

    Science.gov (United States)

    Gibaud, Bernard; Forestier, Germain; Benoit-Cattin, Hugues; Cervenansky, Frédéric; Clarysse, Patrick; Friboulet, Denis; Gaignard, Alban; Hugonnard, Patrick; Lartizien, Carole; Liebgott, Hervé; Montagnat, Johan; Tabary, Joachim; Glatard, Tristan

    2014-12-01

    This paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Ontology-Based Big Dimension Modeling in Data Warehouse Schema Design

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2013-01-01

    During data warehouse schema design, designers often encounter how to model big dimensions that typically contain a large number of attributes and records. To investigate effective approaches for modeling big dimensions is necessary in order to achieve better query performance, with respect...... partitioning, vertical partitioning and their hybrid. We formalize the design methods and propose an algorithm that describes the modeling process from an OWL ontology to a data warehouse schema. In addition, this paper also presents an effective ontology-based tool to automate the modeling process. The tool...... can automatically generate the data warehouse schema from the ontology of describing the terms and business semantics for the big dimension. In case of any change in the requirements, we only need to modify the ontology, and re-generate the schema using the tool. This paper also evaluates the proposed...

  13. A modeling ontology for integrating vulnerabilities into security requirements conceptual foundations

    NARCIS (Netherlands)

    Elahi, G.; Yu, E.; Zannone, N.; Laender, A.H.F.; Castano, S.; Dayal, U.; Casati, F.; Palazzo Moreira de Oliveira, J.

    2009-01-01

    Vulnerabilities are weaknesses in the requirements, design, and implementation, which attackers exploit to compromise the system. This paper proposes a vulnerability-centric modeling ontology, which aims to integrate empirical knowledge of vulnerabilities into the system development process. In

  14. Dealing with Resilience Conceptualisation. Formal Ontologies as a Tool for Implementation of Intelligent Geographic Information Systems

    Directory of Open Access Journals (Sweden)

    Giampiero Lombardini

    2014-05-01

    Full Text Available The paper addresses the issue of the representation of the concept of resilience (urban, environmental and landscape resilience in the context of geographic information systems. In the current technical and scientific debate, resilience is configured as an intrinsic property of a system to switch from one equilibrium state to another without losing its basic internal structure, also definable in terms of "identity." The paths to success or stable growth as well as those of continuing and recursive crisis, although already explained in macroeconomic terms through the mechanisms of accumulation and multiplication (cumulative advantage, are also interpreted in terms of resilience. So, in the field of studies on spatial planning, the concept of resilience became particularly significant in an era characterized by great instability of social systems, deep economic and environmental crisis. In the process of urban and regional planning, conceive the development of an urban region in terms of resilience means using the logic of complex systems and then adapt in this way their methods of knowledge representation. The concept of resilience is multi-dimensional and vague, so its conceptualization is complex. The formal ontologies can be a useful tool to orient geographic information systems towards more complex forms of knowledge representation and to adapt them to the requirements of logic and formal complex systems, such as today's urban regions.

  15. Building spatio-temporal database model based on ontological approach using relational database environment

    International Nuclear Information System (INIS)

    Mahmood, N.; Burney, S.M.A.

    2017-01-01

    Everything in this world is encapsulated by space and time fence. Our daily life activities are utterly linked and related with other objects in vicinity. Therefore, a strong relationship exist with our current location, time (including past, present and future) and event through with we are moving as an object also affect our activities in life. Ontology development and its integration with database are vital for the true understanding of the complex systems involving both spatial and temporal dimensions. In this paper we propose a conceptual framework for building spatio-temporal database model based on ontological approach. We have used relational data model for modelling spatio-temporal data content and present our methodology with spatio-temporal ontological accepts and its transformation into spatio-temporal database model. We illustrate the implementation of our conceptual model through a case study related to cultivated land parcel used for agriculture to exhibit the spatio-temporal behaviour of agricultural land and related entities. Moreover, it provides a generic approach for designing spatiotemporal databases based on ontology. The proposed model is capable to understand the ontological and somehow epistemological commitments and to build spatio-temporal ontology and transform it into a spatio-temporal data model. Finally, we highlight the existing and future research challenges. (author)

  16. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  17. Student Modeling in an Intelligent Tutoring System

    Science.gov (United States)

    1996-12-17

    Multi-Agent Architecture." Advances in Artificial Intelligence : Proceedings of the 12 th Brazilian Symposium on Aritificial Intelligence , edited by...STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D-27 DIMTVMON* fCKAJWINT A Appr"v*d t=i...Air Force Base, Ohio AFIT/GCS/ENG/96D-27 STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D

  18. Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures.

    Science.gov (United States)

    Sankar, Punnaivanam; Aghila, Gnanasekaran

    2007-01-01

    The mechanism models for primary organic reactions encoding the structural fragments undergoing substitution, addition, elimination, and rearrangements are developed. In the proposed models, each and every structural component of mechanistic pathways is represented with flexible and fragment based markup technique in XML syntax. A significant feature of the system is the encoding of the electron movements along with the other components like charges, partial charges, half bonded species, lone pair electrons, free radicals, reaction arrows, etc. needed for a complete representation of reaction mechanism. The rendering of reaction schemes described with the proposed methodology is achieved with a concise XML extension language interoperating with the structure markup. The reaction scheme is visualized as 2D graphics in a browser by converting them into SVG documents enabling the desired layouts normally perceived by the chemists conventionally. An automatic representation of the complex patterns of the reaction mechanism is achieved by reusing the knowledge in chemical ontologies and developing artificial intelligence components in terms of axioms.

  19. Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  20. Automating Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  1. A PRACTICAL ONTOLOGY FOR THE LARGE-SCALE MODELING OF SCHOLARLY ARTIFACTS AND THEIR USAGE

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ, MARKO A. [Los Alamos National Laboratory; BOLLEN, JOHAN [Los Alamos National Laboratory; VAN DE SOMPEL, HERBERT [Los Alamos National Laboratory

    2007-01-30

    The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. As a remedy to the third constraint, this article presents a scholarly ontology that was engineered to represent those classes for which large-scale bibliographic and usage data exists, supports usage research, and whose instantiation is scalable to the order of 50 million articles along with their associated artifacts (e.g. authors and journals) and an accompanying 1 billion usage events. The real world instantiation of the presented abstract ontology is a semantic network model of the scholarly community which lends the scholarly process to statistical analysis and computational support. They present the ontology, discuss its instantiation, and provide some example inference rules for calculating various scholarly artifact metrics.

  2. Towards refactoring the Molecular Function Ontology with a UML profile for function modeling.

    Science.gov (United States)

    Burek, Patryk; Loebe, Frank; Herre, Heinrich

    2017-10-04

    Gene Ontology (GO) is the largest resource for cataloging gene products. This resource grows steadily and, naturally, this growth raises issues regarding the structure of the ontology. Moreover, modeling and refactoring large ontologies such as GO is generally far from being simple, as a whole as well as when focusing on certain aspects or fragments. It seems that human-friendly graphical modeling languages such as the Unified Modeling Language (UML) could be helpful in connection with these tasks. We investigate the use of UML for making the structural organization of the Molecular Function Ontology (MFO), a sub-ontology of GO, more explicit. More precisely, we present a UML dialect, called the Function Modeling Language (FueL), which is suited for capturing functions in an ontologically founded way. FueL is equipped, among other features, with language elements that arise from studying patterns of subsumption between functions. We show how to use this UML dialect for capturing the structure of molecular functions. Furthermore, we propose and discuss some refactoring options concerning fragments of MFO. FueL enables the systematic, graphical representation of functions and their interrelations, including making information explicit that is currently either implicit in MFO or is mainly captured in textual descriptions. Moreover, the considered subsumption patterns lend themselves to the methodical analysis of refactoring options with respect to MFO. On this basis we argue that the approach can increase the comprehensibility of the structure of MFO for humans and can support communication, for example, during revision and further development.

  3. A measurement model of multiple intelligence profiles of management graduates

    Science.gov (United States)

    Krishnan, Heamalatha; Awang, Siti Rahmah

    2017-05-01

    In this study, developing a fit measurement model and identifying the best fitting items to represent Howard Gardner's nine intelligences namely, musical intelligence, bodily-kinaesthetic intelligence, mathematical/logical intelligence, visual/spatial intelligence, verbal/linguistic intelligence, interpersonal intelligence, intrapersonal intelligence, naturalist intelligence and spiritual intelligence are the main interest in order to enhance the opportunities of the management graduates for employability. In order to develop a fit measurement model, Structural Equation Modeling (SEM) was applied. A psychometric test which is the Ability Test in Employment (ATIEm) was used as the instrument to measure the existence of nine types of intelligence of 137 University Teknikal Malaysia Melaka (UTeM) management graduates for job placement purposes. The initial measurement model contains nine unobserved variables and each unobserved variable is measured by ten observed variables. Finally, the modified measurement model deemed to improve the Normed chi-square (NC) = 1.331; Incremental Fit Index (IFI) = 0.940 and Root Mean Square of Approximation (RMSEA) = 0.049 was developed. The findings showed that the UTeM management graduates possessed all nine intelligences either high or low. Musical intelligence, mathematical/logical intelligence, naturalist intelligence and spiritual intelligence contributed highest loadings on certain items. However, most of the intelligences such as bodily kinaesthetic intelligence, visual/spatial intelligence, verbal/linguistic intelligence interpersonal intelligence and intrapersonal intelligence possessed by UTeM management graduates are just at the borderline.

  4. Modeling issues & choices in the data mining optimization ontology

    CSIR Research Space (South Africa)

    Keet, CM

    2013-05-01

    Full Text Available We describe the Data Mining Optimization Ontology (DMOP), which was developed to support informed decision-making at various choice points of the knowledge discovery (KD) process. It can be used as a reference by data miners, but its primary purpose...

  5. A diagnostic ontological model for damages to historical constructions

    Czech Academy of Sciences Publication Activity Database

    Cacciotti, Riccardo; Blaško, M.; Valach, Jaroslav

    2015-01-01

    Roč. 16, č. 1 (2015), s. 40-48 ISSN 1296-2074 R&D Projects: GA MK(CZ) DF11P01OVV002 Keywords : historical constructions * conservation * ontologies * damage Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.533, year: 2015 http://www.sciencedirect.com/science/article/pii/S1296207414000259

  6. Computer support for physiological cell modelling using an ontology on cell physiology.

    Science.gov (United States)

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  7. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  8. Computational Intelligence. Mortality Models for the Actuary

    NARCIS (Netherlands)

    Willemse, W.J.

    2001-01-01

    This thesis applies computational intelligence to the field of actuarial (insurance) science. In particular, this thesis deals with life insurance where mortality modelling is important. Actuaries use ancient models (mortality laws) from the nineteenth century, for example Gompertz' and Makeham's

  9. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    Science.gov (United States)

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  10. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  11. Computational Intelligence, Cyber Security and Computational Models

    CERN Document Server

    Anitha, R; Lekshmi, R; Kumar, M; Bonato, Anthony; Graña, Manuel

    2014-01-01

    This book contains cutting-edge research material presented by researchers, engineers, developers, and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security and Computational Models (ICC3) organized by PSG College of Technology, Coimbatore, India during December 19–21, 2013. The materials in the book include theory and applications for design, analysis, and modeling of computational intelligence and security. The book will be useful material for students, researchers, professionals, and academicians. It will help in understanding current research trends and findings and future scope of research in computational intelligence, cyber security, and computational models.

  12. On the practical modeling of conceptual overlap among multiple facets in ontology domain concepts (Mini-thesis)

    OpenAIRE

    Rodriguez-Castro, Benedicto; Glaser, Hugh; Carr, Leslie

    2007-01-01

    This report presents a study on the practical modelling of the conceptual overlap that might exist among the multiple facets that define a particular ontology domain concept. The notions of conceptual overlap and facet are defined, together with their relation to scenarios of multiple inheritance in ontology models. Starting from the notion of a value partition, a terminology of ontology modelling constructs is introduced that allows the characterization of two types of conceptual overlap wit...

  13. Jacob Lorhard's ontology: A 17th century hypertext on the reality and temporality of the world of intelligibles

    NARCIS (Netherlands)

    Øhrstrøm, P.; Schärfe, H.; Uckelman, S.L.

    2008-01-01

    Jacob Lorhard published his ontology in 1606. In this work the term ontologia ‘ontology’ was used for the first time ever. In this paper, it is argued that Lorhard’s ontology provides a useful key to the understanding of the early 17th-century world view in Protestant Europe. Among other things,

  14. The EDEN-IW ontology model for sharing knowledge and water quality data between heterogenous databases

    DEFF Research Database (Denmark)

    Stjernholm, M.; Poslad, S.; Zuo, L.

    2004-01-01

    The Environmental Data Exchange Network for Inland Water (EDEN-IW) project's main aim is to develop a system for making disparate and heterogeneous databases of Inland Water quality more accessible to users. The core technology is based upon a combination of: ontological model to represent...... a Semantic Web based data model for IW; software agents as an infrastructure to share and reason about the IW se-mantic data model and XML to make the information accessible to Web portals and mainstream Web services. This presentation focuses on the Semantic Web or Onto-logical model. Currently, we have...

  15. Model SH intelligent instrument for thickness measuring

    International Nuclear Information System (INIS)

    Liu Juntao; Jia Weizhuang; Zhao Yunlong

    1995-01-01

    The authors introduce Model SH Intelligent Instrument for thickness measuring by using principle of beta back-scattering and its application range, features, principle of operation, system design, calibration and specifications

  16. A methodology and supply chain management inspired reference ontology for modeling healthcare teams.

    Science.gov (United States)

    Kuziemsky, Craig E; Yazdi, Sara

    2011-01-01

    Numerous studies and strategic plans are advocating more team based healthcare delivery that is facilitated by information and communication technologies (ICTs). However before we can design ICTs to support teams we need a solid conceptual model of team processes and a methodology for using such a model in healthcare settings. This paper draws upon success in the supply chain management domain to develop a reference ontology of healthcare teams and a methodology for modeling teams to instantiate the ontology in specific settings. This research can help us understand how teams function and how we can design ICTs to support teams.

  17. COMODI: an ontology to characterise differences in versions of computational models in biology.

    Science.gov (United States)

    Scharm, Martin; Waltemath, Dagmar; Mendes, Pedro; Wolkenhauer, Olaf

    2016-07-11

    Open model repositories provide ready-to-reuse computational models of biological systems. Models within those repositories evolve over time, leading to different model versions. Taken together, the underlying changes reflect a model's provenance and thus can give valuable insights into the studied biology. Currently, however, changes cannot be semantically interpreted. To improve this situation, we developed an ontology of terms describing changes in models. The ontology can be used by scientists and within software to characterise model updates at the level of single changes. When studying or reusing a model, these annotations help with determining the relevance of a change in a given context. We manually studied changes in selected models from BioModels and the Physiome Model Repository. Using the BiVeS tool for difference detection, we then performed an automatic analysis of changes in all models published in these repositories. The resulting set of concepts led us to define candidate terms for the ontology. In a final step, we aggregated and classified these terms and built the first version of the ontology. We present COMODI, an ontology needed because COmputational MOdels DIffer. It empowers users and software to describe changes in a model on the semantic level. COMODI also enables software to implement user-specific filter options for the display of model changes. Finally, COMODI is a step towards predicting how a change in a model influences the simulation results. COMODI, coupled with our algorithm for difference detection, ensures the transparency of a model's evolution, and it enhances the traceability of updates and error corrections. COMODI is encoded in OWL. It is openly available at http://comodi.sems.uni-rostock.de/ .

  18. An Ontology for Musical Phonographic Records: Contributing with a Representation Model

    Science.gov (United States)

    de Oliveira Albuquerque, Marcelo; Siqueira, Sean Wolfgand M.; de Saldanha da G. Lanzelotte, Rosana; Braz, Maria Helena L. B.

    Music is a complex domain with some interesting specificities that makes it difficult to be modeled. If different types of music are considered, then the difficulties are even bigger. This paper presents some of the characteristics that makes music such a hard domain to model and proposes an ontology for representing musical phonographic records. This ontology will provide a global representation that can be used to support systems interoperability and data integration, which provides disseminating music worldwide, contributing to culture in the knowledge society.

  19. An Intelligence Collection Management Model.

    Science.gov (United States)

    1984-06-01

    classification of inteligence collection requirements in terms of. the a-.- metnodo"c, .ev--e in Chaster Five. 116 APPgENDIX A A METHOD OF RANKING...of Artificial Intelligence Tools and Technigues to!TN’X n~l is n rs aa~emfft-.3-ufnyva: ’A TZ Ashby W. Ecss. An Introduction to Cybernetics. New York

  20. DMTO: a realistic ontology for standard diabetes mellitus treatment.

    Science.gov (United States)

    El-Sappagh, Shaker; Kwak, Daehan; Ali, Farman; Kwak, Kyung-Sup

    2018-02-06

    Treatment of type 2 diabetes mellitus (T2DM) is a complex problem. A clinical decision support system (CDSS) based on massive and distributed electronic health record data can facilitate the automation of this process and enhance its accuracy. The most important component of any CDSS is its knowledge base. This knowledge base can be formulated using ontologies. The formal description logic of ontology supports the inference of hidden knowledge. Building a complete, coherent, consistent, interoperable, and sharable ontology is a challenge. This paper introduces the first version of the newly constructed Diabetes Mellitus Treatment Ontology (DMTO) as a basis for shared-semantics, domain-specific, standard, machine-readable, and interoperable knowledge relevant to T2DM treatment. It is a comprehensive ontology and provides the highest coverage and the most complete picture of coded knowledge about T2DM patients' current conditions, previous profiles, and T2DM-related aspects, including complications, symptoms, lab tests, interactions, treatment plan (TP) frameworks, and glucose-related diseases and medications. It adheres to the design principles recommended by the Open Biomedical Ontologies Foundry and is based on ontological realism that follows the principles of the Basic Formal Ontology and the Ontology for General Medical Science. DMTO is implemented under Protégé 5.0 in Web Ontology Language (OWL) 2 format and is publicly available through the National Center for Biomedical Ontology's BioPortal at http://bioportal.bioontology.org/ontologies/DMTO . The current version of DMTO includes more than 10,700 classes, 277 relations, 39,425 annotations, 214 semantic rules, and 62,974 axioms. We provide proof of concept for this approach to modeling TPs. The ontology is able to collect and analyze most features of T2DM as well as customize chronic TPs with the most appropriate drugs, foods, and physical exercises. DMTO is ready to be used as a knowledge base for

  1. Applying Conceptual Blending to Model Coordinated Use of Multiple Ontological Metaphors

    Science.gov (United States)

    Dreyfus, Benjamin W.; Gupta, Ayush; Redish, Edward F.

    2015-04-01

    Energy is an abstract science concept, so the ways that we think and talk about energy rely heavily on ontological metaphors: metaphors for what kind of thing energy is. Two commonly used ontological metaphors for energy are energy as a substance and energy as a vertical location. Our previous work has demonstrated that students and experts can productively use both the substance and location ontologies for energy. In this paper, we use Fauconnier and Turner's conceptual blending framework to demonstrate that experts and novices can successfully blend the substance and location ontologies into a coherent mental model in order to reason about energy. Our data come from classroom recordings of a physics professor teaching a physics course for the life sciences, and from an interview with an undergraduate student in that course. We analyze these data using predicate analysis and gesture analysis, looking at verbal utterances, gestures, and the interaction between them. This analysis yields evidence that the speakers are blending the substance and location ontologies into a single blended mental space.

  2. A reference ontology for harmonizing process-reference models

    Directory of Open Access Journals (Sweden)

    César Jesús Pardo-Calvache

    2014-01-01

    Full Text Available Desde hace un par de décadas, la calidad del proceso ha sido considerada como uno de los factores principales para la entrega de productos con alta calidad. Una gran variedad de modelos y estándares han surgido como solución a este problema, sin embargo, la implementación de varios modelos para que una empresa cumpla con múltiples requisitos de calidad no es una tarea fácil. La dificultad radica en la falta de directrices específicas y una representación homogénea que facilite el trabajo en esta línea de la ingeniería de software. Para hacer frente a esta situación, en este trabajo se presenta una ontología de modelos de referencia de procesos, llamado PrMO. Esta ontología define una Estructura Común de Elementos de Procesos (ECEP como medio para apoyar la armonización de las diferencias estructurales entre múltiples modelos. La armonización se lleva a cabo a través de la homogeneización de las estructuras de procesos de cada uno de los modelos. PrMO ha sido validada a través de la instanciación de la información contenida en diferentes modelos, tales como CMMI-(ACQ, DEV, ISO (9001, 27001, 27002, 20000- 2, ITIL, COBIT, RISK IT, Val IT, BASEL II, entre otros. Tanto la estructura común (ECEP y el método de homogeneización son presentados junto con un ejemplo de aplicación. Asimismo, se presenta una herramienta web que permite apoyar la homogeneización de los modelos, esto permite ilustrar mejor las ventajas de PrMO. La ontología propuesta podría ser de gran utilidad para las organizaciones y consultores que planean llevar a cabo la armonización de múltiples modelos.

  3. Ontologies to Support RFID-Based Link between Virtual Models and Construction Components

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2010-01-01

    the virtual models and the physical components in the construction process can improve the information handling and sharing in construction and building operation management. Such a link can be created by means of Radio Frequency Identification (RFID) technology. Ontologies play an important role...

  4. Interactive ontology-based user modelling for personalized learning content management

    NARCIS (Netherlands)

    Denaux, R.O.; Dimitrova, V.; Aroyo, L.M.; Aroyo, L.; Tasso, C.

    2004-01-01

    This position paper discusses the need for using interactive ontology-based user modeling to empower on the fly adaptation in learning information systems. We outline several open issues related to adaptive learning content delivery and present an approach to deal with these issues based on the

  5. An Application of Structural Equation Modeling for Developing Good Teaching Characteristics Ontology

    Science.gov (United States)

    Phiakoksong, Somjin; Niwattanakul, Suphakit; Angskun, Thara

    2013-01-01

    Ontology is a knowledge representation technique which aims to make knowledge explicit by defining the core concepts and their relationships. The Structural Equation Modeling (SEM) is a statistical technique which aims to explore the core factors from empirical data and estimates the relationship between these factors. This article presents an…

  6. IEA Wind Task 37 System Modeling Framework and Ontology for Wind Turbines and Plants

    NARCIS (Netherlands)

    Dykes, K; Sanchez Perez Moreno, S.; Zahle, Frederik; Ning, A; McWilliam, M.; Zaayer, M B

    2017-01-01

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common

  7. Translation of overlay models of student knowledge for relative domains based on domain ontology mapping

    DEFF Research Database (Denmark)

    Sosnovsky, Sergey; Dolog, Peter; Henze, Nicola

    2007-01-01

    The effectiveness of an adaptive educational system in many respects depends on the precision of modeling assumptions it makes about a student. One of the well-known challenges in student modeling is to adequately assess the initial level of student's knowledge when s/he starts working...... with a system. Sometimes potentially handful data are available as a part of user model from a system used by the student before. The usage of external user modeling information is troublesome because of differences in system architecture, knowledge representation, modeling constraints, etc. In this paper, we...... argue that the implementation of underlying knowledge models in a sharable format, as domain ontologies - along with application of automatic ontology mapping techniques for model alignment - can help to overcome the "new-user" problem and will greatly widen opportunities for student model translation...

  8. CelOWS: an ontology based framework for the provision of semantic web services related to biological models.

    Science.gov (United States)

    Matos, Ely Edison; Campos, Fernanda; Braga, Regina; Palazzi, Daniele

    2010-02-01

    The amount of information generated by biological research has lead to an intensive use of models. Mathematical and computational modeling needs accurate description to share, reuse and simulate models as formulated by original authors. In this paper, we introduce the Cell Component Ontology (CelO), expressed in OWL-DL. This ontology captures both the structure of a cell model and the properties of functional components. We use this ontology in a Web project (CelOWS) to describe, query and compose CellML models, using semantic web services. It aims to improve reuse and composition of existent components and allow semantic validation of new models.

  9. Towards Self-managed Pervasive Middleware using OWL/SWRL ontologies

    DEFF Research Database (Denmark)

    Zhang, Weishan; Hansen, Klaus Marius

    2008-01-01

    Self-management for pervasive middleware is important to realize the Ambient Intelligence vision. In this paper, we present an OWL/SWRL context ontologies based self-management approach for pervasive middleware where OWL ontology is used as means for context modeling. The context ontologies....../SWRL context ontologies based self-management approach with the self-diagnosis in Hydra middleware, using device state machine and other dynamic context information, for example web service calls. The evaluations in terms of extensibility, performance and scalability show that this approach is effective...

  10. Feature-opinion pair identification of product reviews in Chinese: a domain ontology modeling method

    Science.gov (United States)

    Yin, Pei; Wang, Hongwei; Guo, Kaiqiang

    2013-03-01

    With the emergence of the new economy based on social media, a great amount of consumer feedback on particular products are conveyed through wide-spreading product online reviews, making opinion mining a growing interest for both academia and industry. According to the characteristic mode of expression in Chinese, this research proposes an ontology-based linguistic model to identify the basic appraisal expression in Chinese product reviews-"feature-opinion pair (FOP)." The product-oriented domain ontology is constructed automatically at first, then algorithms to identify FOP are designed by mapping product features and opinions to the conceptual space of the domain ontology, and finally comparative experiments are conducted to evaluate the model. Experimental results indicate that the performance of the proposed approach in this paper is efficient in obtaining a more accurate result compared to the state-of-art algorithms. Furthermore, through identifying and analyzing FOPs, the unstructured product reviews are converted into structured and machine-sensible expression, which provides valuable information for business application. This paper contributes to the related research in opinion mining by developing a solid foundation for further sentiment analysis at a fine-grained level and proposing a general way for automatic ontology construction.

  11. Algorithms to analyze the quality test parameter values of seafood in the proposed ontology based seafood quality analyzer and miner (ONTO SQAM model

    Directory of Open Access Journals (Sweden)

    Vinu Sherimon

    2017-07-01

    Full Text Available Ensuring the quality of food, particularly seafood has increasingly become an important issue nowadays. Quality Management Systems empower any organization to identify, measure, control and improve the quality of the products manufactured that will eventually lead to improved business performance. With the advent of new technologies, now intelligent systems are being developed. To ensure the quality of seafood, an ontology based seafood quality analyzer and miner (ONTO SQAM model is proposed. The knowledge is represented using ontology. The domain concepts are defined using ontology. This paper presents the initial part of the proposed model – the analysis of quality test parameter values. Two algorithms are proposed to do the analysis – Comparison Algorithm and Data Store Updater algorithm. The algorithms ensure that the values of various quality tests are in the acceptable range. The real data sets taken from different seafood companies in Kerala, India, and validated by the Marine Product Export Development Authority of India (MPEDA are used for the experiments. The performance of the algorithms is evaluated using standard performance metrics such as precision, recall, and accuracy. The results obtained show that all the three measures achieved good results.

  12. development of ontological knowledge representation

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. This paper presents the development of an ontological knowledge organization and .... intelligence in order to facilitate knowledge sharing and reuse of acquired knowledge (15). Soon, ..... Water Chemistry, AJCE, 1(2), 50-58. 25.

  13. Intelligence and the brain: a model-based approach

    NARCIS (Netherlands)

    Kievit, R.A.; van Rooijen, H.; Wicherts, J.M.; Waldorp, L.J.; Kan, K.-J.; Scholte, H.S.; Borsboom, D.

    2012-01-01

    Various biological correlates of general intelligence (g) have been reported. Despite this, however, the relationship between neurological measurements and g is not fully clear. We use structural equation modeling to model the relationship between behavioral Wechsler Adult Intelligence Scale (WAIS)

  14. A model for Business Intelligence Systems’ Development

    Directory of Open Access Journals (Sweden)

    Manole VELICANU

    2009-01-01

    Full Text Available Often, Business Intelligence Systems (BIS require historical data or data collected from var-ious sources. The solution is found in data warehouses, which are the main technology used to extract, transform, load and store data in the organizational Business Intelligence projects. The development cycle of a data warehouse involves lots of resources, time, high costs and above all, it is built only for some specific tasks. In this paper, we’ll present some of the aspects of the BI systems’ development such as: architecture, lifecycle, modeling techniques and finally, some evaluation criteria for the system’s performance.

  15. Clinical data integration model. Core interoperability ontology for research using primary care data.

    Science.gov (United States)

    Ethier, J-F; Curcin, V; Barton, A; McGilchrist, M M; Bastiaens, H; Andreasson, A; Rossiter, J; Zhao, L; Arvanitis, T N; Taweel, A; Delaney, B C; Burgun, A

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Primary care data is the single richest source of routine health care data. However its use, both in research and clinical work, often requires data from multiple clinical sites, clinical trials databases and registries. Data integration and interoperability are therefore of utmost importance. TRANSFoRm's general approach relies on a unified interoperability framework, described in a previous paper. We developed a core ontology for an interoperability framework based on data mediation. This article presents how such an ontology, the Clinical Data Integration Model (CDIM), can be designed to support, in conjunction with appropriate terminologies, biomedical data federation within TRANSFoRm, an EU FP7 project that aims to develop the digital infrastructure for a learning healthcare system in European Primary Care. TRANSFoRm utilizes a unified structural / terminological interoperability framework, based on the local-as-view mediation paradigm. Such an approach mandates the global information model to describe the domain of interest independently of the data sources to be explored. Following a requirement analysis process, no ontology focusing on primary care research was identified and, thus we designed a realist ontology based on Basic Formal Ontology to support our framework in collaboration with various terminologies used in primary care. The resulting ontology has 549 classes and 82 object properties and is used to support data integration for TRANSFoRm's use cases. Concepts identified by researchers were successfully expressed in queries using CDIM and pertinent terminologies. As an example, we illustrate how, in TRANSFoRm, the Query Formulation Workbench can capture eligibility criteria in a computable representation, which is based on CDIM. A unified mediation approach to semantic interoperability provides a

  16. Towards a universal competitive intelligence process model

    Directory of Open Access Journals (Sweden)

    Rene Pellissier

    2013-08-01

    Full Text Available Background: Competitive intelligence (CI provides actionable intelligence, which provides a competitive edge in enterprises. However, without proper process, it is difficult to develop actionable intelligence. There are disagreements about how the CI process should be structured. For CI professionals to focus on producing actionable intelligence, and to do so with simplicity, they need a common CI process model.Objectives: The purpose of this research is to review the current literature on CI, to look at the aims of identifying and analysing CI process models, and finally to propose a universal CI process model.Method: The study was qualitative in nature and content analysis was conducted on all identified sources establishing and analysing CI process models. To identify relevant literature, academic databases and search engines were used. Moreover, a review of references in related studies led to more relevant sources, the references of which were further reviewed and analysed. To ensure reliability, only peer-reviewed articles were used.Results: The findings reveal that the majority of scholars view the CI process as a cycle of interrelated phases. The output of one phase is the input of the next phase.Conclusion: The CI process is a cycle of interrelated phases. The output of one phase is the input of the next phase. These phases are influenced by the following factors: decision makers, process and structure, organisational awareness and culture, and feedback.

  17. Developing and Validating the Socio-Technical Model in Ontology Engineering

    Science.gov (United States)

    Silalahi, Mesnan; Indra Sensuse, Dana; Giri Sucahyo, Yudho; Fadhilah Akmaliah, Izzah; Rahayu, Puji; Cahyaningsih, Elin

    2018-03-01

    This paper describes results from an attempt to develop a model in ontology engineering methodology and a way to validate the model. The approach to methodology in ontology engineering is from the point view of socio-technical system theory. Qualitative research synthesis is used to build the model using meta-ethnography. In order to ensure the objectivity of the measurement, inter-rater reliability method was applied using a multi-rater Fleiss Kappa. The results show the accordance of the research output with the diamond model in the socio-technical system theory by evidence of the interdependency of the four socio-technical variables namely people, technology, structure and task.

  18. Ontological Model-Based Transparent Access To Information In A Medical Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Felicia GÎZĂ-BELCIUG

    2012-01-01

    Full Text Available Getting the full electronic medical record of a patient is an important step in providing a quality medical service. But the degree of heterogeneity of data from health unit informational systems is very high, because each unit can have a different model for storing patients’ medical data. In order to achieve the interoperability and integration of data from various medical units that store partial patient medical information, this paper proposes a multi-agent systems and ontology based approach. Therefore, we present an ontological model for describing the particular structure of the data integration process. The system is to be used for centralizing the information from a patient’s partial medical records. The main advantage of the proposed model is the low ratio between the complexity of the model and the amount of information that can be retrieved in order to generate the complete medical history of a patient.

  19. Intelligence Artificielle, ontologies et connaissances en médecine. Les limites de la mécanisation de la pensée

    OpenAIRE

    Declerck , Gunnar; Charlet , Jean

    2011-01-01

    National audience; Cet article de tonalité théorique vise à dresser un état des lieux des dernières avancées en ingénierie des connaissances médicales dans le domaine spécifique de la conception d'ontologies et systèmes à base de connaissances. Reprenant des débats ayant animé le paysage de l'intelligence artificielle (IA) à partir des années 1960, sous l'impulsion des travaux de H. L. Dreyfus, il vise notamment à montrer que la plupart des difficultés aujourd'hui rencontrées par l'ingénierie...

  20. The iOSC3 System: Using Ontologies and SWRL Rules for Intelligent Supervision and Care of Patients with Acute Cardiac Disorders

    Directory of Open Access Journals (Sweden)

    Marcos Martínez-Romero

    2013-01-01

    Full Text Available Physicians in the Intensive Care Unit (ICU are specially trained to deal constantly with very large and complex quantities of clinical data and make quick decisions as they face complications. However, the amount of information generated and the way the data are presented may overload the cognitive skills of even experienced professionals and lead to inaccurate or erroneous actions that put patients’ lives at risk. In this paper, we present the design, development, and validation of iOSC3, an ontology-based system for intelligent supervision and treatment of critical patients with acute cardiac disorders. The system analyzes the patient’s condition and provides a recommendation about the treatment that should be administered to achieve the fastest possible recovery. If the recommendation is accepted by the doctor, the system automatically modifies the quantity of drugs that are being delivered to the patient. The knowledge base is constituted by an OWL ontology and a set of SWRL rules that represent the expert’s knowledge. iOSC3 has been developed in collaboration with experts from the Cardiac Intensive Care Unit (CICU of the Meixoeiro Hospital, one of the most significant hospitals in the northwest region of Spain.

  1. Intelligent search in Big Data

    Science.gov (United States)

    Birialtsev, E.; Bukharaev, N.; Gusenkov, A.

    2017-10-01

    An approach to data integration, aimed on the ontology-based intelligent search in Big Data, is considered in the case when information objects are represented in the form of relational databases (RDB), structurally marked by their schemes. The source of information for constructing an ontology and, later on, the organization of the search are texts in natural language, treated as semi-structured data. For the RDBs, these are comments on the names of tables and their attributes. Formal definition of RDBs integration model in terms of ontologies is given. Within framework of the model universal RDB representation ontology, oil production subject domain ontology and linguistic thesaurus of subject domain language are built. Technique of automatic SQL queries generation for subject domain specialists is proposed. On the base of it, information system for TATNEFT oil-producing company RDBs was implemented. Exploitation of the system showed good relevance with majority of queries.

  2. Pitfalls in alignment of observation models resolved using PROV as an upper ontology

    Science.gov (United States)

    Cox, S. J. D.

    2015-12-01

    A number of models for observation metadata have been developed in the earth and environmental science communities, including OGC's Observations and Measurements (O&M), the ecosystems community's Extensible Observation Ontology (OBOE), the W3C's Semantic Sensor Network Ontology (SSNO), and the CUAHSI/NSF Observations Data Model v2 (ODM2). In order to combine data formalized in the various models, mappings between these must be developed. In some cases this is straightforward: since ODM2 took O&M as its starting point, their terminology is almost completely aligned. In the eco-informatics world observations are almost never made in isolation of other observations, so OBOE pays particular attention to groupings, with multiple atomic 'Measurements' in each oboe:Observation which does not have a result of its own and thus plays a different role to an om:Observation. And while SSN also adopted terminology from O&M, mapping is confounded by the fact that SSN uses DOLCE as its foundation and places ssn:Observations as 'Social Objects' which are explicitly disjoint from 'Events', while O&M is formalized as part of the ISO/TC 211 harmonised (UML) model and sees om:Observations as value assignment activities. Foundational ontologies (such as BFO, GFO, UFO or DOLCE) can provide a framework for alignment, but different upper ontologies can be based in profoundly different worldviews and use of incommensurate frameworks can confound rather than help. A potential resolution is provided by comparing recent studies that align SSN and O&M, respectively, with the PROV-O ontology. PROV-O provides just three base classes: Entity, Activity and Agent. om:Observation is sub-classed from prov:Activity, while ssn:Observation is sub-classed from prov:Entity. This confirms that, despite the same name, om:Observation and ssn:Observation denote different aspects of the observation process: the observation event, and the record of the observation event, respectively. Alignment with the simple

  3. Programming model for distributed intelligent systems

    Science.gov (United States)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  4. An Ontology-Based Conceptual Model For Accumulating And Reusing Knowledge In A DMAIC Process

    Science.gov (United States)

    Nguyen, ThanhDat; Kifor, Claudiu Vasile

    2015-09-01

    DMAIC (Define, Measure, Analyze, Improve, and Control) is an important process used to enhance quality of processes basing on knowledge. However, it is difficult to access DMAIC knowledge. Conventional approaches meet a problem arising from structuring and reusing DMAIC knowledge. The main reason is that DMAIC knowledge is not represented and organized systematically. In this article, we overcome the problem basing on a conceptual model that is a combination of DMAIC process, knowledge management, and Ontology engineering. The main idea of our model is to utilizing Ontologies to represent knowledge generated by each of DMAIC phases. We build five different knowledge bases for storing all knowledge of DMAIC phases with the support of necessary tools and appropriate techniques in Information Technology area. Consequently, these knowledge bases provide knowledge available to experts, managers, and web users during or after DMAIC execution in order to share and reuse existing knowledge.

  5. Model Problems in Technologies for Interoperability: OWL Web Ontology Language for Services (OWL-S)

    National Research Council Canada - National Science Library

    Metcalf, Chris; Lewis, Grace A

    2006-01-01

    .... The OWL Web Ontology Language for Services (OWL-S) is a language to describe the properties and capabilities of Web Services in such a way that the descriptions can be interpreted by a computer system in an automated manner. This technical note presents the results of applying the model problem approach to examine the feasibility of using OWL-S to allow applications to automatically discover, compose, and invoke services in a dynamic services-oriented environment.

  6. Intelligent Mechatronic Systems Modeling, Control and Diagnosis

    CERN Document Server

    Merzouki, Rochdi; Pathak, Pushparaj Mani; Ould Bouamama, Belkacem

    2013-01-01

    Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes:  • An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis • Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control • Dedicated chapters ...

  7. Using an ontology as a model for the implementation of the National Cybersecurity Policy Framework for South Africa

    CSIR Research Space (South Africa)

    Jansen van Vuuren, JC

    2014-03-01

    Full Text Available National Cybersecurity Policy Framework that is easy to understand and implement. In this paper, the authors motivate that an ontology can assist in defining a model that describes the relationships between different stakeholders and cybersecurity...

  8. U.S. intelligence system: model for corporate chiefs?

    Science.gov (United States)

    Gilad, B

    1991-01-01

    A fully dedicated intelligence support function for senior management is no longer a luxury but a necessity. Companies can enhance their intelligence capabilities by using the government model as a rough blueprint to structure such a program.

  9. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) ... (2006) applied rainfall–runoff modeling using ANN ... in artificial intelligence, engineering and science .... usually be estimated from a sample of observations.

  10. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  11. An Ontology for Knowledge Representation and Applications

    OpenAIRE

    Nhon Do

    2008-01-01

    Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic ...

  12. The Development of an Intelligent Leadership Model for State Universities

    OpenAIRE

    Aleme Keikha; Reza Hoveida; Nour Mohammad Yaghoubi

    2017-01-01

    Higher education and intelligent leadership are considered important parts of every country’s education system, which could potentially play a key role in accomplishing the goals of society. In theories of leadership, new patterns attempt to view leadership through the prism of creative and intelligent phenomena. This paper aims to design and develop an intelligent leadership model for public universities. A qualitativequantitative research method was used to design a basic model of intellige...

  13. Model tool to describe chemical structures in XML format utilizing structural fragments and chemical ontology.

    Science.gov (United States)

    Sankar, Punnaivanam; Alain, Krief; Aghila, Gnanasekaran

    2010-05-24

    We have developed a model structure-editing tool, ChemEd, programmed in JAVA, which allows drawing chemical structures on a graphical user interface (GUI) by selecting appropriate structural fragments defined in a fragment library. The terms representing the structural fragments are organized in fragment ontology to provide a conceptual support. ChemEd describes the chemical structure in an XML document (ChemFul) with rich semantics explicitly encoding the details of the chemical bonding, the hybridization status, and the electron environment around each atom. The document can be further processed through suitable algorithms and with the support of external chemical ontologies to generate understandable reports about the functional groups present in the structure and their specific environment.

  14. An ontological framework for model-based problem-solving

    NARCIS (Netherlands)

    Scholten, H.; Beulens, A.J.M.

    2012-01-01

    Multidisciplinary projects to solve real world problems of increasing complexity are more and more plagued by obstacles such as miscommunication between modellers with different disciplinary backgrounds and bad modelling practices. To tackle these difficulties, a body of knowledge on problems, on

  15. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    Science.gov (United States)

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  16. Model architecture of intelligent data mining oriented urban transportation information

    Science.gov (United States)

    Yang, Bogang; Tao, Yingchun; Sui, Jianbo; Zhang, Feizhou

    2007-06-01

    Aiming at solving practical problems in urban traffic, the paper presents model architecture of intelligent data mining from hierarchical view. With artificial intelligent technologies used in the framework, the intelligent data mining technology improves, which is more suitable for the change of real-time road condition. It also provides efficient technology support for the urban transport information distribution, transmission and display.

  17. Ontology Driven Meta-Modeling of Service Oriented Architecture

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... #Department of Computer Applications, National Institute of ... *5Department of Computer Science, Winona State University, MN, USA ..... Further, it has aided in service .... Software: A Research Roadmap”, Workshop on the Future of ... and A. Solberg, “Model-driven service engineering with SoaML”, in.

  18. Modelling speech intelligibility in adverse conditions

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    Jørgensen and Dau (J Acoust Soc Am 130:1475-1487, 2011) proposed the speech-based envelope power spectrum model (sEPSM) in an attempt to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII) in conditions with nonlinearly processed speech...... subjected to phase jitter, a condition in which the spectral structure of the intelligibility of speech signal is strongly affected, while the broadband temporal envelope is kept largely intact. In contrast, the effects of this distortion can be predicted -successfully by the spectro-temporal modulation...... suggest that the SNRenv might reflect a powerful decision metric, while some explicit across-frequency analysis seems crucial in some conditions. How such across-frequency analysis is "realized" in the auditory system remains unresolved....

  19. Modeling speech intelligibility in adverse conditions

    DEFF Research Database (Denmark)

    Dau, Torsten

    2012-01-01

    ) in conditions with nonlinearly processed speech. Instead of considering the reduction of the temporal modulation energy as the intelligibility metric, as assumed in the STI, the sEPSM applies the signal-to-noise ratio in the envelope domain (SNRenv). This metric was shown to be the key for predicting...... understanding speech when more than one person is talking, even when reduced audibility has been fully compensated for by a hearing aid. The reasons for these difficulties are not well understood. This presentation highlights recent concepts of the monaural and binaural signal processing strategies employed...... by the normal as well as impaired auditory system. Jørgensen and Dau [(2011). J. Acoust. Soc. Am. 130, 1475-1487] proposed the speech-based envelope power spectrum model (sEPSM) in an attempt to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII...

  20. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  1. Modeling Speech Intelligibility in Hearing Impaired Listeners

    DEFF Research Database (Denmark)

    Scheidiger, Christoph; Jørgensen, Søren; Dau, Torsten

    2014-01-01

    speech, e.g. phase jitter or spectral subtraction. Recent studies predict SI for normal-hearing (NH) listeners based on a signal-to-noise ratio measure in the envelope domain (SNRenv), in the framework of the speech-based envelope power spectrum model (sEPSM, [20, 21]). These models have shown good...... agreement with measured data under a broad range of conditions, including stationary and modulated interferers, reverberation, and spectral subtraction. Despite the advances in modeling intelligibility in NH listeners, a broadly applicable model that can predict SI in hearing-impaired (HI) listeners...... is not yet available. As a firrst step towards such a model, this study investigates to what extent eects of hearing impairment on SI can be modeled in the sEPSM framework. Preliminary results show that, by only modeling the loss of audibility, the model cannot account for the higher speech reception...

  2. Model Pembelajaran Berbasis Penstimulasian Multiple Intelligences Siswa

    OpenAIRE

    Edy Legowo

    2017-01-01

    Tulisan ini membahas mengenai penerapan teori multiple intelligences dalam pembelajaran di sekolah. Pembahasan diawali dengan menguraikan perkembangan konsep inteligensi dan multiple intelligences. Diikuti dengan menjelaskan dampak teori multiple intelligences dalam bidang pendidikan dan pembelajaran di sekolah. Bagian selanjutnya menguraikan tentang implementasi teori multiple intelligences dalam praktik pembelajaran di kelas yaitu bagaimana pemberian pengalaman belajar siswa yang difasilita...

  3. Toward An Ontology of Mutual Recursion: Models, Mind and Media

    Directory of Open Access Journals (Sweden)

    Mat Wall-Smith

    2008-01-01

    Full Text Available In Parables for the Virtual Massumi describes 'The Autonomy of Affect' in our ecology of thought (Massumi 2002 : 35. The object of Stiegler's Technics and Time is 'technics apprehended as the horizon of all possibility to come and all possibility of a future' (Stiegler 1998 : ix. The ecological dynamic described by the recursion between this 'affective autonomy' and a 'technical horizon of possibility' describes a metamodel of the relation between body and world, between perception and expression. I argue that this metamodel allows for the technical architectures that enshrine media processes and models as both the manifestation and modulation of the 'industry' or vitality of mind. I argue that these technical architectures are crucial to the creation and maintenance of dynamic ecologies of living.

  4. Artificial Intelligence Software Engineering (AISE) model

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  5. Swarm Intelligence for Urban Dynamics Modelling

    International Nuclear Information System (INIS)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.

    2009-01-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  6. Swarm Intelligence for Urban Dynamics Modelling

    Science.gov (United States)

    Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.

    2009-04-01

    In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.

  7. An ontology-driven, case-based clinical decision support model for removable partial denture design

    Science.gov (United States)

    Chen, Qingxiao; Wu, Ji; Li, Shusen; Lyu, Peijun; Wang, Yong; Li, Miao

    2016-06-01

    We present the initial work toward developing a clinical decision support model for specific design of removable partial dentures (RPDs) in dentistry. We developed an ontological paradigm to represent knowledge of a patient’s oral conditions and denture component parts. During the case-based reasoning process, a cosine similarity algorithm was applied to calculate similarity values between input patients and standard ontology cases. A group of designs from the most similar cases were output as the final results. To evaluate this model, the output designs of RPDs for 104 randomly selected patients were compared with those selected by professionals. An area under the curve of the receiver operating characteristic (AUC-ROC) was created by plotting true-positive rates against the false-positive rate at various threshold settings. The precision at position 5 of the retrieved cases was 0.67 and at the top of the curve it was 0.96, both of which are very high. The mean average of precision (MAP) was 0.61 and the normalized discounted cumulative gain (NDCG) was 0.74 both of which confirmed the efficient performance of our model. All the metrics demonstrated the efficiency of our model. This methodology merits further research development to match clinical applications for designing RPDs. This paper is organized as follows. After the introduction and description of the basis for the paper, the evaluation and results are presented in Section 2. Section 3 provides a discussion of the methodology and results. Section 4 describes the details of the ontology, similarity algorithm, and application.

  8. Model Pembelajaran Berbasis Penstimulasian Multiple Intelligences Siswa

    Directory of Open Access Journals (Sweden)

    Edy Legowo

    2017-03-01

    Full Text Available Tulisan ini membahas mengenai penerapan teori multiple intelligences dalam pembelajaran di sekolah. Pembahasan diawali dengan menguraikan perkembangan konsep inteligensi dan multiple intelligences. Diikuti dengan menjelaskan dampak teori multiple intelligences dalam bidang pendidikan dan pembelajaran di sekolah. Bagian selanjutnya menguraikan tentang implementasi teori multiple intelligences dalam praktik pembelajaran di kelas yaitu bagaimana pemberian pengalaman belajar siswa yang difasilitasi guru dapat menstimulasi multiple intelligences siswa. Evaluasi hasil belajar siswa dari pandangan penerapan teori multiple intelligences seharusnya dilakukan menggunakan authentic assessment dan portofolio yang lebih memfasilitasi para siswa mengungkapkan atau mengaktualisasikan hasil belajarnya melalui berbagai cara sesuai dengan kekuatan jenis inteligensinya.

  9. Business Intelligence Modeling in Launch Operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce

  10. Business intelligence modeling in launch operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined

  11. Providing a New Model for Discovering Cloud Services Based on Ontology

    Directory of Open Access Journals (Sweden)

    B. Heydari

    2017-12-01

    Full Text Available Due to its efficient, flexible, and dynamic substructure in information technology and service quality parameters estimation, cloud computing has become one of the most important issues in computer world. Discovering cloud services has been posed as a fundamental issue in reaching out high efficiency. In order to do one’s own operations in cloud space, any user needs to request several various services either simultaneously or according to a working routine. These services can be presented by different cloud producers or different decision-making policies. Therefore, service management is one of the important and challenging issues in cloud computing. With the advent of semantic web and practical services accordingly in cloud computing space, access to different kinds of applications has become possible. Ontology is the core of semantic web and can be used to ease the process of discovering services. A new model based on ontology has been proposed in this paper. The results indicate that the proposed model has explored cloud services based on user search results in lesser time compared to other models.

  12. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    Science.gov (United States)

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-01-01

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468

  13. An Intelligent Model for Stock Market Prediction

    Directory of Open Access Journals (Sweden)

    IbrahimM. Hamed

    2012-08-01

    Full Text Available This paper presents an intelligent model for stock market signal prediction using Multi-Layer Perceptron (MLP Artificial Neural Networks (ANN. Blind source separation technique, from signal processing, is integrated with the learning phase of the constructed baseline MLP ANN to overcome the problems of prediction accuracy and lack of generalization. Kullback Leibler Divergence (KLD is used, as a learning algorithm, because it converges fast and provides generalization in the learning mechanism. Both accuracy and efficiency of the proposed model were confirmed through the Microsoft stock, from wall-street market, and various data sets, from different sectors of the Egyptian stock market. In addition, sensitivity analysis was conducted on the various parameters of the model to ensure the coverage of the generalization issue. Finally, statistical significance was examined using ANOVA test.

  14. An ontology model for nursing narratives with natural language generation technology.

    Science.gov (United States)

    Min, Yul Ha; Park, Hyeoun-Ae; Jeon, Eunjoo; Lee, Joo Yun; Jo, Soo Jung

    2013-01-01

    The purpose of this study was to develop an ontology model to generate nursing narratives as natural as human language from the entity-attribute-value triplets of a detailed clinical model using natural language generation technology. The model was based on the types of information and documentation time of the information along the nursing process. The typesof information are data characterizing the patient status, inferences made by the nurse from the patient data, and nursing actions selected by the nurse to change the patient status. This information was linked to the nursing process based on the time of documentation. We describe a case study illustrating the application of this model in an acute-care setting. The proposed model provides a strategy for designing an electronic nursing record system.

  15. On the ontological assumptions of the medical model of psychiatry: philosophical considerations and pragmatic tasks

    Directory of Open Access Journals (Sweden)

    Giordano James

    2010-01-01

    Full Text Available Abstract A common theme in the contemporary medical model of psychiatry is that pathophysiological processes are centrally involved in the explanation, evaluation, and treatment of mental illnesses. Implied in this perspective is that clinical descriptors of these pathophysiological processes are sufficient to distinguish underlying etiologies. Psychiatric classification requires differentiation between what counts as normality (i.e.- order, and what counts as abnormality (i.e.- disorder. The distinction(s between normality and pathology entail assumptions that are often deeply presupposed, manifesting themselves in statements about what mental disorders are. In this paper, we explicate that realism, naturalism, reductionism, and essentialism are core ontological assumptions of the medical model of psychiatry. We argue that while naturalism, realism, and reductionism can be reconciled with advances in contemporary neuroscience, essentialism - as defined to date - may be conceptually problematic, and we pose an eidetic construct of bio-psychosocial order and disorder based upon complex systems' dynamics. However we also caution against the overuse of any theory, and claim that practical distinctions are important to the establishment of clinical thresholds. We opine that as we move ahead toward both a new edition of the Diagnostic and Statistical Manual, and a proposed Decade of the Mind, the task at hand is to re-visit nosologic and ontologic assumptions pursuant to a re-formulation of diagnostic criteria and practice.

  16. On the ontological assumptions of the medical model of psychiatry: philosophical considerations and pragmatic tasks

    Science.gov (United States)

    2010-01-01

    A common theme in the contemporary medical model of psychiatry is that pathophysiological processes are centrally involved in the explanation, evaluation, and treatment of mental illnesses. Implied in this perspective is that clinical descriptors of these pathophysiological processes are sufficient to distinguish underlying etiologies. Psychiatric classification requires differentiation between what counts as normality (i.e.- order), and what counts as abnormality (i.e.- disorder). The distinction(s) between normality and pathology entail assumptions that are often deeply presupposed, manifesting themselves in statements about what mental disorders are. In this paper, we explicate that realism, naturalism, reductionism, and essentialism are core ontological assumptions of the medical model of psychiatry. We argue that while naturalism, realism, and reductionism can be reconciled with advances in contemporary neuroscience, essentialism - as defined to date - may be conceptually problematic, and we pose an eidetic construct of bio-psychosocial order and disorder based upon complex systems' dynamics. However we also caution against the overuse of any theory, and claim that practical distinctions are important to the establishment of clinical thresholds. We opine that as we move ahead toward both a new edition of the Diagnostic and Statistical Manual, and a proposed Decade of the Mind, the task at hand is to re-visit nosologic and ontologic assumptions pursuant to a re-formulation of diagnostic criteria and practice. PMID:20109176

  17. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  18. Artificial intelligence model for sustain ability measurement

    International Nuclear Information System (INIS)

    Navickiene, R.; Navickas, K.

    2012-01-01

    The article analyses the main dimensions of organizational sustain ability, their possible integrations into artificial neural network. In this article authors performing analyses of organizational internal and external environments, their possible correlations with 4 components of sustain ability, and the principal determination models for sustain ability of organizations. Based on the general principles of sustainable development organizations, a artificial intelligence model for the determination of organizational sustain ability has been developed. The use of self-organizing neural networks allows the identification of the organizational sustain ability and the endeavour to explore vital, social, antropogenical and economical efficiency. The determination of the forest enterprise sustain ability is expected to help better manage the sustain ability. (Authors)

  19. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  20. An Ontology Evolution and Maintenance Model in Web Environment%一种网络环境中的本体演化和维护模型

    Institute of Scientific and Technical Information of China (English)

    王进; 陈恩红; 林乐

    2003-01-01

    With the rapid development of Internet, Knowledge web will be one of development directions of the next generation of Internet. The applications of ontology will bring new opportunities and challenges to it. In this paper, we propose an ontology evolution and maintenance model in the Web environment to solve the conflicts and inconsistencies between domain ontologies and knowledge caused by the changes of the knowledge sources in the Web environment by extracting and analyzing the meta-data of the data sources.

  1. Didactical Ontologies

    Directory of Open Access Journals (Sweden)

    Steffen Mencke, Reiner Dumke

    2008-03-01

    Full Text Available Ontologies are a fundamental concept of theSemantic Web envisioned by Tim Berners-Lee [1]. Togetherwith explicit representation of the semantics of data formachine-accessibility such domain theories are the basis forintelligent next generation applications for the web andother areas of interest [2]. Their application for specialaspects within the domain of e-learning is often proposed tosupport the increasing complexity ([3], [4], [5], [6]. So theycan provide a better support for course generation orlearning scenario description [7]. By the modeling ofdidactics-related expertise and their provision for thecreators of courses many improvements like reuse, rapiddevelopment and of course increased learning performancebecome possible due to the separation from other aspects ofe-learning platforms as already proposed in [8].

  2. Research on Ontology Modeling of Steel Manufacturing Process Based on Big Data Analysis

    OpenAIRE

    Bao Qing; Wang Jian; Cheng Jin

    2016-01-01

    As an important method that steel industries ride the Indutrie 4.0 wave, knowledge management is expected to be versatile, effective and intelligent. Mechanism modeling difficulties, numerous influencing factors and complex industrial chains hinder the development of knowledge and information integration. Using data potentials, big data analysis can be an effective way to deal with knowledge acquisition as it solves the inaccuracy and imperfection mechanism modeling may lead to. This paper pr...

  3. Intelligent Model for Video Survillance Security System

    Directory of Open Access Journals (Sweden)

    J. Vidhya

    2013-12-01

    Full Text Available Video surveillance system senses and trails out all the threatening issues in the real time environment. It prevents from security threats with the help of visual devices which gather the information related to videos like CCTV’S and IP (Internet Protocol cameras. Video surveillance system has become a key for addressing problems in the public security. They are mostly deployed on the IP based network. So, all the possible security threats exist in the IP based application might also be the threats available for the reliable application which is available for video surveillance. In result, it may increase cybercrime, illegal video access, mishandling videos and so on. Hence, in this paper an intelligent model is used to propose security for video surveillance system which ensures safety and it provides secured access on video.

  4. A conceptual competitive intelligence quality assurance model

    Directory of Open Access Journals (Sweden)

    Tshilidzi Eric Nenzhelele

    2015-12-01

    Full Text Available Competitive Intelligence (CI improves the quality of product and service, decision-making and it improves quality of life. However, it has been established that decision makers are not happy about the quality of CI. This is because enterprises fail in quality assurance of CI. It has been concluded that most enterprises are clueless concerning CI quality assurance. Studies that previously attempted to resolve CI quality problem were limited in scope and focused too much on the quality of information than the overall CI quality. The purpose of this study is to propose a conceptual CI quality assurance model which will help in quality assurance of CI. The research was qualitative in nature and used content analysis.

  5. Method of transition from 3D model to its ontological representation in aircraft design process

    Science.gov (United States)

    Govorkov, A. S.; Zhilyaev, A. S.; Fokin, I. V.

    2018-05-01

    This paper proposes the method of transition from a 3D model to its ontological representation and describes its usage in the aircraft design process. The problems of design for manufacturability and design automation are also discussed. The introduced method is to aim to ease the process of data exchange between important aircraft design phases, namely engineering and design control. The method is also intended to increase design speed and 3D model customizability. This requires careful selection of the complex systems (CAD / CAM / CAE / PDM), providing the basis for the integration of design and technological preparation of production and more fully take into account the characteristics of products and processes for their manufacture. It is important to solve this problem, as investment in the automation define the company's competitiveness in the years ahead.

  6. Enhancing Users' Participation in Business Process Modeling through Ontology-Based Training

    Science.gov (United States)

    Macris, A.; Malamateniou, F.; Vassilacopoulos, G.

    Successful business process design requires active participation of users who are familiar with organizational activities and business process modelling concepts. Hence, there is a need to provide users with reusable, flexible, agile and adaptable training material in order to enable them instil their knowledge and expertise in business process design and automation activities. Knowledge reusability is of paramount importance in designing training material on process modelling since it enables users participate actively in process design/redesign activities stimulated by the changing business environment. This paper presents a prototype approach for the design and use of training material that provides significant advantages to both the designer (knowledge - content reusability and semantic web enabling) and the user (semantic search, knowledge navigation and knowledge dissemination). The approach is based on externalizing domain knowledge in the form of ontology-based knowledge networks (i.e. training scenarios serving specific training needs) so that it is made reusable.

  7. USE OF ONTOLOGIES FOR KNOWLEDGE BASES CREATION TUTORING COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheremisina Lyubov

    2014-11-01

    Full Text Available This paper deals with the use of ontology for the use and development of intelligent tutoring systems. We consider the shortcomings of educational software and distance learning systems and the advantages of using ontology’s in their design. Actuality creates educational computer systems based on systematic knowledge. We consider classification of properties, use and benefits of ontology’s. Characterized approaches to the problem of ontology mapping, the first of which – manual mapping, the second – a comparison of the names of concepts based on their lexical similarity and using special dictionaries. The analysis of languages available for the formal description of ontology. Considered a formal mathematical model of ontology’s and ontology consistency problem, which is that different developers for the same domain ontology can be created, syntactically or semantically heterogeneous, and their use requires a compatible broadcast or display. An algorithm combining ontology’s. The characteristic of the practical value of developing an ontology for electronic educational resources and recommendations for further research and development, such as implementation of other components of the system integration, formalization of the processes of integration and development of a universal expansion algorithms ontology’s software

  8. Emotional intelligence is a second-stratum factor of intelligence: evidence from hierarchical and bifactor models.

    Science.gov (United States)

    MacCann, Carolyn; Joseph, Dana L; Newman, Daniel A; Roberts, Richard D

    2014-04-01

    This article examines the status of emotional intelligence (EI) within the structure of human cognitive abilities. To evaluate whether EI is a 2nd-stratum factor of intelligence, data were fit to a series of structural models involving 3 indicators each for fluid intelligence, crystallized intelligence, quantitative reasoning, visual processing, and broad retrieval ability, as well as 2 indicators each for emotion perception, emotion understanding, and emotion management. Unidimensional, multidimensional, hierarchical, and bifactor solutions were estimated in a sample of 688 college and community college students. Results suggest adequate fit for 2 models: (a) an oblique 8-factor model (with 5 traditional cognitive ability factors and 3 EI factors) and (b) a hierarchical solution (with cognitive g at the highest level and EI representing a 2nd-stratum factor that loads onto g at λ = .80). The acceptable relative fit of the hierarchical model confirms the notion that EI is a group factor of cognitive ability, marking the expression of intelligence in the emotion domain. The discussion proposes a possible expansion of Cattell-Horn-Carroll theory to include EI as a 2nd-stratum factor of similar standing to factors such as fluid intelligence and visual processing.

  9. World modeling for cooperative intelligent vehicles

    NARCIS (Netherlands)

    Papp, Z.; Brown, C.; Bartels, C.

    2008-01-01

    Cooperative intelligent vehicle systems constitute a promising way to improving traffic throughput, safety and comfort. The state-of-the-art intelligent-vehicle applications usually can be described as a collection of interacting, highly autonomous, complex dynamical systems (the individual

  10. Biological Model Development as an Opportunity to Provide Content Auditing for the Foundational Model of Anatomy Ontology.

    Science.gov (United States)

    Wang, Lucy L; Grunblatt, Eli; Jung, Hyunggu; Kalet, Ira J; Whipple, Mark E

    2015-01-01

    Constructing a biological model using an established ontology provides a unique opportunity to perform content auditing on the ontology. We built a Markov chain model to study tumor metastasis in the regional lymphatics of patients with head and neck squamous cell carcinoma (HNSCC). The model attempts to determine regions with high likelihood for metastasis, which guides surgeons and radiation oncologists in selecting the boundaries of treatment. To achieve consistent anatomical relationships, the nodes in our model are populated using lymphatic objects extracted from the Foundational Model of Anatomy (FMA) ontology. During this process, we discovered several classes of inconsistencies in the lymphatic representations within the FMA. We were able to use this model building opportunity to audit the entities and connections in this region of interest (ROI). We found five subclasses of errors that are computationally detectable and resolvable, one subclass of errors that is computationally detectable but unresolvable, requiring the assistance of a content expert, and also errors of content, which cannot be detected through computational means. Mathematical descriptions of detectable errors along with expert review were used to discover inconsistencies and suggest concepts for addition and removal. Out of 106 organ and organ parts in the ROI, 8 unique entities were affected, leading to the suggestion of 30 concepts for addition and 4 for removal. Out of 27 lymphatic chain instances, 23 were found to have errors, with a total of 32 concepts suggested for addition and 15 concepts for removal. These content corrections are necessary for the accurate functioning of the FMA and provide benefits for future research and educational uses.

  11. Medication Reconciliation: Work Domain Ontology, prototype development, and a predictive model.

    Science.gov (United States)

    Markowitz, Eliz; Bernstam, Elmer V; Herskovic, Jorge; Zhang, Jiajie; Shneiderman, Ben; Plaisant, Catherine; Johnson, Todd R

    2011-01-01

    Medication errors can result from administration inaccuracies at any point of care and are a major cause for concern. To develop a successful Medication Reconciliation (MR) tool, we believe it necessary to build a Work Domain Ontology (WDO) for the MR process. A WDO defines the explicit, abstract, implementation-independent description of the task by separating the task from work context, application technology, and cognitive architecture. We developed a prototype based upon the WDO and designed to adhere to standard principles of interface design. The prototype was compared to Legacy Health System's and Pre-Admission Medication List Builder MR tools via a Keystroke-Level Model analysis for three MR tasks. The analysis found the prototype requires the fewest mental operations, completes tasks in the fewest steps, and completes tasks in the least amount of time. Accordingly, we believe that developing a MR tool, based upon the WDO and user interface guidelines, improves user efficiency and reduces cognitive load.

  12. Effective Tutorial Ontology Modeling on Organic Rice Farming for Non-Science & Technology Educated Farmers Using Knowledge Engineering

    Science.gov (United States)

    Yanchinda, Jirawit; Chakpitak, Nopasit; Yodmongkol, Pitipong

    2015-01-01

    Knowledge of the appropriate technologies for sustainable development projects has encouraged grass roots development, which has in turn promoted sustainable and successful community development, which a requirement is to share and reuse this knowledge effectively. This research aims to propose a tutorial ontology effectiveness modeling on organic…

  13. Primary-context model and ontology: a combined approach for pervasive transportation services

    OpenAIRE

    Lee, Deirdre; Meier, Rene

    2007-01-01

    peer-reviewed Advanced pervasive transportation services aim to improve the safety and efficiency of public and private transportation facilities, while reducing operating costs and improving the travel experience for drivers, passengers and other travellers. In order to achieve these goals, such services require access to context information from a myriad of distributed, heterogeneous Intelligent Transportation Systems. A context management scheme that models information in a standa...

  14. Primary-Context Model and Ontology: A Combined Approach for Pervasive Transportation Services

    OpenAIRE

    MEIER, RENE

    2007-01-01

    PUBLISHED Advanced pervasive transportation services aim to improve the safety and efficiency of public and private transportation facilities, while reducing operating costs and improving the travel experience for drivers, passengers and other travellers. In order to achieve these goals, such services require access to context information from a myriad of distributed, heterogeneous Intelligent Transportation Systems. A context management scheme that models information in a standard fashion...

  15. APPLICATION OF COMPUTER SYSTEMS ONTOLOGY IN THE PROCESS OF FUTURE ENGINEER AND EDUCATOR’S PRACTICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Сергій Козіброда

    2014-04-01

    Full Text Available This article develops the problem of the use of computer systems ontology in the professional activity of future engineers and teachers in the sphere of computer technology. The tasks of automated exchange of formal model descriptions as a main factor of a research performing in the sphere of ontology use have been grounded. The expediency of use of the ontology of computer systems in the following fields of intending engineers and teachers’ training: artificial intelligence, interface, natural language processing, question-answer systems, classification of goods and services semantic mark-up of text, modelling organizational structure of enterprises, systems of reference information (NSI.

  16. Ontological Planning

    Directory of Open Access Journals (Sweden)

    Ahmet Alkan

    2017-12-01

    • Is it possible to redefine ontology within the hierarchical structure of planning? We are going to seek answers to some of these questions within the limited scope of this paper and we are going to offer the rest for discussion by just asking them. In light of these assessments, drawing attention, based on ontological knowledge relying on the wholeness of universe, to the question, on macro level planning, of whether or not the ontological realities of man, energy and movements of thinking can provide macro data for planning on a universal level as important factors affecting mankind will be one of the limited objectives of the paper.

  17. Model of key success factors for Business Intelligence implementation

    Directory of Open Access Journals (Sweden)

    Peter Mesaros

    2016-07-01

    Full Text Available New progressive technologies recorded growth in every area. Information-communication technologies facilitate the exchange of information and it facilitates management of everyday activities in enterprises. Specific modules (such as Business Intelligence facilitate decision-making. Several studies have demonstrated the positive impact of Business Intelligence to decision-making. The first step is to put in place the enterprise. The implementation process is influenced by many factors. This article discusses the issue of key success factors affecting to successful implementation of Business Intelligence. The article describes the key success factors for successful implementation and use of Business Intelligence based on multiple studies. The main objective of this study is to verify the effects and dependence of selected factors and proposes a model of key success factors for successful implementation of Business Intelligence. Key success factors and the proposed model are studied in Slovak enterprises.

  18. A New Layered Model on Emotional Intelligence

    Science.gov (United States)

    Drigas, Athanasios S.

    2018-01-01

    Emotional Intelligence (EI) has been an important and controversial topic during the last few decades. Its significance and its correlation with many domains of life has made it the subject of expert study. EI is the rudder for feeling, thinking, learning, problem-solving, and decision-making. In this article, we present an emotional–cognitive based approach to the process of gaining emotional intelligence and thus, we suggest a nine-layer pyramid of emotional intelligence and the gradual development to reach the top of EI. PMID:29724021

  19. Model of intelligent information searching system

    International Nuclear Information System (INIS)

    Yastrebkov, D.I.

    2004-01-01

    A brief description of the technique to search for electronic documents in large archives as well as drawbacks is presented. A solution close to intelligent information searching systems is proposed. (author)

  20. Computational intelligence applications in modeling and control

    CERN Document Server

    Vaidyanathan, Sundarapandian

    2015-01-01

    The development of computational intelligence (CI) systems was inspired by observable and imitable aspects of intelligent activity of human being and nature. The essence of the systems based on computational intelligence is to process and interpret data of various nature so that that CI is strictly connected with the increase of available data as well as capabilities of their processing, mutually supportive factors. Developed theories of computational intelligence were quickly applied in many fields of engineering, data analysis, forecasting, biomedicine and others. They are used in images and sounds processing and identifying, signals processing, multidimensional data visualization, steering of objects, analysis of lexicographic data, requesting systems in banking, diagnostic systems, expert systems and many other practical implementations. This book consists of 16 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought ...

  1. Life system modeling and intelligent computing. Pt. I. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang; Irwin, George W. (eds.) [Belfast Queen' s Univ. (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui; Jia, Li [Shanghai Univ. (China). School of Mechatronical Engineering and Automation

    2010-07-01

    This book is part I of a two-volume work that contains the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010 and the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, held in Wuxi, China, in September 2010. The 194 revised full papers presented were carefully reviewed and selected from over 880 submissions and recommended for publication by Springer in two volumes of Lecture Notes in Computer Science (LNCS) and one volume of Lecture Notes in Bioinformatics (LNBI). This particular volume of Lecture Notes in Computer Science (LNCS) includes 55 papers covering 7 relevant topics. The 55 papers in this volume are organized in topical sections on intelligent modeling, monitoring, and control of complex nonlinear systems; autonomy-oriented computing and intelligent agents; advanced theory and methodology in fuzzy systems and soft computing; computational intelligence in utilization of clean and renewable energy resources; intelligent modeling, control and supervision for energy saving and pollution reduction; intelligent methods in developing vehicles, engines and equipments; computational methods and intelligence in modeling genetic and biochemical networks and regulation. (orig.)

  2. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  3. The current landscape of pitfalls in Ontologies

    CSIR Research Space (South Africa)

    Keet, CM

    2013-09-01

    Full Text Available 2Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad Polite´cnica de Madrid, Madrid, Spain keet@ukzn.ac.za, {mcsuarez,mpoveda}@fi.upm.es Keywords: Ontology Development : Ontology Quality : Pitfall Abstract: A growing... in Ontologies C. Maria Keet1, Mari Carmen Sua´rez-Figueroa2 and Marı´a Poveda-Villalo´n2 1School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, and UKZN/CSIR-Meraka Centre for Artificial Intelligence Research, Durban, South Africa...

  4. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations.

  5. An ontological knowledge framework for adaptive medical workflow.

    Science.gov (United States)

    Dang, Jiangbo; Hedayati, Amir; Hampel, Ken; Toklu, Candemir

    2008-10-01

    As emerging technologies, semantic Web and SOA (Service-Oriented Architecture) allow BPMS (Business Process Management System) to automate business processes that can be described as services, which in turn can be used to wrap existing enterprise applications. BPMS provides tools and methodologies to compose Web services that can be executed as business processes and monitored by BPM (Business Process Management) consoles. Ontologies are a formal declarative knowledge representation model. It provides a foundation upon which machine understandable knowledge can be obtained, and as a result, it makes machine intelligence possible. Healthcare systems can adopt these technologies to make them ubiquitous, adaptive, and intelligent, and then serve patients better. This paper presents an ontological knowledge framework that covers healthcare domains that a hospital encompasses-from the medical or administrative tasks, to hospital assets, medical insurances, patient records, drugs, and regulations. Therefore, our ontology makes our vision of personalized healthcare possible by capturing all necessary knowledge for a complex personalized healthcare scenario involving patient care, insurance policies, and drug prescriptions, and compliances. For example, our ontology facilitates a workflow management system to allow users, from physicians to administrative assistants, to manage, even create context-aware new medical workflows and execute them on-the-fly.

  6. EMOTIONAL INTELLIGENCE AND ORGANIZATIONAL COMPETITIVENESS: MANAGEMENT MODEL APPROACH

    Directory of Open Access Journals (Sweden)

    John N. N. Ugoani

    2016-09-01

    Full Text Available Modern organization theory considers emotional intelligence as the index of competencies that help organizations to develop a vision for competitiveness. It also allows organizational leaders to enthusiastically commit to the vision, and energize organizational members to achieve the vision. To maximize competiveness organizations use models to simplify and clarify thinking, to identify important aspects, to suggest explanations and to predict consequences, and explore other performance areas that would otherwise be hidden in an excess of words. The survey research design was used to explore the relationship between emotional intelligence and organizational competitiveness. The study found that emotional intelligence has strong positive relationship with organizational competitiveness

  7. Intelligence

    Science.gov (United States)

    Sternberg, Robert J.

    2012-01-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain—especially with regard to the functioning in the prefrontal cortex—and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301

  8. Intelligence.

    Science.gov (United States)

    Sternberg, Robert J

    2012-03-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex-and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret.

  9. SUGOI: automated ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2015-04-01

    Full Text Available A foundational ontology can solve interoperability issues among the domain ontologies aligned to it. However, several foundational ontologies have been developed, hence such interoperability issues exist among domain ontologies. The novel SUGOI tool...

  10. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  11. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  12. Modeling of Biological Intelligence for SCM System Optimization

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  13. Computational Intelligence Agent-Oriented Modelling

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman

    2006-01-01

    Roč. 5, č. 2 (2006), s. 430-433 ISSN 1109-2777 R&D Projects: GA MŠk 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : multi-agent systems * adaptive agents * computational intelligence Subject RIV: IN - Informatics, Computer Science

  14. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  15. Using semantic technologies and the OSU ontology for modelling context and activities in multi-sensory surveillance systems

    Science.gov (United States)

    Gómez A, Héctor F.; Martínez-Tomás, Rafael; Arias Tapia, Susana A.; Rincón Zamorano, Mariano

    2014-04-01

    Automatic systems that monitor human behaviour for detecting security problems are a challenge today. Previously, our group defined the Horus framework, which is a modular architecture for the integration of multi-sensor monitoring stages. In this work, structure and technologies required for high-level semantic stages of Horus are proposed, and the associated methodological principles established with the aim of recognising specific behaviours and situations. Our methodology distinguishes three semantic levels of events: low level (compromised with sensors), medium level (compromised with context), and high level (target behaviours). The ontology for surveillance and ubiquitous computing has been used to integrate ontologies from specific domains and together with semantic technologies have facilitated the modelling and implementation of scenes and situations by reusing components. A home context and a supermarket context were modelled following this approach, where three suspicious activities were monitored via different virtual sensors. The experiments demonstrate that our proposals facilitate the rapid prototyping of this kind of systems.

  16. Applying of an Ontology based Modeling Approach to Cultural Heritage Systems

    Directory of Open Access Journals (Sweden)

    POPOVICI, D.-M.

    2011-08-01

    Full Text Available Any virtual environment (VE built in a classical way is dedicated to a very specific domain. Its modification or even adaptation to another domain requires an expensive human intervention measured in time and money. This way, the product, that means the VE, returns at the first phases of the development process. In a previous work we proposed an approach that combines domain ontologies and conceptual modeling to construct more accurate VEs. Our method is based on the description of the domain knowledge in a standard format and the assisted creation (using these pieces of knowledge of the VE. This permits the explanation within the virtual reality (VR simulation of the semantic of the whole context and of each object. This knowledge may be then transferred to the public users. In this paper we prove the effectiveness of our method on the construction process of an VE that simulates the organization of a Greek-Roman colony situated on the Black Sea coast and the economic and social activities of its people.

  17. The ethics of absolute relativity: An eschatological ontological model for interpreting the Sermon on the Mount

    Directory of Open Access Journals (Sweden)

    Andre van Oudtshoorn

    2014-01-01

    Full Text Available Jesus� imperatives in the Sermon on the Mount continue to play a significant role in Christian ethical discussions. The tension between the radical demands of Jesus and the impossibility of living this out within the everyday world has been noted by many scholars. In this article, an eschatological-ontological model, based on the social construction of reality, is developed to show that this dialectic is not necessarily an embarrassment to the church but, instead, belongs to the essence of the church as the recipient of the Spirit of Christ and as called by him to exist now in terms of the coming new age that has already been realised in Christ. The absolute demands of Jesus� imperatives, it is argued, must relativise all other interpretations of reality whilst the world, in turn, relativises Jesus� own definition of what �is� and therefore also the injunctions to his disciples on how to live within this world. This process of radical relativisation provides a critical framework for Christian living. The church must expect, and do, the impossible within this world through her faith in Christ who recreates and redefines reality. The church�s ethical task, it is further argued, is to participate with the Spirit in the construction of signs of this new reality in Christ in this world through her actions marked by faith, hope and love.

  18. A new paradigm for continuous alignment of business and IT: combining enterprise architecture modeling and enterprise ontology

    CSIR Research Space (South Africa)

    Hinkelmann, K

    2015-08-01

    Full Text Available Alignment of Business and IT: Combining Enterprise Architecture Modeling and Enterprise Ontology Knut Hinkelmann, School of Business, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4600 Olten, Switzerland and Department... initiatives, the architecture at the start of a development might not be appropriate anymore when the new business processes and information systems are rolled out. The grand challenge for today's enterprises, which we deal with in this research...

  19. An Ontology-Based Tourism Recommender System Based on Spreading Activation Model

    Science.gov (United States)

    Bahramian, Z.; Abbaspour, R. Ali

    2015-12-01

    A tourist has time and budget limitations; hence, he needs to select points of interest (POIs) optimally. Since the available information about POIs is overloading, it is difficult for a tourist to select the most appreciate ones considering preferences. In this paper, a new travel recommender system is proposed to overcome information overload problem. A recommender system (RS) evaluates the overwhelming number of POIs and provides personalized recommendations to users based on their preferences. A content-based recommendation system is proposed, which uses the information about the user's preferences and POIs and calculates a degree of similarity between them. It selects POIs, which have highest similarity with the user's preferences. The proposed content-based recommender system is enhanced using the ontological information about tourism domain to represent both the user profile and the recommendable POIs. The proposed ontology-based recommendation process is performed in three steps including: ontology-based content analyzer, ontology-based profile learner, and ontology-based filtering component. User's feedback adapts the user's preferences using Spreading Activation (SA) strategy. It shows the proposed recommender system is effective and improves the overall performance of the traditional content-based recommender systems.

  20. AN ONTOLOGY-BASED TOURISM RECOMMENDER SYSTEM BASED ON SPREADING ACTIVATION MODEL

    Directory of Open Access Journals (Sweden)

    Z. Bahramian

    2015-12-01

    Full Text Available A tourist has time and budget limitations; hence, he needs to select points of interest (POIs optimally. Since the available information about POIs is overloading, it is difficult for a tourist to select the most appreciate ones considering preferences. In this paper, a new travel recommender system is proposed to overcome information overload problem. A recommender system (RS evaluates the overwhelming number of POIs and provides personalized recommendations to users based on their preferences. A content-based recommendation system is proposed, which uses the information about the user’s preferences and POIs and calculates a degree of similarity between them. It selects POIs, which have highest similarity with the user’s preferences. The proposed content-based recommender system is enhanced using the ontological information about tourism domain to represent both the user profile and the recommendable POIs. The proposed ontology-based recommendation process is performed in three steps including: ontology-based content analyzer, ontology-based profile learner, and ontology-based filtering component. User’s feedback adapts the user’s preferences using Spreading Activation (SA strategy. It shows the proposed recommender system is effective and improves the overall performance of the traditional content-based recommender systems.

  1. Modeling intelligent adversaries for terrorism risk assessment: some necessary conditions for adversary models.

    Science.gov (United States)

    Guikema, Seth

    2012-07-01

    Intelligent adversary modeling has become increasingly important for risk analysis, and a number of different approaches have been proposed for incorporating intelligent adversaries in risk analysis models. However, these approaches are based on a range of often-implicit assumptions about the desirable properties of intelligent adversary models. This "Perspective" paper aims to further risk analysis for situations involving intelligent adversaries by fostering a discussion of the desirable properties for these models. A set of four basic necessary conditions for intelligent adversary models is proposed and discussed. These are: (1) behavioral accuracy to the degree possible, (2) computational tractability to support decision making, (3) explicit consideration of uncertainty, and (4) ability to gain confidence in the model. It is hoped that these suggested necessary conditions foster discussion about the goals and assumptions underlying intelligent adversary modeling in risk analysis. © 2011 Society for Risk Analysis.

  2. Sustainability Reporting Process Model using Business Intelligence

    OpenAIRE

    Alxneit, Thorsten Julius

    2015-01-01

    Sustainability including the reporting requirements is one of the most relevant topics for companies. In recent years, many software providers have launched new software tools targeting companies committed to implementing sustainability reporting. But it’s not only companies willing to use their Business Intelligence (BI) solution, there are also basic principles such as the single source of truth and tendencies to combine sustainability reporting with the financial reporting (...

  3. International Conference on Computational Intelligence, Cyber Security, and Computational Models

    CERN Document Server

    Ramasamy, Vijayalakshmi; Sheen, Shina; Veeramani, C; Bonato, Anthony; Batten, Lynn

    2016-01-01

    This book aims at promoting high-quality research by researchers and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security, and Computational Models ICC3 2015 organized by PSG College of Technology, Coimbatore, India during December 17 – 19, 2015. This book enriches with innovations in broad areas of research like computational modeling, computational intelligence and cyber security. These emerging inter disciplinary research areas have helped to solve multifaceted problems and gained lot of attention in recent years. This encompasses theory and applications, to provide design, analysis and modeling of the aforementioned key areas.

  4. An ontological approach to domain engineering

    NARCIS (Netherlands)

    Falbo, R.A.; Guizzardi, G.; Duarte, K.

    2002-01-01

    Domain engineering aims to support systematic reuse, focusing on modeling common knowledge in a problem domain. Ontologies have also been pointed as holding great promise for software reuse. In this paper, we present ODE (Ontology-based Domain Engineering), an ontological approach for domain

  5. ONTOLOGY IN PHARMACY

    Directory of Open Access Journals (Sweden)

    L. Yu. Babintseva

    2015-05-01

    Full Text Available It’s considered ontological models for formalization of knowledge in pharmacy. There is emphasized the view that the possibility of rapid exchange of information in the pharmaceutical industry, it is necessary to create a single information space. This means not only the establishment of uniform standards for the presentation of information on pharmaceutical groups pharmacotherapeutic classifications, but also the creation of a unified and standardized system for the transfer and renewal of knowledge. It is the organization of information in the ontology helps quickly in the future to build expert systems and applications to work with data.

  6. Modeling of Agile Intelligent Manufacturing-oriented Production Scheduling System

    Institute of Scientific and Technical Information of China (English)

    Zhong-Qi Sheng; Chang-Ping Tang; Ci-Xing Lv

    2010-01-01

    Agile intelligent manufacturing is one of the new manufacturing paradigms that adapt to the fierce globalizing market competition and meet the survival needs of the enterprises, in which the management and control of the production system have surpassed the scope of individual enterprise and embodied some new features including complexity, dynamicity, distributivity, and compatibility. The agile intelligent manufacturing paradigm calls for a production scheduling system that can support the cooperation among various production sectors, the distribution of various resources to achieve rational organization, scheduling and management of production activities. This paper uses multi-agents technology to build an agile intelligent manufacturing-oriented production scheduling system. Using the hybrid modeling method, the resources and functions of production system are encapsulated, and the agent-based production system model is established. A production scheduling-oriented multi-agents architecture is constructed and a multi-agents reference model is given in this paper.

  7. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  8. Gradient Learning Algorithms for Ontology Computing

    Science.gov (United States)

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  9. Gradient Learning Algorithms for Ontology Computing

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.

  10. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    Science.gov (United States)

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  11. Information and organization in public health institutes: an ontology-based modeling of the entities in the reception-analysis-report phases.

    Science.gov (United States)

    Pozza, Giandomenico; Borgo, Stefano; Oltramari, Alessandro; Contalbrigo, Laura; Marangon, Stefano

    2016-09-08

    Ontologies are widely used both in the life sciences and in the management of public and private companies. Typically, the different offices in an organization develop their own models and related ontologies to capture specific tasks and goals. Although there might be an overall coordination, the use of distinct ontologies can jeopardize the integration of data across the organization since data sharing and reusability are sensitive to modeling choices. The paper provides a study of the entities that are typically found at the reception, analysis and report phases in public institutes in the life science domain. Ontological considerations and techniques are introduced and their implementation exemplified by studying the Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), a public veterinarian institute with different geographical locations and several laboratories. Different modeling issues are discussed like the identification and characterization of the main entities in these phases; the classification of the (types of) data; the clarification of the contexts and the roles of the involved entities. The study is based on a foundational ontology and shows how it can be extended to a comprehensive and coherent framework comprising the different institute's roles, processes and data. In particular, it shows how to use notions lying at the borderline between ontology and applications, like that of knowledge object. The paper aims to help the modeler to understand the core viewpoint of the organization and to improve data transparency. The study shows that the entities at play can be analyzed within a single ontological perspective allowing us to isolate a single ontological framework for the whole organization. This facilitates the development of coherent representations of the entities and related data, and fosters the use of integrated software for data management and reasoning across the company.

  12. How to keep a reference ontology relevant to the industry: A case study from the smart home

    NARCIS (Netherlands)

    Daniele, L.; Hartog, F. den; Roes, J.

    2016-01-01

    The Smart Appliance REFerence ontology (SAREF) is a shared model of consensus developed in close interaction with the industry to enable semantic interoperability for smart appliances. Smart appliances are intelligent and networked devices that accomplish some household functions, such as cleaning

  13. Forecasting rain events - Meteorological models or collective intelligence?

    Science.gov (United States)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  14. Intelligent Cloud Learning Model for Online Overseas Chinese Education

    Directory of Open Access Journals (Sweden)

    Yidong Chen

    2015-02-01

    Full Text Available With the development of Chinese economy, oversea Chinese education has been paid more and more attention. However, the overseas Chinese education resource is relatively lack because of historical reasons, which hindered further development . How to better share the Chinese education resources and provide intelligent personalized information service for overseas student is a key problem to be solved. In recent years, the rise of cloud computing provides us an opportunity to realize intelligent learning mode. Cloud computing offers some advantages by allowing users to use infrastructure, platforms and software . In this paper we proposed an intelligent cloud learning model based on cloud computing. The learning model can utilize network resources sufficiently to implement resource sharing according to the personal needs of students, and provide a good practicability for online overseas Chinese education.

  15. A situation-response model for intelligent pilot aiding

    Science.gov (United States)

    Schudy, Robert; Corker, Kevin

    1987-01-01

    An intelligent pilot aiding system needs models of the pilot information processing to provide the computational basis for successful cooperation between the pilot and the aiding system. By combining artificial intelligence concepts with the human information processing model of Rasmussen, an abstraction hierarchy of states of knowledge, processing functions, and shortcuts are developed, which is useful for characterizing the information processing both of the pilot and of the aiding system. This approach is used in the conceptual design of a real time intelligent aiding system for flight crews of transport aircraft. One promising result was the tentative identification of a particular class of information processing shortcuts, from situation characterizations to appropriate responses, as the most important reliable pathway for dealing with complex time critical situations.

  16. Ontology and medical diagnosis.

    Science.gov (United States)

    Bertaud-Gounot, Valérie; Duvauferrier, Régis; Burgun, Anita

    2012-03-01

    Ontology and associated generic tools are appropriate for knowledge modeling and reasoning, but most of the time, disease definitions in existing description logic (DL) ontology are not sufficient to classify patient's characteristics under a particular disease because they do not formalize operational definitions of diseases (association of signs and symptoms=diagnostic criteria). The main objective of this study is to propose an ontological representation which takes into account the diagnostic criteria on which specific patient conditions may be classified under a specific disease. This method needs as a prerequisite a clear list of necessary and sufficient diagnostic criteria as defined for lots of diseases by learned societies. It does not include probability/uncertainty which Web Ontology Language (OWL 2.0) cannot handle. We illustrate it with spondyloarthritis (SpA). Ontology has been designed in Protégé 4.1 OWL-DL2.0. Several kinds of criteria were formalized: (1) mandatory criteria, (2) picking two criteria among several diagnostic criteria, (3) numeric criteria. Thirty real patient cases were successfully classified with the reasoner. This study shows that it is possible to represent operational definitions of diseases with OWL and successfully classify real patient cases. Representing diagnostic criteria as descriptive knowledge (instead of rules in Semantic Web Rule Language or Prolog) allows us to take advantage of tools already available for OWL. While we focused on Assessment of SpondyloArthritis international Society SpA criteria, we believe that many of the representation issues addressed here are relevant to using OWL-DL for operational definition of other diseases in ontology.

  17. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  18. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  19. Knowledge Portals: Ontologies at Work

    OpenAIRE

    Staab, Steffen; Maedche, Alexander

    2001-01-01

    Knowledge portals provide views onto domain-specific information on the World Wide Web, thus helping their users find relevant, domain-specific information. The construction of intelligent access and the contribution of information to knowledge portals, however, remained an ad hoc task, requiring extensive manual editing and maintenance by the knowledge portal providers. To diminish these efforts, we use ontologies as a conceptual backbone for providing, accessing, and structuring information...

  20. Building ontologies with basic formal ontology

    CERN Document Server

    Arp, Robert; Spear, Andrew D.

    2015-01-01

    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now u...

  1. Intelligent control of HVAC systems. Part I: Modeling and synthesis

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2013-03-01

    Full Text Available This is the first part of a work on intelligent type control of Heating, Ventilating and Air-Conditioning (HVAC systems. The study is performed from the perspective of giving a unitary control method to ensure high energy efficiency and air quality improving. To illustrate the proposed HVAC control technique, in this first part it is considered as benchmark problem a single thermal space HVAC system. The construction of the mathematical model is performed only with a view to obtain a framework of HVAC intelligent control validation by numerical simulations. The latter will be reported in a second part of the study.

  2. Intelligence Artificielle Distribuée Et Gestion Des Connaissances : Ontologies Et Systèmes Multi-Agents Pour Un Web Sémantique Organisationnel

    OpenAIRE

    Gandon , Fabien

    2002-01-01

    This work concerns multi-agents systems for the management of a corporate semantic web based on an ontology. It was carried out in the context of the European project CoMMA focusing on two application scenarios: support technology monitoring activities and assist the integration of a new employee to the organisation. Three aspects were essentially developed in this work: the design of a multi-agents architecture supporting both scenarios, and the organisational top-down approach followed to i...

  3. A generic model for camera based intelligent road crowd control ...

    African Journals Online (AJOL)

    This research proposes a model for intelligent traffic flow control by implementing camera based surveillance and feedback system. A series of cameras are set minimum three signals ahead from the target junction. The complete software system is developed to help integrating the multiple camera on road as feedback to ...

  4. The highly intelligent virtual agents for modeling financial markets

    Science.gov (United States)

    Yang, G.; Chen, Y.; Huang, J. P.

    2016-02-01

    Researchers have borrowed many theories from statistical physics, like ensemble, Ising model, etc., to study complex adaptive systems through agent-based modeling. However, one fundamental difference between entities (such as spins) in physics and micro-units in complex adaptive systems is that the latter are usually with high intelligence, such as investors in financial markets. Although highly intelligent virtual agents are essential for agent-based modeling to play a full role in the study of complex adaptive systems, how to create such agents is still an open question. Hence, we propose three principles for designing high artificial intelligence in financial markets and then build a specific class of agents called iAgents based on these three principles. Finally, we evaluate the intelligence of iAgents through virtual index trading in two different stock markets. For comparison, we also include three other types of agents in this contest, namely, random traders, agents from the wealth game (modified on the famous minority game), and agents from an upgraded wealth game. As a result, iAgents perform the best, which gives a well support for the three principles. This work offers a general framework for the further development of agent-based modeling for various kinds of complex adaptive systems.

  5. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two diff- erent ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods ...

  6. A New Browser-based, Ontology-driven Tool for Generating Standardized, Deep Descriptions of Geoscience Models

    Science.gov (United States)

    Peckham, S. D.; Kelbert, A.; Rudan, S.; Stoica, M.

    2016-12-01

    Standardized metadata for models is the key to reliable and greatly simplified coupling in model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System). This model metadata also helps model users to understand the important details that underpin computational models and to compare the capabilities of different models. These details include simplifying assumptions on the physics, governing equations and the numerical methods used to solve them, discretization of space (the grid) and time (the time-stepping scheme), state variables (input or output), model configuration parameters. This kind of metadata provides a "deep description" of a computational model that goes well beyond other types of metadata (e.g. author, purpose, scientific domain, programming language, digital rights, provenance, execution) and captures the science that underpins a model. While having this kind of standardized metadata for each model in a repository opens up a wide range of exciting possibilities, it is difficult to collect this information and a carefully conceived "data model" or schema is needed to store it. Automated harvesting and scraping methods can provide some useful information, but they often result in metadata that is inaccurate or incomplete, and this is not sufficient to enable the desired capabilities. In order to address this problem, we have developed a browser-based tool called the MCM Tool (Model Component Metadata) which runs on notebooks, tablets and smart phones. This tool was partially inspired by the TurboTax software, which greatly simplifies the necessary task of preparing tax documents. It allows a model developer or advanced user to provide a standardized, deep description of a computational geoscience model, including hydrologic models. Under the hood, the tool uses a new ontology for models built on the CSDMS Standard Names, expressed as a collection of RDF files (Resource Description Framework). This ontology is based on core concepts

  7. Gold-standard evaluation of a folksonomy-based ontology learning model

    Science.gov (United States)

    Djuana, E.

    2018-03-01

    Folksonomy, as one result of collaborative tagging process, has been acknowledged for its potential in improving categorization and searching of web resources. However, folksonomy contains ambiguities such as synonymy and polysemy as well as different abstractions or generality problem. To maximize its potential, some methods for associating tags of folksonomy with semantics and structural relationships have been proposed such as using ontology learning method. This paper evaluates our previous work in ontology learning according to gold-standard evaluation approach in comparison to a notable state-of-the-art work and several baselines. The results show that our method is comparable to the state-of the art work which further validate our approach as has been previously validated using task-based evaluation approach.

  8. Intelligent interaction based on holographic personalized portal

    Directory of Open Access Journals (Sweden)

    Yadong Huang

    2017-06-01

    Full Text Available Purpose – The purpose of this paper is to study the architecture of holographic personalized portal, user modeling, commodity modeling and intelligent interaction. Design/methodology/approach – In this paper, the authors propose crowd-science industrial ecological system based on holographic personalized portal and its interaction. The holographic personality portal is based on holographic enterprises, commodities and consumers, and the personalized portal consists of accurate ontology, reliable supply, intelligent demand and smart cyberspace. Findings – The personalized portal can realize the information acquisition, characteristic analysis and holographic presentation. Then, the intelligent interaction, e.g. demand decomposition, personalized search, personalized presentation and demand prediction, will be implemented within the personalized portal. Originality/value – The authors believe that their work on intelligent interaction based on holographic personalized portal, which has been first proposed in this paper, is innovation focusing on the interaction between intelligence and convenience.

  9. Towards an Ontology for the Global Geodynamics Project: Automated Extraction of Resource Descriptions from an XML-Based Data Model

    Science.gov (United States)

    Lumb, L. I.; Aldridge, K. D.

    2005-12-01

    Using the Earth Science Markup Language (ESML), an XML-based data model for the Global Geodynamics Project (GGP) was recently introduced [Lumb & Aldridge, Proc. HPCS 2005, Kotsireas & Stacey, eds., IEEE, 2005, 216-222]. This data model possesses several key attributes -i.e., it: makes use of XML schema; supports semi-structured ASCII format files; includes Earth Science affinities; and is on track for compliance with emerging Grid computing standards (e.g., the Global Grid Forum's Data Format Description Language, DFDL). Favorable attributes notwithstanding, metadata (i.e., data about data) was identified [Lumb & Aldridge, 2005] as a key challenge for progress in enabling the GGP for Grid computing. Even in projects of small-to-medium scale like the GGP, the manual introduction of metadata has the potential to be the rate-determining metric for progress. Fortunately, an automated approach for metadata introduction has recently emerged. Based on Gleaning Resource Descriptions from Dialects of Languages (GRDDL, http://www.w3.org/2004/01/rdxh/spec), this bottom-up approach allows for the extraction of Resource Description Format (RDF) representations from the XML-based data model (i.e., the ESML representation of GGP data) subject to rules of transformation articulated via eXtensible Stylesheet Language Transformations (XSLT). In addition to introducing relationships into the GGP data model, and thereby addressing the metadata requirement, the syntax and semantics of RDF comprise a requisite for a GGP ontology - i.e., ``the common words and concepts (the meaning) used to describe and represent an area of knowledge'' [Daconta et al., The Semantic Web, Wiley, 2003]. After briefly reviewing the XML-based model for the GGP, attention focuses on the automated extraction of an RDF representation via GRDDL with XSLT-delineated templates. This bottom-up approach, in tandem with a top-down approach based on the Protege integrated development environment for ontologies (http

  10. Ontological Modeling of Meta Learning Multi-Agent Systems in OWL-DL

    Czech Academy of Sciences Publication Activity Database

    Kazík, O.; Neruda, Roman

    2012-01-01

    Roč. 39, č. 4 (2012), s. 357-362 ISSN 1819-9224 R&D Projects: GA MŠk(CZ) ME10023 Grant - others:GA UK(CZ) 629612; UK(CZ) SVV-265314 Institutional support: RVO:67985807 Keywords : data mining * meta learning * roles * description logic * ontology Subject RIV: IN - Informatics, Computer Science http://www.iaeng.org/IJCS/issues_v39/issue_4/IJCS_39_4_04.pdf

  11. Ontology authoring with Forza

    CSIR Research Space (South Africa)

    Keet, CM

    2014-11-01

    Full Text Available Generic, reusable ontology elements, such as a foundational ontology's categories and part-whole relations, are essential for good and interoperable knowledge representation. Ontology developers, which include domain experts and novices, face...

  12. Life system modeling and intelligent computing. Pt. II. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang; Irwin, George W. (eds.) [Belfast Queen' s Univ. (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui; Jia, Li [Shanghai Univ. (China). School of Mechatronical Engineering and Automation

    2010-07-01

    This book is part II of a two-volume work that contains the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010 and the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, held in Wuxi, China, in September 2010. The 194 revised full papers presented were carefully reviewed and selected from over 880 submissions and recommended for publication by Springer in two volumes of Lecture Notes in Computer Science (LNCS) and one volume of Lecture Notes in Bioinformatics (LNBI). This particular volume of Lecture Notes in Computer Science (LNCS) includes 55 papers covering 7 relevant topics. The 56 papers in this volume are organized in topical sections on advanced evolutionary computing theory and algorithms; advanced neural network and fuzzy system theory and algorithms; modeling and simulation of societies and collective behavior; biomedical signal processing, imaging, and visualization; intelligent computing and control in distributed power generation systems; intelligent methods in power and energy infrastructure development; intelligent modeling, monitoring, and control of complex nonlinear systems. (orig.)

  13. Intelligent Transportation and Evacuation Planning A Modeling-Based Approach

    CERN Document Server

    Naser, Arab

    2012-01-01

    Intelligent Transportation and Evacuation Planning: A Modeling-Based Approach provides a new paradigm for evacuation planning strategies and techniques. Recently, evacuation planning and modeling have increasingly attracted interest among researchers as well as government officials. This interest stems from the recent catastrophic hurricanes and weather-related events that occurred in the southeastern United States (Hurricane Katrina and Rita). The evacuation methods that were in place before and during the hurricanes did not work well and resulted in thousands of deaths. This book offers insights into the methods and techniques that allow for implementing mathematical-based, simulation-based, and integrated optimization and simulation-based engineering approaches for evacuation planning. This book also: Comprehensively discusses the application of mathematical models for evacuation and intelligent transportation modeling Covers advanced methodologies in evacuation modeling and planning Discusses principles a...

  14. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies.......This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output...

  15. An evolutionary model of bounded rationality and intelligence.

    Directory of Open Access Journals (Sweden)

    Thomas J Brennan

    Full Text Available BACKGROUND: Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. METHODS AND FINDINGS: Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. CONCLUSIONS: Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that

  16. An evolutionary model of bounded rationality and intelligence.

    Science.gov (United States)

    Brennan, Thomas J; Lo, Andrew W

    2012-01-01

    Most economic theories are based on the premise that individuals maximize their own self-interest and correctly incorporate the structure of their environment into all decisions, thanks to human intelligence. The influence of this paradigm goes far beyond academia-it underlies current macroeconomic and monetary policies, and is also an integral part of existing financial regulations. However, there is mounting empirical and experimental evidence, including the recent financial crisis, suggesting that humans do not always behave rationally, but often make seemingly random and suboptimal decisions. Here we propose to reconcile these contradictory perspectives by developing a simple binary-choice model that takes evolutionary consequences of decisions into account as well as the role of intelligence, which we define as any ability of an individual to increase its genetic success. If no intelligence is present, our model produces results consistent with prior literature and shows that risks that are independent across individuals in a generation generally lead to risk-neutral behaviors, but that risks that are correlated across a generation can lead to behaviors such as risk aversion, loss aversion, probability matching, and randomization. When intelligence is present the nature of risk also matters, and we show that even when risks are independent, either risk-neutral behavior or probability matching will occur depending upon the cost of intelligence in terms of reproductive success. In the case of correlated risks, we derive an implicit formula that shows how intelligence can emerge via selection, why it may be bounded, and how such bounds typically imply the coexistence of multiple levels and types of intelligence as a reflection of varying environmental conditions. Rational economic behavior in which individuals maximize their own self interest is only one of many possible types of behavior that arise from natural selection. The key to understanding which types of

  17. Computational Intelligence and Decision Making Trends and Applications

    CERN Document Server

    Madureira, Ana; Marques, Viriato

    2013-01-01

    This book provides a general overview and original analysis of new developments and applications in several areas of Computational Intelligence and Information Systems. Computational Intelligence has become an important tool for engineers to develop and analyze novel techniques to solve problems in basic sciences such as physics, chemistry, biology, engineering, environment and social sciences.   The material contained in this book addresses the foundations and applications of Artificial Intelligence and Decision Support Systems, Complex and Biological Inspired Systems, Simulation and Evolution of Real and Artificial Life Forms, Intelligent Models and Control Systems, Knowledge and Learning Technologies, Web Semantics and Ontologies, Intelligent Tutoring Systems, Intelligent Power Systems, Self-Organized and Distributed Systems, Intelligent Manufacturing Systems and Affective Computing. The contributions have all been written by international experts, who provide current views on the topics discussed and pr...

  18. Employing the intelligence cycle process model within the Homeland Security Enterprise

    OpenAIRE

    Stokes, Roger L.

    2013-01-01

    CHDS State/Local The purpose of this thesis was to examine the employment and adherence of the intelligence cycle process model within the National Network of Fusion Centers and the greater Homeland Security Enterprise by exploring the customary intelligence cycle process model established by the United States Intelligence Community (USIC). This thesis revealed there are various intelligence cycle process models used by the USIC and taught to the National Network. Given the numerous differ...

  19. National Water Model: Providing the Nation with Actionable Water Intelligence

    Science.gov (United States)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  20. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    Science.gov (United States)

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  1. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  2. An empirical analysis of ontology reuse in BioPortal.

    Science.gov (United States)

    Ochs, Christopher; Perl, Yehoshua; Geller, James; Arabandi, Sivaram; Tudorache, Tania; Musen, Mark A

    2017-07-01

    Biomedical ontologies often reuse content (i.e., classes and properties) from other ontologies. Content reuse enables a consistent representation of a domain and reusing content can save an ontology author significant time and effort. Prior studies have investigated the existence of reused terms among the ontologies in the NCBO BioPortal, but as of yet there has not been a study investigating how the ontologies in BioPortal utilize reused content in the modeling of their own content. In this study we investigate how 355 ontologies hosted in the NCBO BioPortal reuse content from other ontologies for the purposes of creating new ontology content. We identified 197 ontologies that reuse content. Among these ontologies, 108 utilize reused classes in the modeling of their own classes and 116 utilize reused properties in class restrictions. Current utilization of reuse and quality issues related to reuse are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. AN ONTOLOGY-BASED COMPETENCE MANAGEMENT SYSTEM FOR IT COMPANIES

    OpenAIRE

    Cristina NICULESCU; Stefan TRAUSAN-MATU

    2009-01-01

    The paper presents a generic framework of an intelligent information system for competence management based on ontologies for information technology companies. The advantage of using an ontology-based system is the possibility of the identification of new relations among concepts based on inferences starting from the existing knowledge. The inferences may be performed in our approach by a reasoning engine, using classifiers in the Descriptions Logics tab associated with the Protégé ontology e...

  4. Better modelling practice : an ontological perpsective on multidisciplinary, model-based problem solving

    NARCIS (Netherlands)

    Scholten, H.

    2008-01-01

    Mathematical models are more and more used to support to solve multidisciplinary, real world problems of increasing complexity. They are often plagued by obstacles such as miscommunication between modellers with different disciplinary backgrounds leading to a non-transparent modelling process. Other

  5. An Ontology for Learning Services on the Shop Floor

    Science.gov (United States)

    Ullrich, Carsten

    2016-01-01

    An ontology expresses a common understanding of a domain that serves as a basis of communication between people or systems, and enables knowledge sharing, reuse of domain knowledge, reasoning and thus problem solving. In Technology-Enhanced Learning, especially in Intelligent Tutoring Systems and Adaptive Learning Environments, ontologies serve as…

  6. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.

    Science.gov (United States)

    Amith, Muhammad; He, Zhe; Bian, Jiang; Lossio-Ventura, Juan Antonio; Tao, Cui

    2018-04-01

    With the proliferation of heterogeneous health care data in the last three decades, biomedical ontologies and controlled biomedical terminologies play a more and more important role in knowledge representation and management, data integration, natural language processing, as well as decision support for health information systems and biomedical research. Biomedical ontologies and controlled terminologies are intended to assure interoperability. Nevertheless, the quality of biomedical ontologies has hindered their applicability and subsequent adoption in real-world applications. Ontology evaluation is an integral part of ontology development and maintenance. In the biomedicine domain, ontology evaluation is often conducted by third parties as a quality assurance (or auditing) effort that focuses on identifying modeling errors and inconsistencies. In this work, we first organized four categorical schemes of ontology evaluation methods in the existing literature to create an integrated taxonomy. Further, to understand the ontology evaluation practice in the biomedicine domain, we reviewed a sample of 200 ontologies from the National Center for Biomedical Ontology (NCBO) BioPortal-the largest repository for biomedical ontologies-and observed that only 15 of these ontologies have documented evaluation in their corresponding inception papers. We then surveyed the recent quality assurance approaches for biomedical ontologies and their use. We also mapped these quality assurance approaches to the ontology evaluation criteria. It is our anticipation that ontology evaluation and quality assurance approaches will be more widely adopted in the development life cycle of biomedical ontologies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A Cybernetic Model to Enhance Organizational Intelligence

    OpenAIRE

    Schwaninger, Markus

    2003-01-01

    The present paper focuses on the modeling of cognitive processes in organizations. This issue is approached from the perspective of Organizational Cybernetics, the science of control and communication applied to the management of organizations. First, the Team Syntegrity Model is described, which provides a structural architecture for processes of planning, knowledge generation and innovation in turbulent environments. The model is holographic and based on the mathematical structure of polyhe...

  8. Modeling culture in intelligent virtual agents

    OpenAIRE

    Mascarenhas, S.; Degens, N.; Paiva, A.; Prada, R.; Hofstede, G.J.; Beulens, A.J.M.; Aylett, R.

    2016-01-01

    This work addresses the challenge of creating virtual agents that are able to portray culturally appropriate behavior when interacting with other agents or humans. Because culture influences how people perceive their social reality it is important to have agent models that explicitly consider social elements, such as existing relational factors. We addressed this necessity by integrating culture into a novel model for simulating human social behavior. With this model, we operationalized a par...

  9. Modeling and simulating human teamwork behaviors using intelligent agents

    Science.gov (United States)

    Fan, Xiaocong; Yen, John

    2004-12-01

    Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human-agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork-shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.

  10. Intelligent spatial ecosystem modeling using parallel processors

    International Nuclear Information System (INIS)

    Maxwell, T.; Costanza, R.

    1993-01-01

    Spatial modeling of ecosystems is essential if one's modeling goals include developing a relatively realistic description of past behavior and predictions of the impacts of alternative management policies on future ecosystem behavior. Development of these models has been limited in the past by the large amount of input data required and the difficulty of even large mainframe serial computers in dealing with large spatial arrays. These two limitations have begun to erode with the increasing availability of remote sensing data and GIS systems to manipulate it, and the development of parallel computer systems which allow computation of large, complex, spatial arrays. Although many forms of dynamic spatial modeling are highly amenable to parallel processing, the primary focus in this project is on process-based landscape models. These models simulate spatial structure by first compartmentalizing the landscape into some geometric design and then describing flows within compartments and spatial processes between compartments according to location-specific algorithms. The authors are currently building and running parallel spatial models at the regional scale for the Patuxent River region in Maryland, the Everglades in Florida, and Barataria Basin in Louisiana. The authors are also planning a project to construct a series of spatially explicit linked ecological and economic simulation models aimed at assessing the long-term potential impacts of global climate change

  11. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  12. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  13. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    Science.gov (United States)

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  14. THE FUZZY OVERLAY STUDENT MODEL IN AN INTELLIGENT TUTORING SYSTEM

    Directory of Open Access Journals (Sweden)

    D. I. Popov

    2015-01-01

    Full Text Available The article is devoted to the development of the student model for use in an intelligent tutoring system (ITS designed for the evaluation of students’ competencies in different Higher Education Facilities. There are classification and examples of the various student models, the most suitable for the evaluation of competencies is selected and finalized. The dynamic overlay fuzzy student model builded on the domain model based on the concept of didactic units is described in this work. The formulas, chart and diagrams are provided.

  15. Modeling intelligent agent beliefs in a card game scenario

    Science.gov (United States)

    Gołuński, Marcel; Tomanek, Roman; WÄ siewicz, Piotr

    In this paper we explore the problem of intelligent agent beliefs. We model agent beliefs using multimodal logics of belief, KD45(m) system implemented as a directed graph depicting Kripke semantics, precisely. We present a card game engine application which allows multiple agents to connect to a given game session and play the card game. As an example simplified version of popular Saboteur card game is used. Implementation was done in Java language using following libraries and applications: Apache Mina, LWJGL.

  16. Neuro-Based Artificial Intelligence Model for Loan Decisions

    OpenAIRE

    Shorouq F. Eletter; Saad G. Yaseen; Ghaleb A. Elrefae

    2010-01-01

    Problem statement: Despite the increase in consumer loans defaults and competition in the banking market, most of the Jordanian commercial banks are reluctant to use artificial intelligence software systems for supporting loan decisions. Approach: This study developed a proposed model that identifies artificial neural network as an enabling tool for evaluating credit applications to support loan decisions in the Jordanian Commercial banks. A multi-layer feed-forward neural network with backpr...

  17. Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns.

    Science.gov (United States)

    Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; He, Yongqun

    2015-01-01

    It is time-consuming to build an ontology with many terms and axioms. Thus it is desired to automate the process of ontology development. Ontology Design Patterns (ODPs) provide a reusable solution to solve a recurrent modeling problem in the context of ontology engineering. Because ontology terms often follow specific ODPs, the Ontology for Biomedical Investigations (OBI) developers proposed a Quick Term Templates (QTTs) process targeted at generating new ontology classes following the same pattern, using term templates in a spreadsheet format. Inspired by the ODPs and QTTs, the Ontorat web application is developed to automatically generate new ontology terms, annotations of terms, and logical axioms based on a specific ODP(s). The inputs of an Ontorat execution include axiom expression settings, an input data file, ID generation settings, and a target ontology (optional). The axiom expression settings can be saved as a predesigned Ontorat setting format text file for reuse. The input data file is generated based on a template file created by a specific ODP (text or Excel format). Ontorat is an efficient tool for ontology expansion. Different use cases are described. For example, Ontorat was applied to automatically generate over 1,000 Japan RIKEN cell line cell terms with both logical axioms and rich annotation axioms in the Cell Line Ontology (CLO). Approximately 800 licensed animal vaccines were represented and annotated in the Vaccine Ontology (VO) by Ontorat. The OBI team used Ontorat to add assay and device terms required by ENCODE project. Ontorat was also used to add missing annotations to all existing Biobank specific terms in the Biobank Ontology. A collection of ODPs and templates with examples are provided on the Ontorat website and can be reused to facilitate ontology development. With ever increasing ontology development and applications, Ontorat provides a timely platform for generating and annotating a large number of ontology terms by following

  18. An ontology for factors affecting tuberculosis treatment adherence behavior in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Ogundele OA

    2016-04-01

    Full Text Available Olukunle Ayodeji Ogundele,1 Deshendran Moodley,1 Anban W Pillay,1 Christopher J Seebregts1,2 1UKZN/CSIR Meraka Centre for Artificial Intelligence Research and Health Architecture Laboratory, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 2Jembi Health Systems NPC, Cape Town, South Africa Purpose: Adherence behavior is a complex phenomenon influenced by diverse personal, cultural, and socioeconomic factors that may vary between communities in different regions. Understanding the factors that influence adherence behavior is essential in predicting which individuals and communities are at risk of nonadherence. This is necessary for supporting resource allocation and intervention planning in disease control programs. Currently, there is no known concrete and unambiguous computational representation of factors that influence tuberculosis (TB treatment adherence behavior that is useful for prediction. This study developed a computer-based conceptual model for capturing and structuring knowledge about the factors that influence TB treatment adherence behavior in sub-Saharan Africa (SSA.Methods: An extensive review of existing categorization systems in the literature was used to develop a conceptual model that captured scientific knowledge about TB adherence behavior in SSA. The model was formalized as an ontology using the web ontology language. The ontology was then evaluated for its comprehensiveness and applicability in building predictive models. Conclusion: The outcome of the study is a novel ontology-based approach for curating and structuring scientific knowledge of adherence behavior in patients with TB in SSA. The ontology takes an evidence-based approach by explicitly linking factors to published clinical studies. Factors are structured around five dimensions: factor type, type of effect, regional variation, cross-dependencies between factors, and treatment phase. The ontology is

  19. Formal Ontologies and Uncertainty. In Geographical Knowledge

    Directory of Open Access Journals (Sweden)

    Matteo Caglioni

    2014-05-01

    Full Text Available Formal ontologies have proved to be a very useful tool to manage interoperability among data, systems and knowledge. In this paper we will show how formal ontologies can evolve from a crisp, deterministic framework (ontologies of hard knowledge to new probabilistic, fuzzy or possibilistic frameworks (ontologies of soft knowledge. This can considerably enlarge the application potential of formal ontologies in geographic analysis and planning, where soft knowledge is intrinsically linked to the complexity of the phenomena under study.  The paper briefly presents these new uncertainty-based formal ontologies. It then highlights how ontologies are formal tools to define both concepts and relations among concepts. An example from the domain of urban geography finally shows how the cause-to-effect relation between household preferences and urban sprawl can be encoded within a crisp, a probabilistic and a possibilistic ontology, respectively. The ontology formalism will also determine the kind of reasoning that can be developed from available knowledge. Uncertain ontologies can be seen as the preliminary phase of more complex uncertainty-based models. The advantages of moving to uncertainty-based models is evident: whether it is in the analysis of geographic space or in decision support for planning, reasoning on geographic space is almost always reasoning with uncertain knowledge of geographic phenomena.

  20. Thermal Models for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2012-01-01

    the comfort of residents, proper prediction models for indoor temperature have to be developed. This paper presents a model for prediction of indoor temperature and power consumption from electrical space heating in an office building, using stochastic differential equations. The heat dynamic model is build......The Danish government has set the ambitious goal that the share of the total Danish electricity consumption, covered by wind energy, should be increased to 50% by year 2020. This asks for radical changes in how we utilize and transmit electricity in the future power grid. To fully utilize the high...... share of renewable power generation, which is in general intermittent and non-controllable, the consumption side has to be much more flexible than today. To achieve such flexibility, methods for moving power consumption in time, within the hourly timescale, have to be developed. One approach currently...

  1. Modeling of phosphorus loads in sugarcane in a low-relief landscape using ontology-based simulation.

    Science.gov (United States)

    Kwon, Ho-Young; Grunwald, Sabine; Beck, Howard W; Jung, Yunchul; Daroub, Samira H; Lang, Timothy A; Morgan, Kelly T

    2010-01-01

    Water flow and P dynamics in a low-relief landscape manipulated by extensive canal and ditch drainage systems were modeled utilizing an ontology-based simulation model. In the model, soil water flux and processes between three soil inorganic P pools (labile, active, and stable) and organic P are represented as database objects. And user-defined relationships among objects are used to automatically generate computer code (Java) for running the simulation of discharge and P loads. Our objectives were to develop ontology-based descriptions of soil P dynamics within sugarcane- (Saccharum officinarum L.) grown farm basins of the Everglades Agricultural Area (EAA) and to calibrate and validate such processes with water quality monitoring data collected at one farm basin (1244 ha). In the calibration phase (water year [WY] 99-00), observed discharge totaled 11,114 m3 ha(-1) and dissolved P 0.23 kg P ha(-1); and in the validation phase (WY 02-03), discharge was 10,397 m3 ha(-1) and dissolved P 0.11 kg P ha(-). During WY 99-00 the root mean square error (RMSE) for monthly discharge was 188 m3 ha(-1) and for monthly dissolved P 0.0077 kg P ha(-1); whereas during WY 02-03 the RMSE for monthly discharge was 195 m3 ha(-1) and monthly dissolved P 0.0022 kg P ha(-1). These results were confirmed by Nash-Sutcliffe Coefficient of 0.69 (calibration) and 0.81 (validation) comparing measured and simulated P loads. The good model performance suggests that our model has promise to simulate P dynamics, which may be useful as a management tool to reduce P loads in other similar low-relief areas.

  2. Electricity load modelling using computational intelligence

    NARCIS (Netherlands)

    Ter Borg, R.W.

    2005-01-01

    As a consequence of the liberalisation of the electricity markets in Europe, market players have to continuously adapt their future supply to match their customers' demands. This poses the challenge of obtaining a predictive model that accurately describes electricity loads, current in this thesis.

  3. Modeling culture in intelligent virtual agents

    NARCIS (Netherlands)

    Mascarenhas, S.; Degens, N.; Paiva, A.; Prada, R.; Hofstede, G.J.; Beulens, A.J.M.; Aylett, R.

    2016-01-01

    This work addresses the challenge of creating virtual agents that are able to portray culturally appropriate behavior when interacting with other agents or humans. Because culture influences how people perceive their social reality it is important to have agent models that explicitly consider social

  4. An Ontology-Based Context Model for Wireless Sensor Network (WSN Management in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Adnan Al-Anbuky

    2013-09-01

    Full Text Available Wireless sensor networks (WSNs are an enabling technology of context-aware systems. The Internet of Things (IoT, which has attracted much attention in recent years, is an emerging paradigm where everyday objects and spaces are made context-aware and interconnected through heterogeneous networks on a global scale. However, the IoT system can suffer from poor performances when its underlying networks are not optimized. In this paper, an ontology model for representing and facilitating context sharing between network entities in WSNs is proposed for the first time. The context model aims to enable optimal context-aware management of WSNs in IoT, which will also harness the rich context knowledge of IoT systems.

  5. Towards a universal competitive intelligence process model

    Directory of Open Access Journals (Sweden)

    Rene Pellissier

    2013-08-01

    Objectives: The purpose of this research is to review the current literature on CI, to look at the aims of identifying and analysing CI process models, and finally to propose a universal CI process model. Method: The study was qualitative in nature and content analysis was conducted on all identified sources establishing and analysing CI process models. To identify relevant literature, academic databases and search engines were used. Moreover, a review of references in related studies led to more relevant sources, the references of which were further reviewed and analysed. To ensure reliability, only peer-reviewed articles were used. Results: The findings reveal that the majority of scholars view the CI process as a cycle of interrelated phases. The output of one phase is the input of the next phase. Conclusion: The CI process is a cycle of interrelated phases. The output of one phase is the input of the next phase. These phases are influenced by the following factors: decision makers, process and structure, organisational awareness and culture, and feedback.

  6. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  7. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  8. Anatomy Ontology Matching Using Markov Logic Networks

    Directory of Open Access Journals (Sweden)

    Chunhua Li

    2016-01-01

    Full Text Available The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  9. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina; Madsen, Nadia; Clausen, Jens

    2006-01-01

    An ontology is a classification model for a given domain.In information retrieval ontologies are used to perform broad searches.An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology....... One method uses a discrete location model to create an initial solution and we propose heuristic methods to further improve the visual result. We evaluate the visual results according to our success criteria and the feedback from users. Running times of the heuristic indicate that an improved version...

  10. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina Valentin; Madsen, Nadia Lyngaa; Clausen, Jens

    2004-01-01

    An ontology is a classification model for a given domain. In information retrieval ontologies are used to perform broad searches. An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology....... One method uses a discrete location model to create an initial solution and we propose heuristic methods to further improve the visual result. We evaluate the visual results according to our success criteria and the feedback from users. Running times of the heuristic indicate that an improved version...

  11. Conceptual Model of Business Value of Business Intelligence Systems

    OpenAIRE

    Popovič, Aleš; Turk, Tomaž; Jaklič, Jurij

    2010-01-01

    With advances in the business intelligence area, there is an increasing interest for the introduction of business intelligence systems into organizations. Although the opinion about business intelligence and its creation of business value is generally accepted, economic justification of investments into business intelligence systems is not always clear. Measuring the business value of business intelligence in practice is often not carried out due to the lack of measurement methods and resourc...

  12. Heuristic decision model for intelligent nuclear power systems design

    International Nuclear Information System (INIS)

    Nassersharif, B.; Portal, M.G.; Gaeta, M.J.

    1989-01-01

    The objective of this project was to investigate intelligent nuclear power systems design. A theoretical model of the design process has been developed. A fundamental process in this model is the heuristic decision making for design (i.e., selection of methods, components, materials, etc.). Rule-based expert systems do not provide the completeness that is necessary to generate good design. A new method, based on the fuzzy set theory, has been developed and is presented here. A feedwater system knowledge base (KB) was developed for a prototype software experiment to benchmark the theory

  13. Using Ontologies for the E-learning System in Healthcare Human Resources Management

    Directory of Open Access Journals (Sweden)

    Lidia BAJENARU

    2015-01-01

    Full Text Available This paper provides a model for the use of ontology in e-learning systems for structuring educational content in the domain of healthcare human resources management (HHRM in Romania. In this respect we propose an effective method to improve the learning system by providing personalized learning paths created using ontology and advanced educational strategies to provide a personalized learning content for the medical staff. Personalization of e-learning process for the chosen target group will be achieved by setting up learning path for each user according to his profile. This will become possible using: domain ontology, learning objects, modeling student knowledge. Developing an ontology-based system for competence management allows complex interactions, providing intelligent interfacing. This is a new approach for the healthcare system managers in permanent training based on e-learning technologies and specific ontologies in a complex area that needs urgent modernization and efficiency to meet the public health economic, social and political context of Romania.

  14. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A

  15. Ontology-aided Data Fusion (Invited)

    Science.gov (United States)

    Raskin, R.

    2009-12-01

    An ontology provides semantic descriptions that are analogous to those in a dictionary, but are readable by both computers and humans. A data or service is semantically annotated when it is formally associated with elements of an ontology. The ESIP Federation Semantic Web Cluster has developed a set of ontologies to describe datatypes and data services that can be used to support automated data fusion. The service ontology includes descriptors of the service function, its inputs/outputs, and its invocation method. The datatype descriptors resemble typical metadata fields (data format, data model, data structure, originator, etc.) augmented with descriptions of the meaning of the data. These ontologies, in combination with the SWEET science ontology, enable a registered data fusion service to be chained together and implemented that is scientifically meaningful based on machine understanding of the associated data and services. This presentation describes initial results and experiences in automated data fusion.

  16. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*

    Science.gov (United States)

    Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan

    2017-01-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111

  17. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.

    Science.gov (United States)

    Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan

    2017-05-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.

  18. Scientific Digital Libraries, Interoperability, and Ontologies

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.

    2009-01-01

    Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.

  19. Intelligent model-based diagnostics for vehicle health management

    Science.gov (United States)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  20. Dynamic intelligent cleaning model of dirty electric load data

    International Nuclear Information System (INIS)

    Zhang Xiaoxing; Sun Caixin

    2008-01-01

    There are a number of dirty data in the load database derived from the supervisory control and data acquisition (SCADA) system. Thus, the data must be carefully and reasonably adjusted before it is used for electric load forecasting or power system analysis. This paper proposes a dynamic and intelligent data cleaning model based on data mining theory. Firstly, on the basis of fuzzy soft clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means soft clustering. Then, the proposed dynamic algorithm can automatically find the new clustering center (the characteristic curve of the data) with the updated sample data; At last, it is composed with radial basis function neural network (RBFNN), and then, an intelligent adjusting model is proposed to identify the dirty data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results of electrical load data analysis in Chongqing

  1. An Ontology-Based Knowledge Modelling for a Sustainability Assessment Domain

    Directory of Open Access Journals (Sweden)

    Agnieszka Konys

    2018-01-01

    Full Text Available Sustainability assessment has received more and more attention from researchers and it offers a large number of opportunities to measure and evaluate the level of its accomplishment. However, proper selection of a particular sustainability assessment approach, reflecting problem properties and the evaluator’s preferences, is a complex and important issue. Due to an existing number of different approaches dedicated to assessing, supporting, or measuring the level of sustainability and their structure oriented on the particular domain usage, problems with accurate matching frequently occur. On the other hand, the efficiency of sustainability assessment depends on the available knowledge of the ongoing capabilities. Additionally, actual research trends confirm that knowledge engineering gives a method to handle domain knowledge practically and effectively. Unfortunately, literature studies confirm that there is a lack of knowledge systematization in the sustainability assessment domain, however. The practical application of knowledge-based mechanisms may cover this gap. In this paper, we provide formal, practical and technological guidance to a knowledge management-based approach to sustainability assessment. We propose ontology as a form of knowledge conceptualization and using knowledge engineering, we make gathered knowledge publicly available and reusable, especially in terms of interoperability of collected knowledge.

  2. Principles of design and software development models of ontological-driven computer systems

    OpenAIRE

    Palagin, A. V.; Petrenko, N. G.; Velychko, V. Yu.; Malakhov, K. S.; Karun, O. V.

    2018-01-01

    This paper describes the design principles of methodology of knowledge-oriented information systems based on ontological approach. Such systems implement technology subject-oriented extraction of knowledge from the set of natural language texts and their formal and logical presentation and application processing В работе описаны основы методологии проектирования знание-ориентированных информационных систем на основе онтологического подхода. Такие системы реализуют технологию извлечения пре...

  3. Vaccine and Drug Ontology Studies (VDOS 2014).

    Science.gov (United States)

    Tao, Cui; He, Yongqun; Arabandi, Sivaram

    2016-01-01

    The "Vaccine and Drug Ontology Studies" (VDOS) international workshop series focuses on vaccine- and drug-related ontology modeling and applications. Drugs and vaccines have been critical to prevent and treat human and animal diseases. Work in both (drugs and vaccines) areas is closely related - from preclinical research and development to manufacturing, clinical trials, government approval and regulation, and post-licensure usage surveillance and monitoring. Over the last decade, tremendous efforts have been made in the biomedical ontology community to ontologically represent various areas associated with vaccines and drugs - extending existing clinical terminology systems such as SNOMED, RxNorm, NDF-RT, and MedDRA, developing new models such as the Vaccine Ontology (VO) and Ontology of Adverse Events (OAE), vernacular medical terminologies such as the Consumer Health Vocabulary (CHV). The VDOS workshop series provides a platform for discussing innovative solutions as well as the challenges in the development and applications of biomedical ontologies for representing and analyzing drugs and vaccines, their administration, host immune responses, adverse events, and other related topics. The five full-length papers included in this 2014 thematic issue focus on two main themes: (i) General vaccine/drug-related ontology development and exploration, and (ii) Interaction and network-related ontology studies.

  4. Leave-two-out stability of ontology learning algorithm

    International Nuclear Information System (INIS)

    Wu, Jianzhang; Yu, Xiao; Zhu, Linli; Gao, Wei

    2016-01-01

    Ontology is a semantic analysis and calculation model, which has been applied to many subjects. Ontology similarity calculation and ontology mapping are employed as machine learning approaches. The purpose of this paper is to study the leave-two-out stability of ontology learning algorithm. Several leave-two-out stabilities are defined in ontology learning setting and the relationship among these stabilities are presented. Furthermore, the results manifested reveal that leave-two-out stability is a sufficient and necessary condition for ontology learning algorithm.

  5. A methodology for creating ontologies for engineering design

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Kim, S.; Wallace, K.M.

    2007-01-01

    This paper describes a six-stage methodology for developing ontologies for engineering design, together with the research methods and evaluation of each stage. The methodology focuses upon understanding a user's domain models through empirical research. A case study of an ontology for searching......, indexing, and retrieving engineering knowledge is described. The root concepts of the ontology were elicited from engineering designers. Relationships between concepts are extracted as the ontology is populated. The contribution of this research is a methodology to allow researchers. and industry to create...... ontologies for their particular purpose and a thesaurus for the terms within the ontology....

  6. New challenges in computational collective intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Thanh; Katarzyniak, Radoslaw Piotr [Wroclaw Univ. of Technology (Poland). Inst. of Informatics; Janiak, Adam (eds.) [Wroclaw Univ. of Technology (Poland). Inst. of Computer Engineering, Control and Robotics

    2009-07-01

    The book consists of 29 chapters which have been selected and invited from the submissions to the 1{sup st} International Conference on Collective Intelligence - Semantic Web, Social Networks and Multiagent Systems (ICCCI 2009). All chapters in the book discuss various examples of applications of computational collective intelligence and related technologies to such fields as semantic web, information systems ontologies, social networks, agent and multiagent systems. The editors hope that the book can be useful for graduate and Ph.D. students in Computer Science, in particular participants to courses on Soft Computing, Multi-Agent Systems and Robotics. This book can also be useful for researchers working on the concept of computational collective intelligence in artificial populations. It is the hope of the editors that readers of this volume can find many inspiring ideas and use them to create new cases intelligent collectives. Many such challenges are suggested by particular approaches and models presented in particular chapters of this book. (orig.)

  7. Modeling the Structure and Effectiveness of Intelligence Organizations: Dynamic Information Flow Simulation

    National Research Council Canada - National Science Library

    Behrman, Robert; Carley, Kathleen

    2003-01-01

    This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...

  8. Six scenarios of exploiting an ontology based, mobilized learning environment

    NARCIS (Netherlands)

    Kismihók, G.; Szabó, I.; Vas, R.

    2012-01-01

    In this article, six different exploitation possibilities of an educational ontology based, mobilized learning management system are presented. The focal point of this system is the educational ontology model. The first version of this educational ontology model serves as a foundation for curriculum

  9. Application of Artificial Intelligence for Bridge Deterioration Model

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2015-01-01

    Full Text Available The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.

  10. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  11. Modeling the prediction of business intelligence system effectiveness.

    Science.gov (United States)

    Weng, Sung-Shun; Yang, Ming-Hsien; Koo, Tian-Lih; Hsiao, Pei-I

    2016-01-01

    Although business intelligence (BI) technologies are continually evolving, the capability to apply BI technologies has become an indispensable resource for enterprises running in today's complex, uncertain and dynamic business environment. This study performed pioneering work by constructing models and rules for the prediction of business intelligence system effectiveness (BISE) in relation to the implementation of BI solutions. For enterprises, effectively managing critical attributes that determine BISE to develop prediction models with a set of rules for self-evaluation of the effectiveness of BI solutions is necessary to improve BI implementation and ensure its success. The main study findings identified the critical prediction indicators of BISE that are important to forecasting BI performance and highlighted five classification and prediction rules of BISE derived from decision tree structures, as well as a refined regression prediction model with four critical prediction indicators constructed by logistic regression analysis that can enable enterprises to improve BISE while effectively managing BI solution implementation and catering to academics to whom theory is important.

  12. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Terrorism Risk Modeling for Intelligence Analysis and Infrastructure Protection

    National Research Council Canada - National Science Library

    Willis, Henry H; LaTourrette, Tom; Kelly, Terrence K; Hickey, Scot; Neill, Samuel

    2007-01-01

    ...? The Office of Intelligence and Analysis (OI&A) at DHS is responsible for using information and intelligence from multiple sources to identify and assess current and future threats to the United States...

  14. Self-adaptation of Ontologies to Folksonomies in Semantic Web

    OpenAIRE

    Francisco Echarte; José Javier Astrain; Alberto Córdoba; Jesús Villadangos

    2008-01-01

    Ontologies and tagging systems are two different ways to organize the knowledge present in the current Web. In this paper we propose a simple method to model folksonomies, as tagging systems, with ontologies. We show the scalability of the method using real data sets. The modeling method is composed of a generic ontology that represents any folksonomy and an algorithm to transform the information contained in folksonomies to the generic ontology. The method allows representing folksonomies at...

  15. DEVELOPING A HUMAN CONTROLLED MODEL FOR SAFE ARTIFICIAL INTELLIGENCE SYSTEMS

    OpenAIRE

    KÖSE, Utku

    2018-01-01

    Artificial Intelligence is known as one of the most effective research field of nowadays and the future. But rapid rise of Artificial Intelligence and its potential to solve all real world problems autonomously, it has caused also several anxieties. Some scientists think that intelligent systems can reach to a level, which is dangerous for the humankind so because of that some precautions should be taken. So, many sub-research fields like Machine Ethics or Artificial Intelligence Safety have ...

  16. Assessment Applications of Ontologies.

    Science.gov (United States)

    Chung, Gregory K. W. K.; Niemi, David; Bewley, William L.

    This paper discusses the use of ontologies and their applications to assessment. An ontology provides a shared and common understanding of a domain that can be communicated among people and computational systems. The ontology captures one or more experts' conceptual representation of a domain expressed in terms of concepts and the relationships…

  17. Systems Intelligence in Knowledge Management Implementation: A Momentum of the SECI Model

    OpenAIRE

    Sasaki, Yasuo

    2014-01-01

    This paper discusses the role of systems intelligence in knowledge management implementations, in particular, in the SECI model, a widely acknowledged knowledge creation process in an organization identified by Nonaka and Takeuchi (1995). The SECI model deals with interactions and conversions of tacit knowledge and explicit knowledge and mainly consists of four stages. The author illustrates systems intelligence, a certain kind of human intelligence focusing on systems thinking perspective pr...

  18. Time Series Analysis, Modeling and Applications A Computational Intelligence Perspective

    CERN Document Server

    Chen, Shyi-Ming

    2013-01-01

    Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological a...

  19. A COMPARISON BETWEEN THREE PREDICTIVE MODELS OF COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    DUMITRU CIOBANU

    2013-12-01

    Full Text Available Time series prediction is an open problem and many researchers are trying to find new predictive methods and improvements for the existing ones. Lately methods based on neural networks are used extensively for time series prediction. Also, support vector machines have solved some of the problems faced by neural networks and they began to be widely used for time series prediction. The main drawback of those two methods is that they are global models and in the case of a chaotic time series it is unlikely to find such model. In this paper it is presented a comparison between three predictive from computational intelligence field one based on neural networks one based on support vector machine and another based on chaos theory. We show that the model based on chaos theory is an alternative to the other two methods.

  20. On prognostic models, artificial intelligence and censored observations.

    Science.gov (United States)

    Anand, S S; Hamilton, P W; Hughes, J G; Bell, D A

    2001-03-01

    The development of prognostic models for assisting medical practitioners with decision making is not a trivial task. Models need to possess a number of desirable characteristics and few, if any, current modelling approaches based on statistical or artificial intelligence can produce models that display all these characteristics. The inability of modelling techniques to provide truly useful models has led to interest in these models being purely academic in nature. This in turn has resulted in only a very small percentage of models that have been developed being deployed in practice. On the other hand, new modelling paradigms are being proposed continuously within the machine learning and statistical community and claims, often based on inadequate evaluation, being made on their superiority over traditional modelling methods. We believe that for new modelling approaches to deliver true net benefits over traditional techniques, an evaluation centric approach to their development is essential. In this paper we present such an evaluation centric approach to developing extensions to the basic k-nearest neighbour (k-NN) paradigm. We use standard statistical techniques to enhance the distance metric used and a framework based on evidence theory to obtain a prediction for the target example from the outcome of the retrieved exemplars. We refer to this new k-NN algorithm as Censored k-NN (Ck-NN). This reflects the enhancements made to k-NN that are aimed at providing a means for handling censored observations within k-NN.

  1. Artificial intelligence and the future.

    Science.gov (United States)

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations.

  2. Use of the CIM Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Scott; Britton, Jay; Devos, Arnold N.; Widergren, Steven E.

    2006-02-08

    There are many uses for the Common Information Model (CIM), an ontology that is being standardized through Technical Committee 57 of the International Electrotechnical Commission (IEC TC57). The most common uses to date have included application modeling, information exchanges, information management and systems integration. As one should expect, there are many issues that become apparent when the CIM ontology is applied to any one use. Some of these issues are shortcomings within the current draft of the CIM, and others are a consequence of the different ways in which the CIM can be applied using different technologies. As the CIM ontology will and should evolve, there are several dangers that need to be recognized. One is overall consistency and impact upon applications when extending the CIM for a specific need. Another is that a tight coupling of the CIM to specific technologies could limit the value of the CIM in the longer term as an ontology, which becomes a larger issue over time as new technologies emerge. The integration of systems is one specific area of interest for application of the CIM ontology. This is an area dominated by the use of XML for the definition of messages. While this is certainly true when using Enterprise Application Integration (EAI) products, it is even more true with the movement towards the use of Web Services (WS), Service-Oriented Architectures (SOA) and Enterprise Service Buses (ESB) for integration. This general IT industry trend is consistent with trends seen within the IEC TC57 scope of power system management and associated information exchange. The challenge for TC57 is how to best leverage the CIM ontology using the various XML technologies and standards for integration. This paper will provide examples of how the CIM ontology is used and describe some specific issues that should be addressed within the CIM in order to increase its usefulness as an ontology. It will also describe some of the issues and challenges that will

  3. MODELOS ONTOLÓGICOS DE SOPORTE A LA GESTIÓN DE COMPETENCIAS PROFESIONALES/ ONTOLOGICAL MODELS FOR PROFESSIONAL COMPETENCES MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Jeffrey Blanco-González

    2011-09-01

    Full Text Available

    Desde los inicios de la década del 90 del pasado siglo, el desarrollo de nuevas tecnologías asociadas a la gestión del conocimiento marcaron una nueva forma de control que permitió formalizar, capturar, organizar y reutilizar el conocimiento asociado a los escenarios en los que las competencias se ponen de manifiesto, tanto en el ámbito laboral como académico. En la presente investigación se realiza un estudio del estado del arte sobre modelos ontológicos de soporte a la gestión de competencias profesionales, con vistas a caracterizar algunos de éstos en función del aporte que realizan a los requerimientos tecnológicos de un proceso de identificación de competencias. Como resultado se identificaron un conjunto de modelos ontológicos con características y propósitos muy variados, para los cuales fue necesario definir un conjunto de parámetros para su evaluación. Del estudio se pudo concluir que ninguno de los modelos identificados satisface completamente los requerimientos del proceso de identificación de competencias objeto de estudio.

    Abstract

    Since the beginning of the 90s of the past century, the development of new technologies associated to Knowledge Management, marked a new form of control that allowed to formalize, to capture, to organize and to reuse the knowledge associated to each one of the stages in which the competences are manifested, both in the work and academic field. In this research it is carried out a study about the state of the art of ontological models for supporting the professional competences management, with the purpose of characterizing some of them in order to identify their contribution to the technological requirements of a process of competences identification. As the main result, a set of ontological models with very varied characteristics and purposes were identified, and it was necessary to define a set of parameters for its assessment. It was concluded that

  4. Research on geo-ontology construction based on spatial affairs

    Science.gov (United States)

    Li, Bin; Liu, Jiping; Shi, Lihong

    2008-12-01

    Geo-ontology, a kind of domain ontology, is used to make the knowledge, information and data of concerned geographical science in the abstract to form a series of single object or entity with common cognition. These single object or entity can compose a specific system in some certain way and can be disposed on conception and given specific definition at the same time. Ultimately, these above-mentioned worked results can be expressed in some manners of formalization. The main aim of constructing geo-ontology is to get the knowledge of the domain of geography, and provide the commonly approbatory vocabularies in the domain, as well as give the definite definition about these geographical vocabularies and mutual relations between them in the mode of formalization at different hiberarchy. Consequently, the modeling tool of conception model of describing geographic Information System at the hiberarchy of semantic meaning and knowledge can be provided to solve the semantic conception of information exchange in geographical space and make them possess the comparatively possible characters of accuracy, maturity and universality, etc. In fact, some experiments have been made to validate geo-ontology. During the course of studying, Geo-ontology oriented to flood can be described and constructed by making the method based on geo-spatial affairs to serve the governmental departments at all levels to deal with flood. Thereinto, intelligent retrieve and service based on geoontology of disaster are main functions known from the traditional manner by using keywords. For instance, the function of dealing with disaster information based on geo-ontology can be provided when a supposed flood happened in a certain city. The correlative officers can input some words, such as "city name, flood", which have been realized semantic label, to get the information they needed when they browse different websites. The information, including basic geographical information and flood distributing

  5. The Construction of Intelligent English Teaching Model Based on Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Xiaoguang Li

    2017-12-01

    Full Text Available In order to build a modernized tool platform that can help students improve their English learning efficiency according to their mastery of knowledge and personality, this paper develops an online intelligent English learning system that uses Java and artificial intelligence language Prolog as the software system. This system is a creative reflection of the thoughts of expert system in artificial intelligence. Established on the Struts Spring Hibernate lightweight JavaEE framework, the system modules are coupled with each other in a much lower degree, which is convenient to future function extension. Combined with the idea of expert system in artificial intelligence, the system developed appropriate learning strategies to help students double the learning effect with half the effort; Finally, the system takes into account the forgetting curve of memory, on which basis the knowledge that has been learned will be tested periodically, intending to spare students’ efforts to do a sea of exercises and obtain better learning results.

  6. Ontologies vs. Classification Systems

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2009-01-01

    What is an ontology compared to a classification system? Is a taxonomy a kind of classification system or a kind of ontology? These are questions that we meet when working with people from industry and public authorities, who need methods and tools for concept clarification, for developing meta...... data sets or for obtaining advanced search facilities. In this paper we will present an attempt at answering these questions. We will give a presentation of various types of ontologies and briefly introduce terminological ontologies. Furthermore we will argue that classification systems, e.g. product...... classification systems and meta data taxonomies, should be based on ontologies....

  7. A Soft Intelligent Risk Evaluation Model for Credit Scoring Classification

    Directory of Open Access Journals (Sweden)

    Mehdi Khashei

    2015-09-01

    Full Text Available Risk management is one of the most important branches of business and finance. Classification models are the most popular and widely used analytical group of data mining approaches that can greatly help financial decision makers and managers to tackle credit risk problems. However, the literature clearly indicates that, despite proposing numerous classification models, credit scoring is often a difficult task. On the other hand, there is no universal credit-scoring model in the literature that can be accurately and explanatorily used in all circumstances. Therefore, the research for improving the efficiency of credit-scoring models has never stopped. In this paper, a hybrid soft intelligent classification model is proposed for credit-scoring problems. In the proposed model, the unique advantages of the soft computing techniques are used in order to modify the performance of the traditional artificial neural networks in credit scoring. Empirical results of Australian credit card data classifications indicate that the proposed hybrid model outperforms its components, and also other classification models presented for credit scoring. Therefore, the proposed model can be considered as an appropriate alternative tool for binary decision making in business and finance, especially in high uncertainty conditions.

  8. Modelling and Intelligent Control of an Elastic Link Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Malik Loudini

    2013-01-01

    Full Text Available In this paper, precise control of the end-point position of a planar single-link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed-loop control scheme to be applied is the standard Proportional-Derivative (PD type fuzzy logic controller (FLC, also known as PD-type Mamdani's FLC (MPDFLC. Then, a genetic algorithm (GA is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC are implemented and tested to achieve a precise control of the manipulator end-point. The performances of the adopted closed-loop intelligent control strategies are examined via simulation experiments.

  9. Markov Chain Ontology Analysis (MCOA).

    Science.gov (United States)

    Frost, H Robert; McCray, Alexa T

    2012-02-03

    Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.

  10. Toxicology ontology perspectives.

    Science.gov (United States)

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  11. A web-based data-querying tool based on ontology-driven methodology and flowchart-based model.

    Science.gov (United States)

    Ping, Xiao-Ou; Chung, Yufang; Tseng, Yi-Ju; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei

    2013-10-08

    Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, "degree of liver damage," "degree of liver damage when applying a mutually exclusive setting

  12. Complex Topographic Feature Ontology Patterns

    Science.gov (United States)

    Varanka, Dalia E.; Jerris, Thomas J.

    2015-01-01

    Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.

  13. Towards ontology based search and knowledgesharing using domain ontologies

    DEFF Research Database (Denmark)

    Zambach, Sine

    verbs for relations in the ontology modeling. For this work we use frequency lists from a biomedical text corpus of different genres as well as a study of the relations used in other biomedical text mining tools. In addition, we discuss how these relations can be used in broarder perspective....

  14. Platonic wholes and quantum ontology

    CERN Document Server

    Woszczek, Marek

    2015-01-01

    The subject of the book is a reconsideration of the internalistic model of composition of the Platonic type, more radical than traditional, post-Aristotelian externalistic compositionism, and its application in the field of the ontology of quantum theory. At the centre of quantum ontology is nonseparability. Quantum wholes are atemporal wholes governed by internalistic logic and they are primitive, global physical entities, requiring an extreme relativization of the fundamental notions of mechanics. That ensures quantum theory to be fully consistent with the relativistic causal structure, with

  15. Customer Data Analysis Model using Business Intelligence Tools in Telecommunication Companies

    Directory of Open Access Journals (Sweden)

    Monica LIA

    2015-10-01

    Full Text Available This article presents a customer data analysis model in a telecommunication company and business intelligence tools for data modelling, transforming, data visualization and dynamic reports building . For a mature market, knowing the information inside the data and making forecast for strategic decision become more important in Romanian Market. Business Intelligence tools are used in business organization as support for decision making.

  16. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    The concern of this review is brain theory or more specifically, in its first part, a model of the cerebral cortex and the way it: (a) interacts with subcortical regions like the thalamus and the hippocampus to provide higher-level-brain functions that underlie cognition and intelligence, (b) handles and represents dynamical sensory patterns imposed by a constantly changing environment, (c) copes with the enormous number of such patterns encountered in a lifetime by means of dynamic memory that offers an immense number of stimulus-specific attractors for input patterns (stimuli) to select from, (d) selects an attractor through a process of “conjugation” of the input pattern with the dynamics of the thalamo-cortical loop, (e) distinguishes between redundant (structured) and non-redundant (random) inputs that are void of information, (f) can do categorical perception when there is access to vast associative memory laid out in the association cortex with the help of the hippocampus, and (g) makes use of “computation” at the edge of chaos and information driven annealing to achieve all this. Other features and implications of the concepts presented for the design of computational algorithms and machines with brain-like intelligence are also discussed. The material and results presented suggest, that a Parametrically Coupled Logistic Map network (PCLMN) is a minimal model of the thalamo-cortical complex and that marrying such a network to a suitable associative memory with re-entry or feedback forms a useful, albeit, abstract model of a cortical module of the brain that could facilitate building a simple artificial brain. In the second part of the review, the results of numerical simulations and drawn conclusions in the first part are linked to the most directly relevant works and views of other workers. What emerges is a picture of brain dynamics on the mesoscopic and macroscopic scales that gives a glimpse of the nature of the long sought after brain code

  17. Feasibility of EPC to BPEL Model Transformations based on Ontology and Patterns

    NARCIS (Netherlands)

    Meertens, Lucas O.; Iacob, Maria Eugenia; Eckartz, Silja M.; Rinderle-Ma, Stefanie; Sadiq, Shazia; Leymann, Frank

    2010-01-01

    Model-Driven Engineering holds the promise of transforming business models into code automatically. This requires the concept of model transformation. In this paper, we assess the feasibility of model transformations from Event-driven Process Chain models to Business Process Execution Language

  18. Novel approach for dam break flow modeling using computational intelligence

    Science.gov (United States)

    Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar

    2018-04-01

    A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.

  19. A Hydrological Sensor Web Ontology Based on the SSN Ontology: A Case Study for a Flood

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-12-01

    Full Text Available Accompanying the continuous development of sensor network technology, sensors worldwide are constantly producing observation data. However, the sensors and their data from different observation platforms are sometimes difficult to use collaboratively in response to natural disasters such as floods for the lack of semantics. In this paper, a hydrological sensor web ontology based on SSN ontology is proposed to describe the heterogeneous hydrological sensor web resources by importing the time and space ontology, instantiating the hydrological classes, and establishing reasoning rules. This work has been validated by semantic querying and knowledge acquiring experiments. The results demonstrate the feasibility and effectiveness of the proposed ontology and its potential to grow into a more comprehensive ontology for hydrological monitoring collaboratively. In addition, this method of ontology modeling is generally applicable to other applications and domains.

  20. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Fernández-Isabel

    2015-06-01

    Full Text Available Intelligent Transportation Systems (ITSs integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  1. Modeling Common-Sense Decisions in Artificial Intelligence

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation

  2. The Proteasix Ontology.

    Science.gov (United States)

    Arguello Casteleiro, Mercedes; Klein, Julie; Stevens, Robert

    2016-06-04

    The Proteasix Ontology (PxO) is an ontology that supports the Proteasix tool; an open-source peptide-centric tool that can be used to predict automatically and in a large-scale fashion in silico the proteases involved in the generation of proteolytic cleavage fragments (peptides) The PxO re-uses parts of the Protein Ontology, the three Gene Ontology sub-ontologies, the Chemical Entities of Biological Interest Ontology, the Sequence Ontology and bespoke extensions to the PxO in support of a series of roles: 1. To describe the known proteases and their target cleaveage sites. 2. To enable the description of proteolytic cleaveage fragments as the outputs of observed and predicted proteolysis. 3. To use knowledge about the function, species and cellular location of a protease and protein substrate to support the prioritisation of proteases in observed and predicted proteolysis. The PxO is designed to describe the biological underpinnings of the generation of peptides. The peptide-centric PxO seeks to support the Proteasix tool by separating domain knowledge from the operational knowledge used in protease prediction by Proteasix and to support the confirmation of its analyses and results. The Proteasix Ontology may be found at: http://bioportal.bioontology.org/ontologies/PXO . This ontology is free and open for use by everyone.

  3. The power of an ontology-driven developmental toxicity database for data mining and computational modeling

    Science.gov (United States)

    Modeling of developmental toxicology presents a significant challenge to computational toxicology due to endpoint complexity and lack of data coverage. These challenges largely account for the relatively few modeling successes using the structure–activity relationship (SAR) parad...

  4. USE OF ONTOLOGIES FOR KNOWLEDGE BASES CREATION TUTORING COMPUTER SYSTEMS

    OpenAIRE

    Cheremisina Lyubov

    2014-01-01

    This paper deals with the use of ontology for the use and development of intelligent tutoring systems. We consider the shortcomings of educational software and distance learning systems and the advantages of using ontology’s in their design. Actuality creates educational computer systems based on systematic knowledge. We consider classification of properties, use and benefits of ontology’s. Characterized approaches to the problem of ontology mapping, the first of which – manual mapping, the s...

  5. Utilizing a structural meta-ontology for family-based quality assurance of the BioPortal ontologies.

    Science.gov (United States)

    Ochs, Christopher; He, Zhe; Zheng, Ling; Geller, James; Perl, Yehoshua; Hripcsak, George; Musen, Mark A

    2016-06-01

    An Abstraction Network is a compact summary of an ontology's structure and content. In previous research, we showed that Abstraction Networks support quality assurance (QA) of biomedical ontologies. The development of an Abstraction Network and its associated QA methodologies, however, is a labor-intensive process that previously was applicable only to one ontology at a time. To improve the efficiency of the Abstraction-Network-based QA methodology, we introduced a QA framework that uses uniform Abstraction Network derivation techniques and QA methodologies that are applicable to whole families of structurally similar ontologies. For the family-based framework to be successful, it is necessary to develop a method for classifying ontologies into structurally similar families. We now describe a structural meta-ontology that classifies ontologies according to certain structural features that are commonly used in the modeling of ontologies (e.g., object properties) and that are important for Abstraction Network derivation. Each class of the structural meta-ontology represents a family of ontologies with identical structural features, indicating which types of Abstraction Networks and QA methodologies are potentially applicable to all of the ontologies in the family. We derive a collection of 81 families, corresponding to classes of the structural meta-ontology, that enable a flexible, streamlined family-based QA methodology, offering multiple choices for classifying an ontology. The structure of 373 ontologies from the NCBO BioPortal is analyzed and each ontology is classified into multiple families modeled by the structural meta-ontology. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models

    Science.gov (United States)

    Suga, Tetsuya; Iijima, Junichi

    2018-03-01

    Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.

  7. Space Environment Modelling with the Use of Artificial Intelligence Methods

    Science.gov (United States)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  8. Business Ontology for Evaluating Corporate Social Responsibility

    OpenAIRE

    Ion Smeureanu; Andreea Dioşteanu; Camelia Delcea; Liviu Cotfas

    2011-01-01

    This paper presents a software solution that is developed to automatically classify companies by taking into account their level of social responsibility. The application is based on ontologies and on intelligent agents. In order to obtain the data needed to evaluate companies, we developed a web crawling module that analyzes the company’s website and the documents that are available online such as social responsibility report, mission statement, employment structure, etc. Based on a predefin...

  9. Modelling intelligence-led policing to identify its potential

    NARCIS (Netherlands)

    Hengst-Bruggeling, M. den; Graaf, H.A.L.M. de; Scheepstal, P.G.M. van

    2014-01-01

    lntelligence-led policing is a concept of policing that has been applied throughout the world. Despite some encouraging reports, the effect of intelligence-led policing is largely unknown. This paper presents a method with which it is possible to identify intelligence-led policing's potential to

  10. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Science.gov (United States)

    Hali, Nur Ihsan

    2017-01-01

    This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by…

  11. Misbehaving Peer Models in the Classroom: An Investigation of the Effects of Social Class and Intelligence.

    Science.gov (United States)

    Kniveton, Bromley H.

    1987-01-01

    Investigates the effects on young male students of differing social backgrounds and varying levels of intelligence, of seeing a peer misbehave. Notes that working class boys imitated the misbehaving model significantly more than middle-class boys. Level of intelligence was not found to relate to the amount a student imitated a misbehaving peer.…

  12. Methodology for Automatic Ontology Generation Using Database Schema Information

    Directory of Open Access Journals (Sweden)

    JungHyen An

    2018-01-01

    Full Text Available An ontology is a model language that supports the functions to integrate conceptually distributed domain knowledge and infer relationships among the concepts. Ontologies are developed based on the target domain knowledge. As a result, methodologies to automatically generate an ontology from metadata that characterize the domain knowledge are becoming important. However, existing methodologies to automatically generate an ontology using metadata are required to generate the domain metadata in a predetermined template, and it is difficult to manage data that are increased on the ontology itself when the domain OWL (Ontology Web Language individuals are continuously increased. The database schema has a feature of domain knowledge and provides structural functions to efficiently process the knowledge-based data. In this paper, we propose a methodology to automatically generate ontologies and manage the OWL individual through an interaction of the database and the ontology. We describe the automatic ontology generation process with example schema and demonstrate the effectiveness of the automatically generated ontology by comparing it with existing ontologies using the ontology quality score.

  13. The MMI Device Ontology: Enabling Sensor Integration

    Science.gov (United States)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e

  14. a Conceptual Model for the Representation of Landforms Using Ontology Design Patterns

    Science.gov (United States)

    Guilbert, Eric; Moulin, Bernard; Cortés Murcia, Andrés

    2016-06-01

    A landform is an area of a terrain with its own recognisable shape. Its definition is often qualitative and inherently vague. Hence landforms are difficult to formalise in view of their extraction from a DTM. This paper presents a two-level framework for the representation of landforms. The objective is to provide a structure where landforms can be conceptually designed according to a common model which can be implemented. It follows the principle that landforms are not defined by geometrical characteristics but by salient features perceived by people. Hence, these salient features define a skeleton around which the landform is built. The first level of our model defines general concepts forming a landform prototype while the second level provides a model for the translation of these concepts and landform extraction on a DTM. The model is still under construction and preliminary results together with current developments are also presented.

  15. Penerapan Model Pembelajaran Atraktif Berbasis Multiple Intelligences Tentang Pemantulan Cahaya pada Cermin

    Directory of Open Access Journals (Sweden)

    Intan Kusumawati

    2016-03-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui efektivitas penerapan model pembelajaran atraktif berbasis multiple intelligences dalam meremediasi miskonsepsi siswa tentang pemantulan cahaya pada cermin. Pada penelitian ini digunakan bentuk pre-eksperimental design dengan rancangan one group pretest-post test design. Alat pengumpulan data berupa tes pilihan ganda dengan reasoning. Hasil validitas sebesar 4,08 dan reliabilitas 0,537. Siswa dibagi menjadi lima kelompok kecerdasan, yaitu kelompok linguistic intelligence, mathematical-logical intelligence, visual-spatial intelligence, bodily-khinestetic intelligence, dan musical intelligence. Siswa membahas konsep fisika sesuai kelompok kecerdasannya dalam bentuk pembuatan pantun-puisi, teka-teki silang, menggambar kreatif, drama, dan mengarang lirik lagu. Efektivitas penerapan model pembelajaran multiple intelligences menggunakan persamaan effect size. Ditemukan bahwa skor effect size masing-masing kelompok berkategori tinggi sebesar 5,76; 3,76; 4,60; 1,70; dan 1,34. Penerapan model pembelajaran atraktif berbasis multiple intelligences efektif dalam meremediasi miskonsepsi siswa. Penelitian ini diharapkan dapat digunakan pada materi fisika dan sekolah lainnya.

  16. A histological ontology of the human cardiovascular system.

    Science.gov (United States)

    Mazo, Claudia; Salazar, Liliana; Corcho, Oscar; Trujillo, Maria; Alegre, Enrique

    2017-10-02

    In this paper, we describe a histological ontology of the human cardiovascular system developed in collaboration among histology experts and computer scientists. The histological ontology is developed following an existing methodology using Conceptual Models (CMs) and validated using OOPS!, expert evaluation with CMs, and how accurately the ontology can answer the Competency Questions (CQ). It is publicly available at http://bioportal.bioontology.org/ontologies/HO and https://w3id.org/def/System . The histological ontology is developed to support complex tasks, such as supporting teaching activities, medical practices, and bio-medical research or having natural language interactions.

  17. A Bayesian Network Approach to Ontology Mapping

    National Research Council Canada - National Science Library

    Pan, Rong; Ding, Zhongli; Yu, Yang; Peng, Yun

    2005-01-01

    This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web...

  18. Intelligible Artificial Intelligence

    OpenAIRE

    Weld, Daniel S.; Bansal, Gagan

    2018-01-01

    Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. In order to trust their behavior, we must make it intelligible --- either by using inherently interpretable models or by developing methods for explaining otherwise overwh...

  19. The ontological model and the hybrid expert system for products and processes quality identification involving the approach based on system analysis and quality function deployment

    Directory of Open Access Journals (Sweden)

    Dmitriev Aleksandr

    2016-01-01

    Full Text Available Discussed model of quality of identification has improved mathematical tools and allows you to use a variety of additional information. The proposed robust method is a matrix MTQFD (Matrix Technique Quality Function Deployment allows you to determine not only the priorities but also the assessment of the target values of the product characteristics and process parameters, with the possible use of the information on the negative relationship. Designed ontological model, method and model of expert system versatile and can be used to identify the quality of services.

  20. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  1. Predicting chick body mass by artificial intelligence-based models

    Directory of Open Access Journals (Sweden)

    Patricia Ferreira Ponciano Ferraz

    2014-07-01

    Full Text Available The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks - with the variables dry-bulb air temperature, duration of thermal stress (days, chick age (days, and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs and neuro-fuzzy networks (NFNs. The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

  2. Nuclear Nonproliferation Ontology Assessment Team Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Strasburg, Jana D.; Hohimer, Ryan E.

    2012-01-01

    Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importance of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.

  3. A Semantic Reasoning Method Towards Ontological Model for Automated Learning Analysis

    OpenAIRE

    Okoye, Kingsley; Tawil, Abdel-Rahman; Naeem, Usman; Lamine, Elyes

    2015-01-01

    Semantic reasoning can help solve the problem of regulating the evolving and static measures of knowledge at theoretical and technological levels. The technique has been proven to enhance the capability of process models by making inferences, retaining and applying what they have learned as well as discovery of new processes. The work in this paper propose a semantic rule-based approach directed towards discovering learners interaction patterns within a learning knowledge base, and then respo...

  4. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  5. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Directory of Open Access Journals (Sweden)

    Nur Ihsan Halil

    2017-10-01

    Full Text Available This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by developing and constructing an existing concept, namely the concept of linguistic intelligence, which is disseminated into a literature-based learning of verbal-linguistic intelligence. The purpose of this paper is to answer the question of how to apply the literary learning model based on the verbal-linguistic intelligence. Then, regarding Gardner's concept, the author formulated a literary learning model based on the verbal-linguistic intelligence through a story-telling learning model with five steps namely arguing, discussing, interpreting, speaking, and writing about literary works. In short, the writer draw a conclusion that learning-based models of verbal-linguistic intelligence can be designed with attention into five components namely (1 definition, (2 characteristics, (3 teaching strategy, (4 final learning outcomes, and (5 figures.

  6. Constructive Ontology Engineering

    Science.gov (United States)

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  7. A UML profile for the OBO relation ontology

    Science.gov (United States)

    2012-01-01

    Background Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions The use of an established and well-known graphical language in the development of biomedical ontologies provides a more

  8. Emotional intelligence model for directors of research centers in mexico

    Directory of Open Access Journals (Sweden)

    Mara Maricela Trujillo Flores

    2008-01-01

    H5 Social skills exhibited by directors, that are also part of interpersonal intelligence, allow a director to exert a greater influence on the working group, facilitating communication, conflict management, leadership, collaboration, cooperation and development of team skills.

  9. Model of key success factors for Business Intelligence implementation

    OpenAIRE

    Peter Mesaros; Tomas Mandicak; Daniela Mackova; Stefan Carnicky; Martina Habinakova; Marcela Spisakova

    2016-01-01

    New progressive technologies recorded growth in every area. Information-communication technologies facilitate the exchange of information and it facilitates management of everyday activities in enterprises. Specific modules (such as Business Intelligence) facilitate decision-making. Several studies have demonstrated the positive impact of Business Intelligence to decision-making. The first step is to put in place the enterprise. The implementation process is influenced by many factors. This a...

  10. Towards Agile Ontology Maintenance

    Science.gov (United States)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  11. Conceptual querying through ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2009-01-01

    is motivated by an obvious need for users to survey huge volumes of objects in query answers. An ontology formalism and a special notion of-instantiated ontology" are introduced. The latter is a structure reflecting the content in the document collection in that; it is a restriction of a general world......We present here ail approach to conceptual querying where the aim is, given a collection of textual database objects or documents, to target an abstraction of the entire database content in terms of the concepts appearing in documents, rather than the documents in the collection. The approach...... knowledge ontology to the concepts instantiated in the collection. The notion of ontology-based similarity is briefly described, language constructs for direct navigation and retrieval of concepts in the ontology are discussed and approaches to conceptual summarization are presented....

  12. Survey on Ontology Mapping

    Science.gov (United States)

    Zhu, Junwu

    To create a sharable semantic space in which the terms from different domain ontology or knowledge system, Ontology mapping become a hot research point in Semantic Web Community. In this paper, motivated factors of ontology mapping research are given firstly, and then 5 dominating theories and methods, such as information accessing technology, machine learning, linguistics, structure graph and similarity, are illustrated according their technology class. Before we analyses the new requirements and takes a long view, the contributions of these theories and methods are summarized in details. At last, this paper suggest to design a group of semantic connector with the ability of migration learning for OWL-2 extended with constrains and the ontology mapping theory of axiom, so as to provide a new methodology for ontology mapping.

  13. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate

    Science.gov (United States)

    Sutiani, Ani; Silitonga, Mei Y.

    2017-08-01

    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  14. Crowdsourcing the verification of relationships in biomedical ontologies.

    Science.gov (United States)

    Mortensen, Jonathan M; Musen, Mark A; Noy, Natalya F

    2013-01-01

    Biomedical ontologies are often large and complex, making ontology development and maintenance a challenge. To address this challenge, scientists use automated techniques to alleviate the difficulty of ontology development. However, for many ontology-engineering tasks, human judgment is still necessary. Microtask crowdsourcing, wherein human workers receive remuneration to complete simple, short tasks, is one method to obtain contributions by humans at a large scale. Previously, we developed and refined an effective method to verify ontology hierarchy using microtask crowdsourcing. In this work, we report on applying this method to find errors in the SNOMED CT CORE subset. By using crowdsourcing via Amazon Mechanical Turk with a Bayesian inference model, we correctly verified 86% of the relations from the CORE subset of SNOMED CT in which Rector and colleagues previously identified errors via manual inspection. Our results demonstrate that an ontology developer could deploy this method in order to audit large-scale ontologies quickly and relatively cheaply.

  15. FORMATION OF THE SUBJECTIVE (VIRTUAL) MODELS OF PHYSICAL AND SOCIAL REALITY BY HUMAN CONSCIOUSNESS AND GIVING THEM UNDUE ONTOLOGICAL STATUS (HYPOSTATIZATIONS)

    OpenAIRE

    Lutsenko Y. V.

    2015-01-01

    On the one hand, man is a physical object and a person. Therefore, we interact with the reality, on one hand, directly as a physical object, but on the other hand as a person, i.e. indirectly through our psyche. On the basis of information from the senses, the consciousness of a person creates a subjective model of reality. A man mistakes his subjective model of reality for reality itself, i.e. unnecessarily assigns an ontological status, by the hypostatizations. In fact, as the reality a man...

  16. Practical ontologies for information professionals

    CERN Document Server

    AUTHOR|(CDS)2071712

    2016-01-01

    Practical Ontologies for Information Professionals provides an introduction to ontologies and their development, an essential tool for fighting back against information overload. The development of robust and widely used ontologies is an increasingly important tool in the fight against information overload. The publishing and sharing of explicit explanations for a wide variety of conceptualizations, in a machine readable format, has the power to both improve information retrieval and identify new knowledge. This new book provides an accessible introduction to the following: * What is an ontology? Defining the concept and why it is increasingly important to the information professional * Ontologies and the semantic web * Existing ontologies, such as SKOS, OWL, FOAF, schema.org, and the DBpedia Ontology * Adopting and building ontologies, showing how to avoid repetition of work and how to build a simple ontology with Protege * Interrogating semantic web ontologies * The future of ontologies and the role of the ...

  17. (KA)2: building ontologies for the internet: a mid-term report

    NARCIS (Netherlands)

    Benjamins, R.; Fensel, D.A.; Decker, S.; Gomez Perez, A.

    1999-01-01

    Ontologies are becoming increasingly more important in many different areas, including the knowledge management area. In knowledge management, ontologies can be used as an instrument to make knowledge assets intelligently accessible to people in organizations through an Intranet or the Internet.

  18. A Semi-Automatic Approach to Construct Vietnamese Ontology from Online Text

    Science.gov (United States)

    Nguyen, Bao-An; Yang, Don-Lin

    2012-01-01

    An ontology is an effective formal representation of knowledge used commonly in artificial intelligence, semantic web, software engineering, and information retrieval. In open and distance learning, ontologies are used as knowledge bases for e-learning supplements, educational recommenders, and question answering systems that support students with…

  19. Use artificial neural network to align biological ontologies.

    Science.gov (United States)

    Huang, Jingshan; Dang, Jiangbo; Huhns, Michael N; Zheng, W Jim

    2008-09-16

    Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics. In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others. The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.

  20. Use of ontology structure and Bayesian models to aid the crowdsourcing of ICD-11 sanctioning rules.

    Science.gov (United States)

    Lou, Yun; Tu, Samson W; Nyulas, Csongor; Tudorache, Tania; Chalmers, Robert J G; Musen, Mark A

    2017-04-01

    The International Classification of Diseases (ICD) is the de facto standard international classification for mortality reporting and for many epidemiological, clinical, and financial use cases. The next version of ICD, ICD-11, will be submitted for approval by the World Health Assembly in 2018. Unlike previous versions of ICD, where coders mostly select single codes from pre-enumerated disease and disorder codes, ICD-11 coding will allow extensive use of multiple codes to give more detailed disease descriptions. For example, "severe malignant neoplasms of left breast" may be coded using the combination of a "stem code" (e.g., code for malignant neoplasms of breast) with a variety of "extension codes" (e.g., codes for laterality and severity). The use of multiple codes (a process called post-coordination), while avoiding the pitfall of having to pre-enumerate vast number of possible disease and qualifier combinations, risks the creation of meaningless expressions that combine stem codes with inappropriate qualifiers. To prevent that from happening, "sanctioning rules" that define legal combinations are necessary. In this work, we developed a crowdsourcing method for obtaining sanctioning rules for the post-coordination of concepts in ICD-11. Our method utilized the hierarchical structures in the domain to improve the accuracy of the sanctioning rules and to lower the crowdsourcing cost. We used Bayesian networks to model crowd workers' skills, the accuracy of their responses, and our confidence in the acquired sanctioning rules. We applied reinforcement learning to develop an agent that constantly adjusted the confidence cutoffs during the crowdsourcing process to maximize the overall quality of sanctioning rules under a fixed budget. Finally, we performed formative evaluations using a skin-disease branch of the draft ICD-11 and demonstrated that the crowd-sourced sanctioning rules replicated those defined by an expert dermatologist with high precision and recall

  1. Ontology-based multi-agent systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadzic, Maja; Wongthongtham, Pornpit; Dillon, Tharam; Chang, Elizabeth [Digital Ecosystems and Business Intelligence Institute, Perth, WA (Australia)

    2009-07-01

    The Semantic web has given a great deal of impetus to the development of ontologies and multi-agent systems. Several books have appeared which discuss the development of ontologies or of multi-agent systems separately on their own. The growing interaction between agents and ontologies has highlighted the need for integrated development of these. This book is unique in being the first to provide an integrated treatment of the modeling, design and implementation of such combined ontology/multi-agent systems. It provides clear exposition of this integrated modeling and design methodology. It further illustrates this with two detailed case studies in (a) the biomedical area and (b) the software engineering area. The book is, therefore, of interest to researchers, graduate students and practitioners in the semantic web and web science area. (orig.)

  2. Ontological foundations for evolutionary economics: A Darwinian social ontology

    NARCIS (Netherlands)

    Stoelhorst, J.W.

    2008-01-01

    The purpose of this paper is to further the project of generalized Darwinism by developing a social ontology on the basis of a combined commitment to ontological continuity and ontological commonality. Three issues that are central to the development of a social ontology are addressed: (1) the

  3. An Analytical Model / Emotional Intelligence Quotient and QOL in Mothers with Infants in Japan

    OpenAIRE

    Ohashi, Junko; Katsura, Toshiki; Hoshino, Akiko; Usui, Kanae

    2013-01-01

    Objective: The purpose of this study was to examine the relationship between the emotional intelligence quotient and health-related quality of life using structural equation modeling. Methods: A self-administered questionnaire survey was conducted among 1,911 mothers who visited the Health Center for an infant medical examination. A hypothetical model was constructed using variables of the emotional intelligence quotient, social support, coping, parenting stress, and perceived health competen...

  4. Hidden Hearing Loss and Computational Models of the Auditory Pathway: Predicting Speech Intelligibility Decline

    Science.gov (United States)

    2016-11-28

    Title: Hidden Hearing Loss and Computational Models of the Auditory Pathway: Predicting Speech Intelligibility Decline Christopher J. Smalt...representation of speech intelligibility in noise. The auditory-periphery model of Zilany et al. (JASA 2009,2014) is used to make predictions of...auditory nerve (AN) responses to speech stimuli under a variety of difficult listening conditions. The resulting cochlear neurogram, a spectrogram

  5. [Using (1)H-nuclear magnetic resonance metabolomics and gene ontology to establish pathological staging model for esophageal cancer patients].

    Science.gov (United States)

    Chen, X; Wang, K; Chen, W; Jiang, H; Deng, P C; Li, Z J; Peng, J; Zhou, Z Y; Yang, H; Huang, G X; Zeng, J

    2016-07-01

    (ethanol amine, hydroxy-propionic acid, homocysteine and estriol) were eventually selected. gene ontology analysis showed that 54 enzymes and genes regulated the 4 key metabolic markers. The quantitative prediction model of esophageal cancer staging based on esophageal cancer NMR spectrum were established. Cross-validation results showed that the predicted effect was good (root mean square error=5.3, R(2)=0.47, P=0.036). The systems biology approaches based on metabolomics and enzyme-gene regulatory network analysis can be used to quantify the metabolic network disturbance of patients with advanced esophageal cancer, and to predict preoperative clinical staging of esophageal cancer patients by plasma NMR metabolomics.

  6. Product Line Enabled Intelligent Mobile Middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Kunz, Thomas; Hansen, Klaus Marius

    2007-01-01

    research project called PLIMM that focuses on user-centered application scenarios. PLIMM is designed based on software product line ideas which make it possible for specialized customization and optimization for different purposes and hardware/software platforms. To enable intelligence, the middleware...... needs access to a range of context models. We model these contexts with OWL, focusing on user-centered concepts. The basic building block of PLIMM is the enhanced BDI agent where OWL context ontology logic reasoning will add indirect beliefs to the belief sets. Our approach also addresses the handling...

  7. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  8. Ontology and Language for Intelligent Reusable Autonomy

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation consists of enabling “thinking” by the autonomous system, so that autonomous strategies may be inferred by the computers as a thought process. The...

  9. Visualization and Ontology of Geospatial Intelligence

    Science.gov (United States)

    Chan, Yupo

    Recent events have deepened our conviction that many human endeavors are best described in a geospatial context. This is evidenced in the prevalence of location-based services, as afforded by the ubiquitous cell phone usage. It is also manifested by the popularity of such internet engines as Google Earth. As we commute to work, travel on business or pleasure, we make decisions based on the geospatial information provided by such location-based services. When corporations devise their business plans, they also rely heavily on such geospatial data. By definition, local, state and federal governments provide services according to geographic boundaries. One estimate suggests that 85 percent of data contain spatial attributes.

  10. Effects of an ontology display with history representation on organizational memory information systems.

    Science.gov (United States)

    Hwang, Wonil; Salvendy, Gavriel

    2005-06-10

    Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.

  11. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  12. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    Science.gov (United States)

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  13. Perspectives on ontology learning

    CERN Document Server

    Lehmann, J

    2014-01-01

    Perspectives on Ontology Learning brings together researchers and practitioners from different communities − natural language processing, machine learning, and the semantic web − in order to give an interdisciplinary overview of recent advances in ontology learning.Starting with a comprehensive introduction to the theoretical foundations of ontology learning methods, the edited volume presents the state-of-the-start in automated knowledge acquisition and maintenance. It outlines future challenges in this area with a special focus on technologies suitable for pushing the boundaries beyond the c

  14. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2017-12-19

    Background Integration and analysis of phenotype data from humans and model organisms is a key challenge in building our understanding of normal biology and pathophysiology. However, the range of phenotypes and anatomical details being captured in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies, PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish, nematode worm, fruit fly, and yeast. Results Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which require automated reasoning and cannot easily be identified through lexical approaches alone. Combining automated reasoning with lexical matching further improves results in aligning ontologies. Conclusions PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and mutations underlying human disease.

  15. Intelligent decision-making models for production and retail operations

    CERN Document Server

    Guo, Zhaoxia

    2016-01-01

    This book provides an overview of intelligent decision-making techniques and discusses their application in production and retail operations. Manufacturing and retail enterprises have stringent standards for using advanced and reliable techniques to improve decision-making processes, since these processes have significant effects on the performance of relevant operations and the entire supply chain. In recent years, researchers have been increasingly focusing attention on using intelligent techniques to solve various decision-making problems. The opening chapters provide an introduction to several commonly used intelligent techniques, such as genetic algorithm, harmony search, neural network and extreme learning machine. The book then explores the use of these techniques for handling various production and retail decision-making problems, such as production planning and scheduling, assembly line balancing, and sales forecasting.

  16. Data mining for ontology development.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.; Strasburg, Jana (Pacific Northwest National Laboratory, Richland, WA); Stampf, David (Brookhaven National Laboratory, Upton, NY); Neymotin,Lev (Brookhaven National Laboratory, Upton, NY); Czajkowski, Carl (Brookhaven National Laboratory, Upton, NY); Shine, Eugene (Savannah River National Laboratory, Aiken, SC); Bollinger, James (Savannah River National Laboratory, Aiken, SC); Ghosh, Vinita (Brookhaven National Laboratory, Upton, NY); Sorokine, Alexandre (Oak Ridge National Laboratory, Oak Ridge, TN); Ferrell, Regina (Oak Ridge National Laboratory, Oak Ridge, TN); Ward, Richard (Oak Ridge National Laboratory, Oak Ridge, TN); Schoenwald, David Alan

    2010-06-01

    A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

  17. Learning Ontology from Object-Relational Database

    Directory of Open Access Journals (Sweden)

    Kaulins Andrejs

    2015-12-01

    Full Text Available This article describes a method of transformation of object-relational model into ontology. The offered method uses learning rules for such complex data types as object tables and collections – arrays of a variable size, as well as nested tables. Object types and their transformation into ontologies are insufficiently considered in scientific literature. This fact served as motivation for the authors to investigate this issue and to write the article on this matter. In the beginning, we acquaint the reader with complex data types and object-oriented databases. Then we describe an algorithm of transformation of complex data types into ontologies. At the end of the article, some examples of ontologies described in the OWL language are given.

  18. Metadata and Ontologies in Learning Resources Design

    Science.gov (United States)

    Vidal C., Christian; Segura Navarrete, Alejandra; Menéndez D., Víctor; Zapata Gonzalez, Alfredo; Prieto M., Manuel

    Resource design and development requires knowledge about educational goals, instructional context and information about learner's characteristics among other. An important information source about this knowledge are metadata. However, metadata by themselves do not foresee all necessary information related to resource design. Here we argue the need to use different data and knowledge models to improve understanding the complex processes related to e-learning resources and their management. This paper presents the use of semantic web technologies, as ontologies, supporting the search and selection of resources used in design. Classification is done, based on instructional criteria derived from a knowledge acquisition process, using information provided by IEEE-LOM metadata standard. The knowledge obtained is represented in an ontology using OWL and SWRL. In this work we give evidence of the implementation of a Learning Object Classifier based on ontology. We demonstrate that the use of ontologies can support the design activities in e-learning.

  19. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  20. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Science.gov (United States)

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  1. A Method for Evaluating and Standardizing Ontologies

    Science.gov (United States)

    Seyed, Ali Patrice

    2012-01-01

    The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative effort for developing interoperable, science-based ontologies. The Basic Formal Ontology (BFO) serves as the upper ontology for the domain-level ontologies of OBO. BFO is an upper ontology of types as conceived by defenders of realism. Among the ontologies developed for OBO…

  2. THE EFFECTS OF LEARNING MODELS AND LINGUISTIC INTELLIGENCE ON THE PERSUASIVE WRITING SKILL

    OpenAIRE

    Yusri, Yusri; Emzir, Emzir

    2017-01-01

    The objective of this study is to know the effects of learning models (problem solving and project based learning) and linguistic intelligence  on the students of persuasive writing skill of the fourth semester students  of English Department, State Polytechnic of Sriwijaya Palembang, in the academic year of 2016-2017. The writer used linguistic intelligence test and persuasive writing test to collect the data. The data was analyzed  statistically by using two-factor ANOVA a...

  3. Application of Contemporary Intelligence Models in Terms of Transformation and Security Sector Reform

    OpenAIRE

    Dojcinovski, Metodija; Ackoski, Jugoslav

    2011-01-01

    This paper presents a new approach to the contemporary methods of organizing, establishing and functioning of intelligence systems in a way of offering solutions against security threats and challenges of the 21st century. The effectiveness of implementing the measures and activities depends on the intelligence models, identified as functioning in relation to the structured elements of the represented and realistically created segments, standard operative procedures, security procedures and m...

  4. System dynamics modeling of the impact of Internet-of-Things on intelligent urban transportation

    OpenAIRE

    Marshall, Phil

    2015-01-01

    Urban transportation systems are at the cusp of a major transformation that capitalizes on the proliferation of the Internet-of-Things (IoT), autonomous and cooperative vehicular and intelligent roadway technologies, advanced traffic management systems, and big data analytics. The benefits of these smart-transportation technologies were investigated using System Dynamics modeling, with particular emphasis towards vehicle sharing, intelligent highway systems, and smart-parking solutions. The m...

  5. Modeling and Evaluation of LTE in Intelligent Transportation Systems

    NARCIS (Netherlands)

    Trichias, K.; van den Berg, Hans Leo; de Jongh, J.; Litjens, R.; Dimitrova, D.C.; Brogle, M.; Braun, T.; Heijenk, Gerhard J.; Meratnia, Nirvana

    The term Intelligent Transportation Systems (ITS) refers to adding information and communications technology to transport infrastructure and ve- hicles. The IEEE 802.11p standard is considered the main candidate for com- munication within the context of ITS and it performs well for active safety use

  6. On Model Design for Simulation of Collective Intelligence

    NARCIS (Netherlands)

    Schut, M.C.

    2010-01-01

    The study of collective intelligence (CI) systems is increasingly gaining interest in a variety of research and application domains. Those domains range from existing research areas such as computer networks and collective robotics to upcoming areas of agent-based and insect-based computing; also

  7. Emotional Intelligence Competencies and the Army Leadership Requirements Model

    Science.gov (United States)

    2015-06-12

    cultural stereotype in the military that suggests the display of emotions is less than desirable, however the ability for military leaders to regulate...2004) found that older participants rated higher in emotional intelligence competencies than younger participants. Additionally, women scored...manage conflict within the workplace enhances his or her ability to Build Trust among followers and Create s Positive Environment. Conflict management

  8. A Conversation Model Enabling Intelligent Agents to Give Emotional Support

    NARCIS (Netherlands)

    Van der Zwaan, J.M.; Dignum, V.; Jonker, C.M.

    2012-01-01

    In everyday life, people frequently talk to others to help them deal with negative emotions. To some extent, everybody is capable of comforting other people, but so far conversational agents are unable to deal with this type of situation. To provide intelligent agents with the capability to give

  9. tOWL: a temporal Web Ontology Language.

    Science.gov (United States)

    Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    2012-02-01

    Through its interoperability and reasoning capabilities, the Semantic Web opens a realm of possibilities for developing intelligent systems on the Web. The Web Ontology Language (OWL) is the most expressive standard language for modeling ontologies, the cornerstone of the Semantic Web. However, up until now, no standard way of expressing time and time-dependent information in OWL has been provided. In this paper, we present a temporal extension of the very expressive fragment SHIN(D) of the OWL Description Logic language, resulting in the temporal OWL language. Through a layered approach, we introduce three extensions: 1) concrete domains, which allow the representation of restrictions using concrete domain binary predicates; 2) temporal representation , which introduces time points, relations between time points, intervals, and Allen's 13 interval relations into the language; and 3) timeslices/fluents, which implement a perdurantist view on individuals and allow for the representation of complex temporal aspects, such as process state transitions. We illustrate the expressiveness of the newly introduced language by using an example from the financial domain.

  10. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  11. The Electronic Notebook Ontology

    OpenAIRE

    Chalk, Stuart

    2016-01-01

    Science is rapidly being brought into the electronic realm and electronic laboratory notebooks (ELN) are a big part of this activity. The representation of the scientific process in the context of an ELN is an important component to making the data recorded in ELNs semantically integrated. This presentation will outline initial developments of an Electronic Notebook Ontology (ENO) that will help tie together the ExptML ontology, HCLS Community Profile data descriptions, and the VIVO-ISF ontol...

  12. Ontology for E-Learning: A Case Study

    Science.gov (United States)

    Colace, Francesco; De Santo, Massimo; Gaeta, Matteo

    2009-01-01

    Purpose: The development of adaptable and intelligent educational systems is widely considered one of the great challenges in scientific research. Among key elements for building advanced training systems, an important role is played by methodologies chosen for knowledge representation. In this scenario, the introduction of ontology formalism can…

  13. The benefit of enterprise ontology in identifying business components

    OpenAIRE

    Albani, Antonia

    2006-01-01

    The benefit of enterprise ontology in identifying business components / A. Albani, J. Dietz. - In: Artificial intelligence in theory and practice : IFIP 19th World Computer Congress ; TC 12: IFIP AI 2006 Stream, August 21-24, 2006, Santiago, Chile / ed. by Max Bramer. - New York : Springer, 2006. - S. 1-12. - (IFIP ; 217)

  14. Nuclear component design ontology building based on ASME codes

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    The adoption of ontology analysis in the study of concept knowledge acquisition and representation for the nuclear component design process based on computer-supported cooperative work (CSCW) makes it possible to share and reuse numerous concept knowledge of multi-disciplinary domains. A practical ontology building method is accordingly proposed based on Protege knowledge model in combination with both top-down and bottom-up approaches together with Formal Concept Analysis (FCA). FCA exhibits its advantages in the way it helps establish and improve taxonomic hierarchy of concepts and resolve concept conflict occurred in modeling multi-disciplinary domains. With Protege-3.0 as the ontology building tool, a nuclear component design ontology based ASME codes is developed by utilizing the ontology building method. The ontology serves as the basis to realize concept knowledge sharing and reusing of nuclear component design. (authors)

  15. Consistent data models and security standards for power system control through their standard compliant integration via ontologies; Einheitliche Datenmodelle und Sicherheitsstandards in der Netzleittechnik durch ihre standardkonforme Integration mittels Ontologien

    Energy Technology Data Exchange (ETDEWEB)

    Uslar, Mathias; Beenken, Petra; Beer, Sebastian [OFFIS, Oldenburg (Germany)

    2009-07-01

    The ongoing integration of distributed energy recourses into the existing power grid has lead to both grown communication costs and an increased need for interoperability between the involved actors. In this context, standardized and ontology- based data models help to reduce integration costs in heterogeneous system landscapes. Using ontology-based security profiles, such models can be extended with meta-data containing information about security measures for energyrelated data in need of protection. By this approach, we achieve both a unified data model and a unified security level. (orig.)

  16. The Cylindrical Structure of the Wechsler Intelligence Scale for Children--IV: A Retest of the Guttman Model of Intelligence

    Science.gov (United States)

    Cohen, Arie; Fiorello, Catherine A.; Farley, Frank H.

    2006-01-01

    A previous study on the underlying structure of the Wechsler intelligence test (WISC-R; [Wechsler, D. (1974). Manual WISC-R: Wechsler intelligence scale for children-Revised. New York: Psychological Corporation]), using smallest space analysis (SSA) [Guttman, L., and Levy, S. (1991). Two structural laws for intelligence tests.…

  17. An ontology for major histocompatibility restriction.

    Science.gov (United States)

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  18. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  19. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    Science.gov (United States)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  20. Optimal model of economic diplomacy of Republic of Croatia in the contexst of global intelligence revolution

    Directory of Open Access Journals (Sweden)

    Zdravko Bazdan

    2010-12-01

    Full Text Available The aim of this study is to point to the fact that economic diplomacy is a relatively new practice in international economics, specifically the expansion of the occurrence of Intelligence Revolution. The history in global relations shows that without economic diplomacy there is no optimal economic growth and social development. It is important to note that economic diplomacy should be important for our country and the political elite, as well as for the administration of Croatian economic subjects that want to compete in international market economy. Comparative analysis are particularly highlighted by French experience. Therefore, Croatia should copy the practice of those countries that are successful in economic diplomacy. And in the curricula - especially of our economic faculties - we should introduce the course of Economic Diplomacy. It is important to note, that in order to form our optimal model of economic diplomacy which would be headed by the President of Republic of Croatia formula should be based on: Intelligence Security Agency (SOA, Intelligence Service of the Ministry of Foreign Affairs and European Integration, Intelligence Service of the Croatian Chamber of Commerce and the Intelligence Service of the Ministry of Economy, Labor and Entrepreneurship. Described model would consist of intelligence subsystem with at least twelve components.

  1. Gratitude mediates the effect of emotional intelligence on subjective well-being: A structural equation modeling analysis.

    Science.gov (United States)

    Geng, Yuan

    2016-11-01

    This study investigated the relationship among emotional intelligence, gratitude, and subjective well-being in a sample of university students. A total of 365 undergraduates completed the emotional intelligence scale, the gratitude questionnaire, and the subjective well-being measures. The results of the structural equation model showed that emotional intelligence is positively associated with gratitude and subjective well-being, that gratitude is positively associated with subjective well-being, and that gratitude partially mediates the positive relationship between emotional intelligence and subjective well-being. Bootstrap test results also revealed that emotional intelligence has a significant indirect effect on subjective well-being through gratitude.

  2. Ontology Maintenance using Textual Analysis

    Directory of Open Access Journals (Sweden)

    Yassine Gargouri

    2003-10-01

    Full Text Available Ontologies are continuously confronted to evolution problem. Due to the complexity of the changes to be made, a maintenance process, at least a semi-automatic one, is more and more necessary to facilitate this task and to ensure its reliability. In this paper, we propose a maintenance ontology model for a domain, whose originality is to be language independent and based on a sequence of text processing in order to extract highly related terms from corpus. Initially, we deploy the document classification technique using GRAMEXCO to generate classes of texts segments having a similar information type and identify their shared lexicon, agreed as highly related to a unique topic. This technique allows a first general and robust exploration of the corpus. Further, we apply the Latent Semantic Indexing method to extract from this shared lexicon, the most associated terms that has to be seriously considered by an expert to eventually confirm their relevance and thus updating the current ontology. Finally, we show how the complementarity between these two techniques, based on cognitive foundation, constitutes a powerful refinement process.

  3. Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    Science.gov (United States)

    Díaz-Rodríguez, Natalia; Cadahía, Olmo León; Cuéllar, Manuel Pegalajar; Lilius, Johan; Calvo-Flores, Miguel Delgado

    2014-01-01

    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches. PMID:25268914

  4. Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    Directory of Open Access Journals (Sweden)

    Natalia Díaz-Rodríguez

    2014-09-01

    Full Text Available Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset, achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.

  5. Introducing Spoken Dialogue Systems into Intelligent Environments

    CERN Document Server

    Heinroth, Tobias

    2013-01-01

    Introducing Spoken Dialogue Systems into Intelligent Environments outlines the formalisms of a novel knowledge-driven framework for spoken dialogue management and presents the implementation of a model-based Adaptive Spoken Dialogue Manager(ASDM) called OwlSpeak. The authors have identified three stakeholders that potentially influence the behavior of the ASDM: the user, the SDS, and a complex Intelligent Environment (IE) consisting of various devices, services, and task descriptions. The theoretical foundation of a working ontology-based spoken dialogue description framework, the prototype implementation of the ASDM, and the evaluation activities that are presented as part of this book contribute to the ongoing spoken dialogue research by establishing the fertile ground of model-based adaptive spoken dialogue management. This monograph is ideal for advanced undergraduate students, PhD students, and postdocs as well as academic and industrial researchers and developers in speech and multimodal interactive ...

  6. Comparison of learning models based on mathematics logical intelligence in affective domain

    Science.gov (United States)

    Widayanto, Arif; Pratiwi, Hasih; Mardiyana

    2018-04-01

    The purpose of this study was to examine the presence or absence of different effects of multiple treatments (used learning models and logical-mathematical intelligence) on the dependent variable (affective domain of mathematics). This research was quasi experimental using 3x3 of factorial design. The population of this research was VIII grade students of junior high school in Karanganyar under the academic year 2017/2018. Data collected in this research was analyzed by two ways analysis of variance with unequal cells using 5% of significance level. The result of the research were as follows: (1) Teaching and learning with model TS lead to better achievement in affective domain than QSH, teaching and learning with model QSH lead to better achievement in affective domain than using DI; (2) Students with high mathematics logical intelligence have better achievement in affective domain than students with low mathematics logical intelligence have; (3) In teaching and learning mathematics using learning model TS, students with moderate mathematics logical intelligence have better achievement in affective domain than using DI; and (4) In teaching and learning mathematics using learning model TS, students with low mathematics logical intelligence have better achievement in affective domain than using QSH and DI.

  7. Exploring an Emotional Intelligence Model With Psychiatric Mental Health Nurses.

    Science.gov (United States)

    Sims, Traci T

    A lack of emotional skills may affect a nurse's personal well-being and have negative effects on patient outcomes. To compare psychiatric-mental health nurses' (PMHN) scores on the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) to a normed population and compare the emotional intelligence (EI) scores of PMHNs using two tools, MSCEIT and Self-Rated Emotional Intelligence Scale (SREIS). Comparative descriptive and correlational study. PMHNs in the study had a higher mean EI compared with that of 5,000 participants in the normed MSCEIT sample. Significant weak correlations were seen between the perceiving and understanding emotion branches of the MSCEIT and SREIS. The current study added data about a sample of PMHN's EI levels in the United States, which may encourage dialog about EI among PMHNs. Future research is needed to examine the relationship between self-report EI tools (e.g., SREIS) and performance tools (e.g., MSCEIT) to determine if they are measuring the same construct.

  8. Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach

    International Nuclear Information System (INIS)

    Zhang, Chuan; Romagnoli, Alessandro; Zhou, Li; Kraft, Markus

    2017-01-01

    Highlights: •An intelligent energy management system for Eco-Industrial Park (EIP) is proposed. •An explicit domain ontology for EIP energy management is designed. •Ontology-based approach can increase knowledge interoperability within EIP. •Ontology-based approach can allow self-optimization without human intervention in EIP. •The proposed system harbours huge potential in the future scenario of Internet of Things. -- Abstract: An ontology-based approach for Eco-Industrial Park (EIP) knowledge management is proposed in this paper. The designed ontology in this study is formalized conceptualization of EIP. Based on such an ontological representation, a Knowledge-Based System (KBS) for EIP energy management named J-Park Simulator (JPS) is developed. By applying JPS to the solution of EIP waste heat utilization problem, the results of this study show that ontology is a powerful tool for knowledge management of complex systems such as EIP. The ontology-based approach can increase knowledge interoperability between different companies in EIP. The ontology-based approach can also allow intelligent decision making by using disparate data from remote databases, which implies the possibility of self-optimization without human intervention scenario of Internet of Things (IoT). It is shown through this study that KBS can bridge the communication gaps between different companies in EIP, sequentially more potential Industrial Symbiosis (IS) links can be established to improve the overall energy efficiency of the whole EIP.

  9. Building an Ontology of Tablewares using 'Legacy Data'

    Directory of Open Access Journals (Sweden)

    Daniël van Helden

    2018-05-01

    Full Text Available This article aims to demonstrate how an ontology can be constructed to encompass many of the criteria needed for more consumption-orientated approaches to Roman tablewares. For this it demonstrates how a dataset in a relational database can be organised for the format and capabilities of an ontology, and then how these data are input into the ontology model. Finally it includes some sample analyses to show the effectiveness of such an ontology for types of analyses that are relevant to this network.

  10. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    Science.gov (United States)

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  11. Applications of Ontologies in Knowledge Management Systems

    Science.gov (United States)

    Rehman, Zobia; Kifor, Claudiu V.

    2014-12-01

    Enterprises are realizing that their core asset in 21st century is knowledge. In an organization knowledge resides in databases, knowledge bases, filing cabinets and peoples' head. Organizational knowledge is distributed in nature and its poor management causes repetition of activities across the enterprise. To get true benefits from this asset, it is important for an organization to "know what they know". That's why many organizations are investing a lot in managing their knowledge. Artificial intelligence techniques have a huge contribution in organizational knowledge management. In this article we are reviewing the applications of ontologies in knowledge management realm

  12. Means-End based Functional Modeling for Intelligent Control: Modeling and Experiments with an Industrial Heat Pump System

    DEFF Research Database (Denmark)

    Saleem, Arshad

    2007-01-01

    The purpose of this paper is to present a Multilevel Flow Model (MFM) of an industrial heat pump system and its use for diagnostic reasoning. MFM is functional modeling language supporting an explicit means-ends intelligent control strategy for large industrial process plants. The model is used...... in several diagnostic experiments analyzing different fault scenarios. The model and results of the experiments are explained and it is shown how MFM based intelligent modeling and automated reasoning can improve the fault diagnosis process significantly....

  13. Ontology: ambiguity and accuracy

    Directory of Open Access Journals (Sweden)

    Marcelo Schiessl

    2012-08-01

    Full Text Available Ambiguity is a major obstacle to information retrieval. It is source of several researches in Information Science. Ontologies have been studied in order to solve problems related to ambiguities. Paradoxically, “ontology” term is also ambiguous and it is understood according to the use by the community. Philosophy and Computer Science seems to have the most accentuated difference related to the term sense. The former holds undisputed tradition and authority. The latter, in despite of being quite recent, holds an informal sense, but pragmatic. Information Science acts ranging from philosophical to computational approaches so as to get organized collections based on balance between users’ necessities and available information. The semantic web requires informational cycle automation and demands studies related to ontologies. Consequently, revisiting relevant approaches for the study of ontologies plays a relevant role as a way to provide useful ideas to researchers maintaining philosophical rigor, and convenience provided by computers.

  14. An Analytical Model / Emotional Intelligence Quotient and QOL in Mothers with Infants in Japan.

    Science.gov (United States)

    Ohashi, Junko; Katsura, Toshiki; Hoshino, Akiko; Usui, Kanae

    2013-01-01

    The purpose of this study was to examine the relationship between the emotional intelligence quotient and health-related quality of life using structural equation modeling. A self-administered questionnaire survey was conducted among 1,911 mothers who visited the Health Center for an infant medical examination. A hypothetical model was constructed using variables of the emotional intelligence quotient, social support, coping, parenting stress, and perceived health competence. There were a total of 1,104 valid responses (57.8%). Significant standardized estimates were obtained, confirming the goodness of fit issues with the model. The emotional intelligence quotient had a strong impact on physical and psychological quality of life, and showed the greatest association with coping. This study differed from previous studies in that, due to the inclusion of social support and explanatory variables in coping, an increase in coping strategies was more highly associated with emotional intelligence quotient levels than with social support. An enhanced emotional intelligence quotient should be considered a primary objective to promote the health of mothers with infant children.

  15. Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    Science.gov (United States)

    Stiffler, A. Kent

    1989-01-01

    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.

  16. A Multidisciplinary Model for Development of Intelligent Computer-Assisted Instruction.

    Science.gov (United States)

    Park, Ok-choon; Seidel, Robert J.

    1989-01-01

    Proposes a schematic multidisciplinary model to help developers of intelligent computer-assisted instruction (ICAI) identify the types of required expertise and integrate them into a system. Highlights include domain types and expertise; knowledge acquisition; task analysis; knowledge representation; student modeling; diagnosis of learning needs;…

  17. A collision model for safety evaluation of autonomous intelligent cruise control.

    Science.gov (United States)

    Touran, A; Brackstone, M A; McDonald, M

    1999-09-01

    This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.

  18. Using Game Theory Techniques and Concepts to Develop Proprietary Models for Use in Intelligent Games

    Science.gov (United States)

    Christopher, Timothy Van

    2011-01-01

    This work is about analyzing games as models of systems. The goal is to understand the techniques that have been used by game designers in the past, and to compare them to the study of mathematical game theory. Through the study of a system or concept a model often emerges that can effectively educate students about making intelligent decisions…

  19. From Interactive Open Learner Modelling to Intelligent Mentoring: STyLE-OLM and Beyond

    Science.gov (United States)

    Dimitrova, Vania; Brna, Paul

    2016-01-01

    STyLE-OLM (Dimitrova 2003 "International Journal of Artificial Intelligence in Education," 13, 35-78) presented a framework for interactive open learner modelling which entails the development of the means by which learners can "inspect," "discuss" and "alter" the learner model that has been jointly…

  20. Effective Stress Management: A Model of Emotional Intelligence, Self-Leadership, and Student Stress Coping

    Science.gov (United States)

    Houghton, Jeffery D.; Wu, Jinpei; Godwin, Jeffrey L.; Neck, Christopher P.; Manz, Charles C.

    2012-01-01

    This article develops and presents a model of the relationships among emotional intelligence, self-leadership, and stress coping among management students. In short, the authors' model suggests that effective emotion regulation and self-leadership, as mediated through positive affect and self-efficacy, has the potential to facilitate stress coping…

  1. Toward a formal ontology for narrative

    Directory of Open Access Journals (Sweden)

    Ciotti, Fabio

    2016-03-01

    Full Text Available In this paper the rationale and the first draft of a formal ontology for modeling narrative texts are presented. Building on the semiotic and structuralist narratology, and on the work carried out in the late 1980s by Giuseppe Gigliozzi in Italy, the focus of my research are the concepts of character and of narrative world/space. This formal model is expressed in the OWL 2 ontology language. The main reason to adopt a formal modeling approach is that I consider the purely probabilistic-quantitative methods (now widespread in digital literary studies inadequate. An ontology, on one hand provides a tool for the analysis of strictly literary texts. On the other hand (though beyond the scope of the present work, its formalization can also represent a significant contribution towards grounding the application of storytelling methods outside of scholarly contexts.

  2. A Formal Theory for Modular ERDF Ontologies

    Science.gov (United States)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  3. A Method for Building Personalized Ontology Summaries

    OpenAIRE

    Queiroz-Sousa, Paulo Orlando; Salgado, Ana Carolina; Pires, Carlos Eduardo

    2013-01-01

    In the context of ontology engineering, the ontology understanding is the basis for its further developmentand reuse. One intuitive eective approach to support ontology understanding is the process of ontology summarizationwhich highlights the most important concepts of an ontology. Ontology summarization identies an excerpt from anontology that contains the most relevant concepts and produces an abridged ontology. In this article, we present amethod for summarizing ontologies that represent ...

  4. Core Semantics for Public Ontologies

    National Research Council Canada - National Science Library

    Suni, Niranjan

    2005-01-01

    ... (schemas or ontologies) with respect to objects. The DARPA Agent Markup Language (DAML) through the use of ontologies provides a very powerful way to describe objects and their relationships to other objects...

  5. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    Science.gov (United States)

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Structure-based classification and ontology in chemistry

    Directory of Open Access Journals (Sweden)

    Hastings Janna

    2012-04-01

    Full Text Available Abstract Background Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures, while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. Results We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. Conclusion Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational

  7. Learning expressive ontologies

    CERN Document Server

    Völker, J

    2009-01-01

    This publication advances the state-of-the-art in ontology learning by presenting a set of novel approaches to the semi-automatic acquisition, refinement and evaluation of logically complex axiomatizations. It has been motivated by the fact that the realization of the semantic web envisioned by Tim Berners-Lee is still hampered by the lack of ontological resources, while at the same time more and more applications of semantic technologies emerge from fast-growing areas such as e-business or life sciences. Such knowledge-intensive applications, requiring large scale reasoning over complex domai

  8. Unintended consequences of existential quantifications in biomedical ontologies

    Directory of Open Access Journals (Sweden)

    Boeker Martin

    2011-11-01

    Full Text Available Abstract Background The Open Biomedical Ontologies (OBO Foundry is a collection of freely available ontologically structured controlled vocabularies in the biomedical domain. Most of them are disseminated via both the OBO Flatfile Format and the semantic web format Web Ontology Language (OWL, which draws upon formal logic. Based on the interpretations underlying OWL description logics (OWL-DL semantics, we scrutinize the OWL-DL releases of OBO ontologies to assess whether their logical axioms correspond to the meaning intended by their authors. Results We analyzed ontologies and ontology cross products available via the OBO Foundry site http://www.obofoundry.org for existential restrictions (someValuesFrom, from which we examined a random sample of 2,836 clauses. According to a rating done by four experts, 23% of all existential restrictions in OBO Foundry candidate ontologies are suspicious (Cohens' κ = 0.78. We found a smaller proportion of existential restrictions in OBO Foundry cross products are suspicious, but in this case an accurate quantitative judgment is not possible due to a low inter-rater agreement (κ = 0.07. We identified several typical modeling problems, for which satisfactory ontology design patterns based on OWL-DL were proposed. We further describe several usability issues with OBO ontologies, including the lack of ontological commitment for several common terms, and the proliferation of domain-specific relations. Conclusions The current OWL releases of OBO Foundry (and Foundry candidate ontologies contain numerous assertions which do not properly describe the underlying biological reality, or are ambiguous and difficult to interpret. The solution is a better anchoring in upper ontologies and a restriction to relatively few, well defined relation types with given domain and range constraints.

  9. Summarization by domain ontology navigation

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2013-01-01

    of the subject. In between these two extremes, conceptual summaries encompass selected concepts derived using background knowledge. We address in this paper an approach where conceptual summaries are provided through a conceptualization as given by an ontology. The ontology guiding the summarization can...... be a simple taxonomy or a generative domain ontology. A domain ontology can be provided by a preanalysis of a domain corpus and can be used to condense improved summaries that better reflects the conceptualization of a given domain....

  10. A Multidisciplinary Artificial Intelligence Model of an Affective Robot

    Directory of Open Access Journals (Sweden)

    Hooman Aghaebrahimi Samani

    2012-03-01

    Full Text Available A multidisciplinary approach to a novel artificial intelligence system for an affective robot is presented in this paper. The general objective of the system is to develop a robotic system which strives to achieve a high level of emotional bond between humans and robot by exploring human love. Such a relationship is a contingent process of attraction, affection and attachment from humans towards robots, and the belief of the vice versa from robots to humans. The advanced artificial intelligence of the system includes three modules, namely Probabilistic Love Assembly (PLA, based on the psychology of love, Artificial Endocrine System (AES, based on the physiology of love, and Affective State Transition (AST, based on emotions. The PLA module employs a Bayesian network to incorporate psychological parameters of affection in the robot. The AES module employs artificial emotional and biological hormones via a Dynamic Bayesian Network (DBN. The AST module uses a novel transition method for handling affective states of the robot. These three modules work together to manage emotional behaviours of the robot.

  11. Traffic Route Modelling and Assignment with Intelligent Transport System

    Directory of Open Access Journals (Sweden)

    Kunicina Nadezhda

    2014-12-01

    Full Text Available The development of signal transmitting environment for multimodal traffic control will enhance the integration of emergency and specialized transport routing tools in usual traffic control paradigms - it is one of the opportunities offered by modern intelligent traffic control systems. The improvement of effective electric power use in public transport system is an advantage of Intelligent Transport System (ITS. The research is connected with the improvement of on-line traffic control and adaptation of special traffic lighting alternatives by ITS. The assignment of the nearest appropriate transport will be done by passenger request, but unlike information system, the transport planning is done on demand. The task can be solved with the help of modern technical methods and equipment, as well as by applying control paradigms of the distributed systems. The problem is solved with the help of calculations hyper-graph and scheduling theory. The goal of the research is to develop methods, which support scheduling of the emergency transport, using high performance computing.

  12. FOCIH: Form-Based Ontology Creation and Information Harvesting

    Science.gov (United States)

    Tao, Cui; Embley, David W.; Liddle, Stephen W.

    Creating an ontology and populating it with data are both labor-intensive tasks requiring a high degree of expertise. Thus, scaling ontology creation and population to the size of the web in an effort to create a web of data—which some see as Web 3.0—is prohibitive. Can we find ways to streamline these tasks and lower the barrier enough to enable Web 3.0? Toward this end we offer a form-based approach to ontology creation that provides a way to create Web 3.0 ontologies without the need for specialized training. And we offer a way to semi-automatically harvest data from the current web of pages for a Web 3.0 ontology. In addition to harvesting information with respect to an ontology, the approach also annotates web pages and links facts in web pages to ontological concepts, resulting in a web of data superimposed over the web of pages. Experience with our prototype system shows that mappings between conceptual-model-based ontologies and forms are sufficient for creating the kind of ontologies needed for Web 3.0, and experiments with our prototype system show that automatic harvesting, automatic annotation, and automatic superimposition of a web of data over a web of pages work well.

  13. Process attributes in bio-ontologies

    Directory of Open Access Journals (Sweden)

    Andrade André Q

    2012-08-01

    Full Text Available Abstract Background Biomedical processes can provide essential information about the (mal- functioning of an organism and are thus frequently represented in biomedical terminologies and ontologies, including the GO Biological Process branch. These processes often need to be described and categorised in terms of their attributes, such as rates or regularities. The adequate representation of such process attributes has been a contentious issue in bio-ontologies recently; and domain ontologies have correspondingly developed ad hoc workarounds that compromise interoperability and logical consistency. Results We present a design pattern for the representation of process attributes that is compatible with upper ontology frameworks such as BFO and BioTop. Our solution rests on two key tenets: firstly, that many of the sorts of process attributes which are biomedically interesting can be characterised by the ways that repeated parts of such processes constitute, in combination, an overall process; secondly, that entities for which a full logical definition can be assigned do not need to be treated as primitive within a formal ontology framework. We apply this approach to the challenge of modelling and automatically classifying examples of normal and abnormal rates and patterns of heart beating processes, and discuss the expressivity required in the underlying ontology representation language. We provide full definitions for process attributes at increasing levels of domain complexity. Conclusions We show that a logical definition of process attributes is feasible, though limited by the expressivity of DL languages so that the creation of primitives is still necessary. This finding may endorse current formal upper-ontology frameworks as a way of ensuring consistency, interoperability and clarity.

  14. A Proposition Of Knowledge Management Methodology For The Purpose Of Reasoning With The Use Of An Upper-Ontology

    Directory of Open Access Journals (Sweden)

    Kamil Szymański

    2007-01-01

    Full Text Available This article describes a proposition of knowledge organization for the purpose of reasoningusing an upper-ontology. It presents a model of integrated ontologies architecture whichconsists of a domain ontologies layer with instances, a shared upper-ontology layer withadditional rules and a layer of ontologies mapping concrete domain ontologies with the upperontology.Thanks to the upper-ontology, new facts were concluded from domain ontologiesduring the reasoning process. A practical realization proposition is given as well. It is basedon some popular SemanticWeb technologies and tools, such as OWL, SWRL, nRQL, Prot´eg´eand Racer.

  15. Using a Foundational Ontology for Reengineering a Software Enterprise Ontology

    Science.gov (United States)

    Perini Barcellos, Monalessa; de Almeida Falbo, Ricardo

    The knowledge about software organizations is considerably relevant to software engineers. The use of a common vocabulary for representing the useful knowledge about software organizations involved in software projects is important for several reasons, such as to support knowledge reuse and to allow communication and interoperability between tools. Domain ontologies can be used to define a common vocabulary for sharing and reuse of knowledge about some domain. Foundational ontologies can be used for evaluating and re-designing domain ontologies, giving to these real-world semantics. This paper presents an evaluating of a Software Enterprise Ontology that was reengineered using the Unified Foundation Ontology (UFO) as basis.

  16. Intelligence Reach for Expertise (IREx)

    Science.gov (United States)

    Hadley, Christina; Schoening, James R.; Schreiber, Yonatan

    2015-05-01

    IREx is a search engine for next-generation analysts to find collaborators. U.S. Army Field Manual 2.0 (Intelligence) calls for collaboration within and outside the area of operations, but finding the best collaborator for a given task can be challenging. IREx will be demonstrated as part of Actionable Intelligence Technology Enabled Capability Demonstration (AI-TECD) at the E15 field exercises at Ft. Dix in July 2015. It includes a Task Model for describing a task and its prerequisite competencies, plus a User Model (i.e., a user profile) for individuals to assert their capabilities and other relevant data. These models use a canonical suite of ontologies as a foundation for these models, which enables robust queries and also keeps the models logically consistent. IREx also supports learning validation, where a learner who has completed a course module can search and find a suitable task to practice and demonstrate that their new knowledge can be used in the real world for its intended purpose. The IREx models are in the initial phase of a process to develop them as an IEEE standard. This initiative is currently an approved IEEE Study Group, after which follows a standards working group, then a balloting group, and if all goes well, an IEEE standard.

  17. Methodology of decreasing software complexity using ontology

    Science.gov (United States)

    DÄ browska-Kubik, Katarzyna

    2015-09-01

    In this paper a model of web application`s source code, based on the OSD ontology (Ontology for Software Development), is proposed. This model is applied to implementation and maintenance phase of software development process through the DevOntoCreator tool [5]. The aim of this solution is decreasing software complexity of that source code, using many different maintenance techniques, like creation of documentation, elimination dead code, cloned code or bugs, which were known before [1][2]. Due to this approach saving on software maintenance costs of web applications will be possible.

  18. The experiment of cooperative learning model type team assisted individualization (TAI) on three-dimensional space subject viewed from spatial intelligence

    Science.gov (United States)

    Manapa, I. Y. H.; Budiyono; Subanti, S.

    2018-03-01

    The aim of this research is to determine the effect of TAI or direct learning (DL) on student’s mathematics achievement viewed from spatial intelligence. This research was quasi experiment. The population was 10th grade senior high school students in Alor Regency on academic year of 2015/2016 chosen by stratified cluster random sampling. The data were collected through achievement and spatial intelligence test. The data were analyzed by two ways, ANOVA with unequal cell and scheffe test. This research showed that student’s mathematics achievement used in TAI had better results than DL models one. In spatial intelligence category, student’s mathematics achievement with high spatial intelligence has better result than the other spatial intelligence category and students with high spatial intelligence have better results than those with middle spatial intelligence category. At TAI, student’s mathematics achievement with high spatial intelligence has better result than those with the other spatial intelligence category and students with middle spatial intelligence have better results than students with low spatial intelligence. In DL model, student’s mathematics achievement with high and middle spatial intelligence has better result than those with low spatial intelligence, but students with high spatial intelligence and middle spatial intelligence have no significant difference. In each category of spatial intelligence and learning model, mathematics achievement has no significant difference.

  19. Minerals ontology: application in the environmental field to silicates

    International Nuclear Information System (INIS)

    Galan Saulnier, A.; Garcia Gimenez, R.

    2010-01-01

    The aim of this paper is to describe the application of an ontology, or up-to-date computerized tool, developed in the field of artificial intelligence and in particular of knowledge engineering, to inert elements, in this case the silicate class, which are minerals of scientific, technical and economic interest. The importance of applying ontology to minerals lies in the fact that these substances are capable of causing negative environmental impacts upon other variables in the natural environment, such as the atmosphere and the hydrosphere, and possible subsequent effects on human health. (Author) 37 refs.

  20. Advancing data reuse in phyloinformatics using an ontology-driven Semantic Web approach.

    Science.gov (United States)

    Panahiazar, Maryam; Sheth, Amit P; Ranabahu, Ajith; Vos, Rutger A; Leebens-Mack, Jim

    2013-01-01

    Phylogenetic analyses can resolve historical relationships among genes, organisms or higher taxa. Understanding such relationships can elucidate a wide range of biological phenomena, including, for example, the importance of gene and genome duplications in the evolution of gene function, the role of adaptation as a driver of diversification, or the evolutionary consequences of biogeographic shifts. Phyloinformaticists are developing data standards, databases and communication protocols (e.g. Application Programming Interfaces, APIs) to extend the accessibility of gene trees, species trees, and the metadata necessary to interpret these trees, thus enabling researchers across the life sciences to reuse phylogenetic knowledge. Specifically, Semantic Web technologies are being developed to make phylogenetic knowledge interpretable by web agents, thereby enabling intelligently automated, high-throughput reuse of results generated by phylogenetic research. This manuscript describes an ontology-driven, semantic problem-solving environment for phylogenetic analyses and introduces artefacts that can promote phyloinformatic efforts to promote accessibility of trees and underlying metadata. PhylOnt is an extensible ontology with concepts describing tree types and tree building methodologies including estimation methods, models and programs. In addition we present the PhylAnt platform for annotating scientific articles and NeXML files with PhylOnt concepts. The novelty of this work is the annotation of NeXML files and phylogenetic related documents with PhylOnt Ontology. This approach advances data reuse in phyloinformatics.

  1. Ontology-Based High-Level Context Inference for Human Behavior Identification

    Directory of Open Access Journals (Sweden)

    Claudia Villalonga

    2016-09-01

    Full Text Available Recent years have witnessed a huge progress in the automatic identification of individual primitives of human behavior, such as activities or locations. However, the complex nature of human behavior demands more abstract contextual information for its analysis. This work presents an ontology-based method that combines low-level primitives of behavior, namely activity, locations and emotions, unprecedented to date, to intelligently derive more meaningful high-level context information. The paper contributes with a new open ontology describing both low-level and high-level context information, as well as their relationships. Furthermore, a framework building on the developed ontology and reasoning models is presented and evaluated. The proposed method proves to be robust while identifying high-level contexts even in the event of erroneously-detected low-level contexts. Despite reasonable inference times being obtained for a relevant set of users and instances, additional work is required to scale to long-term scenarios with a large number of users.

  2. Ontology-Based High-Level Context Inference for Human Behavior Identification

    Science.gov (United States)

    Villalonga, Claudia; Razzaq, Muhammad Asif; Khan, Wajahat Ali; Pomares, Hector; Rojas, Ignacio; Lee, Sungyoung; Banos, Oresti

    2016-01-01

    Recent years have witnessed a huge progress in the automatic identification of individual primitives of human behavior, such as activities or locations. However, the complex nature of human behavior demands more abstract contextual information for its analysis. This work presents an ontology-based method that combines low-level primitives of behavior, namely activity, locations and emotions, unprecedented to date, to intelligently derive more meaningful high-level context information. The paper contributes with a new open ontology describing both low-level and high-level context information, as well as their relationships. Furthermore, a framework building on the developed ontology and reasoning models is presented and evaluated. The proposed method proves to be robust while identifying high-level contexts even in the event of erroneously-detected low-level contexts. Despite reasonable inference times being obtained for a relevant set of users and instances, additional work is required to scale to long-term scenarios with a large number of users. PMID:27690050

  3. An algorithm, implementation and execution ontology design pattern

    NARCIS (Netherlands)

    Lawrynowicz, A.; Esteves, D.; Panov, P.; Soru, T.; Dzeroski, S.; Vanschoren, J.

    2016-01-01

    This paper describes an ontology design pattern for modeling algorithms, their implementations and executions. This pattern is derived from the research results on data mining/machine learning ontologies, but is more generic. We argue that the proposed pattern will foster the development of

  4. A survey on computational intelligence approaches for predictive modeling in prostate cancer

    OpenAIRE

    Cosma, G; Brown, D; Archer, M; Khan, M; Pockley, AG

    2017-01-01

    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty an...

  5. Intelligence: Real or artificial?

    OpenAIRE

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  6. Matching biomedical ontologies based on formal concept analysis.

    Science.gov (United States)

    Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei

    2018-03-19

    The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign

  7. Adaptive e-learning system using ontology

    OpenAIRE

    Yarandi, Maryam; Tawil, Abdel-Rahman; Jahankhani, Hossein

    2011-01-01

    This paper proposes an innovative ontological approach to design a personalised e-learning system which creates a tailored workflow for individual learner. Moreover, the learning content and sequencing logic is separated into content model and pedagogical model to increase the reusability and flexibility of the system.

  8. The design ontology

    DEFF Research Database (Denmark)

    Storga, Mario; Andreasen, Mogens Myrup; Marjanovic, Dorian

    2010-01-01

    The article presents the research of the nature, building and practical role of a Design Ontology as a potential framework for the more efficient product development (PD) data-, information- and knowledge- description, -explanation, -understanding and -reusing. In the methodology for development ...

  9. Dahlbeck and Pure Ontology

    Science.gov (United States)

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  10. Audit Validation Using Ontologies

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2015-01-01

    Full Text Available Requirements to increase quality audit processes in enterprises are defined. It substantiates the need for assessment and management audit processes using ontologies. Sets of rules, ways to assess the consistency of rules and behavior within the organization are defined. Using ontologies are obtained qualifications that assess the organization's audit. Elaboration of the audit reports is a perfect algorithm-based activity characterized by generality, determinism, reproducibility, accuracy and a well-established. The auditors obtain effective levels. Through ontologies obtain the audit calculated level. Because the audit report is qualitative structure of information and knowledge it is very hard to analyze and interpret by different groups of users (shareholders, managers or stakeholders. Developing ontology for audit reports validation will be a useful instrument for both auditors and report users. In this paper we propose an instrument for validation of audit reports contain a lot of keywords that calculates indicators, a lot of indicators for each key word there is an indicator, qualitative levels; interpreter who builds a table of indicators, levels of actual and calculated levels.

  11. Biomedicine: an ontological dissection.

    Science.gov (United States)

    Baronov, David

    2008-01-01

    Though ubiquitous across the medical social sciences literature, the term "biomedicine" as an analytical concept remains remarkably slippery. It is argued here that this imprecision is due in part to the fact that biomedicine is comprised of three interrelated ontological spheres, each of which frames biomedicine as a distinct subject of investigation. This suggests that, depending upon one's ontological commitment, the meaning of biomedicine will shift. From an empirical perspective, biomedicine takes on the appearance of a scientific enterprise and is defined as a derivative category of Western science more generally. From an interpretive perspective, biomedicine represents a symbolic-cultural expression whose adherence to the principles of scientific objectivity conceals an ideological agenda. From a conceptual perspective, biomedicine represents an expression of social power that reflects structures of power and privilege within capitalist society. No one perspective exists in isolation and so the image of biomedicine from any one presents an incomplete understanding. It is the mutually-conditioning interrelations between these ontological spheres that account for biomedicine's ongoing development. Thus, the ontological dissection of biomedicine that follows, with particular emphasis on the period of its formal crystallization in the latter nineteenth and early twentieth century, is intended to deepen our understanding of biomedicine as an analytical concept across the medical social sciences literature.

  12. Intelligent judgements over health risks in a spatial agent-based model.

    Science.gov (United States)

    Abdulkareem, Shaheen A; Augustijn, Ellen-Wien; Mustafa, Yaseen T; Filatova, Tatiana

    2018-03-20

    Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle. Computational science is instrumental in exploring patterns of disease spread emerging from many individual decisions and interactions among agents and their environment by means of agent-based models. Yet, current disease models rarely consider simulating dynamics in risk perception and its impact on the adaptive protective behavior. Social sciences offer insights into individual risk perception and corresponding protective actions, while machine learning provides algorithms and methods to capture these learning processes. This article presents an innovative approach to extend agent-based disease models by capturing behavioral aspects of decision-making in a risky context using machine learning techniques. We illustrate it with a case of cholera in Kumasi, Ghana, accounting for spatial and social risk factors that affect intelligent behavior and corresponding disease incidents. The results of computational experiments comparing intelligent with zero-intelligent representations of agents in a spatial disease agent-based model are discussed. We present a spatial disease agent-based model (ABM) with agents' behavior grounded in Protection Motivation Theory. Spatial and temporal patterns of disease diffusion among zero-intelligent agents are compared to those produced by a population of intelligent agents. Two Bayesian Networks (BNs) designed and coded using R and are further integrated with the NetLogo-based Cholera ABM. The first is a one-tier BN1 (only risk perception), the second is a two-tier BN2 (risk and coping behavior). We run three experiments (zero-intelligent agents, BN1 intelligence and BN2 intelligence) and report the results per experiment in terms of

  13. A Model of Intelligent Fault Diagnosis of Power Equipment Based on CBR

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Nowadays the demand of power supply reliability has been strongly increased as the development within power industry grows rapidly. Nevertheless such large demand requires substantial power grid to sustain. Therefore power equipment’s running and testing data which contains vast information underpins online monitoring and fault diagnosis to finally achieve state maintenance. In this paper, an intelligent fault diagnosis model for power equipment based on case-based reasoning (IFDCBR will be proposed. The model intends to discover the potential rules of equipment fault by data mining. The intelligent model constructs a condition case base of equipment by analyzing the following four categories of data: online recording data, history data, basic test data, and environmental data. SVM regression analysis was also applied in mining the case base so as to further establish the equipment condition fingerprint. The running data of equipment can be diagnosed by such condition fingerprint to detect whether there is a fault or not. Finally, this paper verifies the intelligent model and three-ratio method based on a set of practical data. The resulting research demonstrates that this intelligent model is more effective and accurate in fault diagnosis.

  14. Epistemology and ontology in core ontologies: FOLaw and LRI-Core, two core ontologies for law

    NARCIS (Netherlands)

    Breukers, J.A.P.J.; Hoekstra, R.J.

    2004-01-01

    For more than a decade constructing ontologies for legal domains, we, at the Leibniz Center for Law, felt really the need to develop a core ontology for law that would enable us to re-use the common denominator of the various legal domains. In this paper we present two core ontologies for law. The

  15. Artificial intelligence and exponential technologies business models evolution and new investment opportunities

    CERN Document Server

    Corea, Francesco

    2017-01-01

    Artificial Intelligence is a huge breakthrough technology that is changing our world. It requires some degrees of technical skills to be developed and understood, so in this book we are going to first of all define AI and categorize it with a non-technical language. We will explain how we reached this phase and what historically happened to artificial intelligence in the last century. Recent advancements in machine learning, neuroscience, and artificial intelligence technology will be addressed, and new business models introduced for and by artificial intelligence research will be analyzed. Finally, we will describe the investment landscape, through the quite comprehensive study of almost 14,000 AI companies and we will discuss important features and characteristics of both AI investors as well as investments. This is the “Internet of Thinks” era. AI is revolutionizing the world we live in. It is augmenting the human experiences, and it targets to amplify human intelligence in a future not so distant from...

  16. Business intelligence tools for radiology: creating a prototype model using open-source tools.

    Science.gov (United States)

    Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin

    2010-04-01

    Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.

  17. The Relations between Implicit Intelligence Beliefs, Autonomous Academic Motivation, and School Persistence Intentions: A Mediation Model

    Science.gov (United States)

    Renaud-Dubé, Andréanne; Guay, Frédéric; Talbot, Denis; Taylor, Geneviève; Koestner, Richard

    2015-01-01

    This study attempts to test a model in which the relation between implicit theories of intelligence and students' school persistence intentions are mediated by intrinsic, identified, introjected, and external regulations. Six hundred and fifty students from a high school were surveyed. Contrary to expectations, results from ESEM analyses indicated…

  18. Artificial intelligence and finite element modelling for monitoring flood defence structures

    NARCIS (Netherlands)

    Pyayt, A.L.; Mokhov, I.I.; Kozionov, A.; Kusherbaeva, V.; Melnikova, N.B.; Krzhizhanovskaya, V.V.; Meijer, R.J.

    2011-01-01

    We present a hybrid approach to monitoring the stability of flood defence structures equipped with sensors. This approach combines the finite element modelling with the artificial intelligence for real-time signal processing and anomaly detection. This combined method has been developed for the

  19. Towards a value model for collaborative, business intelligence-supported risk assessment

    NARCIS (Netherlands)

    Liu, L.; Daniëls, H.A.M.; Johannesson, P.

    2012-01-01

    Collaborative business intelligence supports risk assessment and in return enhances management control on a business network. Nonetheless, it needs an incentive basis in the first place before it can be implemented, that is, the value model. Starting from the managerial challenges which arise from

  20. Design of an Intelligent Support Agent Model for People with a Cognitive Vulnerability

    NARCIS (Netherlands)

    Aziz, A.A.; Klein, M.C.A.; Zhang, B.; Wang, Y.; Kinser, W.

    2010-01-01

    This paper presents the design of an intelligent agent application aimed at supporting people with a cognitive vulnerability to prevent the onset of a depression. For this, a computational model of the cognitive processes around depression is used. The agent application uses the principles of

  1. A Multidirectional Model for Assessing Learning Disabled Students' Intelligence: An Information-Processing Framework.

    Science.gov (United States)

    Swanson, H. Lee

    1982-01-01

    An information processing approach to the assessment of learning disabled students' intellectual performance is presented. The model is based on the assumption that intelligent behavior is comprised of a variety of problem- solving strategies. An account of child problem solving is explained and illustrated with a "thinking aloud" protocol.…

  2. Benchmarking ontologies: bigger or better?

    Directory of Open Access Journals (Sweden)

    Lixia Yao

    2011-01-01

    Full Text Available A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1 four of the most common medical ontologies with respect to a corpus of medical documents and (2 seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them.

  3. Ontology-based Information Retrieval

    DEFF Research Database (Denmark)

    Styltsvig, Henrik Bulskov

    In this thesis, we will present methods for introducing ontologies in information retrieval. The main hypothesis is that the inclusion of conceptual knowledge such as ontologies in the information retrieval process can contribute to the solution of major problems currently found in information...... retrieval. This utilization of ontologies has a number of challenges. Our focus is on the use of similarity measures derived from the knowledge about relations between concepts in ontologies, the recognition of semantic information in texts and the mapping of this knowledge into the ontologies in use......, as well as how to fuse together the ideas of ontological similarity and ontological indexing into a realistic information retrieval scenario. To achieve the recognition of semantic knowledge in a text, shallow natural language processing is used during indexing that reveals knowledge to the level of noun...

  4. An ontology based trust verification of software license agreement

    Science.gov (United States)

    Lu, Wenhuan; Li, Xiaoqing; Gan, Zengqin; Wei, Jianguo

    2017-08-01

    When we install software or download software, there will show up so big mass document to state the rights and obligations, for which lots of person are not patient to read it or understand it. That would may make users feel distrust for the software. In this paper, we propose an ontology based verification for Software License Agreement. First of all, this work proposed an ontology model for domain of Software License Agreement. The domain ontology is constructed by proposed methodology according to copyright laws and 30 software license agreements. The License Ontology can act as a part of generalized copyright law knowledge model, and also can work as visualization of software licenses. Based on this proposed ontology, a software license oriented text summarization approach is proposed which performances showing that it can improve the accuracy of software licenses summarizing. Based on the summarization, the underline purpose of the software license can be explicitly explored for trust verification.

  5. Ontologic Model and Architecture for a Spatial Data Infrastructure Sensitive to Context for the World Cup 2014

    Directory of Open Access Journals (Sweden)

    OLIVEIRA ,W. M. O.

    2012-12-01

    Full Text Available In large sporting events like the World Cup in 2014, there is an imminent demand for information systems that are able to deliver to the user, useful information such as the location of games, conferences, training or a particular physical structure for their accommodation and feeding, besides showing the best routes to these places. However, the huge volume of information, concerning the events and to the own infrastructure of the World Cup host cities, hamper the search for information that is directly related to a determined user in particular. The Spatial Data Infrastructures aimed at ensuring greater access, availability and exchange of geographic information. This approach, together with the mapping of ontological concepts of the environment where the user is, allow us to provide information relevant to their context. This paper presents a proposed union between these two approaches in order to offer the user an infrastructure that not only consider the simple input of a query, but also be able to refine it and even anticipate information, respecting their environment, interest, individuality and that uses your geographic knowledge as a source of new information.

  6. Social intelligence of parents with autism spectrum disorders impacts their emotional behaviour: A new proposed model for stabilising emotionality of these parents impacting their social intelligence

    Directory of Open Access Journals (Sweden)

    Vidya Bhagat

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD may affect all spheres of a child's life. Indeed, parents and siblings also live with emotional instabilities in the family. The experience of parents with ASD child can be distressing since they need to make more adjustments to the demanding need to cope with their life situations. Perhaps, their life is drastically exaggerated with their complexities of life. Particularly, their social life is radically affected. The presence of pervasive and severe deficits in children with ASD isolates these parents from their social life; demanding adjustments to their social environment of parents in their life situations shove them into distress and unstable emotions. Finally, they culminate being shattered in their interpersonal relationship, their family and social life. Indeed, these aspects of distress mask social intelligence of these parents, thus narrow down their focus more on the treatment rather than holistic management of their child. Thus, the management of ASD with these parents of the deficit children to reach their fullest abilities remains doubtful. Therefore, the objectives of this study are as follows: (a to examine the impact of emotionality on social intelligence of parents blessed with autistic child, (b to develop awareness regarding social intelligence and its significance among these parents, (c to propose a new model stabilising emotionality of these parents through developing social adaption skills and (d to suggest a new model as a guide in the current intervention regimens to ensure the emotional well-being and better social adoption. This study is made based on the keenly examined past evidence with the correlation of emotionality and its impact on social intelligence of the parents with ASD children. The results reveal that the social intelligence is perceived as lowered evidenced by poor social adjustment reflected in social isolation observed in the parents of children with ASD. A new model

  7. Ontological interpretation of biomedical database content.

    Science.gov (United States)

    Santana da Silva, Filipe; Jansen, Ludger; Freitas, Fred; Schulz, Stefan

    2017-06-26

    Biological databases store data about laboratory experiments, together with semantic annotations, in order to support data aggregation and retrieval. The exact meaning of such annotations in the context of a database record is often ambiguous. We address this problem by grounding implicit and explicit database content in a formal-ontological framework. By using a typical extract from the databases UniProt and Ensembl, annotated with content from GO, PR, ChEBI and NCBI Taxonomy, we created four ontological models (in OWL), which generate explicit, distinct interpretations under the BioTopLite2 (BTL2) upper-level ontology. The first three models interpret database entries as individuals (IND), defined classes (SUBC), and classes with dispositions (DISP), respectively; the fourth model (HYBR) is a combination of SUBC and DISP. For the evaluation of these four models, we consider (i) database content retrieval, using ontologies as query vocabulary; (ii) information completeness; and, (iii) DL complexity and decidability. The models were tested under these criteria against four competency questions (CQs). IND does not raise any ontological claim, besides asserting the existence of sample individuals and relations among them. Modelling patterns have to be created for each type of annotation referent. SUBC is interpreted regarding maximally fine-grained defined subclasses under the classes referred to by the data. DISP attempts to extract truly ontological statements from the database records, claiming the existence of dispositions. HYBR is a hybrid of SUBC and DISP and is more parsimonious regarding expressiveness and query answering complexity. For each of the four models, the four CQs were submitted as DL queries. This shows the ability to retrieve individuals with IND, and classes in SUBC and HYBR. DISP does not retrieve anything because the axioms with disposition are embedded in General Class Inclusion (GCI) statements. Ambiguity of biological database content is

  8. Completeness, supervenience and ontology

    International Nuclear Information System (INIS)

    Maudlin, Tim W E

    2007-01-01

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction

  9. Completeness, supervenience and ontology

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, Tim W E [Department of Philosophy, Rutgers University, 26 Nichol Avenue, New Brunswick, NJ 08901-1411 (United States)

    2007-03-23

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction.

  10. LOGISTICS OPTIMIZATION USING ONTOLOGIES

    OpenAIRE

    Hendi , Hayder; Ahmad , Adeel; Bouneffa , Mourad; Fonlupt , Cyril

    2014-01-01

    International audience; Logistics processes involve complex physical flows and integration of different elements. It is widely observed that the uncontrolled processes can decline the state of logistics. The optimization of logistic processes can support the desired growth and consistent continuity of logistics. In this paper, we present a software framework for logistic processes optimization. It primarily defines logistic ontologies and then optimize them. It intends to assist the design of...

  11. Ontology evolution in physics

    OpenAIRE

    Chan, Michael

    2013-01-01

    With the advent of reasoning problems in dynamic environments, there is an increasing need for automated reasoning systems to automatically adapt to unexpected changes in representations. In particular, the automation of the evolution of their ontologies needs to be enhanced without substantially sacrificing expressivity in the underlying representation. Revision of beliefs is not enough, as adding to or removing from beliefs does not change the underlying formal language. Gene...

  12. Semi-automated ontology generation and evolution

    Science.gov (United States)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural

  13. The mouse-human anatomy ontology mapping project.

    Science.gov (United States)

    Hayamizu, Terry F; de Coronado, Sherri; Fragoso, Gilberto; Sioutos, Nicholas; Kadin, James A; Ringwald, Martin

    2012-01-01

    The overall objective of the Mouse-Human Anatomy Project (MHAP) was to facilitate the mapping and harmonization of anatomical terms used for mouse and human models by Mouse Genome Informatics (MGI) and the National Cancer Institute (NCI). The anatomy resources designated for this study were the Adult Mouse Anatomy (MA) ontology and the set of anatomy concepts contained in the NCI Thesaurus (NCIt). Several methods and software tools were identified and evaluated, then used to conduct an in-depth comparative analysis of the anatomy ontologies. Matches between mouse and human anatomy terms were determined and validated, resulting in a highly curated set of mappings between the two ontologies that has been used by other resources. These mappings will enable linking of data from mouse and human. As the anatomy ontologies have been expanded and refined, the mappings have been updated accordingly. Insights are presented into the overall process of comparing and mapping between ontologies, which may prove useful for further comparative analyses and ontology mapping efforts, especially those involving anatomy ontologies. Finally, issues concerning further development of the ontologies, updates to the mapping files, and possible additional applications and significance were considered. DATABASE URL: http://obofoundry.org/cgi-bin/detail.cgi?id=ma2ncit.

  14. A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments

    Directory of Open Access Journals (Sweden)

    Jing Mi

    2016-09-01

    Full Text Available Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model.

  15. A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.

    Science.gov (United States)

    Mi, Jing; Colburn, H Steven

    2016-10-03

    Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. © The Author(s) 2016.

  16. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  17. Feasibility of automated foundational ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2014-11-01

    Full Text Available the Source Domain Ontology (sOd), with the domain knowledge com- ponent of the source ontology, the Source Foundational Ontology (sOf ) that is the foundational ontology component of the source ontology that is to be interchanged, and any equivalence... or subsumption mappings between enti- ties in sOd and sOf . – The Target Ontology (tO) which has been interchanged, which comprises the Target Domain Ontology (tOd), with the domain knowledge component of the target ontology, and the Target Foundational Ontology...

  18. An Ontology for Software Engineering Education

    Science.gov (United States)

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  19. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  20. Development of an Ontology for Periodontitis.

    Science.gov (United States)

    Suzuki, Asami; Takai-Igarashi, Takako; Nakaya, Jun; Tanaka, Hiroshi

    2015-01-01

    In the clinical dentists and periodontal researchers' community, there is an obvious demand for a systems model capable of linking the clinical presentation of periodontitis to underlying molecular knowledge. A computer-readable representation of processes on disease development will give periodontal researchers opportunities to elucidate pathways and mechanisms of periodontitis. An ontology for periodontitis can be a model for integration of large variety of factors relating to a complex disease such as chronic inflammation in different organs accompanied by bone remodeling and immune system disorders, which has recently been referred to as osteoimmunology. Terms characteristic of descriptions related to the onset and progression of periodontitis were manually extracted from 194 review articles and PubMed abstracts by experts in periodontology. We specified all the relations between the extracted terms and constructed them into an ontology for periodontitis. We also investigated matching between classes of our ontology and that of Gene Ontology Biological Process. We developed an ontology for periodontitis called Periodontitis-Ontology (PeriO). The pathological progression of periodontitis is caused by complex, multi-factor interrelationships. PeriO consists of all the required concepts to represent the pathological progression and clinical treatment of periodontitis. The pathological processes were formalized with reference to Basic Formal Ontology and Relation Ontology, which accounts for participants in the processes realized by biological objects such as molecules and cells. We investigated the peculiarity of biological processes observed in pathological progression and medical treatments for the disease in comparison with Gene Ontology Biological Process (GO-BP) annotations. The results indicated that peculiarities of Perio existed in 1) granularity and context dependency of both the conceptualizations, and 2) causality intrinsic to the pathological processes

  1. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... the computer aided modelling tool will illustrate how to generate a desired process model, how to analyze the model equations, how to extract data and identify the model and make it ready for various types of application. In sustainable process design, the example will highlight the issue of integration...

  2. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2017-07-01

    Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies. From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes (rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the programming language. We propose a simple high-level syntax for managing classes and the associated "role-filler" constraints. We also propose an algorithm for performing local closed world reasoning in simple situations. We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating classes and for performing local closed world reasoning. Owlready has been successfully

  3. Model of facilitation of emotional intelligence to promote wholeness ...

    African Journals Online (AJOL)

    The facilitation of inherent affective and mental resourcefulness and resilience was the main concept of the model. Step two comprised the definition and classification of central and related concepts. Step three provides a description of the model. The model operates in three phases namely the dependent phase, partially ...

  4. Leader emotional intelligence, transformational leadership, trust and team commitment: Testing a model within a team context

    Directory of Open Access Journals (Sweden)

    Anton F. Schlechter

    2008-06-01

    Full Text Available This exploratory study tested a model within a team context consisting of transformational-leadership behaviour, team-leader emotional intelligence, trust (both in the team leader and in the team members and team commitment. It was conducted within six manufacturing plants, with 25 teams participating. Of the 320 surveys distributed to these teams, 178 were received (which equals a 56% response rate. The surveys consisted of the multi-factor leadership questionnaire (MLQ, the Swinburne University emotional intelligence test (SUEIT, the organisational-commitment scale (OCS (adapted for team commitment and the workplace trust survey (WTS. The validity of these scales was established using exploratory factor analysis (EFA and confrmatory factor analysis (CFA. The Cronbach alpha was used to assess the reliability of the scales. The model was tested using structural equation modelling (SEM; an acceptable level of model ft was found. Signifcant positive relationships were further found among all the constructs. Such an integrated model has not been tested in a team context before and the positive fndings therefore add to existing teamwork literature. The fnding that transformational leadership and leader emotional intelligence are positively related to team commitment and trust further emphasises the importance of effective leadership behaviour in team dynamics and performance.

  5. Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction

    Directory of Open Access Journals (Sweden)

    Jianzhou Wang

    2014-01-01

    Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.

  6. A Model for Organizational Intelligence in Islamic Azad University (Zone 8

    Directory of Open Access Journals (Sweden)

    Masoumeh Erfani Khanghahi

    2013-08-01

    Full Text Available Today organizations are faced with the rapidly changeable events in economical, technological, social, cultural and political environment. Successful and dynamic reaction of organizations depends on their ability to provide relevant information and to find, at the same time, adequate solutions to the problems they are faced with. In that sense, the attention of organizational theoreticians is focused on designing of intellectual abilities of organization and new concept in organizational theory has developed organizational intelligence (OI. In two decades ago, theoretical models have been developed and little research has been conducted. Having a model for defining and assessing the organizational status of an organization can be very helpful but the key questions facing every manager are; how can the level of collective intelligence be promoted? And what factors influence OI? Therefore this research carried out in order to assess OI and its factors influencing I.A.U. and provide a structural equation model. The subject of the study was 311 faculty members of I.A.U (Zone 8. Faculty members completed OI questionnaire (Cronbach's alpha=0.98, learning climate (Cronbach's alpha=0.94, multifactor leadership questionnaire (Cronbach's alpha =0.92 and organizational learning audit (Cronbach's alpha =0.94. Findings of this research showed that mean of organizational intelligence, organizational learning and learning culture were less than mean and transformational leadership was more than mean of questionnaire. Lisrel project software was applied for confirmatory factor analysis (CFA and structural equation modeling (SEM. Based on the tested structural equation model, transformational leadership style had direct impact on learning culture $(eta=0.78$, learning culture had a direct impact on OI $(eta=0.46$, organizational learning had a direct impact on OI $(eta=0.34$ and learning culture had a direct impact on organizational learning $(eta=0.96$. The

  7. CREATION OF IT-ORIENTED ONTOLOGICAL FRAMEWORK FOR THE PURPOSE OF MAKING EDUCATIONAL PROGRAMS ON THE BASE OF COMPETENCIES

    Directory of Open Access Journals (Sweden)

    G. M. Korotenko

    2017-08-01

    Full Text Available Purpose. Taking into account the expansion of computing application scopes there is a need to identify the links and features of the constantly emerging professional competencies of the new sections of computing knowledge to improve the process of forming new curricula. Methodology. Authors propose the new approach aimed to build specialized knowledge bases generated using artificial intelligence technology and focused on the use of multiple heterogeneous resources or data sources on specific educational topics is proposed. As a tool, ensuring the formation of the base ontology the Protégé 4.2 ontology editor is used. As one of the modules of the developed system of semantic analysis, which provides access to ontology and the possibility of its processing, the Apache Jena Java framework should be used, which forms the software environment for working with data in RDF, RDFS and OWL formats, and also supports the ability to form queries to Ontologies in the SPARQL language. The peculiarity of this approach is the binding of information resources of the three-platform presentation of the disciplinary structure in the context of identifying the links of professional competencies. Findings. The model and structure of the IT-oriented ontological framework designed to ensure the components convergence of the university three-platform information and communication environment are developed. The structure of the knowledge base ontology-basis, describing the main essence of the educational standards of the "Information Technologies" branch is formed. Originality. Within the framework of design and formation of the knowledge sector disciplinary structure "Information Technologies" in the context of the competence approach to education, the architecture of the competence descriptors of semantic analysis system is proposed. It implements the algorithm for integrating the ontological and product models of knowledge representation about the subject domain

  8. An Ecosystem of Intelligent ICT Tools for Speech-Language Therapy Based on a Formal Knowledge Model.

    Science.gov (United States)

    Robles-Bykbaev, Vladimir; López-Nores, Martín; Pazos-Arias, José; Quisi-Peralta, Diego; García-Duque, Jorge

    2015-01-01

    The language and communication constitute the development mainstays of several intellectual and cognitive skills in humans. However, there are millions of people around the world who suffer from several disabilities and disorders related with language and communication, while most of the countries present a lack of corresponding services related with health care and rehabilitation. On these grounds, we are working to develop an ecosystem of intelligent ICT tools to support speech and language pathologists, doctors, students, patients and their relatives. This ecosystem has several layers and components, integrating Electronic Health Records management, standardized vocabularies, a knowledge database, an ontology of concepts from the speech-language domain, and an expert system. We discuss the advantages of such an approach through experiments carried out in several institutions assisting children with a wide spectrum of disabilities.

  9. Robust intelligent sliding model control using recurrent cerebellar model articulation controller for uncertain nonlinear chaotic systems

    International Nuclear Information System (INIS)

    Peng Yafu

    2009-01-01

    In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua's chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system

  10. Analysis of traversable pits model to make intelligent wheeled vehicles

    Directory of Open Access Journals (Sweden)

    F. Abbasi

    2017-11-01

    Full Text Available In this paper, the issue of passing wheeled vehicles from pits is discussed. The issue is modeled by defining the limits of passing wheeled vehicles. The proposed model has been studied based on changes in the effective parameters. Finally, in order to describe the problem, the proposed model has been solved for wheeled vehicles based on the effective parameters by using one of the numerical methods.

  11. Dynamical Intention: Integrated Intelligence Modeling for Goal-directed Embodied Agents

    Directory of Open Access Journals (Sweden)

    Eric Aaron

    2016-11-01

    Full Text Available Intelligent embodied robots are integrated systems: As they move continuously through their environments, executing behaviors and carrying out tasks, components for low-level and high-level intelligence are integrated in the robot's cognitive system, and cognitive and physical processes combine to create their behavior. For a modeling framework to enable the design and analysis of such integrated intelligence, the underlying representations in the design of the robot should be dynamically sensitive, capable of reflecting both continuous motion and micro-cognitive influences, while also directly representing the necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical intention-based modeling framework is presented that satisfies these criteria, along with a hybrid dynamical cognitive agent (HDCA framework for employing dynamical intentions in embodied agents. This dynamical intention-HDCA (DI-HDCA modeling framework is a fusion of concepts from spreading activation networks, hybrid dynamical system models, and the BDI (belief-desire-intention theory of goal-directed reasoning, adapted and employed unconventionally to meet entailments of environment and embodiment. The paper presents two kinds of autonomous agent learning results that demonstrate dynamical intentions and the multi-faceted integration they enable in embodied robots: with a simulated service robot in a grid-world office environment, reactive-level learning minimizes reliance on deliberative-level intelligence, enabling task sequencing and action selection to be distributed over both deliberative and reactive levels; and with a simulated game of Tag, the cognitive-physical integration of an autonomous agent enables the straightforward learning of a user-specified strategy during gameplay, without interruption to the game. In addition, the paper argues that dynamical intentions are consistent with cognitive theory underlying goal-directed behavior, and

  12. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heating...... of the building in time. This way the thermal mass of the building can be used to absorb energy from renewable energy source when available and postpone heating in periods with lack of renewable energy generation. The model is used in a model predictive controller to ensure the residential comfort over a given...

  13. Integrated Intelligent Modeling, Design and Control of Crystal Growth Processes

    National Research Council Canada - National Science Library

    Prasad, V

    2000-01-01

    .... This MURI program took an integrated approach towards modeling, design and control of crystal growth processes and in conjunction with growth and characterization experiments developed much better...

  14. Artificial intelligence techniques for modeling database user behavior

    Science.gov (United States)

    Tanner, Steve; Graves, Sara J.

    1990-01-01

    The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model.

  15. Ontology Design Patterns for Combining Pathology and Anatomy: Application to Study Aging and Longevity in Inbred Mouse Strains

    KAUST Repository

    Alghamdi, Sarah M.

    2018-05-13

    In biomedical research, ontologies are widely used to represent knowledge as well as to annotate datasets. Many of the existing ontologies cover a single type of phenomena, such as a process, cell type, gene, pathological entity or anatomical structure. Consequently, there is a requirement to use multiple ontologies to fully characterize the observations in the datasets. Although this allows precise annotation of different aspects of a given dataset, it limits our ability to use the ontologies in data analysis, as the ontologies are usually disconnected and their combinations cannot be exploited. Motivated by this, here we present novel ontology design methods for combining pathology and anatomy concepts. To this end, we use a dataset of mouse models which has been characterized through two ontologies: one of them is the mouse pathology ontology (MPATH) covering pathological lesions while the other is the mouse anatomy ontology (MA) covering the anatomical site of the lesions. We propose four novel ontology design patterns for combining these ontologies, and use these patterns to generate four ontologies in a data-driven way. To evaluate the generated ontologies, we utilize these in ontology-based data analysis, including ontology enrichment analysis and computation of semantic similarity. We demonstrate that there are significant differences between the four ontologies in different analysis approaches. In addition, when using semantic similarity to confirm the hypothesis that genetically identical mice should develop more similar diseases, the generated combined ontologies lead to significantly better analysis results compared to using each ontology individually. Our results reveal that using ontology design patterns to combine different facets characterizing a dataset can improve established analysis methods.

  16. A methodology for the design of experiments in computational intelligence with multiple regression models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro

    2016-01-01

    The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  17. A methodology for the design of experiments in computational intelligence with multiple regression models

    Directory of Open Access Journals (Sweden)

    Carlos Fernandez-Lozano

    2016-12-01

    Full Text Available The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  18. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model

    Science.gov (United States)

    LIU, Tongzhu; SHEN, Aizong; HU, Xiaojian; TONG, Guixian; GU, Wei

    2017-01-01

    Background: We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. Methods: We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. Results: For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Conclusion: Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers. PMID:28828316

  19. The Application of Collaborative Business Intelligence Technology in the Hospital SPD Logistics Management Model.

    Science.gov (United States)

    Liu, Tongzhu; Shen, Aizong; Hu, Xiaojian; Tong, Guixian; Gu, Wei

    2017-06-01

    We aimed to apply collaborative business intelligence (BI) system to hospital supply, processing and distribution (SPD) logistics management model. We searched Engineering Village database, China National Knowledge Infrastructure (CNKI) and Google for articles (Published from 2011 to 2016), books, Web pages, etc., to understand SPD and BI related theories and recent research status. For the application of collaborative BI technology in the hospital SPD logistics management model, we realized this by leveraging data mining techniques to discover knowledge from complex data and collaborative techniques to improve the theories of business process. For the application of BI system, we: (i) proposed a layered structure of collaborative BI system for intelligent management in hospital logistics; (ii) built data warehouse for the collaborative BI system; (iii) improved data mining techniques such as supporting vector machines (SVM) and swarm intelligence firefly algorithm to solve key problems in hospital logistics collaborative BI system; (iv) researched the collaborative techniques oriented to data and business process optimization to improve the business processes of hospital logistics management. Proper combination of SPD model and BI system will improve the management of logistics in the hospitals. The successful implementation of the study requires: (i) to innovate and improve the traditional SPD model and make appropriate implement plans and schedules for the application of BI system according to the actual situations of hospitals; (ii) the collaborative participation of internal departments in hospital including the department of information, logistics, nursing, medical and financial; (iii) timely response of external suppliers.

  20. Evaluating the Risk of Metabolic Syndrome Based on an Artificial Intelligence Model

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2014-01-01

    Full Text Available Metabolic syndrome is worldwide public health problem and is a serious threat to people's health and lives. Understanding the relationship between metabolic syndrome and the physical symptoms is a difficult and challenging task, and few studies have been performed in this field. It is important to classify adults who are at high risk of metabolic syndrome without having to use a biochemical index and, likewise, it is important to develop technology that has a high economic rate of return to simplify the complexity of this detection. In this paper, an artificial intelligence model was developed to identify adults at risk of metabolic syndrome based on physical signs; this artificial intelligence model achieved more powerful capacity for classification compared to the PCLR (principal component logistic regression model. A case study was performed based on the physical signs data, without using a biochemical index, that was collected from the staff of Lanzhou Grid Company in Gansu province of China. The results show that the developed artificial intelligence model is an effective classification system for identifying individuals at high risk of metabolic syndrome.