WorldWideScience

Sample records for modeling infrared optical

  1. Comparison of stellar population model predictions using optical and infrared spectroscopy

    Science.gov (United States)

    Baldwin, C.; McDermid, R. M.; Kuntschner, H.; Maraston, C.; Conroy, C.

    2018-02-01

    We present Gemini/GNIRS cross-dispersed near-infrared spectra of 12 nearby early-type galaxies, with the aim of testing commonly used stellar population synthesis models. We select a subset of galaxies from the ATLAS3D sample which span a wide range of ages (single stellar population equivalent ages of 1-15 Gyr) at approximately solar metallicity. We derive star formation histories using four different stellar population synthesis models, namely those of Bruzual & Charlot, Conroy, Gunn & White, Maraston & Strömbäck and Vazdekis et al. We compare star formation histories derived from near-infrared spectra with those derived from optical spectra using the same models. We find that while all models agree in the optical, the derived star formation histories vary dramatically from model to model in the near-infrared. We find that this variation is largely driven by the choice of stellar spectral library, such that models including high-quality spectral libraries provide the best fits to the data, and are the most self-consistent when comparing optically derived properties with near-infrared ones. We also find the impact of age variation in the near-infrared to be subtle, and largely encoded in the shape of the continuum, meaning that the common approach of removing continuum information with a high-order polynomial greatly reduces our ability to constrain ages in the near-infrared.

  2. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  3. MILES extended : Stellar population synthesis models from the optical to the infrared

    NARCIS (Netherlands)

    Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical

  4. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.; Taubman, Matthew S.; Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    2017-05-03

    The complex optical refractive index contains the optical constants, n($\\tilde{u}$)and k($\\tilde{u}$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.

  5. Near-simultaneous optical and infrared spectrophotometry of active galaxies

    International Nuclear Information System (INIS)

    Yates, M.G.; Garden, R.P.

    1989-01-01

    We present optical and infrared spectrophotometry for a sample of eight optically bright quasars, and the broad-line radio galaxy (BLRG) 3C 120. The optical and infrared spectrophotometry is separated by only five weeks, thus we have been able to minimize uncertainties due to variations in the objects. We compare our observed Paα/Hα and Hα/Hβ ratios with a large number of current photoionization models. We find that none of these models are able to reproduce our observed values of Paα/Hα in any of the active galaxies except the quasars 3C 273 and 0736+017. (author)

  6. Visible and Mid-Infrared Gypsum Optical Constants for Modeling of Martian Deposits

    Science.gov (United States)

    Roush, Ted L.; Esposito, Francesca; Rossmann, George R.; Colangeli, Luigi

    2007-08-01

    Introduction: Recent and on-going remote and in situ observations indicate that sulfates are present in significant abundances at various locations on Mars [1-7]. The Mars Reconnaissance Orbiter (MRO) imaging spectrometer (CRISM) is returning hyperspectral data at higher spatial resolution [8] than the OMEGA instrument on the Mars Express Mission [3]. Data from both OMEGA and CRISM have provided spectral evidence for the presence of gypsum and various hydrated sulfates on the Martian surface [e.g. 3-7] Thus, the optical properties of sulfates, in general, are of interest to quantitative interpretation of this increasing volume of remotely sensed data. This is because optical constants describe how a material interacts with electromagnetic radiation and represent the fundamental values used in radiative transfer calculations describing a variety of physical environments. Such environments include atmospheres where aerosols are present, planetary and satellite regoliths, and circumstellar dust clouds. Here we focus upon gypsum because of its applicability due to its identification on Mars. Also, gypsum is a mineral that is readily available in samples sizes that are suitable for study using a variety of spectral measurements. In the infrared (>5 μm) several studies reporting the optical constants of gypsum can be used in evaluating the approach used here. Most importantly, there is a general lack of data regarding the optical constants for gypsum at visible and mid-infrared wavelengths (0.4-5 μm) that are being observed by OMEGA and CRISM. Background: In the infrared, there have been several studies focused at determining the optical constants of gypsum using classical dispersion models [9-11]. These have used a variety of samples including; crystals, compressed pellets of pure materials, and grains suspended in a KBr matrix. Spectral measurements of gypsum, and other sulfates, have existed for about 100 years at visible and mid-infrared wavelengths (0.4-5 μm) [e

  7. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  8. Type Ia Supernova Light Curve Inference: Hierarchical Models for Nearby SN Ia in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.

    2010-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.

  9. Towards the mid-infrared optical biopsy

    DEFF Research Database (Denmark)

    Seddon, Angela B.; Benson, Trevor M.; Sujecki, Slawomir

    2016-01-01

    We are establishing a new paradigm in mid-infrared molecular sensing, mapping and imaging to open up the mid-infrared spectral region for in vivo (i.e. in person) medical diagnostics and surgery. Thus, we are working towards the mid-infrared optical biopsy ('opsy' look at, bio the biology) in situ...... in the body for real-time diagnosis. This new paradigm will be enabled through focused development of devices and systems which are robust, functionally designed, safe, compact and cost effective and are based on active and passive mid-infrared optical fibers. In particular, this will enable early diagnosis...... of a bright mid-infrared wideband source in a portable package as a first step for medical fiber-based systems operating in the mid-infrared. Moreover, mid-infrared molecular mapping and imaging is potentially a disruptive technology to give improved monitoring of the environment, energy efficiency, security...

  10. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  11. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    Science.gov (United States)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  12. Systems engineering and analysis of electro-optical and infrared systems

    CERN Document Server

    Arrasmith, William Wolfgang

    2015-01-01

    Introduction to Electro-optic and Infrared (EO/IR) Systems Engineering?Radiation in the Visible and Infrared Parts of the Electromagnetic SpectrumRadiation SourcesThe Effect of the Atmosphere on Optical PropagationBasic OpticsOptical ModulationThe Detection of Optical RadiationNoise in the Optical Detection ProcessTechnical Performance Measures and Metrics of Optical DetectorsModern Detectors and their Measures of PerformanceThe Effects of Cooling on Optical Detector NoiseSignal and Image ProcessingElectro-Optic and Infrared Systems AnalysisLaser Imaging Systems?Spectral Imaging?LIDAR and LADA

  13. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  14. Infrared and optical observations of Nova Mus 1983

    International Nuclear Information System (INIS)

    Whitelock, P.A.; Carter, B.S.; Feast, M.W.; Glass, I.S.; Laney, D.; Menzies, J.W.

    1984-01-01

    Extensive optical (UBVRI) and infrared (JHKL) photometry of Nova Mus 1983 obtained over a period of 300 days is tabulated. Infrared and optical spectra are described. Although by classical definition this was a fast nova its later development was slower than for typical objects of this class. Surprisingly the development of infrared thermal dust emission did not occur. Throughout the period covered, the infrared emission was characteristic of a bound-free plus free-free plasma continuum with emission lines. (author)

  15. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    International Nuclear Information System (INIS)

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-01-01

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A V and the ratio of total-to-selective dust absorption R V . For SNe with low dust extinction, A V ∼ V ∼ 2.5-2.9, while at high extinctions, A V ∼> 1, low values of R V < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  16. Optical response of thin amorphous films to infrared radiation

    Science.gov (United States)

    Orosco, J.; Coimbra, C. F. M.

    2018-03-01

    We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films but has since been used for many other common materials. We show that the BB model fails to satisfy the established physical criteria. Taking an alternative approach to the model derivation, a physically consistent model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for amorphous alumina (Al2O3 ) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer parameters) than previously proposed permittivity models.

  17. Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    L. Jumpertz

    2016-10-01

    Full Text Available The amount of optical feedback originating from a chalcogenide fiber used to couple light from a mid-infrared quantum cascade laser is evaluated experimentally. Threshold reduction measurements on the fibered laser, combined with an analytical study of a rate equations model of the laser under optical feedback, allow estimating the feedback strength between 11% and 15% depending on the fiber cleavage quality. While this remains below the frontier of the chaotic regime, it is sufficient to deeply modify the optical spectrum of a quantum cascade laser. Hence for applications such as gas spectroscopy, where the shape of the optical spectrum is of prime importance, the use of mid-infrared optical isolators may be necessary for fibered quantum cascade lasers to be fully exploited.

  18. Reststrahlen Band Optics for the Advancement of Far-Infrared Optical Architecture

    Science.gov (United States)

    Streyer, William Henderson

    . Computational models of the emission indicated the samples had significantly higher power efficiency than a blackbody at the same temperature in the same wavelength band. Chapter 5 presents selective thermal emission in the far-infrared from samples of patterned gallium phosphide. The selective absorption of the samples occurs in the material's Reststrahlen band and can be attributed to surface phonon polariton modes. The surfaces of the samples were grated via wet etching to provide the additional momentum necessary for free space photons to couple into and out of the surface phonon polariton modes. Upon heating the samples, selective thermal emission of the surface phonon polariton modes was observed. Chapter 6 investigates a potential means of linking lattice vibrations to free space photons. Lightly doped films of gallium arsenide were grown by molecular beam epitaxy and wet etched with 1D gratings. The light doping served to modify the material's intrinsic permittivity and extend the region of its Reststrahlen band. Though the extension of the region with negative real permittivity was small, it extended beyond the longitudinal optical phonon energy of the material, which stands as the high energy boundary of the unmodified material's Reststrahlen band. Hybrid surface polariton modes were observed at energies near the longitudinal optical phonon energy where they are not supported on the surface of the intrinsic material -- offering a potential bridge between bulk optical phonon populations and free space photons. Chapter 7 presents preliminary results exploring the prospect of exploiting an absorption resonance known as the Berreman mode as a mechanism to link optical phonons to free space photons. The Berreman mode is a strong absorption resonance that occurs near the longitudinal optical phonon energy at moderate angles of incidence in polar semiconductors. Preliminary results demonstrate selective thermal emission consistent with the expected spectral position of the

  19. Infrared Supercontinuum Generation in Optical Fibres

    DEFF Research Database (Denmark)

    Dupont, Sune Vestergaard Lund

    During my PhD studies I have worked with intense lasers and optical fibres. In our conceptual universe the colour of light (wavelength) does not depend on the material in which it propagates. At high intensities however, nonlinear effects change the behaviour of light and rise of new wavelength...... with laser-like intensity is obtained, which otherwise is impossible without the use of more complicated equipment. Until recently, supercontinuum covering the mid-infrared was not possible due to absorption in the silica glass optical fibres are made of. In our project infrared transparent materials...... such as ZBLAN and chalcogenide have been investigated. Using ZBLAN it has been possible to generated a supercontinuum stretching beyond 4200 nm. Supercontinuum generation requires knowledge about the physical properties of the optical fibre in which the pulse-broadening takes place. Consequently thorough...

  20. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  1. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    Science.gov (United States)

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  2. Experimental realization of optical lumped nanocircuits at infrared wavelengths.

    Science.gov (United States)

    Sun, Yong; Edwards, Brian; Alù, Andrea; Engheta, Nader

    2012-01-29

    The integration of radiofrequency electronic methodologies on micro- as well as nanoscale platforms is crucial for information processing and data-storage technologies. In electronics, radiofrequency signals are controlled and manipulated by 'lumped' circuit elements, such as resistors, inductors and capacitors. In earlier work, we theoretically proposed that optical nanostructures, when properly designed and judiciously arranged, could behave as nanoscale lumped circuit elements--but at optical frequencies. Here, for the first time we experimentally demonstrate a two-dimensional optical nanocircuit at mid-infrared wavelengths. With the guidance of circuit theory, we design and fabricate arrays of Si3N4 nanorods with specific deep subwavelength cross-sections, quantitatively evaluate their equivalent impedance as lumped circuit elements in the mid-infrared regime, and by Fourier transform infrared spectroscopy show that these nanostructures can indeed function as two-dimensional optical lumped circuit elements. We further show that the connections among nanocircuit elements, in particular whether they are in series or in parallel combination, can be controlled by the polarization of impinging optical signals, realizing the notion of 'stereo-circuitry' in metatronics-metamaterials-inspired optical circuitry.

  3. Inverted cones grating for flexible metafilter at optical and infrared frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Jean-Baptiste; Le Rouzo, Judikaël; Escoubas, Ludovic [Aix-Marseille Université, IM2NP, CNRS-UMR 7334, Domaine Universitaire de Saint-Jérôme, Service 231, 13397 Marseille Cedex 20 (France); Brissonneau, Vincent; Dubarry, Christophe [CEA-LITEN DTNM, 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France); Ferchichi, Abdelkerim; Gourgon, Cécile [LTM CNRS, Laboratoire des Technologies de la Microélectronique 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France); Berginc, Gérard [Thales Optronique S.A., 2 Avenue Gay Lussac, 78990 Elancourt (France)

    2014-02-24

    By combining the antireflective properties from gradual changes in the effective refractive index and cavity coupling from cone gratings and the efficient optical behavior of a tungsten film, a flexible filter showing very broad antireflective properties from the visible to short wavelength infrared region and, simultaneously, a mirror-like behavior in the mid-infrared wavelength region and long-infrared wavelength region has been conceived. Nanoimprint technology has permitted the replication of inverted cone patterns on a large scale on a flexible polymer, afterwards coated with a thin tungsten film. This optical metafilter is of great interest in the stealth domain where optical signature reduction from the optical to short wavelength infrared region is an important matter. As it also acts as selective thermal emitter offering a good solar-absorption/infrared-emissivity ratio, interests are found as well for solar heating applications.

  4. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    Science.gov (United States)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  5. Optics Alignment of a Balloon-Borne Far-Infrared Interferometer BETTII

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Sampler, Henry; Juanola Parramon, Roser; Veach, Todd; Fixsen, Dale; Vila Hernandez De Lorenzo, Jor; Silverberg, Robert F.

    2017-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-m baseline far-infrared (FIR: 30 90 micrometer) interferometer providing spatially resolved spectroscopy. The initial scientific focus of BETTII is on clustered star formation, but this capability likely has a much broader scientific application.One critical step in developing an interferometer, such as BETTII, is the optical alignment of the system. We discuss how we determine alignment sensitivities of different optical elements on the interferogram outputs. Accordingly, an alignment plan is executed that makes use of a laser tracker and theodolites for precise optical metrology of both the large external optics and the small optics inside the cryostat. We test our alignment on the ground by pointing BETTII to bright near-infrared sources and obtaining their images in the tracking detectors.

  6. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  7. Infrared Model Spectra for Evolving Red Supergiants

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1993-06-01

    Full Text Available The space and ground based infrared spectra of red supergiants are modeled and arranged in order of their evolutionary status with their theoretical model parameters. The chemical compositions of the dust shells around red supergiants are affected by the nuclear reaction and dredge-up processes of the cental stars. The processes are sensitively dependent on the initial mass, the initial chemical composition, and the evolutionary status. Miras, infrared carbon stars, and OH/IR stars have close link in their evolution in manu aspects, i,e., the chemical composition, the optical depths and the mass loss rates. The evolutionary tracks for the three classes of red supergiants on infrared two-color diagrams have been made from model calculations and IRAS observational data.

  8. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    Science.gov (United States)

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  9. Athermalization of infrared dual field optical system based on wavefront coding

    Science.gov (United States)

    Jiang, Kai; Jiang, Bo; Liu, Kai; Yan, Peipei; Duan, Jing; Shan, Qiu-sha

    2017-02-01

    Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40° to 60°. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.

  10. The Andromeda Optical and Infrared Disk Survey

    Science.gov (United States)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  11. Optical analysis and alignment applications using the infrared Smartt interferometer

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Bolen, P.D.; Liberman, I.; Seery, B.D.

    1981-01-01

    The possibility of using the infrared Smartt interferometer for optical analysis and alignment of infrared laser systems has been discussed previously. In this paper, optical analysis of the Gigawatt Test Facility at Los Alamos, as well as a deformable mirror manufactured by Rocketdyne, are discussed as examples of the technique. The possibility of optically characterizing, as well as aligning, pulsed high energy laser systems like Helios and Antares is discussed in some detail

  12. Simultaneous optical and infrared polarization measurements of blazars

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Hyland, A.R.

    1986-01-01

    Measurements are presented of the polarization and flux of a sample of 28 blazars (21 BL Lacs and 7 OVV quasars) at optical and near-infrared wavelengths, with repeated observations for some objects. For 20 objects, these are the first reported polarization measurements in either the optical or infrared, and for most of them the first simultaneous measurements at these wavelengths. Out of a total of 42 observations a spectral dependence of polarization level and position angle is found, although not necessarily occurring together, on 15 occasions. (author)

  13. Models of infrared emission from dusty and diffuse H II regions

    International Nuclear Information System (INIS)

    Aannestad, P.A.

    1978-01-01

    Models for the infrared emission from amorphous core-mantle dust within diffuse (n/sub e/ 3 cm -3 ) H II regions with neutral shells that are optically thin in the infrared have been calculated. The icy mantles sublimate only within a fractional radius of 0.2--0.5, affecting the overall gas-to-dust ratio only slightly. A region with variable grain composition may have a much smaller infrared luminosity than a similar region with uniform grain properties. Calculations of the total infrared luminosity, the relative contribution by Lα photons, the infrared spectral distribution, and the size of the dust-depleted regions are presented as functions of the ultraviolet optical depths in the ionized and neutral regions and for stellar temperatures of 35,000 and 48,000 K. Comparison with observations indicate that at least 20% of the Lyman-continuum photons are absorbed by the dust, and that the dust optical depth in the Lyman continuum is likely to be of the order of unity. For core-mantle grains most of the infrared energy is emitted between 30 and 70 μm, relatively independent of whether the dust is within or outside the H II region. Amorphous silicate particles tend to emit more energy below 30 μm, but also emit efficiently at far-infrared wavelengths. In order to illustrate the model calculations, we present infrared spectra for the Orion A region and compare them with observed fluxed, accounting for beam-width effects. A reasonable agreement is obtained with most of the near- to middle-infrared observations if the total ultraviolet optical depth is about unity and about equally divided between the ionized region and an outside neutral shell. Intensity profiles for Orion A are presented for wavelengths in the ragne 20--1000 μm, and show a strong increase in width beyond 20 μm

  14. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  15. 77 FR 27081 - II-VI, Incorporated, Infrared Optics-Saxonburg Division, Saxonburg, Pennsylvania; Notice of...

    Science.gov (United States)

    2012-05-08

    ..., Infrared Optics--Saxonburg Division, Saxonburg, Pennsylvania; Notice of Affirmative Determination Regarding... Assistance (TAA) applicable to workers and former workers of II-VI, Incorporated, Infrared Optics--Saxonburg...). The workers were engaged in employment related to the production of infrared and CO 2 laser optics...

  16. Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC

    Science.gov (United States)

    Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua

    2018-05-01

    The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.

  17. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  18. 77 FR 21586 - II-VI, Incorporated, Infrared Optics-Saxonburg Division, Saxonburg, PA; Notice of Affirmative...

    Science.gov (United States)

    2012-04-10

    ..., Infrared Optics--Saxonburg Division, Saxonburg, PA; Notice of Affirmative Determination Regarding... Assistance (TAA) applicable to workers and former workers of II-VI, Incorporated, Infrared Optics--Saxonburg...). The workers were engaged in employment related to the production of infrared and CO 2 laser optics...

  19. Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Yen

    2013-09-01

    Full Text Available We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a γ-ray emitting millisecond pulsar (MSP in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the γ-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of γ-ray emitting pulsars -the ‘black widows’- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

  20. Rapid infrared and optical variability in the bright quasar 3C273

    International Nuclear Information System (INIS)

    Courvoisier, T.J.-L.; Robson, E.I.; Hughes, D.H.; Bouchet, P.; Schwarz, H.E.; Krisciunas, K.

    1988-01-01

    We have observed variations by a factor of two in the infrared flux from the bright quasar 3C273 on a timescale as short as one day. In February 1988, the behaviour of the source changed from having a stable infrared flux and slow optical variations to a state characterized by recurrent infrared and optical flaring. The optical variations were of several per cent per day, changing from increase to decrease approximately every week. The amplitude of the repeated optical flares was 30-40%. The data are consistent with re-injection/acceleration of electrons followed by rapid cooling. The inferred magnetic field is 0.7 gauss and the data are marginally consistent with no relativistic beaming. (author)

  1. Extending pure luminosity evolution models into the mid-infrared, far-infrared and submillimetre

    Science.gov (United States)

    Hill, Michael D.; Shanks, Tom

    2011-07-01

    Simple pure luminosity evolution (PLE) models, in which galaxies brighten at high redshift due to increased star formation rates (SFRs), are known to provide a good fit to the colours and number counts of galaxies throughout the optical and near-infrared. We show that optically defined PLE models, where dust reradiates absorbed optical light into infrared spectra composed of local galaxy templates, fit galaxy counts and colours out to 8 μm and to at least z≈ 2.5. At 24-70 μm, the model is able to reproduce the observed source counts with reasonable success if 16 per cent of spiral galaxies show an excess in mid-IR flux due to a warmer dust component and a higher SFR, in line with observations of local starburst galaxies. There remains an underprediction of the number of faint-flux, high-z sources at 24 μm, so we explore how the evolution may be altered to correct this. At 160 μm and longer wavelengths, the model fails, with our model of normal galaxies accounting for only a few percent of sources in these bands. However, we show that a PLE model of obscured AGN, which we have previously shown to give a good fit to observations at 850 μm, also provides a reasonable fit to the Herschel/BLAST number counts and redshift distributions at 250-500 μm. In the context of a ΛCDM cosmology, an AGN contribution at 250-870 μm would remove the need to invoke a top-heavy IMF for high-redshift starburst galaxies.

  2. The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach

    International Nuclear Information System (INIS)

    Dehghani, Hamid; Brooksby, Ben; Vishwanath, Karthik; Pogue, Brian W; Paulsen, Keith D

    2003-01-01

    Near-infrared (NIR) tomography is a technique used to measure light propagation through tissue and generate images of internal optical property distributions from boundary measurements. Most popular applications have concentrated on female breast imaging, neonatal and adult head imaging, as well as muscle and small animal studies. In most instances a highly scattering medium with a homogeneous refractive index is assumed throughout the imaging domain. Using these assumptions, it is possible to simplify the model to the diffusion approximation. However, biological tissue contains regions of varying optical absorption and scatter, as well as varying refractive index. In this work, we introduce an internal boundary constraint in the finite element method approach to modelling light propagation through tissue that accounts for regions of different refractive indices. We have compared the results to data from a Monte Carlo simulation and show that for a simple two-layered slab model of varying refractive index, the phase of the measured reflectance data is significantly altered by the variation in internal refractive index, whereas the amplitude data are affected only slightly

  3. Modeling of the shape of infrared stimulated luminescence signals in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Jain, Mayank; Murray, Andrew S.

    2012-01-01

    This paper presents a new empirical model describing infrared (IR) stimulation phenomena in feldspars. In the model electrons from the ground state of an electron trap are raised by infrared optical stimulation to the excited state, and subsequently recombine with a nearest-neighbor hole via...... corresponds to a fast rate of recombination processes taking place along the infrared stimulated luminescence (IRSL) curves. The subsequent decay of the simulated IRSL signal is characterized by a much slower recombination rate, which can be described by a power-law type of equation.Several simulations...

  4. 77 FR 36579 - II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, PA; Leased Workers From Adecco, Carol...

    Science.gov (United States)

    2012-06-19

    ...., Infrared Optics-Saxonburg Division, Saxonburg, PA; Leased Workers From Adecco, Carol Harris, Unlimited Staffing, and Staffmark, Working On-Site at II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, PA... workers and former workers of II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, Pennsylvania...

  5. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    OpenAIRE

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protec...

  6. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  7. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  8. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  9. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  10. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1986-02-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  11. Electrowetting Variable Optics for Visible and Infrared Applications

    Science.gov (United States)

    Watson, Alexander Maxwell

    Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material

  12. Development of Infrared Phase Closure Capability in the Infrared-Optical Telescope Array (IOTA)

    Science.gov (United States)

    Traub, Wesley A.

    2002-01-01

    We completed all major fabrication and testing for the third telescope and phase-closure operation at the Infrared-Optical Telescope Array (IOTA) during this period. In particular we successfully tested the phase-closure operation, using a laboratory light source illuminating the full delay-line optical paths, and using an integrated-optic beam combiner coupled to our Picnic-detector camera. This demonstration is an important and near-final milestone achievement. As of this writing, however, several tasks yet remain, owing to development snags and weather, so the final proof of success, phase-closure observation of a star, is now expected to occur in early 2002, soon after this report has been submitted.

  13. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of Nanostructured Antireflection Coatings for Infrared and Electro-Optical Systems

    Directory of Open Access Journals (Sweden)

    Gopal G. Pethuraja

    2017-07-01

    Full Text Available Electro-optic infrared technologies and systems operating from ultraviolet (UV to long-wave infrared (LWIR spectra are being developed for a variety of defense and commercial systems applications. Loss of a significant portion of the incident signal due to reflection limits the performance of electro-optic infrared (IR sensing systems. A critical technology being developed to overcome this limitation and enhance the performance of sensing systems is advanced antireflection (AR coatings. Magnolia is actively involved in the development and advancement of nanostructured AR coatings for a wide variety of defense and commercial applications. Ultrahigh AR performance has been demonstrated for UV to LWIR spectral bands on various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings have been fabricated using a nanomanufacturable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of optical components and sensor substrates coated with AR structures have been measured and the process parameters fine-tuned to achieve a predicted high level of performance. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts on the development of nanostructured AR coatings on IR substrates.

  15. Infrared and optical light curves of EX Hydrae and VW Hydri

    International Nuclear Information System (INIS)

    Sherrington, M.R.; Lawson, P.A.; King, A.R.; Jameson, R.F.

    1980-01-01

    Optical and infrared light curves of EX Hya (V and K) and VW Hyi (J and K) are presented. The infrared colours imply very large discs for these systems. It is also found for EX Hya that the structure of the light curves is non-repeatable. (author)

  16. Optical system design with common aperture for mid-infrared and laser composite guidance

    Science.gov (United States)

    Zhang, Xuanzhi; Yang, Zijian; Sun, Ting; Yang, Huamei; Han, Kunye; Hu, Bo

    2017-02-01

    When the field of operation of precision strike missiles is more and more complicated, autonomous seekers will soon encounter serious difficulties, especially with regard to low signature targets and complex scenarios. So the dual-mode sensors combining an imaging sensor with a semi-active laser seeker are conceived to overcome these specific problems. Here the sensors composed a dual field of view mid-infrared thermal imaging camera and a laser range finder have the common optical aperture which produced the minization of seeker construction. The common aperture optical systems for mid-infrared and laser dual-mode guildance have been developed, which could meet the passive middle infrared high-resolution imaging and the active laser high-precision indication and ranging. The optical system had good image quality, and fulfilled the performance requirement of seeker system. The design and expected performance of such a dual-mode optical system will be discussed.

  17. Optical characterization of semiconductors infrared, Raman, and photoluminescence spectroscopy

    CERN Document Server

    Perkowitz, Sidney

    1993-01-01

    This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial sci

  18. Infrared spectromicroscopy and magneto-optical imaging stations at SPring-8

    CERN Document Server

    Kimura, S; Sada, T; Okuno, M; Matsunami, M; Shinoda, K; Kimura, H; Moriwaki, T; Yamagata, M; Kondo, Y; Yoshimatsu, Y; Takahashi, T; Fukui, K; Kawamoto, T; Ishikawa, T

    2001-01-01

    At the BL43IR of SPring-8, infrared microanalysis on various kinds of solid specimens under multiple environments with a spatial resolution smaller than 10 mu m in diameter is planned in the infrared region. In order to perform such analysis, two different stations, a multipurpose spectromicroscopy apparatus and a magneto-optical imaging one have been constructed. Measurements on the spatial two-dimensional cross-section of the infrared beam at the spectromicroscopy station have proven that the stations have a good prospective feature in the performance.

  19. FY 2006 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  20. Infrared-active optical phonons in LiFePO4 single crystals

    Science.gov (United States)

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.

    2017-07-01

    Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.

  1. The optical system of the proposed Chinese 12-m optical/infrared telescope

    Science.gov (United States)

    Su, Ding-qiang; Liang, Ming; Yuan, Xiangyan; Bai, Hua; Cui, Xiangqun

    2017-08-01

    The lack of a large-aperture optical/infrared telescope has seriously affected the development of astronomy in China. In 2016, the authors published their concept study and suggestions for a 12-m telescope optical system. This article presents the authors' further research and some new results. Considering that this telescope should be a general-purpose telescope for a wide range of scientific goals and could be used for frontier scientific research in the future, the authors studied and designed a variety of 12-m telescope optical systems for comparison and final decision-making. In general, we still adopt our previous configuration, but the Nasmyth and prime-focus corrector systems have been greatly improved. In this article, the adaptive optics is given special attention. Ground-layer adaptive optics (GLAO) is adopted. It has a 14-arcmin field of view. The secondary mirror is used as the adaptive optical deformable mirror. Obviously, not all the optical systems in this telescope configuration will be used or constructed at the same stage. Some will be for the future and some are meant for research rather than for construction.

  2. Miniaturized multi channel infrared optical gas sensor system

    Science.gov (United States)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  3. Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy

    Science.gov (United States)

    Xie, Hongbo; Ren, Delun; Wang, Chao; Mao, Chensheng; Yang, Lei

    2018-02-01

    Ultrafast time stretch imaging offers unprecedented imaging speed and enables new discoveries in scientific research and engineering. One challenge in exploiting time stretch imaging in mid-infrared is the lack of high-quality diffractive optical elements (DOEs), which encode the image information into mid-infrared optical spectrum. This work reports the design and optimization of mid-infrared DOE with high diffraction-efficiency, broad bandwidth and large field of view. Using various typical materials with their refractive indices ranging from 1.32 to 4.06 in ? mid-infrared band, diffraction efficiencies of single-layer and double-layer DOEs have been studied in different wavelength bands with different field of views. More importantly, by replacing the air gap of double-layer DOE with carefully selected optical materials, one optimized ? triple-layer DOE, with efficiency higher than 95% in the whole ? mid-infrared window and field of view greater than ?, is designed and analyzed. This new DOE device holds great potential in ultrafast mid-infrared time stretch imaging and spectroscopy.

  4. Optical and near-infrared imaging of faint Gigahertz Peaked Spectrum sources

    NARCIS (Netherlands)

    Snellen, IAG; Schilizzi, RT; de Bruyn, AG; Miley, GK; Rottgering, HJA; McMahon, RG; Fournon, IP

    1998-01-01

    A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R - I and R - K colours of the faint optical counterparts are as

  5. FY 2005 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and

  6. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  7. Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)

    Science.gov (United States)

    Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.

  8. Near-Infrared Diffuse Optical Tomography

    Directory of Open Access Journals (Sweden)

    A. H. Hielscher

    2002-01-01

    Full Text Available Diffuse optical tomography (DOT is emerging as a viable new biomedical imaging modality. Using near-infrared (NIR light, this technique probes absorption as well as scattering properties of biological tissues. First commercial instruments are now available that allow users to obtain cross-sectional and volumetric views of various body parts. Currently, the main applications are brain, breast, limb, joint, and fluorescence/bioluminescence imaging. Although the spatial resolution is limited when compared with other imaging modalities, such as magnetic resonance imaging (MRI or X-ray computerized tomography (CT, DOT provides access to a variety of physiological parameters that otherwise are not accessible, including sub-second imaging of hemodynamics and other fast-changing processes. Furthermore, DOT can be realized in compact, portable instrumentation that allows for bedside monitoring at relatively low cost. In this paper, we present an overview of current state-of-the -art technology, including hardware and image-reconstruction algorithms, and focus on applications in brain and joint imaging. In addition, we present recent results of work on optical tomographic imaging in small animals.

  9. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  10. THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA

    International Nuclear Information System (INIS)

    Schirmer, M.

    2013-01-01

    The last 15 years have seen a surge of new multi-chip optical and near-IR imagers. While some of them are accompanied by specific reduction pipelines, user-friendly and generic reduction tools are uncommon. In this paper I introduce THELI, an easy-to-use graphical interface driving an end-to-end pipeline for the reduction of any optical, near-IR, and mid-IR imaging data. The advantages of THELI when compared to other approaches are highlighted. Combining a multitude of processing algorithms and third party software, THELI provides researchers with a single, homogeneous tool. A short learning curve ensures quick success for new and more experienced observers alike. All tasks are largely automated, while at the same time a high level of flexibility and alternative reduction schemes ensure that widely different scientific requirements can be met. Over 90 optical and infrared instruments at observatories world-wide are pre-configured, while more can be added by the user. The Appendices contain three walk-through examples using public data (optical, near-IR, and mid-IR). Additional extensive documentation for training and troubleshooting is available online

  11. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Optical nonlinearities and ultrafast all-optical switching of m-plane GaN in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yu; Zhou, Feng; Yang, Junyi; Yang, Yong [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Xiao, Zhengguo; Wu, Xingzhi [Department of Physics, Harbin Institute of Technology, 150001 Harbin (China); Song, Yinglin, E-mail: ylsong@hit.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Department of Physics, Harbin Institute of Technology, 150001 Harbin (China)

    2015-06-22

    We reported a systematic investigation on the three-photon absorption (3PA) spectra and wavelength dispersion of Kerr refraction of bulk m-plane GaN crystal with both polarization E⊥c and E//c by femtosecond Z-scan technique in the near-infrared region from 760 to 1030 nm. Both 3PA spectra and Kerr refraction dispersion were in good agreement with two-band models. The calculated nonlinear figure of merit and measured ultrafast nonlinear refraction dynamics via femtosecond pump-probe with phase object method revealed that m-plane GaN would be a promising candidate for ultrafast all-optical switching and autocorrelation applications at telecommunication wavelengths.

  13. Two-color mid-infrared spectroscopy of optically doped semiconductors

    International Nuclear Information System (INIS)

    Forcales, M.; Klik, M.A.J.; Vinh, N.Q.; Phillips, J.; Wells, J-P.R.; Gregorkiewicz, T.

    2003-01-01

    Optical doping is an attractive method to tailor photonic properties of semiconductor matrices for development of solid-state electroluminescent structures. For practical applications, thermal stability of emission obtained from these materials is required. Thermal processes can be conveniently investigated by two-color spectroscopy in the visible and the mid-infrared. Free-electron laser is a versatile high-brilliance source of radiation in the latter spectral range. In this contribution, we briefly review some of the results obtained recently by the two-color spectroscopy with a free-electron laser in different semiconductors optically doped with rare earth and transition metal ions. Effects leading to both enhancement and quenching of emission from optical dopants will be presented. For InP:Yb, Si:Er, and Si:Cu activation of particular optically induced non-radiative recombination paths will be shown. For Si:Er and Si:Ag, observation of a low temperature optical memory effect will be reported

  14. A robust quantitative near infrared modeling approach for blend monitoring.

    Science.gov (United States)

    Mohan, Shikhar; Momose, Wataru; Katz, Jeffrey M; Hossain, Md Nayeem; Velez, Natasha; Drennen, James K; Anderson, Carl A

    2018-01-30

    This study demonstrates a material sparing Near-Infrared modeling approach for powder blend monitoring. In this new approach, gram scale powder mixtures are subjected to compression loads to simulate the effect of scale using an Instron universal testing system. Models prepared by the new method development approach (small-scale method) and by a traditional method development (blender-scale method) were compared by simultaneously monitoring a 1kg batch size blend run. Both models demonstrated similar model performance. The small-scale method strategy significantly reduces the total resources expended to develop Near-Infrared calibration models for on-line blend monitoring. Further, this development approach does not require the actual equipment (i.e., blender) to which the method will be applied, only a similar optical interface. Thus, a robust on-line blend monitoring method can be fully developed before any large-scale blending experiment is viable, allowing the blend method to be used during scale-up and blend development trials. Copyright © 2017. Published by Elsevier B.V.

  15. Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling

    KAUST Repository

    Dabirian, Ali

    2017-02-15

    High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.

  16. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  17. Two-dimensional spectroscopy at infrared and optical frequencies

    OpenAIRE

    Hochstrasser, Robin M.

    2007-01-01

    This Perspective on multidimensional spectroscopy in the optical and infrared spectral regions focuses on the principles and the scientific and technical challenges facing these new fields. The methods hold great promise for advances in the visualization of time-dependent structural changes in complex systems ranging from liquids to biological assemblies, new materials, and fundamental physical processes. The papers in this special feature on multidimensional spectroscopy in chemistry, physic...

  18. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  19. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  20. Feasibility of infrared Earth tracking for deep-space optical communications.

    Science.gov (United States)

    Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G

    2012-01-01

    Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America

  1. STELLAR POPULATIONS IN MEDIUM REDSHIFT CLUSTERS .2. OPTICAL-INFRARED PHOTOMETRY AND SPECTRA

    NARCIS (Netherlands)

    PICKLES, AJ; VANDERKRUIT, PC

    1991-01-01

    We present optical and infrared photometry (BV RI, J H K) and spectra of galaxies in 6 medium redshift clusters covering the redshift range 0.19 less-than-or-equal-to z less-than-or-equal-to 0.4. The array photometry is used to note the radial distribution of the cluster galaxies with optical and

  2. Infrared spectrophotometry and radiative transfer in optically thick circumstellar dust envelopes

    International Nuclear Information System (INIS)

    Merrill, K.M.

    1976-01-01

    The Two-Micron Sky Survey of Neugebauer and Leighton and, more recently, the AFCRL Infrared Sky Survey of Walker and Price have detected numerous compact, isolated, bright infrared sources which are not identified with previously cataloged stars. Observations of many such objects suggest that extensive circumstellar dust envelopes modify the flux from a central source. The present investigations employ broad bandpass photometry at lambda lambda 1.65 μm to 12.5 μm and narrow bandpass spectrophotometry (Δ lambda/lambda approximately 0.015) at lambda lambda 2-4 μm and lambda lambda 8-13 μm to determine the properties of a large sample of such infrared sources. Infrared spectrophotometry can clearly differentiate between normal stars of spectral types M(''oxygen-rich'') and C (''carbon-rich'') on the basis of characteristic absorption bands arising in cool stellar atmospheres. Most of the 2 μ Sky Survey and many of the AFCRL Sky Survey sources appear to be stars of spectral types M and C which are differentiated from normal cool comparison stars only by the presence of extensive circumstellar dust envelopes. Due to the large optical depth of the envelopes, the flux from the star and from the dust cannot be simply separated. Hence solutions of radiative transfer through spherically symmetric envelopes of arbitrary optical depth were generated by a generalized computer code which employed opacities of real dust

  3. The Crab pulsar and its pulsar-wind nebula in the optical and infrared

    Science.gov (United States)

    Tziamtzis, A.; Lundqvist, P.; Djupvik, A. A.

    2009-12-01

    Aims. We investigate the emission mechanism and evolution of pulsars that are associated with supernova remnants. Methods: We used imaging techniques in both the optical and near infrared, using images with very good seeing (≤0.primeprime6) to study the immediate surroundings of the Crab pulsar. In the case of the infrared, we took two data sets with a time window of 75 days to check for variability in the inner part of the Crab nebula. We also measure the spectral indices of all these wisps, the nearby knot, and the interwisp medium, using our optical and infrared data. We then compared the observational results with the existing theoretical models. Results: We report variability in the three nearby wisps located to the northwest of the pulsar and also in a nearby anvil wisp in terms of their structure, position, and emissivity within the time window of 75 days. All the wisps display red spectra with similar spectral indices (α_ν = -0.58 ± 0.08, α_ν = -0.63 ± 0.07, α_ν = -0.53 ± 0.08) for the northwest triplet. The anvil wisp (anvil wisp 1) has a spectral index of α_ν = -0.62 ± 0.10. Similarly, the interwisp medium regions also show red spectra similar to those of the wisps, with the spectral index being α_ν = -0.61 ± 0.08, α_ν = -0.50 ± 0.10, while the third interwisp region has a flatter spectrum with spectral α_ν = -0.49 ± 0.10. The inner knot has a spectral index of α_ν = -0.63 ± 0.02. Also, based on archival HST data and our IR data, we find that the inner knot remains stationary for a time period of 13.5 years. The projected average velocity relative to the pulsar for this period is ≲8 ~km s-1. Conclusions: By comparing the spectral indices of the structures in the inner Crab with the current theoretical models, we find that the Del Zanna et al. model for the synchrotron emission fits our observations, although the spectral index is at the flatter end of their modelled spectra. Based on observations made with the Nordic Optical

  4. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.

    Science.gov (United States)

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2016-04-04

    Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide

  5. Probing evolutionary population synthesis models in the near infrared with early-type galaxies

    Science.gov (United States)

    Dahmer-Hahn, Luis Gabriel; Riffel, Rogério; Rodríguez-Ardila, Alberto; Martins, Lucimara P.; Kehrig, Carolina; Heckman, Timothy M.; Pastoriza, Miriani G.; Dametto, Natacha Z.

    2018-06-01

    We performed a near-infrared (NIR; ˜1.0 -2.4 μm) stellar population study in a sample of early-type galaxies. The synthesis was performed using five different evolutionary population synthesis libraries of models. Our main results can be summarized as follows: low-spectral-resolution libraries are not able to produce reliable results when applied to the NIR alone, with each library finding a different dominant population. The two newest higher resolution models, on the other hand, perform considerably better, finding consistent results to each other and to literature values. We also found that optical results are consistent with each other even for lower resolution models. We also compared optical and NIR results and found out that lower resolution models tend to disagree in the optical and in the NIR, with higher fraction of young populations in the NIR and dust extinction ˜1 mag higher than optical values. For higher resolution models, optical and NIR results tend to agree much better, suggesting that a higher spectral resolution is fundamental to improve the quality of the results.

  6. Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS). ATTIREOIS sensor payload consists of two sets of...

  7. Luminosity dependence in the ratio of X-ray to infrared emission of QSOs

    International Nuclear Information System (INIS)

    Worrall, D.M.

    1987-01-01

    The correlation of X-ray and near-infrared luminosity is studied for a sample of radio-quiet QSOs. The X-ray to infrared ratio is found to decrease as the infrared luminosity increases. No preference is found between the correlations of X-ray luminosity with optical or infrared luminosity. This implies that optical and infrared emission are equally good predictors of X-ray emission. Source models which directly link infrared and X-ray emission are discussed, and a preference is found for a specific synchrotron self-Compton model. This model predicts the correct luminosity dependence of the X-ray to infrared ratio if certain conditions apply. 55 references

  8. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    Science.gov (United States)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    visible spectrum would hinder the projected light beam since a laser with wavelength of 532 nm was used as the coherent light source. Experimentations were successful, but only with mitigated efficiency for shearography [2]. The thermal response was the fastest and it was possible to fully locate all defects. For shearography, the available equipment forced us to restrict the area of observation to only one defect at a time (roughly 100 cm²). Numerical models were designed based on the multiple sample tested in the experimental step of the study. Using the COMSOL© finite elements modeling software, numerous simulations yielded results in accordance with experimental data. Different types of defect could be modeled and showed that both shearography and thermography have different sensibility in function of the nature of the defect. Furthermore, analysis of the simulated results demonstrated a relation between the contrast evolution of the temperature and displacement field. In the near future, we expect to make several improvement to our experimental setup. As for the numerical model, some small disparities between the theoretical and experimental results still remain to be addressed. The numerical model could be improved but to do so it requires to raise the shearographic measurements sampling rate close to the one used for infrared thermography. Once this issue will be resolved, it will be possible to use experimental data to refine the numerical model. So, accurate models will be helpful to optimize the overall efficiency of the coupling of thermal shearography and active infrared thermography for in situ NDT application. References [1] Y.Y. Hung, C.Y. Liand, Image-shearing camera for direct measurement of surface strains, Applied Optics, Vol. 18, n°7, pages 1046-1051, 1979 [2] L-D. Théroux, J. Dumoulin, X. Maldague, Square heating applied to shearography and active infrared thermography measurements coupling: form feasibility test in laboratory to numerical study

  9. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    International Nuclear Information System (INIS)

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-01-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity

  10. Image processing system design for microcantilever-based optical readout infrared arrays

    Science.gov (United States)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  11. THE HIGH A{sub V} Quasar Survey: Reddened Quasi-Stellar Objects selected from optical/near-infrared photometry. II

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Fynbo, J. P. U.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Kangas, T.; Pursimo, T.; Smirnova, O. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Saturni, F. G. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö (Finland)

    2015-03-15

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  12. Design of a sector bowtie nano-rectenna for optical power and infrared detection

    Science.gov (United States)

    Wang, Kai; Hu, Haifeng; Lu, Shan; Guo, Lingju; He, Tao

    2015-10-01

    We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiO x -Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5-30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

  13. Optical and near-infrared study of the AM Herculis-type binary CW 1103 + 254

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J [Anglo-Australian Observatory, Epping (Australia); Watts, D J [Tasmania Univ., Sandy Bay (Australia). Dept. of Physics; Sherrington, M R [Leicester Univ. (UK). Dept. of Astronomy

    1985-07-15

    The AM Herculis-type binary CW 1103+254 has been observed using optical and near-infrared photometry and polarimetry, and optical spectroscopy and spectropolarimetry. It is found that from such a set of observations it is relatively easy to distinguish all the main components of the system.

  14. [Rapid discriminating hogwash oil and edible vegetable oil using near infrared optical fiber spectrometer technique].

    Science.gov (United States)

    Zhang, Bing-Fang; Yuan, Li-Bo; Kong, Qing-Ming; Shen, Wei-Zheng; Zhang, Bing-Xiu; Liu, Cheng-Hai

    2014-10-01

    In the present study, a new method using near infrared spectroscopy combined with optical fiber sensing technology was applied to the analysis of hogwash oil in blended oil. The 50 samples were a blend of frying oil and "nine three" soybean oil according to a certain volume ratio. The near infrared transmission spectroscopies were collected and the quantitative analysis model of frying oil was established by partial least squares (PLS) and BP artificial neural network The coefficients of determina- tion of calibration sets were 0.908 and 0.934 respectively. The coefficients of determination of validation sets were 0.961 and 0.952, the root mean square error of calibrations (RMSEC) was 0.184 and 0.136, and the root mean square error of predictions (RMSEP) was all 0.111 6. They conform to the model application requirement. At the same time, frying oil and qualified edible oil were identified with the principal component analysis (PCA), and the accurate rate was 100%. The experiment proved that near infrared spectral technology not only can quickly and accurately identify hogwash oil, but also can quantitatively detect hog- wash oil. This method has a wide application prospect in the detection of oil.

  15. Seeing in a different light—using an infrared camera to teach heat transfer and optical phenomena

    Science.gov (United States)

    Pei Wong, Choun; Subramaniam, R.

    2018-05-01

    The infrared camera is a useful tool in physics education to ‘see’ in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.

  16. Seeing in a Different Light--Using an Infrared Camera to Teach Heat Transfer and Optical Phenomena

    Science.gov (United States)

    Wong, Choun Pei; Subramaniam, R.

    2018-01-01

    The infrared camera is a useful tool in physics education to 'see' in the infrared. In this paper, we describe four simple experiments that focus on phenomena related to heat transfer and optics that are encountered at undergraduate physics level using an infrared camera, and discuss the strengths and limitations of this tool for such purposes.

  17. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K., E-mail: pkdatta.iitkgp@gmail.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-07-07

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp{sup 2}-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp{sup 2} and sp{sup 3}-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm{sup 2}) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm{sup 2} to 302 GW/cm{sup 2}). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm{sup 2} for GO, and ∼194 GW/cm{sup 2} for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  18. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    International Nuclear Information System (INIS)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K.

    2016-01-01

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp"2-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp"2 and sp"3-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm"2) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm"2 to 302 GW/cm"2). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm"2 for GO, and ∼194 GW/cm"2 for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  19. Electronic, optical, infrared, and elastic properties of KCdCO3F from first principles

    Science.gov (United States)

    Huang, Xue-Qian; Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Lv, Zhen-Long; Duan, Man-Yi

    2018-05-01

    KCdCO3F is a newly synthesized promising ultraviolet nonlinear optical crystal, but its structure is disputed and its fundamental properties have not been well studied. Here our first-principles study indicates that the structure with the space group P 6 bar c2 is energetically more stable than the P 6 bar m2 phase. We systematically investigated its electronic, optical, vibrational, infrared, and elastic properties. The results reveal that KCdCO3F is a direct-band-gap insulator with rather flat bands below the Fermi level. Analyses of its partial density of states revealed that the top (bottom) of its valence (conduction) band is formed by the O 2p (Cd 5s) orbital. It is a negative uniaxial crystal with ionic-covalent nature. Both infrared-active and Raman-active modes exist at its Brillouin zone center, and ions contribute more to its static dielectric constants. Its optical spectra in the visual and infrared ranges were studied, and their origins were revealed. Calculations indicate that KCdCO3F is mechanically stable but anisotropic since it is more vulnerable to shear stress and is easy to cleave along the c axis.

  20. High spectral resolution infrared observations of V1057 Cygni

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.

    1987-01-01

    High-resolution near-infrared spectra of V1057 Cygni obtained in 1986 with the KPNO 4-m Fourier transform spectrometer provide support for a previously proposed accretion disk model. The model predicts that the observed rotational broadening of spectral lines should be smaller in the infrared than in the optical. The present observations show that V1057 Cyg rotates more slowly at 2.3 microns than at 6000 A by an amount quantitatively consistent with the simple disk models. The absence of any radial velocity variations in either the infrared or optical spectral regions supports the suggestion that the accreted material arises from a remnant disk of protostellar material. 19 references

  1. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    International Nuclear Information System (INIS)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-01-01

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  2. FY 2004 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Keller, Paul E.; Bennett, Wendy D.; Martin, Peter M.; Johnson, Bradley R.; Sundaram, S. K.; Riley, Brian J.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2004-10-01

    Research done by the Infrared Photonics team at PNNL is focused on developing miniaturized integrated optics for the MWIR and LWIR by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin film deposition capabilities, direct-laser writing techniques, IR photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology - all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to Quantum Cascade Laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  3. Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers

    International Nuclear Information System (INIS)

    Zhang Qiu-Lin; Zhang Jing; Qiu Kang-Sheng; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    Picosecond optical parametric generation and amplification in the near-infrared region within 1.361–1.656 μm and the mid-infrared region within 2.976–4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm. The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm, corresponding to a pump-to-idler photon conversion efficiency of 25%. By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region, one can measure very week mid-infrared radiation with ordinary detectors, which are insensitive to mid-infrared radiation, with a very high gain. A maximum gain factor of about 7 × 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  5. Interpreting the cosmic far-infrared background anisotropies using a gas regulator model

    Science.gov (United States)

    Wu, Hao-Yi; Doré, Olivier; Teyssier, Romain; Serra, Paolo

    2018-04-01

    Cosmic far-infrared background (CFIRB) is a powerful probe of the history of star formation rate (SFR) and the connection between baryons and dark matter across cosmic time. In this work, we explore to which extent the CFIRB anisotropies can be reproduced by a simple physical framework for galaxy evolution, the gas regulator (bathtub) model. This model is based on continuity equations for gas, stars, and metals, taking into account cosmic gas accretion, star formation, and gas ejection. We model the large-scale galaxy bias and small-scale shot noise self-consistently, and we constrain our model using the CFIRB power spectra measured by Planck. Because of the simplicity of the physical model, the goodness of fit is limited. We compare our model predictions with the observed correlation between CFIRB and gravitational lensing, bolometric infrared luminosity functions, and submillimetre source counts. The strong clustering of CFIRB indicates a large galaxy bias, which corresponds to haloes of mass 1012.5 M⊙ at z = 2, higher than the mass associated with the peak of the star formation efficiency. We also find that the far-infrared luminosities of haloes above 1012 M⊙ are higher than the expectation from the SFR observed in ultraviolet and optical surveys.

  6. A fast infrared radiative transfer model for overlapping clouds

    International Nuclear Information System (INIS)

    Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.

    2007-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model

  7. THE SPITZER MID-INFRARED ACTIVE GALACTIC NUCLEUS SURVEY. I. OPTICAL AND NEAR-INFRARED SPECTROSCOPY OF OBSCURED CANDIDATES AND NORMAL ACTIVE GALACTIC NUCLEI SELECTED IN THE MID-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Ridgway, S. E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gates, E. L. [UCO/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Nielsen, D. M. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Petric, A. O. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sajina, A. [Department of Physics and Astronomy, Tuffs University, 212 College Avenue, Medford, MA 02155 (United States); Urrutia, T. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Cox Drews, S. [946 Mangrove Avenue 102, Sunnyvale, CA 94086 (United States); Harrison, C. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Seymour, N. [CSIRO, P.O. Box 76, Epping, NSW 1710 (Australia); Storrie-Lombardi, L. J. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-10-01

    We present the results of a program of optical and near-infrared spectroscopic follow-up of candidate active galactic nuclei (AGNs) selected in the mid-infrared. This survey selects both normal and obscured AGNs closely matched in luminosity across a wide range, from Seyfert galaxies with bolometric luminosities L {sub bol} ∼ 10{sup 10} L {sub ☉} to highly luminous quasars (L {sub bol} ∼ 10{sup 14} L {sub ☉}), all with redshifts ranging from 0 to 4.3. Samples of candidate AGNs were selected with mid-infrared color cuts at several different 24 μm flux density limits to ensure a range of luminosities at a given redshift. The survey consists of 786 candidate AGNs and quasars, of which 672 have spectroscopic redshifts and classifications. Of these, 137 (20%) are type 1 AGNs with blue continua, 294 (44%) are type 2 objects with extinctions A{sub V} ∼> 5 toward their AGNs, 96 (14%) are AGNs with lower extinctions (A{sub V} ∼ 1), and 145 (22%) have redshifts, but no clear signs of AGN activity in their spectra. Of the survey objects 50% have L {sub bol} > 10{sup 12} L {sub ☉}, in the quasar regime. We present composite spectra for type 2 quasars and objects with no signs of AGN activity in their spectra. We also discuss the mid-infrared—emission-line luminosity correlation and present the results of cross correlations with serendipitous X-ray and radio sources. The results show that: (1) obscured objects dominate the overall AGN population, (2) mid-infrared selected AGN candidates exist which lack AGN signatures in their optical spectra but have AGN-like X-ray or radio counterparts, and (3) X-ray and optical classifications of obscured and unobscured AGNs often differ.

  8. Physical properties of asteroids derived from a novel approach to modeling of optical lightcurves and WISE thermalinfrared data

    Science.gov (United States)

    Durech, Josef; Hanus, Josef; Delbo, Marco; Ali-Lagoa, Victor; Carry, Benoit

    2014-11-01

    Convex shape models and spin vectors of asteroids are now routinely derived from their disk-integrated lightcurves by the lightcurve inversion method of Kaasalainen et al. (2001, Icarus 153, 37). These shape models can be then used in combination with thermal infrared data and a thermophysical model to derive other physical parameters - size, albedo, macroscopic roughness and thermal inertia of the surface. In this classical two-step approach, the shape and spin parameters are kept fixed during the thermophysical modeling when the emitted thermal flux is computed from the surface temperature, which is computed by solving a 1-D heat diffusion equation in sub-surface layers. A novel method of simultaneous inversion of optical and infrared data was presented by Durech et al. (2012, LPI Contribution No. 1667, id.6118). The new algorithm uses the same convex shape representation as the lightcurve inversion but optimizes all relevant physical parameters simultaneously (including the shape, size, rotation vector, thermal inertia, albedo, surface roughness, etc.), which leads to a better fit to the thermal data and a reliable estimation of model uncertainties. We applied this method to selected asteroids using their optical lightcurves from archives and thermal infrared data observed by the Wide-field Infrared Survey Explorer (WISE) satellite. We will (i) show several examples of how well our model fits both optical and infrared data, (ii) discuss the uncertainty of derived parameters (namely the thermal inertia), (iii) compare results obtained with the two-step approach with those obtained by our method, (iv) discuss the advantages of this simultaneous approach with respect to the classical two-step approach, and (v) advertise the possibility to use this approach to tens of thousands asteroids for which enough WISE and optical data exist.

  9. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    International Nuclear Information System (INIS)

    Yelin, S.F.; Hemmer, P.R.

    2002-01-01

    A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells

  10. Demonstration of a mid-infrared NO molecular Faraday optical filter.

    Science.gov (United States)

    Wu, Kuijun; Feng, Yutao; Li, Juan; Yu, Guangbao; Liu, Linmei; Xiong, Yuanhui; Li, Faquan

    2017-12-11

    A molecular Faraday optical filter (MFOF) working in the mid-infrared region is realized for the first time. NO molecule was used as the working material of the MFOF for potential applications in atmospheric remote sensing and combustion diagnosis. We develop a complete theory to describe the performance of MFOF by taking both Zeeman absorption and Faraday rotation into account. We also record the Faraday rotation transmission (FRT) signal using a quantum cascade laser over the range of 1,820 cm -1 to 1,922 cm -1 and calibrate it by using a 101.6 mm long solid germanium etalon with a free spectral range of 0.012 cm -1 . Good agreement between the simulation results and experimental data is achieved. The NO-MFOF's transmission characteristics as a function of magnetic field and pressure are studied in detail. Both Comb-like FRT spectrum and single branch transmission spectrum are obtained by changing the magnetic field. The diversity of FRT spectrum expands the range of potential applications in infrared optical remote sensing. This filtering method can also be extended to the lines of other paramagnetic molecules.

  11. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  12. Preparation and Optical Properties of Infrared Transparent 3Y-TZP Ceramics

    Directory of Open Access Journals (Sweden)

    Chuanfeng Wang

    2017-04-01

    Full Text Available In the present study, a tough tetragonal zirconia polycrystalline (Y-TZP material was developed for use in high-speed infrared windows and domes. The influence of the preparation procedure and the microstructure on the material’s optical properties was evaluated by SEM and FT-IR spectroscopy. It was revealed that a high transmittance up to 77% in the three- to five-micrometer IR region could be obtained when the sample was pre-sintered at 1225 °C and subjected to hot isostatic pressing (HIP at 1275 °C for two hours. The infrared transmittance and emittance at elevated temperature were also examined. The in-line transmittance remained stable as the temperature increased to 427 °C, with degradation being observed only near the infrared cutoff edge. Additionally, the emittance property of 3Y-TZP ceramic at high temperature was found to be superior to those of sapphire and spinel. Overall, the results indicate that Y-TZP ceramic is a potential candidate for high-speed infrared windows and domes.

  13. Determination of thicknesses and temperatures of crystalline silicon wafers from optical measurements in the far infrared region

    Science.gov (United States)

    Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan

    2018-05-01

    Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.

  14. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts.

    Science.gov (United States)

    Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru; Matsuura, Yuji

    2018-03-27

    A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO₂) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO₂ standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO₂ concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO₂ concentration in human airways.

  15. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  16. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee; Guo, Yong; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing

  17. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    Directory of Open Access Journals (Sweden)

    Lei Zhu, Ning Guo, Quanzheng Li, Ying Ma, Orit Jacboson, Seulki Lee, Hak Soo Choi, James R. Mansfield, Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide.Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data.Results: The dual-labeled probe 64Cu-RGD-C(DOTA-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp derived from dynamic optical imaging (1.762 ± 0.020 is comparable to that from dynamic PET (1.752 ± 0.026.Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  18. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    Science.gov (United States)

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  19. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES

    Directory of Open Access Journals (Sweden)

    CUICUI LIU

    2013-07-01

    Full Text Available The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR dyes with emission wavelengths in the region of 650–900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der-02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 × 107 cells in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.

  20. The second Herschel-ATLAS Data Release - III. Optical and near-infrared counterparts in the North Galactic Plane field

    Science.gov (United States)

    Furlanetto, C.; Dye, S.; Bourne, N.; Maddox, S.; Dunne, L.; Eales, S.; Valiante, E.; Smith, M. W.; Smith, D. J. B.; Ivison, R. J.; Ibar, E.

    2018-05-01

    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ˜25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80-90 per cent of our reliable identifications are correct.

  1. Development of an optical resonator with high-efficient output coupler for the JAERI far-infrared free-electron laser

    International Nuclear Information System (INIS)

    Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Sawamura, Masaru; Kikuzawa, Nobuhiro; Shizuma, Toshiyuki; Minehara, Eisuke

    2001-01-01

    An optical resonator with a high-efficient output coupler was developed for the JAERI far-infrared free-electron laser. The optical resonator is symmetrical near-concentric geometry with an insertable scraper output coupler. As a result of the development of the optical resonator, the JAERI-FEL has been successfully, lased with averaged power over 1 kW. Performance of the optical resonator with the output coupler was evaluated at optical wavelength of 22 μm by using an optical mode calculation code. The output coupling and diffractive loss with a dominant eigen-mode of the resonator were calculated using an iterative computation called Fox-Li procedure. An efficiency factor of the optical resonator was introduced for the evaluation of the optical resonator performance. The efficiency factor was derived by the amount of the output coupling and diffractive loss of the optical resonator. It was found that the optical resonator with the insertable scraper coupler was the most suitable to a high-power and high-efficient far-infrared free-electron laser. (author)

  2. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee

    2017-05-08

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing concentrations.

  3. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  4. Polarised infrared cathodoluminescence from platelet defects in natural diamonds

    International Nuclear Information System (INIS)

    Kiflawi, I.; Lang, A.R.

    1977-01-01

    It is reported that the large platelet defects occasionally found in natural diamonds emit polarised cathodoluminescence in the near infrared. There is much uncertainty regarding the composition and structure of the platelets. New findings on the optical properties of the platelets are discussed. The discovery that cathodoluminescence from giant platelets can be seen in the near infrared using an image converter was followed up by photographic recording with Kodak high speed infrared films, and it was found that the infrared emission from the platelets is polarised in the platelet plane with a considerably higher polarisation ratio than in the case of their visible emissions. In order to assess the degree of polarisation of the infrared emission a Polaroid Type HR linear polariser was used, which is very effective at the longest wavelengths recorded by the Kodak high speed infrared film. The high degree of polarisation of the platelet infrared emission constitutes a well defined optical characteristic that any model for platelet structure, and for optical processes associated with platelets, must satisfactorily accommodate. (U.K.)

  5. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.

    Science.gov (United States)

    Koch, Cosima; Posch, Andreas E; Herwig, Christoph; Lendl, Bernhard

    2016-12-01

    The performance of a fiber optic and an optical conduit in-line attenuated total reflection mid-infrared (IR) probe during in situ monitoring of Penicillium chrysogenum fermentation were compared. The fiber optic probe was connected to a sealed, portable, Fourier transform infrared (FT-IR) process spectrometer via a plug-and-play interface. The optical conduit, on the other hand, was connected to a FT-IR process spectrometer via a knuckled probe with mirrors that had to be adjusted prior to each fermentation, which were purged with dry air. Penicillin V (PenV) and its precursor phenoxyacetic acid (POX) concentrations were determined by online high-performance liquid chromatography and the obtained concentrations were used as reference to build partial least squares regression models. Cross-validated root-mean-square errors of prediction were found to be 0.2 g L -1 (POX) and 0.19 g L -1 (PenV) for the fiber optic setup and 0.17 g L -1 (both POX and PenV) for the conduit setup. Higher noise-levels and spectrum-to-spectrum variations of the fiber optic setup lead to higher noise of estimated (i.e., unknown) POX and PenV concentrations than was found for the conduit setup. It seems that trade-off has to be made between ease of handling (fiber optic setup) and measurement accuracy (optical conduit setup) when choosing one of these systems for bioprocess monitoring. © The Author(s) 2016.

  6. Dispersion properties and low infrared optical losses in epitaxial AlN on sapphire substrate in the visible and infrared range

    International Nuclear Information System (INIS)

    Soltani, A.; Stolz, A.; Gerbedoen, J.-C.; Rousseau, M.; Bourzgui, N.; De Jaeger, J.-C.; Charrier, J.; Mattalah, M.; Barkad, H. A.; Mortet, V.; BenMoussa, A.

    2014-01-01

    Optical waveguiding properties of a thick wurtzite aluminum nitride highly [002]-textured hetero-epitaxial film on (001) basal plane of sapphire substrate are studied. The physical properties of the film are determined by X-ray diffraction, atomic force microscopy, microRaman, and photocurrent spectroscopy. The refractive index and the thermo-optic coefficients are determined by m-lines spectroscopy using the classical prism coupling technique. The optical losses of this planar waveguide are also measured in the spectral range of 450–1553 nm. The lower value of optical losses is equal to 0.7 dB/cm at 1553 nm. The optical losses due to the surface scattering are simulated showing that the contribution is the most significant at near infrared wavelength range, whereas the optical losses are due to volume scattering and material absorption in the visible range. The good physical properties and the low optical losses obtained from this planar waveguide are encouraging to achieve a wide bandgap optical guiding platform from these aluminum nitride thin films

  7. Dispersion properties and low infrared optical losses in epitaxial AlN on sapphire substrate in the visible and infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr; Stolz, A.; Gerbedoen, J.-C.; Rousseau, M.; Bourzgui, N.; De Jaeger, J.-C. [Institut d' Électronique, Microélectronique et Nanotechnologie, UMR-CNRS 8520, PRES Université Lille Nord de France, Cité Scientifique, Avenue Poincaré, CS 60069, 59652 Villeneuve d' Ascq Cedex (France); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON, UMR-CNRS 6082, ENSSAT 6, rue de Kerampont, CS 80518, 22305 Lannion Cedex (France); Mattalah, M. [Laboratoire de Microélectronique, Université Djilali Liabes, 22000 Sidi Bel Abbes (Algeria); Barkad, H. A. [Institut Universitaire Technologique Industriel, Université de Djibouti, Avenue Georges Clémenceau, BP 1904 Djibouti (Djibouti); Mortet, V. [Institute of Physics of Academy of Sciences of Czech Republic, Fyzikální ústav AV CR, v.v.i., Na Slovance 1999/2 (Czech Republic); BenMoussa, A. [Solar Terrestrial Center of Excellence, Royal Observatory of Belgium, Circular 3, B-1180 Brussels (Belgium)

    2014-04-28

    Optical waveguiding properties of a thick wurtzite aluminum nitride highly [002]-textured hetero-epitaxial film on (001) basal plane of sapphire substrate are studied. The physical properties of the film are determined by X-ray diffraction, atomic force microscopy, microRaman, and photocurrent spectroscopy. The refractive index and the thermo-optic coefficients are determined by m-lines spectroscopy using the classical prism coupling technique. The optical losses of this planar waveguide are also measured in the spectral range of 450–1553 nm. The lower value of optical losses is equal to 0.7 dB/cm at 1553 nm. The optical losses due to the surface scattering are simulated showing that the contribution is the most significant at near infrared wavelength range, whereas the optical losses are due to volume scattering and material absorption in the visible range. The good physical properties and the low optical losses obtained from this planar waveguide are encouraging to achieve a wide bandgap optical guiding platform from these aluminum nitride thin films.

  8. The OPTICON technology roadmap for optical and infrared astronomy

    Science.gov (United States)

    Cunningham, Colin; Melotte, David; Molster, Frank

    2010-07-01

    The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.

  9. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    Science.gov (United States)

    Bindig, U.; Müller, G.

    2005-08-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 µm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics.

  10. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    International Nuclear Information System (INIS)

    Bindig, U; Mueller, G

    2005-01-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 μm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics

  11. THE INFRARED PROPERTIES OF EMBEDDED SUPER STAR CLUSTERS: PREDICTIONS FROM THREE-DIMENSIONAL RADIATIVE TRANSFER MODELS

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Whitney, Barbara A.; Wood, Kenneth

    2011-01-01

    With high-resolution infrared data becoming available that can probe the formation of high-mass stellar clusters for the first time, appropriate models that make testable predictions of these objects are necessary. We utilize a three-dimensional radiative transfer code, including a hierarchically clumped dusty envelope, to study the earliest stages of super star cluster (SSC) evolution. We explore a range of parameter space in geometric sequences that mimic the hypothesized evolution of an embedded SSC. The inclusion of a hierarchically clumped medium can make the envelope porous, in accordance with previous models and supporting observational evidence. The infrared luminosity inferred from observations can differ by a factor of two from the true value in the clumpiest envelopes depending on the viewing angle. The infrared spectral energy distribution also varies with viewing angle for clumpy envelopes, creating a range in possible observable infrared colors and magnitudes, silicate feature depths, and dust continua. General observable features of cluster evolution differ between envelopes that are relatively opaque or transparent to mid-infrared photons. For optically thick envelopes, evolution is marked by a gradual decline of the 9.8 μm silicate absorption feature depth and a corresponding increase in the visual/ultraviolet flux. For the optically thin envelopes, clusters typically begin with a strong hot dust component and silicates in emission, and these features gradually fade until the mid-infrared polycyclic aromatic hydrocarbon features are predominant. For the models with a smooth dust distribution, the Spitzer MIPS or Herschel PACS [70]-[160] color is a good probe of the stellar mass relative to the total mass or star formation efficiency (SFE). Likewise, the IRAC/MIPS [3.6]-[24] color can be used to constrain the R in and R out values of the envelope. However, clumpiness confuses the general trends seen in the smooth dust distribution models, making it

  12. Innovative technology for optical and infrared astronomy

    Science.gov (United States)

    Cunningham, Colin R.; Evans, Christopher J.; Molster, Frank; Kendrew, Sarah; Kenworthy, Matthew A.; Snik, Frans

    2012-09-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  13. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  14. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts

    Directory of Open Access Journals (Sweden)

    Takashi Katagiri

    2018-03-01

    Full Text Available A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO2 measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO2 standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL light source is built using a gas cell with a hollow optical fiber for monitoring CO2 concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO2 concentration in human airways.

  15. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  16. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects

    Energy Technology Data Exchange (ETDEWEB)

    Zapatero Osorio, M. R. [Centro de Astrobiología (CSIC-INTA), Crta. Ajalvir km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Béjar, V. J. S. [Instituto de Astrofísica de Canarias, C/. Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Ramírez, K. Peña, E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: karla.pena@uantof.cl [Unidad de Astronomía de la Universidad de Antofagasta, Av. U. de Antofagasta. 02800 Antofagasta (Chile)

    2017-06-10

    We have obtained low-resolution optical (0.7–0.98 μ m) and near-infrared (1.11–1.34 μ m and 0.8–2.5 μ m) spectra of 12 isolated planetary-mass candidates ( J = 18.2–19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0–L4.5 and M9–L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6–13 M {sub Jup}). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ∼75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350–1800 K and a low surface gravity of log g ≈ 4.0 [cm s{sup −2}], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ∼200–300 K and masses in the interval 6–13 M {sub Jup} may be as numerous as very low-mass stars.

  17. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  18. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  19. A correlated-k model of radiative transfer in the near-infrared windows of Venus

    International Nuclear Information System (INIS)

    Tsang, C.C.C.; Irwin, P.G.J.; Taylor, F.W.; Wilson, C.F.

    2008-01-01

    We present a correlated-k-based model for generating synthetic spectra in the near-infrared window regions, from 1.0 to 2.5 μm, emitted from the deep atmosphere of Venus on the nightside. This approach is applicable for use with any near-infrared instrument, ground-based and space-borne, for analysis of the thermal emissions in this spectral range. We also approach this work with the view of using the model, in conjunction with a retrieval algorithm, to retrieve minor species from the Venus Express/VIRTIS instrument. An existing radiative-transfer model was adapted for Venusian conditions to deal with the prevailing high pressures and temperatures and other conditions. A comprehensive four-modal cloud structure model based on Pollack et al. [Near-infrared light from venus' nightside: a spectroscopic analysis. Icarus 1993;103:1-42], using refractive indices for a 75% H 2 SO 4 25% H 2 O mixture from Palmer and Williams [Optical constants of sulfuric acid; application to the clouds of Venus? Appl Opt 1975;14(1):208-19], was also implemented. We then utilized a Mie scattering algorithm to account for the multiple scattering effect between cloud and haze layers that occur in the Venusian atmosphere. The correlated-k model is shown to produce good agreement with ground-based spectra of Venus in the near infrared, and to match the output from a line-by-line radiative-transfer model to better than 10%

  20. Ages of galaxy bulges and disks from optical and near-infrared colors

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M

    We compare optical and near-infrared colors of disks and bulges in a diameter-limited sample of inclined, bright, nearby, early-type spirals. Color profiles along wedge apertures at 15 degrees from the major axis and on the minor axis on the side of the galaxy opposite to the dust lane are used to

  1. Linking optical and infrared observations with gravitational wave sources through transient variability

    International Nuclear Information System (INIS)

    Stubbs, C W

    2008-01-01

    Optical and infrared observations have thus far detected more celestial cataclysms than have been seen in gravity waves (GW). This argues that we should search for gravity wave signatures that correspond to transient variables seen at optical wavelengths, at precisely known positions. There is an unknown time delay between the optical and gravitational transient, but knowing the source location precisely specifies the corresponding time delays across the gravitational antenna network as a function of the GW-to-optical arrival time difference. Optical searches should detect virtually all supernovae that are plausible gravitational radiation sources. The transient optical signature expected from merging compact objects is not as well understood, but there are good reasons to expect detectable transient optical/IR emission from most of these sources as well. The next generation of deep wide-field surveys (for example PanSTARRS and LSST) will be sensitive to subtle optical variability, but we need to fill the 'blind spots' that exist in the galactic plane, and for optically bright transient sources. In particular, a galactic plane variability survey at λ∼ 2 μm seems worthwhile. Science would benefit from closer coordination between the various optical survey projects and the gravity wave community

  2. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  3. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  4. Sensores ópticos com detecção no infravermelho próximo e médio Near and mid infrared optical sensors

    Directory of Open Access Journals (Sweden)

    Kássio M. G. Lima

    2009-01-01

    Full Text Available Optical chemical sensors with detection in the near and mid infrared region are reviewed. Fundamental concepts of infrared spectroscopy and optical chemical sensors are briefly described, before presenting some aspects on optical chemical sensors, such as synthesis of NIR and IR reagents, preparation of new materials as well as application in determinations of species of biological, industrial and environmental importance.

  5. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  6. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept design update

    Science.gov (United States)

    Bolcar, Matthew R.; Aloezos, Steve; Bly, Vincent T.; Collins, Christine; Crooke, Julie; Dressing, Courtney D.; Fantano, Lou; Feinberg, Lee D.; France, Kevin; Gochar, Gene; Gong, Qian; Hylan, Jason E.; Jones, Andrew; Linares, Irving; Postman, Marc; Pueyo, Laurent; Roberge, Aki; Sacks, Lia; Tompkins, Steven; West, Garrett

    2017-09-01

    In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA's Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 - 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d'Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.

  7. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    Science.gov (United States)

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending

  8. Optical measurements for the gaseous phase speciation of HIx mixtures: experiments and modelling

    International Nuclear Information System (INIS)

    Denis Doizi; Vincent Dauvois; Vincent Delanne; Jean Luc Roujou; Bruno Larousse; Olivier Hercher; Christophe Moulin; Pierre Fauvet; P Carles; Jean Michel Hartmann

    2006-01-01

    To design and optimize the efficiency of the reactive distillation column of HI we have proposed for the HI section of the I-S cycle, analytical optical 'online' techniques have been proposed to measure the partial and total pressures of the liquid vapour equilibrium of the ternary HI/I 2 /H 2 O mixtures: - FTIR spectrometry for the measurement of hydrogen iodide and water vapours, - Visible spectrometry for the measurement of iodine vapour. The use of these optical techniques has been validated in an experimental device around 130 C and 2 bars. This device is composed of a glass cell equipped with two optical path lengths and placed in a thermo-regulated oven to allow the optical measurements of the concentrations of the three species in the vapour phase. Using an experimental design analysis, the infrared spectra of hydrogen iodide and water have been measured in a selected wavelength range versus temperature and for different HI x compositions. The spectra are then analyzed in particular using a model especially developed for this objective. This model relies on the fitting of the experimental infrared data using a root mean square method and an appropriate spectroscopic database. The visible spectrum of iodine has also been measured. (authors)

  9. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    International Nuclear Information System (INIS)

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-01-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M K ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency

  10. Determination of ultraviolet extinction from the optical and near-infrared

    International Nuclear Information System (INIS)

    Cardelli, J.A.; Clayton, G.C.; Mathis, J.S.

    1988-01-01

    The correlation of optical-near-infrared photometry for a sample of stars with well-determined ultraviolet extinction is examined. A good correlation is found; in particular, it is found that the value of total-to-selective extinction correlates well with the level of linear UV background extinction found from the UV curve parameterization of Fitzpatrick and Massa. An analytic expression is given for an improved estimate for the UV extinction law that can be obtained from optically determined values of R. For R values outside the range R = 3.1 -3.5, use of the analytic expressions given here will result in a more accurate representation of the applicable UV extinction than using the standard techniques of assuming the average curve or ironing out the bump. 19 references

  11. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J H; Brindle, C; Axon, D J; Bailey, J; Sparks, W B

    1987-02-15

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10/sup 41/ erg s/sup -1/. This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear.

  12. Infrared and optical polarimetry of the radio elliptical IC 5063 (PKS2048-57): discovery of a highly polarized non-thermal nucleus

    International Nuclear Information System (INIS)

    Hough, J.H.; Brindle, C.; Axon, D.J.; Bailey, J.; Sparks, W.B.

    1987-01-01

    Two-aperture optical and near-infrared polarization and flux measurements of the radio elliptical galaxy IC 5063 are presented. Analysis of the polarized flux shows that the large infrared excess in the nucleus most likely arises from a steep-spectrum non-thermal source with a polarization of 17 per cent and near-infrared luminosity 6x10 41 erg s -1 . This result suggests that IC5063 is closely related to the more luminous blazars. The origin of the polarization in the optical is, however, not clear. (author)

  13. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    Science.gov (United States)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  14. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.

    Science.gov (United States)

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F

    2015-01-01

    In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.

  15. Modelling Diverse Soil Attributes with Visible to Longwave Infrared Spectroscopy Using PLSR Employed by an Automatic Modelling Engine

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-02-01

    Full Text Available The study tested a data mining engine (PARACUDA® to predict various soil attributes (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu using reflectance data acquired for both optical and thermal infrared regions. The engine was designed to utilize large data in parallel and automatic processing to build and process hundreds of diverse models in a unified manner while avoiding bias and deviations caused by the operator(s. The system is able to systematically assess the effect of diverse preprocessing techniques; additionally, it analyses other parameters, such as different spectral resolutions and spectral coverages that affect soil properties. Accordingly, the system was used to extract models across both optical and thermal infrared spectral regions, which holds significant chromophores. In total, 2880 models were evaluated where each model was generated with a different preprocessing scheme of the input spectral data. The models were assessed using statistical parameters such as coefficient of determination (R2, square error of prediction (SEP, relative percentage difference (RPD and by physical explanation (spectral assignments. It was found that the smoothing procedure is the most beneficial preprocessing stage, especially when combined with spectral derivation (1st or 2nd derivatives. Automatically and without the need of an operator, the data mining engine enabled the best prediction models to be found from all the combinations tested. Furthermore, the data mining approach used in this study and its processing scheme proved to be efficient tools for getting a better understanding of the geochemical properties of the samples studied (e.g., mineral associations.

  16. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Walawender, J.; Reipurth, B.; Bally, J.

    2013-01-01

    We have searched the Lynds 988 dark cloud complex for optical (Hα and [S II]) and near-IR (H 2 2.12 μm) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H 2 shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkHα 324SE

  17. Integrated optics for nulling interferometry in the thermal infrared: progress and recent achievements

    Science.gov (United States)

    Barillot, M.; Barthelemy, E.; Bastard, L.; Broquin, J.-E.; Hawkins, G.; Kirschner, V.; Ménard, S.; Parent, G.; Poinsot, C.; Pradel, A.; Vigreux, C.; Zhang, S.; Zhang, X.

    2017-11-01

    The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively [1]. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering [2] takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

  18. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NARCIS (Netherlands)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2017-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be

  19. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NARCIS (Netherlands)

    Geiregat, P.A.; Houtepen, A.J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can

  20. Twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, M.; Takeda, Y.; Tanigawa, S.; Nishizawa, A.

    1980-01-01

    A twin optically-pumped far-infrared CH 3 OH laser has been constructed for use in plasma diagnostics. The antisymmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 microns. With the 118.8-micron line, it is found that CH 3 OH absorption line center is 16 + or - 1 MHz higher than the pump 9.7-micron P(36) CO 2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described

  1. Testing the AGN Unification Model in the Infrared

    International Nuclear Information System (INIS)

    Ramos Almeida, C; Levenson, N A; Radomski, J T; Alonso-Herrero, A; Asensio Ramos, A; Rodríguez Espinosa, J M; Pérez García, A M; Packham, C; Mason, R; Díaz-Santos, T

    2012-01-01

    We present near-to-mid-infrared spectral energy distributions (SEDs) for 21 Seyfert galaxies, using subarcsecond resolution imaging data. Our aim is to compare the properties Seyfert 1 (Sy1) and Seyfert 2 (Sy2) tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear SEDs. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Active galactic nuclei (AGN) unification schemes account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Sy1 and Sy2 nuclei are intrinsically different. The Type 2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type 1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Sy2 tori have larger covering factors (C T = 0.95±0.02) and smaller escape probabilities than those of Sy1 (C T = 0.5±0.1). Thus, on the basis of the results presented here, the classification of a Seyfert galaxy may depend more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.

  2. Quantitative defects detection in wind turbine blade using optical infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kwaon, Koo Ahn [School of Aerospace System Engineering, UST, Daejeon (Korea, Republic of); Choi, Man Yong; Park, Hee Sang; Park, Jeong Hak; Huh, Yong Hak; Choi, Won Jai [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-02-15

    A wind turbine blade is an important component in wind-power generation, and is generally exposed to harsh environmental conditions. Ultrasonic inspection is mainly used to inspect such blades, but it has been difficult to quantify defect sizes in complicated composite structures. Recently, active infrared thermography has been widely studied for inspecting composite structures, in which thermal energy is applied to an object, and an infrared camera detects the energy emitted from it. In this paper, a calibration method for active optical lock-in thermography is proposed to quantify the size. Inclusion, debonding and wrinkle defects, created in a wind blade for 100 kW wind power generation, were all successfully detected using this method. In particular, a 50.0 mm debonding defect was sized with 98.0% accuracy.

  3. Infrared imaging systems: Design, analysis, modeling, and testing III; Proceedings of the Meeting, Orlando, FL, Apr. 23, 24, 1992

    Science.gov (United States)

    Holst, Gerald C.

    This volume discusses today's thermal imaging systems, modeling of thermal imaging systems, sampling and aliasing, and systems and testing. Individual papers are on single-frame multispectral thermal imagery, measurement of the MTF of IR staring-array imaging systems, IRC-64 infrared focal-plane-array camera, performance and application of serial-scan FLIRs, and nondestructive thermal analysis with portable pyroelectric television camera. Attention is also given to standard night vision thermal modeling parameters, the analysis of a proposed infrared sensor focal plane, spatial aliasing effects in ground vehicle IR imagery, spatial sampling effects of multipixel sensors on the guided-missile system performance, and the perception of unwanted signals in displayed imagery. Other papers are on the assessment of environment-driven infrared intensity components, measurements of optical transfer function of discretely sampled thermal imaging systems, and the status of uncooled infrared imagers.

  4. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  5. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  6. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory

    International Nuclear Information System (INIS)

    Phillips, M.M.

    1988-01-01

    Results from optical and infrared observations of SN 1987A obtained at Cerro Tololo Inter-American Observatory over the first seven months since core collapse are reviewed. Around 130 days after outburst, the bolometric light curve began to smoothly decline at a rate of ∼ 0.01 mag day-1, providing dramatic confirmation of the prediction that radioactivity had powered the optical display after the first month./ the peculiar color changes are kinks observed beginning on the 25th day probably signaled the initial release of trapped energy from mass 56 material. The bolometric luminosity of SN 1987A was unusually low at first, but reached a value more typical of other type II supernovae by the time that the final exponential decline had begun. Over much of the period covered by these observations, the optical and infrared spectra were characterized by strong absorption lines of Ba II and Sr II. Comparison with the spectra of other type II supernovae at similar stages of evolution supports the suggestion that s-processed elements were enriched in the hydrogen envelope of the progenitor, Sanduleak - 69 degrees 202

  7. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode.

    Science.gov (United States)

    Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun

    2017-06-10

    In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.

  8. Optimum output coupling for a mid-infrared KTiOAsO4 optical parametric oscillator

    International Nuclear Information System (INIS)

    Li, Guochao; Gao, Yesheng; Zheng, Guangjin; Zhao, Yao; Chen, Kunfeng; Wang, Qingpu; Bai, Fen

    2013-01-01

    Taking into account the turn off time of the Q-switch, the coupled equations for a mid-infrared KTiOAsO 4 optical parametric oscillator (OPO) are given. These rate equations are solved numerically and some key parameters for designing the laser system are determined. The key parameters include the optimal coupling and nonlinear crystal length which maximize the output power and OPO conversion efficiency. We found that a low-loss singly resonant OPO cavity not only enhances the mid-infrared output but also decreases the optimal OPO crystal length. (paper)

  9. Infrared optical responses of wurtzite In{sub x}Ga{sub 1−x}N thin films with porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Yew, P., E-mail: paulinevcu@hotmail.com [Institute of Nano-Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Lee, S.C. [School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Centre of Excellence for Pre-University Studies, INTI International College Penang, Laureate International University, 1-Z, Lebuh Bukit Jambul, 11900 Penang (Malaysia); Ng, S.S. [Institute of Nano-Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Hassan, H. Abu [School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Chen, W.L. [Department of Electronic Engineering, National Changhua University of Education, 500, Taiwan, ROC (China); Osipowicz, T.; Ren, M.Q. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 119260 (Singapore)

    2016-03-31

    Room temperature infrared (IR) optical responses of wurtzite indium gallium nitride (In{sub x}Ga{sub 1−x}N) in the composition range of 0.174 ≤ x ≤ 0.883 were investigated by the polarized IR reflectance spectroscopy. Analyses of the amplitudes of oscillation fringes in the non-reststrahlen region revealed that the high frequency dielectric constants of the samples were unusually smaller than the values predicted from the Clausius–Mossotti relation. This odd behavior was attributed to the porous surface morphology of the In{sub x}Ga{sub 1−x}N samples. The E{sub 1} optical phonon modes of the In{sub x}Ga{sub 1−x}N were deduced from the composition dependent reststrahlen features. The obtained values were compared to those calculated through the modified random element iso-displacement (MREI) model. The deviation between the measured data and the MREI model prediction were explained in detail from the aspects of strain, thermal expansion and anharmonic phonon-coupling. Finally, it was found that the large discrepancy of the E{sub 1}(LO) mode is mainly attributed to the effects of the longitudinal phonon–plasmon coupling. - Highlights: • Composition dependence of E{sub 1} modes of In{sub x}Ga{sub 1−x}N alloys (x = 0.174 to 0.883) • Dependence of porous morphology on infrared (IR) optical properties • Longitudinal phonon–plasmon coupling obscures determination of E{sub 1}(LO) mode.

  10. Fabrication of Shatter-Proof Metal Hollow-Core Optical Fibers for Endoscopic Mid-Infrared Laser Applications

    Directory of Open Access Journals (Sweden)

    Katsumasa Iwai

    2018-04-01

    Full Text Available A method for fabricating robust and thin hollow-core optical fibers that carry mid-infrared light is proposed for use in endoscopic laser applications. The fiber is made of stainless steel tubing, eliminating the risk of scattering small glass fragments inside the body if the fiber breaks. To reduce the inner surface roughness of the tubing, a polymer base layer is formed prior to depositing silver and optical-polymer layers that confine light inside the hollow core. The surface roughness is greatly decreased by re-coating thin polymer base layers. Because of this smooth base layer surface, a uniform optical-polymer film can be formed around the core. As a result, clear interference peaks are observed in both the visible and mid-infrared regions. Transmission losses were also low for the carbon dioxide laser used for medical treatments as well as the visible laser diode used for an aiming beam. Measurements of bending losses for these lasers demonstrate the feasibility of the designed fiber for endoscopic applications.

  11. The continued optical to mid-infrared evolution of V838 Monocerotis

    Energy Technology Data Exchange (ETDEWEB)

    Loebman, S. R. [Department of Astronomy, University of Michigan, 830 Dennison, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Wisniewski, J. P. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Schmidt, S. J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Kowalski, A. F. [NASA Postdoctoral Program Fellow, NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Barry, R. K. [NASA Goddard Space Flight Center, Laboratory for Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Bjorkman, K. S. [Ritter Observatory, MS #113, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606-3390 (United States); Hammel, H. B. [AURA, 1212 New York Avenue NW, Suite 450, Washington, DC 20005 (United States); Hawley, S. L.; Szkody, P. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Hebb, L. [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States); Kasliwal, M. M. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Lynch, D. K.; Russell, R. W. [The Aerospace Corporation, M2-266, P.O. Box 92957, Los Angeles, CA 90009-29257 (United States); Sitko, M. L., E-mail: sloebman@umich.edu [Department of Physics, University of Cincinnati, Cincinnati OH 45221 (United States)

    2015-01-01

    The eruptive variable V838 Monocerotis (V838 Mon) gained notoriety in 2002 when it brightened nine magnitudes in a series of three outbursts and then rapidly evolved into an extremely cool supergiant. We present optical, near-infrared (near-IR), and mid-IR spectroscopic and photometric observations of V838 Mon obtained between 2008 and 2012 at the Apache Point Observatory 3.5 m, NASA IRTF 3 m, and Gemini South 8 m telescopes. We contemporaneously analyze the optical and IR spectroscopic properties of V838 Mon to arrive at a revised spectral type L3 supergiant and effective temperature T{sub eff}∼2000–2200 K. Because there are no existing optical observational data for L supergiants, we speculate that V838 Mon may represent the prototype for L supergiants in this wavelength regime. We find a low level of Hα emission present in the system, consistent with interaction between V838 Mon and its B3V binary; however, we cannot rule out a stellar collision as the genesis event, which could result in the observed Hα activity. Based upon a two-component blackbody fit to all wavelengths of our data, we conclude that, as of 2009, a shell of ejecta surrounded V838 Mon at a radius of R=263±10 AU with a temperature of T=285±2 K. This result is consistent with IR interferometric observations from the same era and predictions from the Lynch et al. model of the expanding system, which provides a simple framework for understanding this complicated system.

  12. The continued optical to mid-infrared evolution of V838 Monocerotis

    International Nuclear Information System (INIS)

    Loebman, S. R.; Wisniewski, J. P.; Schmidt, S. J.; Kowalski, A. F.; Barry, R. K.; Bjorkman, K. S.; Hammel, H. B.; Hawley, S. L.; Szkody, P.; Hebb, L.; Kasliwal, M. M.; Lynch, D. K.; Russell, R. W.; Sitko, M. L.

    2015-01-01

    The eruptive variable V838 Monocerotis (V838 Mon) gained notoriety in 2002 when it brightened nine magnitudes in a series of three outbursts and then rapidly evolved into an extremely cool supergiant. We present optical, near-infrared (near-IR), and mid-IR spectroscopic and photometric observations of V838 Mon obtained between 2008 and 2012 at the Apache Point Observatory 3.5 m, NASA IRTF 3 m, and Gemini South 8 m telescopes. We contemporaneously analyze the optical and IR spectroscopic properties of V838 Mon to arrive at a revised spectral type L3 supergiant and effective temperature T eff ∼2000–2200 K. Because there are no existing optical observational data for L supergiants, we speculate that V838 Mon may represent the prototype for L supergiants in this wavelength regime. We find a low level of Hα emission present in the system, consistent with interaction between V838 Mon and its B3V binary; however, we cannot rule out a stellar collision as the genesis event, which could result in the observed Hα activity. Based upon a two-component blackbody fit to all wavelengths of our data, we conclude that, as of 2009, a shell of ejecta surrounded V838 Mon at a radius of R=263±10 AU with a temperature of T=285±2 K. This result is consistent with IR interferometric observations from the same era and predictions from the Lynch et al. model of the expanding system, which provides a simple framework for understanding this complicated system.

  13. Retrieval of Saharan desert dust optical depth from thermal infrared measurements by IASI

    Science.gov (United States)

    Vandenbussche, S.; Kochenova, S.; Vandaele, A.-C.; Kumps, N.; De Mazière, M.

    2012-04-01

    Aerosols are a major actor in the climate system. They are responsible for climate forcing by both direct (by emission, absorption and scattering) and indirect effects (for example, by altering cloud microphysics). A better knowledge of aerosol optical properties, of the atmospheric aerosol load and of aerosol sources and sinks may therefore significantly improve the modeling of climate changes. Aerosol optical depth and other properties are retrieved on an operational basis from daytime measurements in the visible and near infrared spectral range by a number of instruments, like the satellite instruments MODIS, CALIOP, POLDER, MISR and ground-based sunphotometers. Aerosol retrievals from day and night measurements at thermal infrared (TIR) wavelengths (for example, from SEVIRI, AIRS and IASI satellite instruments) are less common, but they receive growing interest in more recent years. Among those TIR measuring instruments, IASI on METOP has one major advantage for aerosol retrievals: its large continuous spectral coverage, allowing to better capture the broadband signature of aerosols. Furthermore, IASI has a high spectral resolution (0.5cm-1 after apodization) which allows retrieving a large number of trace gases at the same time, it will nominally be in orbit for 15 years and offers a quasi global Earth coverage twice a day. Here we will show recently obtained results of desert aerosol properties (concentration, altitude, optical depth) retrieved from IASI TIR measurements, using the ASIMUT software (BIRA-IASB, Belgium) linked to (V)LIDORT (R. Spurr, RTsolutions Inc, US) and to SPHER (M. Mishchenko, NASA GISS, USA). In particular, we will address the case of Saharan desert dust storms, which are a major source of desert dust particles in the atmosphere. Those storms frequently transport sand to Europe, Western Asia or even South America. We will show some test-case comparisons between our retrievals and measurements from other instruments like those listed

  14. High energy eye-safe and mid-infrared optical parametric oscillator

    International Nuclear Information System (INIS)

    Liu, J; Liu, Q; Huang, L; Gong, M

    2010-01-01

    A high energy eye-safe and mid-infrared optical parametric oscillator (OPO) is demonstrated. The nonlinear media is a Y-cut KTA crystal with the length of 20 mm, which is pumped by a Nd:YAG laser. Both eye-safe and mid-infrared laser are output with high energy. When the pump energy is 1 J and the pulse duration is 10 ns, we get 53 mJ idler at 3.632 μm and 151 mJ signal at 1.505 μm. As we know, the idler energy is the highest at the wavelength beyond 3.5 μm and the signal energy is the highest with Y-cut KTA. The results prove that the Y-cut KTA crystal can produce the signal and idler with the energies as high as these in the paper. We have tested the temperature-tuning characters and the coefficient of the idler is 0.26 nm/°C

  15. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Walawender, J. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Reipurth, B. [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: joshw@naoj.org [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2013-09-15

    We have searched the Lynds 988 dark cloud complex for optical (H{alpha} and [S II]) and near-IR (H{sub 2} 2.12 {mu}m) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H{sub 2} shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkH{alpha} 324SE.

  16. Infrared radiation from dark globules

    International Nuclear Information System (INIS)

    Spencer, R.G.; Leung, C.M.

    1978-01-01

    Theoretical models are constructed by which to study the infrared emission from dark globules heated by the interstellar radiation field (ISRF). The effects of cloud parameters (grain type, optical depth, and density inhomogeneity) on the emergent spectrum and infrared surface brightnesses are studied. Compared with clouds which have internal heat sources, the emergent flux for globules is found to be at least a factor of 10 smaller and to peak at wavelengths 100 μm< or =lambda< or =130 μm for graphite clouds and 310 μm< or =lambda< or =550 μm for silicate clouds. Either limb brightening or limb darkening in the infrared can occur, which depends sensitively on the optical depth. For globules of moderate extinction (greater than approx.10 in the visible), significant infrared limb brightening occurs at wavelengths of grain emission (20 μm< or =lambda< or =600 μm). A physical interpretation of these results is presented. To help remove ambiguities from interpretations of future observations, the observable effects of a grain mixture, variation of the ISRF, as well as beam dilution are examined in detail. The presence of a second grain component alters the emergent spectrum significantly. For a variation of the ISRF within wide limits, the ratio of surface to central temperature (T/sub s//T/sub c/) of an optically thick cloud remains fairly constant (3< or approx. =T/sub s//T/sub c/< or approx. =4). Infrared limb brightening may be smoothed out by beam dilution as well as by density inhomogeneities. Finally, the expected flux densities in the infrared of a typical globule are presented for different beam sizes. The predicted fluxes are within the detection threshold of currently available infrared detectors, using either ground-based or balloon-borne telescopes

  17. Optical modelling of far-infrared astronomical instrumentation exploiting multimode horn antennas

    Science.gov (United States)

    O'Sullivan, Créidhe; Murphy, J. Anthony; Mc Auley, Ian; Wilson, Daniel; Gradziel, Marcin L.; Trappe, Neil; Cahill, Fiachra; Peacocke, T.; Savini, G.; Ganga, K.

    2014-07-01

    In this paper we describe the optical modelling of astronomical telescopes that exploit bolometric detectors fed by multimoded horn antennas. In cases where the horn shape is profiled rather than being a simple cone, we determine the beam at the horn aperture using an electromagnetic mode-matching technique. Bolometers, usually placed in an integrating cavity, can excite many hybrid modes in a corrugated horn; we usually assume they excite all modes equally. If the waveguide section feeding the horn is oversized these modes can propagate independently, thereby increasing the throughput of the system. We use an SVD analysis on the matrix that describes the scattering between waveguide (TE/TM) modes to recover the independent orthogonal fields (hybrid modes) and then propagate these to the sky independently where they are added in quadrature. Beam patterns at many frequencies across the band are then added with a weighting appropriate to the source spectrum. Here we describe simulations carried out on the highest-frequency (857-GHz) channel of the Planck HFI instrument. We concentrate in particular on the use of multimode feedhorns and consider the effects of possible manufacturing tolerances on the beam on the sky. We also investigate the feasibility of modelling far-out sidelobes across a wide band for electrically large structures and bolometers fed by multi-mode feedhorns. Our optical simulations are carried out using the industry-standard GRASP software package.

  18. Quantitative Analysis of HER2 Receptor Expression In Vivo by Near-Infrared Optical Imaging

    Directory of Open Access Journals (Sweden)

    Victor Chernomordik

    2010-07-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 overexpression in breast cancers is associated with poor prognosis and resistance to therapy. Current techniques for estimating this important characteristic use ex vivo assays that require tissue biopsies. We suggest a novel noninvasive method to characterize HER2 expression in vivo, using optical imaging, based on HER2-specific probes (albumin-binding domain–fused-(ZHER2:3422-Cys Affibody molecules [Affibody AB, Solna, Sweden], labeled with Alexa Fluor 750 [Molecular Probes, Invitrogen, Carlsbad, CA] that could be used concomitantly with HER2-targeted therapy. Subcutaneous tumor xenografts, expressing different levels of HER2, were imaged with a near-infrared fluorescence small-animal imaging system at several times postinjection of the probe. The compartmental ligand-receptor model was used to calculate HER2 expression from imaging data. Correlation between HER2 amplification/overexpression in tumor cells and parameters, directly estimated from the sequence of optical images, was observed (eg, experimental data for BT474 xenografts indicate that initial slope, characterizing the temporal dependence of the fluorescence intensity detected in the tumor, linearly depends on the HER2 expression, as measured ex vivo by an enzyme-linked immunosorbent assay for the same tumor. The results obtained from tumors expressing different levels of HER2 substantiate a similar relationship between the initial slope and HER2 amplification/overexpression. This work shows that optical imaging, combined with mathematical modeling, allows noninvasive monitoring of HER2 expression in vivo.

  19. Optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Delay Lines and Alignment

    Science.gov (United States)

    Dhabal, Arnab; Rinehart, Stephen A.; Rizzo, Maxime J.; Mundy, Lee; Fixsen, Dale; Sampler, Henry; Mentzell, Eric; Veach, Todd; Silverberg, Robert F.; Furst, Stephen; hide

    2016-01-01

    We present the optics of Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) as it gets ready for launch. BETTII is an 8-meter baseline far-infrared (30-90 microns) interferometer mission with capabilities of spatially resolved spectroscopy aimed at studying star formation and galaxy evolution. The instrument collects light from its two arms, makes them interfere, divides them into two science channels (30-50 microns and 60-90 microns), and focuses them onto the detectors. It also separates out the NIR light (1-2.5 microns) and uses it for tip-tilt corrections of the telescope pointing. Currently, all the optical elements have been fabricated, heat treated, coated appropriately and are mounted on their respective assemblies. We are presenting the optical design challenges for such a balloon borne spatio-spectral interferometer, and discuss how they have been mitigated. The warm and cold delay lines are an important part of this optics train. The warm delay line corrects for path length differences between the left and the right arm due to balloon pendulation, while the cold delay line is aimed at introducing a systematic path length difference, thereby generating our interferograms from where we can derive information about the spectra. The details of their design and the results of the testing of these opto-mechanical parts are also discussed. The sensitivities of different optical elements on the interferograms produced have been determined with the help of simulations using FRED software package. Accordingly, an alignment plan is drawn up which makes use of a laser tracker, a CMM, theodolites and a LUPI interferometer.

  20. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  1. Optical and Near-infrared Radial Velocity Content of M Dwarfs: Testing Models with Barnard’s Star

    Science.gov (United States)

    Artigau, Étienne; Malo, Lison; Doyon, René; Figueira, Pedro; Delfosse, Xavier; Astudillo-Defru, Nicola

    2018-05-01

    High-precision radial velocity (RV) measurements have been central in the study of exoplanets during the last two decades, from the early discovery of hot Jupiters, to the recent mass measurements of Earth-sized planets uncovered by transit surveys. While optical RV is now a mature field, there is currently a strong effort to push the technique into the near-infrared domain (chiefly Y, J, H, and K bandpasses) to probe planetary systems around late-type stars. The combined lower mass and luminosity of M dwarfs leads to an increased reflex RV signal for planets in the habitable zone compared to Sun-like stars. The estimates on the detectability of planets rely on various instrumental characteristics but also on a prior knowledge of the stellar spectrum. While the overall properties of M dwarf spectra have been extensively tested against observations, the same is not true for their detailed line profiles, which leads to significant uncertainties when converting a given signal-to-noise ratio to a corresponding RV precision as attainable on a given spectrograph. By combining archival CRIRES and HARPS data with ESPaDOnS data of Barnard’s star, we show that state-of-the-art atmosphere models over-predict the Y- and J-band RV content by more than a factor of ∼2, while under-predicting the H- and K-band content by half.

  2. Infrared transparency and electrical conductivity of non-stoichiometric InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2010-01-01

    In an effort to achieve both high infrared transparency and electrical conductivity, In x O y films having different oxygen atomic fractions, ranging from 0.27 to 0.6 were prepared. From AC electrical measurements it was determined that conductivity of In x O y films, having oxygen atomic fraction near 0.6, is governed by the hopping conduction mechanism via energy states located in the band gap. Conductivity of In x O y films having non-stoichiometric compositions was found to be governed by the free band conduction mechanism. The conduction activation energy was decreased from about 0.47 eV to about 0.02 eV as the deviation of the oxygen atomic fraction from the stoichiometric value of 0.6 was increased. The dielectric function of the films was determined by applying the Drude-Lorentz model to ellipsometric measurements in the infrared and visible wavelengths. In the visible range, the major source for optical transmission loss is interband absorption, which was modeled by the Lorentz model. In the infrared range, optical absorption was measured and attributed to the presence of free charge carriers according to the Drude model. Fitting the model to the optical measurements required a correction factor, which was correlated with the films polarizability. In order to determine the optimal tradeoff between optical transparency in the infrared and electrical conductivity, which were found to be affected mainly by the oxygen concentration in the films, a figure of merit parameter was established. It was found that by introducing non-stoichiometry in the form of oxygen deficiency, the electrical conductivity was improved by as much as two orders of magnitude while the infrared transparency was decreased by no more than 30% with respect to stoichiometric In 2 O 3 films.

  3. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  4. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    International Nuclear Information System (INIS)

    Miranda, D A; Cristiano, K L; Gutiérrez, J C

    2013-01-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated

  5. OPTICAL-NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Kim, Duho; Im, Myungshin

    2013-01-01

    It has been suggested that merging plays an important role in the formation and the evolution of elliptical galaxies. While gas dissipation by star formation is believed to steepen metallicity and color gradients of the merger products, mixing of stars through dissipation-less merging (dry merging) is believed to flatten them. In order to understand the past merging history of elliptical galaxies, we studied the optical-near-infrared (NIR) color gradients of 204 elliptical galaxies. These galaxies are selected from the overlap region of the Sloan Digital Sky Survey (SDSS) Stripe 82 and the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The use of optical and NIR data (g, r, and K) provides large wavelength baselines, and breaks the age-metallicity degeneracy, allowing us to derive age and metallicity gradients. The use of the deep SDSS Stripe 82 images makes it possible for us to examine how the color/age/metallicity gradients are related to merging features. We find that the optical-NIR color and the age/metallicity gradients of elliptical galaxies with tidal features are consistent with those of relaxed ellipticals, suggesting that the two populations underwent a similar merging history on average and that mixing of stars was more or less completed before the tidal features disappeared. Elliptical galaxies with dust features have steeper color gradients than the other two types, even after masking out dust features during the analysis, which can be due to a process involving wet merging. More importantly, we find that the scatter in the color/age/metallicity gradients of the relaxed and merging feature types decreases as their luminosities (or masses) increase at M > 10 11.4 M ☉ but stays large at lower luminosities. Mean metallicity gradients appear nearly constant over the explored mass range, but a possible flattening is observed at the massive end. According to our toy model that predicts how the distribution of metallicity gradients

  6. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-05-01

    Full Text Available AIM: To investigate the findings of infrared fundus autofluorescence (IR-AF and spectral-domain optical coherence tomography (SD-OCT in eyes with optic disc melanocytoma (ODM. METHODS: IR-AF findings and those of other ophthalmologic imaging examinations, including short-wave autofluorescence (SW-AF, fluorescein angiography (FA, fundus color photography, and SD-OCT of 8 eyes of 8 consecutive cases with ODM were assessed. RESULTS: The ODMs in all cases (100% presented similar IR-AF, SW-AF, and FA findings. On IR-AF images, ODMs showed outstanding hyper-AF with well-defined outline. On SW-AF images, the area of ODMs presented as hypo-AF. FA images revealed the leaking retinal telangiectasia on the surface of the ODMs. On SD-OCT images in 8 cases (100%, the ODMs were sloped with highly reflective surface, which were disorganized retina and optic nerve layers. In 7 cases (87.5%, peripapillary choroids were involved. The melanocytomas of 8 cases (100% presented as optically empty spaces. Vitreous seeds were found in one case (12.5%. CONCLUSION: IR-AF imaging may provide a new modality to evaluate the pathologic features of ODMs, and together with SW-AF imaging, offers a new tool to study biological characteristics associated with ODMs. SD-OCT is a valuable tool in delimitating the tumor extension and providing morphological information about the adjacent retinal tissue.

  7. Optical and Near-infrared Study of Nova V2676 Oph 2012

    Energy Technology Data Exchange (ETDEWEB)

    Raj, A. [Korea Astronomy and Space Science Institute, Daejeon, 34055 (Korea, Republic of); Das, R. K. [Department of Astrophysics and Cosmology, S N Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106 (India); Walter, F. M., E-mail: ashish.raj@iiap.res.in [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2017-02-01

    We present optical spectrophotometric and near-infrared (NIR) photometric observations of the nova V2676 Oph covering the period from 2012 March 29 through 2015 May 8. The optical spectra and photometry of the nova have been taken from SMARTS and Asiago; the NIR photometry was obtained from SMARTS and Mt. Abu. The spectra were dominated by strong H i lines from the Balmer series, Fe ii, N i, and [O i] lines in the initial days, typical of an Fe ii type nova. The measured FWHM for the H β and H α lines was 800–1200 km s{sup −1}. There was pronounced dust formation starting 90 days after the outburst. The J − K color was the largest among recent dust-forming novae.

  8. Infrared problems in two-dimensional generalized σ-models

    International Nuclear Information System (INIS)

    Curci, G.; Paffuti, G.

    1989-01-01

    We study the correlations of the energy-momentum tensor for classically conformally invariant generalized σ-models in the Wilson operator-product-expansion approach. We find that these correlations are, in general, infrared divergent. The absence of infrared divergences is obtained, as one can expect, for σ-models on a group manifold or for σ-models with a string-like interpretation. Moreover, the infrared divergences spoil the naive scaling arguments used by Zamolodchikov in the demonstration of the C-theorem. (orig.)

  9. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  10. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    Science.gov (United States)

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  11. The origin of infrared emission from the nucleus of NGC 1068

    International Nuclear Information System (INIS)

    Jones, T.W.; Stein, W.A.

    1975-01-01

    Recent infrared observational results for the nucleus of the Seyfert galaxy NGC 1068 are reviewed and analyzed in terms consistent with information available at other wavelengths. It is concluded that the infrared and optical data imply that approximately-greater-than85 percent of the infrared emission at 10μ is radiation from dust grains in the nucleus. Observed reddening of spectral lines implies geometrical optical depths at visual wavelengths approx.7--15 if the nuclear dust cloud is approximately spherically symmetric. The dust grains emitting the infrared radiation could be silicates with a 10-μ optical depth near unity, but this identification is not uniquely established. The grains are heated radiatively by an underlying source or sources of radiation also responsible for ionizing the emission-line-producing gas. The underlying source could be nonthermal, or it could be a hot plasma. Physical constraints on each of these models are derived

  12. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  13. Short wavelength infrared optical windows for evaluation of benign and malignant tissues

    Science.gov (United States)

    Sordillo, Diana C.; Sordillo, Laura A.; Sordillo, Peter P.; Shi, Lingyan; Alfano, Robert R.

    2017-04-01

    There are three short wavelength infrared (SWIR) optical windows outside the conventionally used first near-infrared (NIR) window (650 to 950 nm). They occur in the 1000- to 2500-nm range and may be considered second, third, and fourth NIR windows. The second (1100 to 1350 nm) and third windows (1600 to 1870 nm) are now being explored through label-free linear and multiphoton imaging. The fourth window (2100 to 2350 nm) has been mostly ignored because of water absorption and the absence of sensitive detectors and ultrafast lasers. With the advent of new technology, use of window IV is now possible. Absorption and scattering properties of light through breast and prostate cancer, bone, lipids, and intralipid solutions at these windows were investigated. We found that breast and prostate cancer and bone have longer total attenuation lengths at NIR windows III and IV, whereas fatty tissues and intralipid have longest lengths at windows II and III. Since collagen is the major chromophore at 2100 and 2350 nm, window IV could be especially valuable in evaluating cancers and boney tissues, whereas windows II and III may be more useful for tissues with high lipid content. SWIR windows may be utilized as additional optical tools for the evaluation of collagen in tissues.

  14. Mathematical Model of the One-stage Magneto-optical Sensor Based on Faraday Effect

    Science.gov (United States)

    Babaev, O. G.; Paranin, V. D.; Sinitsin, L. I.

    2018-01-01

    The aim of this work is to refine a model of magneto-optical sensors based on Faraday’s longitudinal magneto-optical effect. The tasks of the study include computer modeling and analysis of the transfer characteristic of a single-stage magneto-optical sensor for various polarization of the input beam and non-ideal optical components. The proposed mathematical model and software make it possible to take into account the non-ideal characteristics of film polaroids observed in operation in the near infrared region and at increased temperatures. On the basis of the results of the model analysis it was found that the dependence of normalized transmission T(γ2) has periodic nature. Choosing the angle (γ 2-γ 1) makes it possible to shift the initial operation point and change the sensitivity dT/dγ 2. The influence of the input beam polarization increases with the increase of polaroid parameter deviation from ideal and shows itself as reduction of modulation depth and angular shift of the sensor conversion response.

  15. High Power Mid-Infrared Generation with a Quasi-Phase Matched GaAs Guided-wave Optical Parametric Oscillator

    National Research Council Canada - National Science Library

    Harris, J

    2000-01-01

    ...-power coherent mid-infrared sources. Considerable effort has been devoted over the past decade to the development of mid-IR coherent sources based on nonlinear optical frequency conversion, e.g...

  16. Infrared optical properties of a coal-fired power plant plume

    International Nuclear Information System (INIS)

    Stearns, L.P.; Pueschel, R.F.

    1983-01-01

    Infrared measurements in the 8--14-μm spectral region were made of two coal-fired power plant plumes and area haze in the Four Corners region of New Mexico from 1 to 7 Nov. 1980. The layer tranmittance, optical depth, and volume extinction coefficient derived from measurements on four nonconsecutive days show the effects of the plumes on the IR optical properties of the atmosphere. The average contribution of the plume alone to the IR extinction coefficient was 74% at the Four Corners plant; the background haze contributed 7--11%. More efficient particulate emission control at the San Juan power plant reduced the average contribution of its plume to 57% of the extinction coefficient. The haze contributed an average of 16%. The results show an increase with time of the haze bulk extinction coefficient during a persistent anticyclonic synoptic situation. Extinction coefficients of the haze showed a linearity with particulate loading, which led to estimates of IR volume extinctions of the free troposphre from aerosol measurements

  17. Infrared astronomy

    International Nuclear Information System (INIS)

    Setti, G.; Fazio, G.

    1978-01-01

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  18. Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes

    International Nuclear Information System (INIS)

    Heise, H.M.; Kuepper, L.; Butvina, L.N.

    2002-01-01

    Infrared-spectroscopy has proved to be a powerful method for the study of various biomedical samples, in particular for in-vitro analysis in the clinical laboratory and for non-invasive diagnostics. In general, the analysis of biofluids such as whole blood, urine, microdialysates and bioreactor broth media takes advantage of the fact that a multitude of analytes can be quantified simultaneously and rapidly without the need for reagents. Progress in the quality of infrared silver halide fibers enabled us to construct several flexible fiber-optic probes of different geometries, which are particularly suitable for the measurement of small biosamples. Recent trends show that dry film measurements by mid-infrared spectroscopy could revolutionize analytical tools in the clinical chemistry laboratory, and an example is given. Infrared diagnostic tools show a promising potential for patients, and minimal-invasive blood glucose assays or skin tissue pathology in particular cannot be left out using mid-infrared fiber-based probes. Other applications include the measurement of skin samples including penetration studies of vitamins and constituents of cosmetic cream formulations. A further field is the micro-domain analysis of biopsy samples from bog mummified corpses, and recent results on the chemistry of dermis and hair samples are reported. Another field of application, for which results are reported, is food analysis and bio-reactor monitoring

  19. The optical + infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association

    Science.gov (United States)

    Lodieu, N.; Zapatero Osorio, M. R.; Béjar, V. J. S.; Peña Ramírez, K.

    2018-01-01

    We present the results of photometric and spectroscopic follow-ups of the lowest mass member candidates in the nearest OB association, Upper Scorpius (∼5-10 Myr; 145 ± 17 pc), with the Gran Telescopio de Canarias (GTC) and European Southern Observatory (ESO) Very Large Telescope (VLT). We confirm the membership of the large majority (>80 per cent) of candidates originally selected photometrically and astrometrically based on their spectroscopic features, weak equivalent widths of gravity-sensitive doublets and radial velocities. Confirmed members follow a sequence over a wide magnitude range (J = 17.0-19.3 mag) in several colour-magnitude diagrams with optical, near- and mid-infrared photometry and have near-infrared spectral types in the L1-L7 interval with likely masses below 15 Jupiter masses. We find that optical spectral types tend to be earlier than near-infrared spectral types by a few subclasses for spectral types later than M9. We investigate the behaviour of spectral indices, defined in the literature as a function of spectral type and gravity, by comparison with values reported in the literature for young and old dwarfs. We also derive effective temperatures in the 1900-1600 K range from fits of synthetic model-atmosphere spectra to the observed photometry, but we caution that the procedure carries large uncertainties. We determine bolometric corrections for young L dwarfs with ages of ∼5-10 Myr (Upper Sco association) and find them to be similar in the J band but larger by 0.1-0.4 mag in the K band with respect to field L dwarfs. Finally, we discover two faint young L dwarfs, Visible and Infrared Survey Telescope for Astronomy (VISTA) J1607-2146 (L4.5) and VISTA J1611-2215 (L5), that have Hα emission and possible flux excesses at 4.5 μm, pointing to the presence of accretion from a disc on to the central objects of mass below ∼15MJup at an age of 5-10 Myr.

  20. Relationship between ice water path and downward longwave radiation for clouds optically thin in the infrared: Observations and model calculations

    Science.gov (United States)

    Uttal, Taneil; Matrosov, Sergey Y.; Snider, Jack B.; Kropfli, Robert A.

    1994-01-01

    A vertically pointing 3.2-cm radar is used to observe altostratus and cirrus clouds as they pass overhead. Radar reflectivities are used in combination with an empirical Z(sub i)-IWC (ice water content) relationship developed by Sassen (1987) to parameterize IWC, which is then integrated to obtain estimates of ice water path (IWP). The observed dataset is segregated into all-ice and mixed-phase periods using measurements of integrated liquid water paths (LWP) detected by a collocated, dual-channel microwave radiometer. The IWP values for the all ice periods are compared to measurements of infrared (IR) downward fluxes measured by a collocated narrowband (9.95-11.43 microns) IR radiometer, which results in scattergrams representing the observed dependence of IR fluxes on IWP. A two-stream model is used to calculate the infrared fluxes expected from ice clouds with boundary conditions specified by the actual clouds, and similar curves relating IWP and infrared fluxes are obtained. The model and observational results suggest that IWP is one of the primary controls on infrared thermal fluxes for ice clouds.

  1. Electrical and optical properties of multiple quantum well structures and their applications to infrared detectors

    International Nuclear Information System (INIS)

    Helgesen, P.

    1992-04-01

    In this work the author investigate the subband nature of multiple quantum well structures by photoconductance spectroscopy, optical absorption measurements and tunneling experiments. Both interband and intraband transitions have been studied. The work is aimed at making an infrared detector using wide band gap semiconductors. 14 refs

  2. On the age and metallicity estimation of spiral galaxies using optical and near-infrared photometry

    NARCIS (Netherlands)

    Lee, Hyun-Chul; Worthey, Guy; Trager, Scott C.; Faber, S. M.

    2007-01-01

    In integrated light, some color-color diagrams that use optical and near-infrared photometry show surprisingly orthogonal grids as age and metallicity are varied, and they are coming into common usage for estimating the average age and metallicity of spiral galaxies. In this paper we reconstruct

  3. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data

    Science.gov (United States)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan

    2008-06-01

    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Daytime Cloud Optical and Microphysical Properties (DCOMP) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of daytime cloud optical and microphysical properties (DCOMP) from the Visible Infrared Imaging...

  5. Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system.

    Science.gov (United States)

    Lin, Ruiqiang; Chen, Feifei; Zhang, Xiaoyu; Huang, Yicong; Song, Baoan; Dai, Shixun; Zhang, Xianghua; Ji, Wei

    2017-10-16

    In this work, we investigated the mid-infrared (MIR) optical properties of selenide (Se-based) chalcogenide glasses (ChGs) within an As- and Ge-free system, namely the environment-friendly and low-cost tin-antimony-selenium (Sn-Sb-Se, SSS) ternary system, which has not been systematically studied to the best of our knowledge. As compared to ChGs within those conventional Se-based systems, SSS ChGs were found to exhibit extended infrared transmittance range as well as larger linear refractive index (n 0 ). Femtosecond Z-scan measurements show the presence of evident three-photon absorption from Urbach absorption of the SSS ChGs at MIR wavelength, which resonantly enhanced the nonlinear refractive behavior and resulted in large nonlinear refractive index (n 2 ).

  6. A twin optically-pumped far-infrared CH3OH laser for plasma diagnostics

    International Nuclear Information System (INIS)

    Yamanaka, M.; Takeda, Y.; Tanigawa, S.; Nishizawa, A.; Noda, N.

    1979-11-01

    A twin optically-pumped far-infrared CH 3 OH laser has been constructed for use in plasma diagnostics. The anti-symmetric doublet due to the Raman-type resonant two-photon transition is reproducibly observed at 118.8 μm. With the 118.8-μm line, it is obtained from the frequency separation of the anti-symmetric doublet that the CH 3 OH absorption line center is 16 +- 1 MHz higher than the pump 9.7-μm P(36) CO 2 laser line center. It is shown that the Raman-type resonant two-photon transition is useful in order to get several-MHz phase modulation for the far-infrared laser interferometer. Some preliminary performances of this twin laser for the modulated interferometer are described. (author)

  7. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  8. Optical - Near Infrared Photometric Calibration of M-dwarf Metallicity and Its Application

    OpenAIRE

    Hejazi, Neda; De Robertis, Michael M.; Dawson, Peter C.

    2015-01-01

    Based on a carefully constructed sample of dwarf stars, a new optical-near infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 ...

  9. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.

    Science.gov (United States)

    Wang, Jin

    2018-06-01

    A near infrared (NIR) optical biosensor based on peptide functionalized single-walled carbon nanotubes (SWCNTs) hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection was developed. The TNT binding peptide was directly anchored on the sidewall of the SWCNTs using the π-π interaction between the aromatic amino acids and SWCNTs, forming the peptide-SWCNTs hybrids for near infrared absorption spectra measurement. The evidence of the morphology of peptide-SWCNTs hybrids was obtained using atomic force microscopy (AFM). The results demonstrated that peptide-SWCNTs hybrids based NIR optical biosensor exhibited sensitive and highly selective for TNT explosive determination, addressing a promising optical biosensor for security application. Copyright © 2018. Published by Elsevier Inc.

  10. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  11. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  12. Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head.

    Science.gov (United States)

    Okada, E; Firbank, M; Schweiger, M; Arridge, S R; Cope, M; Delpy, D T

    1997-01-01

    Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measured mean optical path length as a function of source-detector spacing agrees well with predictions from either a Monte Carlo model or a finite-element method based on diffusion theory or a hybrid radiosity-diffusion theory. Light propagation in the adult head is shown to be highly affected by the presence of the clear CSF layer, and both the optical path length and the spatial sensitivity profile of the models with a CSF layer are quite different from those without the CSF layer. However, the geometry of the sulci and the boundary between the gray and the white matter have little effect on the detected light distribution.

  13. Modeling of light absorption in tissue during infrared neural stimulation

    Science.gov (United States)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  14. Transformation optics and metamaterials at infrared wavelength: engineering of permittivity and permeability

    Science.gov (United States)

    Ghasemi, Rasta; Degiron, Aloyse; Leroux, Xavier; Lupu, Anatole; de Lustrac, André

    2013-05-01

    The transformation optics was introduced by J. Pendry and U. Leonhardt in 2006 [1,2]. In this method an initial space is transformed into a new space and this transformed space can be materialized by a material, which the electromagnetic parameters can be deduced from the metric of the transformed space. In the general case the electromagnetic parameters are anisotropic tensors. At microwave frequencies these materials can be realized using classical metamaterials like SRR form J. Pendry or ELC from D. Smith [3]. At infrared wavelengths this realization is a challenge because the dimensions of the metamaterials are much smaller than the wavelength and become nanometric. Then the design of these metamaterials must be simplified and original methods must be developed to allow the realization of these metamaterials with controlled electromagnetic properties. In this paper we describe the realization of a multilayer metamaterial working at infrared wavelength, which the permittivity and the permeability can be adjusted separately. We give some examples of realized multilayer materials operating around 150THz, with a comparison between the results of full wave simulations of these materials and their characterizations using a Fourier Transform Infrared Spectrometer.

  15. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    ... (mesosphere and thermosphere) in terms of the structure of the underlying medium. Advances in non-LTE radiative transfer and atmospheric waves and localized excitations are detailed, as well as analysis and modeling of the databases resulting from two groundbreaking space infrared experiments, DoD MSX/SPIRIT III and NASA TIMED/SABER.

  16. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  17. Characterization and control of the electro-optic phase dispersion in lithium niobate modulators for wide spectral band interferometry applications in the mid-infrared.

    Science.gov (United States)

    Heidmann, S; Ulliac, G; Courjal, N; Martin, G

    2017-05-10

    Mid-infrared wideband modulation (3.2-3.7 μm) is achieved in an electro-optic Y-junction using lithium niobate waveguides in TE polarized light. Comparison between external (scanning mirror) and internal (electro-optical) modulation allows studying the chromatic polynomial dependence of the relative phase. Internal modulation consists on a V AC ramp up to 370 V at 0.25 Hz, applied over 14 mm long electrodes with 14 μm separation. The overall V π L π obtained is 17.5 V·cm, meaning that using a 300 V generator we can actively scan and track the whole L-band (3.4-4.1 μm) wideband fringes. We observe a dramatic reduction of the coherence length under electro-optic modulation, which is attributed to a strong nonlinear dependence of the electro-optic effect on the wavelength upon application of such high voltages. We study the effect of applying a V DC offset, from -50  V to 200 V (50 V step). We characterize this dispersion and propose an improved dispersion model that is used to show active dispersion compensation in wideband fringe modulation in the mid-infrared. This can be useful for long baseline interferometry or pulse compression applications when light propagates along fibers, in order to compensate for chromatic effects that induce differential dispersion or pulse spreading, respectively.

  18. Near-Infrared and Optical Beam Steering and Frequency Splitting in Air-Holes-in-Silicon Inverse Photonic Crystals

    Science.gov (United States)

    2017-01-01

    We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states’ coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that travel through the photonic crystal and the free space. Moreover it facilitates the steering of the outgoing waves, is found to generate well-defined, spatially and spectrally isolated beams, and may serve as a frequency splitting component designed for operation in the near-infrared regime and in particular the telecom optical wavelength band. The design complies with the state-of-the-art Si nanofabrication technology and can be directly scaled for operation in the optical regime. PMID:29541653

  19. Optical and near-infrared observations of SN 2011dh - The first 100 days

    Science.gov (United States)

    Ergon, M.; Sollerman, J.; Fraser, M.; Pastorello, A.; Taubenberger, S.; Elias-Rosa, N.; Bersten, M.; Jerkstrand, A.; Benetti, S.; Botticella, M. T.; Fransson, C.; Harutyunyan, A.; Kotak, R.; Smartt, S.; Valenti, S.; Bufano, F.; Cappellaro, E.; Fiaschi, M.; Howell, A.; Kankare, E.; Magill, L.; Mattila, S.; Maund, J.; Naves, R.; Ochner, P.; Ruiz, J.; Smith, K.; Tomasella, L.; Turatto, M.

    2014-02-01

    We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ~11 000 km s-1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M⊙ to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evolution of these lines. The Spitzer 4.5 μm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. Thedistance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ~75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day-1

  20. Laser-induced filaments in the mid-infrared

    International Nuclear Information System (INIS)

    Zheltikov, A M

    2017-01-01

    Laser-induced filamentation in the mid-infrared gives rise to unique regimes of nonlinear wave dynamics and reveals in many ways unusual nonlinear-optical properties of materials in this frequency range. The λ 2 scaling of the self-focusing threshold P cr , with radiation wavelength λ , allows the laser powers transmitted by single mid-IR filaments to be drastically increased without the loss of beam continuity and spatial coherence. When extended to the mid-infrared, laser filamentation enables new methods of pulse compression. Often working around the universal physical limitations, it helps generate few-cycle and subcycle field waveforms within an extraordinarily broad range of peak powers, from just a few up to hundreds of P cr . As a part of a bigger picture, laser-induced filamentation in the mid-infrared offers important physical insights into the general properties of the nonlinear-optical response of matter as a function of the wavelength. Unlike their near-infrared counterparts, which can be accurately described within the framework of perturbative nonlinear optics, mid-infrared filaments often entangle perturbative and nonperturbative nonlinear-optical effects, showing clear signatures of strong-field optical physics. With the role of nonperturbative nonlinear-optical phenomena growing, as a general tendency, with the field intensity and the driver wavelength, extension of laser filamentation to even longer driver wavelengths, toward the long-wavelength infrared, promises a hic sunt dracones land. (topical review)

  1. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  2. Infrared imaging and spectral-domain optical coherence tomography findings correlate with microperimetry in acute macular neuroretinopathy: a case report

    Directory of Open Access Journals (Sweden)

    Grover Sandeep

    2011-10-01

    Full Text Available Abstract Introduction Spectral-domain optical coherence tomography findings in a patient with acute macular neuroretinopathy, and correlation with functional defects on microperimetry, are presented. Case presentation A 25-year old Caucasian woman presented with bitemporal field defects following an upper respiratory tract infection. Her visual acuity was 20/20 in both eyes and a dilated fundus examination revealed bilateral hyperpigmentary changes in the papillomacular bundle. Our patient underwent further evaluation with spectral-domain optical coherence tomography, infrared and fundus autofluorescence imaging. Functional changes were assessed by microperimetry. Infrared imaging showed the classic wedge-shaped defects and spectral-domain optical coherence tomography exhibited changes at the inner segment-outer segment junction, with a thickened outer plexiform layer overlying these areas. Fluorescein and indocyanine green angiography did not demonstrate any perfusion defects or any other abnormality. Microperimetry demonstrated focal elevation in threshold correlating with the wedge-shaped defects in both eyes. Conclusion Spectral-domain optical coherence tomography findings provide new evidence of the involvement of the outer plexiform layer of the retina in acute macular neuroretinopathy.

  3. Optical Interference Coatings Design Contest 2013: angle-independent color mirror and shortwave infrared/midwave infrared dichroic beam splitter.

    Science.gov (United States)

    Hendrix, Karen; Kruschwitz, Jennifer D T; Keck, Jason

    2014-02-01

    An angle-independent color mirror and an infrared dichroic beam splitter were the subjects of a design contest held in conjunction with the 2013 Optical Interference Coatings topical meeting of the Optical Society of America. A total of 17 designers submitted 63 designs, 22 for Problem A and 41 for Problem B. The submissions were created through a wide spectrum of design approaches and optimization strategies. Michael Trubetskov and Weidong Shen won the first contest by submitting color mirror designs with a zero color difference (ΔE00) between normal incidence and all other incidence angles up to 60° as well as the thinnest design. Michael Trubetskov also won the second contest by submitting beam-splitter designs that met the required transmission while having the lowest mechanical coating stress and thinnest design. Fabien Lemarchand received the second-place finish for the beam-splitter design. The submitted designs are described and evaluated.

  4. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Optical Thickness (COT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Optical Thickness (COT) from the Visible Infrared Imaging Radiometer Suite...

  5. Early GRB optical and infrared afterglow observations with the 2-m robotic Liverpool Telescope

    International Nuclear Information System (INIS)

    Gomboc, A.; Ljubljana Univ., Ljubljana; Mundell, C.G.; Guidorzi, C.

    2005-01-01

    We present the first optical observations of a Gamma Ray Burst IGRB) afterglow using the 2-m robotic Liverpool Telescope (LT), which is owned and operated by Liverpool John Moores University and situated on La Palma. We briefly discuss the capabilities of LT and its suitability for rapid follow-up observations of early optical and infrared GRB light curves. In particular, the combination of aperture, site, instrumentation and rapid response (robotic over-ride mode aided by telescope's rapid slew and fully-opening enclosure) makes the LT ideal for investigating the nature of short bursts, optically-dark bursts, and GRB blast-wave physics in general. We briefly describe the LT's key position in the RoboNet-1.0 network of robotic telescopes. We present the LT observations of GRB041006 and use its gamma-ray properties to predict the time of the break in optical light curve, a prediction consistent with the observations

  6. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range.

    Science.gov (United States)

    Yao, Yuhan; Liu, He; Wang, Yifei; Li, Yuanrui; Song, Boxiang; Wang, Richard P; Povinelli, Michelle L; Wu, Wei

    2016-07-11

    Optical devices with asymmetric transmission have important applications in optical systems, but optical isolators with the modal asymmetry can only be built using magneto-optical or nonlinear materials, as dictated by the Lorentz reciprocity theorem. However, optical devices with the power asymmetry can be achieved by linear materials such as metals and dielectrics. In this paper, we report a large-area, nanoimprint-defined meta-surface (stacked subwavelength gratings) with high-contrast asymmetric transmittance in the visible-to-infrared wavelength range for TM-polarized light. The physical origin of asymmetric transmission through the meta-surface is studied by analyzing the scattering matrix.

  7. Meeting the Cool Neighbors. XII. An Optically Anchored Analysis of the Near-infrared Spectra of L Dwarfs

    Science.gov (United States)

    Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny

    2018-01-01

    Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.

  8. THE ROLE OF STARBURST-ACTIVE GALACTIC NUCLEUS COMPOSITES IN LUMINOUS INFRARED GALAXY MERGERS: INSIGHTS FROM THE NEW OPTICAL CLASSIFICATION SCHEME

    International Nuclear Information System (INIS)

    Yuan, T.-T.; Kewley, L. J.; Sanders, D. B.

    2010-01-01

    We investigate the fraction of starbursts, starburst-active galactic nucleus (AGN) composites, Seyferts, and low-ionization narrow emission-line region galaxies (LINERs) as a function of infrared luminosity (L IR ) and merger progress for ∼500 infrared (IR)-selected galaxies. Using the new optical classifications afforded by the extremely large data set of the Sloan Digital Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare ( IR > 10 12 L sun ), starburst-AGN composite galaxies dominate at early-intermediate stages of the merger, and AGN galaxies dominate during the final merger stages. Our results are consistent with models for IR-luminous galaxies where mergers of gas-rich spirals fuel both starburst and AGN, and where the AGN becomes increasingly dominant during the final merger stages of the most luminous IR objects.

  9. Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens

    Science.gov (United States)

    Shi, Weimin; Couture, Michael E.

    2001-03-01

    Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.

  10. Infrared and Optical Spectroscopy of Type Ia Supernovae in the Nebular Phase

    OpenAIRE

    Bowers, E. J. C.; Meikle, W. P. S.; Geballe, T. R.; Walton, N. A.; Pinto, P. A.; Dhillon, V. S.; Howell, S. B.; Harrop-Allin, M. K.

    1997-01-01

    We present near-infrared (NIR) spectra for Type Ia supernovae at epochs of 13 to 338 days after maximum blue light. Some contemporary optical spectra are also shown. All the NIR spectra exhibit considerable structure throughout the J-, H- and K-bands. In particular they exhibit a flux `deficit' in the J-band which persists as late as 175 days. This is responsible for the well-known red J-H colour. To identify the emission features and test the $^{56}$Ni hypothesis for the explosion and subseq...

  11. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  12. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    Science.gov (United States)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  13. Behavioral Model of High Performance Camera for NIF Optics Inspection

    International Nuclear Information System (INIS)

    Hackel, B M

    2007-01-01

    The purpose of this project was to develop software that will model the behavior of the high performance Spectral Instruments 1000 series Charge-Coupled Device (CCD) camera located in the Final Optics Damage Inspection (FODI) system on the National Ignition Facility. NIF's target chamber will be mounted with 48 Final Optics Assemblies (FOAs) to convert the laser light from infrared to ultraviolet and focus it precisely on the target. Following a NIF shot, the optical components of each FOA must be carefully inspected for damage by the FODI to ensure proper laser performance during subsequent experiments. Rapid image capture and complex image processing (to locate damage sites) will reduce shot turnaround time; thus increasing the total number of experiments NIF can conduct during its 30 year lifetime. Development of these rapid processes necessitates extensive offline software automation -- especially after the device has been deployed in the facility. Without access to the unique real device or an exact behavioral model, offline software testing is difficult. Furthermore, a software-based behavioral model allows for many instances to be running concurrently; this allows multiple developers to test their software at the same time. Thus it is beneficial to construct separate software that will exactly mimic the behavior and response of the real SI-1000 camera

  14. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  15. Far-Infrared Magneto-Optical Studies in Germanium and Indium-Antimonide at High Intensities

    Science.gov (United States)

    Leung, Michael

    Observations of nonlinear magneto-optical phenomena occurring in p-type Germanium and n-type Indium Antimonide are reported. These include multi-photon ionization of impurity states, and a new observation, the magneto-photon ionization of impurity states, and a new observation, the magneto-photon drag effect. A novel source of far-infrared radiation has been used. This source uses a pulsed CO(,2) LASER to optically pump a super-radiant cell, generating light with intensities up to 100 KW/cm('2) and wavelengths from 66 (mu)m to 496 (mu)m in a pulse of 150 nanoseconds duration. The Germanium samples were doped with Gallium, which is a shallow acceptor with an ionization potential of 11 meV. At liquid Helium temperature virtually all charge carriers are bound to acceptor sites. However, the high intensity radiation unexpectedly ionizes the acceptors. This is demonstrated through measurements of photoconductivity, transmission and the photo-Hall Effect. This observation is unexpected because the photon energy is one-fourth the ionization potential. Rate equations describing sequential multiphoton excitations are in agreement with the experimental results. The intermediate states are postulated to be acceptor exciton band states. Studies of the photoexcited mobility at 496 (mu)m suggest that at non-saturating levels of photoexcitation, the primary scattering mechanism of hot holes in Germanium is by neutral impurities. A new magneto-optical effect, the magneto-photon drag effect, has been studied in both Germanium and Indium Antimonide. This is simply the absorption of momentum by free carriers, from an incident photon field. It has been found that the mechanism for this effect is different in the two materials. In Germanium, the effect occurs when carriers make optical transitions from the heavy hole band to the light hole band. Thus, the magneto-optical behavior depends heavily upon the band structure. On the other hand, a modified Drude model (independent electron

  16. Development of tellurium oxide and lead-bismuth oxide glasses for mid-wave infra-red transmission optics

    Science.gov (United States)

    Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu

    2013-03-01

    Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.

  17. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    Science.gov (United States)

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  18. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    Science.gov (United States)

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  19. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    Science.gov (United States)

    Roeck, Benjamin

    2015-12-01

    The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the

  20. Infrared emission from protostars

    International Nuclear Information System (INIS)

    Adams, F.C.; Shu, F.H.

    1985-01-01

    The emergent spectral energy distribution at infrared to radio wavelengths is calculated for the simplest theoretical construct of a low-mass protostar. It is shown that the emergent spectrum in the infrared is insensitive to the details assumed for the temperature profile as long as allowance is made for a transition from optically thick to optically thin conditions and luminosity conservation isenforced at the inner and outer shells. The radiation in the far infrared and submillimeter wavelengths depends on the exact assumptions made for grain opacities at low frequencies. An atlas of emergent spectral energy distributions is presented for a grid of values of the instantaneous mass of the protostar and the mass infall rate. The attenuated contribution of the accretion shock to the near-infrared radiation is considered. 50 references

  1. Assessment of quality parameters in grapes during ripening using a miniature fiber-optic near-infrared spectrometer.

    Science.gov (United States)

    Fernández-Novales, Juan; López, María-Isabel; Sánchez, María-Teresa; García-Mesa, José-Antonio; González-Caballero, Virginia

    2009-01-01

    Changes in the chemical properties of wine grapes during ripening were studied using near-infrared (NIR) spectroscopy. A miniature fiber-optic NIR spectrometer system working in transmission mode in the spectral region (700 - 1,060 nm) was evaluated for this purpose. Spectra and analytical data were used to develop partial least square calibration models to quantify changes in the major parameters used to chart ripening in this fruit. NIR spectroscopy provided excellent precision for soluble solid content and for reducing sugars, and good precision for maturity index, while for pH and titratable acidity the miniature NIR spectroscopy instrument proved less accurate. The performance of the instrument in classifying wine grapes by grape type and by irrigation regime was also studied. Percentages of correctly classified samples ranged from 82.7% to 96.2%. The results show that the monitoring of soluble solid content and reducing sugars' changes in wine grape quality parameters during ripening, as well as the classification of grapes, can be performed non-destructively using a miniature fiber-optic NIR spectrometer.

  2. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  3. Studies of dust grain properties in infrared reflection nebulae.

    Science.gov (United States)

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  4. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan

    2014-12-03

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  5. Optical conductivity and optical effective mass in a high-mobility organic semiconductor: Implications for the nature of charge transport

    KAUST Repository

    Li, Yuan; Yi, Yuanping; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2014-01-01

    We present a multiscale modeling of the infrared optical properties of the rubrene crystal. The results are in very good agreement with the experimental data that point to nonmonotonic features in the optical conductivity spectrum and small optical effective masses. We find that, in the static-disorder approximation, the nonlocal electron-phonon interactions stemming from low-frequency lattice vibrations can decrease the optical effective masses and lead to lighter quasiparticles. On the other hand, the charge-transport and infrared optical properties of the rubrene crystal at room temperature are demonstrated to be governed by localized carriers driven by inherent thermal disorders. Our findings underline that the presence of apparently light carriers in high-mobility organic semiconductors does not necessarily imply bandlike transport.

  6. Wavefront Sensing for WFIRST with a Linear Optical Model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  7. Viability of infrared FEL facilities

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    2004-01-01

    Infrared FELs have broken important ground in optical science in the past decade. The rapid development of optical parametric amplifiers and oscillators, and THz sources, however, has changed the competitive landscape and compelled FEL facilities to identify and exploit their unique advantages. The viability of infrared FEL facilities depends on targeting unique world-class science and providing adequate experimental beam time at competitive costs

  8. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  9. HOT-DUST-POOR QUASARS IN MID-INFRARED AND OPTICALLY SELECTED SAMPLES

    International Nuclear Information System (INIS)

    Hao Heng; Elvis, Martin; Civano, Francesca; Lawrence, Andy

    2011-01-01

    We show that the hot-dust-poor (HDP) quasars, originally found in the X-ray-selected XMM-COSMOS type 1 active galactic nucleus (AGN) sample, are just as common in two samples selected at optical/infrared wavelengths: the Richards et al. Spitzer/SDSS sample (8.7% ± 2.2%) and the Palomar-Green-quasar-dominated sample of Elvis et al. (9.5% ± 5.0%). The properties of the HDP quasars in these two samples are consistent with the XMM-COSMOS sample, except that, at the 99% (∼ 2.5σ) significance, a larger proportion of the HDP quasars in the Spitzer/SDSS sample have weak host galaxy contributions, probably due to the selection criteria used. Either the host dust is destroyed (dynamically or by radiation) or is offset from the central black hole due to recoiling. Alternatively, the universality of HDP quasars in samples with different selection methods and the continuous distribution of dust covering factor in type 1 AGNs suggest that the range of spectral energy distributions could be related to the range of tilts in warped fueling disks, as in the model of Lawrence and Elvis, with HDP quasars having relatively small warps.

  10. Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Watanabe

    2012-02-01

    Full Text Available This paper describes the characteristics of optical fiber sensors with surface plasmon resonance (SPR at 1,310 nm in which the scattering loss of silica optical fiber is low. SPR operation in the infrared wavelength range is achieved by coating a thin tantalum pentaoxide (Ta2O5 film. The novelty of this paper lies in the verification of how the hetero-core scheme could be operated as a commercial base candidate in the sense of easy fabrication, sufficient mechanical strength, and significant sensitivity as a liquid detector under the basis of a low loss transmission network in the near infrared wavelength region. The effect of Ta2O5 layer thickness has been experimentally revealed in the wavelength region extending to 1,800 nm by using the hetero-core structured optical fiber. SPR characterizations have been made in the wavelength region 1,000–1,300 nm, showing the feasible operation at the near infrared wavelength and the possible practical applications. In addition, the technique developed in this work has been interestingly applied to a multi-point water-detection and a water-level gauge in which tandem-connected SPR sensors system using hetero-core structured fibers were incorporated. The detailed performance characteristics are also shown on these applications.

  11. Optical and near-infrared photometric study of NGC 6724

    Science.gov (United States)

    Bendary, Reda; Tadross, Ashraf; Hasan, Priya; Osman, Anas; Essam, Ahmed

    2018-02-01

    BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V∼20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 1530±60 pc from the Sun and the age is 900±50 Myr. The optical reddening E(B-V)=0.65 {mag}, while the infrared reddening is E(J-H)=0.20 {mag}. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.

  12. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

    Science.gov (United States)

    Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.

    2012-09-01

    The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.

  13. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping

    2017-01-01

    To derive the bulk radiative properties of ice clouds, aircraft contrails and snow grains, which are fundamental to atmospheric radiative transfer calculations in downstream applications, it is necessary to accurately simulate the scattering of light by individual ice particles. An ice particle optical property database reported in 2013 (hereafter, TAMUice2013) is updated (hereafter, TAMUice2016) to incorporate recent advances in computation of the optical properties of nonspherical particles. Specifically, we employ the invariant imbedding T-matrix (II-TM) method to compute the optical properties of particles with small to moderate size parameters. Both versions use the Improved Geometric Optics Method (IGOM) to compute the optical properties of large ice crystals, but TAMUice2016 improves the treatment of inhomogeneous waves inside the scattering particles in the case where ice is absorptive such as at infrared wavelengths. To bridge the gap between the extinction efficiencies computed from the II-TM and the IGOM, TAMUice2016 includes spectrally dependent higher order terms of the edge effect in addition to the first order counterpart considered in TAMUice2013. Furthermore, the differences between TAMUice2013 and TAMUice2016 are quantified with respect to the computation of the bulk optical properties of ice clouds. - Highlights: • A previous database of the single-scattering properties of ice crystals is improved. • A combination of the invariant imbedding T-matrix and improved geometric optics methods is used. • The treatment of inhomogeneous waves in an absorptive ice crystal is improved. • Higher order terms of the edge effect are considered in the updated database.

  14. Emission characteristics of the Yb3+-sensitized Tm3+-doped optical fiber upon pumping with infrared LED

    International Nuclear Information System (INIS)

    Htein, Lin; Fan, Weiwei; Han, Won-Taek

    2014-01-01

    Near infrared emissions at 975, 1040 and 1450 nm of the Yb 3+ -sensitized Tm 3+ -doped optical fiber were obtained upon simultaneous excitation of Yb 3+ and Tm 3+ ions using the infrared LED. -- Highlights: • A novel pumping scheme for 1450 nm emission from 3 H 4 → 3 F 4 transition of Tm was demonstrated. • The absorption bands of Yb and Tm located within 690–970 nm were simultaneously excited with the IR LED. • Near infrared emissions at 975, 1040 and 1450 nm were obtained. • The Yb 3+ /Tm 3+ -codoped fiber showed the good spectroscopic quality and the increase of radiative lifetime of 3 H 4 level. • This LED pumping scheme can be useful for low-cost S-band fiber laser/amplifier applications

  15. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  16. Growth and characterization of materials for infrared detectors and nonlinear optical switches; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Longshore, Randolph E.; Baars, Jan W.

    Papers included in these proceedings are grouped under the topics of infrared material growth and characterization, infrared detector physics, and nonlinear optics. Attention is given to interface demarcation in Bridgman-Stockbarger crystal growth of II-VI compounds, growth of CdTe-CdMnTe heterostructures by molecular beam epitaxy, and a photoconductivity decay method for determining the minority carrier lifetime of p-type HgCdTe. Consideration is also given to anodic oxides on HgZnTe, the characterization of anodic fluoride films on Hg(1-x)Cd(x)Te, optical response in high-temperature superconducting thin films, and pyroelectric linear array IR detectors with CCD multiplexer. Other papers are on structural and optical properties of melt-processed calcium aluminate fibers, the preparation and characterization of a new thermistor material for thermistor bolometer, and photoemission from quantum-confined structure of nonlinear optical materials. (For individual items see A93-26893 to A93-26895)

  17. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  18. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Lu, Xuejun; Gu, Guiru

    2017-01-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field ( E -field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E -fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement. (paper)

  19. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    Science.gov (United States)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  20. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  1. Optical, infrared and radio astronomy from techniques to observation

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents the established sciences of optical, infrared, and radio astronomy as distinct research areas, focusing on the science targets and the constraints that they place on instrumentation in the different domains. It aims to bridge the gap between specialized books and practical texts, presenting the state of the art in different techniques. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities that drive the building of instrumentation and the development of advanced techniques. The specific telescopes and detectors are then presented, together with the techniques used to measure fluxes and spectra. Finally, the instruments and their limits are discussed to assist readers in choice of setup, planning and execution of observations, and data reduction. The volume also includes worked examples and problem sets to improve student understanding; tables and figures in chapters summarize the state of the art of instrumentation and techniques.

  2. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  3. Measurement of infrared optical constants with visible photons

    Science.gov (United States)

    Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid

    2018-04-01

    We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.

  4. A combined optical, infrared and radio study of the megamaser galaxy III Zw 35

    International Nuclear Information System (INIS)

    Chapman, J.M.; Axon, D.J.; Cohen, R.J.; Pedlar, A.; Davies, R.D.; Unger, S.W.

    1990-01-01

    III Zw 35 is a pair of galaxies characterized by powerful radio continuum, far-infrared and OH maser radiation. We have made a multi-frequency study of the galaxy pair based on optical, infrared and radio observations. The brighter northern component is identified as an early-type LINER or Seyfert galaxy containing an active nuclear region from which radio continuum, OH maser and thermal dust emission are detected. We propose that the northern component has a compact active nucleus deeply embedded in a highly obscured region of diameter ∼ 210 pc, within which enhanced star-formation occurs. The lower luminosity southern component is of low mass and is undergoing starburst activity over an extended region of diameter ∼ 5.5 kpc. The origin of the starburst and non-thermal activity appears to be an interaction between the two components. (author)

  5. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M; Harren, Frans J M; Mandon, Julien

    2014-06-01

    We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250  cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000  cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

  6. DISCOVERY OF THE VERY RED NEAR-INFRARED AND OPTICAL AFTERGLOW OF THE SHORT-DURATION GRB 070724A

    International Nuclear Information System (INIS)

    Berger, E.; Cenko, S. B.; Fox, D. B.; Cucchiara, A.

    2009-01-01

    We report the discovery of the near-infrared and optical afterglow of the short-duration gamma-ray burst GRB 070724A. The afterglow is detected in iJHK s observations starting 2.3 hr after the burst with K s = 19.59 ± 0.16 mag and i = 23.79 ± 0.07 mag, but is absent in images obtained 1.3 yr later. Fading is also detected in the K s band between 2.8 and 3.7 hr at a 4σ significance level. The optical/near-IR spectral index, β O,NIR ∼ -2, is much redder than expected in the standard afterglow model, pointing to either significant dust extinction, A host V ∼ 2 mag, or a non-afterglow origin for the near-IR emission. The case for extinction is supported by a shallow optical to X-ray spectral index, consistent with the definition for 'dark bursts', and a normal near-IR to X-ray spectral index. Moreover, a comparison to the optical discovery magnitudes of all short GRBs with optical afterglows indicates that the near-IR counterpart of GRB 070724A is one of the brightest to date, while its observed optical emission is one of the faintest. In the context of a non-afterglow origin, the near-IR emission may be dominated by a mini-supernova (mini-SN), leading to an estimated ejected mass of M ∼ 10 -4 M sun and a radioactive energy release efficiency of f ∼ 5 x 10 -3 (for v ∼ 0.3c). However, the mini-SN model predicts a spectral peak in the UV rather than near-IR, suggesting that this is either not the correct interpretation or that the mini-SN models need to be revised. Finally, the afterglow coincides with a star-forming galaxy at z = 0.457, previously identified as the host based on its coincidence with the X-ray afterglow position (∼2'' radius). Our discovery of the optical/near-IR afterglow makes this association secure, and furthermore localizes the burst to the outskirts of the galaxy, with an offset of 4.8 ± 0.1 kpc relative to the host center. At such a large offset, the possible large extinction points to a dusty environment local to the burst and

  7. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Cloud Optical Microphysical Properties (NCOMP) Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of nighttime cloud optical and microphysical properties (NCOMP) from the Visible Infrared...

  8. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  9. New DSH planetary nebulae and candidates from optical and infrared surveys

    International Nuclear Information System (INIS)

    Kronberger, Matthias; Jacoby, George H; Alves, Filipe; Patchick, Dana; Parker, Quentin A; Bojicic, Ivan; Frew, David J; Acker, Agnes; Eigenthaler, Paul; Harmer, Dianne; Reid, Warren; Schedler, Johannes

    2016-01-01

    To date, the planetary nebula (PN) survey of the Deep Sky Hunters collaboration has led to the detection of more than 250 previously unknown candidate planetary nebulae (PNe). About 60% of them were found during the past two years and are expected to be true, likely or possible PNe because careful vetting has already thrown out more doubtful objects. The majority of the new PN candidates are located within the boundaries of the SHS and IPHAS Ha surveys and were discovered by combining MIR data from the WideField Infrared Survey Explorer (WISE) with optical data from the IPHAS, SHS and DSS surveys, and UV data from the Galaxy Evolution Explorer(GALEX). (paper)

  10. Near-Infrared Optical Imaging of Integrin αvβ3 in Human Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2004-10-01

    Full Text Available In vivo optical imaging is potentially useful for evaluating the presence of tumor markers that are targets of molecular medicine. Here we report the synthesis and characterization of integrin αvβ3-targeted peptide cyclo(Lys–Arg–Gly–Asp–Phe [c(KRGDf] labeled with fluorescence dyes with wavelength spanning from the visible/near infrared (Cy5.5 to the true near infrared (IRDye800 for optical imaging. In vitro, the peptide–dye conjugates bound specifically to tumor cells expressing αvβ3. When administered intravenously into mice at a dose of 6 nmol/mouse, the conjugates accumulated in tumors expressing αvβ3. The tumor-to-background ratios for human KS1767 Kaposi's sarcoma in mice injected with Cy5.5–c(KRGDf and Cy5.5 were 5.5 and 1.5, respectively. Preinjection of c(KRGDf blocked the uptake of Cy5.5–c(KRGDf in tumors by 89%. In αvβ3-positive M21 and αvβ3-negative M21-L human melanoma, fluorescence intensity in the tumor of mice injected with IRDye800–c(KRGDf was 2.3 and 1.3 times that in normal tissue, respectively. Dynamic imaging revealed that Cy5.5–c(KRGDf was rapidly taken up by KS1767 tumor immediately after bolus injection. The rate of its uptake in the tumor was reduced by preinjection of c(KRGDf in an interval time-dependent manner. Our data suggest that near-infrared fluorescence imaging may be applied to the detection of tumors expressing integrin αvβ3 and to the assessment of the optimal biological dose and schedule of targeted therapies.

  11. DISCOVERING THE MISSING 2.2 < z < 3 QUASARS BY COMBINING OPTICAL VARIABILITY AND OPTICAL/NEAR-INFRARED COLORS

    International Nuclear Information System (INIS)

    Wu Xuebing; Wang Ran; Bian Fuyan; Jiang Linhua; Fan Xiaohui; Schmidt, Kasper B.

    2011-01-01

    The identification of quasars in the redshift range 2.2 < z < 3 is known to be very inefficient because the optical colors of such quasars are indistinguishable from those of stars. Recent studies have proposed using optical variability or near-infrared (near-IR) colors to improve the identification of the missing quasars in this redshift range. Here we present a case study combining both methods. We select a sample of 70 quasar candidates from variables in Sloan Digital Sky Survey (SDSS) Stripe 82, which are non-ultraviolet excess sources and have UKIDSS near-IR public data. They are clearly separated into two parts on the Y - K/g - z color-color diagram, and 59 of them meet or lie close to a newly proposed Y - K/g - z selection criterion for z < 4 quasars. Of these 59 sources, 44 were previously identified as quasars in SDSS DR7, and 35 of them are quasars at 2.2 < z < 3. We present spectroscopic observations of 14 of 15 remaining quasar candidates using the Bok 2.3 m telescope and the MMT 6.5 m telescope, and successfully identify all of them as new quasars at z = 2.36-2.88. We also apply this method to a sample of 643 variable quasar candidates with SDSS-UKIDSS nine-band photometric data selected from 1875 new quasar candidates in SDSS Stripe 82 given by Butler and Bloom based on the time-series selections, and find that 188 of them are probably new quasars with photometric redshifts at 2.2 < z < 3. Our results indicate that the combination of optical variability and optical/near-IR colors is probably the most efficient way to find 2.2 < z < 3 quasars and is very helpful for constructing a complete quasar sample. We discuss its implications for ongoing and upcoming large optical and near-IR sky surveys.

  12. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    Science.gov (United States)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame

  13. Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation

    International Nuclear Information System (INIS)

    Maiti, R; Ray, S K; Midya, A; Narayana, C

    2014-01-01

    The modification of individual oxygen functional groups and the resultant optical properties of a graphene oxide suspension were investigated using a controlled photothermal reduction by infrared irradiation. The evolution of the structural and optical characteristics of GO suspensions was obtained from Raman spectra, x-ray photoelectron spectroscopy, optical absorption, and steady state and time-resolved photoluminescence spectroscopy. The results suggest the gradual restoration of sp 2 clusters within the sp 3 matrix with an increase of the reduction time and power density. The yellow-red emission (∼610 nm) originated from the defect-assisted localized states in GO due to epoxy/hydroxyl (C-O/-OH) functional groups and that of the blue emission (∼500 nm) was ascribed to the carbonyl (C=O)-assisted localized electronic states. With an increase in the reduction time and IR power density, the intensity of the yellow-red emission was found to decrease, with the blue emission being prominent. These experimental findings open up a new dimension for controlling the optical absorption and emission properties of graphene oxide by tailoring the oxygen functional groups, which may lead to the potential application of graphene-based optoelectronic devices. (paper)

  14. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    International Nuclear Information System (INIS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-01-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract

  15. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, Casey L.; Dorsey, Christopher L. [Texas State University, Department of Chemistry and Biochemistry (United States); Özel, Tuğba [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania, E-mail: tb26@txstate.edu [Texas State University, Department of Chemistry and Biochemistry (United States)

    2016-07-15

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract.

  16. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers.

    Science.gov (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Maruoka, Yasuhiro; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-16

    Near-infrared photoimmunotherapy (NIR-PIT), a promising cancer therapy utilizing an antibody-photoabsorber conjugate (APC) and NIR light, which induces rapid necrotic cell death only in APC-bound cells. Effective NIR-PIT in mouse models has been achieved using superficial light illumination (SLI) with light emitting diodes (LEDs) or lasers, but in the clinical setting, fiber optic diffusers have been employed to deliver light to deeper tumors. However, the performance of NIR light in tissue delivered by fiber optic diffusers is poorly understood. Here, we investigated NIR-PIT using a cylindrical fiber optic diffuser in a mouse model of A431 tumors. NIR-PIT with 100 J/cm, the same light dose used in clinical trials of NIR-PIT, was applied after insertion of the diffuser within the tumor bed, and then both bioluminescence and fluorescence imaging were analyzed to assess the therapeutic efficacy. The diffuser can deliver adequate NIR light dose for effective NIR-PIT to the A431 tumor at a distance of approximately 1 cm around the light source at 100 J/cm. At 50 J/cm NIR light effective NIR-PIT was reduced to a distance of 5 - 7 mm diameter around the light source. These results indicate that the energy of interstitial light (measured in Joules/cm) administered via a fiber diffuser determines the depth of effective NIR-PIT around the diffuser and determines the spacing at which such diffusers should be placed to entirely cover the tumor. Thermal measurements demonstrate that interstitial light for NIR-PIT does not cause damage to the skin overlying the diffuser.

  17. Optical properties of Nd3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission

    Science.gov (United States)

    Mariselvam, K.; Arun Kumar, R.; Suresh, K.

    2018-04-01

    The neodymium doped barium lithium fluoroborate (Nd3+: BLFB) glasses with the chemical composition (70-x) H3BO3 - 10 Li2CO3 - 10 BaCO3- 5 CaF2-5 ZnO - x Nd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 in wt %) have been prepared by the conventional melt quenching technique and characterised through optical absorption, near infrared emission and decay-time measurements. The x-ray diffraction studies confirm the amorphous nature of the prepared glasses. The optical absorption spectra and emission spectra were recorded in the wavelength ranges of 190-1100 nm. The optical band gap (Eg) and Urbach energy (ΔE) values were calculated from the absorption spectra. The Judd-Ofelt intensity parameters were determined from the systematic analysis of the absorption spectrum of neodymium ions in the prepared glasses. The emission spectra exhibited three prominent peaks at 874, 1057, 1331 nm corresponding to the 4F3/2 → 4I9/2, 11/2, 13/2 transitions levels respectively in the near infrared region. The emission intensity of the 4F3/2 → 4I11/2 transition increases with the increase in neodymium concentration up to 0.5 wt% and the concentration quenching mechanism was observed for 1 wt% and 2 wt% concentrations. The lifetime of the 4F3/2 level was found to decrease with increasing Nd3+ ion concentration. The nature of energy transfer process was a single exponential curve which was studied for all the glasses and analysed.

  18. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  19. Feasibility Study on the Development of 2-channel Embedded Infrared Fiber-optic Sensor for Thermometry of Secondary Water System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoo, W. J.; Jang, K. W.; Seo, J. K.; Moon, J.; Han, K. T.; Lee, B.; Park, B. G.

    2011-01-01

    Any warm object by measuring the emitted infrared (IR) radiation. The radiometers using infrared optical fibers are based on the relationship between the temperature of a heat source and the quality and the quantity of an IR radiation. To measure physical properties including a temperature, optical fiber-based sensor has many advantages, such as small size, low cost, high resolution, remote sensing and immunity to electromagnetic radiation over conventional electrical sensors. In this study, we carried out the feasibility study on the development of an embedded IR fiber-optic sensor for thermometry of the secondary water system in a nuclear power plant. The 2-channel embedded fiberoptic temperature sensor was fabricated using two identical IR optical fibers for accurate thermometry without complicated calibration processes. To decide accurate temperature of the water, we measured the difference between the IR radiations emitted from the two temperature sensing probes according to the temperature variation of the water

  20. Study on general design of dual-DMD based infrared two-band scene simulation system

    Science.gov (United States)

    Pan, Yue; Qiao, Yang; Xu, Xi-ping

    2017-02-01

    Mid-wave infrared(MWIR) and long-wave infrared(LWIR) two-band scene simulation system is a kind of testing equipment that used for infrared two-band imaging seeker. Not only it would be qualified for working waveband, but also realize the essence requests that infrared radiation characteristics should correspond to the real scene. Past single-digital micromirror device (DMD) based infrared scene simulation system does not take the huge difference between targets and background radiation into account, and it cannot realize the separated modulation to two-band light beam. Consequently, single-DMD based infrared scene simulation system cannot accurately express the thermal scene model that upper-computer built, and it is not that practical. To solve the problem, we design a dual-DMD based, dual-channel, co-aperture, compact-structure infrared two-band scene simulation system. The operating principle of the system is introduced in detail, and energy transfer process of the hardware-in-the-loop simulation experiment is analyzed as well. Also, it builds the equation about the signal-to-noise ratio of infrared detector in the seeker, directing the system overall design. The general design scheme of system is given, including the creation of infrared scene model, overall control, optical-mechanical structure design and image registration. By analyzing and comparing the past designs, we discuss the arrangement of optical engine framework in the system. According to the main content of working principle and overall design, we summarize each key techniques in the system.

  1. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Siyushev, P; Jacques, V; Kaiser, F; Jelezko, F; Wrachtrup, J [3.Physikalisches Institut, Universitaet Stuttgart, D-70550 Stuttgart (Germany); Aharonovich, I; Castelletto, S; Prawer, S [School of Physics, University of Melbourne, VA 3010 (Australia); Mueller, T; Lombez, L; Atatuere, M [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)], E-mail: v.jacques@physik.uni-stuttgart.de

    2009-11-15

    In this paper, we study the optical properties of single defects emitting in the near infrared (NIR) in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implantation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line (ZPL) in the NIR, the radiative lifetime is in the nanosecond range and the emission is linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the ZPL. Although Fourier-transform-limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the NIR by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.

  2. Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Maria, Jon-Paul; Keeler, Gordon A.

    2017-08-01

    Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.

  3. PENETRATING THE HOMUNCULUS-NEAR-INFRARED ADAPTIVE OPTICS IMAGES OF ETA CARINAE

    International Nuclear Information System (INIS)

    Artigau, Etienne; Martin, John C.; Humphreys, Roberta M.; Davidson, Kris; Chesneau, Olivier; Smith, Nathan

    2011-01-01

    Near-infrared adaptive optics imaging with the Near-Infrared Coronagraphic Imager (NICI) and NaCO reveal what appears to be a three-winged or lobed pattern, the 'butterfly nebula', outlined by bright Brγ and H 2 emission and light scattered by dust. In contrast, the [Fe II] emission does not follow the outline of the wings, but shows an extended bipolar distribution which is tracing the Little Homunculus ejected in η Car's second or lesser eruption in the 1890s. Proper motions measured from the combined NICI and NaCO images together with radial velocities show that the knots and filaments that define the bright rims of the butterfly were ejected at two different epochs corresponding approximately to the great eruption and the second eruption. Most of the material is spatially distributed 10 0 -20 0 above and below the equatorial plane apparently behind the Little Homunculus and the larger SE lobe. The equatorial debris either has a wide opening angle or the clumps were ejected at different latitudes relative to the plane. The butterfly is not a coherent physical structure or equatorial torus but spatially separate clumps and filaments ejected at different times, and now 2000-4000 AU from the star.

  4. Determination of the size of the dust torus in H0507+164 through optical and infrared monitoring

    Science.gov (United States)

    Mandal, Amit Kumar; Rakshit, Suvendu; Kurian, Kshama S.; Stalin, C. S.; Mathew, Blesson; Hoenig, Sebastian; Gandhi, Poshak; Sagar, Ram; Pandge, M. B.

    2018-04-01

    The time delay between flux variations in different wavelength bands can be used to probe the inner regions of active galactic nuclei (AGNs). Here, we present the first measurements of the time delay between optical and near-infrared (NIR) flux variations in H0507+164, a nearby Seyfert 1.5 galaxy at z = 0.018. The observations in the optical V-band and NIR J, H, and Ks bands carried over 35 epochs during the period 2016 October to 2017 April were used to estimate the inner radius of the dusty torus. From a careful reduction and analysis of the data using cross-correlation techniques, we found delayed responses of the J, H, and Ks light curves to the V-band light curve. In the rest frame of the source, the lags between optical and NIR bands are found to be 27.1^{+13.5}_{-12.0} d (V versus J), 30.4^{+13.9}_{-12.0} d (V versus H) and 34.6^{+12.1}_{-9.6} d (V versus Ks). The lags between the optical and different NIR bands are thus consistent with each other. The measured lags indicate that the inner edge of dust torus is located at a distance of 0.029 pc from the central ultraviolet/optical AGN continuum. This is larger than the radius of the broad line region of this object determined from spectroscopic monitoring observations thereby supporting the unification model of AGN. The location of H0507+164 in the τ-MV plane indicates that our results are in excellent agreement with the now known lag-luminosity scaling relationship for dust in AGN.

  5. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  6. Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    Science.gov (United States)

    Rome, Claire; Gravier, Julien; Morille, Marie; Divita, Gilles; Bolcato-Bellemin, Anne-Laure; Josserand, Véronique; Coll, Jean-Luc

    2013-01-01

    Noninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice.

  7. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Kouzuma, S.; Yamaoka, H.

    2012-01-01

    We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported

  8. Infrared galaxies evolution. From cosmological observations with ISO to a mid-infrared to sub-millimetric modeling

    International Nuclear Information System (INIS)

    Dole, Herve

    2000-01-01

    This thesis deals with the analysis of the FIRBACK deep survey performed in the far infrared at λ=170 μm with the Infrared Space Observatory whose aim is the study of the galaxies contributing to the Cosmic Infrared Background, and with the modelling of galaxy evolution in the mid-infrared to submillimeter range. The FIRBACK survey covers 3. 89 Sq. Deg. in 3 high galactic latitude and low foreground emission fields (2 of which are in the northern sky). I first present the techniques of reduction, processing and calibration of the ISOPHOT cosmological data. I show that there is a good agreement between PHOT and DIRBE on extended emission, thanks to the derivation of the PHOT footprint. Final maps are created, and the survey is confusion limited at σc=45 mJy. I present then the techniques of source extraction and the simulations for photometry needed to build the final catalog of 106 sources between 180 mJy (4σ) and 2.4 Jy. The complementary catalog is made of 90 sources between 135 and 180 mJy. Galaxy counts show a large excess with respect to local counts or models (with and without evolution), only compatible with strong evolution scenarios. The Cosmic Infrared Background (CIB) is resolved at 4 % at 170 μm. The identifications of the sources at other wavelengths suggest that most of the sources are local, but a non-negligible part lies above redshift 1. I have developed a phenomenological model of galaxy evolution in order to constrain galaxy evolution in the infrared and to have a better understanding of what the FIRBACK sources are. Using the local Luminosity Function (LF), and template spectra of starburst galaxies, it is possible to constrain the evolution of the LF using all the available data: deep source counts at 15, 170 and 850 μm and the CIB spectrum. I show that galaxy evolution is dominated by a high infrared luminosity population, peaking at L=2.0*10"1"1 Redshift distributions are in agreement with available observations. Predictions are

  9. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  10. An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2

    Science.gov (United States)

    Kwan, Stephanie; Lau, Ryan M.; Jencson, Jacob; Kasliwal, Mansi M.; Boyer, Martha L.; Ofek, Eran; Masci, Frank; Laher, Russ

    2018-03-01

    We present an optical and infrared (IR) study of IC 10 X-2, a high-mass X-ray binary in the galaxy IC 10. Previous optical and X-ray studies suggest that X-2 is a Supergiant Fast X-ray Transient: a large-amplitude (factor of ∼100), short-duration (hours to weeks) X-ray outburst on 2010 May 21. We analyze R- and g-band light curves of X-2 from the intermediate Palomar Transient Factory taken between 2013 July 15 and 2017 February 14 that show high-amplitude (≳1 mag), short-duration (≲8 days) flares and dips (≳0.5 mag). Near-IR spectroscopy of X-2 from Palomar/TripleSpec show He I, Paschen-γ, and Paschen-β emission lines with similar shapes and amplitudes as those of luminous blue variables (LBVs) and LBV candidates (LBVc). Mid-IR colors and magnitudes from Spitzer/Infrared Array Camera photometry of X-2 resemble those of known LBV/LBVcs. We suggest that the stellar companion in X-2 is an LBV/LBVc and discuss possible origins of the optical flares. Dips in the optical light curve are indicative of eclipses from optically thick clumps formed in the winds of the stellar counterpart. Given the constraints on the flare duration (0.02–0.8 days) and the time between flares (15.1 ± 7.8 days), we estimate the clump volume filling factor in the stellar winds, f V , to be 0.01interpret the origin of the optical flares as the accretion of clumps formed in the winds of an LBV/LBVc onto the compact object.

  11. Influences of cloud heterogeneity on cirrus optical properties retrieved from the visible and near-infrared channels of MODIS/SEVIRI for flat and optically thick cirrus clouds

    International Nuclear Information System (INIS)

    Zhou, Yongbo; Sun, Xuejin; Zhang, Riwei; Zhang, Chuanliang; Li, Haoran; Zhou, Junhao; Li, Shaohui

    2017-01-01

    The influences of three-dimensional radiative effects and horizontal heterogeneity effects on the retrieval of cloud optical thickness (COT) and effective diameter (De) for cirrus clouds are explored by the SHDOM radiative transfer model. The stochastic cirrus clouds are generated by the Cloudgen model based on the Atmospheric Radiation Measurement program data. Incorporating a new ice cloud spectral model, we evaluate the retrieval errors for two solar zenith angles (SZAs) (30° and 60°), four solar azimuth angles (0°, 45°, 90°, and 180°), and two sensor settings (Moderate Resolution Imaging Spectrometer (MODIS) onboard Aqua and Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard METEOSAT-8). The domain-averaged relative error of COT (μ) ranges from −24.1 % to -1.0 % (SZA = 30°) and from −11.6 % to 3.3 % (SZA = 60°), with the uncertainty within 7.5 % to –12.5 % (SZA = 30°) and 20.0 % - 27.5 % (SZA = 60°). For the SZA of 60° only, the relative error and uncertainty are parameterized by the retrieved COT by linear functions, providing bases to correct the retrieved COT and estimate their uncertainties. Besides, De is overestimated by 0.7–15.0 μm on the domain average, with the corresponding uncertainty within 6.7–26.5 μm. The retrieval errors show no discernible dependence on solar azimuth angle due to the flat tops and full coverage of the cirrus samples. The results are valid only for the two samples and for the specific spatial resolution of the radiative transfer simulations. - Highlights: • The retrieved cloud optical properties for 3-D cirrus clouds are evaluated. • The cloud optical thickness and uncertainty could be corrected and estimated. • On the domain average, the effective diameter of ice crystal is overestimated. • The optical properties show non-obvious dependence on the solar azimuth angle.

  12. THE SUB-mJy RADIO POPULATION OF THE E-CDFS: OPTICAL AND INFRARED COUNTERPART IDENTIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Bonzini, M.; Mainieri, V.; Padovani, P.; Rosati, P. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Miller, N. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Tozzi, P.; Balestra, I. [INAF Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34131, Trieste (Italy); Vattakunnel, S. [Dipartimento di Fisica Universit di Trieste, piazzale Europa 1, I-34127 Trieste (Italy); Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Y. Q., E-mail: mbonzini@eso.org [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2012-11-15

    We study a sample of 883 sources detected in a deep Very Large Array survey at 1.4 GHz in the Extended Chandra Deep Field South. This paper focuses on the identification of their optical and infrared (IR) counterparts. We use a likelihood-ratio technique that is particularly useful when dealing with deep optical images to minimize the number of spurious associations. We find a reliable counterpart for 95% of our radio sources. Most of the counterparts (74%) are detected at optical wavelengths, but there is a significant fraction (21%) that are only detectable in the IR. Combining newly acquired optical spectra with data from the literature, we are able to assign a redshift to 81% of the identified radio sources (37% spectroscopic). We also investigate the X-ray properties of the radio sources using the Chandra 4 Ms and 250 ks observations. In particular, we use a stacking technique to derive the average properties of radio objects undetected in the Chandra images. The results of our analysis are collected in a new catalog containing the position of the optical/IR counterpart, the redshift information, and the X-ray fluxes. It is the deepest multi-wavelength catalog of radio sources, which will be used for future study of this galaxy population.

  13. Optical characterization of free electron concentration in heteroepitaxial InN layers using Fourier transform infrared spectroscopy and a 2 × 2 transfer-matrix algebra

    International Nuclear Information System (INIS)

    Katsidis, C. C.; Ajagunna, A. O.; Georgakilas, A.

    2013-01-01

    Fourier Transform Infrared (FTIR) reflectance spectroscopy has been implemented as a non-destructive, non-invasive, tool for the optical characterization of a set of c-plane InN single heteroepitaxial layers spanning a wide range of thicknesses (30–2000 nm). The c-plane (0001) InN epilayers were grown by plasma-assisted molecular beam epitaxy (PAMBE) on GaN(0001) buffer layers which had been grown on Al 2 O 3 (0001) substrates. It is shown that for arbitrary multilayers with homogeneous anisotropic layers having their principal axes coincident with the laboratory coordinates, a 2 × 2 matrix algebra based on a general transfer-matrix method (GTMM) is adequate to interpret their optical response. Analysis of optical reflectance in the far and mid infrared spectral range has been found capable to discriminate between the bulk, the surface and interface contributions of free carriers in the InN epilayers revealing the existence of electron accumulation layers with carrier concentrations in mid 10 19 cm −3 at both the InN surface and the InN/GaN interface. The spectra could be fitted with a three-layer model, determining the different electron concentration and mobility values of the bulk and of the surface and the interface electron accumulation layers in the InN films. The variation of these values with increasing InN thickness could be also sensitively detected by the optical measurements. The comparison between the optically determined drift mobility and the Hall mobility of the thickest sample reveals a value of r H = 1.49 for the Hall factor of InN at a carrier concentration of 1.11 × 10 19 cm −3 at 300°Κ.

  14. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  15. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  16. Optical and infrared spectroscopic studies of chemical sensing by copper phthalocyanine thin films

    International Nuclear Information System (INIS)

    Singh, Sukhwinder; Tripathi, S.K.; Saini, G.S.S.

    2008-01-01

    Thin films of copper phthalocyanine have been deposited on KBr and glass substrates by thermal evaporation method and characterized by the X-ray diffraction and optical absorption techniques. The observed X-ray pattern suggests the presence of α crystalline phase of copper phthalocyanine in the as-deposited thin films. Infrared spectra of thin films on the KBr pallet before and after exposure to the vapours of ammonia and methanol have been recorded in the wavenumber region of 400-1650 cm -1 . The observed infrared bands also confirm the α crystalline phase. On exposure, change in the intensity of some bands is observed. A new band at 1385 cm -1 , forbidden under ideal D 4h point group symmetry, is also observed in the spectra of exposed thin films. These changes in the spectra are interpreted in terms of the lowering of molecular symmetry from D 4h to C 4v . Axial ligation of the vapour molecules on fifth coordination site of the metal ion is responsible for lowering of the molecular symmetry

  17. Improved optical properties and detectivity of an uncooled silicon carbide mid-wave infrared optical detector with increased dopant concentration

    International Nuclear Information System (INIS)

    Lim, Geunsik; Kar, Aravinda; Manzur, Tariq

    2012-01-01

    An n-type 4H-SiC substrate is doped with gallium using a laser doping technique and its optical response is investigated at the mid-wave infrared (MWIR) wavelength 4.21 μm as a function of the dopant concentration. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. Therefore, Ga-doped SiC can be used as an uncooled MWIR detector because an optical signal was obtained at this wavelength when the sample was at room temperature. The energy level of the Ga dopant in the substrate was confirmed by optical absorption spectroscopy. Secondary ion mass spectroscopy (SIMS) of the doped samples revealed an enhancement in the solid solubility of Ga in the substrate when doping is carried out by increasing the number of laser scans. A higher dopant concentration increases the number of holes in the dopant energy level, enabling photoexcitation of more electrons from the valence band by the incident MWIR photons. The detector performance improves as the dopant concentration increases from 1.15 × 10 19 to 6.25 × 10 20 cm −3 . The detectivity of the optical photodetector is found to be 1.07 × 10 10 cm Hz 1/2 W −1 for the case of doping with four laser passes. (paper)

  18. CROSS-CORRELATION BETWEEN X-RAY AND OPTICAL/NEAR-INFRARED BACKGROUND INTENSITY FLUCTUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell-Wynne, Ketron; Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Yongquan [CAS Key Laboratory for Researches in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, Bin [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Brandt, William [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA, 16802 (United States); Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-01

    Angular power spectra of optical and infrared background anisotropies at wavelengths between 0.5 and 5 μ m are a useful probe of faint sources present during reionization, in addition to faint galaxies and diffuse signals at low redshift. The cross-correlation of these fluctuations with backgrounds at other wavelengths can be used to separate some of these signals. A previous study on the cross-correlation between X-ray and Spitzer fluctuations at 3.6 μ m and 4.5 μ m has been interpreted as evidence for direct collapse black holes present at z  > 12. Here we return to this cross-correlation and study its wavelength dependence from 0.5 to 4.5 μ m using Hubble and Spitzer data in combination with a subset of the 4 Ms Chandra observations in GOODS-S/ECDFS. Our study involves five Hubble bands at 0.6, 0.7, 0.85, 1.25, and 1.6 μ m, and two Spitzer -IRAC bands at 3.6 μ m and 4.5 μ m. We confirm the previously seen cross-correlation between 3.6 μ m (4.5 μ m) and X-rays with 3.7 σ (4.2 σ ) and 2.7 σ (3.7 σ ) detections in the soft [0.5–2] keV and hard [2–8] keV X-ray bands, respectively, at angular scales above 20 arcsec. The cross-correlation of X-rays with Hubble is largely anticorrelated, ranging between the levels of 1.4 σ –3.5 σ for all the Hubble and X-ray bands. This lack of correlation in the shorter optical/NIR bands implies the sources responsible for the cosmic infrared background at 3.6 and 4.5 μ m are at least partly dissimilar to those at 1.6 μ m and shorter.

  19. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.

    Directory of Open Access Journals (Sweden)

    Kamal R Dhakal

    Full Text Available Stimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth non-scanning fiber-optic two-photon optogenetic stimulation (FO-TPOS of neurons in-vivo in transgenic mouse models. In order to optimize the deep-brain stimulation strategy, we characterized two-photon activation efficacy at different near-infrared laser parameters. The significantly-enhanced in-depth stimulation efficiency of FO-TPOS as compared to conventional single-photon beam was demonstrated both by experiments and Monte Carlo simulation. The non-scanning FO-TPOS technology will lead to better understanding of the in-vivo neural circuitry because this technology permits more precise and less invasive anatomical delivery of stimulation.

  20. A Model for the Infrared Radiance of Optically Thin, Particulate Exhaust Plumes Generated by Pyrotechnic Flares Burning in a Vacuum

    National Research Council Canada - National Science Library

    Cohen, Douglas

    2000-01-01

    .... The model is used to predict how a magnesium-Teflon exhaust plume would look when viewed as an approximate point source by a distant infrared sensor and also to analyze the data acquired from three separate magnesium-Teflon flares burned in a large vacuum chamber.

  1. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  2. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  3. Optical models of the human eye.

    Science.gov (United States)

    Atchison, David A; Thibos, Larry N

    2016-03-01

    Optical models of the human eye have been used in visual science for purposes such as providing a framework for explaining optical phenomena in vision, for predicting how refraction and aberrations are affected by change in ocular biometry and as computational tools for exploring the limitations imposed on vision by the optical system of the eye. We address the issue of what is understood by optical model eyes, discussing the 'encyclopaedia' and 'toy train' approaches to modelling. An extensive list of purposes of models is provided. We discuss many of the theoretical types of optical models (also schematic eyes) of varying anatomical accuracy, including single, three and four refracting surface variants. We cover the models with lens structure in the form of nested shells and gradient index. Many optical eye models give accurate predictions only for small angles and small fields of view. If aberrations and image quality are important to consider, such 'paraxial' model eyes must be replaced by 'finite model' eyes incorporating features such as aspheric surfaces, tilts and decentrations, wavelength-dependent media and curved retinas. Many optical model eyes are population averages and must become adaptable to account for age, gender, ethnicity, refractive error and accommodation. They can also be customised for the individual when extensive ocular biometry and optical performance data are available. We consider which optical model should be used for a particular purpose, adhering to the principle that the best model is the simplest fit for the task. We provide a glimpse into the future of optical models of the human eye. This review is interwoven with historical developments, highlighting the important people who have contributed so richly to our understanding of visual optics. © 2016 The Authors. Clinical and Experimental Optometry © 2016 Optometry Australia.

  4. Mid-infrared Semiconductor Optoelectronics

    CERN Document Server

    Krier, Anthony

    2006-01-01

    The practical realisation of optoelectronic devices operating in the 2–10 µm (mid-infrared) wavelength range offers potential applications in a variety of areas from environmental gas monitoring around oil rigs and landfill sites to the detection of pharmaceuticals, particularly narcotics. In addition, an atmospheric transmission window exists between 3 µm and 5 µm that enables free-space optical communications, thermal imaging applications and the development of infrared measures for "homeland security". Consequently, the mid-infrared is very attractive for the development of sensitive optical sensor instrumentation. Unfortunately, the nature of the likely applications dictates stringent requirements in terms of laser operation, miniaturisation and cost that are difficult to meet. Many of the necessary improvements are linked to a better ability to fabricate and to understand the optoelectronic properties of suitable high-quality epitaxial materials and device structures. Substantial progress in these m...

  5. Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications.

    Science.gov (United States)

    Tan, Mei Chee; Patil, Swanand D; Riman, Richard E

    2010-07-01

    Bright infrared-emitting nanocomposites of unmodified CeF(3):Yb-Er with polymethyl-methacrylate (PMMA) and polystyrene (PS), which offer a vast range of potential applications, which include optical amplifiers, waveguides, laser materials, and implantable medical devices, were developed. For the optical application of these nanocomposites, it is critical to obtain highly transparent composites to minimize absorption and scattering losses. Preparation of transparent composites typically requires powder processing approaches that include sophisticated particle size control, deagglomeration, and dispersion stabilization methods leading to an increase in process complexity and processing steps. This work seeks to prepare transparent composites with high solids loading (>5 vol%) by matching the refractive index of the inorganic particle with low cost polymers like PMMA and PS, so as to circumvent the use of any complex processing techniques or particle surface modification. PS nanocomposites were found to exhibit better transparency than the PMMA nanocomposites, especially at high solids loading (>/=10 vol%). It was found that the optical transparency of PMMA nanocomposites was more significantly affected by the increase in solids loading and inorganic particle size because of the larger refractive index mismatch of the PMMA nanocomposites compared to that of PS nanocomposites. Rayleigh scattering theory was used to provide a theoretical estimate of the scattering losses in these ceramic-polymer nanocomposites.

  6. Quantitative wound healing studies using a portable, low cost, handheld near-infrared optical scanner: preliminary sensitivity and specificity analysis

    Science.gov (United States)

    Lei, Jiali; Rodriguez, Suset; Jayachandran, Maanasa; Solis, Elizabeth; Gonzalez, Stephanie; Perez-Clavijo, Francesco; Wigley, Stephen; Godavarty, Anuradha

    2016-03-01

    Lower extremity ulcers are devastating complications that are still un-recognized. To date, clinicians employ visual inspection of the wound site during its standard 4-week of healing process via monitoring of surface granulation. A novel ultra-portable near-infrared optical scanner (NIROS) has been developed at the Optical Imaging Laboratory that can perform non-contact 2D area imaging of the wound site. From preliminary studies it was observed that the nonhealing wounds had a greater absorption contrast with respect to the normal site, unlike in the healing wounds. Currently, non-contact near-infrared (NIR) imaging studies were carried out on 22 lower extremity wounds at two podiatric clinics, and the sensitivity and specificity of the scanner evaluated. A quantitative optical biometric was developed that differentiates healing from non-healing wounds, based on the threshold values obtained during ROC analysis. In addition, optical images of the wound obtained from weekly imaging studies are also assessed to determine the ability of the device to predict wound healing consistently on a periodic basis. This can potentially impact early intervention in the treatment of lower extremity ulcers when an objective and quantitative wound healing approach is developed. Lastly, the incorporation of MATLAB graphical user interface (GUI) to automate the process of image acquisition, image processing and image analysis realizes the potential of NIROS to perform non-contact and real-time imaging on lower extremity wounds.

  7. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  8. The Infrared-Optical Telescope (IRT) of the Exist Observatory

    Science.gov (United States)

    Kutyrev, Alexander; Bloom, Joshua; Gehrels, Neil; Golisano, Craig; Gong, Quan; Grindlay, Jonathan; Moseley, Samuel; Woodgate, Bruce

    2010-01-01

    The IRT is a 1.1m visible and infrared passively cooled telescope, which can locate, identify and obtain spectra of GRB afterglows at redshifts up to z 20. It will also acquire optical-IR, imaging and spectroscopy of AGN and transients discovered by the EXIST (The Energetic X-ray Imaging Survey Telescope). The IRT imaging and spectroscopic capabilities cover a broad spectral range from 0.32.2m in four bands. The identical fields of view in the four instrument bands are each split in three subfields: imaging, objective prism slitless for the field and objective prism single object slit low resolution spectroscopy, and high resolution long slit on single object. This allows the instrument, to do simultaneous broadband photometry or spectroscopy of the same object over the full spectral range, thus greatly improving the efficiency of the observatory and its detection limits. A prompt follow up (within three minutes) of the transient discovered by the EXIST makes IRT a unique tool for detection and study of these events, which is particularly valuable at wavelengths unavailable to the ground based observatories.

  9. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    International Nuclear Information System (INIS)

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian

    2012-01-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of ∼150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth and Aerosol Particle Size Distribution Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of aerosol optical depth (AOD) and particle size from the Visible Infrared Imaging...

  11. Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration

    International Nuclear Information System (INIS)

    Zhu, Weiren; Rukhlenko, Ivan D; Premaratne, Malin; Huang, Yongjun; Wen, Guangjun

    2013-01-01

    We theoretically analyze the near-infrared properties of a chiral metamaterial constituting an array of twisted crosses and complementary crosses made of silver. Through rigorous full-wave numerical simulations, we demonstrate that this type of metamaterial exhibits wideband giant optical activity, with a polarization azimuth rotation angle reaching values as large as 1900 ∘ per wavelength. Owing to the negligible loss at optical frequencies in the dielectric (magnesium fluoride) making up the metamaterial, we observe negligible circular dichroism and low dispersion of the polarization azimuth rotation angle over a wide frequency band. We envision that this type of chiral metamaterial will find extensive applications in optical communication systems and biological sensing. (paper)

  12. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  13. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee

    2017-11-30

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters will alter the propagation characteristics of the optical signals underwater. In this paper, we demonstrate a gigabit near-infrared (NIR)-based UWOC link using an 808-nm laser diode, to examine the feasibility of the proposed system in mitigating the particle scattering effect over turbid waters. We show that the NIR wavelengths presents greater resilience to the aqueous suspension of these micro-sized particles with a smaller scattering effect due to its longer wavelength, as evident by the smaller variations in the optical beam transmittance. It is also observed that the error performance is improved at higher concentrations albeit the significant reduction in received signal power. We further demonstrate that the overall frequency response of the system exhibits a bandwidth enhancement up to a few tens of MHz with increasing concentrations.

  14. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  15. Measurement and modelization of silica opal optical properties

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès

    2014-03-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.

  16. Measurement and modelization of silica opal optical properties

    International Nuclear Information System (INIS)

    Avoine, Amaury; Ngoc Hong, Phan; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Gallas, Bruno; Maître, Agnès; Thu Nga, Pham

    2014-01-01

    We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter. (paper)

  17. Infrared sensor for water pollution and monitoring

    Science.gov (United States)

    Baudet, E.; Gutierrez-Arrovo, A.; Bailleul, M.; Rinnert, E.; Nemec, P.; Charrier, J.; Bodiou, L.; Colas, F.; Compère, C.; Boussard, C.; Bureau, B.; Michel, K.; Nazabal, V.

    2017-05-01

    Development of Mid-infrared sensors for the detection of biochemical molecules is a challenge of great importance. Mid-infrared range (4000 - 400 cm-1) contains the absorption bands related to the vibrations of organic molecules (nitrates, hydrocarbons, pesticides, etc.). Chalcogenide glasses are an important class of amorphous materials appropriate for sensing applications. Indeed, they are mainly studied and used for their wide transparency in the infrared range (up to 15 μm for selenide glasses) and high refractive index (between 2 and 3). The aim of this study is to synthesize and characterize chalcogenide thin films for developing mid-IR optical waveguides. Therefore, two (GeSe2)100-x(Sb2Se3)x chalcogenide glasses, where x=10 and 50 were chosen for their good mid-IR transparency, high stability against crystallization and their refractive index contrast suitable for mid-IR waveguiding. Chalcogenide glasses were prepared using the conventional melting and quenching method and then used for RF magnetron sputtering deposition. Sputtered thin films were characterized in order to determine dispersion of refractive index in UV-Vis-NIR-MIR. Obtained results were used for the simulation of the optical design in mid-infrared (λ = 7.7 μm). Selenide ridge waveguide were prepared by RIE-ICP dry etching process. Single-mode propagation at 7.7 μm was observed. Optical losses of 0.7 +/- 0.3 and 2.5 +/- 0.1 dB.cm-1 were measured in near-infrared (λ = 1.55 μm) and midinfrared (λ = 7.7 μm), respectively. Achieved results are promising for the fabrication of an integrated optical sensor operating in the mid-infrared.

  18. Optical and infrared astronomy in the 21st century - the continuing revolution

    Science.gov (United States)

    Cesarsky, Catherine; West, Richard

    2002-05-01

    For some decades, astronomy and astrophysics have undergone a technological and conceptual revolution. Supported by ever more powerful telescopes and instruments on the ground and in space, the volume and quality of new insights is incredible, both in terms of physical understanding of individual celestial objects and the grand evolutionary scheme. New and powerful observational facilities such as the ESO Very Large Telescope (VLT) are opening new horizons, from the nearby solar system to the corners of the Milky Way galaxy in which we live and, not least, towards the vast expanses in time and space of the remote and early Universe. The next generation of ultra-sensitive optical-infrared telescopes such as Herschel and ALMA will be ready within this decade and concepts are being elaborated for the construction of super-giant telescopes like the 100 m optical/IR OWL, the ‘Overwhelmingly Large telescope’. With these impressive developments, and in a true spirit of exploration, astronomers can now look forward to great research opportunities, in a resounding manifestation of the continuous drive towards a better understanding of our cosmic surroundings and of our own origins, so characteristic for enlightened humankind of every age.

  19. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester) nanoparticles

    International Nuclear Information System (INIS)

    Park, Hye Sun; Lee, Jung Eun; Cho, Mi Young; Noh, Young-Woock; Lim, Yong Taik; Sung, Moon Hee; Poo, Haryoung; Hong, Kwan Soo

    2011-01-01

    pH-stimuli-responsive near-infrared optical imaging nanoprobes are designed and synthesized in this study in a facile one-step synthesis process based on the use of the biocompatible and biodegradable polymer poly(γ-glutamic acid) (γ-PGA)/poly(β-amino ester) (PBAE). PBAE has good transfection efficiency and promotes degradation properties under acidic conditions. This pH-responsive degradability can be used for the effective release of encapsulating materials after cellular uptake. As an optical imaging probe, indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye with a quenching property at a high concentration. In this regard, we focus here on the rapid degradation of PBAE in an acidic environment, in which the nanoparticles are disassembled. This allows the ICG dyes to show enhanced fluorescence signals after being releasing from the particles. We demonstrated this principle in cellular uptake experiments. We expect that the developed pH-stimuli-responsive smart nanoprobes can be applied in intracellular delivery signaling applications.

  20. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  1. MATHEMATICAL MODELING OF INFRARED MILK PASTEURIZATION

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2013-01-01

    Full Text Available Based on the model representation of the process of pasteurization of milk infrared patterns of change in temperature of the product in the heating zone with the heat flows of different nature were obtained. The changes in the basic performance of the quartz oscillator during operation were also obtained.

  2. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  3. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    Science.gov (United States)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  4. High-temperature Infrared Transmission of Free-standing Diamond Films

    Directory of Open Access Journals (Sweden)

    HEI Li-fu

    2017-02-01

    Full Text Available The combination of low absorption and extreme mechanical and thermal properties make diamond a compelling choice for some more extreme far infrared (8-12 μm window applications. The optical properties of CVD diamond at elevated temperatures are critical to many of these extreme applications. The infrared transmission of free-standing diamond films prepared by DC arc plasma jet were studied at temperature varied conditions. The surface morphology, structure feature and infrared optical properties of diamond films were tested by optical microscope, X-ray diffraction, laser Raman and Fourier-transform infrared spectroscopy. The results show that the average transmittance for 8-12μm is decreased from 65.95% at 27℃ to 52.5% at 500℃,and the transmittance drop is in three stages. Corresponding to the drop of transmittance with the temperature, diamond film absorption coefficient increases with the rise of temperature. The influence of the change of surface state of diamond films on the optical properties of diamond films is significantly greater than the influence on the internal structure.

  5. Single mode operation of a hybrid optically pumped D2O far infrared laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Siegrist, M.R.

    1990-04-01

    We have achieved single mode operation in a hybrid optically pumped D 2 O far infrared laser. The active volume of the resonator was divided into two sections separated by a thin plastic foil. The larger section served as the main gain medium and the shorter section as mode selective element. The vapor pressure in the smaller volume was either very low or alternatively about 3 times higher than the pressure in the main part. In both cases single mode operation was achieved without any reduction of the total output energy. (author) 13 refs., 7 figs

  6. Optical path of infrared neural stimulation in the guinea pig and cat cochlea

    Science.gov (United States)

    Rajguru, Suhrud M.; Hwang, Margaret; Moreno, Laura E.; Matic, Agnella I.; Stock, Stuart R.; Richter, Claus-Peter

    2011-03-01

    It has been demonstrated previously that infrared neural stimulation (INS) can be used to stimulate spiral ganglion cells in the cochlea. With INS, neural stimulation can be achieved without direct contact of the radiation source and the tissue and is spatially well resolved. The presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation and limit the efficacy of INS. To develop INS based cochlear implants, it is critical to determine the beam path of the radiation in the cochlea. In the present study, we utilized noninvasive X-ray microtomography (microCT) to visualize the orientation and location of the optical fiber within the guinea pig and cat cochlea. Overall, the results indicated that the optical fiber was directed towards the spiral ganglion cells in the cochlea and not the nerve fibers in the center of the modiolus. The fiber was approximately 300 μm away from the target structures. In future studies, results from the microCT will be correlated with physiology obtained from recordings in the midbrain.

  7. MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, F. B.; Modjaz, M. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Hicken, M.; Friedman, A.; Kirshner, R. P.; Challis, P.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wood-Vasey, W. M. [PITT PACC, Department of Physics and Astronomy, 3941 O' Hara Street, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Rest, A., E-mail: fb55@nyu.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-08-01

    We present a densely sampled, homogeneous set of light curves of 64 low-redshift (z ≲ 0.05) stripped-envelope supernovae (SNe of Type IIb, Ib, Ic, and Ic-BL). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mount Hopkins in Arizona, with the optical FLWO 1.2 m and the near-infrared (NIR) Peters Automated Infrared 1.3 m telescopes. Our data set consists of 4543 optical photometric measurements on 61 SNe, including a combination of U BV RI, U BV r{sup ′}i{sup ′}, and u{sup ′} BV r{sup ′}i{sup ′}, and 1919 JHK{sub s} NIR measurements on 25 SNe. This sample constitutes the most extensive multi-color data set of stripped-envelope SNe to date. Our photometry is based on template-subtracted images to eliminate any potential host-galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SNe were observed spectroscopically by the Harvard-Smithsonian Center for Astrophysics (CfA) SN group, and the spectra are presented in a companion paper. A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SNe will be presented in a follow-up paper.

  8. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows

    Directory of Open Access Journals (Sweden)

    S.M. El-Bashir

    Full Text Available Rose Bengal (RB is a new organic semiconductor with the highly stable layer, was deposited on highly cleaned conductive glass substrate known as (FTO glass with different thickness in the range from 80 to 292 nm. XRD showed an entirely amorphous structure of the studied film thicknesses. The observed peaks are the indexed peaks for FTO layer. Spectrophotometric data as transmittance, reflectance, and absorbance were used for the analysis the optical constant of RB/FTO optical thin film system. Refractive index was calculated using Fresnel’s equation with the aid of reflectance and absorption index. The dielectric constant, dielectric loss and dissipation factor were discussed and analyzed according to the applied optical theories. Nonlinear parameters such as third order nonlinear optical susceptibility and the nonlinear refractive index were calculated based on the linear refractive index of the applications of this material in nonlinear media. The results showed that Rose Bengal is a proving material for wide scale optoelectronic applications such as infrared blocking windows. Keywords: Rose Bengal, Dielectric parameters, Linear/nonlinear optics, Dye/FTO, IR blocking windows

  9. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Science.gov (United States)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  10. Annual report of the Applied Optics Laboratory, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    Research on optical fiber coupling by evanescent fields; fiber optics resonators; infrared lasers; remote measurement by laser; dephasing time in GaAs; heat transfer in thin silicon films; quantum wells; a picosecond electron source; modeling of III-V semiconductors; nonlinear optics properties of materials; femtosecond spectroscopy of the internal dynamics of proteins; computer simulation of protein dynamics; electron solvation; reactions of radicals in micella phase; sarcoma; and medical applications of pulsed lasers is presented [fr

  11. Annual report of the Applied Optics Laboratory, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Research on optical fiber coupling by evanescent fields; fiber optics resonators; infrared lasers; remote measurement by laser; dephasing time in GaAs; heat transfer in thin silicon films; quantum wells; a picosecond electron source; modeling of III-V semiconductors; nonlinear optics properties of materials; femtosecond spectroscopy of the internal dynamics of proteins; computer simulation of protein dynamics; electron solvation; reactions of radicals in micella phase; sarcoma; and medical applications of pulsed lasers is presented [fr

  12. Optical verification tests of the NISP/Euclid grism qualification model

    Science.gov (United States)

    Caillat, Amandine; Costille, Anne; Pascal, Sandrine; Vives, Sébastien; Rossin, Christelle; Sanchez, Patrice; Foulon, Benjamin

    2016-07-01

    The Euclid space mission aims at elucidating dark matter and dark energy mysteries thanks to two scientific instruments: VIS, the visible camera and NISP, the Near Infrared Spectro-Photometer. Millions of galaxies spectra will be recorded thanks to its spectroscopic mode using four grisms developed under LAM (Laboratoire d'Astrophysique de Marseille) responsibility. These dispersive optical components are made of a grating on a prism and include also, specifically for NISP, three other optical functions: spectral filtering, focus adjustment and spectral wavefront correction. Therefore, these optical elements are very challenging to manufacture (four industrial partners work on a single optical component) and to test before integration into NISP. In this paper, first we describe the optical specifications and the manufacturing process. Second, we explain the optical validation tests campaign: optical setups, measurements and data processing procedures used to validate these complex optical components, particularly for transmitted efficiency and wavefront error for which specifications are very stringent. Finally, we present the first results obtained on the grism EQM which manufacturing is on-going and almost finished.

  13. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo.

    Science.gov (United States)

    Tansi, Felista L; Rüger, Ronny; Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kaiser, Werner A; Hilger, Ingrid

    2013-11-11

    In the past decade, there has been significant progress in the development of water soluble near-infrared fluorochromes for use in a wide range of imaging applications. Fluorochromes with high photo and thermal stability, sensitivity, adequate pharmacological properties and absorption/emission maxima within the near infrared window (650-900 nm) are highly desired for in vivo imaging, since biological tissues show very low absorption and auto-fluorescence at this spectrum window. Taking these properties into consideration, a myriad of promising near infrared fluorescent probes has been developed recently. However, a hallmark of most of these probes is a rapid clearance in vivo, which hampers their application. It is hypothesized that encapsulation of the near infrared fluorescent dye DY-676-COOH, which undergoes fluorescence quenching at high concentrations, in the aqueous interior of liposomes will result in protection and fluorescence quenching, which upon degradation by phagocytes in vivo will lead to fluorescence activation and enable imaging of inflammation. Liposomes prepared with high concentrations of DY-676-COOH reveal strong fluorescence quenching. It is demonstrated that the non-targeted PEGylated fluorescence-activatable liposomes are taken up predominantly by phagocytosis and degraded in lysosomes. Furthermore, in zymosan-induced edema models in mice, the liposomes are taken up by monocytes and macrophages which migrate to the sites of inflammation. Opposed to free DY-676-COOH, prolonged stability and retention of liposomal-DY-676-COOH is reflected in a significant increase in fluorescence intensity of edema. Thus, protected delivery and fluorescence quenching make the DY-676-COOH-loaded liposomes a highly promising contrast agent for in vivo optical imaging of inflammatory diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Applications of infrared technology; Proceedings of the Meeting, London, England, June 9, 10, 1988

    International Nuclear Information System (INIS)

    Williams, T.L.

    1988-01-01

    Recent developments in thermal imaging and other infrared systems relating to military, industrial, medical, and scientific applications are reviewed. Papers are presented on a new thermal imager using a linear pyroelectric detector array; multichannel near infrared spectroradiometer; technological constraints on the use of thermal imagery for remote sensing; and infrared optical system of the improved stratospheric and mesospheric sounder. Other topics discussed include infrared thermography development for composite material evaluation; infrared process linescanner, and optical infrared starting radiometer

  15. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Science.gov (United States)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Tunable infrared reflectance by phonon modulation

    Science.gov (United States)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  17. The Aircraft Infrared Measurements Guide

    Science.gov (United States)

    1983-03-01

    the infrared portion of the electromagnetic spectrum, but should include measure- ments across that portion of the spectrum using optical /electro... optical tech- nology. Comments should be addressed to: Commander/Director Office of Missile Electronic Warfare US Army Electronic Warfare Laboratory ATTN...58 Spatial Radiometer ................................................ 58 Seekers ( Nonimaging

  18. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    Science.gov (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  19. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  20. Transcranial red and near infrared light transmission in a cadaveric model.

    Directory of Open Access Journals (Sweden)

    Jared R Jagdeo

    Full Text Available BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

  1. Infrared Spectra and Optical Constants of Astronomical Ices: I. Amorphous and Crystalline Acetylene

    Science.gov (United States)

    Hudson, R. L.; Ferrante, R. F.; Moore, M. H.

    2013-01-01

    Here we report recent measurements on acetylene (C2H2) ices at temperatures applicable to the outer Solar System and the interstellar medium. New near- and mid-infrared data, including optical constants (n, k), absorption coefficients (alpha), and absolute band strengths (A), are presented for both amorphous and crystalline phases of C2H2 that exist below 70 K. Comparisons are made to earlier work. Electronic versions of the data are made available, as is a computer routine to use our reported n and k values to simulate the observed IR spectra. Suggestions are given for the use of the data and a comparison to a spectrum of Makemake is made.

  2. Next-generation mid-infrared sources

    Science.gov (United States)

    Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D.

    2017-12-01

    The mid-infrared (mid-IR) is a wavelength range with a variety of technologically vital applications in molecular sensing, security and defense, energy conservation, and potentially in free-space communication. The recent development and rapid commercialization of new coherent mid-infrared sources have spurred significant interest in the development of mid-infrared optical systems for the above applications. However, optical systems designers still do not have the extensive optical infrastructure available to them that exists at shorter wavelengths (for instance, in the visible and near-IR/telecom wavelengths). Even in the field of optoelectronic sources, which has largely driven the growing interest in the mid-infrared, the inherent limitations of state-of-the-art sources and the gaps in spectral coverage offer opportunities for the development of new classes of lasers, light emitting diodes and emitters for a range of potential applications. In this topical review, we will first present an overview of the current state-of-the-art mid-IR sources, in particular thermal emitters, which have long been utilized, and the relatively new quantum- and interband-cascade lasers, as well as the applications served by these sources. Subsequently, we will discuss potential mid-infrared applications and wavelength ranges which are poorly served by the current stable of mid-IR sources, with an emphasis on understanding the fundamental limitations of the current source technology. The bulk of the manuscript will then explore both past and recent developments in mid-infrared source technology, including narrow bandgap quantum well lasers, type-I and type-II quantum dot materials, type-II superlattices, highly mismatched alloys, lead-salts and transition-metal-doped II-VI materials. We will discuss both the advantages and limitations of each of the above material systems, as well as the potential new applications which they might serve. All in all, this topical review does not aim

  3. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Science.gov (United States)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  4. Gitting of infrared data to the interstellar polarization law

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D

    1984-02-15

    The ability of Serkowski's law describing the wavelength dependence of interstellar polarization to encompass new infrared measurements in combination with optical data has been examined. Fitting by least-squares procedures reveals departures from the law in various wavelength zones or at specific wavelength points across the optical and infrared spectrum. These structures may be caused by a combination of effects such as normal experimental noise, complex interstellar clouds or systematic errors in the polarimetry but the possibility remains that some, particularly in the infrared, reflect the scattering properties of interstellar grains. 8 references.

  5. Fitting of infrared data to the interstellar polarization law

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D [Glasgow Univ., Great Britain

    1984-02-15

    The ability of Serkowski's law describing the wavelength dependence of interstellar polarization to encompass new infrared measurements in combination with optical data has been examined. Fitting by least-squares procedures reveals departures from the law in various wavelength zones or at specific wavelength points across the optical and infrared spectrum. These structures may be caused by a combination of effects such as normal experimental noise, complex interstellar clouds or systematic errors in the polarimetry but the possibility remains that some, particularly in the infrared, reflect the scattering properties of interstellar grains.

  6. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    OpenAIRE

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)...

  7. The origin of the infrared light of cataclysmic variable stars

    International Nuclear Information System (INIS)

    Berriman, G.; Szkody, P.; Capps, R.W.

    1985-01-01

    This paper presents a model-independent overview of the origin of the near infrared (1-2 μm) light of a sample of 28 cataclysmic binary stars, largely dwarf novae in quiescence. The infrared light comes from the red dwarf that supplies matter to the white dwarf companion and the accretion disc around the white dwarf. The complex nature of the disc prevents near-infrared photometry from being a good probe of the red dwarfs, even in those systems where they are seen in the visual. All that can be found reliably is an upper limit to the proportion light that the red dwarfs supply, and consequently lower limits to the distances to the systems. The infrared light of the discs comes from opaque material and from the optically thin gas that gives rise to the visual and UV emission lines. (author)

  8. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  9. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  11. Effect of environmental temperature on diffraction efficiency for multilayer diffractive optical elements in Mid-wave infrared

    Science.gov (United States)

    Piao, Mingxu; Cui, Qingfeng; Zhu, Hao; Zhang, Bo

    2014-11-01

    In this paper, the effect of environmental temperature change on multilayer diffractive optical elements (MLDOEs) is evaluated from the viewpoint of the diffraction efficiency and the polychromatic integral diffraction efficiency (PIDE). As environmental temperature changes, the microstructure heights of MLDOEs expand or contract, and refractive indices of substrate materials also change. Based on the changes in microstructure height and substrate material index with environmental temperature, the theoretical relation between diffraction efficiency of MLDOEs and environmental temperature is deduced. A practical 3-5μm Mid-wave infrared (MWIR) optical system designed with a MLDOE, which made of ZNSE and GE, is discussed to illustrate the influence of environmental temperature change. The result shows that diffraction efficiency reduction is no more than 85% and PIDE reduction is less than 50% when environmental temperature ranges from -20°C to 60°C. According to the calculated diffraction efficiency in different environmental temperatures, the MTF of hybrid optical system is modified and the modified MTF curve is compared with the original MTF curve. Although the hybrid optical system achieved passive athermalization in above environmental temperature range, the modified MTF curve also remarkably decline in environmental temperature extremes after the consideration of diffraction efficiency change of MLDOE. It is indicated that the image quality of hybrid optical system with ZNSE-GE MLDOE is significantly sensitive to environmental temperature change. The analysis result can be used for optical engineering design with MLDOEs in MWIR.

  12. Tunable infrared reflectance by phonon modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  13. Models for infrared atmospheric radiation

    Science.gov (United States)

    Tiwari, S. N.

    1976-01-01

    Line and band models for infrared spectral absorption are discussed. Radiative transmittance and integrated absorptance of Lorentz, Doppler, and voigt line profiles were compared for a range of parameters. It was found that, for the intermediate path lengths, the combined Lorentz-Doppler (Voigt) profile is essential in calculating the atmospheric transmittance. Narrow band model relations for absorptance were used to develop exact formulations for total absorption by four wide band models. Several continuous correlations for the absorption of a wide band model were compared with the numerical solutions of the wide band models. By employing the line-by-line and quasi-random band model formulations, computational procedures were developed for evaluating transmittance and upwelling atmospheric radiance. Homogeneous path transmittances were calculated for selected bands of CO, CO2, and N2O and compared with experimental measurements. The upwelling radiance and signal change in the wave number interval of the CO fundamental band were also calculated.

  14. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    International Nuclear Information System (INIS)

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  15. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta.

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M; Rao, Jayashree; Vorp, David A; Kiani, Mohammad F; Pleshko, Nancy

    2014-06-21

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues.

  16. Fourier Transform Infrared Spectroscopy to Quantify Collagen and Elastin in an In Vitro Model of Extracellular Matrix Degradation in Aorta

    Science.gov (United States)

    Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.

    2014-01-01

    Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431

  17. Anatomically accurate, finite model eye for optical modeling.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1997-08-01

    There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.

  18. Molded, wafer level optics for long wave infra-red applications

    Science.gov (United States)

    Franks, John

    2016-05-01

    For many years, the Thermal Imaging market has been driven by the high volume consumer market. The first signs of this came with the launch of night vision systems for cars, first by Cadillac and Honda and then, more successfully by BMW, Daimler and Audi. For the first time, simple thermal imaging systems were being manufactured at the rate of more than 10,000 units a year. This step change in volumes enabled a step change in system costs, with thermal imaging moving into the consumer's price range. Today we see that the consumer awareness and the consumer market continues to increase with the launch of a number of consumer focused smart phone add-ons. This has brought a further step change in system costs, with the possibility to turn your mobile phone into a thermal imager for under $250. As the detector technology has matured, the pixel pitches have dropped from 50μm in 2002 to 12 μm or even 10μm in today's detectors. This dramatic shrinkage in size has had an equally dramatic effect on the optics required to produce the image on the detector. A moderate field of view that would have required a focal length of 40mm in 2002 now requires a focal length of 8mm. For wide field of view applications and small detector formats, focal lengths in the range 1mm to 5mm are becoming common. For lenses, the quantity manufactured, quality and costs will require a new approach to high volume Infra-Red (IR) manufacturing to meet customer expectations. This, taken with the SwaP-C requirements and the emerging requirement for very small lenses driven by the new detectors, suggests that wafer scale optics are part of the solution. Umicore can now present initial results from an intensive research and development program to mold and coat wafer level optics, using its chalcogenide glass, GASIR®.

  19. Design of a Solar Greenhouse with Energy Delivery by the Conversion of Near Infrared Radiation - Part 1 Optics and PV-cells

    NARCIS (Netherlands)

    Gert-Jan Swinkels; Piet Sonneveld; G.P.A. Bot

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  20. Design of a Solar Greenhouse with energy Delivery by the Conversion of Near Infrared Radiation. Part 1. Optics and PV-Cells

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Bot, G.P.A.

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  1. Optimization of a miniature short-wavelength infrared objective optics of a short-wavelength infrared to visible upconversion layer attached to a mobile-devices visible camera

    Science.gov (United States)

    Kadosh, Itai; Sarusi, Gabby

    2017-10-01

    The use of dual cameras in parallax in order to detect and create 3-D images in mobile devices has been increasing over the last few years. We propose a concept where the second camera will be operating in the short-wavelength infrared (SWIR-1300 to 1800 nm) and thus have night vision capability while preserving most of the other advantages of dual cameras in terms of depth and 3-D capabilities. In order to maintain commonality of the two cameras, we propose to attach to one of the cameras a SWIR to visible upconversion layer that will convert the SWIR image into a visible image. For this purpose, the fore optics (the objective lenses) should be redesigned for the SWIR spectral range and the additional upconversion layer, whose thickness is mobile device visible range camera sensor (the CMOS sensor). This paper presents such a SWIR objective optical design and optimization that is formed and fit mechanically to the visible objective design but with different lenses in order to maintain the commonality and as a proof-of-concept. Such a SWIR objective design is very challenging since it requires mimicking the original visible mobile camera lenses' sizes and the mechanical housing, so we can adhere to the visible optical and mechanical design. We present in depth a feasibility study and the overall optical system performance of such a SWIR mobile-device camera fore optics design.

  2. Calculation of infrared radiation in the atmosphere by a numerical method

    International Nuclear Information System (INIS)

    Nunes, G.S.S.; Viswanadham, Y.

    1981-01-01

    A numerical method is described for the calculations of the atmospheric infrared flux and radiative cooling rate in the atmosphere. It is suitable for use at all levels below lower stratosphere. The square root pressure correction factor is incorporated in the computation of the corrected optical depth. The water vapour flux emissivity data of Staley and Jurica are used in the model. The versatility of the computing scheme sugests that this method is adequate to evaluate infrared flux and flux divergence in the problems involving a large amount of atmospheric data. (Author) [pt

  3. Infrared radiation models for atmospheric ozone

    Science.gov (United States)

    Kratz, David P.; Ces, Robert D.

    1988-01-01

    A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.

  4. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Corem-Salkmon E

    2012-10-01

    Full Text Available Enav Corem-Salkmon, Benny Perlstein, Shlomo MargelThe Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, IsraelBackground: Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near-infrared (NIR fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices.Methods and results: NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA, were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin

  5. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  6. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing.

    Science.gov (United States)

    Chen, Yu; Lin, Hongtao; Hu, Juejun; Li, Mo

    2014-07-22

    Besides being the foundational material for microelectronics, crystalline silicon has long been used for the production of infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon microring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.

  7. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  8. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination

    Science.gov (United States)

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 1011 molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  9. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    Science.gov (United States)

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Techniques for fabricating an infrared optical pyrometry system for pulsed electron beam diagnostics

    International Nuclear Information System (INIS)

    Ouellette, A.L.

    1976-01-01

    A description is given of an infrared optical pyrometry system which was designed to make fast time resolved temperature measurements. The purpose of this equipment is to determine the amount of energy from an electron beam or some other type of pulsed energy deposition that is absorbed in a target. The system is capable of measuring energy deposition levels up to 4000 J/g in carbon, which corresponds to a graphite target temperature of 2200 0 C. Methods of fabrication, alignment, and calibration are presented. The measurement of absorbed energy in a target as a function of position and depth is discussed as a possible application, and several measurements are described which permit a comparison of results from this system with those taken by other methods

  11. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    International Nuclear Information System (INIS)

    Knoops, Harm C. M.; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-01-01

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  12. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Midorikawa, Katsumi; Takahashi, Eiji J

    2018-05-16

    Expansion of the wavelength range for an ultrafast laser is an important ingredient for extending its range of applications. Conventionally, optical parametric amplification (OPA) has been employed to expand the laser wavelength to the infrared (IR) region. However, the achievable pulse energy and peak power have been limited to the mJ and the GW level, respectively. A major difficulty in the further energy scaling of OPA results from a lack of suitable large nonlinear crystals. Here, we circumvent this difficulty by employing a dual-chirped optical parametric amplification (DC-OPA) scheme. We successfully generate a multi-TW IR femtosecond laser pulse with an energy of 100 mJ order, which is higher than that reported in previous works. We also obtain excellent energy scaling ability, ultrashort pulses, flexiable wavelength tunability, and high-energy stability, which prove that DC-OPA is a superior method for the energy scaling of IR pulses to the 10 J/PW level.

  13. Attractive Casimir effect in an infrared modified gluon bag model

    International Nuclear Information System (INIS)

    Oxman, L.E.; Amaral, R.L.P.G.; Svaiter, N.F.

    2005-01-01

    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy

  14. The Optical/Near-infrared Extinction Law in Highly Reddened Regions

    Science.gov (United States)

    Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

    2018-03-01

    A precise extinction law is a critical input when interpreting observations of highly reddened sources such as young star clusters and the Galactic Center (GC). We use Hubble Space Telescope observations of a region of moderate extinction and a region of high extinction to measure the optical and near-infrared extinction law (0.8–2.2 μm). The moderate-extinction region is the young massive cluster Westerlund 1 (Wd1; A Ks ∼ 0.6 mag), where 453 proper-motion selected main-sequence stars are used to measure the shape of the extinction law. To quantify the shape, we define the parameter {{ \\mathcal S }}1/λ , which behaves similarly to a color-excess ratio, but is continuous as a function of wavelength. The high-extinction region is the GC (A Ks ∼ 2.5 mag), where 819 red clump stars are used to determine the normalization of the law. The best-fit extinction law is able to reproduce the Wd1 main-sequence colors, which previous laws misestimate by 10%–30%. The law is inconsistent with a single power law, even when only the near-infrared filters are considered, and has A F125W/A Ks and A F814W/A Ks values that are 18% and 24% higher than the commonly used Nishiyama et al. law, respectively. Using this law, we recalculate the Wd1 distance to be 3905 ± 422 pc from published observations of the eclipsing binary W13. This new extinction law should be used for highly reddened populations in the Milky Way, such as the Quintuplet cluster and Young Nuclear Cluster. A python code is provided to generate the law for future use.

  15. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Science.gov (United States)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  16. Lobster-eye infrared focusing optics

    Science.gov (United States)

    Grubsky, Victor; Gertsenshteyn, Michael; Jannson, Tomasz

    2006-08-01

    We propose a new imaging device for the long infrared spectral range, inspired by the natural eye of a lobster. Such a lobster-eye lens is composed of reflecting channels with a square cross section capable of wide angle of view and practically omni-directional imaging. As in large-aperture lenses, aberrations can significantly degrade the image. We show two methods of reducing aberrations: by selecting proper material for the mirrors and by making channels with absorbing sections.

  17. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    DEFF Research Database (Denmark)

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.

    2015-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged...... measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments...

  18. Technique of infrared synchrotron acceleration diagnostics

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.

    1997-01-01

    Techniques of measuring of current and geometric parameters and evaluating of energy parameters of the ring bunch of relativistic low-energy electrons have been presented. They have been based on using the synchrotron radiation effect in its infrared spectral part. Fast infrared detectors have provided radiation detection in the spectral range Δλ ≅ 0.3-45 μm. The descriptions of some data monitoring and measuring systems developed in JINR for the realization of techniques of the infrared synchrotron acceleration diagnostics have been given. Infrared optics elements specially developed have been used in these systems

  19. Studies of the infrared source CRL 2688

    International Nuclear Information System (INIS)

    Ney, E.P.; Merrill, K.M.; Becklin, E.E.; Neugebauer, G.; Wynn-Williams, C.G.

    1975-01-01

    Infrared, optical, and radio observations are descirbed of a newly discovered galactic infrared source. Most of the radiation comes from 1/sup double-prime/./sub /5 diameter infrared source at a temperature of about 150 K, but some visible emission in the form of a symmetrical highly polarized reflection nebulosity is also seen. The object could represent either a very early or a very late stage in stellar evolution

  20. SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi; Maiolino, Roberto; Nakagawa, Takao

    2010-01-01

    We present the results of Spitzer Infrared Spectrograph low-resolution infrared 5-35 μm spectroscopy of 17 nearby ultraluminous infrared galaxies (ULIRGs) at z 12 L sun , are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.

  1. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    Energy Technology Data Exchange (ETDEWEB)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States)

    2012-07-15

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking

  2. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    International Nuclear Information System (INIS)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D.

    2012-01-01

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking

  3. Design of active feedback controller used in the infrared beam line of SSRF

    International Nuclear Information System (INIS)

    Zhang Yongli; Tong Yajun; Zhang Zhaohong; Chen Min; Jiang Jianguo; Gong Peirong

    2014-01-01

    Background: The infrared beam line consists of many kinds of optical components that are susceptible to the external mechanical vibration, which will be further amplified by the long optical paths to seriously destroy the stability of infrared beam position. Purpose: The active feedback controller is used to stabilize the infrared beam position disturbed by the external environment. Methods: The design of the active feedback controller used in the infrared beam line of SSRF was proposed in this paper firstly, which included its background, light-path layout and operating process. Subsequently, the selections of the crucial components such as detector and actuator were discussed in details. Finally, the correction compensator design and its experimental test were also presented. The correction compensator design was realized by utilizing the frequency response method, and tested in time domain, frequency domain and mathematical model simulation of the controlled object. Results: The experimental tests included time domain step response signal of the controller, the time domain signal and its relevant magnitude spectrum in frequency domain due to the light source simulation vibration. Conclusion: The results show that the maximum effective operating band is 250 Hz and the maximum steady error is 5 μm. (authors)

  4. Hyperfine spectrum measurement of an optically pumped far-infrared laser with a Michelson interferometer

    International Nuclear Information System (INIS)

    Zuo, Z G; Ling, F R; Wang, P; Liu, J S; Yao, J Q; Weng, C X

    2013-01-01

    In this letter, we present a Michelson interferometer for the hyperfine spectrum measurement of an optically pumped far-infrared laser with a highest frequency resolution of 3–5 GHz. CH 3 OH gas with a purity of 99.9%, is pumped by the CO 2 9P36 and 9R10 laser lines to generate terahertz lasers with frequencies of 2.52 and 3.11 THz, respectively. Moreover, except for the center frequency, which is in good agreement with theoretical work, some additional frequencies on both sides of the center frequency are obtained at a frequency interval of 0.15 THz. Meanwhile, the mechanism behind the observed experimental results is also investigated. (letter)

  5. Activatable Optical Imaging with a Silica-Rhodamine Based Near Infrared (SiR700) Fluorophore: A comparison with cyanine based dyes

    Science.gov (United States)

    McCann, Thomas E.; Kosaka, Nobuyuki; Koide, Yuichiro; Mitsunaga, Makoto; Choyke, Peter L.; Nagano, Tetsuo; Urano, Yasuteru; Kobayashi, Hisataka

    2011-01-01

    Optical imaging is emerging as an important tool to visualize tumors. However, there are many potential choices among the available fluorophores. Optical imaging probes that emit in the visible range can image superficial tumors with high quantum yields, however, if deeper imaging is needed then near infrared (NIR) fluorophores are necessary. Most commercially available NIR fluorophores are cyanine based and are prone to non-specific binding and relatively limited photostability. Silica-containing rhodamine (SiR) fluorophores represent a new class of NIR fluorophores, which permit photoactivation via H-dimer formation as well as demonstrate improved photostability. This permits higher tumor-to-background ratios (TBRs) to be achieved over longer periods of time. Here, we compared an avidin conjugated with SiR700 (Av-SiR700) to similar compounds based on cyanine dyes (Av-Cy5.5 and Av-Alexa Fluor 680) in a mouse tumor model of ovarian cancer metastasis. We found that the Av-SiR700 probe demonstrated superior quenching enabling activation after binding-internalization to the target cell. As a result, Av-SiR700 had higher TBRs compared to Av-Cy5.5, and better biostability compared to Av-Alexa Fluor 680. PMID:22034863

  6. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  7. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    underlying physics. There are now at least six different disciplines that deal with infrared radiation in one form or another, and in one or several different spectral portions of the whole IR range. These are spectroscopy, astronomy, thermal imaging, detector and source development and metrology, as well the field of optical data transmission. Scientists working in these fields range from chemists and astronomers through to physicists and even photographers. This issue presents examples from some of these fields. All the papers—though some of them deal with fundamental or applied research—include interesting elements that make them directly applicable to university-level teaching at the graduate or postgraduate level. Source (e.g. quantum cascade lasers) and detector development (e.g. multispectral sensors), as well as metrology issues and optical data transmission, are omitted since they belong to fundamental research journals. Using a more-or-less arbitrary order according to wavelength range, the issue starts with a paper on the physics of near-infrared photography using consumer product cameras in the spectral range from 800 nm to 1.1 µm [1]. It is followed by a series of three papers dealing with IR imaging in spectral ranges from 3 to 14 µm [2-4]. One of them deals with laboratory courses that may help to characterize the IR camera response [2], the second discusses potential applications for nondestructive testing techniques [3] and the third gives an example of how IR thermal imaging may be used to understand cloud cover of the Earth [4], which is the prerequisite for successful climate modelling. The next two papers cover the vast field of IR spectroscopy [5, 6]. The first of these deals with Fourier transform infrared spectroscopy in the spectral range from 2.5 to 25 µm, studying e.g. ro-vibrational excitations in gases or optical phonon interactions within solids [5]. The second deals mostly with the spectroscopy of liquids such as biofuels and special

  8. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  9. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  10. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    Science.gov (United States)

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  11. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    Science.gov (United States)

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  12. Infrared hot-electron NbN superconducting photodetectors for imaging applications

    International Nuclear Information System (INIS)

    Il'in, K.S.; Gol'tsman, G.N.; Verevkin, A.A.; Sobolewski, Roman

    1999-01-01

    We report an effective quantum efficiency of 340, responsivity >200 A W -1 (>10 4 V W -1 ) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into μm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits. (author)

  13. Infrared Astronomy and Education: Linking Infrared Whole Sky Mapping with Teacher and Student Research

    Science.gov (United States)

    Borders, Kareen; Mendez, Bryan; Thaller, Michelle; Gorjian, Varoujan; Borders, Kyla; Pitman, Peter; Pereira, Vincent; Sepulveda, Babs; Stark, Ron; Knisely, Cindy; Dandrea, Amy; Winglee, Robert; Plecki, Marge; Goebel, Jeri; Condit, Matt; Kelly, Susan

    The Spitzer Space Telescope and the recently launched WISE (Wide Field Infrared Survey Explorer) observe the sky in infrared light. Among the objects WISE will study are asteroids, the coolest and dimmest stars, and the most luminous galaxies. Secondary students can do authentic research using infrared data. For example, students will use WISE data to mea-sure physical properties of asteroids. In order to prepare students and teachers at this level with a high level of rigor and scientific understanding, the WISE and the Spitzer Space Tele-scope Education programs provided an immersive teacher professional development workshop in infrared astronomy.The lessons learned from the Spitzer and WISE teacher and student pro-grams can be applied to other programs engaging them in authentic research experiences using data from space-borne observatories such as Herschel and Planck. Recently, WISE Educator Ambassadors and NASA Explorer School teachers developed and led an infrared astronomy workshop at Arecibo Observatory in PuertoRico. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance and age of objects in the Universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and the Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. We will outline specific steps for sec-ondary astronomy professional development, detail student involvement in infrared telescope data analysis, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional secondary professional development and student involvement in infrared astronomy. Funding was

  14. TIFR Near Infrared Imaging Camera-II on the 3.6 m Devasthal Optical Telescope

    Science.gov (United States)

    Baug, T.; Ojha, D. K.; Ghosh, S. K.; Sharma, S.; Pandey, A. K.; Kumar, Brijesh; Ghosh, Arpan; Ninan, J. P.; Naik, M. B.; D’Costa, S. L. A.; Poojary, S. S.; Sandimani, P. R.; Shah, H.; Krishna Reddy, B.; Pandey, S. B.; Chand, H.

    Tata Institute of Fundamental Research (TIFR) Near Infrared Imaging Camera-II (TIRCAM2) is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512×512 pixels InSb Aladdin III Quadrant focal plane array (FPA) having sensitivity to photons in the 1-5μm wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view (FoV) of ˜86.5‧‧×86.5‧‧ on the DOT with a pixel scale of 0.169‧‧. The seeing at the telescope site in the near-infrared (NIR) bands is typically sub-arcsecond with the best seeing of ˜0.45‧‧ realized in the NIR K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4μm) magnitudes of 9.2 in the narrow L-band (nbL; λcen˜ 3.59μm). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera (IRAC) ([3.6] ≲ 7.92 mag) and the WISE W1-band ([3.4] ≲ 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3μm are also detected. Details of the observations and estimated parameters are presented in this paper.

  15. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  16. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  17. PROBING THE FLARE ATMOSPHERES OF M DWARFS USING INFRARED EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sarah J.; Kowalski, Adam F.; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Tofflemire, Benjamin M., E-mail: sjschmidt@astro.washington.edu [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada (Canada)

    2012-01-20

    We present the results of a campaign to monitor active M dwarfs using infrared spectroscopy, supplemented with optical photometry and spectroscopy. We detected 16 flares during nearly 50 hr of observations on EV Lac, AD Leo, YZ CMi, and VB 8. The three most energetic flares also showed infrared emission, including the first reported detections of P{beta}, P{gamma}, He I {lambda}10830, and Br{gamma} during an M dwarf flare. The strongest flare ({Delta}u = 4.02 on EV Lac) showed emission from H{gamma}, H{delta}, He I {lambda}4471, and Ca II K in the UV/blue and P{beta}, P{gamma}, P{delta}, Br{gamma}, and He I {lambda}10830 in the infrared. The weaker flares ({Delta}u = 1.68 on EV Lac and {Delta}U = 1.38 on YZ CMi) were only observed with photometry and infrared spectroscopy; both showed emission from P{beta}, P{gamma}, and He I {lambda}10830. The strongest infrared emission line, P{beta}, occurred in the active mid-M dwarfs with a duty cycle of {approx}3%-4%. To examine the most energetic flare, we used the static NLTE radiative transfer code RH to produce model spectra based on a suite of one-dimensional model atmospheres. Using a hotter chromosphere than previous one-dimensional atmospheric models, we obtain line ratios that match most of the observed emission lines.

  18. Analysis of the SIAM Infrared Acquisition System

    Energy Technology Data Exchange (ETDEWEB)

    Varnado, S.G.

    1974-02-01

    This report describes and presents the results of an analysis of the performance of the infrared acquisition system for a Self-Initiated Antiaircraft Missile (SIAM). A description of the optical system is included, and models of target radiant intensity, atmospheric transmission, and background radiance are given. Acquisition probabilities are expressed in terms of the system signal-to-noise ratio. System performance against aircraft and helicopter targets is analyzed, and background discrimination techniques are discussed. 17 refs., 22 figs., 6 tabs.

  19. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  20. Near-infrared line identification in type Ia supernovae during the transitional phase

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R. [Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks Street, Room 100, Norman, OK 73019 (United States); Parrent, Jerod T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thomas, R. C. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States)

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 μm, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  1. Quantitative in situ monitoring of an elevated temperature reaction using a water-cooled mid-infrared fiber-optic probe.

    Science.gov (United States)

    Maclaurin, P; Crabb, N C; Wells, I; Worsfold, P J; Coombs, D

    1996-04-01

    A novel water-cooled mid-infrared fiber-optic probe is described which is heatable to 230 °C. The probe has chalcogenide fibers and a ZnSe internal reflection element and is compact and fully flexible, allowing access to a wide range of standard laboratory reaction vessels and fume cupboard arrangements. Performance is demonstrated via the in situ analysis of an acid-catalyzed esterification reaction in toluene at 110 °C, and the results are compared with those from a conventional extractive sampling loop flow cell arrangement. Particular emphasis is given to the quantitative interpretation of the spectroscopic data, using gas chromatographic reference data. Calibration data are presented for univariate and partial least squares models, with an emphasis on procedures for improving the quality of interpreparation calibration and prediction through the use of focused reference analysis regimes. Subset univariate procedures are presented that yield relative errors of spectroscopy combined with bias correction partial least squares procedures for the efficient in situ quantitative analysis of laboratory scale reactions.

  2. Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector.

    Science.gov (United States)

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2011-06-10

    An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21  μm wavelength.

  3. Analyzing Hydrogen Recombination Lines in the Infrared and Optical to Determine Extinction and SFRs of Local LIRGs

    Science.gov (United States)

    Payne, Anna; Inami, Hanae

    2015-01-01

    We report on measurements for dust extinction and star formation rates (SFRs) for luminous infrared galaxies (LIRGs). We utilized the hydrogen recombination lines Brα, Hα, and Hβ observed in the infrared and optical wavelengths with AKARI and the Lick Observatory's Kast Double spectrograph to produce spectra. By calculating Brα/Hα ratios for the target galaxies, extinction is estimated. A possible correlation between higher LIR, IR/UV, specific SFRs and higher Brα/Hα has been found. Through comparisons with Hα/Hβ, it may be possible to determine if Hα is, in fact, underestimating extinction, since Hα is more strongly affected by extinction compared to longer wavelengths such as Brα. The accuracy of using Hα in extinction corrections is important for SFR studies, and, thus, one goal is to find a more accurate reddening correction factor. Payne was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  4. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    International Nuclear Information System (INIS)

    Chang Yiren; Hsu Long; Chi Sien

    2006-01-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system

  5. Visible Discrimination of Broadband Infrared Light by Dye-Enhanced Upconversion in Lanthanide-Doped Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles G. Dupuy

    2014-01-01

    Full Text Available Optical upconversion of near infrared light to visible light is an attractive way to capture the optical energy or optical information contained in low-energy photons that is otherwise lost to the human eye or to certain photodetectors and solar cells. Until the recent application of broadband absorbing optical antennas, upconversion efficiency in lanthanide-doped nanocrystals was limited by the weak, narrow atomic absorption of a handful of sensitizer elements. In this work, we extend the role of the optical antenna to provide false-color, visible discrimination between bands of infrared radiation. By pairing different optical antenna dyes to specific nanoparticle compositions, unique visible emission is associated with different bands of infrared excitation. In one material set, the peak emission was increased 10-fold, and the width of the spectral response was increased more than 10-fold.

  6. Measurement and modelization of silica opal reflection properties: Optical determination of the silica index

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès

    2012-10-01

    Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.

  7. Miniature infrared hyperspectral imaging sensor for airborne applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-05-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4 lenslet array on a 1024 x 1024 pixel element focal plane array which gives 16 spectral images of 256 x 256 pixel resolution each

  8. NSCC-A NEW SCHEME OF CLASSIFICATION OF C-RICH STARS DEVISED FROM OPTICAL AND INFRARED OBSERVATIONS

    International Nuclear Information System (INIS)

    De Mello, A. B.; De Araujo, F. X.; Pereira, C. Bastos; Landaberry, S. J. Codina; Lorenz-Martins, S.

    2009-01-01

    A new classification system for carbon-rich stars is presented based on an analysis of 51 asymptotic giant branch carbon stars through the most relevant classifying indices available. The extension incorporated, which also represents the major advantage of this new system, is the combination of the usual optical indices that describe the photospheres of the objects, with new infrared ones, which allow an interpretation of the circumstellar environment of the carbon-rich stars. This new system is presented with the usual spectral subclasses and C 2 -, j-, MS-, and temperature indices, and also with the new SiC- (SiC/C.A. abundance estimation) and τ- (opacity) indices. The values for the infrared indices were carried out through a Monte Carlo simulation of the radiative transfer in the circumstellar envelopes of the stars. The full set of indices, when applied to our sample, resulted in a more efficient system of classification, since an examination in a wide spectral range allows us to obtain a complete scenario for carbon stars.

  9. AILES: the infrared and THz beamline on SOLEIL synchrotron radiation source

    International Nuclear Information System (INIS)

    Roy, P.; Brubach, J.B.; Rouzieres, M.; Pirali, O.; Kwabia Tchana, F.; Manceron, L.

    2008-01-01

    The development of a new infrared beamline (ligne de lumiere AILES) at the third generation Synchrotron Radiation source SOLEIL is underway. This beamline utilizes infrared synchrotron radiation from both the edge emission and the constant field conventional source. The expected performances including flux, spatial distribution of the photons, spectral range and stability are calculated and discussed. The optical system, spectroscopic stations and workspace are described. The calculation in the near field approach and the simulation by ray tracing show that the source with its adapted optics offers high flux and brilliance for a variety of infrared experiments. We also review the main research themes and the articulation and developments of the infrared sources at SOLEIL. (authors)

  10. Infrared hyperspectral imaging miniaturized for UAV applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  11. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  12. Numerical simulation and experimental study of factors influencing the optical characteristics of a spatial target

    International Nuclear Information System (INIS)

    Zhu Dingqiang; Shen Wentao; Cai Guobiao; Ke Weina

    2013-01-01

    The optical properties of a spatial target are important characteristics for its detection, identification, tracking and interception. A homeostatic model of the temperature and infrared characteristics of the target has been developed considering the radiation of the environmental background. The heat conduction inside the wall and the effect of an internal heat source are included in the model. The reflection characteristics of the target are calculated with bi-directional reflection distribution function (BRDF) models. The temperature and infrared radiation have been measured in the simulating space environment in the ground tests. The comparisons between the theoretical results and experimental data demonstrate a good agreement. Applying the developed model, the influences of several parameters (such as spin frequency, absorptivity/emissivity and thermal conductivity) of the target have been investigated. Highlights: ► A mathematical model was developed to predict the optical characteristics of a spatial target. ► The temperature and infrared radiation are measured in ground tests. ► The simulation results and the test results are consistent. ► The effects of several target parameters were analysed.

  13. Quantification of Multiple Components of Complex Aluminum-Based Adjuvant Mixtures by Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Modeling.

    Science.gov (United States)

    Dowling, Quinton M; Kramer, Ryan M

    2017-01-01

    Fourier transform infrared (FTIR) spectroscopy is widely used in the pharmaceutical industry for process monitoring, compositional quantification, and characterization of critical quality attributes in complex mixtures. Advantages over other spectroscopic measurements include ease of sample preparation, quantification of multiple components from a single measurement, and the ability to quantify optically opaque samples. This method describes the use of a multivariate model for quantifying a TLR4 agonist (GLA) adsorbed onto aluminum oxyhydroxide (Alhydrogel ® ) using FTIR spectroscopy that may be adapted to quantify other complex aluminum based adjuvant mixtures.

  14. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  15. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    International Nuclear Information System (INIS)

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travère, J. M.; Thellier, C.; Fermé, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-01-01

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  16. Generation of 70-fs pulses at 286 μm from a mid-infrared fiber laser

    Science.gov (United States)

    Woodward, R. I.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2017-12-01

    We propose and demonstrate a simple route to few-optical-cycle pulse generation from a mid-infrared fiber laser through nonlinear compression of pulses from a holmium-doped fiber oscillator using a short length of chalcogenide fiber and a grating pair. Pulses from the oscillator with 265-fs duration at 2.86 {\\mu}m are spectrally broadened through self-phase modulation in step-index As2S3 fiber to 141-nm bandwidth and then re-compressed to 70 fs (7.3 optical cycles). These are the shortest pulses from a mid-infrared fiber system to date, and we note that our system is compact, robust, and uses only commercially available components. The scalability of this approach is also discussed, supported by numerical modeling.

  17. Probing the properties of nebular plasmas with optical and infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, M. J. [Dept. of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2012-05-25

    A number of current developments arising from spectroscopic studies of ionized nebulae are reviewed. Until the past decade or so, such studies were generally confined to the analysis of recombination lines from hydrogen and helium, along with collisionally excited forbidden lines from second and third row elements in the periodic table. However, the advent of efficient detectors on 8m-class telescopes has enabled the detection of recombination lines from second and third row elements, along with collisionally excited lines from much less abundant species. Significant discrepancies have been found between ionic abundances derived from collisionally excited lines and those obtained for the same ions from their recombination lines. The existence of 'cold plasma' with T{sub e}{<=} 1000 K has been confirmed for a number of planetary nebulae. Optical and infrared collisionally excited ionic lines from a wide range of 'neutron-capture' elements from beyond the iron abundance peak have also been detected. There is a consequent need for new calculations and experimental measurements of the atomic data needed to interpret these observations.

  18. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    Science.gov (United States)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  19. Nonlinear optical spectroscopy and microscopy of model random and biological media

    Science.gov (United States)

    Guo, Yici

    Nonlinear optical (NLO) spectroscopy and microscopy applied to biomedical science are emerging as new and rapidly growing areas which offer important insight into basic phenomena. Ultrafast NLO processes provide temporal, spectral and spatial sensitivities complementary or superior to those achieved through conventional linear optical approaches. The goal of this thesis is to explore the potential of two fundamental NLO processes to produce noninvasive histological maps of biological tissues. Within the goal of the thesis, steady state intensity, polarization and angular measurements of second- and third-harmonic generations (SHG, THG) have been performed on model random scattering and animal tissue samples. The nonlinear optical effects have been evaluated using models. Conversion efficiencies of SHG and THG from animal tissue interfaces have been determined, ranging from 10-7 to 10-10. The changes in the multiharmonic signals were found to depend on both local and overall histological structures of biological samples. The spectral signatures of two photon excitation induced fluorescence from intrinsic fluorophores have been acquired and used to characterize the physical state and types of tissues. Two dimensional scanning SHG and TPF tomographic images have been obtained from in vitro animal tissues, normal and diseased human breast tissues, and resolved subsurface layers and histo-chemical distributions. By combining consecutive 2D maps, a 3D image can be produced. The structure and morphology dependence of the SH signal has been utilized to image and evaluate subsurface tumor progression depth. Second harmonic microscopy in model random and biological cells has been studied using a CCD camera to obtain direct images from subcellular structures. Finally, near infrared (NIR) NLO spectroscopy and microscopy based on SHG and TPF have demonstrated high spatial resolution, deeper penetration depth, low level photo-damaging and enhanced morphological sensitivity for

  20. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies

    Science.gov (United States)

    Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo

    2017-09-01

    Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.

  1. Monolithic beam steering in a mid-infrared, surface-emitting, photonic integrated circuit.

    Science.gov (United States)

    Slivken, Steven; Wu, Donghai; Razeghi, Manijeh

    2017-08-16

    The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function.

  2. Mid-infrared materials and devices on a Si platform for optical sensing

    Science.gov (United States)

    Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M

    2014-01-01

    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors. PMID:27877641

  3. Optics for dummies

    CERN Document Server

    Duree, Galen C

    2011-01-01

    The easy way to shed light on Optics In general terms, optics is the science of light. More specifically, optics is a branch of physics that describes the behavior and properties of light?including visible, infrared, and ultraviolet?and the interaction of light with matter. Optics For Dummies gives you an approachable introduction to optical science, methods, and applications. You'll get plain-English explanations of the nature of light and optical effects; reflection, refraction, and diffraction; color dispersion; optical devices, industrial, medical, and military applicatio

  4. Far infrared properties of PbTe doped with cerium

    International Nuclear Information System (INIS)

    Nikolic, P.M.; Koenig, W.; Vujatovic, S.S.; Blagojevic, V.; Lukovic, D.; Savic, S.; Radulovic, K.; Urosevic, D.; Nikolic, M.V.

    2007-01-01

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm -1 . The origin of these local vibrational impurity modes was discussed

  5. Infrared light extinction by charged dielectric core-coat particles

    OpenAIRE

    Thiessen, Elena; Heinisch, Rafael L.; Bronold, Franz X.; Fehske, Holger

    2014-01-01

    We study the effect of surplus electrons on the infrared extinction of dielectric particles with a core-coat structure and propose to use it for an optical measurement of the particle charge in a dusty plasma. The particles consist of an inner core with negative and an outer coat with positive electron affinity. Both the core and the coat give rise to strong transverse optical phonon resonances, leading to anomalous light scattering in the infrared. Due to the radial profile of the electron a...

  6. Optical and Near-infrared Polarimetry of Non-periodic Comet C/2013 US10 (Catalina)

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yuna Grace; Ishiguro, Masateru; Lee, Myung Gyoon [Department of Physics and Astronomy, Seoul National University, 1 Gwanak, Seoul 08826 (Korea, Republic of); Kuroda, Daisuke; Toda, Hiroyuki; Yanagisawa, Kenshi [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama, 719-0232 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Kawabata, Koji S.; Nakaoka, Tatsuya [Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Akitaya, Hiroshi [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Itoh, Ryosuke; Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Yoshida, Michitoshi [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Watanabe, Jun-Ichi, E-mail: ishiguro@astro.snu.ac.kr [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-01

    We present an optical and near-infrared (hereafter NIR) polarimetric study of a comet C/2013 US10 (Catalina) observed on UT 2015 December 17–18 at phase angles of α  = 52.°1–53.°1. Additionally, we obtained an optical spectrum and multi-band images to examine the influence of gas emission. We find that the observed optical signals are significantly influenced by gas emission; that is, the gas-to-total intensity ratio varies from 5 to 30% in the R {sub C} and 3%–18% in the I {sub C} bands, depending on the position in the coma. We derive the “gas-free dust polarization degrees” of 13.8% ± 1.0% in the R {sub C} and 12.5% ± 1.1% in the I {sub C} bands and a gray polarimetric color, i.e., −8.7% ± 9.9% μ m{sup −1} in optical and 1.6% ± 0.9% μ m{sup −1} in NIR. The increments of polarization obtained from the gas correction show that the polarimetric properties of the dust in this low-polarization comet are not different from those in high-polarization comets. In this process, the cometocentric distance dependence of polarization has disappeared. We also find that the R {sub C}-band polarization degree of the southeast dust tail, which consists of large dust particles (100 μ m–1 mm), is similar to that in the outer coma where small and large ones are mixed. Our study confirms that the dichotomy of cometary polarization does not result from the difference of dust properties, but from depolarizing gas contamination. This conclusion can provide a strong support for similarity in origin of comets.

  7. Athermal design for mid-wave infrared lens with long EFFL

    Science.gov (United States)

    Bai, Yu; Xing, Tingwen

    2016-10-01

    When the environment temperature has changed, then each parameter in infrared lens has also changed, thus the image quality became bad, so athermal technology is one of key technology in designing infrared lens. The temperature influence of each parameter in infrared lens is analyzed in the paper. In the paper, an athermal mid-wave infrared optical system with long focal length by Code-v optical design software was presented. The parameters of the athermal infrared system are 4.0 f/number, 704mm effective focal length (EFL) , 1° field of view and 3.7-4.8 μm spectrum region 100% cold shield efficiency. When the spatial frequency is 16lp/mm, the Modulation Transfer Function (MTF) of all the field of view was above 0.5 from the working temperature range -40° to 60°. From the image quality and thermal analysis result, we knew that the lens had good athermal performance.

  8. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  9. High spatial resolution observations of the T Tau system - II. Interferometry in the mid-infrared

    International Nuclear Information System (INIS)

    Ratzka, Thorsten

    2008-01-01

    Each time the resolution was improved, observations of the young low-mass star T Tau led to new insights. Initially classified as the prototype of low-mass pre-main-sequence stars, measurements with high resolution techniques in the near-infrared revealed the existence of a deeply embedded companion only 0.7 arcsec to the south. Later on, this companion itself has been resolved into two sources with a separation of only about 50 mas. We investigated both the optically bright northern component and the embedded southern binary with the MID-infrared Interferometric instrument (MIDI). The resulting visibilities of the northern component decrease with wavelength, independent of the baseline's position angle. This is a clear sign of the large face-on circumstellar disc. With a simultaneous fit of a radiative transfer model to both the interferometric results and the spectral energy distribution, the properties of this disc can be determined without the high degeneracy of fits to the spectral energy distribution alone. Since the visibilities of the southern binary are clearly dominated by the typical sinusoidal binary signal, we could for the first time in the mid-infrared derive separate spectra for both components together with a very precise relative position. This position is in excellent agreement with the orbit found from a fit to the near-infrared adaptive optics measurements. The orbit with its small periastron distance indicates tidally truncated discs, which are consistent with the interferometric measurements. The peculiar properties of the infrared companion can be explained by the model of an intermediate mass star extincted by an almost edge-on disc.

  10. Near-infrared photometry of HDE 245770 (A 0535 + 26)

    International Nuclear Information System (INIS)

    Persi, P.; Ferrari-Toniolo, M.; Spada, G.; Conti, G.; Di Benedetto, P.; Tanzi, E.G.; Tarenghi, M.

    1979-01-01

    A derivation is presented of the optical-infrared energy distribution of the OBe star HDE 245770, the optical counterpart of the transient X-ray source A 0535 + 26, using infrared observations made in the period 1976 November - 1977 March and UBV photometry obtained by other workers in 1976 November. An infrared excess is evident with flux density Ssub(ν) varies as νsup(approximately 0.6). The excess is explained in terms of thermal free-free emission from an ionized gaseous envelope around the OBe star. Assuming a matter outflow through the envelope with uniform velocity of a few hundred km/s, a value is obtained for the mass loss rate in HDE 245770 of about 10 -6 solar masses/yr. (author)

  11. Optical camera system for radiation field

    International Nuclear Information System (INIS)

    Maki, Koichi; Senoo, Makoto; Takahashi, Fuminobu; Shibata, Keiichiro; Honda, Takuro.

    1995-01-01

    An infrared-ray camera comprises a transmitting filter used exclusively for infrared-rays at a specific wavelength, such as far infrared-rays and a lens used exclusively for infrared rays. An infrared ray emitter-incorporated photoelectric image converter comprising an infrared ray emitting device, a focusing lens and a semiconductor image pick-up plate is disposed at a place of low gamma-ray dose rate. Infrared rays emitted from an objective member are passed through the lens system of the camera, and real images are formed by way of the filter. They are transferred by image fibers, introduced to the photoelectric image converter and focused on the image pick-up plate by the image-forming lens. Further, they are converted into electric signals and introduced to a display and monitored. With such a constitution, an optical material used exclusively for infrared rays, for example, ZnSe can be used for the lens system and the optical transmission system. Accordingly, it can be used in a radiation field of high gamma ray dose rate around the periphery of the reactor container. (I.N.)

  12. An Application for the Quantitative Analysis of Pharmaceutical Tablets Using a Rapid Switching System Between a Near-Infrared Spectrometer and a Portable Near-Infrared Imaging System Equipped with Fiber Optics.

    Science.gov (United States)

    Murayama, Kodai; Ishikawa, Daitaro; Genkawa, Takuma; Ozaki, Yukihiro

    2018-04-01

    We present a rapid switching system between a newly developed near-infrared (NIR) spectrometer and its imaging system to select the spot size of a diffuse reflectance (DR) probe. In a previous study, we developed a portable NIR imaging system, known as D-NIRs, which has significant advantages over other systems. Its high speed, high spectral resolution, and portability are particularly useful in the process of monitoring pharmaceutical tablets. However, the spectral accuracies relating to the changes in the formulation of the pharmaceutical tablets have not been fully discussed. Therefore, we improved the rapid optical switching system and present a new model of D-NIRs (ND-NIRs) here. This system can automatically switch the optical paths of the DR and NIR imaging probes, greatly contributing to the simultaneous measurement of both the imaging and spot. The NIR spectra of the model tablets, including 0-10% ascorbic acid, were measured and simultaneous NIR images of the tablets were obtained. The predicted results using spot sizes for the DR probe of 1 and 5 mm diameter, resulted in concentrations of R2 = 0.79 and 0.94, with root mean square errors (RMSE) of 1.78 and 0.89, respectively. For tablets with a high concentration of ascorbic acid, the NIR imaging results showed inhomogeneity in concentration. However, the predicted values for the low concentration samples appeared higher than the known concentration of the tablets, although the homogeneity of the concentration was confirmed. In addition, the optimal spot size using NIR imaging data was estimated to be 5-7 mm. The results obtained in this study show that the spot size of the fiber probe, attached to a spectrometer, is important in developing a highly reliable model to determine the component concentration of a tablet.

  13. Infrared to near-ultraviolet optical response for zigzag-edge silicene nanoribbons under the irradiation of an external electromagnetic field

    Science.gov (United States)

    Liao, Wenhu; Bao, Hairui; Zhang, Xincheng; Zuo, Min; Yang, Hong

    2018-01-01

    We investigate theoretically the width-dependent electronic structure and optical spectrum for intrinsic zigzag-edge silicene nanoribbons with N silicon atoms of the A and B sublattice ( N-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. Based on the method of the tight-binding approximation, we have derived a width-dependent dispersion relation and wave function for N-ZSiNRs under the hard-wall boundary condition. By way of the dipole-transition theorem for semiconductors, both the 8- and 16-ZSiNRs have been observed to exhibit broad values (0.30-3.20 eV) of optical conductivity, dielectric function and electron energy loss spectrum in the range of infrared to near-ultraviolet. The optical spectra for 8- and 16-ZSiNRs have been manifested to be transitions between the valence and conduction bands with the same subband indices, as well as the resonances between the edge state and bulk state subbands, while the optical transitions among the different indexed bulk subbands should be forbidden owing to the non-conserved momentum. The obtained results are believed to be of importance in exploring new effects and optoelectronic applications of the silicene-based electron devices.

  14. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Science.gov (United States)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud

  15. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    Directory of Open Access Journals (Sweden)

    S. DeSouza-Machado

    2018-01-01

    Full Text Available One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR satellite sounders use cloud-cleared radiances (CCRs as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2–4 degrees of freedom (DOFs of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA. The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds. From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS and NWP

  16. Morphology and astrometry of Infrared-Faint Radio Sources

    Science.gov (United States)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  17. Infrared Spectroscopy Beamline Based on a Tabletop Storage Ring

    OpenAIRE

    Haque, Md. Monirul; Moon, Ahsa; Yamada, Hironari

    2012-01-01

    An optical beamline dedicated to the infrared (IR) spectroscopy has been constructed at MIRRORCLE, a tabletop storage ring. The beamline has been designed for the use of infrared synchrotron radiation (IRSR) emitted from a bending magnet of 156 mm bending radius with the acceptance angle of 355(H) × 138(V) mrad to obtain high flux. The IR emission is forced by an exactly circular optics, named photon storage ring (PhSR), placed around the electron orbit and is collected by a “magic mirror” as...

  18. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  19. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    International Nuclear Information System (INIS)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.; Carey, Sean; Baglin, Annie; Micela, Giuseppina; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Terebey, Susan

    2014-01-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.

  20. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect

    Science.gov (United States)

    Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John

    2013-11-01

    The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

  1. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  2. SIBI: A compact hyperspectral camera in the mid-infrared

    Science.gov (United States)

    Pola Fossi, Armande; Ferrec, Yann; Domel, Roland; Coudrain, Christophe; Guerineau, Nicolas; Roux, Nicolas; D'Almeida, Oscar; Bousquet, Marc; Kling, Emmanuel; Sauer, Hervé

    2015-10-01

    Recent developments in unmanned aerial vehicles have increased the demand for more and more compact optical systems. In order to bring solutions to this demand, several infrared systems are being developed at ONERA such as spectrometers, imaging devices, multispectral and hyperspectral imaging systems. In the field of compact infrared hyperspectral imaging devices, ONERA and Sagem Défense et Sécurité have collaborated to develop a prototype called SIBI, which stands for "Spectro-Imageur Birefringent Infrarouge". It is a static Fourier transform imaging spectrometer which operates in the mid-wavelength infrared spectral range and uses a birefringent lateral shearing interferometer. Up to now, birefringent interferometers have not been often used for hyperspectral imaging in the mid-infrared because of the lack of crystal manufacturers, contrary to the visible spectral domain where the production of uniaxial crystals like calcite are mastered for various optical applications. In the following, we will present the design and the realization of SIBI as well as the first experimental results.

  3. Far infrared properties of PbTe doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, P.M. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu; Koenig, W. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80 (Germany); Vujatovic, S.S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Blagojevic, V. [Faculty of Electronic Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Lukovic, D. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Savic, S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Radulovic, K. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Urosevic, D. [Mathematical Institute SASA, Knez Mihailova 35/I, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, Belgrade (Serbia)

    2007-05-16

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm{sup -1}. The origin of these local vibrational impurity modes was discussed.

  4. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    Science.gov (United States)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  5. Far infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Gatley, I.

    1977-01-01

    Maps of a region 10' in diameter around the galactic center made simultaneously in three wavelength bands at 30 μm, 50 μm, and 100 μm with approximately 1' resolution are presented, and the distribution of far infrared luminosity and color temperature across this region is derived. The position of highest far infrared surface brightness coincides with the peak of the late-type stellar distribution and with the H II region Sgr A West. The high spatial and temperature resolution of the data is used to identify features of the far infrared maps with known sources of near infrared, radio continuum, and molecular emission. The emission mechanism and energy sources for the far infrared radiation are anslyzed qualitatively, and it is concluded that all of the observed far infrared radiation from the galactic center region can be attributed to thermal emission from dust heated both by the late-type stars and by the ultraviolet sources which ionize the H II regions. A self-consistent model for the far infrared emission from the galactic center region is presented. It is found that the visual extinction across the central 10 pc of the galaxy is only about 3 magnitudes, and that the dust density is fairly uniform in this region. An upper limit of 10 7 L/sub mass/ is set on the luminosity of any presently unidentified source of 0.1 to 1 μm radiation at the galactic center. Additional maps in the vicinity of the source Sgr B2 and observations of Sgr C bring the total number of H II regions within 1 0 of the galactic center studied by the present experiment to nine. The far infrared luminosity, color temperature and optical depth of these regions and the ratio of infrared flux to radio continuum flux lie in the range characteristic of spiral arm H II regions. The far infrared results are therefore consistent with the data that the galactic center H II regions are ionized by luminous, early type stars

  6. Technical report series on global modeling and data assimilation. Volume 3: An efficient thermal infrared radiation parameterization for use in general circulation models

    Science.gov (United States)

    Suarex, Max J. (Editor); Chou, Ming-Dah

    1994-01-01

    A detailed description of a parameterization for thermal infrared radiative transfer designed specifically for use in global climate models is presented. The parameterization includes the effects of the main absorbers of terrestrial radiation: water vapor, carbon dioxide, and ozone. While being computationally efficient, the schemes compute very accurately the clear-sky fluxes and cooling rates from the Earth's surface to 0.01 mb. This combination of accuracy and speed makes the parameterization suitable for both tropospheric and middle atmospheric modeling applications. Since no transmittances are precomputed the atmospheric layers and the vertical distribution of the absorbers may be freely specified. The scheme can also account for any vertical distribution of fractional cloudiness with arbitrary optical thickness. These features make the parameterization very flexible and extremely well suited for use in climate modeling studies. In addition, the numerics and the FORTRAN implementation have been carefully designed to conserve both memory and computer time. This code should be particularly attractive to those contemplating long-term climate simulations, wishing to model the middle atmosphere, or planning to use a large number of levels in the vertical.

  7. Parametric uncertainty in optical image modeling

    Science.gov (United States)

    Potzick, James; Marx, Egon; Davidson, Mark

    2006-10-01

    Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.

  8. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head.

    Science.gov (United States)

    Selb, Juliette; Ogden, Tyler M; Dubb, Jay; Fang, Qianqian; Boas, David A

    2014-01-01

    Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject's head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers.

  9. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  10. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  11. A tool to separate optical/infrared disc and jet emission in X-ray transient outbursts: the colour-magnitude diagrams of XTE J1550-564

    NARCIS (Netherlands)

    Russell, D.M.; Maitra, D.; Dunn, R.J.H.; Fender, R.P.

    2011-01-01

    It is now established that thermal disc emission and non-thermal jet emission can both play a role at optical/infrared (OIR) wavelengths in X-ray transients. The spectra of the jet and disc components differ, as do their dependence on mass accretion properties. Here we demonstrate that the OIR

  12. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    International Nuclear Information System (INIS)

    Luque-Escamilla, Pedro L.; Martí, Josep; Muñoz-Arjonilla, Álvaro J.

    2014-01-01

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification

  13. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    Science.gov (United States)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  14. Theoretical study on optical model potential

    International Nuclear Information System (INIS)

    Lim Hung Gi.

    1984-08-01

    The optical model potential of non-local effect on the rounded edge of the potential is derived. On the basis of this potential the functional form of the optical model potential, the energy dependence and relationship of its parameters, and the dependency of the values of the parameters on energy change are shown in this paper. (author)

  15. Far infrared peculiar behavior of quasars

    International Nuclear Information System (INIS)

    Liu Yulin; Liu Jiying

    1988-09-01

    Many quasars possibly have nebulous envelopes with far infrared radiation. These nebulosities may be similar to fuzz in the optical region in morphology. These quasars have many properties in common. (author). Refs, 3 figs

  16. Mathematical Modeling of Optical Radiation Emission as a Function of Welding Power during Gas Shielded Metal Arc Welding.

    Science.gov (United States)

    Bauer, Stefan; Janßen, Marco; Schmitz, Martin; Ott, Günter

    2017-11-01

    Arc welding is accompanied by intense optical radiation emission that can be detrimental not only for the welder himself but also for people working nearby or for passersby. Technological progress advances continuously in the field of joining, so an up-to-date radiation database is necessary. Additionally, many literature irradiance data have been measured for a few welding currents or for parts of the optical spectral region only. Within this paper, a comprehensive study of contemporary metal active gas, metal inert gas, and cold metal transfer welding is presented covering optical radiation emission from 200 up to 2,700 nm by means of (spectro-) radiometric measurements. The investigated welding currents range from 70 to 350 A, reflecting values usually applied in industry. Based upon these new irradiance data, three mathematical models were derived in order to describe optical radiation emission as a function of welding power. The linear, exponential, and sigmoidal emission models depend on the process variant (standard or pulsed) as well as on the welding material (mild and stainless steel, aluminum). In conjunction with the corresponding exposure limit values for incoherent optical radiation maximum permissible exposure durations were calculated as a function of welding power. Typical times are shorter than 1 s for the ultraviolet spectral region and range from 1 to 10 s for visible radiation. For the infrared regime, exposure durations are of the order of minutes to hours. Finally, a validation of the metal active gas emission models was carried out with manual arc welding.

  17. Optical monitoring of kidney oxygenation and hemodynamics using a miniaturized near-infrared sensor

    Science.gov (United States)

    Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Nguan, Christopher

    2017-02-01

    Background: Following human renal allograft transplant primary graft dysfunction can occur early in the postoperative period as a result of acute tubular necrosis, acute rejection, drug toxicity, and vascular complications. Successful treatment of graft dysfunction requires early detection and accurate diagnosis so that disease-specific medical and/or surgical intervention can be provided promptly. However, current diagnostic methods are not sensitive or specific enough, so that identifying the cause of graft dysfunction is problematic and often delayed. Near-infrared spectroscopy (NIRS) is an established optical method that monitors changes in tissue hemodynamics and oxygenation in real time. We report the feasibility of directly monitoring kidney the kidney in an animal model using NIRS to detect renal ischemia and hypoxia. Methods: In an anesthetized pig, a customized continuous wave spatially resolved (SR) NIRS sensor was fixed directly to the surface of the surgically exposed kidney. Changes in the concentration of oxygenated (O2Hb) deoxygenated (HHb) and total hemoglobin (THb) were monitored before, during and after renal artery clamping and reperfusion, and the resulting fluctuations in chromophore concentration from baseline used to measure variations in renal perfusion and oxygenation. Results: On clamping the renal artery THb and O2Hb concentrations declined progressively while HHb rose. With reperfusion after releasing the artery clamp O2Hb and THb rose while HHb fell with all parameters returning to its baseline. This pattern was similar in all three trials. Conclusion: This pilot study indicates that a miniaturized NIRS sensor applied directly to the surface of a kidney in an animal model can detect the onset of renal ischemia and tissue hypoxia. With modification, our NIRS-based method may contribute to early detection of renal vascular complications and graft dysfunction following renal transplant.

  18. The near-infrared continua of BL Lacertae objects

    International Nuclear Information System (INIS)

    Allen, D.A.; Ward, M.J.; Hyland, A.R.

    1982-01-01

    Accurate photometry at J, H and K (1.2 to 2.2 μm) has been secured of 53 BL Lac objects. A power-law continuum is an exceptionally good fit to the data, and the colours are distinct from those of quasars. There is no indication of the additional infrared continuum seen in quasars and which is believed to arise in circumnuclear dust. We argue that dust is very scarce in the nuclei of BL Lac objects, and thus we expect gas to be equally scarce. Hence we attribute the lack of optical emission lines to an absence of ionized nuclear gas. We further argue that BL Lac objects could underlie quasars, the latter exhibiting line and thermal continuum emission at ultraviolet, optical and near-infrared wavelengths due to the presence of circumnuclear gas and dust. The strong-lined optically violent variable quasars have colours typical of BL Lac objects rather than quasars, and may represent intermediate cases. The JHK colours of the BL Lac objects overlap with those of the empty-radio-field infrared sources. Such objects probably represent the redder extreme of a range of spectral indices in BL Lac objects. (author)

  19. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  20. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    Science.gov (United States)

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Influence of screening on longitudinal-optical phonon scattering in quantum cascade lasers

    International Nuclear Information System (INIS)

    Ezhov, Ivan; Jirauschek, Christian

    2016-01-01

    We theoretically investigate the influence of screening on electron-longitudinal optical phonon scattering in quantum cascade lasers. By employing ensemble Monte Carlo simulations, an advanced screening model based on the random-phase approximation is compared to the more elementary Thomas-Fermi and Debye models. For mid-infrared structures, and to a lesser extent also for terahertz designs, the inclusion of screening is shown to affect the simulated current and optical output power. Furthermore, it is demonstrated that by using the electron temperature rather than the lattice temperature, the Debye model can be significantly improved

  2. Wave study of compound eyes for efficient infrared detection

    Science.gov (United States)

    Kilinc, Takiyettin Oytun; Hayran, Zeki; Kocer, Hasan; Kurt, Hamza

    2017-08-01

    Improving sensitivity in the infrared spectrum is a challenging task. Detecting infrared light over a wide bandwidth and at low power consumption is very important. Novel solutions can be acquired by mimicking biological eyes such as compound eye with many individual lenses inspired from the nature. The nature provides many ingenious approaches of sensing and detecting the surrounding environment. Even though compound eye consists of small optical units, it can detect wide-angle electromagnetic waves and it has high transmission and low reflection loss. Insects have eyes that are superior compared to human eyes (single-aperture eyes) in terms of compactness, robustness, wider field of view, higher sensitivity of light intensity and being cheap vision systems. All these desired properties are accompanied by an important drawback: lower spatial resolution. The first step to investigate the feasibility of bio-inspired optics in photodetectors is to perform light interaction with the optical system that gather light and detect it. The most common method used in natural vision systems is the ray analysis. Light wave characteristics are not taken into consideration in such analyses, such as the amount of energy at the focal point or photoreceptor site, the losses caused by reflection at the interfaces and absorption cannot be investigated. In this study, we present a bio-inspired optical detection system investigated by wave analysis. We numerically model the wave analysis based on Maxwell equations from the viewpoint of efficient light detection and revealing the light propagation after intercepting the first interface of the eye towards the photoreceptor site.

  3. Improved theoretical model of InN optical properties

    International Nuclear Information System (INIS)

    Ferreira da Silva, A.; Chubaci, J.F.D.; Matsuoka, M.; Freitas, J.A. Jr.; Tischler, J.G.; Baldissera, G.; Persson, C.

    2014-01-01

    The optical properties of InN are investigated theoretically by employing the projector augmented wave (PAW) method within Green's function and the screened Coulomb interaction approximation (GW o ). The calculated results are compared to previously reported calculations which use local density approximation combined with the scissors-operator approximation. The results of the present calculation are compared with reported values of the InN bandgap and with low temperature near infrared luminescence measurements of InN films deposited by a modified Ion Beam Assisted Deposition technique. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Far-infrared observations of globules

    International Nuclear Information System (INIS)

    Keene, J.

    1981-01-01

    Observations of far-infrared emission from nine globules are presented. The intensity and uniformity of the emission confirm that the heat source is the interstellar radiation field. Spectra of B133 and B335 are presented; they are consistent with optically thin thermal emission from dust with temperature 13--16 K. The emissivity of the grains must fall as fast as lambda -2 for lambda>500 μm. The temperature and intensity of B335 are used to calculate the ratio of visual extinction to far-infrared emission frequency

  5. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  6. Infrared photometry of upper main sequence stars in M39

    International Nuclear Information System (INIS)

    Manteiga, M.; Martinez-Roger, C.; Morales, C.; Sabau, L.

    1991-01-01

    Infrared photometry of 19 Main sequence stars in the open cluster M39 is presented. Infrared-infrared and optical-infrared colour-colour and colour-magnitude diagrams are presented and compared with mean intrinsic colours for Population I stars. An interstellar reddening of E(B - V) = 0.01 is obtained by analysis of the colour-colour diagrams. Comparison with a set of theoretical isochrones leads to an age estimate for the cluster between 2.4 and 4.8 x 10 8 years

  7. Infrared photometry of upper main sequence stars in M39

    Energy Technology Data Exchange (ETDEWEB)

    Manteiga, M.; Martinez-Roger, C. (Instituto de Astrofisica de Canarias, Tenerife, (ES)); Morales, C.; Sabau, L. (Instituto de Tecnica Aeroespacial, Madrid, (ES))

    1991-03-01

    Infrared photometry of 19 Main sequence stars in the open cluster M39 is presented. Infrared-infrared and optical-infrared colour-colour and colour-magnitude diagrams are presented and compared with mean intrinsic colours for Population I stars. An interstellar reddening of E(B - V) = 0.01 is obtained by analysis of the colour-colour diagrams. Comparison with a set of theoretical isochrones leads to an age estimate for the cluster between 2.4 and 4.8 x 10{sup 8} years.

  8. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    Science.gov (United States)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  9. The optical, infrared and radio properties of extragalactic sources observed by SDSS, 2mass and first surveys

    International Nuclear Information System (INIS)

    Z. Ivezic et al.

    2002-01-01

    We positionally match sources observed by the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS), and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. Practically all 2MASS sources are matched to an SDSS source within 2 arcsec; ∼ 11% of them are optically resolved galaxies and the rest are dominated by stars. About 1/3 of FIRST sources are matched to an SDSS source within 2 arcsec; ∼ 80% of these are galaxies and the rest are dominated by quasars. Based on these results, we project that by the completion of these surveys the matched samples will include about 10 7 and 10 6 galaxies observed by both SDSS and 2MASS, and about 250,000 galaxies and 50,000 quasars observed by both SDSS and FIRST. Here we present a preliminary analysis of the optical, infrared and radio properties for the extragalactic sources from the matched samples. In particular, we find that the fraction of quasars with stellar colors missed by the SDSS spectroscopic survey is probably not larger than ∼ 10%, and that the optical colors of radio-loud quasars are ∼ 0.05 mag. redder (with 4σ significance) than the colors of radio-quiet quasars

  10. Thermal infrared spectrometer MERTIS for the BepiColumbo Mission to Mercury

    Science.gov (United States)

    Zeh, T.; Kaiser, S.; Lenfert, K.; Peter, G.; Walter, I.; Hirsch, H.; Knollenberg, J.; Helbert, J.; Multhaup, K.; Hiesinger, H.; Gebhardt, A.; Risse, S.; Damm, C.; Eberhardt, R.; Baier, V.; Kessler, E.

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm with a high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. Under the lead of the German Aerospace Center DLR (Dep. Optical Information Systems, Berlin) a development model (DM) is in development which integrates all MERTIS sub-units of later flight models. With the DM the general design and performance goals of the system shall be investigated and verified. Besides a general overview about the instrument principles the following topics are addressed: Optics setup with a Three Mirror Anastigmatic (TMA) telescope and Offner Spectrometer, Manufacturing techniques for the robust and high precision optics and Radiometer Concept and Design

  11. Andromeda (M31) optical and infrared disk survey. I. Insights in wide-field near-IR surface photometry

    International Nuclear Information System (INIS)

    Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles; McDonald, Michael; De Jong, Roelof; Tully, R. Brent

    2014-01-01

    We present wide-field near-infrared J and K s images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-target nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.

  12. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band

    Science.gov (United States)

    Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying

    2015-10-01

    Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.

  13. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  14. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  15. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    Science.gov (United States)

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  16. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    Science.gov (United States)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  17. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  18. Design of a compact athermalized infrared seeker

    Science.gov (United States)

    Gao, Qing-jia; Wang, Jian; Sun, Qiang

    2017-07-01

    In order to meet the application requirement of a certain long wavelength infrared (LWIR) seeker, a small volume, light weight and passively athermalized infrared (IR) objective is designed in this paper. The two-lens telephoto structure is adopted by merely using aluminum alloy as the housing material. By balancing the thermo-optical coefficient and thermal expansion coefficient of materials, an athermalized IR seeker with effective focal length of 90 mm and F number of 1.2 is achieved. The whole optical length is 75 mm, and the weight is only 234 g. The objective can remain fine imaging quality under temperature range from -40 °C to 60 °C, which is beneficial to the lightweight design of IR seekers.

  19. Derivation of the optical constants of anisotropic

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.; Strong, P. F.

    1985-07-01

    This report concerns the development of methods for obtaining the optical constants of anisotropic crystals of the triclinic and monoclinic systems. The principal method used, classical dispersion theory, is adapted to these crystal systems by extending the Lorentz line parameters to include the angles characterizing the individual resonances, and by replacing the dielectric constant by a dielectric tensor. The sample crystals are gypsium, orthoclase and chalcanthite. The derived optical constants are shown to be suitable for modeling the optical properties of particulate media in the infrared spectral region. For those materials where suitable size single crystals are not available, an extension of a previously used method is applied to alabaster, a polycrystalline material of the monoclinic crystal system.

  20. Influence of earlobe thickness on near infrared spectroscopy

    Science.gov (United States)

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  1. Far-infrared phonon spectroscopy of Pb1-xMn xTe layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Romcevic, N.; Nadolny, A.J.; Romcevic, M.; Story, T.; Taliashvili, B.; Milutinovic, A.; Trajic, J.; Lusakowska, E.; Vasiljevic-Radovic, D.; Domukhovski, V.; Osinniy, V.; Hadzic, B.; Dziawa, P.

    2007-01-01

    In this paper we used far-infrared spectroscopy, reflection high energy electron diffraction (RHEED), X-ray diffraction and atomic force microscopy (AFM) to investigate structural and optical properties of Pb 1-x Mn x Te layers grown by molecular beam epitaxy (MBE). A numerical model for calculating the reflectivity coefficient for complex systems which include films, buffer layer and substrate has been applied. The infrared reflectivity spectra consist of Pb 1-x Mn x Te phonons, which exhibit intermediate one-two mode behavior, and MnTe phonons. A good agreement between calculated and experimental spectra is achieved. We registered the local distribution of Mn impurities depending on substrate type. For films growth on BaF 2 substrate we registered the orthorhombic local structure of MnTe clusters, while in the case of KCl substrate this structure is cubic. The Pb 1-x Mn x Te long wavelength optical phonons were described by the modified Genzel's model

  2. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  3. High speed infrared radiation thermometer, system, and method

    Science.gov (United States)

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  4. Infrared astronomy seeing the heat : from William Herschel to the Herschel space observatory

    CERN Document Server

    Clements, David L

    2014-01-01

    Uncover the Secrets of the Universe Hidden at Wavelengths beyond Our Optical GazeWilliam Herschel's discovery of infrared light in 1800 led to the development of astronomy at wavelengths other than the optical. Infrared Astronomy - Seeing the Heat: from William Herschel to the Herschel Space Observatory explores the work in astronomy that relies on observations in the infrared. Author David L. Clements, a distinguished academic and science fiction writer, delves into how the universe works, from the planets in our own Solar System to the universe as a whole. The book first presents the major t

  5. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN-TO-HCO{sup +} FLUX RATIOS IN AGNS

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-12-01

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneously covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.

  6. OISI dynamic end-to-end modeling tool

    Science.gov (United States)

    Kersten, Michael; Weidler, Alexander; Wilhelm, Rainer; Johann, Ulrich A.; Szerdahelyi, Laszlo

    2000-07-01

    The OISI Dynamic end-to-end modeling tool is tailored to end-to-end modeling and dynamic simulation of Earth- and space-based actively controlled optical instruments such as e.g. optical stellar interferometers. `End-to-end modeling' is meant to denote the feature that the overall model comprises besides optical sub-models also structural, sensor, actuator, controller and disturbance sub-models influencing the optical transmission, so that the system- level instrument performance due to disturbances and active optics can be simulated. This tool has been developed to support performance analysis and prediction as well as control loop design and fine-tuning for OISI, Germany's preparatory program for optical/infrared spaceborne interferometry initiated in 1994 by Dornier Satellitensysteme GmbH in Friedrichshafen.

  7. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  8. Elaboration, organisation and optical properties of carbon nano-particles as interstellar dust models

    International Nuclear Information System (INIS)

    Galvez, Aymeric

    1999-01-01

    Astrophysical and space observations from ultraviolet to infrared (IR) wavelengths provide the only signatures of carbon cosmic dust which is formed in the vicinity of old stars by molecular species condensation around 1000 K. Despite numerous models developed, a fundamental question concerns the exact nature of these grains in space. Their sampling being impossible, a better knowledge of these objects requires earth analogues obtained in conditions as close as possible of those met in space. Implying synthesis mechanism similar to those postulated for carbon cosmic dust, infrared laser pyrolysis (IRLP) appears as a versatile method in order to produce a wide variety of nanoparticles able to reproduce the main signatures characteristics of the interstellar carbon dust. We checked that the synthesised particles by this method showed strong analogies with carbon dust from the point of view of their infrared spectroscopy. The majority of the bands observed by the astrophysicists are present in spectra. Nevertheless defects exist and can be connected to the too small size of the poly-aromatic units present in such deposits. In order to confirm this size effect and to refine the spectroscopic agreement, we chose two different way by acting either directly on the synthesis by modifying the most relevant experimental parameters (temperature of flame, residence time of the reagent in the reactional zone) or indirectly by the means of post-processing (annealing, irradiation). In order to follow the optical, structural and micro-textural evolutions, the deposits thus formed or treated were characterised by infrared spectroscopy, Transmission electron Microscopy (TeM) and by image analysis of the TeM patterns in order to correlate, their organisation multi-scales and in particular the diameter of the aromatic units, with their aptitude to reproduce the spectral characteristics of interstellar carbonaceous dust. (author) [fr

  9. Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres

    Science.gov (United States)

    Humayun, Muhammad Hamza; Khan, Imran; Azeem, Farhan; Chaudhry, Muhammad Rehan; Gökay, Ulaş Sabahattin; Murib, Mohammed Sharif; Serpengüzel, Ali

    2018-05-01

    Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.

  10. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    Science.gov (United States)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  11. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    Science.gov (United States)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  12. Laboratory-based grain-shape models for simulating dust infrared spectra

    NARCIS (Netherlands)

    Mutschke, H.; Min, M.; Tamanai, A.

    2009-01-01

    Context. Analysis of thermal dust emission spectra for dust mineralogy and physical grain properties depends on comparison spectra, which are either laboratory-measured infrared extinction spectra or calculated extinction cross sections based on certain grain models. Often, the agreement between

  13. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  14. Establishing a cat model of acute optic nerve injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: In order to investigate the progress in optic nerve injury and the following regeneration and repair, many kinds of animal models of optic nerve injury have been established, such as models of acute and chronic ocular hypertension, compression, amputating wound, ischemia reperfusion or hypoxia,intravitreal injection of excitatory amino acids, etc. However, most of these models are established by squeezing intraorbital optic nerve, and suitable for ophthalmology, and there are fewer models suitable for the acute cranial contusion in neurosurgery.OBJECTIVE: To observe the changes of optic nerve after acute injury, and the characteristics of methods for establishing model of acute optic nerve injury in cats.DESIGN: A complete randomized grouping and controlled animal trial.SETTING: Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA.MATERIALS: Twenty-eight healthy adult cats, common degree, either sex, weighing 2.0 - 3.5 kg, were provided by the animal experimental center of Fudan University. The cats were randomly divided into control group (n =3) and model group (n =25), and 5 cats in the model group were observed at 6 hours and 1,3, 7 and 14 days after injury respectively. JX-2000 biological signal processing system (Department of Physiology, Second Military Medical University of Chinese PLA, Shanghai); Inverted phase contrast microscope (Olympus); Axioplan 2 imaging microgram analytical system (Labsystems).METHODS: The experiments were carried out in the Department of Neurosurgery, General Hospital of Jinan Military Area Command of Chinese PLA from June 2004 to June 2005. The cats in the model groups were made into models of acute optic nerve injury: The cats were anesthetized, then the limbs were fixed in a lateral recumbent position. Pterion approach in human was imitated, the operative incision was made along the line between lateral canthus and tragus, and it could be seen deep along the skull base that white

  15. Gas leak detection in infrared video with background modeling

    Science.gov (United States)

    Zeng, Xiaoxia; Huang, Likun

    2018-03-01

    Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.

  16. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    Science.gov (United States)

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  17. Optical biopsy of lymph node morphology using optical coherence tomography.

    Science.gov (United States)

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  18. Imaging spectroscopy using embedded diffractive optical arrays

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  19. Tunable optical coherence tomography in the infrared range using visible photons

    Science.gov (United States)

    Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2018-04-01

    Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.

  20. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. F...... engine and visualisation of gas flow behaviour in cylinder.......Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics....... Fast time-and spectral-resolved measurements in 1.5-5.1 μm spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H2O, CH4, CO2, CO) which is one of the key parameters...