WorldWideScience

Sample records for modeling individual-tree growth

  1. DEVELOPMENT OF INDIVIDUAL TREE GROWTH MODELS BASED ON DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Breno Rodrigues Mendes

    2006-09-01

    Full Text Available This study generate individual tree non-linear models from differential equation and evaluated the adjustment quality to express the basal area growth. The data base is from continuous forest inventory of clonal Eucalyptus spp. plantations, given by Aracruz Cellulose Company, located in the Brazilian costal region, Bahia and Espirito Santo states. The model precision was verified by ratio likelihood test, by mean square error (MSE and by graphical residual analysis. The results showed that the complete model with 3 parameters, developed from the original model with one regressor, was superior to the other models, due to the inclusion of stand based variables, such as: clone, total height (HT, dominant height (HD, quadratic diameter (Dg, Basal Area (G, site index (IS and Density (N, generating a new model, called Complete Model III. The improvement of the precision was highly significant when compared to another models. Consequently, this model provides information with a high degree of precision and accuracy for the forest companies planning.

  2. Development of a shortleaf pine individual-tree growth equation using non-linear mixed modeling techniques

    Science.gov (United States)

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2010-01-01

    Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...

  3. Individual-tree basal area growth, survival, and total height models for upland hardwoods in the Boston Mountains of Arkansa

    Science.gov (United States)

    Paul A. Murphy; David L. Graney

    1988-01-01

    Models were developed for individual-tree basal area growth, survival, and total heights for different species of upland hardwoods in the Boston Mountains of north Arkansas. Data used were from 87 permanent plots located in an array of different sites and stand ages; the plots were thinned to different stocking levels and included unthinned controls. To test these...

  4. Predicting the dynamics of a native Araucaria forest using a distance-independent individual tree-growth model

    OpenAIRE

    Enrique Orellana; Afonso Figueiredo Filho; Sylvio Péllico Netto; Jerome Klaas Vanclay

    2016-01-01

    Background: In recent decades, native Araucaria forests in Brazil have become fragmented due to the conversion of forest to agricultural lands and commercial tree plantations. Consequently, the forest dynamics in this forest type have been poorly investigated, as most fragments are poorly structured in terms of tree size and diversity. Methods: We developed a distance-independent individual tree-growth model to simulate the forest dynamics in a native Araucaria forest located pred...

  5. An individual-tree basal area growth model for loblolly pine stands

    Science.gov (United States)

    Paul A. Murphy; Michael G. Shelton

    1996-01-01

    Tree basal area growth has been modeled as a combination of a potential growth function and a modifier function, in which the potential function is fitted separately from open-grown tree data or a subset of the data and the modifier function includes stand and site variables. We propose a modification of this by simultaneously fitting both a growth component and a...

  6. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    Science.gov (United States)

    2014-09-01

    Penelope Morgan. 2006. “Regression Modeling and Mapping of Coniferous Forest Basal Area and Tree Density from Discrete- Return LIDAR and... Basal Area Relationships of Open-Grown Southern Pines for Modeling Competition and Growth.” Canadian Journal of of Forest Research 22: 341–347... Forest Growth and Yield Model Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Scott A. Tweddale, Patrick J. Guertin, and

  7. An imputation/copula-based stochastic individual tree growth model for mixed species Acadian forests: a case study using the Nova Scotia permanent sample plot network

    Directory of Open Access Journals (Sweden)

    John A. KershawJr

    2017-09-01

    Full Text Available Background A novel approach to modelling individual tree growth dynamics is proposed. The approach combines multiple imputation and copula sampling to produce a stochastic individual tree growth and yield projection system. Methods The Nova Scotia, Canada permanent sample plot network is used as a case study to develop and test the modelling approach. Predictions from this model are compared to predictions from the Acadian variant of the Forest Vegetation Simulator, a widely used statistical individual tree growth and yield model. Results Diameter and height growth rates were predicted with error rates consistent with those produced using statistical models. Mortality and ingrowth error rates were higher than those observed for diameter and height, but also were within the bounds produced by traditional approaches for predicting these rates. Ingrowth species composition was very poorly predicted. The model was capable of reproducing a wide range of stand dynamic trajectories and in some cases reproduced trajectories that the statistical model was incapable of reproducing. Conclusions The model has potential to be used as a benchmarking tool for evaluating statistical and process models and may provide a mechanism to separate signal from noise and improve our ability to analyze and learn from large regional datasets that often have underlying flaws in sample design.

  8. Stem analysis program (GOAP for evaluating of increment and growth data at individual tree

    Directory of Open Access Journals (Sweden)

    Gafura Aylak Özdemir

    2016-07-01

    Full Text Available Stem analysis is a method evaluating in a detailed way data of increment and growth of individual tree at the past periods and widely used in various forestry disciplines. Untreated data of stem analysis consist of annual ring count and measurement procedures performed on cross sections taken from individual tree by section method. The evaluation of obtained this untreated data takes quite some time. Thus, a computer software was developed in this study to quickly and efficiently perform stem analysis. This computer software developed to evaluate untreated data of stem analysis as numerical and graphical was programmed as macro by utilizing Visual Basic for Application feature of MS Excel 2013 program currently the most widely used. In developed this computer software, growth height model is formed from two different approaches, individual tree volume depending on section method, cross-sectional area, increments of diameter, height and volume, volume increment percent and stem form factor at breast height are calculated depending on desired period lengths. This calculated values are given as table. Development of diameter, height, volume, increments of these variables, volume increment percent and stem form factor at breast height according to periodic age are given as chart. Stem model showing development of diameter, height and shape of individual tree in the past periods also can be taken from computer software as chart.

  9. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates

    Science.gov (United States)

    Ronald E. McRoberts; James A. Westfall

    2014-01-01

    Forest inventory estimates of tree volume for large areas are typically calculated by adding model predictions of volumes for individual trees. However, the uncertainty in the model predictions is generally ignored with the result that the precision of the large area volume estimates is overestimated. The primary study objective was to estimate the effects of model...

  10. Generic linear mixed-effects individual-tree biomass models for ...

    African Journals Online (AJOL)

    Quantification of forest biomass is important for practical forestry and for scientific purposes. It is fundamental to develop generic individual-tree biomass models suitable for large-scale forest biomass estimation. However, compatibility of forest biomass estimates at different scales may become a problem. We developed ...

  11. The Importance of Tree Height in Estimating Individual Tree Biomass While Considering Errors in Measurements and Allometric Models

    OpenAIRE

    Phalla, Thuch; Ota, Tetsuji; Mizoue, Nobuya; Kajisa, Tsuyoshi; Yoshida, Shigejiro; Vuthy, Ma; Heng, Sokh

    2018-01-01

    This study evaluated the uncertainty of individual tree biomass estimated by allometric models by both including and excluding tree height independently. Using two independent sets of measurements on the same trees, the errors in the measurement of diameter at breast height and tree height were quantified, and the uncertainty of individual tree biomass estimation caused by errors in measurement was calculated. For both allometric models, the uncertainties of the individual tree biomass estima...

  12. Can plasticity make spatial structure irrelevant in individual-tree models?

    Directory of Open Access Journals (Sweden)

    Oscar García

    2014-08-01

    Full Text Available Background Distance-dependent individual-tree models have commonly been found to add little predictive power to that of distance-independent ones. One possible reason is plasticity, the ability of trees to lean and to alter crown and root development to better occupy available growing space. Being able to redeploy foliage (and roots into canopy gaps and less contested areas can diminish the importance of stem ground locations. Methods Plasticity was simulated for 3 intensively measured forest stands, to see to what extent and under what conditions the allocation of resources (e.g., light to the individual trees depended on their ground coordinates. The data came from 50 × 60 m stem-mapped plots in natural monospecific stands of jack pine, trembling aspen and black spruce from central Canada. Explicit perfect-plasticity equations were derived for tessellation-type models. Results Qualitatively similar simulation results were obtained under a variety of modelling assumptions. The effects of plasticity varied somewhat with stand uniformity and with assumed plasticity limits and other factors. Stand-level implications for canopy depth, distribution modelling and total productivity were examined. Conclusions Generally, under what seem like conservative maximum plasticity constraints, spatial structure accounted for less than 10% of the variance in resource allocation. The perfect-plasticity equations approximated well the simulation results from tessellation models, but not those from models with less extreme competition asymmetry. Whole-stand perfect plasticity approximations seem an attractive alternative to individual-tree models.

  13. Distance-independent individual tree diameter-increment model for Thuya [Tetraclinis articulata (VAHL. MAST.] stands in Tunisia

    Directory of Open Access Journals (Sweden)

    T. Sghaier

    2013-12-01

    Full Text Available Aim of study: The aim of the work was to develop an individual tree diameter-increment model for Thuya (Tetraclinis articulata in Tunisia.Area of study: The natural Tetraclinis articulata stands at Jbel Lattrech in north-eastern of Tunisia.Material and methods:  Data came from 200 trees located in 50 sample plots. The diameter at age t and the diameter increment for the last five years obtained from cores taken at breast height were measured for each tree. Four difference equations derived from the base functions of Richards, Lundqvist, Hossfeld IV and Weibull were tested using the age-independent formulations of the growth functions. Both numerical and graphical analyses were used to evaluate the performance of the candidate models.Main results: Based on the analysis, the age-independent difference equation derived from the base function Richards model was selected. Two of the three parameters (growth rate and shape parameter of the retained model were related to site quality, represented by a Growth Index, stand density and the basal area in larger trees divided by diameter of the subject tree expressing the inter-tree competition.Research highlights: The proposed model can be useful for predicting the diameter growth of Tetraclinis articulata in Tunisia when age is not available or for trees growing in uneven-aged stands.Keywords: Age-independent growth model; difference equations; Tetraclinis articulata; Tunisia.

  14. Individual tree differences confound effects of growth regulators in rooting sugar maple softwood cuttings

    Science.gov (United States)

    John R. Donnelly

    1971-01-01

    Softwood stem cuttings from three mature sugar maple trees were treated with several types and concentrations of growth regulators. Lack of statistical significance was due to extreme variability in tree response: low levels of auxin stimulated rooting in two study trees, while auxins inhibited rooting in the other tree. It is postulated that variations in rooting...

  15. Distance-independent individual tree diameter-increment model for Thuya [Tetraclinis articulata (VAHL.) MAST.] stands in Tunisia

    OpenAIRE

    T. Sghaier; M. Tome; J. Tome; M. Sanchez-Gonzalez; I. Cañellas; R. Calama

    2013-01-01

    Aim of study: The aim of the work was to develop an individual tree diameter-increment model for Thuya (Tetraclinis articulata) in Tunisia.Area of study: The natural Tetraclinis articulata stands at Jbel Lattrech in north-eastern of Tunisia.Material and methods:  Data came from 200 trees located in 50 sample plots. The diameter at age t and the diameter increment for the last five years obtained from cores taken at breast height were measured for each tree. Four difference equations derived f...

  16. Compatible Models of Carbon Content of Individual Trees on a Cunninghamia lanceolata Plantation in Fujian Province, China.

    Directory of Open Access Journals (Sweden)

    Lin Zhuo

    Full Text Available We tried to establish compatible carbon content models of individual trees for a Chinese fir (Cunninghamia lanceolata (Lamb. Hook. plantation from Fujian province in southeast China. In general, compatibility requires that the sum of components equal the whole tree, meaning that the sum of percentages calculated from component equations should equal 100%. Thus, we used multiple approaches to simulate carbon content in boles, branches, foliage leaves, roots and the whole individual trees. The approaches included (i single optimal fitting (SOF, (ii nonlinear adjustment in proportion (NAP and (iii nonlinear seemingly unrelated regression (NSUR. These approaches were used in combination with variables relating diameter at breast height (D and tree height (H, such as D, D2H, DH and D&H (where D&H means two separate variables in bivariate model. Power, exponential and polynomial functions were tested as well as a new general function model was proposed by this study. Weighted least squares regression models were employed to eliminate heteroscedasticity. Model performances were evaluated by using mean residuals, residual variance, mean square error and the determination coefficient. The results indicated that models with two dimensional variables (DH, D2H and D&H were always superior to those with a single variable (D. The D&H variable combination was found to be the most useful predictor. Of all the approaches, SOF could establish a single optimal model separately, but there were deviations in estimating results due to existing incompatibilities, while NAP and NSUR could ensure predictions compatibility. Simultaneously, we found that the new general model had better accuracy than others. In conclusion, we recommend that the new general model be used to estimate carbon content for Chinese fir and considered for other vegetation types as well.

  17. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model

    Science.gov (United States)

    Fabian C.C. Uzoh; William W. Oliver

    2008-01-01

    A diameter increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in the United States using a multilevel linear mixed model. Stochastic variability is broken down among period, locale, plot, tree and within-tree components. Covariates acting at tree and stand level, as breast height diameter, density, site index...

  18. Individual tree height increment model for managed even-aged stands of ponderosa pine throughout the western United States using linear mixed effects models

    Science.gov (United States)

    Fabian Uzoh; William W. Oliver

    2006-01-01

    A height increment model is developed and evaluated for individual trees of ponderosa pine throughout the species range in western United States. The data set used in this study came from long-term permanent research plots in even-aged, pure stands both planted and of natural origin. The data base consists of six levels-of-growing stock studies supplemented by initial...

  19. Individual tree control

    Science.gov (United States)

    Harvey A. Holt

    1989-01-01

    Controlling individual unwanted trees in forest stands is a readily accepted method for improving the value of future harvests. The practice is especially important in mixed hardwood forests where species differ considerably in value and within species individual trees differ in quality. Individual stem control is a mechanical or chemical weeding operation that...

  20. A general method for assessing the effects of uncertainty in individual-tree volume model predictions on large-area volume estimates with a subtropical forest illustration

    Science.gov (United States)

    Ronald E. McRoberts; Paolo Moser; Laio Zimermann Oliveira; Alexander C. Vibrans

    2015-01-01

    Forest inventory estimates of tree volume for large areas are typically calculated by adding the model predictions of volumes for individual trees at the plot level, calculating the mean over plots, and expressing the result on a per unit area basis. The uncertainty in the model predictions is generally ignored, with the result that the precision of the large-area...

  1. FULLY AUTOMATED GIS-BASED INDIVIDUAL TREE CROWN DELINEATION BASED ON CURVATURE VALUES FROM A LIDAR DERIVED CANOPY HEIGHT MODEL IN A CONIFEROUS PLANTATION

    Directory of Open Access Journals (Sweden)

    R. J. L. Argamosa

    2016-06-01

    Full Text Available The generation of high resolution canopy height model (CHM from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM’s curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.

  2. Evaluating the Performance of High-Altitude Aerial Image-Based Digital Surface Models in Detecting Individual Tree Crowns in Mature Boreal Forests

    Directory of Open Access Journals (Sweden)

    Topi Tanhuanpää

    2016-07-01

    Full Text Available Height models based on high-altitude aerial images provide a low-cost means of generating detailed 3D models of the forest canopy. In this study, the performance of these height models in the detection of individual trees was evaluated in a commercially managed boreal forest. Airborne digital stereo imagery (DSI was captured from a flight altitude of 5 km with a ground sample distance of 50 cm and corresponds to regular national topographic airborne data capture programs operated in many countries. Tree tops were detected from smoothed canopy height models (CHM using watershed segmentation. The relative amount of detected trees varied between 26% and 140%, and the RMSE of plot-level arithmetic mean height between 2.2 m and 3.1 m. Both the dominant tree species and the filter used for smoothing affected the results. Even though the spatial resolution of DSI-based CHM was sufficient, detecting individual trees from the data proved to be demanding because of the shading effect of the dominant trees and the limited amount of data from lower canopy levels and near the ground.

  3. Modelling individual tree height to crown base of Norway spruce (Picea abies (L. Karst. and European beech (Fagus sylvatica L..

    Directory of Open Access Journals (Sweden)

    Ram P Sharma

    that the model was precise enough for the prediction of HCB for a range of site quality, tree size, stand density, and stand structure. We therefore recommend measuring of HCB on four randomly selected trees of a species of interest on each sample plot for localizing the mixed-effects model and predicting HCB of the remaining trees on the plot. Growth simulations can be made from the data that lack the values for either crown ratio or HCB using the HCB models.

  4. Growth models for Pinus patula in Angola | Delgado-Matas ...

    African Journals Online (AJOL)

    This study developed growth models for Pinus patula Schiede ex Schltdl. et Cham. for the Central Highlands of Angola for simulating the development of stand characteristics. The model set included dominant height, individual-tree diameter increment, individual-tree height and self-thinning models. The study was based ...

  5. [Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China].

    Science.gov (United States)

    Dogn, Li-hu; Li, Feng-ri; Song, Yu-wen

    2015-03-01

    Based on the biomass data of 276 sampling trees of Pinus koraiensis, Abies nephrolepis, Picea koraiensis and Larix gmelinii, the mono-element and dual-element additive system of biomass equations for the four conifer species was developed. The model error structure (additive vs. multiplicative) of the allometric equation was evaluated using the likelihood analysis, while nonlinear seemly unrelated regression was used to estimate the parameters in the additive system of biomass equations. The results indicated that the assumption of multiplicative error structure was strongly supported for the biomass equations of total and tree components for the four conifer species. Thus, the additive system of log-transformed biomass equations was developed. The adjusted coefficient of determination (Ra 2) of the additive system of biomass equations for the four conifer species was 0.85-0.99, the mean relative error was between -7.7% and 5.5%, and the mean absolute relative error was less than 30.5%. Adding total tree height in the additive systems of biomass equations could significantly improve model fitting performance and predicting precision, and the biomass equations of total, aboveground and stem were better than biomass equations of root, branch, foliage and crown. The precision of each biomass equation in the additive system varied from 77.0% to 99.7% with a mean value of 92.3% that would be suitable for predicting the biomass of the four natural conifer species.

  6. Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors

    Science.gov (United States)

    Jeremy W. Lichstein; Jonathan Dushoff; Kiona Ogle; Anping Chen; Drew W. Purves; John P. Caspersen; Stephen W. Pacala

    2010-01-01

    Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other...

  7. Calculation of Individual Tree Water Use in a Bornean Tropical Rain Forest Using Individual-Based Dynamic Vegetation Model SEIB-DGVM

    Science.gov (United States)

    Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.

    2015-12-01

    Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.

  8. Repeated measures from FIA data facilitates analysis across spatial scales of tree growth responses to nitrogen deposition from individual trees to whole ecoregions

    Science.gov (United States)

    Charles H. (Hobie) Perry; Kevin J. Horn; R. Quinn Thomas; Linda H. Pardo; Erica A.H. Smithwick; Doug Baldwin; Gregory B. Lawrence; Scott W. Bailey; Sabine Braun; Christopher M. Clark; Mark Fenn; Annika Nordin; Jennifer N. Phelan; Paul G. Schaberg; Sam St. Clair; Richard Warby; Shaun Watmough; Steven S. Perakis

    2015-01-01

    The abundance of temporally and spatially consistent Forest Inventory and Analysis data facilitates hierarchical/multilevel analysis to investigate factors affecting tree growth, scaling from plot-level to continental scales. Herein we use FIA tree and soil inventories in conjunction with various spatial climate and soils data to estimate species-specific responses of...

  9. Analysis of biweight site chronologies: relative weights of individual trees over time

    Science.gov (United States)

    Kurt H. Riitters

    1990-01-01

    The relative weights on individual trees in a biweight site chronology can indicate the consistency of tree growth responses to macroclimate and can be the basis for stratifying trees in climate-growth analyses. This was explored with 45 years of ring-width indices for 200 trees from five even-aged jack pine (Pinus hanksiana Lamb.) stands. Average individual-tree...

  10. The impact of atmospheric deposition and climate on forest growth in European monitoring plots: An individual tree growth model

    NARCIS (Netherlands)

    Laubhann, D.; Sterba, H.; Reinds, G.J.; Vries, de W.

    2009-01-01

    In the climate change discussion, the possibility of carbon sequestration of forests plays an important role. Therefore, research on the effects of environmental changes on net primary productivity is interesting. In this study we investigated the influence of changing temperature, precipitation and

  11. Individual tree diameter, height, and volume functions for longleaf pine

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Timothy A. Martin; Wendell P. Cropper; Lisa J. Samuelson; Daniel J. Leduc

    2014-01-01

    Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed...

  12. Cultural intensity and planting density effects on individual tree stem growth, stand and crown attributes, and stand dynamics in thinned loblolly pine plantations during the age 12- to age 15- year period in the Upper Coastal Plain and Piedmont of the Southeastern United States

    Science.gov (United States)

    Evan Johnson; Michael Kane; Dehai Zhao; Robert Teskey

    2015-01-01

    Three existing loblolly pine (Pinus taeda L.) installations in the Plantation Management Research Cooperative's Upper Coastal Plain/Piedmont Culture Density Study were used to examine the effects of two cultural intensities, four initial planting densities, and their interactions on stem growth at the individual tree level from age 12 to 15 years and at the stand...

  13. Visualizing Individual Tree Differences in Tree-Ring Studies

    Directory of Open Access Journals (Sweden)

    Mario Trouillier

    2018-04-01

    Full Text Available Averaging tree-ring measurements from multiple individuals is one of the most common procedures in dendrochronology. It serves to filter out noise from individual differences between trees, such as competition, height, and micro-site effects, which ideally results in a site chronology sensitive to regional scale factors such as climate. However, the climate sensitivity of individual trees can be modulated by factors like competition, height, and nitrogen deposition, calling attention to whether average chronologies adequately assess climatic growth-control. In this study, we demonstrate four simple but effective methods to visually assess differences between individual trees. Using individual tree climate-correlations we: (1 employed jitter plots with superimposed metadata to assess potential causes for these differences; (2 plotted the frequency distributions of climate correlations over time as heat maps; (3 mapped the spatial distribution of climate sensitivity over time to assess spatio-temporal dynamics; and (4 used t-distributed Stochastic Neighborhood Embedding (t-SNE to assess which trees were generally more similar in terms of their tree-ring pattern and their correlation with climate variables. This suite of exploratory methods can indicate if individuals in tree-ring datasets respond differently to climate variability, and therefore, should not solely be explored with climate correlations of the mean population chronology.

  14. Regional Models of Diameter as a Function of Individual Tree Attributes, Climate and Site Characteristics for Six Major Tree Species in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Dan A. MacIsaac

    2011-09-01

    Full Text Available We investigated the relationship of stem diameter to tree, site and stand characteristics for six major tree species (trembling aspen, white birch, balsam fir, lodgepole pine, black spruce, and white spruce in Alberta (Canada with data from Alberta Sustainable Resource Development Permanent Sample Plots. Using non-linear mixed effects modeling techniques, we developed models to estimate diameter at breast height using height, crown and stand attributes. Mixed effects models (with plot as subject using height, crown area, and basal area of the larger trees explained on average 95% of the variation in diameter at breast height across the six species with a root mean square error of 2.0 cm (13.4% of mean diameter. Fixed effects models (without plot as subject including the Natural Sub-Region (NSR information explained on average 90% of the variation in diameter at breast height across the six species with a root mean square error equal to 2.8 cm (17.9% of mean diameter. Selected climate variables provided similar results to models with NSR information. The inclusion of nutrient regime and moisture regime did not significantly improve the predictive ability of these models.

  15. Modeling effects of overstory density and competing vegetation on tree height growth

    Science.gov (United States)

    Christian Salas; Albert R. Stage; Andrew P. Robinson

    2007-01-01

    We developed and evaluated an individual-tree height growth model for Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco] in the Inland Northwest United States. The model predicts growth for all tree sizes continuously, rather than requiring a transition between independent models for juvenile and mature growth phases. The model predicts the effects...

  16. Modelling diameter growth, mortality and recruitment of trees in ...

    African Journals Online (AJOL)

    Miombo woodlands cover large areas in Tanzania but very little reliable data on forest dynamics for the woodlands exist. The main objective of this study was to develop a model system describing such dynamics based on easily measurable tree variables. Individual tree diameter growth and mortality models, and ...

  17. Effects of Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian National Forest Inventory

    Science.gov (United States)

    Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens. Schadauer

    2014-01-01

    National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...

  18. The strength of competition among individual trees and the biomass-density trajectories of the cohort

    NARCIS (Netherlands)

    Berger, U.; Hildenbrandt, H.

    2003-01-01

    We simulated the self-thinning of Rhizophora mangle mangrove forests with the spatially explicit simulation model KiWi. This model is an application of the field-of-neighbourhood (FON) approach, which describes an individual tree by a competition function defined on the zone of influence (ZOI)

  19. Influence of weather and climate variables on the basal area growth of individual shortleaf pine trees

    Science.gov (United States)

    Pradip Saud; Thomas B. Lynch; Duncan S. Wilson; John Stewart; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    An individual-tree basal area growth model previously developed for even-aged naturally occurring shortleaf pine trees (Pinus echinata Mill.) in western Arkansas and southeastern Oklahoma did not include weather variables. Individual-tree growth and yield modeling of shortleaf pine has been carried out using the remeasurements of over 200 plots...

  20. Analysis of individual tree volume equations for Cupressus ...

    African Journals Online (AJOL)

    Three different volume equations were fitted to individual tree volume (V) data collected on 260 Cupressus lusitanica trees from 49 plantations in Munessa Shashemene Forest, Ethiopia. The data were first split randomly into equation development and equation testing data sets of equal size. Diameter at breast height (D) ...

  1. Individual Tree Crown Delineation Using Multi-Wavelength Titan LIDAR Data

    Science.gov (United States)

    Naveed, F.; Hu, B.

    2017-10-01

    The inability to detect the Emerald Ash Borer (EAB) at an early stage has led to the enumerable loss of different species of ash trees. Due to the increasing risk being posed by the EAB, a robust and accurate method is needed for identifying Individual Tree Crowns (ITCs) that are at a risk of being infected or are already diseased. This paper attempts to outline an ITC delineation method that employs airborne multi-spectral Light Detection and Ranging (LiDAR) to accurately delineate tree crowns. The raw LiDAR data were initially pre-processed to generate the Digital Surface Models (DSM) and Digital Elevation Models (DEM) using an iterative progressive TIN (Triangulated Irregular Network) densification method. The DSM and DEM were consequently used for Canopy Height Model (CHM) generation, from which the structural information pertaining to the size and shape of the tree crowns was obtained. The structural information along with the spectral information was used to segment ITCs using a region growing algorithm. The availability of the multi-spectral LiDAR data allows for delineation of crowns that have otherwise homogenous structural characteristics and hence cannot be isolated from the CHM alone. This study exploits the spectral data to derive initial approximations of individual tree tops and consequently grow those regions based on the spectral constraints of the individual trees.

  2. ACCURACY ASSESSMENT OF CROWN DELINEATION METHODS FOR THE INDIVIDUAL TREES USING LIDAR DATA

    Directory of Open Access Journals (Sweden)

    K. T. Chang

    2016-06-01

    Full Text Available Forest canopy density and height are used as variables in a number of environmental applications, including the estimation of biomass, forest extent and condition, and biodiversity. The airborne Light Detection and Ranging (LiDAR is very useful to estimate forest canopy parameters according to the generated canopy height models (CHMs. The purpose of this work is to introduce an algorithm to delineate crown parameters, e.g. tree height and crown radii based on the generated rasterized CHMs. And accuracy assessment for the extraction of volumetric parameters of a single tree is also performed via manual measurement using corresponding aerial photo pairs. A LiDAR dataset of a golf course acquired by Leica ALS70-HP is used in this study. Two algorithms, i.e. a traditional one with the subtraction of a digital elevation model (DEM from a digital surface model (DSM, and a pit-free approach are conducted to generate the CHMs firstly. Then two algorithms, a multilevel morphological active-contour (MMAC and a variable window filter (VWF, are implemented and used in this study for individual tree delineation. Finally, experimental results of two automatic estimation methods for individual trees can be evaluated with manually measured stand-level parameters, i.e. tree height and crown diameter. The resulting CHM generated by a simple subtraction is full of empty pixels (called "pits" that will give vital impact on subsequent analysis for individual tree delineation. The experimental results indicated that if more individual trees can be extracted, tree crown shape will became more completely in the CHM data after the pit-free process.

  3. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches

    Directory of Open Access Journals (Sweden)

    Maggi Kelly

    2013-08-01

    Full Text Available Light detection and ranging (lidar data is increasingly being used for ecosystem monitoring across geographic scales. This work concentrates on delineating individual trees in topographically-complex, mixed conifer forest across the California’s Sierra Nevada. We delineated individual trees using vector data and a 3D lidar point cloud segmentation algorithm, and using raster data with an object-based image analysis (OBIA of a canopy height model (CHM. The two approaches are compared to each other and to ground reference data. We used high density (9 pulses/m2, discreet lidar data and WorldView-2 imagery to delineate individual trees, and to classify them by species or species types. We also identified a new method to correct artifacts in a high-resolution CHM. Our main focus was to determine the difference between the two types of approaches and to identify the one that produces more realistic results. We compared the delineations via tree detection, tree heights, and the shape of the generated polygons. The tree height agreement was high between the two approaches and the ground data (r2: 0.93–0.96. Tree detection rates increased for more dominant trees (8–100 percent. The two approaches delineated tree boundaries that differed in shape: the lidar-approach produced fewer, more complex, and larger polygons that more closely resembled real forest structure.

  4. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes

    Directory of Open Access Journals (Sweden)

    Ville Luoma

    2017-02-01

    Full Text Available Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh, and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5% and 0.5 m (2.9%, respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.

  5. Bedrock type significantly affects individual tree mortality for various conifers in the inland Northwest, U.S.A

    Science.gov (United States)

    James A. Moore; David A Hamilton; Yu Xiao; John Byrne

    2004-01-01

    Individual tree mortality models for western white pine (Pinus monticola Dougl. ex D. Don), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.), western redcedar (Thuja plicata Donn ex. D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western larch (Larix occidentalis Nutt.) were developed using data...

  6. Urban tree growth modeling

    Science.gov (United States)

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  7. An individual-based growth and competition model for coastal redwood forest restoration

    Science.gov (United States)

    van Mantgem, Phillip J.; Das, Adrian J.

    2014-01-01

    Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.

  8. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  9. Factors impacting stemflow generation in a European beech forest: Individual tree versus neighborhood properties

    Science.gov (United States)

    Metzger, Johanna Clara; Germer, Sonja; Hildebrandt, Anke

    2017-04-01

    The redistribution of precipitation by canopies changes the water flow dynamics to the forest floor. The spatial pattern of throughfall has been researched in a number of studies in different ecosystems. Yet, also stemflow substantially influences water input patterns, constituting a mean of 12% of gross precipitation for European beech as one of the most abundant tree species in Central Europe. While the initiation of stemflow depends mostly on precipitation event properties, stemflow amounts are strongly shaped by canopy structure. Stemflow research has mainly addressed the impact of single tree morphological variables. In previous studies, the impact of forest structure on area-based stemflow was studied comparing plots with different properties using few exemplary stemflow measurements. In non-homogeneous stands, this approach might not be accurate, as the variation of stand properties like tree density could change tree individual stemflow fluxes. To investigate this, a total measurement of all trees per plot is required. We hypothesize, that in addition to individual tree metrics, tree neighborhood relations have a significant impact on stemflow generation in a heterogeneous beech forest. Our study site is located in the pristine forest of the National Park Hainich, central Germany. It is heterogeneous in respect to tree density, species composition and tree age. We measured stemflow in an areal approach, for all trees on 11 subplots (each 10 m x 10 m) spaced evenly throughout a 1 ha plot. This involved overall 65 trees, which is 11% of the plot's trees. 27 precipitation events were recorded in spring and early summer of 2015 and 2016. Stand properties were surveyed, including diameter at breast height, height, position and species of a tree. From this data, we calculated neighborhood properties for each tree, as number, basal area, and relative height of neighboring trees within a radius of the plot's mean tree distance. Using linear mixed effects models, we

  10. Estimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar

    Directory of Open Access Journals (Sweden)

    Randolph H. Wynne

    2012-02-01

    Full Text Available Quantification of biophysical parameters of urban trees is important for urban planning, and for assessing carbon sequestration and ecosystem services. Airborne lidar has been used extensively in recent years to estimate biophysical parameters of trees in forested ecosystems. However, similar studies are largely lacking for individual trees in urban landscapes. Prediction models to estimate biophysical parameters such as height, crown area, diameter at breast height, and biomass for over two thousand individual trees were developed using best subsets multiple linear regression for a study area in central Oklahoma, USA using point cloud distributional metrics from an Optech ALTM 2050 lidar system. A high level of accuracy was attained for estimating individual tree height (R2 = 0.89, dbh (R2 = 0.82, crown diameter (R2 = 0.90, and biomass (R2 = 0.67 using lidar-based metrics for pooled data of all tree species. More variance was explained in species-specific estimates of biomass (R2 = 0.68 for Juniperus virginiana to 0.84 for Ulmus parviflora than in estimates from broadleaf deciduous (R2 = 0.63 and coniferous (R2 = 0.45 taxonomic groups—or the data set analysed as a whole (R2 = 0.67. The metric crown area performed particularly well for most of the species-specific biomass equations, which suggests that tree crowns should be delineated accurately, whether manually or using automatic individual tree detection algorithms, to obtain a good estimation of biomass using lidar-based metrics.

  11. A dual growing method for the automatic extraction of individual trees from mobile laser scanning data

    Science.gov (United States)

    Li, Lin; Li, Dalin; Zhu, Haihong; Li, You

    2016-10-01

    Street trees interlaced with other objects in cluttered point clouds of urban scenes inhibit the automatic extraction of individual trees. This paper proposes a method for the automatic extraction of individual trees from mobile laser scanning data, according to the general constitution of trees. Two components of each individual tree - a trunk and a crown can be extracted by the dual growing method. This method consists of coarse classification, through which most of artifacts are removed; the automatic selection of appropriate seeds for individual trees, by which the common manual initial setting is avoided; a dual growing process that separates one tree from others by circumscribing a trunk in an adaptive growing radius and segmenting a crown in constrained growing regions; and a refining process that draws a singular trunk from the interlaced other objects. The method is verified by two datasets with over 98% completeness and over 96% correctness. The low mean absolute percentage errors in capturing the morphological parameters of individual trees indicate that this method can output individual trees with high precision.

  12. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Science.gov (United States)

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology

  13. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  14. Stochastic ontogenetic growth model

    Science.gov (United States)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  15. Predicting Individual Tree Heights In Gmelina arborea (Roxb ...

    African Journals Online (AJOL)

    ... and an estimated bias of 0.9% indicate that the selected tree height model can be adequately used for predicting tree height in G. arborea plantations of Ukpon River Forest Reserve. Keywords: Tree height model, Timber production, Ukpon River Forest Reserve. Journal of Agriculture, Forestry and the Social Sciences Vol.

  16. INDIVIDUAL TREE OF URBAN FOREST EXTRACTION FROM VERY HIGH DENSITY LIDAR DATA

    Directory of Open Access Journals (Sweden)

    A. Moradi

    2016-06-01

    Full Text Available Airborne LiDAR (Light Detection and Ranging data have a high potential to provide 3D information from trees. Most proposed methods to extract individual trees detect points of tree top or bottom firstly and then using them as starting points in a segmentation algorithm. Hence, in these methods, the number and the locations of detected peak points heavily effect on the process of detecting individual trees. In this study, a new method is presented to extract individual tree segments using LiDAR points with 10cm point density. In this method, a two-step strategy is performed for the extraction of individual tree LiDAR points: finding deterministic segments of individual trees points and allocation of other LiDAR points based on these segments. This research is performed on two study areas in Zeebrugge, Bruges, Belgium (51.33° N, 3.20° E. The accuracy assessment of this method showed that it could correctly classified 74.51% of trees with 21.57% and 3.92% under- and over-segmentation errors respectively.

  17. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  18. Logging damage using an individual tree selection practice in Appalachian hardwood stands

    Science.gov (United States)

    Neil I. Lamson; H. Clay Smith; Gary W. Miller

    1985-01-01

    Four West Virginia hardwood stands, managed using individual-tree selection for the past 30 years, were examined after the third and, in one instance, the fourth periodic harvest to determine the severity of logging damage. On existing skid roads, trees were removed with a rubber-tired skidder or a crawler tractor with a rubber-tired arch. Logging damage reduced...

  19. Applying Individual Tree Structure From Lidar to Address the Sensitivity of Allometric Equations to Small Sample Sizes.

    Science.gov (United States)

    Duncanson, L.; Dubayah, R.

    2015-12-01

    Lidar remote sensing is widely applied for mapping forest carbon stocks, and technological advances have improved our ability to capture structural details from forests, even resolving individual trees. Despite these advancements, the accuracy of forest aboveground biomass models remains limited by the quality of field estimates of biomass. The accuracies of field estimates are inherently dependent on the accuracy of the allometric equations used to relate measurable attributes to biomass. These equations are calibrated with relatively small samples of often spatially clustered trees. This research focuses on one of many issues involving allometric equations - understanding how sensitive allometric parameters are to the sample sizes used to fit them. We capitalize on recent advances in lidar remote sensing to extract individual tree structural information from six high-resolution airborne lidar datasets in the United States. We remotely measure millions of tree heights and crown radii, and fit allometric equations to the relationship between tree height and radius at a 'population' level, in each site. We then extract samples from our tree database, and build allometries on these smaller samples of trees, with varying sample sizes. We show that for the allometric relationship between tree height and crown radius, small sample sizes produce biased allometric equations that overestimate height for a given crown radius. We extend this analysis using translations from the literature to address potential implications for biomass, showing that site-level biomass may be greatly overestimated when applying allometric equations developed with the typically small sample sizes used in popular allometric equations for biomass.

  20. Comparison of an empirical forest growth and yield simulator and a forest gap simulator using actual 30-year growth from two even-aged forests in Kentucky

    Science.gov (United States)

    Daniel A. Yaussy

    2000-01-01

    Two individual-tree growth simulators are used to predict the growth and mortality on a 30-year-old forest site and an 80-year-old forest site in eastern Kentucky. The empirical growth and yield model (NE-TWIGS) was developed to simulate short-term (

  1. Grow--a computer subroutine that projects the growth of trees in the Lake States' forests.

    Science.gov (United States)

    Gary J. Brand

    1981-01-01

    A computer subroutine, Grow, has been written in 1977 Standard FORTRAN to implement a distance-independent, individual tree growth model for Lake States' forests. Grow is a small and easy-to-use version of the growth model. All the user has to do is write a calling program to read initial conditions, call Grow, and summarize the results.

  2. Estimating root collar diameter growth for multi-stem western woodland tree species on remeasured forest inventory and analysis plots

    Science.gov (United States)

    Michael T. Thompson; Maggie. Toone

    2012-01-01

    Tree diameter growth models are widely used in many forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. An individual tree model has been developed to estimate diameter growth of multi-stem woodland tree species where the diameter is measured at root collar. The model was...

  3. Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas

    Directory of Open Access Journals (Sweden)

    Grigorijs Goldbergs

    2018-01-01

    Full Text Available The reliability of airborne light detection and ranging (LiDAR for delineating individual trees and estimating aboveground biomass (AGB has been proven in a diverse range of ecosystems, but can be difficult and costly to commission. Point clouds derived from structure from motion (SfM matching techniques obtained from unmanned aerial systems (UAS could be a feasible low-cost alternative to airborne LiDAR scanning for canopy parameter retrieval. This study assesses the extent to which SfM three-dimensional (3D point clouds—obtained from a light-weight mini-UAS quadcopter with an inexpensive consumer action GoPro camera—can efficiently and effectively detect individual trees, measure tree heights, and provide AGB estimates in Australian tropical savannas. Two well-established canopy maxima and watershed segmentation tree detection algorithms were tested on canopy height models (CHM derived from SfM imagery. The influence of CHM spatial resolution on tree detection accuracy was analysed, and the results were validated against existing high-resolution airborne LiDAR data. We found that the canopy maxima and watershed segmentation routines produced similar tree detection rates (~70% for dominant and co-dominant trees, but yielded low detection rates (<35% for suppressed and small trees due to poor representativeness in point clouds and overstory occlusion. Although airborne LiDAR provides higher tree detection rates and more accurate estimates of tree heights, we found SfM image matching to be an adequate low-cost alternative for the detection of dominant and co-dominant tree stands.

  4. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data

    Science.gov (United States)

    Hu, Baoxin; Li, Jili; Jing, Linhai; Judah, Aaron

    2014-02-01

    Canopy height model (CHM) derived from LiDAR (Light Detection And Ranging) data has been commonly used to generate segments of individual tree crowns for forest inventory and sustainable management. However, branches, tree crowns, and tree clusters usually have similar shapes and overlapping sizes, which cause current individual tree crown delineation methods to work less effectively on closed canopy, deciduous or mixedwood forests. In addition, the potential of 3-dimentional (3-D) LiDAR data is not fully realized by CHM-oriented methods. In this study, a framework was proposed to take advantage of the simplicity of a CHM-oriented method, detailed vertical structures of tree crowns represented in high-density LiDAR data, and any prior knowledge of tree crowns. The efficiency and accuracy of ITC delineation can be improved. This framework consists of five steps: (1) determination of dominant crown sizes; (2) generation of initial tree segments using a multi-scale segmentation method; (3) identification of “problematic” segments; (4) determination of the number of trees based on the 3-D LiDAR points in each of the identified segments; and (5) refinement of the “problematic” segments by splitting and merging operations. The proposed framework was efficient, since the detailed examination of 3-D LiDAR points was not applied to all initial segments, but only to those needed further evaluations based on prior knowledge. It was also demonstrated to be effective based on an experiment on natural forests in Ontario, Canada. The proposed framework and specific methods yielded crown maps having a good consistency with manual and visual interpretation. The automated method correctly delineated about 74% and 72% of the tree crowns in two plots with mixedwood and deciduous trees, respectively.

  5. Modeling microbial growth and dynamics.

    Science.gov (United States)

    Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M

    2015-11-01

    Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.

  6. Modeling Urban Fire Growth,

    Science.gov (United States)

    Nuclear explosion damage, *Explosion effects, *Fires, *Flame propagation, Growth (General), Area coverage, Ignition, Combustion, Casualties...Computerized simulation, Predictions, Countermeasures, Fire suppression, Damage assessment, Urban areas, Vulnerability, Data acquisition, Methodology, Symposia

  7. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth.

    Science.gov (United States)

    A.R. Weiskittel; D. Maguire; R.A. Monserud

    2007-01-01

    Static models of individual tree crown attributes such as height to crown base and maximum branch diameter profile have been developed for several commercially important species. Dynamic models of individual branch growth and mortality have received less attention, but have generally been developed retrospectively by dissecting felled trees; however, this approach is...

  8. Automated estimation of leaf distribution for individual trees based on TLS point clouds

    Science.gov (United States)

    Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus

    2017-04-01

    Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation

  9. Dynamic Urban Growth Models

    Science.gov (United States)

    1979-12-01

    In the report the concept of 'order by fluctuation,' that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of ...

  10. Lidar-based individual tree species classification using convolutional neural network

    Science.gov (United States)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  11. Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2013-12-01

    Full Text Available This study presents an individual tree-crown-based approach for canopy fuel load estimation and mapping in two Mediterranean pine stands. Based on destructive sampling, an allometric equation was developed for the estimation of crown fuel weight considering only pine crown width, a tree characteristic that can be estimated from passive imagery. Two high resolution images were used originally for discriminating Aleppo and Calabrian pines crown regions through a geographic object based image analysis approach. Subsequently, the crown region images were segmented using a watershed segmentation algorithm and crown width was extracted. The overall accuracy of the tree crown isolation expressed through a perfect match between the reference and the delineated crowns was 34.00% for the Kassandra site and 48.11% for the Thessaloniki site, while the coefficient of determination between the ground measured and the satellite extracted crown width was 0.5. Canopy fuel load values estimated in the current study presented mean values from 1.29 ± 0.6 to 1.65 ± 0.7 kg/m2 similar to other conifers worldwide. Despite the modest accuracies attained in this first study of individual tree crown fuel load mapping, the combination of the allometric equations with satellite-based extracted crown width information, can contribute to the spatially explicit mapping of canopy fuel load in Mediterranean areas. These maps can be used among others in fire behavior prediction, in fuel reduction treatments prioritization and during active fire suppression.

  12. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data

    Directory of Open Access Journals (Sweden)

    Zhen Zhen

    2016-04-01

    Full Text Available Automated individual tree crown detection and delineation (ITCD using remotely sensed data plays an increasingly significant role in efficiently, accurately, and completely monitoring forests. This paper reviews trends in ITCD research from 1990–2015 from several perspectives—data/forest type, method applied, accuracy assessment and research objective—with a focus on studies using LiDAR data. This review shows that active sources are becoming more prominent in ITCD studies. Studies using active data—LiDAR in particular—accounted for 80% of the total increase over the entire time period, those using passive data or fusion of passive and active data comprised relatively small proportions of the total increase (8% and 12%, respectively. Additionally, ITCD research has moved from incremental adaptations of algorithms developed for passive data sources to innovative approaches that take advantage of the novel characteristics of active datasets like LiDAR. These improvements make it possible to explore more complex forest conditions (e.g., closed hardwood forests, suburban/urban forests rather than a single forest type although most published ITCD studies still focused on closed softwood (41% or mixed forest (22%. Approximately one-third of studies applied individual tree level (30% assessment, with only a quarter reporting more comprehensive multi-level assessment (23%. Almost one-third of studies (32% that concentrated on forest parameter estimation based on ITCD results had no ITCD-specific evaluation. Comparison of methods continues to be complicated by both choice of reference data and assessment metric; it is imperative to establish a standardized two-level assessment framework to evaluate and compare ITCD algorithms in order to provide specific recommendations about suitable applications of particular algorithms. However, the evolution of active remotely sensed data and novel platforms implies that automated ITCD will continue to be a

  13. Model uncertainty in growth empirics

    NARCIS (Netherlands)

    Prüfer, P.

    2008-01-01

    This thesis applies so-called Bayesian model averaging (BMA) to three different economic questions substantially exposed to model uncertainty. Chapter 2 addresses a major issue of modern development economics: the analysis of the determinants of pro-poor growth (PPG), which seeks to combine high

  14. Preliminary evaluation of environmental variables affecting diameter growth of individual hardwoods in the Southern Appalachian Mountains

    Science.gov (United States)

    W. Henry McNab; F. Thomas Lloyd

    2001-01-01

    The value of environmental variables as measures of site quality for individual tree growth models was determined for 12 common species of eastern hardwoods in the Southern Appalachian Mountains. Periodic diameter increment was modeled as a function of size, competition and environmental variables for 1,381 trees in even-aged stands of mixed-species. Resulting species...

  15. The Validation of the Mixedwood Growth Model (MGM for Use in Forest Management Decision Making

    Directory of Open Access Journals (Sweden)

    Mike Bokalo

    2013-01-01

    Full Text Available We evaluated the Mixedwood Growth Model (MGM at a whole model scale for pure and mixed species stands of aspen and white spruce in the western boreal forest. MGM is an individual tree-based, distance-independent growth model, designed to evaluate growth and yield implications relating to the management of white spruce, black spruce, aspen, lodgepole pine, and mixedwood stands in Alberta, British Columbia, Saskatchewan, and Manitoba. Our validation compared stand-level model predictions against re-measured data (volume, basal area, diameter at breast height (DBH, average and top height and density from permanent sample plots using combined analysis of residual plots, bias statistics, efficiency and an innovative application of the equivalence test. For state variables, the model effectively simulated juvenile and mature stages of stand development for both pure and mixed species stands of aspen and white spruce in Alberta. MGM overestimates increment in older stands likely due to age-related pathology and weather-related stand damage. We identified underestimates of deciduous density and volume in Saskatchewan. MGM performs well for increment in postharvest stands less than 30 years of age. These results illustrate the comprehensive application of validation metrics to evaluate a complex model, and provide support for the use of MGM in management planning.

  16. A Machine Learning Method for Co-Registration and Individual Tree Matching of Forest Inventory and Airborne Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Sebastian Lamprecht

    2017-05-01

    Full Text Available Determining the exact position of a forest inventory plot—and hence the position of the sampled trees—is often hampered by a poor Global Navigation Satellite System (GNSS signal quality beneath the forest canopy. Inaccurate geo-references hamper the performance of models that aim to retrieve useful information from spatially high remote sensing data (e.g., species classification or timber volume estimation. This restriction is even more severe on the level of individual trees. The objective of this study was to develop a post-processing strategy to improve the positional accuracy of GNSS-measured sample-plot centers and to develop a method to automatically match trees within a terrestrial sample plot to aerial detected trees. We propose a new method which uses a random forest classifier to estimate the matching probability of each terrestrial-reference and aerial detected tree pair, which gives the opportunity to assess the reliability of the results. We investigated 133 sample plots of the Third German National Forest Inventory (BWI, 2011–2012 within the German federal state of Rhineland-Palatinate. For training and objective validation, synthetic forest stands have been modeled using the Waldplaner 2.0 software. Our method has achieved an overall accuracy of 82.7% for co-registration and 89.1% for tree matching. With our method, 60% of the investigated plots could be successfully relocated. The probabilities provided by the algorithm are an objective indicator of the reliability of a specific result which could be incorporated into quantitative models to increase the performance of forest attribute estimations.

  17. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Science.gov (United States)

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  18. Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation.

    Directory of Open Access Journals (Sweden)

    Marijke van Kuijk

    2014-07-01

    Full Text Available Excessive growth of non-woody plants and shrubs on degraded lands can strongly hamper tree growth and thus secondary forest succession. A common method to accelerate succession, called liberation, involves opening up the vegetation canopy around young target trees. This can increase growth of target trees by reducing competition for light with neighboring plants. However, liberation has not always the desired effect, likely due to differences in light requirement between tree species. Here we present a 3D-model, which calculates photosynthetic rate of individual trees in a vegetation stand. It enables us to examine how stature, crown structure and physiological traits of target trees and characteristics of the surrounding vegetation together determine effects of light on tree growth. The model was applied to a liberation experiment conducted with three pioneer species in a young secondary forest in Vietnam. Species responded differently to the treatment depending on their height, crown structure and their shade-tolerance level. Model simulations revealed practical thresholds over which the tree growth response is heavily influenced by the height and density of surrounding vegetation and gap radius. There were strong correlations between calculated photosynthetic rates and observed growth: the model was well able to predict growth of trees in young forests and the effects of liberation there upon. Thus our model serves as a useful tool to analyze light competition between young trees and surrounding vegetation and may help assess the potential effect of tree liberation.

  19. Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation.

    Science.gov (United States)

    van Kuijk, Marijke; Anten, Niels P R; Oomen, Roelof J; Schieving, Feike

    2014-01-01

    Excessive growth of non-woody plants and shrubs on degraded lands can strongly hamper tree growth and thus secondary forest succession. A common method to accelerate succession, called liberation, involves opening up the vegetation canopy around young target trees. This can increase growth of target trees by reducing competition for light with neighboring plants. However, liberation has not always had the desired effect, likely due to differences in light requirement between tree species. Here we present a 3D-model, which calculates photosynthetic rate of individual trees in a vegetation stand. It enables us to examine how stature, crown structure, and physiological traits of target trees and characteristics of the surrounding vegetation together determine effects of light on tree growth. The model was applied to a liberation experiment conducted with three pioneer species in a young secondary forest in Vietnam. Species responded differently to the treatment depending on their height, crown structure and their shade-tolerance level. Model simulations revealed practical thresholds over which the tree growth response is heavily influenced by the height and density of surrounding vegetation and gap radius. There were strong correlations between calculated photosynthetic rates and observed growth: the model was well able to predict growth of trees in young forests and the effects of liberation there upon. Thus, our model serves as a useful tool to analyze light competition between young trees and surrounding vegetation and may help assess the potential effect of tree liberation.

  20. LiDAR Individual Tree Detection for Assessing Structurally Diverse Forest Landscapes

    Science.gov (United States)

    Jeronimo, Sean

    Contemporary forest management on public land incorporates a focus on restoration and maintenance of ecological functions through silvicultural manipulation of forest structure on a landscape scale. Incorporating reference conditions into restoration treatment planning and monitoring can improve treatment efficacy, but the typical ground-based methods of quantifying reference condition data---and comparing it to pre- and post-treatment stands---are expensive, time-consuming, and limited in scale. Airborne LiDAR may be part of the solution to this problem, since LiDAR acquisitions have both broad coverage and high resolution. I evaluated the ability of LiDAR Individual Tree Detection (ITD) to describe forest structure across a structurally variable landscape in support of large-scale forest restoration. I installed nineteen 0.25 ha stem map plots across a range of structural conditions in potential reference areas (Yosemite National Park) and potential restoration treatment areas (Sierra National Forest) in the Sierra Nevada of California. I used the plots to evaluate a common ITD algorithm, the watershed transform, compare it to past uses of ITD, and determine which aspects of forest structure contributed to errors in ITD. I found that ITD across this structurally diverse landscape was generally less accurate than across the smaller and less diverse areas over which it has previously been studied. However, the pattern of tree recognition is consistent: regardless of forest structure, canopy dominants are almost always detected and relatively shorter trees are almost never detected. Correspondingly, metrics dominated by large trees, such as biomass, basal area, and spatial heterogeneity, can be measured using ITD, while metrics dominated by smaller trees, such as stand density, cannot. Bearing these limitations in mind, ITD can be a powerful tool for describing forest structure across heterogeneous landscape restoration project areas.

  1. Viscoelastic model of tungsten 'fuzz' growth

    International Nuclear Information System (INIS)

    Krasheninnikov, S I

    2011-01-01

    A viscoelastic model of fuzz growth is presented. The model describes the main features of tungsten fuzz observed in experiments. It gives estimates of fuzz growth rate and temperature range close to experimental ones.

  2. Stand model for upland forests of Southern Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, D.L.; Shugart, H.H.; West, D.C.

    1978-06-01

    A forest stand growth and composition simulator (FORAR) was developed by modifying a stand growth model by Shugart and West (1977). FORAR is a functional stand model which used ecological parameters to relate individual tree growth to environment rather than using Markov probability matrices or differential equations to determine single tree or species replacement rates. FORAR simulated tree growth and species composition of upland forests of Union County, Ark., by considering 33 tree species on a /sup 1///sub 12/ ha circular plot.

  3. Crown structure and growth efficiency of red spruce in uneven-aged, mixed-species stands in Maine

    Science.gov (United States)

    Douglas A. Maguire; John C. Brissette; Lianhong. Gu

    1998-01-01

    Several hypotheses about the relationships among individual tree growth, tree leaf area, and relative tree size or position were tested with red spruce (Picea rubens Sarg.) growing in uneven-aged, mixed-species forests of south-central Maine, U.S.A. Based on data from 65 sample trees, predictive models were developed to (i)...

  4. Mudcake growth: Model and implications

    KAUST Repository

    Liu, Q.

    2017-12-15

    Oil and gas account for 60% of the world\\'s energy consumption. Drilling muds that are used to advance oil and gas wells must be engineered to avoid wellbore integrity problems associated with mud cake formation, to favor cake erosion during cementing, and to prevent partial differential sticking. We developed a robust mud cake growth model for water-based mud based on wide stress-range constitutive equations within a Lagrangian reference system to avoid non-natural moving boundary solutions. The comprehensive mud cake growth model readily accommodates environmental factors (e.g., temperature, pH, and ionic concentration) and defines the yield stress distribution for displacement-erosion analyses. Results show that the mud cake thickness is more sensitive to time than to filtration pressure, therefore, time controls the non-uniform distribution of mudcake thickness during drilling. Long filtration time, high permeability, high salinity, high in-situ temperature and low viscosity exacerbate fluid loss and give rise to thick filter cakes. The analysis of residual cake thickness during cement displacement must take into account the effective stress dependent mudcake formation and the time-dependent mud thixotropy. Thixotropy dominates the mud yield stress at high void ratios, e.g. e > 20. The offsetting force that causes differential pressure sticking increases sub-linearly as a power function of the still-time.

  5. A model for predicting the growth of Eucalyptus globulus seedling stands in Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, G.; Morales, M.; Pukkala, T.; Miguel, S. de

    2012-11-01

    Eucalyptus globulus is one of the most planted species in the Inter-Andean Valleys of Bolivia, where growing conditions are different from most places where eucalyptus have been studied. This prevents a straightforward utilization of models fitted elsewhere. In this study a distance-independent individual-tree growth model for E. globulus plantations in Bolivia was developed based on data from 67 permanent sample plots. The model consists of sub-models for dominant height, tree diameter increment, height-diameter relationship and survival. According to model-based simulations, the mean annual increment with the optimal rotation length is about 13 m3 ha{sup -}1 yr{sup -}1 on medium-quality sites and 18 m{sup 3} ha{sup -}1 yr -1 on the best sites. A suitable rotation length for maximizing wood production is approximately 30 years on medium sites and 20 years on the most productive sites. The developed models provide valuable information for further studies on optimizing the management and evaluating alternative management regimes for the species. (Author) 22 refs.

  6. Mathematical modeling of microbial growth in milk

    Directory of Open Access Journals (Sweden)

    Jhony Tiago Teleken

    2011-12-01

    Full Text Available A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.

  7. DETECTING FORESTS DAMAGED BY PINE WILT DISEASE AT THE INDIVIDUAL TREE LEVEL USING AIRBORNE LASER DATA AND WORLDVIEW-2/3 IMAGES OVER TWO SEASONS

    Directory of Open Access Journals (Sweden)

    Y. Takenaka

    2017-10-01

    Full Text Available Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus and Japanese pine sawyer (Monochamus alternatus. This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning (ALS data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS images and 18 remote sensing indices (RSI derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6 %, with an overall accuracy of 98.5 %. However, the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4 %, with an overall accuracy of 72 %, which suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were acquired in October 2016 from an area with low sun, at a low altitude.

  8. A joint individual-based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics.

    Science.gov (United States)

    Aubry-Kientz, Mélaine; Rossi, Vivien; Boreux, Jean-Jacques; Hérault, Bruno

    2015-06-01

    Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20-year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait-based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests.

  9. WHAT IS ENDOGENOUS IN ENDOGENOUS GROWTH MODEL?

    OpenAIRE

    Öztürkler, Harun; Bozgeyik, Yusuf

    2014-01-01

    The neoclassical growth model predicts that as soon as technologic improvements and innovations are not provided the growth in per capita income would stop in long term. However, the long-run data for many countries indicate that positive rates of per capita income growth can persist over the long term. Growth theorists of the 1950s and 1960s recognized this modeling deficiency and usually patched it up by assuming that technological progress occurs in an exogenous manner. The endogenous grow...

  10. Lévy-based growth models

    DEFF Research Database (Denmark)

    Jónsdóttir, Kristjana Ýr; Schmiegel, Jürgen; Jensen, Eva Bjørn Vedel

    2008-01-01

    In the present paper, we give a condensed review, for the nonspecialist reader, of a new modelling framework for spatio-temporal processes, based on Lévy theory. We show the potential of the approach in stochastic geometry and spatial statistics by studying Lévy-based growth modelling of planar o...... objects. The growth models considered are spatio-temporal stochastic processes on the circle. As a by product, flexible new models for space–time covariance functions on the circle are provided. An application of the Lévy-based growth models to tumour growth is discussed....

  11. A universal model of ontogenetic growth

    Science.gov (United States)

    Martyushev, Leonid M.; Terentiev, Pavel S.

    2015-06-01

    The assumption that a single growth equation can be used to describe all biological objects on different organizational levels and a dimensional analysis are applied in order to substantiate universal model of ontogenetic growth. This model (the mass of a growing organism is a power function of time) is valid only in the initial period of growth. For the whole period of growth, a generalization of the model is advanced; it provides the same accuracy as previously known models of quantitative description of kinetic curves. Within the scope of the developed model, a number of interesting results related to allometry and biological time are obtained.

  12. Modelling dwarf mistletoe at three scales: life history, ballistics and contagion

    Science.gov (United States)

    Donald C. E. Robinson; Brian W. Geils

    2006-01-01

    The epidemiology of dwarf mistletoe (Arceuthobium) is simulated for the reproduction, dispersal, and spatial patterns of these plant pathogens on conifer trees. A conceptual model for mistletoe spread and intensification is coded as sets of related subprograms that link to either of two individual-tree growth models (FVS and TASS) used by managers to develop...

  13. Nonlinear mixed-effects (NLME diameter growth models for individual China-Fir (Cunninghamia lanceolata trees in Southeast China.

    Directory of Open Access Journals (Sweden)

    Hao Xu

    Full Text Available An individual-tree diameter growth model was developed for Cunninghamia lanceolata in Fujian province, southeast China. Data were obtained from 72 plantation-grown China-fir trees in 24 single-species plots. Ordinary non-linear least squares regression was used to choose the best base model from among 5 theoretical growth equations; selection criteria were the smallest absolute mean residual and root mean square error and the largest adjusted coefficient of determination. To account for autocorrelation in the repeated-measures data, we developed one-level and nested two-level nonlinear mixed-effects (NLME models, constructed on the selected base model; the NLME models incorporated random effects of the tree and plot. The best random-effects combinations for the NLME models were identified by Akaike's information criterion, Bayesian information criterion and -2 logarithm likelihood. Heteroscedasticity was reduced with two residual variance functions, a power function and an exponential function. The autocorrelation was addressed with three residual autocorrelation structures: a first-order autoregressive structure [AR(1], a combination of first-order autoregressive and moving average structures [ARMA(1,1] and a compound symmetry structure (CS. The one-level (tree NLME model performed best. Independent validation data were used to test the performance of the models and to demonstrate the advantage of calibrating the NLME models.

  14. Trajectories and models of individual growth

    Directory of Open Access Journals (Sweden)

    Arseniy Karkach

    2006-11-01

    Full Text Available It has long been recognized that the patterns of growth play an important role in the evolution of age trajectories of fertility and mortality (Williams, 1957. Life history studies would benefit from a better understanding of strategies and mechanisms of growth, but still no comparative research on individual growth strategies has been conducted. Growth patterns and methods have been shaped by evolution and a great variety of them are observed. Two distinct patterns - determinate and indeterminate growth - are of a special interest for these studies since they present qualitatively different outcomes of evolution. We attempt to draw together studies covering growth in plant and animal species across a wide range of phyla focusing primarily on the noted qualitative features. We also review mathematical descriptions of growth, namely empirical growth curves and growth models, and discuss the directions of future research.

  15. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    Science.gov (United States)

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  16. Use of multi-temporal UAV-derived imagery for estimating individual tree growth in Pinus pinea stands

    Science.gov (United States)

    Juan Guerra-Hernández; Eduardo González-Ferreiro; Vicente Monleon; Sonia Faias; Margarida Tomé; Ramón Díaz-Varela

    2017-01-01

    High spatial resolution imagery provided by unmanned aerial vehicles (UAVs) can yield accurate and efficient estimation of tree dimensions and canopy structural variables at the local scale. We flew a low-cost, lightweight UAV over an experimental Pinus pinea L. plantation (290 trees distributed over 16 ha with different fertirrigation treatments)...

  17. Growth curve models and statistical diagnostics

    CERN Document Server

    Pan, Jian-Xin

    2002-01-01

    Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.

  18. On a Versatile Stochastic Growth Model

    Directory of Open Access Journals (Sweden)

    Samiur Arif

    2012-06-01

    Full Text Available Growth phenomena are ubiquitous and pervasive not only in biology and the medical sciences, but also in economics, marketing and the computer and social sciences. We introduce a three-parameter version of the classic pure-birth process growth model when suitably instantiated, can be used to model growth phenomena in many seemingly unrelated application domains. We point out that the model is computationally attractive since it admits of conceptually simple, closed form solutions for the time-dependent probabilities.

  19. Growth models with internal competition

    International Nuclear Information System (INIS)

    Ausloos, M.; Vandewalle, N.

    1996-01-01

    Combined statistical physics and computation modelling give new instruments for the study of non-equilibrium systems. We briefly review generalized Eden and Diffusion-Limited Aggregation models as applied to spreading phenomena. We indicate the occurrence of non-universal behaviors. (author)

  20. Novel metrics for growth model selection.

    Science.gov (United States)

    Grigsby, Matthew R; Di, Junrui; Leroux, Andrew; Zipunnikov, Vadim; Xiao, Luo; Crainiceanu, Ciprian; Checkley, William

    2018-01-01

    Literature surrounding the statistical modeling of childhood growth data involves a diverse set of potential models from which investigators can choose. However, the lack of a comprehensive framework for comparing non-nested models leads to difficulty in assessing model performance. This paper proposes a framework for comparing non-nested growth models using novel metrics of predictive accuracy based on modifications of the mean squared error criteria. Three metrics were created: normalized, age-adjusted, and weighted mean squared error (MSE). Predictive performance metrics were used to compare linear mixed effects models and functional regression models. Prediction accuracy was assessed by partitioning the observed data into training and test datasets. This partitioning was constructed to assess prediction accuracy for backward (i.e., early growth), forward (i.e., late growth), in-range, and on new-individuals. Analyses were done with height measurements from 215 Peruvian children with data spanning from near birth to 2 years of age. Functional models outperformed linear mixed effects models in all scenarios tested. In particular, prediction errors for functional concurrent regression (FCR) and functional principal component analysis models were approximately 6% lower when compared to linear mixed effects models. When we weighted subject-specific MSEs according to subject-specific growth rates during infancy, we found that FCR was the best performer in all scenarios. With this novel approach, we can quantitatively compare non-nested models and weight subgroups of interest to select the best performing growth model for a particular application or problem at hand.

  1. Modeling Math Growth Trajectory--An Application of Conventional Growth Curve Model and Growth Mixture Model to ECLS K-5 Data

    Science.gov (United States)

    Lu, Yi

    2016-01-01

    To model students' math growth trajectory, three conventional growth curve models and three growth mixture models are applied to the Early Childhood Longitudinal Study Kindergarten-Fifth grade (ECLS K-5) dataset in this study. The results of conventional growth curve model show gender differences on math IRT scores. When holding socio-economic…

  2. Nonlinear Growth Models as Measurement Models: A Second-Order Growth Curve Model for Measuring Potential.

    Science.gov (United States)

    McNeish, Daniel; Dumas, Denis

    2017-01-01

    Recent methodological work has highlighted the promise of nonlinear growth models for addressing substantive questions in the behavioral sciences. In this article, we outline a second-order nonlinear growth model in order to measure a critical notion in development and education: potential. Here, potential is conceptualized as having three components-ability, capacity, and availability-where ability is the amount of skill a student is estimated to have at a given timepoint, capacity is the maximum amount of ability a student is predicted to be able to develop asymptotically, and availability is the difference between capacity and ability at any particular timepoint. We argue that single timepoint measures are typically insufficient for discerning information about potential, and we therefore describe a general framework that incorporates a growth model into the measurement model to capture these three components. Then, we provide an illustrative example using the public-use Early Childhood Longitudinal Study-Kindergarten data set using a Michaelis-Menten growth function (reparameterized from its common application in biochemistry) to demonstrate our proposed model as applied to measuring potential within an educational context. The advantage of this approach compared to currently utilized methods is discussed as are future directions and limitations.

  3. Pore-Scale Model for Microbial Growth

    Science.gov (United States)

    Tartakovsky, G.; Tartakovsky, A. M.; Scheibe, T. D.

    2011-12-01

    A lagrangian particle model based on smoothed particle hydrodynamics (SPH) is used to simulate pore-scale flow, reactive transport and biomass growth which is controlled by the mixing of an electron donor and acceptor, in a microfluidic porous cell. The experimental results described in Ch. Zhang et al "Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media" were used for this study. The model represents the homogeneous pore structure of a uniform array of cylindrical posts with microbes uniformly distributed on the grain surfaces. Each one of the two solutes (electron donor and electron acceptor) enters the domain unmixed through separate inlets. In the model, pair-wise particle-particle interactions are used to simulate interactions within the biomass, and both biomass-fluid and biomass-soil grain interactions. The biomass growth rate is described by double Monod kinetics. For the set of parameters used in the simulations the model predicts that: 1) biomass grows in the shape of bridges connecting soil grains and oriented in the direction of flow so as to minimize resistance to the fluid flow; and 2) the biomass growth occurs only in the mixing zone. Using parameters available in the literature, the biomass growth model agrees qualitatively with the experimental results. In order to achieve quantitative agreement, model calibration is required.

  4. Crop growth model WOFOST applied to potatoes

    NARCIS (Netherlands)

    Koning, de G.H.J.; Diepen, van C.A.; Reinds, G.J.

    1995-01-01

    The WOFOST model was calibrated with an experiment on yield effects of drought in potatoes, using data on weather, soil moisture and crop calendar. Then, crop growth and development were predicted for the next year, using planting date and weather data. The model is described. The adjustments in the

  5. Modelling the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1999-01-01

    This article discusses the growth of methanotrophic biofilms. Several independent biofilm growths scenarios involving different inocula were examined. Biofilm growth, substrate removal and product formation were monitored throughout the experiments. Based on the oxygen consumption it was concluded...... that heterotrophs and nitrifiers co-existed with methanotrophs in the biofilm. Heterotrophic biomass grew on soluble polymers formed by the hydrolysis of dead biomass entrapped in the biofilm. Nitrifier populations developed because of the presence of ammonia in the mineral medium. Based on these experimental...... results, the computer program AQUASIM was used to develop a biological model involving methanotrophs, heterotrophs and nitrifiers. The modelling of six independent growth experiments showed that stoichiometric and kinetic parameters were within the same order of magnitude. Parameter estimation yielded...

  6. Structural modelling of economic growth: Technological changes

    Directory of Open Access Journals (Sweden)

    Sukharev Oleg

    2016-01-01

    Full Text Available Neoclassical and Keynesian theories of economic growth assume the use of Cobb-Douglas modified functions and other aggregate econometric approaches to growth dynamics modelling. In that case explanations of economic growth are based on the logic of the used mathematical ratios often including the ideas about aggregated values change and factors change a priori. The idea of assessment of factor productivity is the fundamental one among modern theories of economic growth. Nevertheless, structural parameters of economic system, institutions and technological changes are practically not considered within known approaches, though the latter is reflected in the changing parameters of production function. At the same time, on the one hand, the ratio of structural elements determines the future value of the total productivity of the factors and, on the other hand, strongly influences the rate of economic growth and its mode of innovative dynamics. To put structural parameters of economic system into growth models with the possibility of assessment of such modes under conditions of interaction of new and old combinations is an essential step in the development of the theory of economic growth/development. It allows forming stimulation policy of economic growth proceeding from the structural ratios and relations recognized for this economic system. It is most convenient in such models to use logistic functions demonstrating the resource change for old and new combination within the economic system. The result of economy development depends on starting conditions, and on institutional parameters of velocity change of resource borrowing in favour of a new combination and creation of its own resource. Model registration of the resource is carried out through the idea of investments into new and old combinations.

  7. In silico modeling for tumor growth visualization.

    Science.gov (United States)

    Jeanquartier, Fleur; Jean-Quartier, Claire; Cemernek, David; Holzinger, Andreas

    2016-08-08

    Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.

  8. Assessment of MARMOT Grain Growth Model

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Brown, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pokharel, R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grain growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.

  9. Effects of cultural intensity and density regime treatment on post-thinning loblolly pine individual tree DBH increment in the lower coastal plain of the southeastern United States

    Science.gov (United States)

    John T. Perren; Michael Kane; Dehai Zhao; Richard Daniels

    2016-01-01

    Thinning is a well understood concept used to manage density dependent factors at the stand level. This study evaluates the effect of planting density, cultural intensity, and thinning treatment on loblolly pine post-thinning individual tree development. The Lower Coastal Plain Culture/Density Study, has four initial densities, in combination with two cultural...

  10. Stochastic Growth Models with No Discounting

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2007-01-01

    Roč. 15, č. 4 (2007), s. 88-98 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/06/0990; GA ČR GA402/05/0115 Institutional research plan: CEZ:AV0Z10750506 Keywords : economic dynamics * stochastic version of the Ramsey growth model * Markov decision processes Subject RIV: AH - Economics

  11. Modelling oxide formation and growth on platinum

    Science.gov (United States)

    Baroody, Heather A.; Jerkiewicz, Gregory; Eikerling, Michael H.

    2017-04-01

    We present a mathematical model of oxide formation and growth on platinum. The motivation stems from the necessity to understand platinum dissolution in the cathode catalyst layer of polymer electrolyte fuel cells. As is known, platinum oxide formation and reduction are strongly linked to platinum dissolution processes. However, a consistent model of the oxidation processes on platinum does not exist. Our oxide growth model links interfacial exchange processes between platinum and oxygen ions with the transport of oxygen ion vacancies via diffusion and migration. A parametric analysis is performed to rationalize vital trends in oxide growth kinetics. The rate determining step of oxide formation and growth is identified as the extraction of platinum atoms at the metal-oxide interface. A kinetic effect is observed while adjusting the potential when growing the oxide layer, and the solution indicates that a structural change occurs at high potentials, around 1.5 VRHE. The model compares well to experimental data for various materials from various sources.

  12. Modeling Fish Growth in Low Dissolved Oxygen

    Science.gov (United States)

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  13. Bulk dynamics for interfacial growth models

    OpenAIRE

    Lopez, Cristobal; Garrido, Pedro L.; Santos, Francisco de los

    2000-01-01

    We study the influence of the bulk dynamics of a growing cluster of particles on the properties of its interface. First, we define a general bulk growth model by means of a continuum Master equation for the evolution of the bulk density field. This general model just considers an arbitrary addition of particles (though it can be easily generalized to consider subtraction) with no other physical restriction. The corresponding Langevin equation for this bulk density field is derived where the i...

  14. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data

    Science.gov (United States)

    Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu

    2012-01-01

    The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.

  15. Mathematical foundations of the dendritic growth models.

    Science.gov (United States)

    Villacorta, José A; Castro, Jorge; Negredo, Pilar; Avendaño, Carlos

    2007-11-01

    At present two growth models describe successfully the distribution of size and topological complexity in populations of dendritic trees with considerable accuracy and simplicity, the BE model (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) and the S model (Van Pelt and Verwer in Bull. Math. Biol. 48:197-211, 1986). This paper discusses the mathematical basis of these models and analyzes quantitatively the relationship between the BE model and the S model assumed in the literature by developing a new explicit equation describing the BES model (a dendritic growth model integrating the features of both preceding models; Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997). In numerous studies it is implicitly presupposed that the S model is conditionally linked to the BE model (Granato and Van Pelt in Brain Res. Dev. Brain Res. 142:223-227, 2003; Uylings and Van Pelt in Network 13:397-414, 2002; Van Pelt, Dityatev and Uylings in J. Comp. Neurol. 387:325-340, 1997; Van Pelt and Schierwagen in Math. Biosci. 188:147-155, 2004; Van Pelt and Uylings in Network. 13:261-281, 2002; Van Pelt, Van Ooyen and Uylings in Modeling Dendritic Geometry and the Development of Nerve Connections, pp 179, 2000). In this paper we prove the non-exactness of this assumption, quantify involved errors and determine the conditions under which the BE and S models can be separately used instead of the BES model, which is more exact but considerably more difficult to apply. This study leads to a novel expression describing the BE model in an analytical closed form, much more efficient than the traditional iterative equation (Van Pelt et al. in J. Comp. Neurol. 387:325-340, 1997) in many neuronal classes. Finally we propose a new algorithm in order to obtain the values of the parameters of the BE model when this growth model is matched to experimental data, and discuss its advantages and improvements over the more commonly used procedures.

  16. Modeling error distributions of growth curve models through Bayesian methods.

    Science.gov (United States)

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.

  17. Model of vascular desmoplastic multispecies tumor growth.

    Science.gov (United States)

    Ng, Chin F; Frieboes, Hermann B

    2017-10-07

    We present a three-dimensional nonlinear tumor growth model composed of heterogeneous cell types in a multicomponent-multispecies system, including viable, dead, healthy host, and extra-cellular matrix (ECM) tissue species. The model includes the capability for abnormal ECM dynamics noted in tumor development, as exemplified by pancreatic ductal adenocarcinoma, including dense desmoplasia typically characterized by a significant increase of interstitial connective tissue. An elastic energy is implemented to provide elasticity to the connective tissue. Cancer-associated fibroblasts (myofibroblasts) are modeled as key contributors to this ECM remodeling. The tumor growth is driven by growth factors released by these stromal cells as well as by oxygen and glucose provided by blood vasculature which along with lymphatics are stimulated to proliferate in and around the tumor based on pro-angiogenic factors released by hypoxic tissue regions. Cellular metabolic processes are simulated, including respiration and glycolysis with lactate fermentation. The bicarbonate buffering system is included for cellular pH regulation. This model system may be of use to simulate the complex interactions between tumor and stromal cells as well as the associated ECM and vascular remodeling that typically characterize malignant cancers notorious for poor therapeutic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Growth models for tree stems and vines

    Science.gov (United States)

    Bressan, Alberto; Palladino, Michele; Shen, Wen

    2017-08-01

    The paper introduces a PDE model for the growth of a tree stem or a vine. The equations describe the elongation due to cell growth, and the response to gravity and to external obstacles. An additional term accounts for the tendency of a vine to curl around branches of other plants. When obstacles are present, the model takes the form of a differential inclusion with state constraints. At each time t, a cone of admissible reactions is determined by the minimization of an elastic deformation energy. The main theorem shows that local solutions exist and can be prolonged globally in time, except when a specific ;breakdown configuration; is reached. Approximate solutions are constructed by an operator-splitting technique. Some numerical simulations are provided at the end of the paper.

  19. Responses of forest carbon and water coupling to thinning treatments at both the leaf and individual tree levels in a 16-year-old natural Pinus Contorta stand

    Science.gov (United States)

    Wang, Y.; Wei, A.; del Campo, A.; Li, Q.; Giles-Hansen, K.

    2017-12-01

    Large-scale disturbances in Canadian forests, including mountain pine beetle infestation in western Canada, forest fires, timber harvesting and climate change impacts, have significantly affected both forest carbon and water cycles. Thinning, which selectively removes trees at a given forest stand, may be an effective tool to mitigate the effect of these disturbances. Various studies have been conducted to assess the thinning effect on growth, transpiration, and nutrient availability; however, relatively few studies have been conducted to examine its effect on the coupling of forest carbon and water. Thus, the objective of this research is to evaluate the effect of thinning on forest carbon and water coupling at both the leaf and tree levels in a 16-year-old natural Pinus Contorta forest in the interior of British Columbia in Canada. We used water-use efficiency (WUE), the ratio of basal area increment (BA) to tree transpiration (E), as the indicator of the carbon and water coupling at individual tree level, and use intrinsic water-use efficiency (iWUE), the ratio of photosynthesis (A) to stomatal conductance (G), to represent the coupling at the leaf level. Field experiments were conducted in the Upper Penticton Watershed where the mean annual precipitation is 750 mm with seasonal drought during summer. A randomized block design was used, with three blocks each containing two thinning intensities and one unthinned plot (T1: 4,500, T2: 1,100, C: 26,400 trees per ha.). From May to October 2016, basal diameter, sap flow, and environmental conditions were monitored continuously at every 20 minutes, while A and G were measured weekly. Preliminary results showed that thinning significantly increased solar radiation, wind speed, and soil moisture in the treatment plots, where the changes observed were proportional to the intensity of the thinning; but thinning did not change stand level temperature and relative humidity. Thinning also significantly enhanced tree E and BA

  20. Dendritic growth model of multilevel marketing

    Science.gov (United States)

    Pang, James Christopher S.; Monterola, Christopher P.

    2017-02-01

    Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.

  1. Individual tree detection from Unmanned Aerial Vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest

    Science.gov (United States)

    Midhun Mohan; Carlos Alberto Silva; Carine Klauberg; Prahlad Jat; Glenn Catts; Adrian Cardil; Andrew Thomas Hudak; Mahendra Dia

    2017-01-01

    Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM)...

  2. Growth models and analysis of development

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, G.

    1979-10-01

    This paper deals with remnants of neoclassical elements in Keynesian and post-Keynesian thought, and attempts to demonstrate that the elimination of these elements from our modes of thinking would not impoverish economic analysis as a means of solving real problems. In the Keynesian analysis the causation from investment to savings is exhibited in terms of income determination. When put in terms of a capital-theory model, the vector of savings is represented in two ways: real savings and counterpart real savings. The former coincides with the investment vector and the latter with the vector of consumption goods foregone for diverting resources towards equipment making. Thus the Keynesian causation in capital theory terms makes the concept of national savings as an independent variable redudant. The Robinsonian causation in a golden age with full employment and its reversal of direction in a steady state with non-employment are then considered. But in each of these, variables like rate of savings and output/capital ratio are found to be dormant variables. They are termed as null variables which, being of no account in both full-employment and unemployment situations, could, without loss, be deleted from the repertory of analytical tools. The Harrod formula of warranted rate of growth, when put in causal form, thus becomes a redundant portion of economics of growth. The real determinants of the growth rate and real wage rate on which the analysis of growth or of development should be based, are also depicted.

  3. Modeling and control of greenhouse crop growth

    CERN Document Server

    Rodríguez, Francisco; Guzmán, José Luis; Ramírez-Arias, Armando

    2015-01-01

    A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques—event-based, robust, and predictive control, for example—are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques.  Reference trajector...

  4. A new model for sustainable growth in the energy industry

    International Nuclear Information System (INIS)

    McFaddin, S.; Clouse, M.

    1993-01-01

    A new sustainable growth model is developed which enables the evaluations of the interdependence of financial objectives, operational performance and sustainable growth in the energy industry. This new model includes both the effect of inflation and growth produced from equity issues. Component analysis is shown to be an extremely useful tool in determining the effect of operational and financial variables on the sustainable growth rate. This new model is statistically compared with both actual growth rates and Higgins' model. Implications of this research include a more accurate financial planning tool for evaluating sustainable growth and a more effective tool for directing policies to stimulate growth in specific industries. (author)

  5. Modeling of multibranched crosslike crack growth

    International Nuclear Information System (INIS)

    Canessa, E.; Tanatar, B.

    1991-06-01

    Multibranched crosslike crack patterns formed in concentrically loaded square plates are studied in terms of fractal geometry, where the associated fractal dimension d f is calculated for their characterization. We apply simplest deterministic and stochastic approaches at a phenomenological level in an attempt to find generic features as guidelines for future experimental and theoretical work. The deterministic model for fracture propagation we apply, which is a variant of the discretized Laplace approach for randomly ramified fractal cracks proposed by Takayasu, reproduces the basic ingredients of observed complex fracture patters. The stochastic model, although is not strictly a model for crack propagation, is based on diffusion-limited aggregation (DLA) for fractal growth and produces slightly more realistic assessment of the crosslike growth of the cracks in asymmetric multibranches. Nevertheless, this simple ad-hoc DLA-version for modeling the present phenomena as well as the deterministic approach for fracture propagation give fractal dimensionality for the fracture pattern in accord with our estimations made from recent experimental data. It is found that there is a crossover of two fractal dimensions, corresponding to the core (higher d f ) and multibranched crosslike (lower D f ) regions, that contains loops, that are interpreted as representing different symmetry regions within the square plates of finite size. (author). 26 refs, 5 figs

  6. Landscape-scale parameterization of a tree-level forest growth model: a k-nearest neighbor imputation approach incorporating LiDAR data

    Science.gov (United States)

    Michael J. Falkowski; Andrew T. Hudak; Nicholas L. Crookston; Paul E. Gessler; Edward H. Uebler; Alistair M. S. Smith

    2010-01-01

    Sustainable forest management requires timely, detailed forest inventory data across large areas, which is difficult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incorporating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and...

  7. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    Science.gov (United States)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  8. Population Growth and Local Home Environment Externality in an Endogenous Growth Model with Two Engines of Growth

    OpenAIRE

    Shirou Kuwahara; Katsunori Yamada

    2007-01-01

    This paper presents an endogenous growth model with population growth and an inter-generational spillover of human capital: we consider the ``local home environment externality conceptualized by Galor and Tsiddon (1997a). The model will generate a negative relationship between the population growth rate and the per capita GDP growth rate, which is also present in the data. Furthermore, multiple equilibrium paths will result. As far as we know, this is the first paper that derives a multiplici...

  9. Modeling of Organic Effects on Aerosols Growth

    Science.gov (United States)

    Caboussat, A.; Amundson, N. R.; He, J.; Seinfeld, J. H.

    2006-05-01

    Over the last two decades, a series of modules has been developed in the atmospheric modeling community to predict the phase transition, multistage growth phenomena, crystallization and evaporation of inorganic aerosols. In the same time, the water interactions of particles containing organic constituents have been recognized as an important factor for aerosol activation and cloud formation. However, the research on hygroscopicity of organic-containing aerosols, motivated by the organic effect on aerosol growth and activation, has gathered much less attention. We present here a new model (UHAERO), that is both efficient and rigorously computes phase separation and liquid-liquid equilibrium for organic particles, as well as the dynamics partitioning between gas and particulate phases, with emphasis on the role of water vapor in the gas-liquid partitioning. The model does not rely on any a priori specification of the phases present in certain atmospheric conditions. The determination of the thermodynamic equilibrium is based on the minimization of the Gibbs free energy. The mass transfer between the particle and the bulk gas phase is dynamically driven by the difference between bulk gas pressure and the gas pressure at the surface of a particle. The multicomponent phase equilibrium for a closed organic aerosol system at constant temperature and pressure and for specified feeds is the solution to the liquid-liquid equilibrium problem arising from the constrained minimization of the Gibbs free energy. A geometrical concept of phase simplex (phase separation) is introduced to characterize the thermodynamic equilibrium. The computation of the mass fluxes is achieved by coupling the thermodynamics of the organic aerosol particle and the determination of the mass fluxes. Numerical results show the efficiency of the model, which make it suitable for insertion in global three- dimensional air quality models. The Gibbs free energy is modeled by the UNIFAC model to illustrate

  10. Reactive burn models and ignition & growth concept

    Science.gov (United States)

    Menikoff, R.; Shaw, M. S.

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i) the density of active hot spots or burn centers; (ii) the growth of the burn fronts triggered by the burn centers; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s) as a function of a dimensionless reaction length s(t) = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps) = [Nbc(Ps)]-1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t) = ∫t0 D(P(t'))dt' is the distance the burn front propagates from a single burn center, where D(P) is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  11. Langevin equations for competitive growth models.

    Science.gov (United States)

    Silveira, F A; Aarão Reis, F D A

    2012-01-01

    Langevin equations for several competitive growth models in one dimension are derived. For models with crossover from random deposition (RD) to some correlated deposition (CD) dynamics, with small probability p of CD, the surface tension ν and the nonlinear coefficient λ of the associated equations have linear dependence on p due solely to this random choice. However, they also depend on the regularized step functions present in the analytical representations of the CD, whose expansion coefficients scale with p according to the divergence of local height differences when p→0. The superposition of those scaling factors gives ν~p(2) for random deposition with surface relaxation (RDSR) as the CD, and ν~p, λ~p(3/2) for ballistic deposition (BD) as the CD, in agreement with simulation and other scaling approaches. For bidisperse ballistic deposition (BBD), the same scaling of RD-BD model is found. The Langevin equation for the model with competing RDSR and BD, with probability p for the latter, is also constructed. It shows linear p dependence of λ, while the quadratic dependence observed in previous simulations is explained by an additional crossover before the asymptotic regime. The results highlight the relevance of scaling of the coefficients of step function expansions in systems with steep surfaces, which is responsible for noninteger exponents in some p-dependent stochastic equations, and the importance of the physical correspondence of aggregation rules and equation coefficients. © 2012 American Physical Society

  12. Modeling urban growth in Kigali city Rwanda | Nduwayezu ...

    African Journals Online (AJOL)

    Modeling urban growth in Kigali city Rwanda. ... The uncontrolled urban growth is the key characteristics in most cities in less developed countries. However ... Models built, will help to better understand the dynamics of built-up area and guide sustainable urban development planning of the future urban growth in Kigali city.

  13. 4D Shape-Preserving Modelling of Bone Growth

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Nielsen, Mads; Kreiborg, Sven

    1998-01-01

    From a set of temporally separated scannings of the same anatomical structure we wish to identify and analyze the growth in terms of a metamorphosis. That is, we study the tempral change of shape which may prowide an understanding of the biological processes which govern the growth process. We...... subdivide the growth analysis into growth simulation, growth modelling, and finally the growth analysis. In this paper, we present results of growth simulation of the mandible from 3 scannings of the same patient in the age of 9 months, 21 months, and 7 years. We also present the first growth models...... and growth analyzes. The ultimative goal is to predict/simulate human growth which would be extremely useful in many surgical procedures....

  14. REFERENCE MODELS OF ENDOGENOUS ECONOMIC GROWTH

    OpenAIRE

    GEAMĂNU MARINELA

    2012-01-01

    The new endogenous growth theories are a very important research area for shaping the most effective policies and long term sustainable development strategies. Endogenous growth theory has emerged as a reaction to the imperfections of neoclassical theory, by the fact that the economic growth is the endogenous product of an economical system.

  15. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    -asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  16. A model of urban rational growth based on grey prediction

    Science.gov (United States)

    Xiao, Wenjing

    2017-04-01

    Smart growth focuses on building sustainable cities, using compact development to prevent urban sprawl. This paper establishes a series of models to implement smart growth theories into city design. Besides two specific city design cases are shown. Firstly, We establishes Smart Growth Measure Model to measure the success of smart growth of a city. And we use Full Permutation Polygon Synthetic Indicator Method to calculate the Comprehensive Indicator (CI) which is used to measure the success of smart growth. Secondly, this paper uses the principle of smart growth to develop a new growth plan for two cities. We establish an optimization model to maximum CI value. The Particle Swarm Optimization (PSO) algorithm is used to solve the model. Combined with the calculation results and the specific circumstances of cities, we make their the smart growth plan respectively.

  17. Reactive burn models and ignition & growth concept

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

    2010-01-01

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  18. Reactive burn models and ignition & growth concept

    Directory of Open Access Journals (Sweden)

    Shaw M.S.

    2011-01-01

    Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  19. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  20. Testing linear growth rate formulas of non-scale endogenous growth models

    NARCIS (Netherlands)

    Ziesemer, Thomas

    2017-01-01

    Endogenous growth theory has produced formulas for steady-state growth rates of income per capita which are linear in the growth rate of the population. Depending on the details of the models, slopes and intercepts are positive, zero or negative. Empirical tests have taken over the assumption of

  1. Microscopic kinetic model for polymer crystal growth

    Science.gov (United States)

    Hu, Wenbing

    2011-03-01

    Linear crystal growth rates characterize the net result of competition between growth and melting at the liquid-solid interfaces. The rate equation for polymer crystal growth can be derived with a barrier term for crystal growth and with a driving force term of excess lamellar thickness, provided that growth and melting share the same rate-determining steps at the growth front. Such an ansatz can be verified by the kinetic symmetry between growth and melting around the melting point of lamellar crystals, as made in our recent dynamic Monte Carlo simulations. The profile of the growth/melting front appears as wedge-shaped, with the free energy barrier for intramolecular secondary crystal nucleation at its top, and with the driving force gained via instant thickening at its bottom. Such a scenario explains unique phenomena on polymer crystal growth, such as chain folding, regime transitions, molecular segregation of polydisperse polymers, self-poisoning with integer-number chain-folding of short chains, and colligative growth rates of binary mixtures of two chain lengths. Financial support from NNSFC No. 20825415 and NBRPC No. 2011CB606100 is acknowledged.

  2. A literature review on growth models and strategies: The missing link in entrepreneurial growth

    Directory of Open Access Journals (Sweden)

    Syed Fida Hussain Shah

    2013-08-01

    Full Text Available This study focuses on the importance of growth models, growth strategies, role of knowledge management system in the formulation of effective strategy for the enterprises following growth. Choice of an appropriate growth strategy is at the heart of any successful entrepreneurial venture. Selection of a strategy may be effective for one entrepreneur while it is not for other. Choice of Growth Strategy depends on various different factors, organisational context and environment which may vary from enterprise to enterprise. Resource based view is very important consideration for the entrepreneurs on the path of growth. Evaluation of all kind of resources helps them to grow their enterprises successfully. Selection of an appropriate growth strategy allows the entrepreneurs in overcoming growth challenges and avoiding the growth reversals and setbacks.

  3. Bayesian modeling of bacterial growth for multiple populations

    OpenAIRE

    Palacios, Ana Paula; Marín, J. Miguel; Quinto, Emiliano J.; Wiper, Michael P.

    2014-01-01

    Bacterial growth models are commonly used for the prediction of microbial safety and the shelf life of perishable foods. Growth is affected by several environmental factors such as temperature, acidity level and salt concentration. In this study, we develop two models to describe bacterial growth for multiple populations under both equal and different environmental conditions. Firstly, a semi-parametric model based on the Gompertz equation is proposed. Assuming that the parameters of the Gomp...

  4. Bayesian modelling of bacterial growth for multiple populations

    OpenAIRE

    Palacios, Ana Paula; Marín Díazaraque, Juan Miguel; Quinto, Emiliano; Wiper, Michael Peter

    2012-01-01

    Bacterial growth models are commonly used for the prediction of microbial safety and the shelf life of perishable foods. Growth is affected by several environmental factors such as temperature, acidity level and salt concentration. In this study, we develop two models to describe bacterial growth for multiple populations under both equal and different environmental conditions. Firstly, a semi-parametric model based on the Gompertz equation is proposed. Assuming that the parameters of the Gomp...

  5. Modeling the growth rates of tetragonal lysozyme crystals

    Science.gov (United States)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1995-11-01

    Although the faceted growth of tetragonal lysozyme crystals is known to occur by 2D nucleation and dislocation-led growth, the measured growth rates do not follow model predictions based on these mechanisms. One possible reason for this deviation is that these models ignore the highly aggregated state of lysozyme in supersaturated solutions. In this study a growth mechanism for tetragonal lysozyme crystals involving aggregation reactions leading to the formation of the growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is proposed. The distribution of aggregates in lysozyme nutrient solutions were determined from the equilibrium aggregation reactions and comparisons were made with growth rates calculated from the model based on the proposed mechanism and the measured growth rate data. The results indicated than an octamer corresponding to the tetragonal crystal unit cell was the most likely growth unit for the process. Remarkably good fits were obtained with this model to the measured growth rate data for three sets of pH and salt concentrations, suggesting the validity of the proposed mechanism. The values of the kinetic coefficient for the step velocity was in the range for small molecule crystal growth and the heats of reaction compared well with that obtained from lysozyme solubility data. The results presented here suggest that the inorganic and protein crystal growth processes are quite similar in many ways. Lysozyme crystal growth differs primarily due to growth by an aggregate growth unit and in the effect of nutrient solution conditions on the protein aggregation process.

  6. An autocatalytic kinetic model for describing microbial growth during fermentation.

    Science.gov (United States)

    Ibarz, Albert; Augusto, Pedro E D

    2015-01-01

    The mathematical modelling of the behaviour of microbial growth is widely desired in order to control, predict and design food and bioproduct processing, stability and safety. This work develops and proposes a new semi-empirical mathematical model, based on an autocatalytic kinetic, to describe the microbial growth through its biomass concentration. The proposed model was successfully validated using 15 microbial growth patterns, covering the three most important types of microorganisms in food and biotechnological processing (bacteria, yeasts and moulds). Its main advantages and limitations are discussed, as well as the interpretation of its parameters. It is shown that the new model can be used to describe the behaviour of microbial growth.

  7. Models of Economic Growth and Development in the Context of ...

    African Journals Online (AJOL)

    The Way Forward for Africa. Lansana Keita* ... to such progress. Key Words: economic growth, economic development, human capital, growth models. Résumé. La littérature économique depuis l'avènement de l'économie moderne a été ..... between the economy's growth rate according to investment and the propensity to ...

  8. Growth Kinetics and Modeling of Direct Oxynitride Growth with NO-O2 Gas Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Everist, Sarah; Nelson, Jerry; Sharangpani, Rahul; Smith, Paul Martin; Tay, Sing-Pin; Thakur, Randhir

    1999-05-03

    We have modeled growth kinetics of oxynitrides grown in NO-O2 gas mixtures from first principles using modified Deal-Grove equations. Retardation of oxygen diffusion through the nitrided dielectric was assumed to be the dominant growth-limiting step. The model was validated against experimentally obtained curves with good agreement. Excellent uniformity, which exceeded expected walues, was observed.

  9. Modeling Urban Spatial Growth in Mountainous Regions of Western China

    Directory of Open Access Journals (Sweden)

    Guoping Huang

    2017-08-01

    Full Text Available The scale and speed of urbanization in the mountainous regions of western China have received little attention from researchers. These cities are facing rapid population growth and severe environmental degradation. This study analyzed historical urban growth trends in this mountainous region to better understand the interaction between the spatial growth pattern and the mountainous topography. Three major factors—slope, accessibility, and land use type—were studied in light of their relationships with urban spatial growth. With the analysis of historical data as the basis, a conceptual urban spatial growth model was devised. In this model, slope, accessibility, and land use type together create resistance to urban growth, while accessibility controls the sequence of urban development. The model was tested and evaluated using historical data. It serves as a potential tool for planners to envision and assess future urban growth scenarios and their potential environmental impacts to make informed decisions.

  10. Differential model of macroeconomic growth with endogenic cyclicity

    Directory of Open Access Journals (Sweden)

    Mikhail I. Geraskin

    2017-09-01

    Full Text Available Objective to elaborate a mathematical model of economic growth taking into account the cyclical nature of macroeconomic dynamics with the model parameters based on the Russian economy statistics. Methods economic and mathematical modeling system analysis regression factor analysis econometric time series analysis. Results the article states that under unstable economic growth in Russia forecasting of strategic prospects of the Russian economy is one of the topical directions of scientific studies. Furthermore construction of predictive models should be based on multiple factors taking into account such basic concepts as the neoKeynesian HarrodDomar model Ramsey ndash Cass ndash Koopmans model S. V. Dubovskiyrsquos concept as well as the neoclassical growth model by R. Solow. They served as the basis for developing a multifactor differential economic growth model which is a modification of the neoclassical growth model by R. Solow taking into account the laborsaving and capitalsaving forms of scientifictechnical progress and the Keynesian concept of investment. The model parameters are determined based on the dynamics of actual GDP employment fixed assets and investments in fixed assets for 19652016 in Russia on the basis of official statistics. The generalized model showed the presence of longwave fluctuations that are not detected during the individual periods modeling. The cyclical nature of macroeconomic dynamics with a period of 54 years was found which corresponds to the parameters of long waves by N. D. Kondratiev. Basing on the model the macroeconomic growth forecast was generated which shows that after 2020 the increase of scientifictechnical progress will be negative. Scientific novelty a model is proposed of the scientifictechnical progress indicator showing the growth rate of the capital productivity ratio to the saving rate a differential model of macroeconomic growth is obtained which endogenously takes cyclicity into account

  11. Modeling the effects of ozone on soybean growth and yield.

    Science.gov (United States)

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  12. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  13. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  14. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    Science.gov (United States)

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  15. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    Science.gov (United States)

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  16. Modelling of the growth of a methanotrophic biofilm

    DEFF Research Database (Denmark)

    Arcangeli, J.-P.; Arvin, E.

    1997-01-01

    A model describing the growth of a methanotrophic biofilm is presented. This model involves simultaneous growth of methanotrophs, heterotrophs and nitrifiers. Heterotrophic biomass grows on soluble polymers which arise from the hydrolysis of dead biomass entrapped in the biofilm. Nitrifiers develop...

  17. Modelling growth of five different colour types of mink

    African Journals Online (AJOL)

    p2492989

    first introduced in China at the beginning of the 20th century for fur farming. Interest in mink is excited by its economic .... of inflection and is mainly used to describe the postnatal growth of an individual. Table 1 Functions considered in this study for modelling the growth curve of the mink. Model. Equation. No of parameters.

  18. A generic view of classic microbial growth models.

    NARCIS (Netherlands)

    van den Berg, H.A.

    1998-01-01

    General theoretical aspects are reviewed of models for microbial growth and endogenous metabolism. The focus is on a generic cell model with two components. Growth is represented as the increase of one of these components (the structural scaffolding or 'frame'). A novel feature of the present

  19. Modelling of transport phenomena and defects in crystal growth ...

    Indian Academy of Sciences (India)

    A brief review of single crystal growth techniques and the associated problems is presented. Emphasis is placed on models for various transport and defect phenomena involoved in the growth process with the ultimate aim of integrating them into a comprehensive numerical model. The sources of dislocation nucleation in ...

  20. Growth rate in the dynamical dark energy models.

    Science.gov (United States)

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  1. Non-rigid image registration using bone growth model

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven

    1997-01-01

    Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change b...

  2. A Classification-Segmentation Framework for the Detection of Individual Trees in Dense MMS Point Cloud Data Acquired in Urban Areas

    Directory of Open Access Journals (Sweden)

    Martin Weinmann

    2017-03-01

    Full Text Available In this paper, we present a novel framework for detecting individual trees in densely sampled 3D point cloud data acquired in urban areas. Given a 3D point cloud, the objective is to assign point-wise labels that are both class-aware and instance-aware, a task that is known as instance-level segmentation. To achieve this, our framework addresses two successive steps. The first step of our framework is given by the use of geometric features for a binary point-wise semantic classification with the objective of assigning semantic class labels to irregularly distributed 3D points, whereby the labels are defined as “tree points” and “other points”. The second step of our framework is given by a semantic segmentation with the objective of separating individual trees within the “tree points”. This is achieved by applying an efficient adaptation of the mean shift algorithm and a subsequent segment-based shape analysis relying on semantic rules to only retain plausible tree segments. We demonstrate the performance of our framework on a publicly available benchmark dataset, which has been acquired with a mobile mapping system in the city of Delft in the Netherlands. This dataset contains 10.13 M labeled 3D points among which 17.6 % are labeled as “tree points”. The derived results clearly reveal a semantic classification of high accuracy (up to 90.77 % and an instance-level segmentation of high plausibility, while the simplicity, applicability and efficiency of the involved methods even allow applying the complete framework on a standard laptop computer with a reasonable processing time (less than 2.5 h.

  3. Modeling and testing treated tumor growth using cubic smoothing splines.

    Science.gov (United States)

    Kong, Maiying; Yan, Jun

    2011-07-01

    Human tumor xenograft models are often used in preclinical study to evaluate the therapeutic efficacy of a certain compound or a combination of certain compounds. In a typical human tumor xenograft model, human carcinoma cells are implanted to subjects such as severe combined immunodeficient (SCID) mice. Treatment with test compounds is initiated after tumor nodule has appeared, and continued for a certain time period. Tumor volumes are measured over the duration of the experiment. It is well known that untreated tumor growth may follow certain patterns, which can be described by certain mathematical models. However, the growth patterns of the treated tumors with multiple treatment episodes are quite complex, and the usage of parametric models is limited. We propose using cubic smoothing splines to describe tumor growth for each treatment group and for each subject, respectively. The proposed smoothing splines are quite flexible in modeling different growth patterns. In addition, using this procedure, we can obtain tumor growth and growth rate over time for each treatment group and for each subject, and examine whether tumor growth follows certain growth pattern. To examine the overall treatment effect and group differences, the scaled chi-squared test statistics based on the fitted group-level growth curves are proposed. A case study is provided to illustrate the application of this method, and simulations are carried out to examine the performances of the scaled chi-squared tests. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits; Frank, J.; van der Mei, R.; den Boer, A.; Bosman, J.; Bouman, N.; van Dam, S.; Verhoef, C.

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  5. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  6. Fracture Mechanical Markov Chain Crack Growth Model

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    1991-01-01

    On the basis of the B-model developed in [J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage. John Wiley, New York (1985)] a new numerical model incorporating the physical knowledge of fatigue crack propagation is developed. The model is based on the assumption that the crack...

  7. Extending Growth Mixture Models Using Continuous Non-Elliptical Distributions

    OpenAIRE

    Wei, Yuhong; Tang, Yang; Shireman, Emilie; McNicholas, Paul D.; Steinley, Douglas L.

    2017-01-01

    Growth mixture models (GMMs) incorporate both conventional random effects growth modeling and latent trajectory classes as in finite mixture modeling; therefore, they offer a way to handle the unobserved heterogeneity between subjects in their development. GMMs with Gaussian random effects dominate the literature. When the data are asymmetric and/or have heavier tails, more than one latent class is required to capture the observed variable distribution. Therefore, a GMM with continuous non-el...

  8. Modeling growth in arm circumference of infants in Jimma Town ...

    African Journals Online (AJOL)

    The paper models the growth in arm circumference of 450 infants during their first year of life. The model is based on longitudinal data obtained from Jimma, a town in southeast Ethiopia. A linear mixed model was employed to see how arm circumference of these infants change over their first year of life. A polynomial model ...

  9. Modeling Root Growth, Crop Growth and N Uptake of Winter Wheat Based on SWMS_2D: Model and Validation

    Directory of Open Access Journals (Sweden)

    Dejun Yang

    Full Text Available ABSTRACT Simulations for root growth, crop growth, and N uptake in agro-hydrological models are of significant concern to researchers. SWMS_2D is one of the most widely used physical hydrologically related models. This model solves equations that govern soil-water movement by the finite element method, and has a public access source code. Incorporating key agricultural components into the SWMS_2D model is of practical importance, especially for modeling some critical cereal crops such as winter wheat. We added root growth, crop growth, and N uptake modules into SWMS_2D. The root growth model had two sub-models, one for root penetration and the other for root length distribution. The crop growth model used was adapted from EU-ROTATE_N, linked to the N uptake model. Soil-water limitation, nitrogen limitation, and temperature effects were all considered in dry-weight modeling. Field experiments for winter wheat in Bouwing, the Netherlands, in 1983-1984 were selected for validation. Good agreements were achieved between simulations and measurements, including soil water content at different depths, normalized root length distribution, dry weight and nitrogen uptake. This indicated that the proposed new modules used in the SWMS_2D model are robust and reliable. In the future, more rigorous validation should be carried out, ideally under 2D situations, and attention should be paid to improve some modules, including the module simulating soil N mineralization.

  10. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  11. Economic Analysis of Endogenous Growth Model with ICT Capital

    OpenAIRE

    Shoji Katagiri; Hugang Han

    2014-01-01

    This paper clarifies the role of ICT capital in economic growth. Albeit ICT remarkably contributes to economic growth, there are few studies on ICT capital in ICT sector from theoretical point of view. In this paper, production function of ICT which is used as input of intermediate good in final good and ICT sectors is incorporated into our model. In this setting, we analyze the role of ICT on balance growth path and show the possibility of general equilibrium solutions f...

  12. A smart growth evaluation model based on data envelopment analysis

    Science.gov (United States)

    Zhang, Xiaokun; Guan, Yongyi

    2018-04-01

    With the rapid spread of urbanization, smart growth (SG) has attracted plenty of attention from all over the world. In this paper, by the establishment of index system for smart growth, data envelopment analysis (DEA) model was suggested to evaluate the SG level of the current growth situation in cities. In order to further improve the information of both radial direction and non-radial detection, we introduced the non-Archimedean infinitesimal to form C2GS2 control model. Finally, we evaluated the SG level in Canberra and identified a series of problems, which can verify the applicability of the model and provide us more improvement information.

  13. Studying historical occupational careers with multilevel growth models

    Directory of Open Access Journals (Sweden)

    Wiebke Schulz

    2010-10-01

    Full Text Available In this article we propose to study occupational careers with historical data by using multilevel growth models. Historical career data are often characterized by a lack of information on the timing of occupational changes and by different numbers of observations of occupations per individual. Growth models can handle these specificities, whereas standard methods, such as event history analyses can't. We illustrate the use of growth models by studying career success of men and women, using data from the Historical Sample of the Netherlands. The results show that the method is applicable to male careers, but causes trouble when analyzing female careers.

  14. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth

    KAUST Repository

    Burger, Martin

    2016-11-18

    In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.

  15. The aponeurotic tension model of craniofacial growth in man.

    Science.gov (United States)

    Standerwick, Richard G; Roberts, W Eugene

    2009-05-22

    Craniofacial growth is a scientific crossroad for the fundamental mechanisms of musculoskeletal physiology. Better understanding of growth and development will provide new insights into repair, regeneration and adaptation to applied loads. Traditional craniofacial growth concepts are insufficient to explain the dynamics of airway/vocal tract development, cranial rotation, basicranial flexion and the role of the cranial base in expression of facial proportions. A testable hypothesis is needed to explore the physiological pressure propelling midface growth and the role of neural factors in expression of musculoskeletal adaptation after the cessation of anterior cranial base growth. A novel model for craniofacial growth is proposed for: 1. brain growth and craniofacial adaptation up to the age of 20; 2. explaining growth force vectors; 3. defining the role of muscle plasticity as a conduit for craniofacial growth forces; and 4. describing the effect of cranial rotation in the expression of facial form.Growth of the viscerocranium is believed to be influenced by the superficial musculoaponeurotic systems (SMAS) of the head through residual tension in the occipitofrontalis muscle as a result of cephalad brain growth and cranial rotation. The coordinated effects of the regional SMAS develop a craniofacial musculoaponeurotic system (CFMAS), which is believed to affect maxillary and mandibular development.

  16. Evaluating the Predictive Value of Growth Prediction Models

    Science.gov (United States)

    Murphy, Daniel L.; Gaertner, Matthew N.

    2014-01-01

    This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…

  17. A grain boundary sliding model for cavitation, crack growth and ...

    African Journals Online (AJOL)

    A model is presented for cavity growth, crack propagation and fracture resulting from grain boundary sliding (GBS) during high temperature creep deformation. The theory of cavity growth by GBS was based on energy balance criteria on the assumption that the matrix is sufficiently plastic to accommodate misfit strains ...

  18. Model Selection for Nondestructive Quantification of Fruit Growth in Pepper

    NARCIS (Netherlands)

    Wubs, A.M.; Ma, Y.T.; Heuvelink, E.; Hemerik, L.; Marcelis, L.F.M.

    2012-01-01

    Quantifying fruit growth can be desirable for several purposes (e.g., prediction of fruit yield and size, or for the use in crop simulation models). The goal of this article was to determine the best sigmoid function to describe fruit growth of pepper (Capsicum annuum) from nondestructive fruit

  19. Quantification of fungal growth: models, experiment, and observations

    NARCIS (Netherlands)

    Lamour, A.

    2002-01-01

    This thesis is concerned with the growth of microscopic mycelial fungi (Section I), and that of macroscopic fungi, which form specialised hyphal structures such as rhizomorphs (Section II). A growth model is developed in Section I in relation to soil organic

  20. Modelling growth curves of Nigerian indigenous normal feather ...

    African Journals Online (AJOL)

    This study was conducted to predict the growth curve parameters using Bayesian Gompertz and logistic models and also to compare the two growth function in describing the body weight changes across age in Nigerian indigenous normal feather chicken. Each chick was wing-tagged at day old and body weights were ...

  1. Knowledge Growth: Applied Models of General and Individual Knowledge Evolution

    Science.gov (United States)

    Silkina, Galina Iu.; Bakanova, Svetlana A.

    2016-01-01

    The article considers the mathematical models of the growth and accumulation of scientific and applied knowledge since it is seen as the main potential and key competence of modern companies. The problem is examined on two levels--the growth and evolution of objective knowledge and knowledge evolution of a particular individual. Both processes are…

  2. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity. The aim of t...

  3. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, A; Weinhart, T; Bokhove, O; Zhang, B; Sar, van der, DM; Kumar, K Kundan; Pisarenco, M Maxim; Rudnaya, M Maria; Savcenco, V Valeriu; Rademacher, JDM; Zijlstra, J; Szabelska, A; Zyprych, J; Schans, van der, M Martin; Timperio, V

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity . The aim o...

  4. 3D modeling of metallic grain growth

    Energy Technology Data Exchange (ETDEWEB)

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  5. A size-structured model of bacterial growth and reproduction.

    Science.gov (United States)

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  6. Gompertzian stochastic model with delay effect to cervical cancer growth

    International Nuclear Information System (INIS)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-01-01

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits

  7. Gompertzian stochastic model with delay effect to cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  8. A new model for simulating growth in fish

    Directory of Open Access Journals (Sweden)

    Johannes Hamre

    2014-01-01

    Full Text Available A real dynamic population model calculates change in population sizes independent of time. The Beverton & Holt (B&H model commonly used in fish assessment includes the von Bertalanffy growth function which has age or accumulated time as an independent variable. As a result the B&H model has to assume constant fish growth. However, growth in fish is highly variable depending on food availability and environmental conditions. We propose a new growth model where the length increment of fish living under constant conditions and unlimited food supply, decreases linearly with increasing fish length until it reaches zero at a maximal fish length. The model is independent of time and includes a term which accounts for the environmental variation. In the present study, the model was validated in zebrafish held at constant conditions. There was a good fit of the model to data on observed growth in Norwegian spring spawning herring, capelin from the Barents Sea, North Sea herring and in farmed coastal cod. Growth data from Walleye Pollock from the Eastern Bering Sea and blue whiting from the Norwegian Sea also fitted reasonably well to the model, whereas data from cod from the North Sea showed a good fit to the model only above a length of 70 cm. Cod from the Barents Sea did not grow according to the model. The last results can be explained by environmental factors and variable food availability in the time under study. The model implicates that the efficiency of energy conversion from food decreases as the individual animal approaches its maximal length and is postulated to represent a natural law of fish growth.

  9. Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies

    Directory of Open Access Journals (Sweden)

    Songqiu Deng

    2013-12-01

    Full Text Available This study attempted to measure forest resources at the individual tree level using high-resolution images by combining GPS, RS, and Geographic Information System (GIS technologies. The images were acquired by the WorldView-2 satellite with a resolution of 0.5 m in the panchromatic band and 2.0 m in the multispectral bands. Field data of 90 plots were used to verify the interpreted accuracy. The tops of trees in three groups, namely ≥10 cm, ≥15 cm, and ≥20 cm DBH (diameter at breast height, were extracted by the individual tree crown (ITC approach using filters with moving windows of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels, respectively. In the study area, there were 1,203,970 trees of DBH over 10 cm, and the interpreted accuracy was 73.68 ± 15.14% averaged over the 90 plots. The numbers of the trees that were ≥15 cm and ≥20 cm DBH were 727,887 and 548,919, with an average accuracy of 68.74 ± 17.21% and 71.92 ± 18.03%, respectively. The pixel-based classification showed that the classified accuracies of the 16 classes obtained using the eight multispectral bands were higher than those obtained using only the four standard bands. The increments ranged from 0.1% for the water class to 17.0% for Metasequoia glyptostroboides, with an average value of 4.8% for the 16 classes. In addition, to overcome the “mixed pixels” problem, a crown-based supervised classification, which can improve the classified accuracy of both dominant species and smaller classes, was used for generating a thematic map of tree species. The improvements of the crown- to pixel-based classification ranged from −1.6% for the open forest class to 34.3% for Metasequoia glyptostroboides, with an average value of 20.3% for the 10 classes. All tree tops were then annotated with the species attributes from the map, and a tree count of different species indicated that the forest of Purple Mountain is mainly dominated by Quercus acutissima, Liquidambar formosana

  10. Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products.

    Science.gov (United States)

    Marvig, C L; Kristiansen, R M; Nielsen, D S

    2015-01-02

    The most notorious spoilage organism of sweet intermediate moisture foods (IMFs) is Zygosaccharomyces rouxii, which can grow at low water activity, low pH and in the presence of organic acids. Together with an increased consumer demand for preservative free and healthier food products with less sugar and fat and a traditionally long self-life of sweet IMFs, the presence of Z. rouxii in the raw materials for IMFs has made assessment of the microbiological stability a significant hurdle in product development. Therefore, knowledge on growth/no growth boundaries of Z. rouxii in sweet IMFs is important to ensure microbiological stability and aid product development. Several models have been developed for fat based, sweet IMFs. However, fruit/sugar based IMFs, such as fruit based chocolate fillings and jams, have lower pH and aw than what is accounted for in previously developed models. In the present study growth/no growth models for acidified sweet IMFs were developed with the variables aw (0.65-0.80), pH (2.5-4.0), ethanol (0-14.5% (w/w) in water phase) and time (0-90 days). Two different strains of Z. rouxii previously found to show pronounced resistance to the investigated variables were included in model development, to account for strain differences. For both strains data sets with and without the presence of sorbic acid (250 ppm on product basis) were built. Incorporation of time as an exploratory variable in the models gave the possibility to predict the growth/no growth boundaries at each time between 0 and 90 days without decreasing the predictive power of the models. The influence of ethanol and aw on the growth/no growth boundary of Z. rouxii was most pronounced in the first 30 days and 60 days of incubation, respectively. The effect of pH was almost negligible in the range of 2.5-4.0. The presence of low levels of sorbic acid (250 ppm) eliminated growth of both strains at all conditions tested. The two strains tested have previously been shown to have

  11. Solving Cocoa Pod Sigmoid Growth Model with Newton Raphson Method

    Science.gov (United States)

    Chang, Albert Ling Sheng; Maisin, Navies

    Cocoa pod growth modelling are useful in crop management, pest and disease management and yield forecasting. Recently, the Beta Growth Function has been used to determine the pod growth model due to its unique for the plant organ growth which is zero growth rate at both the start and end of a precisely defined growth period. Specific pod size (7cm to 10cm in length) is useful in cocoa pod borer (CPB) management for pod sleeving or pesticide spraying. The Beta Growth Function is well-fitted to the pods growth data of four different cocoa clones under non-linear function with time (t) as its independent variable which measured pod length and diameter weekly started at 8 weeks after fertilization occur until pods ripen. However, the same pod length among the clones did not indicate the same pod age since the morphological characteristics for cocoa pods vary among the clones. Depending on pod size for all the clones as guideline in CPB management did not give information on pod age, therefore it is important to study the pod age at specific pod sizes on different clones. Hence, Newton Raphson method is used to solve the non-linear equation of the Beta Growth Function of four different group of cocoa pod at specific pod size.

  12. Modeling growth of mandibles in the Western Arctic caribou herd

    Directory of Open Access Journals (Sweden)

    Jay M. Ver Hoef

    2001-03-01

    Full Text Available We compared growth curves for ramus length and diastema length from two autumn collections of mandibles of male Western Arctic Herd caribou in Alaska. We were primarily interested in determining if growth curves of caribou mandibles differed between caribou born during 1959-1967, after the herd had been high for several years and was probably declining in size, and those born during 1976-1988, when the herd was increasing in size. To compare these growth curves, we used a nonlinear model and used maximum likelihood estimates and likelihood ratio tests. We found that growth rates were similar between periods, but intercepts and variances of growth curves differed. From this we infer that calves were smaller in autumn during the 1960s and that significant compensatory growth did not occur later in life.

  13. Regression models for linking patterns of growth to a later outcome: infant growth and childhood overweight

    Directory of Open Access Journals (Sweden)

    Andrew K. Wills

    2016-04-01

    Full Text Available Abstract Background Regression models are widely used to link serial measures of anthropometric size or changes in size to a later outcome. Different parameterisations of these models enable one to target different questions about the effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an expository example. Methods We describe and classify five sets of model parameterisations in accordance with their underlying growth pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v being bigger; becoming and staying bigger versus being bigger. The contrasts are estimated by including different sets of repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months in weight-for-height-for-age z-scores to later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900. Results In our expository example, conditional growth during all periods, becoming bigger in any interval and staying bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to 6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods and between growth patterns require large sample sizes and need to consider how to scale associations to make comparisons fair; with respect to the latter, we show one approach. Conclusion Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of growth pattern

  14. A Phase-Field Model for Grain Growth

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.Q.; Fan, D.N.; Tikare, V.

    1998-12-23

    A phase-field model for grain growth is briefly described. In this model, a poly-crystalline microstructure is represented by multiple structural order parameter fields whose temporal and spatial evolutions follow the time-dependent Ginzburg-Landau (TDGL) equations. Results from phase-field simulations of two-dimensional (2D) grain growth will be summarized and preliminary results on three-dimensional (3D) grain growth will be presented. The physical interpretation of the structural order parameter fields and the efficient and accurate semi-implicit Fourier spectral method for solving the TDGL equations will be briefly discussed.

  15. Understanding pollen tube growth: the hydrodynamic model versus the cell wall model

    NARCIS (Netherlands)

    Zonia, L.; Munnik, T.

    2011-01-01

    Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell

  16. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  17. Another Brick in the Cell Wall: Biosynthesis Dependent Growth Model

    Science.gov (United States)

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  18. Artificial Life of Soybean Plant Growth Modeling Using Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2010-03-01

    Full Text Available The natural process on plant growth system has a complex system and it has could be developed on characteristic studied using intelligent approaches conducting with artificial life system. The approaches on examining the natural process on soybean (Glycine Max L.Merr plant growth have been analyzed and synthesized in these research through modeling using Artificial Neural Network (ANN and Lindenmayer System (L-System methods. Research aimed to design and to visualize plant growth modeling on the soybean varieties which these could help for studying botany of plant based on fertilizer compositions on plant growth with Nitrogen (N, Phosphor (P and Potassium (K. The soybean plant growth has been analyzed based on the treatments of plant fertilizer compositions in the experimental research to develop plant growth modeling. By using N, P, K fertilizer compositions, its capable result on the highest production 2.074 tons/hectares. Using these models, the simulation on artificial life for describing identification and visualization on the characteristic of soybean plant growth could be demonstrated and applied.

  19. Modelling Childhood Growth Using Fractional Polynomials and Linear Splines

    Science.gov (United States)

    Tilling, Kate; Macdonald-Wallis, Corrie; Lawlor, Debbie A.; Hughes, Rachael A.; Howe, Laura D.

    2014-01-01

    Background There is increasing emphasis in medical research on modelling growth across the life course and identifying factors associated with growth. Here, we demonstrate multilevel models for childhood growth either as a smooth function (using fractional polynomials) or a set of connected linear phases (using linear splines). Methods We related parental social class to height from birth to 10 years of age in 5,588 girls from the Avon Longitudinal Study of Parents and Children (ALSPAC). Multilevel fractional polynomial modelling identified the best-fitting model as being of degree 2 with powers of the square root of age, and the square root of age multiplied by the log of age. The multilevel linear spline model identified knot points at 3, 12 and 36 months of age. Results Both the fractional polynomial and linear spline models show an initially fast rate of growth, which slowed over time. Both models also showed that there was a disparity in length between manual and non-manual social class infants at birth, which decreased in magnitude until approximately 1 year of age and then increased. Conclusions Multilevel fractional polynomials give a more realistic smooth function, and linear spline models are easily interpretable. Each can be used to summarise individual growth trajectories and their relationships with individual-level exposures. PMID:25413651

  20. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  1. Calibration of the Diameter Distribution Derived from the Area-based Approach with Individual Tree-based Diameter Estimates Using the Airborne Laser Scanning

    Science.gov (United States)

    Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T.

    2015-12-01

    Diameter distributions of trees are important indicators of current forest stand structure and future dynamics. A new method was proposed in the study to combine the diameter distributions derived from the area-based approach (ABA) and the diameter distribution derived from the individual tree detection (ITD) in order to obtain more accurate forest stand attributes. Since dominant trees can be reliably detected and measured by the Lidar data via the ITD, the focus of the study is to retrieve the suppressed trees (trees that were missed by the ITD) from the ABA. Replacement and histogram matching were respectively employed at the plot level to retrieve the suppressed trees. Cut point was detected from the ITD-derived diameter distribution for each sample plot to distinguish dominant trees from the suppressed trees. The results showed that calibrated diameter distributions were more accurate in terms of error index and the entire growing stock estimates. Compared with the best performer between the ABA and the ITD, calibrated diameter distributions decreased the relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points respectively. Calibration improved the estimation of pulpwood fraction significantly, resulting in a negligible bias of the estimated entire growing stock.

  2. Growth Curve Models and Applications : Indian Statistical Institute

    CERN Document Server

    2017-01-01

    Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas.   There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of app lied work, and these contributions have been externally r...

  3. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. A mathematical model of microalgae growth in cylindrical photobioreactor

    Science.gov (United States)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  5. Efficient experimental designs for sigmoidal growth models

    OpenAIRE

    Dette, Holger; Pepelyshev, Andrey

    2005-01-01

    For the Weibull- and Richards-regression model robust designs are determined by maximizing a minimum of D- or D1-efficiencies, taken over a certain range of the non-linear parameters. It is demonstrated that the derived designs yield a satisfactory solution of the optimal design problem for this type of model in the sense that these designs are efficient and robust with respect to misspecification of the unknown parameters. Moreover, the designs can also be used for testing the postulated for...

  6. Nonlinear modeling growth body weight of Mangalarga Marchador horses

    Directory of Open Access Journals (Sweden)

    Felipe Amorim Caetano Souza

    Full Text Available ABSTRACT: The analysis of the growth and development of various species has been done using the growth curves of the specific animal based on non-linear models. The objective of the current study was to evaluate the fit of the Brody, Gompertz, Logistic and von Bertalanffy models to the cross-sectional data of the live weight of the MangalargaMarchador horses to identify the best model and make accurate predictions regarding the growth and maturity in the males and females of this breed. The study involved recording the weight of 214 horses, of which 94 were males and 120 were non-pregnant females, between 6 and 153 months of age. The parameters of the model were estimated by employing the method of least squares, using the iteratively regularized Gauss-Newton method and the R software package. Comparison of the models was done based on the following criteria: coefficient of determination (R²; Residual Standard Deviation (RSD; corrected Akaike Information Criterion (AICc. The estimated weight of the adult horses by the models ranged between 431kg and 439kg for males and between 416kg and 420kg for females. The growth curves were studied using the cross-sectional data collection method. For males the von Bertalanffymodel was found to be the most effective in expressing growth, while in females the Brody model was more suitable. The MangalargaMarchador females achieve adult body weight earlier than the males.

  7. Modeling gas exchange in a closed plant growth chamber

    Science.gov (United States)

    Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.

    1994-01-01

    Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.

  8. Model for the growth of the world airline network

    Science.gov (United States)

    Verma, T.; Araújo, N. A. M.; Nagler, J.; Andrade, J. S.; Herrmann, H. J.

    2016-06-01

    We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the World Airline Network (WAN), we observe that the difference between the two is minimized for α≈2. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.

  9. Using Calculus to Model the Growth of L. Plantarum Bacteria

    Directory of Open Access Journals (Sweden)

    Erin Carey

    2009-01-01

    Full Text Available Experimental data for the growth of Lactobacillus plantarum bacteria have been obtained over time, creating the need for mathematical means to model this data. We use the Gompertz model because it is a sigmoid function for a time series, where growth is slowest at the start and end of a time period. The Gompertz model is especially useful because it defines specific parameters that characterize the S-shaped curve. In addition, the Gompertz model uses relative growth, which is the logarithm of the given population compared to the initial population. This reflects the fact that bacteria grow exponentially. The important parameters that were found were the lag time and the asymptote.

  10. Double sigmoidal models describing the growth of coffee berries

    Directory of Open Access Journals (Sweden)

    Tales Jesus Fernandes

    Full Text Available ABSTRACT: This study aimed to verify if the growth pattern of coffee berries, considering fresh mass accumulation over time, is double sigmoid and to select the most suitable nonlinear model to describe such behavior. Data used consisted of fourteen longitudinal observations of average fresh mass of coffee berries obtained in an experiment with the cultivar Obatã IAC 1669-20. The fits provided by the Logistic and Gompertz models were compared in their single and double versions. Parameters were estimated using the least squares method using the Gauss-Newton algorithm implemented in the nls function of the R software. It can be concluded that the growth pattern of the coffee fruit, in fresh mass accumulation, is double sigmoid. The double Gompertz and double Logistic models were adequate to describe such a growth curve, with a superiority of the double Logistic model.

  11. Modelling primary branch growth based on a multilevel nonlinear ...

    African Journals Online (AJOL)

    In addition to random effects, various time series correlation structures were evaluated to account for residual autocorrelation, and the AR(1) and ARMA(1,1) structures were selected for the branch diameter and length growth models, respectively. Model validation results using an independent data set confirmed that ...

  12. Probabilistic Model for Fatigue Crack Growth in Welded Bridge Details

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Yalamas, Thierry

    2013-01-01

    In the present paper a probabilistic model for fatigue crack growth in welded steel details in road bridges is presented. The probabilistic model takes the influence of bending stresses in the joints into account. The bending stresses can either be introduced by e.g. misalignment or redistributio...

  13. Crustal growth at active continental margins: Numerical modeling

    NARCIS (Netherlands)

    Vogt, Katharina; Gerya, Taras; Castro, Antonio

    The dynamics and melt sources for crustal growth at active continental margins are analyzed by using a 2D coupled petrological–thermomechanical numerical model of an oceanic-continental subduction zone. This model includes spontaneous slab retreat and bending, dehydration of subducted crust, aqueous

  14. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Brookstein, F. L.; Conradsen, Knut

    2000-01-01

    automatically using shape features and a new algorithm called geometry-constrained diffusion. The semilandmarks are mapped into Procrustes space. Principal component analysis extracts a one-dimensional subspace, which is used to construct a linear growth model. The worst case mean modeling error in a cross...

  15. Kinetic models of cell growth, substrate utilization and bio ...

    African Journals Online (AJOL)

    Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...

  16. Comparison of four nonlinear growth models for effective exploration ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-05

    Oct 5, 2016 ... This study was conducted to compare the effectiveness for non-linear growth models designated as. Chapman-Richards, Gompertz, Logistic and von Bertalanffy for selection of fast-growing fish strain of turbot Scophthalmus maximus. These models were compared using the goodness of fit (the coefficient.

  17. Modeling nano-scale grain growth of intermetallics

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The Monte Carlo simulation is utilized to model the nano-scale grain growth of two nano- crystalline materials, Pd81Zr19 and RuAl. In this regard, the relationship between the real time and the time unit of simulation, i.e. Monte Carlo step (MCS), is determined. The results of modeling show that with increasing time ...

  18. Growth models for six Eucalyptus species in Angola | Delgado ...

    African Journals Online (AJOL)

    This study developed growth models for Eucalyptus saligna Sm., E. camaldulensis Dehnh., E. macarthurii H.Deane & Maiden, E. resinifera Sm., E. siderophloia Benth. and E. grandis Hill ex. Maiden, for the central highlands of Angola, and used these models to simulate the development of stand characteristics.

  19. Comparison of four nonlinear growth models for effective exploration ...

    African Journals Online (AJOL)

    This study was conducted to compare the effectiveness for non-linear growth models designated as Chapman-Richards, Gompertz, Logistic and von Bertalanffy for selection of fast-growing fish strain of turbot Scophthalmus maximus. These models were compared using the goodness of fit (the coefficient of determination ...

  20. Regressional modeling and forecasting of economic growth for arkhangelsk region

    Directory of Open Access Journals (Sweden)

    Robert Mikhailovich Nizhegorodtsev

    2012-12-01

    Full Text Available The regression models of GRP, considering the impact of three main factors: investment in fixed assets, wages amount, and, importantly, the innovation factor –the expenditures for research and development, are constructed in this paper on the empirical data for Arkhangelsk region. That approach permits to evaluate explicitly the contribution of innovation to economic growth. Regression analysis is the main research instrument, all calculations areperformedin the Microsoft Excel. There were made meaningful conclusions regarding the potential of the region's GRP growth by various factors, including impacts of positive and negative time lags. Adequate and relevant models are the base for estimation and forecasting values of the dependent variable (GRP and evaluating their confidence intervals. The invented method of research can be used in factor assessment and prediction of regional economic growth, including growth by expectations.

  1. Spending Natural Resource Revenues in an Altruistic Growth Model

    DEFF Research Database (Denmark)

    Frederiksen, Elisabeth Hermann

    This paper examines how revenues from a natural resource interact with growth and welfare in an overlapping generations model with altruism. The revenues are allocated between public productive services and direct transfers to members of society by spending policies. We analyze how these policies...... influence the dynamics, and how the dynamics are influenced by the abundance of the revenue. Abundant revenues may harm growth, but growth and welfare can be oppositely affected. We also provide the socially optimal policy. Overall, the analysis suggests that variation in the strength of altruism...... and in spending policies may be part of the reason why natural resources seem to affect economic performance across nations differently...

  2. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  3. Thermodynamic model for growth mechanisms of multiwall carbon nanotubes

    Science.gov (United States)

    Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.

    2006-12-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  4. Government technology push in agribusiness: a model of endogenous growth

    Directory of Open Access Journals (Sweden)

    Francisco Venegas Martínez

    2008-10-01

    Full Text Available This paper develops a model of endogenous growth where the government acts as a promoting agent to boost technology in agribusiness. In the framework of a monetary economy, the optimal level of government spending to enhance technology in the agricultural industry is characterized. Moreover the impact of such a spending on economic welfare is assessed. Finally, a number of agro-oriented policies to increase growth in the sector are established.

  5. Human growth and body weight dynamics: an integrative systems model.

    Science.gov (United States)

    Rahmandad, Hazhir

    2014-01-01

    Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%-24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations.

  6. Modeling of spatial variations of growth within apical domes by means of the growth tensor. II. Growth specified on dome surface

    Directory of Open Access Journals (Sweden)

    Zygmunt Hejnowicz

    2014-01-01

    Full Text Available Variations of the elemental relative rate of growth are modeled for parabolic, elliptic and hyperbolic domes of shoot apices by using the growth tensor in a suitable curvilinear coordinate system when the mode of area growth on the dome surface is known. Variations of growth rates within the domes are obtained in forms of computer-made maps for the following variants of growth on the dome surface: (1 constant meridional growth rate, (2 isotropic area growth, (3 anisotropy of area growth which becomes more intensive with increasing distance from the vertex. In variants 1 and 2 a maximum of volumetric growth rate appears in the center of the dome. Such a distribution of growth seems to be unrealistic. However, the corresponding growth tensors are interesting because they can be used in combination with other growth tensors to get the expected minimum volumetric growth rate in the dome center.

  7. Potts-model grain growth simulations: Parallel algorithms and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.A.; Plimpton, S.J.; Swiler, T.P. [and others

    1997-08-01

    Microstructural morphology and grain boundary properties often control the service properties of engineered materials. This report uses the Potts-model to simulate the development of microstructures in realistic materials. Three areas of microstructural morphology simulations were studied. They include the development of massively parallel algorithms for Potts-model grain grow simulations, modeling of mass transport via diffusion in these simulated microstructures, and the development of a gradient-dependent Hamiltonian to simulate columnar grain growth. Potts grain growth models for massively parallel supercomputers were developed for the conventional Potts-model in both two and three dimensions. Simulations using these parallel codes showed self similar grain growth and no finite size effects for previously unapproachable large scale problems. In addition, new enhancements to the conventional Metropolis algorithm used in the Potts-model were developed to accelerate the calculations. These techniques enable both the sequential and parallel algorithms to run faster and use essentially an infinite number of grain orientation values to avoid non-physical grain coalescence events. Mass transport phenomena in polycrystalline materials were studied in two dimensions using numerical diffusion techniques on microstructures generated using the Potts-model. The results of the mass transport modeling showed excellent quantitative agreement with one dimensional diffusion problems, however the results also suggest that transient multi-dimension diffusion effects cannot be parameterized as the product of the grain boundary diffusion coefficient and the grain boundary width. Instead, both properties are required. Gradient-dependent grain growth mechanisms were included in the Potts-model by adding an extra term to the Hamiltonian. Under normal grain growth, the primary driving term is the curvature of the grain boundary, which is included in the standard Potts-model Hamiltonian.

  8. Modeling bacterial population growth from stochastic single-cell dynamics.

    Science.gov (United States)

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  9. Some Limits Using Random Slope Models to Measure Academic Growth

    Directory of Open Access Journals (Sweden)

    Daniel B. Wright

    2017-11-01

    Full Text Available Academic growth is often estimated using a random slope multilevel model with several years of data. However, if there are few time points, the estimates can be unreliable. While using random slope multilevel models can lower the variance of the estimates, these procedures can produce more highly erroneous estimates—zero and negative correlations with the true underlying growth—than using ordinary least squares estimates calculated for each student or school individually. An example is provided where schools with increasing graduation rates are estimated to have negative growth and vice versa. The estimation is worse when the underlying data are skewed. It is recommended that there are at least six time points for estimating growth if using a random slope model. A combination of methods can be used to avoid some of the aberrant results if it is not possible to have six or more time points.

  10. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.

    2004-01-01

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  11. Research & development and growth: A Bayesian model averaging analysis

    Czech Academy of Sciences Publication Activity Database

    Horváth, Roman

    2011-01-01

    Roč. 28, č. 6 (2011), s. 2669-2673 ISSN 0264-9993. [Society for Non-linear Dynamics and Econometrics Annual Conferencen. Washington DC, 16.03.2011-18.03.2011] R&D Projects: GA ČR GA402/09/0965 Institutional research plan: CEZ:AV0Z10750506 Keywords : Research and development * Growth * Bayesian model averaging Subject RIV: AH - Economics Impact factor: 0.701, year: 2011 http://library.utia.cas.cz/separaty/2011/E/horvath-research & development and growth a bayesian model averaging analysis.pdf

  12. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  13. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  14. A discrete surface growth model for two components

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Cerdeira, H.A.

    2000-04-01

    We present a ballistic deposition model for the surface growth of a binary species A and C. Numerical simulations of the growth kinetics show a deviation from the Kardar-Parisi-Zhang universality class, model valid for only one kind of deposited particles. The study also shows that when the deposition of particles with less active bonds occurs more frequently the voids under the surface become relevant. However, the increase in overhang/voids processes under the moving interface does not strengthen greatly the local surface gradient. (author)

  15. A Discrete Monetary Economic Growth Model with the MIU Approach

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2008-01-01

    Full Text Available This paper proposes an alternative approach to economic growth with money. The production side is the same as the Solow model, the Ramsey model, and the Tobin model. But we deal with behavior of consumers differently from the traditional approaches. The model is influenced by the money-in-the-utility (MIU approach in monetary economics. It provides a mechanism of endogenous saving which the Solow model lacks and avoids the assumption of adding up utility over a period of time upon which the Ramsey approach is based.

  16. Pollution and economic growth in a model of overlapping generations

    International Nuclear Information System (INIS)

    Fisher, Eric O'N.; Van Marrewijk, Charles

    1994-01-01

    We analyze a model of overlapping generations in which clean air, a pure public consumption good, is used as a private input into production. Although production exhibits constant returns to scale, endogenous growth can occur because the economy has tWO sectors. In a laissez-faire equilibrium, there is no market for pollution rights, and firms appropriate clean air in an arbitrary manner. Growth occurs only if the marginal propensity to save is high enough and the asymptotic share of pollution in the investment sector is zero. Firms generate quasi-rents that are the value of pollution rights. These quasi-rents crowd out investment and slow economic growth. A laissez- faire equilibrium may not support Pareto optimal allocations, but a Pigouvian tax with lump-sum distribution of the resulting revenues does. Hence, a pollution lax yields a double dividend because it can increase both the static efficiency of the economy and its growth rate. 1 fig., 20 refs

  17. Growth model of Au films on Ru(001)

    International Nuclear Information System (INIS)

    Canessa, E.; Calmetta, A.

    1992-06-01

    In an attempt to find generic features on the fractal growth of Au films deposited on Ru(001), a simple simulation model based on irreversible diffusion-limited aggregation (DLA) is discussed. Highly irregular two-dimensional dentritic islands of Au particles that gradually grow on a larger host lattice of Ru particles and have fractal dimension d f approx. 1.70 each, are generated via a multiple had-hoc version of the DLA algorithm for single aggregates. Annealing effects on the islands morphology are reproduced assuming different sticking probabilities at nearest-neighbour lattice sites of Au films on Ru(001). Using simulation data, islands growth are described in analogy to diffusion-limited, precipitate growth with soft impingement of precipities. This leads to analyse thin film island growth kinetics in such fractal systems and to predict a main peak in scattering intensity patterns due to interisland interference. (author). 12 refs, 4 figs

  18. Reserve growth in oil pools of Alberta: Model and forecast

    Science.gov (United States)

    Verma, M.; Cook, T.

    2010-01-01

    Reserve growth is recognized as a major component of additions to reserves in most oil provinces around the world, particularly in mature provinces. It takes place as a result of the discovery of new pools/reservoirs and extensions of known pools within existing fields, improved knowledge of reservoirs over time leading to a change in estimates of original oil-in-place, and improvement in recovery factor through the application of new technology, such as enhanced oil recovery methods, horizontal/multilateral drilling, and 4D seismic. A reserve growth study was conducted on oil pools in Alberta, Canada, with the following objectives: 1) evaluate historical oil reserve data in order to assess the potential for future reserve growth; 2) develop reserve growth models/ functions to help forecast hydrocarbon volumes; 3) study reserve growth sensitivity to various parameters (for example, pool size, porosity, and oil gravity); and 4) compare reserve growth in oil pools and fields in Alberta with those from other large petroleum provinces around the world. The reported known recoverable oil exclusive of Athabasca oil sands in Alberta increased from 4.5 billion barrels of oil (BBO) in 1960 to 17 BBO in 2005. Some of the pools that were included in the existing database were excluded from the present study for lack of adequate data. Therefore, the known recoverable oil increased from 4.2 to 13.9 BBO over the period from 1960 through 2005, with new discoveries contributing 3.7 BBO and reserve growth adding 6 BBO. This reserve growth took place mostly in pools with more than 125,000 barrels of known recoverable oil. Pools with light oil accounted for most of the total known oil volume, therefore reflecting the overall pool growth. Smaller pools, in contrast, shrank in their total recoverable volumes over the years. Pools with heavy oil (gravity less than 20o API) make up only a small share (3.8 percent) of the total recoverable oil; they showed a 23-fold growth compared to

  19. Eye growth and myopia development: Unifying theory and Matlab model.

    Science.gov (United States)

    Hung, George K; Mahadas, Kausalendra; Mohammad, Faisal

    2016-03-01

    The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs

  20. Mathematical modelling of human growth: A comparative study.

    Science.gov (United States)

    Guo, Shumei; Siervogel, Roger M; Roche, Alex F; Chumlea, Wm Cameron

    1992-01-01

    Kernel regression is a nonparametric procedure that provides good approximations to individual serial data. The method is useful and flexible when a parametric method is inappropriate due to restricted assumptions on the shape of the curve. In the present study, we compared kernel regression in fitting human stature growth with two models, one of which incorporates the possible existence of the midgrowth spurt while the other does not. Two families of mathematical functions and a nonparametric kernel regression were fitted to serial measures of stature on 227 participants enrolled in the Fels Longitudinal Study. The growth parameters that describe the timing, magnitude, and duration of the growth spurt, such as midgrowth spurt and pubertal spurts, were derived from the fitted models and kernel regression for each participant. The two parametric models and kernel regression were compared in regard to their overall goodness of fit and their capabilities to quantify the timing, rate of increase, and duration of the growth events. The Preece-Baines model does not describe the midgrowth spurt. The dervied growth parameters from the Preece-Baines model show an earlier onset and a longer duration of the pubertal spurt, and a slower increase in velocity. The kernel regression with bandwidth 2 years and a second-order polynomial kernel function yields relatively good fits compared with the triple logistic model. The derived biological parameters for the pubertal spurt are similar between the kernel regression and the triple logistic model. Kernel regression estimates an earlier onset and a more rapid increase of velocity for the midgrowth spurt. Copyright © 1992 Wiley-Liss, Inc., A Wiley Company.

  1. Modelling of strongly coupled particle growth and aggregation

    International Nuclear Information System (INIS)

    Gruy, F; Touboul, E

    2013-01-01

    The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v 0 , that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v 0 ) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.

  2. Monotonic entropy growth for a nonlinear model of random exchanges.

    Science.gov (United States)

    Apenko, S M

    2013-02-01

    We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific "coarse graining" of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.

  3. Modelling mussel growth in ecosystems with low suspended matter loads

    Science.gov (United States)

    Duarte, P.; Fernández-Reiriz, M. J.; Filgueira, R.; Labarta, U.

    2010-10-01

    Over the last decades a large number of bivalve growth models were described in the literature with most emphasis on cultivated species with important economic value. These models describe the rates of energy absorption and utilization as a function of environmental conditions. Some of the most important issues in bivalve modelling are water pumping, filtration, pre-ingestive rejection/pseudofaeces production and ingestion of living and non-living organic and inorganic matter. According to some authors, bivalve suspension-feeders may selectively ingest and/or digest different food items whilst making adjustments to maximize the utilization of chlorophyll rich particles. In clear water ecosystems such as the Galician Rias (total particulate matter ( TPM) TPM loads. The main objectives of this work were to develop, implement and calibrate an Individual Based Model of mussel growth, configured and parameterized for the environmental conditions of ecosystems with low suspended matter loads such as the Galician Rias. Model runs were made for a large number of individual mussels, each with a random parameter set, selected among possible parameter ranges reported in the literature, allowing a quick model calibration and an evaluation of those parameters explaining most of the variance in predicted mussel growth. Obtained results provide a useful feedback for upcoming experimental work where efforts should be concentrated on accurate estimates of these more influential parameters to improve model results.

  4. R.M. Solow Adjusted Model of Economic Growth

    Directory of Open Access Journals (Sweden)

    Ion Gh. Rosca

    2007-05-01

    Full Text Available Besides the models of M. Keynes, R.F. Harrod, E. Domar, D. Romer, Ramsey-Cass-Koopmans etc., the R.M. Solow model is part of the category which characterizes the economic growth. The paper proposes the study of the R.M. Solow adjusted model of economic growth, while the adjustment consisting in the model adaptation to the Romanian economic characteristics. The article is the first one from a three paper series dedicated to the macroeconomic modelling theme, using the R.M. Solow model, such as: “Measurement of the economic growth and extensions of the R.M. Solow adjusted model” and “Evolution scenarios at the Romanian economy level using the R.M. Solow adjusted model”. The analysis part of the model is based on the study of the equilibrium to the continuous case with some interpretations of the discreet one, by using the state diagram. The optimization problem at the economic level is also used; it is built up of a specified number of representative consumers and firms in order to reveal the interaction between these elements.

  5. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  6. The Balance-of-Payments-Constrained Growth Model and the Limits to Export-Led Growth

    Directory of Open Access Journals (Sweden)

    Robert A. Blecker

    2000-12-01

    Full Text Available This paper discusses how A. P. Thirlwall's model of balance-of-payments-constrained growth can be adapted to analyze the idea of a "fallacy of composition" in the export-led growth strategy of many developing countries. The Deaton-Muellbauer model of the Almost Ideal Demand System (AIDS is used to represent the adding-up constraints on individual countries' exports, when they are all trying to export competing products to the same foreign markets (i.e. newly industrializing countries are exporting similar types of manufactured goods to the OECD countries. The relevance of the model to the recent financial crises in developing countries and policy alternatives for redirecting development strategies are also discussed.

  7. Accounting for household heterogeneity in general equilibrium economic growth models

    International Nuclear Information System (INIS)

    Melnikov, N.B.; O'Neill, B.C.; Dalton, M.G.

    2012-01-01

    We describe and evaluate a new method of aggregating heterogeneous households that allows for the representation of changing demographic composition in a multi-sector economic growth model. The method is based on a utility and labor supply calibration that takes into account time variations in demographic characteristics of the population. We test the method using the Population-Environment-Technology (PET) model by comparing energy and emissions projections employing the aggregate representation of households to projections representing different household types explicitly. Results show that the difference between the two approaches in terms of total demand for energy and consumption goods is negligible for a wide range of model parameters. Our approach allows the effects of population aging, urbanization, and other forms of compositional change on energy demand and CO 2 emissions to be estimated and compared in a computationally manageable manner using a representative household under assumptions and functional forms that are standard in economic growth models.

  8. Optimization of a new mathematical model for bacterial growth

    Science.gov (United States)

    The objective of this research is to optimize a new mathematical equation as a primary model to describe the growth of bacteria under constant temperature conditions. An optimization algorithm was used in combination with a numerical (Runge-Kutta) method to solve the differential form of the new gr...

  9. Simultaneous growth and yield models for Eucalyptus grandis (Hill ...

    African Journals Online (AJOL)

    Simultaneous stand-level growth and yield models for Eucalyptus grandis in Zimbabwe were developed from Correlated Curve Trend (CCT) and Nelder wheel experiments replicated on five different sites. Nonlinear three-stage least squares method was used to simultaneously fit prediction and projection equations for ...

  10. Microstructural modelling of creep crack growth from a blunted crack

    NARCIS (Netherlands)

    Onck, P.R.; Giessen, E. van der

    1998-01-01

    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the

  11. Growth and yield models for Eucalyptus grandis grown in Swaziland ...

    African Journals Online (AJOL)

    The aim of this study was to develop a stand-level growth and yield model for short-rotationEucalyptus grandis grown for pulp wood production at Piggs Peak in Swaziland. The data were derived from a Nelder 1a spacing trial established with E. grandis clonal cuttings in 1998 and terminated in 2005. Planting density ...

  12. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified.

  13. Building Context with Tumor Growth Modeling Projects in Differential Equations

    Science.gov (United States)

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  14. Escherichia coli growth modeling using neural network | Shamsudin ...

    African Journals Online (AJOL)

    technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.

  15. Modeling growth of specific spoilage organisms in tilapia ...

    African Journals Online (AJOL)

    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio ...

  16. Testing R&D-Based Endogenous Growth Models

    DEFF Research Database (Denmark)

    Kruse-Andersen, Peter Kjær

    2017-01-01

    is estimated using cointegrated VAR models. The results provide evidence against the widely used fully endogenous variety and in favor of the semi-endogenous variety. Forecasts based on the empirical estimates suggest that the slowdown in US productivity growth will continue. Particularly, the annual long...

  17. Modelling dominant height growth in plantations of Pseudotsuga ...

    African Journals Online (AJOL)

    A model for predicting dominant height growth and site index of Pseudotsuga menziesii (Mirb.) Franco in Spain was constructed. Data from stem analysis of 117 site trees were used. Four dynamic equations using the algebraic difference approach (ADA) and its generalisation (GADA), which have provided good results in ...

  18. Modelling dimensional growth of three street tree species in the ...

    African Journals Online (AJOL)

    The results could also be used in the process of modelling energy use reduction, air pollution uptake, rainfall interception, carbon sequestration and microclimate modification of urban forests such as those found in the City of Tshwane. Keywords: allometry; regression; size relationships; tree growth; urban forests. Southern ...

  19. Model-independent cosmological constraints from growth and expansion

    Science.gov (United States)

    L'Huillier, Benjamin; Shafieloo, Arman; Kim, Hyungjin

    2018-02-01

    Reconstructing the expansion history of the Universe from type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, Ωm, γ, and σ8. The constraints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.

  20. The Cohesive Zone Model for Fatigue Crack Growth

    Directory of Open Access Journals (Sweden)

    Jinxiang Liu

    2013-01-01

    Full Text Available In the past decade, the cohesive zone model has been receiving increasing attention as a powerful tool for the simulation of fatigue crack growth. When applying cohesive zone model to fatigue fracture problem, three aspects should generally be taken into account, that is, unloading-reloading path, damage evolution during cyclic loading, and crack surface contact and friction behavior. This paper addresses the critical views of these aspects. Before that, the formulation of cohesive zone model and identification of cohesive zone model parameters and its numerical implementation have been reviewed.

  1. Area Based Models of New Highway Route Growth

    OpenAIRE

    David Levinson; Wei Chen

    2007-01-01

    Empirical data and statistical models are used to answer the question of where new highway routes are most likely to be located. High-quality land-use, population distribution and highway network GIS data for the Twin CitiesMetropolitan Area from 1958 to 1990 are developed for this study. The highway system is classified into three levels, Interstate highways, divided highways, and secondary highways. Binary logit models estimate the new route growth probability of divided highways and second...

  2. Partial sum approaches to mathematical parameters of some growth models

    Science.gov (United States)

    Korkmaz, Mehmet

    2016-04-01

    Growth model is fitted by evaluating the mathematical parameters, a, b and c. In this study, the method of partial sums were used. For finding the mathematical parameters, firstly three partial sums were used, secondly four partial sums were used, thirdly five partial sums were used and finally N partial sums were used. The purpose of increasing the partial decomposition is to produce a better phase model which gives a better expected value by minimizing error sum of squares in the interval used.

  3. A Dynamic Growth Model for Flows of Foreign Direct Investment

    OpenAIRE

    Yi-Hui Chiang; Yiming Li; Chih-Young Hung

    2007-01-01

    In this work, we for the first time study the dynamic flows of the foreign direct investment (FDI) with a dynamic growth theory. We define the FDI flow as a process which transmits throughout a given social system by way of diverse communication channels. In model formulation, seven assumptions are thus proposed and the foreign capital policy of the host country is considered as an external influence; in addition, the investment policy of the investing country is modeled as an internal influe...

  4. A Computable OLG Model for Gender and Growth Policy Analysis

    OpenAIRE

    Pierre-Richard Agénor

    2012-01-01

    This paper develops a computable Overlapping Generations (OLG) model for gender and growth policy analysis. The model accounts for human and physical capital accumulation (both public and private), intra- and inter-generational health persistence, fertility choices, and women's time allocation between market work, child rearing, and home production. Bargaining between spouses and gender bias, in the form of discrimination in the work place and mothers' time allocation between daughters and so...

  5. Specific and General Human Capital in an Endogenous Growth Model

    OpenAIRE

    Evangelia Vourvachaki; Vahagn Jerbashian; : Sergey Slobodyan

    2014-01-01

    In this article, we define specific (general) human capital in terms of the occupations whose use is spread in a limited (wide) set of industries. We analyze the growth impact of an economy's composition of specific and general human capital, in a model where education and research and development are costly and complementary activities. The model suggests that a declining share of specific human capital, as observed in the Czech Republic, can be associated with a lower rate of long-term grow...

  6. Paths of economic development: modelling factors of endogenous growth

    OpenAIRE

    Fusari, Angelo

    1994-01-01

    This article sets out a model giving an interpretation of the engine of economic development and growth, and business cycle. Based on a peculiar concept of dynamic competition, the model explains innovation and uncertainty and describes the way equilibrating and disequilibrating processes are intertwined and operate. It also carries out concise application to successive stages of economic development, along with some econometric application, that demonstrates the degree of gene...

  7. The European Model: Economic Growth, Convergence and Cohesion

    Directory of Open Access Journals (Sweden)

    Aura Socol

    2006-10-01

    Full Text Available The european model is confronted with a potential crise. Economic convergence concerns the gaps in living standards between countries: are they closing or widening, and at what speed? Are relatively poor economies to remain poor for many generations? Are the rich countries of next century to be the same as relatively rich countries of nowadays? Is the degree of income inequality across economies increasing or falling over time? Posing these questions, motivating convergence debate, immediately raises the problem of the variable/variables that need to be considered. In our study, prior to providing answers to these questions, basic definitions concerning convergence in European model are followed by an overview of specific features, achievements and hurdles countries have had to overcome on their way from centrally planned towards market economy. After that, a summary of Solow-Swan model of economic growth is offered. Concept of convergence emerges here as a natural implication of the model. The distinctions between Solow-Swan model and endogenous growth model are stated. Finally, some measures of macroeconomic policy for sustainable growth are presented and interpreted in connection with real macroeconomic situation of the Romanian economy.

  8. Mathematical Modeling of Branching Morphogenesis and Vascular Tumor Growth

    Science.gov (United States)

    Yan, Huaming

    Feedback regulation of cell lineages is known to play an important role in tissue size control, but the effect in tissue morphogenesis has yet to be explored. We first use a non-spatial model to show that a combination of positive and negative feedback on stem and/or progenitor cell self-renewal leads to bistable or bi-modal growth behaviors and ultrasensitivity to external growth cues. Next, a spatiotemporal model is used to demonstrate spatial patterns such as local budding and branching arise in this setting, and are not consequences of Turing-type instabilities. We next extend the model to a three-dimensional hybrid discrete-continuum model of tumor growth to study the effects of angiogenesis, tumor progression and cancer therapies. We account for the crosstalk between the vasculature and cancer stem cells (CSCs), and CSC transdifferentiation into vascular endothelial cells (gECs), as observed experimentally. The vasculature stabilizes tumor invasiveness but considerably enhances growth. A gEC network structure forms spontaneously within the hypoxic core, consistent with experimental findings. The model is then used to study cancer therapeutics. We demonstrate that traditional anti-angiogenic therapies decelerate tumor growth, but make the tumor highly invasive. Chemotherapies help to reduce tumor sizes, but cannot control the invasion. Anti-CSC therapies that promote differentiation or disturb the stem cell niche effectively reduce tumor invasiveness. However, gECs inherit mutations present in CSCs and are resistant to traditional therapies. We show that anti-gEC treatments block the support on CSCs by gECs, and reduce both tumor size and invasiveness. Our study suggests that therapies targeting the vasculature, CSCs and gECs, when combined, are highly synergistic and are capable of controlling both tumor size and shape.

  9. Growth and Yield of Appalachian Mixed Hardwoods After Thinning

    Science.gov (United States)

    Wade C. Harrison; Harold E. Burkhart; Thomas E. Burk; Donald E. Beckand

    1986-01-01

    G-RAT (Growth of Hardwoods After Thinning) is a system of computer programs used to predict growth and yield of Appalachian mixed hardwoods after thinning. Given a tree list or stand table, along with inputs of stand age, site index, and stand basal area before thinning, G-RAT software uses species-specific individual tree equations to predict tree basal area...

  10. Modelling hair follicle growth dynamics as an excitable medium.

    Directory of Open Access Journals (Sweden)

    Philip J Murray

    Full Text Available The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle, it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth.

  11. Modelling hair follicle growth dynamics as an excitable medium.

    Science.gov (United States)

    Murray, Philip J; Maini, Philip K; Plikus, Maksim V; Chuong, Cheng-Ming; Baker, Ruth E

    2012-01-01

    The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle), it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth.

  12. Sensitivity Analysis of a Riparian Vegetation Growth Model

    Directory of Open Access Journals (Sweden)

    Michael Nones

    2016-11-01

    Full Text Available The paper presents a sensitivity analysis of two main parameters used in a mathematic model able to evaluate the effects of changing hydrology on the growth of riparian vegetation along rivers and its effects on the cross-section width. Due to a lack of data in existing literature, in a past study the schematization proposed here was applied only to two large rivers, assuming steady conditions for the vegetational carrying capacity and coupling the vegetal model with a 1D description of the river morphology. In this paper, the limitation set by steady conditions is overcome, imposing the vegetational evolution dependent upon the initial plant population and the growth rate, which represents the potential growth of the overall vegetation along the watercourse. The sensitivity analysis shows that, regardless of the initial population density, the growth rate can be considered the main parameter defining the development of riparian vegetation, but it results site-specific effects, with significant differences for large and small rivers. Despite the numerous simplifications adopted and the small database analyzed, the comparison between measured and computed river widths shows a quite good capability of the model in representing the typical interactions between riparian vegetation and water flow occurring along watercourses. After a thorough calibration, the relatively simple structure of the code permits further developments and applications to a wide range of alluvial rivers.

  13. A Big Bang model of human colorectal tumor growth.

    Science.gov (United States)

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

  14. An autoregressive growth model for longitudinal item analysis.

    Science.gov (United States)

    Jeon, Minjeong; Rabe-Hesketh, Sophia

    2016-09-01

    A first-order autoregressive growth model is proposed for longitudinal binary item analysis where responses to the same items are conditionally dependent across time given the latent traits. Specifically, the item response probability for a given item at a given time depends on the latent trait as well as the response to the same item at the previous time, or the lagged response. An initial conditions problem arises because there is no lagged response at the initial time period. We handle this problem by adapting solutions proposed for dynamic models in panel data econometrics. Asymptotic and finite sample power for the autoregressive parameters are investigated. The consequences of ignoring local dependence and the initial conditions problem are also examined for data simulated from a first-order autoregressive growth model. The proposed methods are applied to longitudinal data on Korean students' self-esteem.

  15. Analytical model of stemwood growth in relation to nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R. C.; McMurtrie, R. E. [New South Wales Univ., Sydney, NSW (Australia)

    1996-01-01

    A process-based model of tree stand growth that simulates the effect of nitrogen supply on forest productivity has been recently combined with a soil-carbon-nitrogen model. The combined model, called G`DAY has been used to examine the long-term response of unmanaged forest ecosystems to increasing CO{sub 2} concentration. In this study an attempt was made to derive a simplified, analytically tractable version of the plant production part of G`DAY, and use it to gain insight into the general relationship between stemwood growth and nitrogen supply in managed forests. The particular focus of the study was on using the model to predict how the maximum annual stemwood growth and optimal rotation length can be expected to vary in response to changes in nitrogen supply from net mineralization, fertilizer addition, fixation and atmospheric deposition. Overall, the model was considered to be a useful tool in examining the effects of changes in climate and nutrient supply on sustainable forest productivity. 20 refs., 2 tabs., 5 figs.

  16. Growth/no growth models for Zygosaccharomyces rouxii associated with acidic, sweet intermediate moisture food products

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Lykke Marvig; Kristiansen, Rikke M.; Nielsen, Dennis Sandris

    2015-01-01

    The most notorious spoilage organism of sweet intermediate moisture foods (IMFs) is Zygosaccharomyces rouxii, which can grow at low water activity, low pH and in the presence of organic acids. Together with an increased consumer demand for preservative free and healthier food products with less...... sugar and fat and a traditionally long self-life of sweet IMFs, the presence of Z. rouxii in the raw materials for IMFs has made assessment of the microbiological stability a significant hurdle in product development. Therefore, knowledge on growth/no growth boundaries of Z. rouxii in sweet IMFs...... is important to ensure microbiological stability and aid product development. Several models have been developed for fat based, sweet IMFs. However, fruit/sugar based IMFs, such as fruit based chocolate fillings and jams, have lower pH and aw than what is accounted for in previously developed models...

  17. Discrete modelling of ductile crack growth by void growth to coalescence

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void......Ductile crack growth is analyzed by discrete representation of the voids growing near a blunting crack-tip. Coalescence of the nearest void with the crack-tip is modeled, followed by the subsequent coalescence of other discretely represented voids with the newly formed crack-tip. Necking...... volume fraction the crack-tip tends to interact with one void at a time, while larger void volume fractions lead to simultaneous interaction of multiple voids on the plane ahead of the crack-tip. In some cases a change from one of these mechanisms to the other is seen during growth through the many voids...

  18. Modelling Aspergillus flavus growth and aflatoxins production in pistachio nuts.

    Science.gov (United States)

    Marín, Sonia; Ramos, Antonio J; Sanchis, V

    2012-12-01

    Aflatoxins (AFs) are the main contaminants in pistachio nuts. AFs production in pistachio has been attributed to Aspergillus flavus. The aim of this study was to apply existing models to predict growth and AFs production by an A. flavus isolated from pistachios as a function of moisture content and storage temperature of pistachios in order to test their usefulness and complementarities. A full factorial design was used: the moisture content levels assayed were 10, 15, 20, 25 and 30% and incubation temperatures were 10, 15, 20, 25, 30, 37 and 42 °C. Both kinetic and probability models were built to predict growth of the strain under the assayed conditions. Among the assayed models, cardinal ones gave a good quality fit for radial growth rate data. Moreover, the progressive approach, which was developed based on a reduced number of experimental points led to an improved prediction in the validation step. This is quite significant as may allow for improved experimental designs, less costly than full factorial ones. Probability model proved to be concordant in 91% of the calibration set observations. Even though the validation set included conditions around the growth/no-growth interface, there was a 100% agreement in the predictions from the data set (n = 16, cut off = 0.5) after 60 days. Similarly, the probability for AF presence was rightly predicted in 89% of the cases. According to our results EC maximum aflatoxin levels would be surpassed in a period as short as 1 month if pistachio nuts reach 20 °C, unless %mc is ≤10%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Modelling microbial metabolic rewiring during growth in a complex medium.

    Science.gov (United States)

    Fondi, Marco; Bosi, Emanuele; Presta, Luana; Natoli, Diletta; Fani, Renato

    2016-11-24

    In their natural environment, bacteria face a wide range of environmental conditions that change over time and that impose continuous rearrangements at all the cellular levels (e.g. gene expression, metabolism). When facing a nutritionally rich environment, for example, microbes first use the preferred compound(s) and only later start metabolizing the other one(s). A systemic re-organization of the overall microbial metabolic network in response to a variation in the composition/concentration of the surrounding nutrients has been suggested, although the range and the entity of such modifications in organisms other than a few model microbes has been scarcely described up to now. We used multi-step constraint-based metabolic modelling to simulate the growth in a complex medium over several time steps of the Antarctic model organism Pseudoalteromonas haloplanktis TAC125. As each of these phases is characterized by a specific set of amino acids to be used as carbon and energy source our modelling framework describes the major consequences of nutrients switching at the system level. The model predicts that a deep metabolic reprogramming might be required to achieve optimal biomass production in different stages of growth (different medium composition), with at least half of the cellular metabolic network involved (more than 50% of the metabolic genes). Additionally, we show that our modelling framework is able to capture metabolic functional association and/or common regulatory features of the genes embedded in our reconstruction (e.g. the presence of common regulatory motifs). Finally, to explore the possibility of a sub-optimal biomass objective function (i.e. that cells use resources in alternative metabolic processes at the expense of optimal growth) we have implemented a MOMA-based approach (called nutritional-MOMA) and compared the outcomes with those obtained with Flux Balance Analysis (FBA). Growth simulations under this scenario revealed the deep impact of

  20. Developing a dynamic growth model for teak plantations in India

    Directory of Open Access Journals (Sweden)

    Vindhya Prasad Tewari

    2014-05-01

    Full Text Available Background Tectona grandis (teak is one of the most important tropical timber speciesoccurring naturally in India. Appropriate growth models, based on advanced modeling techniques,are not available but are necessary for the successful management of teak stands in the country.Long-term forest planning requires mathematical models, and the principles of Dynamical SystemTheory provide a solid foundation for these. Methods The state-space approach makes it possible to accommodate disturbances and avarying environment. In this paper, an attempt has been made to develop a dynamic growthmodel based on the limited data, consisting of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India. Results A biologically consistent whole-stand growth model has been presented which uses thestate-space approach for modelling rates of change of three state-variables viz., dominant height,stems per hectare and stand basal area. Moreover, the model includes a stand volume equationas an output function to estimate this variable at any point in time. Transition functions werefitted separately and simultaneously. Moreover, a continuous autoregressive error structure isalso included in the modelling process. For fitting volume equation, generalized method of moments was used to get efficient parameter estimates under heteroscedastic conditions. Conclusions A simple model containing few free parameters performed well and is particularlywell suited to situations where available data is scarce.

  1. Modelling the interaction between flooding events and economic growth

    Directory of Open Access Journals (Sweden)

    J. Grames

    2015-06-01

    Full Text Available Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014. These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  2. Percentile growth charts for biomedical studies using a porcine model.

    Science.gov (United States)

    Corson, A M; Laws, J; Laws, A; Litten, J C; Lean, I J; Clarke, L

    2008-12-01

    Increasing rates of obesity and heart disease are compromising quality of life for a growing number of people. There is much research linking adult disease with the growth and development both in utero and during the first year of life. The pig is an ideal model for studying the origins of developmental programming. The objective of this paper was to construct percentile growth curves for the pig for use in biomedical studies. The body weight (BW) of pigs was recorded from birth to 150 days of age and their crown-to-rump length was measured over the neonatal period to enable the ponderal index (PI; kg/m3) to be calculated. Data were normalised and percentile curves were constructed using Cole's lambda-mu-sigma (LMS) method for BW and PI. The construction of these percentile charts for use in biomedical research will allow a more detailed and precise tracking of growth and development of individual pigs under experimental conditions.

  3. The impact of the British model on economic growth

    Directory of Open Access Journals (Sweden)

    Simon György Jr.

    2007-01-01

    Full Text Available The paper is searching for an answer to the question how the British model affected economic development in its mother country, the United Kingdom. The statistical analysis, models of mathematical economics and econometric investigation make it probable to conclude that there was a substantial difference in success between the Thatcherite and the Blairite economic policies; the latter proved more effective. It is particularly remarkable that the Blairite model, connecting privatization with a successful employment policy, reduced unemployment and social sensitivity, has not only speeded up economic growth but also improved economic equilibrium, curtailing, among others, the budget deficit.

  4. Growth and convergence in a two-region model

    DEFF Research Database (Denmark)

    Funke, Michael; Strulik, Holger

    2005-01-01

    The paper discusses the impact and implications of Korean unification by setting up a two-region endogenous growth model. The numerical solutions are based on the formal analytical model, and have been calibrated so that they reflect the observed features of the North and South Korean economies....... The numerical solutions provide evidence about the speed of convergence and the large amount of interregional transfers that are required to make the North Korean economy economically viable. We also model the impact of foreign aid, migration and borrowing abroad for the transition process...

  5. Correcting Model Fit Criteria for Small Sample Latent Growth Models with Incomplete Data

    Science.gov (United States)

    McNeish, Daniel; Harring, Jeffrey R.

    2017-01-01

    To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…

  6. Mathematical modeling of solid cancer growth with angiogenesis

    Directory of Open Access Journals (Sweden)

    Yang Hyun M

    2012-02-01

    Full Text Available Abstract Background Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems. Methods We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms. Results The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer. Conclusions Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues displaying an efficient (numerically and functionally reparative or regenerative mechanism.

  7. Growth of the modeling of Escherichia coli in milk

    International Nuclear Information System (INIS)

    Mbangu, N.; Malakasa, M.; Ekalakala, T.; N'dendje, B.; Abedi, M.; Muzembe, K.; Bandejile, M.

    2010-01-01

    Escherichia coli is a contaminant potential of milk. Collective toxinfections implying the bacterium and milk were announced of share the world. However, no identified work proposed a mathematical expression of the growth of the bacterium in milk. The interest of such a step is however undeniable. Under specified conditions, the mathematical formulation of the growth provides the means of considering the population bacterial when the analyses cannot be carried out. It also makes it possible to test the negatiable instruments of the unfavourable circumstances supposed suchas chain breakage of cold on the development of the microbial charge. This work established mathematical expressions of the growth of Escherichia coli in milk for part of its range of temperature of growth suboptimale i.e. between 25 and 35 Deg C. It was not possible to generalize these expressions for predictions on all the range of temperature suboptimal. This work also made it possible to highlight a deviation of the behavoir of the bacterium compared to the model of Ratkowsky without however that it is not possible to provide a univocal explanantion of it. Varoius assumptions were put forth referring to either a singularity of the behavior of the bacterium or a skew of the value of its minimal temperature of growth

  8. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  9. Comparing observed and modelled growth of larval herring (Clupea harengusz: Testing individual-based model parameterisations

    Directory of Open Access Journals (Sweden)

    Helena M. Hauss

    2009-10-01

    Full Text Available Experiments that directly test larval fish individual-based model (IBM growth predictions are uncommon since it is difficult to simultaneously measure all relevant metabolic and behavioural attributes. We compared observed and modelled somatic growth of larval herring (Clupea harengus in short-term (50 degree-day laboratory trials conducted at 7 and 13°C in which larvae were either unfed or fed ad libitum on different prey sizes (~100 to 550 µm copepods, Acartia tonsa. The larval specific growth rate (SGR, % DW d-1 was generally overestimated by the model, especially for larvae foraging on large prey items. Model parameterisations were adjusted to explore the effect of 1 temporal variability in foraging of individuals, and 2 reduced assimilation efficiency due to rapid gut evacuation at high feeding rates. With these adjustments, the model described larval growth well across temperatures, prey sizes, and larval sizes. Although the experiments performed verified the growth model, variability in growth and foraging behaviour among larvae shows that it is necessary to measure both the physiology and feeding behaviour of the same individual. This is a challenge for experimentalists but will ultimately yield the most valuable data to adequately model environmental impacts on the survival and growth of marine fish early life stages.

  10. Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models.

    Science.gov (United States)

    Lock, Eric F; Kohli, Nidhi; Bose, Maitreyee

    2017-11-17

    Piecewise growth mixture models are a flexible and useful class of methods for analyzing segmented trends in individual growth trajectory over time, where the individuals come from a mixture of two or more latent classes. These models allow each segment of the overall developmental process within each class to have a different functional form; examples include two linear phases of growth, or a quadratic phase followed by a linear phase. The changepoint (knot) is the time of transition from one developmental phase (segment) to another. Inferring the location of the changepoint(s) is often of practical interest, along with inference for other model parameters. A random changepoint allows for individual differences in the transition time within each class. The primary objectives of our study are as follows: (1) to develop a PGMM using a Bayesian inference approach that allows the estimation of multiple random changepoints within each class; (2) to develop a procedure to empirically detect the number of random changepoints within each class; and (3) to empirically investigate the bias and precision of the estimation of the model parameters, including the random changepoints, via a simulation study. We have developed the user-friendly package BayesianPGMM for R to facilitate the adoption of this methodology in practice, which is available at https://github.com/lockEF/BayesianPGMM . We describe an application to mouse-tracking data for a visual recognition task.

  11. Orchestrated structure evolution: modeling growth-regulated nanomanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Shaghayegh; Boehringer, Karl F [Department of Electrical Engineering, University of Washington, Seattle, WA 98195-2500 (United States); Kitayaporn, Sathana; Schwartz, Daniel T, E-mail: karlb@washington.edu [Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2500 (United States)

    2011-04-22

    Orchestrated structure evolution (OSE) is a scalable manufacturing method that combines the advantages of top-down (tool-directed) and bottom-up (self-propagating) approaches. The method consists of a seed patterning step that defines where material nucleates, followed by a growth step that merges seeded islands into the final patterned thin film. We develop a model to predict the completed pattern based on a computationally efficient approximate Green's function solution of the diffusion equation plus a Voronoi diagram based approach that defines the final grain boundary structure. Experimental results rely on electron beam lithography to pattern the seeds, followed by the mass transfer limited growth of copper via electrodeposition. The seed growth model is compared with experimental results to quantify nearest neighbor seed-to-seed interactions as well as how seeds interact with the pattern boundary to impact the local growth rate. Seed-to-seed and seed-to-pattern interactions are shown to result in overgrowth of seeds on edges and corners of the shape, where seeds have fewer neighbors. We explore how local changes to the seed location can be used to improve the patterning quality without increasing the manufacturing cost. OSE is shown to enable a unique set of trade-offs between the cost, time, and quality of thin film patterning.

  12. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  13. Percolation model for growth rates of aggregates and its application for business firm growth.

    Science.gov (United States)

    Fu, Dongfeng; Buldyrev, Sergey V; Salinger, Michael A; Stanley, H Eugene

    2006-09-01

    Motivated by recent empirical studies of business firm growth, we develop a dynamic percolation model which captures some of the features of the economical system--i.e., merging and splitting of business firms--represented as aggregates on a d-dimensional lattice. We find the steady-state distribution of the aggregate size and explore how this distribution depends on the model parameters. We find that at the critical threshold, the standard deviation of the aggregate growth rates, sigma, increases with aggregate size S as sigma approximately S(beta), where beta can be explained in terms of the connectedness length exponent nu and the fractal dimension d(f), with beta=1(2nud(f)) approximately 0.20 for d=2 and 0.125 for d-->infinity. The distributions of aggregate growth rates have a sharp peak at the center and pronounced wings extending over many standard deviations, giving the distribution a tent-shape form--the Laplace distribution. The distributions for different aggregate sizes scaled by their standard deviations collapse onto the same curve.

  14. Mathematical model for Trametes versicolor growth in submerged cultivation.

    Science.gov (United States)

    Tisma, Marina; Sudar, Martina; Vasić-Racki, Durda; Zelić, Bruno

    2010-08-01

    Trametes versicolor is a white-rot fungus known as a producer of extracellular enzymes such as laccase, manganese-peroxidase, and lignin-peroxidase. The production of these enzymes requires detailed knowledge of the growth characteristics and physiology of the fungus. Submerged cultivations of T. versicolor on glucose, fructose, and sucrose as sole carbon sources were performed in shake flasks. Sucrose hydrolysis catalyzed by the whole cells of T. versicolor was considered as one-step enzymatic reaction described with Michaelis-Menten kinetics. Kinetic parameters of invertase-catalyzed sucrose hydrolysis were estimated (K (m) = 7.99 g dm(-3) and V (m) = 0.304 h(-1)). Monod model was used for description of kinetics of T. versicolor growth on glucose and fructose as sole carbon sources. Growth associated model parameters were estimated from the experimental results obtained by independent experiments (mu(G)(max) = 0.14 h(-1), K(G)(S) = 8.06 g dm(-3), mu(F)(max) = 0.37 h(-1) and K(F)(S) = 54.8 g dm(-3)). Developed mathematical model is in good agreement with the experimental results.

  15. Board-Foot and Diameter Growth of Yellow-Poplar After Thinning

    Science.gov (United States)

    Donald E. Beck; Lino Della-Bianca

    1975-01-01

    Board-foot growth and yield of thinned yellow-poplar stands (Liriodendron tulipifera L.)is related to age, site index, residual basal area, and residual quadratic mean stand diameter after thinning. Diameter growth of individual trees is increased considerably by thinning. Equations describing growth and yield are based on data from 141 natura1 yellow-poplar stands in...

  16. Computational Modelling of Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling.

    Science.gov (United States)

    Szymańska, Zuzanna; Cytowski, Maciej; Mitchell, Elaine; Macnamara, Cicely K; Chaplain, Mark A J

    2017-06-20

    In this paper, we present two mathematical models related to different aspects and scales of cancer growth. The first model is a stochastic spatiotemporal model of both a synthetic gene regulatory network (the example of a three-gene repressilator is given) and an actual gene regulatory network, the NF-[Formula: see text]B pathway. The second model is a force-based individual-based model of the development of a solid avascular tumour with specific application to tumour cords, i.e. a mass of cancer cells growing around a central blood vessel. In each case, we compare our computational simulation results with experimental data. In the final discussion section, we outline how to take the work forward through the development of a multiscale model focussed at the cell level. This would incorporate key intracellular signalling pathways associated with cancer within each cell (e.g. p53-Mdm2, NF-[Formula: see text]B) and through the use of high-performance computing be capable of simulating up to [Formula: see text] cells, i.e. the tissue scale. In this way, mathematical models at multiple scales would be combined to formulate a multiscale computational model.

  17. Software reliability growth models with normal failure time distributions

    International Nuclear Information System (INIS)

    Okamura, Hiroyuki; Dohi, Tadashi; Osaki, Shunji

    2013-01-01

    This paper proposes software reliability growth models (SRGM) where the software failure time follows a normal distribution. The proposed model is mathematically tractable and has sufficient ability of fitting to the software failure data. In particular, we consider the parameter estimation algorithm for the SRGM with normal distribution. The developed algorithm is based on an EM (expectation-maximization) algorithm and is quite simple for implementation as software application. Numerical experiment is devoted to investigating the fitting ability of the SRGMs with normal distribution through 16 types of failure time data collected in real software projects

  18. A new growth model for the Russian economy1

    Directory of Open Access Journals (Sweden)

    Alexey Kudrin

    2015-03-01

    Full Text Available The problems underlying the current slowdown of the Russian economy are of a persistent nature and cannot be resolved with simple measures such as a softer monetary or fiscal policy. The fundamen- tal reason for these problems is the weak market environment dominated by public and quasi-public companies. A new growth model should be based upon strong incentive for the business, as well as the government regulation system, to improve efficiency. This article defines the main steps to be taken in building such a model.

  19. Parameterization effects in nonlinear models to describe growth curves

    Directory of Open Access Journals (Sweden)

    Tales Jesus Fernandes

    2015-10-01

    Full Text Available Various parameterizations of nonlinear models are common in the literature.In addition to complicating the understanding of these models, these parameterizations affect the nonlinearity measures and subsequently the inferences about the parameters. Bates and Watts (1980 quantified model nonlinearity using the geometric concept of curvature. Here we aimed to evaluate the three most common parameterizations of the Logistic and Gompertz nonlinear models with a focus on their nonlinearity and how this might affect inferences, and to establish relations between the parameters under the various expressions of the models. All parameterizations were adjusted to the growth data from pequi fruit. The intrinsic and parametric curvature described by Bates and Watts were calculated for each parameter. The choice of parameterization affects the nonlinearity measures, thus influencing the reliability and inferences about the estimated parameters. The most used methodologies presented the highest distance from linearity, showing the importance of analyzing these measures in any growth curve study. We propose that the parameterization in which the estimate of B is the abscissa of the inflection point should be used because of the lower deviations from linearity and direct biological interpretation for all parameters.

  20. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    catabolism (fission and the decrease through neutral lipid exit from pre-existing droplets) to reproduce their size reduction observed in lipolytic conditions. The results suggest that each single process, considered alone, can not be considered the only responsible for the size variation observed, but more than one of them, playing together, can quite well reproduce the experimental data. - Highlights: The growth and fission of the lipid droplets (LDs) were computationally simulated. To write and test the growth and fission models more than 110,000 LDs were measured. The usual processes considered alone, are not able to justify the experimental data. Some processes, playing together, can explain the growth and fission

  1. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    catabolism (fission and the decrease through neutral lipid exit from pre-existing droplets) to reproduce their size reduction observed in lipolytic conditions. The results suggest that each single process, considered alone, can not be considered the only responsible for the size variation observed, but more than one of them, playing together, can quite well reproduce the experimental data. - Highlights: The growth and fission of the lipid droplets (LDs) were computationally simulated. To write and test the growth and fission models more than 110,000 LDs were measured. The usual processes considered alone, are not able to justify the experimental data. Some processes, playing together, can explain the growth and fission.

  2. Multiphase modelling of vascular tumour growth in two spatial dimensions

    KAUST Repository

    Hubbard, M.E.

    2013-01-01

    In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model.Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters is investigated. © 2012 Elsevier Ltd.

  3. Media alert in an SIS epidemic model with logistic growth.

    Science.gov (United States)

    Wang, Lianwen; Zhou, Da; Liu, Zhijun; Xu, Dashun; Zhang, Xinan

    2017-03-01

    In general, media coverage would not be implemented unless the number of infected cases reaches some critical number. To reflect this feature, we incorporate the media effect and a critical number of infected cases into the disease transmission rate and consider an susceptible-infected-susceptible epidemic model with logistic growth. Our model analysis shows that early media alert and strong media effects are preferable to decrease the numbers of infected cases at endemic equilibria. Furthermore, we noticed that the model may have up to three endemic equilibria and bi-stability can occur in a threshold interval for the critical number. Note that the interval depends on parameters for the focal disease and the media effect. It is possible to roughly estimate the interval for re-emerging diseases in a given region. Therefore, the result could be useful to health policymakers. Global stability is also obtained when the model admits a unique endemic equilibrium.

  4. POPULATION GROWTH AND PREFERENCE CHANGE IN A GENERALIZED SOLOW GROWTH MODEL WITH GENDER TIME DISTRIBUTIONS

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2016-09-01

    Full Text Available The study builds a model of dynamic interactions between the birth rate, the mortality rate, the population, wealth accumulation, time distribution between work, leisure and children caring, habit formation and preference change. The production technology and markets are built on the Solow growth model. We base our modeling the population dynamics on the Haavelmo population model and the Barro-Becker fertility choice model. This study takes account of habit formation and preference change. Although it is influenced by the Ramsey growth theory with time preference and habit formation, it uses Zhang’s approach to the household with habit formation and preference change. We synthesize different dynamic forces in a compact framework, using the utility function proposed by Zhang. Analytically, we focus on transitional processes as well as economic equilibrium. As the economic system is given by autonomous nonlinear differential equations, it is not easy to analyze its behavior. We simulate the model to demonstrate the existence of an equilibrium point and plot the motion of the dynamic system. We examine the effects of changes in weights given to the habit stock of children, the wife’s wage rate having negative impact on the propensity to have children, the wife weighing less the habit stock of leisure time, the wife’s habit stock of leisure time having negative impact on the husband’s propensity to use leisure time, the wife’s wage rate having negative impact on the husband’s propensity to use leisure time, woman’s human capital being improved, a rise in the total factor productivity, and the mother spending more time on each child fostering.

  5. Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model

    Directory of Open Access Journals (Sweden)

    Rui Chen

    2016-03-01

    Full Text Available Due to the extensive application of Al-Si alloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and (Al+Si eutectic, is of great importance to control the desirable microstructure, so as to modify the performance of castings. Since previous major themes of microstructural simulation are dendrite and regular eutectic growth, few efforts have been paid to simulate the irregular eutectic growth. Therefore, a multiphase cellular automaton (CA model is developed and applied to simulate the time-dependent Al-Si irregular eutectic growth. Prior to model establishment, related experiments were carried out to investigate the influence of cooling rate and Sr modification on the growth of eutectic Si. This CA model incorporates several aspects, including growth algorithms and nucleation criterion, to achieve the competitive and cooperative growth mechanism for nonfaceted-faceted Al-Si irregular eutectic. The growth kinetics considers thermal undercooling, constitutional undercooling, and curvature undercooling, as well as the anisotropic characteristic of eutectic Si growth. The capturing rule takes into account the effects of modification on the silicon growth behaviors. The simulated results indicate that for unmodified alloy, the higher eutectic undercooling results in the higher eutectic growth velocity, and a more refined eutectic microstructure as well as narrower eutectic lamellar spacing. For modified alloy, the eutectic silicon tends to be obvious fibrous morphology and the morphology of eutectic Si is determined by both chemical modifier and cooling rate. The predicted microstructure of Al-7Si alloy under different solidification conditions shows that this proposed model can successfully reproduce both dendrite and eutectic microstructures.

  6. On the exponent in the Von Bertalanffy growth model

    Directory of Open Access Journals (Sweden)

    Katharina Renner-Martin

    2018-01-01

    Full Text Available Von Bertalanffy proposed the differential equation m′(t = p × m(ta − q × m(t for the description of the mass growth of animals as a function m(t of time t. He suggested that the solution using the metabolic scaling exponent a = 2/3 (Von Bertalanffy growth function VBGF would be universal for vertebrates. Several authors questioned universality, as for certain species other models would provide a better fit. This paper reconsiders this question. Based on 60 data sets from literature (37 about fish and 23 about non-fish species it optimizes the model parameters, in particular the exponent 0 ≤ a < 1, so that the model curve achieves the best fit to the data. The main observation of the paper is the large variability in the exponent, which can vary over a very large range without affecting the fit to the data significantly, when the other parameters are also optimized. The paper explains this by differences in the data quality: variability is low for data from highly controlled experiments and high for natural data. Other deficiencies were biologically meaningless optimal parameter values or optimal parameter values attained on the boundary of the parameter region (indicating the possible need for a different model. Only 11 of the 60 data sets were free of such deficiencies and for them no universal exponent could be discerned.

  7. Analysis of ductile crack growth by a simple damage model

    International Nuclear Information System (INIS)

    Zhang, Ch.; Gross, D.

    1993-01-01

    A strip damage-zone model of the Dugdale-Barenblatt-model type is presented in this paper for analyzing crack growth in ductile materials with damage evolution. In particular, a semi-infinite Mode-1 crack in plane stress or plane strain is considered. The damage is assumed to be present in form of dispersed microvoids, which are localized into a narrow strip direct ahead of a crack-tip. This configuration approximates the real situation naturally arising due to the high stress and strain concentrations in the proximity of the crack-tip. A simple damage model of the Gurson-model type is developed for uniaxial tension to describe the macroscopic properties of the strip damage-zone. Under small-scale yielding and small-scale damage conditions, a system of nonlinear integral equations for the plastic strain and the length of the damage-zone is derived. Numerical results are presented and discussed for the crack opening displacement, the stress and damage distribution within the plastic/damage zone, and the crack resistance curve. Special attention is devoted to reveal the effect of damage evolution on the ductile crack growth

  8. A mathematical model of tumour angiogenesis: growth, regression and regrowth.

    Science.gov (United States)

    Vilanova, Guillermo; Colominas, Ignasi; Gomez, Hector

    2017-01-01

    Cancerous tumours have the ability to recruit new blood vessels through a process called angiogenesis. By stimulating vascular growth, tumours get connected to the circulatory system, receive nutrients and open a way to colonize distant organs. Tumour-induced vascular networks become unstable in the absence of tumour angiogenic factors (TAFs). They may undergo alternating stages of growth, regression and regrowth. Following a phase-field methodology, we propose a model of tumour angiogenesis that reproduces the aforementioned features and highlights the importance of vascular regression and regrowth. In contrast with previous theories which focus on vessel remodelling due to the absence of flow, we model an alternative regression mechanism based on the dependency of tumour-induced vascular networks on TAFs. The model captures capillaries at full scale, the plastic dynamics of tumour-induced vessel networks at long time scales, and shows the key role played by filopodia during angiogenesis. The predictions of our model are in agreement with in vivo experiments and may prove useful for the design of antiangiogenic therapies. © 2017 The Author(s).

  9. Modeling of microbiological growth in the capillary fringe

    Science.gov (United States)

    Hron, Pavel; Bastian, Peter; Ippisch, Olaf; Jost, Daniel

    2013-04-01

    The capillary fringe (CF) is a highly dynamic soil zone, which is located above the groundwater level. It results from the capillary water rise into the unsaturated soil zone and therewith offers a broad range of growth conditions for microorganisms. These conditions change from aerobic (good oxygen supply) at the top of the CF to anaerobic (no available oxygen) at the bottom of the CF and under the water table. In recent years, a lot of earth scientists and microbiologists worked together to deepen the understanding of the physical, geochemical and biological processes in the CF. But there is still a lack in knowledge on both sides, since the water content changes in the CF from saturated to almost unsaturated which hampers determination of biological parameters as well as modeling. In the DFG-project "Dynamic Capillary Fringes - A Multidisciplinary Approach (DyCap)" researchers started to simulate growth of microorganisms in the CF. The biological parameters like growth rates, saturation constants for substrate and oxygen, yield coefficients and maintenance rate were determined in batch assays using parameter estimation. A flow through cell filled with fine sand was used to establish a CF and to investigate the growth of microorganisms in this zone. In order to allow non-invasive visualization and quantification, facultative anaerobic Escherichia coli) cells which can grow under aerobic and anaerobic conditions and which produce a green fluorescent protein were used. We developed a numerical simulator for multiphase multicomponent reactive flow in porous media, which is able to consider simultaneously multiphase flow, component transport, phase exchange and microbiological processes. This tool was used to simulate the E. coli growth in the CF with nutrient supply under steady-state condition and the results are finally compared to the experimental data.

  10. Polarity-Driven Geometrical Cluster Growth Model of Budding Yeast

    Science.gov (United States)

    Cabral, Reniel B.; Lim, May T.

    We present a polarity-driven activator-inhibitor model of budding yeast in a two-dimensional medium wherein impeding metabolites secretion (or growth inhibitors) and growth directionality are determined by the local nutrient level. We found that colony size and morphological features varied with nutrient concentration. A branched-type morphology is associated with high impeding metabolite concentration together with a high fraction of distal budding, while opposite conditions (low impeding metabolite concentration, high fraction of proximal budding) promote Eden-type patterns. Increasing the anisotropy factor (or polarity) produced other spatial patterns akin to the electrical breakdown under varying electric field. Rapid changes in the colony morphology, which we conjecture to be equivalent to a transition from an inactive quiescent state to an active budding state, appeared when nutrients were limited.

  11. Dynamic density functional theory of solid tumor growth: Preliminary models

    Directory of Open Access Journals (Sweden)

    Arnaud Chauviere

    2012-03-01

    Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.

  12. Phase Characterization of Cucumber Growth: A Chemical Gel Model

    Directory of Open Access Journals (Sweden)

    Bo Li

    2016-01-01

    Full Text Available Cucumber grows with complex phenomena by changing its volume and shape, which is not fully investigated and challenges agriculture and food safety industry. In order to understand the mechanism and to characterize the growth process, the cucumber is modeled as a hydrogel in swelling and its development is studied in both preharvest and postharvest stages. Based on thermodynamics, constitutive equations, incorporating biological quantities, are established. The growth behavior of cucumber follows the classic theory of continuous or discontinuous phase transition. The mechanism of bulged tail in cucumber is interpreted by phase coexistence and characterized by critical conditions. Conclusions are given for advances in food engineering and novel fabrication techniques in mechanical biology.

  13. A model of northern pintail productivity and population growth rate

    Science.gov (United States)

    Flint, Paul L.; Grand, James B.; Rockwell, Robert F.

    1998-01-01

    Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokwim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (X) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (X = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on X for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.

  14. Finite size scaling study of a two parameter percolation model: Constant and correlated growth

    Science.gov (United States)

    Roy, Bappaditya; Santra, S. B.

    2018-02-01

    A new percolation model of enhanced parameter space with nucleation and growth is developed taking the initial seed concentration ρ and a growth parameter g as two tunable parameters. Percolation transition is determined by the final static configurations of spanning clusters once taking uniform growth probability for all the clusters and then taking a cluster size dependent dynamic growth probability. The uniform growth probability remains constant over time and leads to a constant growth model whereas the dynamically varying growth probability leads to a correlated growth model. In the first case, the growth of a cluster will encounter partial hindrance due to the presence of other clusters whereas in the second case the growth of a larger cluster will be further suppressed in comparison to the growth of smaller clusters. A finite size scaling theory for percolation transition is developed and numerically verified for both the models. The scaling functions are found to depend on both g and ρ. At the critical growth parameter gc, the values of the critical exponents are found to be same as that of the original percolation at all values of ρ for the constant growth model whereas in the case of correlated growth model the scaling behavior deviates from ordinary percolation in the dilute limit of ρ. The constant growth model then belongs to the same universality class of percolation for a wide range of ρ whereas the correlated growth model displays a continuously varying universality class as ρ decreases towards zero.

  15. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400 Havana (Cuba); Caleyo, F. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)]. E-mail: fcaleyo@gmail.com; Alfonso, L. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Rivas, D. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Hallen, J.M. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2007-02-15

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion.

  16. Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model.

    Science.gov (United States)

    Iranmanesh, Faezeh; Nazari, Mohammad Ali

    2017-08-01

    Tumor growth being a multistage process has been investigated from different aspects. In the present study, an attempt is made to represent a constitutive-structure-based model of avascular tumor growth in which the effects of tensile stresses caused by collagen fibers are considered. Collagen fibers as a source of anisotropy in the structure of tissue are taken into account using a continuous fiber distribution formulation. To this end, a finite element modeling is implemented in which a neo-Hookean hyperelastic material is assigned to the tumor and its surrounding host. The tumor is supplied with a growth term. The growth term includes the effect of parameters such as nutrient concentration on the tumor growth and the tumor's solid phase content in the formulation. Results of the study revealed that decrease of solid phase is indicative of decrease in growth rate and the final steady-state value of tumor's radius. Moreover, fiber distribution affects the final shape of the tumor, and it could be used to control the shape and geometry of the tumor in complex morphologies. Finally, the findings demonstrated that the exerted stresses on the tumor increase as time passes. Compression of tumor cells leads to the reduction of tumor growth rate until it gradually reaches an equilibrium radius. This finding is in accordance with experimental data. Hence, this formulation can be deployed to evaluate both the residual stresses induced by growth and the mechanical interactions with the host tissue.

  17. Modeling biological tissue growth: discrete to continuum representations.

    Science.gov (United States)

    Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A

    2013-09-01

    There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.

  18. The boundary for growth of Zygosaccharomyces bailii in acidified products described by models for time to growth and probability of growth.

    Science.gov (United States)

    Jenkins, P; Poulos, P G; Cole, M B; Vandeven, M H; Legan, J D

    2000-02-01

    Models to predict days to growth and probability of growth of Zygosaccharomyces bailii in high-acid foods were developed, and the equations are presented here. The models were constructed from measurements of growth of Z. bailii using automated turbidimetry over a 29-day period at various pH, NaCl, fructose, and acetic acid levels. Statistical analyses were carried out using Statistical Analysis Systems LIFEREG procedures, and the data were fitted to log-logistic models. Model 1 predicts days to growth based on two factors, combined molar concentration of salt plus sugar and undissociated acetic acid. This model allows a growth/no-growth boundary to be visualized. The boundary is comparable with that established by G. Tuynenburg Muys (Process Biochem. 6:25-28, 1971), which still forms the basis of industry assumptions about the stability of acidic foods. Model 2 predicts days to growth based on the four independent factors of salt, sugar, acetic acid, and pH levels and is, therefore, much more useful for product development. Validation data derived from challenge studies in retail products from the U.S. market are presented for Model 2, showing that the model gives reliable, fail-safe predictions and is suitable for use in predicting growth responses of Z. bailii in high-acid foods. Model 3 predicts probability of growth of Z. bailii in 29 days. This model is most useful for spoilage risk assessment. All three models showed good agreement between predictions and observed values for the underlying data.

  19. Fluctuation of Parameters in Tumor Cell Growth Model

    Science.gov (United States)

    Ai, Bao-Quan; Wang, Xian-Ju; Liu, Guo-Tao; Liu, Liang-Gang

    2003-07-01

    We study the steady state properties of a logistic growth model in the presence of Gaussian white noise. Based on the corresponding Fokker-Planck equation the steady state solution of the probability distribution function and its extrema have been investigated. It is found that the fluctuation of the tumor birth rate reduces the population of the cells while the fluctuation of predation rate can prevent the population of tumor cells from going into extinction. Noise in the system can induce the phase transition. The project supported by National Natural Science Foundation of China under Grant No. 10275099 and Natural Science Foundation of Guangdong Province of China under Grant Nos. 021707 and 001182

  20. A mean-field game economic growth model

    KAUST Repository

    Gomes, Diogo A.

    2016-08-05

    Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks to maximize his/her utility by taking into account statistical data about the whole population. The individual actions drive the evolution of the players, and a market-clearing condition determines the relative price of capital and consumer goods. We study the existence and uniqueness of optimal strategies of the agents and develop numerical methods to compute these strategies and the equilibrium price.

  1. BUILDING NEW BUSINESS MODELS FOR SUSTAINABLE GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Taco C. R. van Someren

    2011-06-01

    Full Text Available Considered are issues of methodology and methods, as well as ideology of strategic innovation. Using the tools of this approach is offered as mechanisms to develop and build business models for sustainable socio-economic economic growth and development of different regions. The connection between key problems of sustainable development and management policy of different economic entities is studied. The consultancy company Ynnovate’s experience in addressing these issues in the EU and China is shown. It is offered to the use its experience and tools in exploring the areas of cross-border economic cooperation between territories of the Russian Far East and China

  2. A network growth model based on the evolutionary ultimatum game

    International Nuclear Information System (INIS)

    Deng, L L; Zhou, G G; Cai, J H; Wang, C; Tang, W S

    2012-01-01

    In this paper, we provide a network growth model with incorporation into the ultimatum game dynamics. The network grows on the basis of the payoff-oriented preferential attachment mechanism, where a new node is added into the network and attached preferentially to nodes with higher payoffs. The interplay between the network growth and the game dynamics gives rise to quite interesting dynamical behaviors. Simulation results show the emergence of altruistic behaviors in the ultimatum game, which is affected by the growing network structure. Compared with the static counterpart case, the levels of altruistic behaviors are promoted. The corresponding strategy distributions and wealth distributions are also presented to further demonstrate the strategy evolutionary dynamics. Subsequently, we turn to the topological properties of the evolved network, by virtue of some statistics. The most studied characteristic path length and the clustering coefficient of the network are shown to indicate their small-world effect. Then the degree distributions are analyzed to clarify the interplay of structure and evolutionary dynamics. In particular, the difference between our growth network and the static counterpart is revealed. To explain clearly the evolved networks, the rich-club ordering and the assortative mixing coefficient are exploited to reveal the degree correlation. (paper)

  3. Numerical resolution of a model of tumour growth.

    Science.gov (United States)

    Muñoz, Ana I

    2016-03-01

    We consider and solve numerically a mathematical model of tumour growth based on cancer stem cells (CSC) hypothesis with the aim of gaining some insight into the relation of different processes leading to exponential growth in solid tumours and into the evolution of different subpopulations of cells. The model consists of four hyperbolic equations of first order to describe the evolution of four subpopulations of cells. A fifth equation is introduced to model the evolution of the moving boundary. The coefficients of the model represent the rates at which reactions occur. In order to integrate numerically the four hyperbolic equations, a formulation in terms of the total derivatives is posed. A finite element discretization is applied to integrate the model equations in space. Our numerical results suggest the existence of a pseudo-equilibrium state reached at the early stage of the tumour, for which the fraction of CSC remains small. We include the study of the behaviour of the solutions for longer times and we obtain that the solutions to the system of partial differential equations stabilize to homogeneous steady states whose values depend only on the values of the parameters. We show that CSC may comprise different proportions of the tumour, becoming, in some cases, the predominant type of cells within the tumour. We also obtain that possible effective measure to detain tumour progression should combine the targeting of CSC with the targeting of progenitor cells. © The Authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  4. A Proposed Model for Protein Crystal Nucleation and Growth

    Science.gov (United States)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined

  5. The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates

    Science.gov (United States)

    Sivo, Stephen; Fan, Xitao; Witta, Lea

    2005-01-01

    The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…

  6. Parametrizing growth in dark energy and modified gravity models

    Science.gov (United States)

    Resco, Miguel Aparicio; Maroto, Antonio L.

    2018-02-01

    It is well known that an extremely accurate parametrization of the growth function of matter density perturbations in Λ CDM cosmology, with errors below 0.25%, is given by f (a )=Ωmγ(a ) with γ ≃0.55 . In this work, we show that a simple modification of this expression also provides a good description of growth in modified gravity theories. We consider the model-independent approach to modified gravity in terms of an effective Newton constant written as μ (a ,k )=Geff/G and show that f (a )=β (a )Ωmγ(a ) provides fits to the numerical solutions with similar accuracy to that of Λ CDM . In the time-independent case with μ =μ (k ), simple analytic expressions for β (μ ) and γ (μ ) are presented. In the time-dependent (but scale-independent) case μ =μ (a ), we show that β (a ) has the same time dependence as μ (a ). As an example, explicit formulas are provided in the Dvali-Gabadadze-Porrati (DGP) model. In the general case, for theories with μ (a ,k ), we obtain a perturbative expansion for β (μ ) around the general relativity case μ =1 which, for f (R ) theories, reaches an accuracy below 1%. Finally, as an example we apply the obtained fitting functions in order to forecast the precision with which future galaxy surveys will be able to measure the μ parameter.

  7. Models of growth for system of cities : Back to the simple

    OpenAIRE

    RAIMBAULT , Juste

    2016-01-01

    Understanding growth patterns in complex systems of cities through modeling is an intensive branch of quantitative geography. Complex agent-based models have been recently provided promising results by multi-modeling and intensive computation for pattern discovery and calibration. However simple interaction-based extensions of seminal models of growth (such as the Gibrat model) have not yet been tested and calibrated against real datasets. We propose a spatial model of urban growth extending ...

  8. Modelling spatial patterns of urban growth in Africa

    Science.gov (United States)

    Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius

    2013-01-01

    The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552

  9. Short-ranged memory model with preferential growth

    Science.gov (United States)

    Schaigorodsky, Ana L.; Perotti, Juan I.; Almeira, Nahuel; Billoni, Orlando V.

    2018-02-01

    In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.

  10. Surface growth of two kinds of particles deposition models

    International Nuclear Information System (INIS)

    Wei Wang; Cerdeira, H.A.

    1993-10-01

    The surface kinetics with diffusion of two kinds of particles (A and C) deposition models, randomlike and ballisticlike depositing on a (1 + 1)-dimensional substrate, has been studied in this paper. The scaling behaviour of the surface width for these two models is obtained for various deposition probability P of particle C (the probability of particle A, being 1 - P). We found that both models have a scaling behaviour: the surface width growth only depends on the time, W ∼ t α(p) for the early stage and W ∼ t β(P) for the intermediate time, as well as W ∼ L z for the later time with different exponents α(P) and β(P) and z for two models. In addition, there is a phase transition when the saturation surface widths are scaled to the deposition probability P for both models W(t = ∞) ∼ P γ : before and after the transition the scaling exponent γ is different. This transition is interpreted as that there are different morphologic structures when the depositing probability for one kind of particle, particle C, is larger than a critical value P c . (author). 16 refs, 5 figs, 2 tabs

  11. Matrix models and stochastic growth in Donaldson-Thomas theory

    International Nuclear Information System (INIS)

    Szabo, Richard J.; Tierz, Miguel

    2012-01-01

    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  12. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather

  13. Analytical model of stemwood growth in relation to nitrogen supply.

    Science.gov (United States)

    Dewar, Roderick C.; McMurtrie, Ross E.

    1996-01-01

    We derived a simplified version of a previously published process-based model of forest productivity and used it to gain information about the dependence of stemwood growth on nitrogen supply. The simplifications we made led to the following general expression for stemwood carbon (c(w)) as a function of stand age (t), which shows explicitly the main factors involved: c(w)(t) = eta(w)G*/ micro (w)(1 - lambdae(- micro (w)t) - micro (w)e(-lambdat)/lambda - micro (w)), where eta(w) is the fraction of total carbon production (G) allocated to stemwood, G* is the equilibrium value of G at canopy closure, lambda describes the rate at which G approaches G*, and micro (w) is the combined specific rate of stemwood maintenance respiration and senescence. According to this equation, which describes a sigmoidal growth curve, c(w) is zero initially and asymptotically approaches eta(w)G*/ micro (w) with the rate of approach dependent on lambda and micro (w). We used this result to derive corresponding expressions for the maximum mean annual stem-wood volume increment (Y) and optimal rotation length (T). By calculating the quantities G* and lambda (which characterize the variation of carbon production with stand age) as functions of the supply rate of plant-available nitrogen (U(o)), we estimated the responses of Y and T to changes in U(o). For a plausible set of parameter values, as U(o) increased from 50 to 150 kg N ha(-1) year(-1), Y increased approximately linearly from 8 to 25 m(3) ha(-1) year(-1) (mainly as a result of increasing G*), whereas T decreased from 21 to 18 years (due to increasing lambda). The sensitivity of Y and T to other model parameters was also investigated. The analytical model provides a useful basis for examining the effects of changes in climate and nutrient supply on sustainable forest productivity, and may also help in interpreting the behavior of more complex process-based models of forest growth.

  14. Bring in the genes: genetic-ecophysiological modelling of the adaptive response of trees to environmental change. With application to the annual cycle.

    Directory of Open Access Journals (Sweden)

    Koen eKramer

    2015-01-01

    Full Text Available The observation of strong latitudinal clines in the date of bud burst of tree species indicate that populations of these species are genetically adapted to local environmental conditions. Existing phenological models rarely address this clinal variation, so that adaptive responses of tree populations to changes in environmental conditions are not taken into account, e.g. in models on species distributions that use phenological sub-models. This omission of simulating adaptive response in tree models may over- or underestimate the effects of climate change on tree species distributions, as well as the impacts of climate change on tree growth and productivity.Here, we present an approach to model the adaptive response of traits to environmental change based on an integrated process-based eco-physiological and quantitative genetic model of adaptive traits. Thus, the parameter values of phenological traits are expressed in genetic terms (allele effects and - frequencies, number of loci for individual trees. These individual trees thereby differ in their ability to acquire resources, grow and reproduce as described by the process-based model, leading to differential survival. Differential survival is thus the consequence of both differences in parameters values and their genetic composition. By simulating recombination and dispersal of pollen, the genetic composition of the offspring will differ from that of their parents. Over time, the distribution of both trait values and the frequency of the underlying alleles in the population change as a consequence of changes in environmental drivers leading to adaptation of trees to local environmental conditions.This approach is applied to an individual-tree growth model that includes a phenological model on the annual cycle of trees whose parameters are allowed to adapt. An example of the adaptive response of the onset of the growing season across Europe is presented.

  15. Bring in the genes: genetic-ecophysiological modeling of the adaptive response of trees to environmental change. With application to the annual cycle.

    Science.gov (United States)

    Kramer, Koen; van der Werf, Bert; Schelhaas, Mart-Jan

    2014-01-01

    The observation of strong latitudinal clines in the date of bud burst of tree species indicate that populations of these species are genetically adapted to local environmental conditions. Existing phenological models rarely address this clinal variation, so that adaptive responses of tree populations to changes in environmental conditions are not taken into account, e.g., in models on species distributions that use phenological sub-models. This omission of simulating adaptive response in tree models may over- or underestimate the effects of climate change on tree species distributions, as well as the impacts of climate change on tree growth and productivity. Here, we present an approach to model the adaptive response of traits to environmental change based on an integrated process-based eco-physiological and quantitative genetic model of adaptive traits. Thus, the parameter values of phenological traits are expressed in genetic terms (allele effects and-frequencies, number of loci) for individual trees. These individual trees thereby differ in their ability to acquire resources, grow and reproduce as described by the process-based model, leading to differential survival. Differential survival is thus the consequence of both differences in parameters values and their genetic composition. By simulating recombination and dispersal of pollen, the genetic composition of the offspring will differ from that of their parents. Over time, the distribution of both trait values and the frequency of the underlying alleles in the population change as a consequence of changes in environmental drivers leading to adaptation of trees to local environmental conditions. This approach is applied to an individual-tree growth model that includes a phenological model on the annual cycle of trees whose parameters are allowed to adapt. An example of the adaptive response of the onset of the growing season across Europe is presented.

  16. Modelling of frost formation and growth on microstuctured surface

    Science.gov (United States)

    Muntaha, Md. Ali; Haider, Md. Mushfique; Rahman, Md. Ashiqur

    2016-07-01

    Frost formation on heat exchangers is an undesirable phenomenon often encountered in different applications where the cold surface with a temperature below freezing point of water is exposed to humid air. The formation of frost on the heat transfer surface results in an increase in pressure drop and reduction in heat transfer, resulting in a reduction of the system efficiency. Many factors, including the temperature and moisture content of air, cold plate temperature, surface wettability etc., are known to affect frost formation and growth. In our present study, a model for frost growth on rectangular, periodic microgroove surfaces for a range of microgroove dimension (ten to hundreds of micron) is presented. The mathematical model is developed analytically by solving the governing heat and mass transfer equations with appropriate boundary conditions using the EES (Engineering Equation Solver) software. For temperature, a convective boundary condition at frost-air interface and a fixed cold plate surface temperature is used. Instead of considering the saturation or super-saturation models, density gradient at the surface is obtained by considering experimentally-found specified heat flux. The effect of surface wettability is incorporated by considering the distribution of condensed water droplets at the early stage of frost formation. Thickness, density and thermal conductivity of frost layer on the micro-grooved surfaces are found to vary with the dimension of the grooves. The variation of density and thickness of the frost layer on these micro-grooved surfaces under natural convection is numerally determined for a range of plate temperature and air temperature conditions and is compared with experimental results found in the open literature.

  17. Thin film modeling of crystal dissolution and growth in confinement

    Science.gov (United States)

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  18. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  19. Modelling of tomato stem diameter growth rate based on physiological responses

    International Nuclear Information System (INIS)

    Li, L.; Tan, J.; Lv, T.

    2017-01-01

    The stem diameter is an important parameter describing the growth of tomato plant during vegetative growth stage. A stem diameter growth model was developed to predict the response of plant growth under different conditions. By analyzing the diurnal variations of stem diameter in tomato (Solanum lycopersicum L.), it was found that the stem diameter measured at 3:00 am was the representative value as the daily basis of tomato stem diameter. Based on the responses of growth rate in stem diameter to light and temperature, a linear regression relationship was applied to establish the stem diameter growth rate prediction model for the vegetative growth stage in tomato and which was further validated by experiment. The root mean square error (RMSE) and relative error (RE) were used to test the correlation between measured and modeled stem diameter variations. Results showed that the model can be used in prediction for stem diameter growth rate at vegetative growth stage in tomato. (author)

  20. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why

    NARCIS (Netherlands)

    Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Poorter, L.

    2015-01-01

    1.Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. 2.If community-level

  1. Modelling and predicting growth of psychrotolerant pseudomonads in milk and cottage cheese

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Østergaard, Nina Bjerre; Rosshaug, Per Sand

    experiments. Growth of psychrotolerant pseudomonads in heat-treated milk resulted in a bias factor (Bf) of 1.08 and an accuracy factor (Af) of 1.32, whereas the calibrated model for growth rates in cottage cheese with cultured cream dressing and in raw milk resulted in Bf of 1.08 and Af of 1......Mathematical models were developed and evaluated for growth of psychrotolerant pseudomonads in chilled milk and cottage cheese with cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic acid and sorbic acid. A simplified cardinal parameter growth model...... was developed based on growth in broth. Subsequently, the reference growth rate parameter (μref at 25 °C) was fitted to a total of 35 growth rates from cottage cheese with cultured cream dressing. Growth rate models for milk and cottage cheese were evaluated by comparison with data from literature and new...

  2. Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling

    Science.gov (United States)

    Cheong, JeeWon; MacKinnon, David P.; Khoo, Siek Toon

    2010-01-01

    This study investigated a method to evaluate mediational processes using latent growth curve modeling. The mediator and the outcome measured across multiple time points were viewed as 2 separate parallel processes. The mediational process was defined as the independent variable influencing the growth of the mediator, which, in turn, affected the growth of the outcome. To illustrate modeling procedures, empirical data from a longitudinal drug prevention program, Adolescents Training and Learning to Avoid Steroids, were used. The program effects on the growth of the mediator and the growth of the outcome were examined first in a 2-group structural equation model. The mediational process was then modeled and tested in a parallel process latent growth curve model by relating the prevention program condition, the growth rate factor of the mediator, and the growth rate factor of the outcome. PMID:20157639

  3. Liana infestation impacts tree growth in a lowland tropical moist forest

    Directory of Open Access Journals (Sweden)

    G. M. F. van der Heijden

    2009-10-01

    Full Text Available Ecosystem-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first ecosystem-level estimates of the effect of lianas on above-ground productivity of trees. By first constructing a multi-level linear mixed effect model to predict individual-tree diameter growth model using individual-tree growth conditions, we were able to then estimate stand-level above-ground biomass (AGB increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass increment by ~10%, equivalent to 0.51 Mg dry weight ha−1 yr−1 or 0.25 Mg C ha−1 yr−1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha−1 yr−1 or 0.07 Mg C ha−1 yr−1, thus only compensating ~29% of the liana-induced reduction in ecosystem AGB increment. Increasing liana pressure on tropical forests will therefore not only tend to reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  4. NE Ohio Urban Growth Monitoring and Modeling Prototype. Revised

    Science.gov (United States)

    Siebert, Loren; Klosterman, Richard E.

    2001-01-01

    At the University of Akron, Dr. Loren Siebert, Dr. Richard Klosterman, and their graduate research assistants (Jung-Wook Kim, Mohammed Hoque, Aziza Parveen, and Ben Stabler) worked on the integration of remote sensing and GIs-based planning support systems. The primary goal of the project was to develop methods that use remote sensing land cover mapping and GIs-based modeling to monitor and project urban growth and farmland loss in northeast Ohio. Another research goal has been to use only GIS data that are accessible via the World Wide Web, to determine whether Ohio's small counties and townships that do not currently have parcel-level GIS systems can apply these techniques. The project was jointly funded by NASA and USGS OhioView grants during the 2000-2001 academic year; the work is now being continued under a USGS grant.

  5. Software reliability growth model for safety systems of nuclear reactor

    International Nuclear Information System (INIS)

    Thirugnana Murthy, D.; Murali, N.; Sridevi, T.; Satya Murty, S.A.V.; Velusamy, K.

    2014-01-01

    The demand for complex software systems has increased more rapidly than the ability to design, implement, test, and maintain them, and the reliability of software systems has become a major concern for our, modern society.Software failures have impaired several high visibility programs in space, telecommunications, defense and health industries. Besides the costs involved, it setback the projects. The ways of quantifying it and using it for improvement and control of the software development and maintenance process. This paper discusses need for systematic approaches for measuring and assuring software reliability which is a major share of project development resources. It covers the reliability models with the concern on 'Reliability Growth'. It includes data collection on reliability, statistical estimation and prediction, metrics and attributes of product architecture, design, software development, and the operational environment. Besides its use for operational decisions like deployment, it includes guiding software architecture, development, testing and verification and validation. (author)

  6. Growth and Division in a Dynamic Protocell Model

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2014-12-01

    Full Text Available In this paper a new model of growing and dividing protocells is described, whose main features are (i a lipid container that grows according to the composition of the molecular milieu (ii a set of “genetic memory molecules” (GMMs that undergo catalytic reactions in the internal aqueous phase and (iii a set of stochastic kinetic equations for the GMMs. The mass exchange between the external environment and the internal phase is described by simulating a semipermeable membrane and a flow driven by the differences in chemical potentials, thereby avoiding to resort to sometimes misleading simplifications, e.g., that of a flow reactor. Under simple assumptions, it is shown that synchronization takes place between the rate of replication of the GMMs and that of the container, provided that the set of reactions hosts a so-called RAF (Reflexive Autocatalytic, Food-generated set whose influence on synchronization is hereafter discussed. It is also shown that a slight modification of the basic model that takes into account a rate-limiting term, makes possible the growth of novelties, allowing in such a way suitable evolution: so the model represents an effective basis for understanding the main abstract properties of populations of protocells.

  7. Growth models for morphological traits of sunn hemp

    Directory of Open Access Journals (Sweden)

    Cláudia Marques de Bem

    2017-10-01

    Full Text Available The objective of the present study was to fit Gompertz and Logistic nonlinear to descriptions of morphological traits of sunn hemp. Two uniformity trials were conducted and the crops received identical treatment in all experimental area. Sunn hemp seeds were sown in rows 0.5 m apart with a plant density of 20 plants per row meter in a usable area of 52 m × 50 m. The following morphological traits were evaluated: plant height (PH, number of leaves (NL, stem diameter (SD, and root length (RL. These traits were assessed daily during two sowing periods—seeds were sown on October 22, 2014 (first period and December 3, 2014 (second period. Four plants were randomly collected daily, beginning 7 days after first period and 13 days after for second period, totaling 94 and 76 evaluation days, respectively. For Gompertz models the equation was used y=a*e^((?-e?^((b-c*xiand Logistic models the equation was used yi= a/(1+e^((-b-c*xi. The inflection points of the Gompertz and Logistic models were calculated and the goodness of fit was quantified using the adjusted coefficient of determination, Akaike information criterion, standard deviation of residuals, mean absolute deviation, mean absolute percentage error, and mean prediction error. Differences were observed between the Gompertz and Logistic models and between the experimental periods in the parameter estimate for all morphological traits measured. Satisfactory growth curve fittings were achieved for plant height, number of leaves, and stem diameter in both models using the evaluation criteria: coefficient of determination (R², Akaike information criterion (AIC, standard deviation of residuals (SDR, mean absolute deviation (MAD, mean absolute percentage error (MAPE, and mean prediction error (MPE.

  8. Application of Richards\\'s growth model to Brown-headed Parrot ...

    African Journals Online (AJOL)

    Application of Richards\\'s growth model to Brown-headed Parrot Poicephalus cryptoxanthus nestlings. ... Stuart Taylor, Michael R Perrin. Abstract. We generated a generalised growth curve for the Brown-headed Parrot Poicephalus cryptoxanthus. The growth model correlated well with the data from captive-bred chicks and ...

  9. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  10. From Solow Model to endogenous economic growth – Romania’s reinsertion into civilization?

    Directory of Open Access Journals (Sweden)

    Dinu MARIN

    2006-01-01

    Full Text Available This paper evaluates the determinants of growth in GDP per capita in industrialized countries and the lessons for the Romanian economy. How can Romanian economy grow faster? The neoclassical model show that the important determinants of growth are technical progress, increased labor supply and capital accumulation. The endogenous growth theory considers that the inventions of new technology, investing in human capital are the principal factors which fueled long run growth. How can the Romanian economy obtain a continued growth process?

  11. The Challenge of Forecasting Metropolitan Growth: Urban Characteristics Based Models versus Regional Dummy Based Models

    OpenAIRE

    NA

    2005-01-01

    This paper presents a study of errors in forecasting the population of Metropolitan Statistical Areas and the Primary MSAs of Consolidated Metropolitan Statistical Areas and New England MAs. The forecasts are for the year 2000 and are based on a semi-structural model estimated by Mills and Lubelle using 1970 to 1990 census data on population, employment and relative real wages. This model allows the testing of regional effects on population and employment growth. The year 2000 forecasts are f...

  12. Modeling growth performances, survival, and feed efficiency of four ...

    African Journals Online (AJOL)

    Evolution of growth rate with age was similar in the four groups, but significant differences of growth curve parameters were found among breeds and/or sexes. Estimated hatch weight was lower in C hens and higher in FT hens. Initial specific growth rates and asymptotic body weight were higher in males for all breeds.

  13. Modeling and predicting the growth boundary of Listeria monocytogenes in lightly preserved seafood

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Dalgaard, Paw

    2007-01-01

    in lightly preserved seafood. The developed growth boundary model accurately predicted growth and no-growth responses in 68 of 71 examined experiments from the present study as well as from literature data. Growth was predicted for three batches of naturally contaminated cold-smoked salmon when a no......-growth response was actually observed, indicating that the model is fail-safe. The developed model predicts both the growth boundary and growth rate of L. monocytogenes and seems useful for the risk management of lightly preserved seafood. Particularly, the model facilitates the identification of product...... characteristics required to prevent the growth of L. monocytogenes, thereby making it possible to identify critical control points, and is useful for compliance with the new European Union regulation on ready-to-eat foods (EC 2073/2005)....

  14. Estimating growth of SMES using a logit model: Evidence from manufacturing companies in Italy

    Directory of Open Access Journals (Sweden)

    Amith Vikram Megaravalli

    2017-03-01

    Full Text Available In this paper, an effort has been put to develop a model for estimating growth based on logit re-gression (logit and implemented the model to Italian manufacturing companies. Our data set consists of 8232 SMEs of Italy. To estimate the growth of the firm an innovative approach that considers annual statements issued the year before the accelerated growth has been considered as the effective estimators of firm growth. The result of the logit showed that return on asset, log (cash flow and log (Inventory positively affect in estimating the growth of the high growth firm whereas working capital turnover times negatively affects in estimating the growth of the firm. The discriminant power of the model using Receiver Operating Characteristics curve shows 72.35%, which means the model is fair in terms of estimating the growth.

  15. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Blondel, Sophie [Univ. of Tennessee, Knoxville, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-06-01

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics calls for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.

  16. A model for community-based growth monitoring system.

    Science.gov (United States)

    Faber, M; Oelofse, A; Benade, A S

    1998-01-01

    Acting on a request form the community of Ndunakazi, a rural area bordering the Valley of a Thousand Hills, Kwa Zulu-Natal, South Africa, a comprehensive situation analysis was conducted. The results were used in an objective orientated programme planning approach, during a workshop attended by community representatives. One of the outcomes was the establishment of a model for a community-based growth and health monitoring system for pre-school children. As their contribution to the programme, families would make their homes available on a voluntary basis, once or twice a month to be used as community-based centers (called Isizinda). From a nutritional point of view, the programme has a hoslistic approach and is run by nutrition monitors. The programme was initially launched with one centre, but in response to requests received form the community, a further seven centres have been established. Approximately 500 pre-school children are currently being growth-monitored regularly, with an average monthly attendance of around 70 per cent. The nutrition monitors are responsible for conveying health and nutritional messages to the mothers and for collecting morbidity and mortality data. Children who are either not growing well or who are ill are referred to the nearest clinic. When available a community nurse attends to minor illnesses during these sessions. A soup kitchen is run during the winter, providing the mothers and pre-school children with soup and bread. Attitudes of mothers and nutrition monitors towards the programme are assessed regularly, the outcome of skills development that is an integral part of the model. This model falls within the scope of the policy objectives and principles on which the United Health System of South Africa will be based. The National Research Programme for nutritional Intervention (NRPNI) is in eh process of establishing a partnership with the department of Health of KwaZulu-Natal. Should the Department take long

  17. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines

    Directory of Open Access Journals (Sweden)

    Laura M. Grajeda

    2016-01-01

    Full Text Available Abstract Background Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. Methods We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Results Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001 when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001 and slopes (p < 0.001 of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001, which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and

  18. The FDI-growth hypothesis: A VAR model for Nigeria

    Directory of Open Access Journals (Sweden)

    PA Olomola

    2004-07-01

    Full Text Available The objective of this study was to examine the causal relationship between foreign direct investment and economic growth in Nigeria using annual data covering the period 1970 to 2002. The study employed the Granger causality procedure to test the direction of causality between foreign direct investment and economic growth for the Nigerian economy. The endogenous production function was derived to accommodate foreign investment and other domestic policies that could influence growth and foreign investment. The study found a one-way causality between from foreign direct investment to economic growth. The implication arising from this study is that Nigeria should adopt policy whereby FDI is attracted to promote economic growth.

  19. Modelling and predicting growth of psychrotolerant pseudomonads in milk and cottage cheese

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Østergaard, Nina Bjerre; Rosshaug, Per Sand

    growth of psychrotolerant pseudomonads and shelf-life of chilled cottage cheese and of milk at constant and dynamic storage temperatures. The developed models and the applied methodology is likely to be applicable for shelf-life assessment of other types of fermented or unripened dairy products as well......Mathematical models were developed and evaluated for growth of psychrotolerant pseudomonads in chilled milk and cottage cheese with cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic acid and sorbic acid. A simplified cardinal parameter growth model...... was developed based on growth in broth. Subsequently, the reference growth rate parameter (μref at 25 °C) was fitted to a total of 35 growth rates from cottage cheese with cultured cream dressing. Growth rate models for milk and cottage cheese were evaluated by comparison with data from literature and new...

  20. Modeling the microbial growth of two Escherichia coli strains in a multi-substrate environment

    Directory of Open Access Journals (Sweden)

    M. E. Poccia

    2014-06-01

    Full Text Available The microbial growth in multi-substrate environments may be viewed as an optimal resources allocation problem. The optimization aims at maximizing some biological objective like the biomass growth. The models developed using this hypothesis are called "cybernetic" and they represent the complex cell structure as an optimizing function that regulates the intracellular enzymatic machinery. In this work, a cybernetic model was developed to represent the growth of two E. coli strains (JM 109 and BL 21 -DE3- on a medium containing glucose and glycerol as carbon and energy sources. The model was able to accurately simulate the biomass growth, the substrates consumption and the growth-rate profiles.

  1. Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy

    Science.gov (United States)

    McAneney, H.; O'Rourke, S. F. C.

    2007-02-01

    The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al (1977 Br. J. Radiol. 50 681), which was concerned with the case of exponential re-growth between treatments. Here we also consider the restricted exponential model. This has been successfully used by Panetta and Adam (1995 Math. Comput. Modelling 22 67) in the case of chemotherapy treatment planning.Treatment schedules investigated include standard fractionation of daily treatments, weekday treatments, accelerated fractionation, optimized uniform schedules and variation of the dosage and α/β ratio, where α and β are radiobiological parameters for the tumour tissue concerned. Parameters for these treatment strategies are extracted from the literature on advanced head and neck cancer, prostate cancer, as well as radiosensitive parameters. Standardized treatment protocols are also considered. Calculations based on the present analysis indicate that even with growth laws scaled to mimic initial growth, such that growth mechanisms are comparable, variation in survival fraction to orders of magnitude emerged. Calculations show that the logistic and exponential models yield similar results in tumour eradication. By comparison the Gompertz model calculations indicate that tumours described by this law result in a significantly poorer prognosis for tumour eradication than either the exponential or logistic models. The present study also shows that the faster the tumour growth rate and the higher the repair capacity of the cell line, the greater the variation in outcome of the survival fraction. Gaps in treatment, planned or unplanned, also accentuate the differences of the survival fraction given alternative growth

  2. Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy

    International Nuclear Information System (INIS)

    McAneney, H; O'Rourke, S F C

    2007-01-01

    The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al (1977 Br. J. Radiol. 50 681), which was concerned with the case of exponential re-growth between treatments. Here we also consider the restricted exponential model. This has been successfully used by Panetta and Adam (1995 Math. Comput. Modelling 22 67) in the case of chemotherapy treatment planning.Treatment schedules investigated include standard fractionation of daily treatments, weekday treatments, accelerated fractionation, optimized uniform schedules and variation of the dosage and α/β ratio, where α and β are radiobiological parameters for the tumour tissue concerned. Parameters for these treatment strategies are extracted from the literature on advanced head and neck cancer, prostate cancer, as well as radiosensitive parameters. Standardized treatment protocols are also considered. Calculations based on the present analysis indicate that even with growth laws scaled to mimic initial growth, such that growth mechanisms are comparable, variation in survival fraction to orders of magnitude emerged. Calculations show that the logistic and exponential models yield similar results in tumour eradication. By comparison the Gompertz model calculations indicate that tumours described by this law result in a significantly poorer prognosis for tumour eradication than either the exponential or logistic models. The present study also shows that the faster the tumour growth rate and the higher the repair capacity of the cell line, the greater the variation in outcome of the survival fraction. Gaps in treatment, planned or unplanned, also accentuate the differences of the survival fraction given alternative growth

  3. The FDI-growth hypothesis: A VAR model for Nigeria

    OpenAIRE

    PA Olomola

    2004-01-01

    The objective of this study was to examine the causal relationship between foreign direct investment and economic growth in Nigeria using annual data covering the period 1970 to 2002. The study employed the Granger causality procedure to test the direction of causality between foreign direct investment and economic growth for the Nigerian economy. The endogenous production function was derived to accommodate foreign investment and other domestic policies that could influence growth and foreig...

  4. MODELING POPULATION GROWTH RATE IN RUSSIAN CITIES: SPATIAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Olga S. Balash

    2013-01-01

    Full Text Available The article analyzes the growth rate of the urban population in Russia according to their size and region. It is revealed that the growth rate of the urban population are not the same for the regions of Russia. An econometric analysis of the data with geo-referenced using geographically weighted regression is conducted. In order to determine the causes of urban growth rate geographic market potential offered by Soo is used.

  5. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    Science.gov (United States)

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  6. Investigation of a growth model incorporating density dependence for the mackerel management plan simulations

    NARCIS (Netherlands)

    Brunel, T.P.A.

    2015-01-01

    This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in

  7. Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda

    Science.gov (United States)

    Connor W. Barth; Susan E. Meyer; Julie Beckstead; Phil S. Allen

    2015-01-01

    Population-based threshold models using hydrothermal time (HTT) have been widely used to model seed germination. We used HTT to model conidial germination and mycelial growth for the seed pathogen Pyrenophora semeniperda in a novel approach to understanding its interactions with host seeds. Germination time courses and mycelial growth rates for P.semeniperda were...

  8. Integrated healthcare networks' performance: a growth curve modeling approach.

    Science.gov (United States)

    Wan, Thomas T H; Wang, Bill B L

    2003-05-01

    This study examines the effects of integration on the performance ratings of the top 100 integrated healthcare networks (IHNs) in the United States. A strategic-contingency theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. To create a database for the panel study, the top 100 IHNs selected by the SMG Marketing Group in 1998 were followed up in 1999 and 2000. The data were merged with the Dorenfest data on information system integration. A growth curve model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' performance in 1998 and their subsequent rankings in the consecutive years were analyzed. IHNs' initial performance scores were positively influenced by network size, number of affiliated physicians and profit margin, and were negatively associated with average length of stay and technical efficiency. The continuing high performance, judged by maintaining higher performance scores, tended to be enhanced by the use of more managerial or executive decision-support systems. Future studies should include time-varying operational indicators to serve as predictors of network performance.

  9. Chronology of metastasis in cutaneous melanoma: growth rate model.

    Science.gov (United States)

    Tejera-Vaquerizo, Antonio; Nagore, Eduardo; Meléndez, Juan J; López-Navarro, Norberto; Martorell-Calatayud, Antonio; Herrera-Acosta, Enrique; Traves, Victor; Guillén, Carlos; Herrera-Ceballos, Enrique

    2012-04-01

    In humans, it is not possible to obtain experimental evidence of when a cancer begins to metastasize. The purpose of this study was to estimate the time of onset of metastatic dissemination in cutaneous melanoma using a model based on its growth rate (GR). The critical time of onset of metastatic dissemination below which no cases of fatal melanomas were seen may be described with a potential function in which this time is inversely proportional to the GR. The critical time of development beyond which a melanoma may metastasize presents great variation. This time was just 1 month for those melanomas with a fast GR, whereas it was over 5 years for those with a very slow GR. Quantitatively, the fastest-growing melanomas began metastasizing with a greater thickness than the slowest-growing melanomas. A correlation exists between the critical time of onset of metastatic potential and the GR of the melanoma. These results may well have relevance to the understanding of mechanisms of tumor dissemination and for the design of future studies on melanomas, irrespective of whether they are basic studies on biomolecular mechamisms or clinical studies.

  10. Gliadin characterization by SANS and gliadin nanoparticle growth modelization.

    Science.gov (United States)

    Orecchioni, Anne-Marie; Duclairoir, Cécile; Renard, Denis; Nakache, Evelyne

    2006-01-01

    Nanosized colloidal carriers can ensure a controlled and targeted therapeutic substances delivery. The original contribution of this work was to use biopolymers of vegetable source, which are an interesting alternative to synthetic polymers. The aim of this study was to prepare submicronic particles from wheat proteins: Gliadins extracted from gluten. The carrier preparation was based on the desolvatation of the macromolecules by a couple solvent/non-solvent of the proteins. In a first step, it was of interest to elucidate the gliadin macromolecular conformation in order to understand the mechanism of nanoparticle formation. The experimental work was based on SANS experiments. Because the size of the colloidal particle suspension is an important parameter to monitor, the modelization of the particle growth was thoroughly studied. Furthermore, it was observed that the determination of the solubility parameters of the proteins allowed optimization of the size of the particles. From those previous experimental results it can be concluded that there is a correlation between the protein conformation in the solvent and the size of the nanoparticles (NP).

  11. Modeling Effects of Axial Extension on Arterial Growth and Remodeling

    Science.gov (United States)

    Valentín, A.; Humphrey, J.D.

    2013-01-01

    Diverse mechanical perturbations elicit arterial growth and remodeling responses that appear to optimize structure and function so as to achieve mechanical homeostasis. For example, it is well known that functional adaptations to sustained changes in transmural pressure and blood flow primarily affect wall thickness and caliber to restore circumferential and wall shear stresses toward normal. More recently, however, it has been shown that changes in axial extension similarly prompt dramatic cell and matrix reorganization and turnover, resulting in marked changes in unloaded geometry and mechanical behavior that presumably restore axial stress toward normal. Because of the inability to infer axial stress from in vivo measurements, simulations are needed to examine this hypothesis and to guide the design of future experiments. In this paper, we show that a constrained mixture model predicts salient features of observed responses to step increases in axial extension, including marked increases in fibrous constituent production, leading to a compensatory lengthening that restores original mechanical behavior. Because axial extension can be modified via diverse surgical procedures, including bypass operations and exploited in tissue regeneration research, there is a need for increased attention to this important aspect of arterial biomechanics and mechanobiology. PMID:19649667

  12. Optimal Operational Monetary Policy Rules in an Endogenous Growth Model: a calibrated analysis

    OpenAIRE

    Arato, Hiroki

    2009-01-01

    This paper constructs an endogenous growth New Keynesian model and considers growth and welfare effect of Taylor-type (operational) monetary policy rules. The Ramsey equilibrium and optimal operational monetary policy rule is also computed. In the calibrated model, the Ramseyoptimal volatility of inflation rate is smaller than that in standard exogenous growth New Keynesian model with physical capital accumulation. Optimal operational monetary policy rule makes nominal interest rate respond s...

  13. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks

    OpenAIRE

    Viboud, C��cile; Simonsen, Lone; Chowell, Gerardo

    2016-01-01

    Background: A better characterization of the early growth dynamics of an epidemic is needed to dissect the important drivers of disease transmission, refine existing transmission models, and improve disease forecasts. Materials and methods: We introduce a 2-parameter generalized-growth model to characterize the ascending phase of an outbreak and capture epidemic profiles ranging from sub-exponential to exponential growth. We test the model against empirical outbreak data representing a var...

  14. Modeling economic growth fuelled by science and technology

    Directory of Open Access Journals (Sweden)

    Leonardo Costa Ribeiro

    2010-06-01

    Full Text Available This paper suggests a simulation model to investigate how science and technology fuel economic growth. This model is built upon a synthesis of technological capabilities represented by national innovation systems. This paper gathers data of papers and patents for 183 countries between 1999 and 2003, as well as GDP and population for 2003. These data show a strong correlation between science, technology and income. Three simulation exercises are performed. Feeding our algorithm with data for population, patents and scientific papers, we obtain the world income distribution. These results support our conjecture on the role of science and technology as sources of the wealth of nations.Este artigo propõe um modelo de simulação para investigar a contribuição da ciência e da tecnologia para o crescimento econômico. O ponto de partida são os sistemas nacionais de inovação, um conceito que sintetiza a capacitação tecnológica das nações. Desta forma, o modelo pode preservar simplicidade e parcimônia. Os dados coletados (patentes, artigos e PIB e população, para 183 países indicam uma forte correlação entre ciência, tecnologia e renda. Três exercícios com simulações são realizados para diversos momentos do tempo, mostrando a progressiva aderência do modelo a essas variáveis tecnológicas.

  15. Revisiting a model of ontogenetic growth: estimating model parameters from theory and data.

    Science.gov (United States)

    Moses, Melanie E; Hou, Chen; Woodruff, William H; West, Geoffrey B; Nekola, Jeffery C; Zuo, Wenyun; Brown, James H

    2008-05-01

    The ontogenetic growth model (OGM) of West et al. provides a general description of how metabolic energy is allocated between production of new biomass and maintenance of existing biomass during ontogeny. Here, we reexamine the OGM, make some minor modifications and corrections, and further evaluate its ability to account for empirical variation on rates of metabolism and biomass in vertebrates both during ontogeny and across species of varying adult body size. We show that the updated version of the model is internally consistent and is consistent with other predictions of metabolic scaling theory and empirical data. The OGM predicts not only the near universal sigmoidal form of growth curves but also the M(1/4) scaling of the characteristic times of ontogenetic stages in addition to the curvilinear decline in growth efficiency described by Brody. Additionally, the OGM relates the M(3/4) scaling across adults of different species to the scaling of metabolic rate across ontogeny within species. In providing a simple, quantitative description of how energy is allocated to growth, the OGM calls attention to unexplained variation, unanswered questions, and opportunities for future research.

  16. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions.

    Science.gov (United States)

    McLane, Sierra C; LeMay, Valerie M; Aitken, Sally N

    2011-04-01

    Forests strongly affect Earth's carbon cycles, making our ability to forecast forest-productivity changes associated with rising temperatures and changes in precipitation increasingly critical. In this study, we model the influence of climate on annual radial growth using lodgepole pine (Pinus contorta) trees grown for 34 years in a large provenance experiment in western Canada. We use a random-coefficient modeling approach to build universal growth-trend response functions that simultaneously incorporate the impacts of different provenance and site climates on radial growth trends under present and future annual (growth-year), summer, and winter climate regimes. This approach provides new depth to traditional quantitative genetics population response functions by illustrating potential changes in population dominance over time, as well as indicating the age and size at which annual growth begins declining for any population growing in any location under any present or future climate scenario within reason, given the ages and climatic conditions sampled. Our models indicate that lodgepole pine radial-growth levels maximize between 3.9 degrees and 5.1 degrees C mean growth-year temperature. This translates to productivity declining by the mid-21st century in southern and central British Columbia (BC), while increasing beyond the 2080s in northern BC and Yukon, as temperatures rise. Relative to summer climate indices, productivity is predicted to decline continuously through the 2080s in all locations, while relative to winter climate variables, the opposite trend occurs, with the growth increases caused by warmer winters potentially offsetting the summer losses. Trees from warmer provenances, i.e., from the center of the species range, perform best in nearly all of our present and future climate-scenario models. We recommend that similar models be used to analyze population growth trends relative to annual and intra-annual climate in other large-scale provenance

  17. Markov Modeling of Component Fault Growth Over A Derived Domain of Feasible Output Control Effort Modifications

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of...

  18. Numerical simulation of brain tumor growth model using two-stage ...

    African Journals Online (AJOL)

    In the recent years, the study of glioma growth to be an active field of research Mathematical models that describe the proliferation and diffusion properties of the growth have been developed by many researchers. In this work, the performance analysis of two-stage Gauss-Seidel (TSGS) method to solve the glioma growth ...

  19. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  20. Service Export Sophistication and Europe’s New Growth Model

    OpenAIRE

    Mishra, Saurabh; Gable, Susanna Lundstrom

    2011-01-01

    Technology has changed the nature of service activities and made them more productive, tradable and fragmented in the global supply chain. Has Europe's growth been benefiting from the ongoing globalization of services? Services dominate growth in EU-15 countries and, to a lesser extent, in New Member States (NMS) and Accession (ACC) countries. Except in the ACC region, Europe has maintaine...

  1. Inclusion of climatic variables in longleaf pine growth models

    Science.gov (United States)

    Jyoti N. Rayamajhi; John S. Kush

    2006-01-01

    The Regional Longleaf Growth Study was established by the USDA Forest Service to study the dynamics of naturally regenerated, even-aged longleaf pine (Pinus palustris Mill.) stands. The study accounts for growth change over time by adding new sets of plots in the youngest age class every 10 years. To detect possible changes in productivity with time...

  2. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth

  3. Microalgae bulk growth model with application to industrial scale systems

    NARCIS (Netherlands)

    Quinn, J.; Winter, de L.; Bradley, T.

    2011-01-01

    The scalability of microalgae growth systems is a primary research topic in anticipation of the commercialization of microalgae-based biofuels. To date, there is little published data on the productivity of microalgae in growth systems that are scalable to commercially viable footprints. To inform

  4. Recombinant vascular endothelial growth factor 121 injection for the prevention of fetal growth restriction in a preeclampsia mouse model.

    Science.gov (United States)

    Sulistyowati, Sri; Bachnas, Muhammad Adrianes; Anggraini, Nuri Dyah; Yuliantara, Eric Edwin; Prabowo, Wisnu; Anggraini, Nutria Widya Purna; Pramono, Mochammad Besari Adi; Adityawarman; Dachlan, Erry Gumilar; Andonotopo, Wiku

    2017-02-01

    To discover the potential role of recombinant VEGF121 (rVEGF121) injection for the prevention of fetal growth restriction in a preeclampsia (PE) mouse model (Mus musculus). This is an experimental study of 30 pregnant mice that were randomly divided into three groups: normal, PE, and PE with rVEGF121 injection. The PE mouse model was created by injecting anti Qa-2 10 ng iv, which is deleterious to Qa-2 expression (homologous to HLA-G), from the first to the fourth day of gestation. PE was validated by measuring serum levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor(PIGF) and also by kidney histopathology. Recombinant VEGF121 was given on the ninth day until the 11th day of pregnancy; mice were terminated on the 16th day. Fetal weights were acquired with a Denver analytical balance. Serum levels of sFlt-1 and PlGF were measured using enzyme-linked immunosorbent assay (ELISA). The data were statistically analyzed via analysis of variance (ANOVA). On average, fetal birth weight was 0.7150 g in the normal group, 0.4936 g in the PE group, and 0.6768 g in the PE with rVEGF121 injection group. ANOVA showed significant growth restriction in the PE group (P=0.006), confirming the use of anti Qa-2 as a suitable PE model. Kidney histopathology results, sFlt-1 levels, and PlGF levels also demonstrated that anti Qa-2 consistently conferred hallmarks of PE in mice. Vascular endothelial growth factor (VEGF) injection prevented fetal growth restriction; comparable fetal weights were observed between the PE model with VEGF treatment and the normal group (P=0.610) but differed from the untreated PE group (P=0.021). Injection of rVEGF121 has the potential to prevent fetal growth restriction in a newly proposed PE mouse model.

  5. Innovation, Decentralization, and Planning in a Multi-Region Model of Schumpeterian Economic Growth

    OpenAIRE

    Batabyal, Amit; Nijkamp, Peter

    2014-01-01

    We study innovation and the resulting Schumpeterian economic growth that this innovation gives rise to in a model with N heterogeneous regions. For each region i where i=1,...,N, our analysis leads to five findings. First, we define the balanced growth path (BGP) allocations and the equilibrium of interest. Second, we stipulate the form of the innovation possibilities frontier that is consistent with balanced economic growth. Third, we derive the growth rate of the ith region in the decentral...

  6. Generic global regression models for growth prediction of Salmonella in ground pork and pork cuts

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2017-01-01

    Introduction and Objectives Models for the prediction of bacterial growth in fresh pork are primarily developed using two-step regression (i.e. primary models followed by secondary models). These models are also generally based on experiments in liquids or ground meat and neglect surface growth....... It has been shown that one-step global regressions can result in more accurate models and that bacterial growth on intact surfaces can substantially differ from growth in liquid culture. Material and Methods We used a global-regression approach to develop predictive models for the growth of Salmonella...... for three pork matrices: on the surface of shoulder (neck) and hind part (ham), and in ground pork. We conducted five experimental trials and inoculated essentially sterile pork pieces with a Salmonella cocktail (n = 192). Inoculated meat was aerobically incubated at 4 °C, 7 °C, 12 °C, and 16 °C for 96 h...

  7. DFT Modeling of SWCNT Growth on Iron Catalyst

    National Research Council Canada - National Science Library

    Gutsev, G. L; Mochena, M. D; Bauschlicher, Jr, C. W

    2006-01-01

    We performed simulations of initial stages of a carbon nanotube growth catalyzed by iron particles using all-electron density functional theory with generalized gradient approximation for the exchange...

  8. Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Dalgaard, Paw

    2013-01-01

    of psychrotolerant Lactobacillus spp. was clearly demonstrated. The new model can be used to predict growth of psychrotolerant Lactobacillus spp. in seafood and meat products e.g. prediction of the time to a critical cell concentration of bacteria is considered useful for establishing the shelf life. In addition...

  9. Predicting growth of the healthy infant using a genome scale metabolic model

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Mardinoglu, Adil; Nielsen, Jens

    2017-01-01

    An estimated 165 million children globally have stunted growth, and extensive growth data are available. Genome scale metabolic models allow the simulation of molecular flux over each metabolic enzyme, and are well adapted to analyze biological systems. We used a human genome scale metabolic model...... to simulate the mechanisms of growth and integrate data about breast-milk intake and composition with the infant's biomass and energy expenditure of major organs. The model predicted daily metabolic fluxes from birth to age 6 months, and accurately reproduced standard growth curves and changes in body...

  10. The Solow model in discrete time and decreasing population growth rate

    OpenAIRE

    Juan Sebastián Pereyra; Juan Gabriel Brida

    2008-01-01

    This paper reformulates the neoclassical Solow-Swan model of economic growth in discrete time by introducing a generic population growth law that verifies the following properties: 1) population is strictly increasing and bounded 2) the rate of growth of population is decreasing to zero as time tends to infinity. We show that in the long run the capital per worker of the model converges to the non-trivial steady state of the Solow Swan model with zero labor growth rate. In addition we prove t...

  11. Optimal education and pensions in an endogenous growth model

    OpenAIRE

    DEL REY, Elena; LOPEZ-GARCIA, Miguel

    2009-01-01

    It is well known that, in OLG economies with life-cycle saving and exogenous growth, competitive equilibria will in general fail to achieve optimality and may even be dynamically ineefficient. This is a consequence of individuals accumulating amounts of physical capital that differ from the level which would maximize welfare along a balanced growth path (the Golden Rule). With human capital, a second potential source of departure from optimality arises, to wit: individuals may not choose the ...

  12. Crack Growth Modeling in an Advanced Powder Metallurgy Alloy

    Science.gov (United States)

    1980-07-01

    Continuo n reve.rse side if necessary and idenifv by black number) Fatigue, Cyclic Crack Growth Rate, Fatigue Crack Propagation, Hold Time, Frequency...complicates life analysis. The purpose of this program was to develop an improved understanding of the crack growth behavior of an advanced turbine disk...it was expected that the effects would be more complex than could be fully deter- mined by this statistical design. Therefore, to improve predictions

  13. Development and validation of extensive growth and growth boundary models for psychrotolerant pseudomonads in seafood, meat and vegetable products

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Dalgaard, Paw

    ., Int. J. Food Microbiol.216. 110-120, 2016). MIC-values for acetic-, benzoic- and citric acids were determined in broth and terms modelling their antimicrobial effect were added to the model. Cardinal parameter values for CO2 and aw were obtained from literature.The new model included 9 environmental...... literature data. Performance of the new expanded model was equally good for seafood and meat products, and importance of including the effect of acetic, benzoic, citric acids and CO2 in order to accurately predict growth of psychrotolerant pseudomonads was clearly demonstrated e.g. for brined shrimps...

  14. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    Science.gov (United States)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  15. Modelling growth of five different colour types of mink | Liu | South ...

    African Journals Online (AJOL)

    linear models, namely Logistic, Gompertz, Brody, Richards, Bridges, and Janoschek were used to define the growth curves of the mink. Models were compared using coefficients of determination (R2 values), the Akaike's information criterion ...

  16. Predicting the peak growth velocity in the individual child: validation of a new growth model

    NARCIS (Netherlands)

    Busscher, I.; Kingma, I.; Bruin, R.; Wapstra, F.H.; Verkerke, Gijsbertus Jacob; Veldhuizen, A.G.

    2012-01-01

    Predicting the peak growth velocity in an individual patient with adolescent idiopathic scoliosis is essential or determining the prognosis of the disorder and timing of the (surgical) treatment. Until the present time, no accurate method has been found to predict the timing and magnitude of the

  17. Predicting the peak growth velocity in the individual child : validation of a new growth model

    NARCIS (Netherlands)

    Busscher, Iris; Kingma, Idsart; de Bruin, Rob; Wapstra, Frits Hein; Verkerke, Gijsvertus J.; Veldhuizen, Albert G.

    Predicting the peak growth velocity in an individual patient with adolescent idiopathic scoliosis is essential or determining the prognosis of the disorder and timing of the (surgical) treatment. Until the present time, no accurate method has been found to predict the timing and magnitude of the

  18. Understanding Latino Children's Heterogeneous Academic Growth Trajectories: Latent Growth Mixture Modeling Approach

    Science.gov (United States)

    Hong, Sehee; You, Sukkyung

    2012-01-01

    Addressing the academic needs of a growing student population with culturally and linguistically diverse characteristics is one of the challenges facing educators. This study used data from the Early Childhood Longitudinal Study to test for differences in patterns of mathematics growth (e.g., high, middle, and low performance groups) in Latino…

  19. Evaluating Longitudinal Mathematics Achievement Growth: Modeling and Measurement Considerations for Assessing Academic Progress

    Science.gov (United States)

    Shanley, Lina

    2016-01-01

    Accurately measuring and modeling academic achievement growth is critical to support educational policy and practice. Using a nationally representative longitudinal data set, this study compared various models of mathematics achievement growth on the basis of both practical utility and optimal statistical fit and explored relationships within and…

  20. Bootstrap evaluation of a young Douglas-fir height growth model for the Pacific Northwest

    Science.gov (United States)

    Nicholas R. Vaughn; Eric C. Turnblom; Martin W. Ritchie

    2010-01-01

    We evaluated the stability of a complex regression model developed to predict the annual height growth of young Douglas-fir. This model is highly nonlinear and is fit in an iterative manner for annual growth coefficients from data with multiple periodic remeasurement intervals. The traditional methods for such a sensitivity analysis either involve laborious math or...

  1. Evaluation of HIV Risk Reduction and Intervention Programs via Latent Growth Model.

    Science.gov (United States)

    Wang, Jichuan; Siegal, Harvey A.; Falck, Russel S.; Carlson, Robert G.; Rahman, Ahmmed

    1999-01-01

    Demonstrates how the latent growth model can be applied to the evaluation of programs targeting HIV risk behavior among drug users. Multigroup piecewise latent growth models were fit to longitudinal data with three repeated response measures. Participants were 430 drug users and their sex partners. (SLD)

  2. Assessing Potential Climate Change Effects on Loblolly Pine Growth: A Probabilistic Regional Modeling Approach

    Science.gov (United States)

    Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence

    1998-01-01

    Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...

  3. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L.; Simon, John; Jain, Nikhil; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of the reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.

  4. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    Directory of Open Access Journals (Sweden)

    Uri Barenholz

    Full Text Available Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  5. Study on Growth Kinetics of CdSe Nanocrystals with a New Model

    Directory of Open Access Journals (Sweden)

    Dixon JohnDavid

    2010-01-01

    Full Text Available Abstract A model which involves both bulk diffusion process and surface reaction process has been developed for describing the growth behaviour of nanoparticles. When the model is employed, hypothesising that either of the processes alone dominates the overall growth process is unnecessary. Conversely, the relative magnitude of contributions from both processes could be obtained from the model. Using this model in our system, the growth process of CdSe QDs demonstrated two different growth stages. During the first stage, the growth of CdSe QDs was dominated by bulk diffusion, whereas, neither the bulk diffusion process nor the surface reaction process could be neglected during the later stage. At last, we successfully modelled the Ostwald ripening of CdSe QDs with LSW theories.

  6. Creep crack growth predictions in INCO 718 using a continuum damage model

    Science.gov (United States)

    Walker, K. P.; Wilson, D. A.

    1985-01-01

    Creep crack growth tests have been carried out in compact type specimens of INCO 718 at 1200 F (649 C). Theoretical creep crack growth predictions have been carried out by incorporating a unified viscoplastic constitutive model and a continuum damage model into the ARAQUS nonlinear finite element program. Material constants for both the viscoplastic model and the creep continuum damage model were determined from tests carried out on uniaxial bar specimens of INCO 718 at 1200 F (649 C). A comparison of the theoretical creep crack growth rates obtained from the finite element predictions with the experimentally observed creep crack growth rates indicates that the viscoplastic/continuum damage model can be used to successfully predict creep crack growth in compact type specimens using material constants obtained from uniaxial bar specimens of INCO 718 at 1200 F (649 C).

  7. A stress driven growth model for soft tissue considering biological availability

    International Nuclear Information System (INIS)

    Oller, S; Bellomo, F J; Nallim, L G; Armero, F

    2010-01-01

    Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of bioavailability together with the stresses and strains in the processes of normal or pathological growth. In this sense, the model presented in this work is oriented to describe the growth of soft biological tissue under 'stress driven growth' and depending on the biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elastic part. The strains due to growth are incompatible and are controlled by an unbalanced stresses related to a homeostatic state. Growth implies a volume change with an increase of mass maintaining constant the density. One of the most interesting features of the proposed model is the generation of new tissue taking into account the contribution of mass to the system controlled through biological availability. Because soft biological tissues in general have a hierarchical structure with several components (usually a soft matrix reinforced with collagen fibers), the developed growth model is suitable for the characterization of the growth of each component. This allows considering a different behavior for each of them in the context of a generalized theory of mixtures. Finally, we illustrate the response of the model in case of growth and atrophy with an application example.

  8. Slow crack growth modeling of a technical ferrite ceramics

    International Nuclear Information System (INIS)

    Romero de la Osa, M.

    2009-04-01

    Iron oxide ferrite ceramics are subjected to slow crack growth (SCG) and also environmentally assisted failure, similarly to what is observed for amorphous silica and alumina polycrystals The kinetics of fracture are known to be dependent on the load level with a crack velocity V that increase with K I , but also with temperature and with the Relative Humidity (RH). In addition, SCG represented by V-K diagrams is noticeably sensitive to microstructural effects as variations of the grain size, and also influenced by the presence of some porosity at the triple junctions. The ferrites under consideration exhibit a heterogeneous microstructure with a distribution on the grain size, with some regions in which pores are present at the triple junctions. Such a microstructure results in noticeable scattering in the measurements of the V-K characteristics from sample to sample, so that predictions based on these experiments for the estimate of the material's lifetime are not reliable. Thus, additional analyses based on numerical simulations of SCG are necessary to gain insight on the material's durability. We have developed a local description of SCG, at the length scale of the microstructure which is explicitly accounted for. Within a cohesive zone methodology and based on available physics and on recent atomistic results, we propose a viscoplastic cohesive model that mimics the reaction-rupture mechanism underlying the time dependent failure. The description is shown able to capture variations in the V-K predictions in agreement with the observations. From the simulations of intergranular failure under static fatigue, we observe a discontinuous crack advance in time, with different crack velocities depending on the local crack path. The crossing of the triple junction slows down crack propagation, and ultimately governs the average crack velocity. We evidence that account for the initial stresses originating from the process's cooling from the temperature at sintering

  9. Growth Mixture Modeling of Depression Symptoms Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Rapson Gomez

    2017-08-01

    Full Text Available Growth Mixture Modeling (GMM was used to investigate the longitudinal trajectory of groups (classes of depression symptoms, and how these groups were predicted by the covariates of age, sex, severity, and length of hospitalization following Traumatic Brain Injury (TBI in a group of 1074 individuals (696 males, and 378 females from the Royal Hobart Hospital, who sustained a TBI. The study began in late December 2003 and recruitment continued until early 2007. Ages ranged from 14 to 90 years, with a mean of 35.96 years (SD = 16.61. The study also examined the associations between the groups and causes of TBI. Symptoms of depression were assessed using the Hospital Anxiety and Depression Scale within 3 weeks of injury, and at 1, 3, 6, 12, and 24 months post-injury. The results revealed three groups: low, high, and delayed depression. In the low group depression scores remained below the clinical cut-off at all assessment points during the 24-months post-TBI, and in the high group, depression scores were above the clinical cut-off at all assessment points. The delayed group showed an increase in depression symptoms to 12 months after injury, followed by a return to initial assessment level during the following 12 months. Covariates were found to be differentially associated with the three groups. For example, relative to the low group, the high depression group was associated with more severe TBI, being female, and a shorter period of hospitalization. The delayed group also had a shorter period of hospitalization, were younger, and sustained less severe TBI. Our findings show considerable fluctuation of depression over time, and that a non-clinical level of depression at any one point in time does not necessarily mean that the person will continue to have non-clinical levels in the future. As we used GMM, we were able to show new findings and also bring clarity to contradictory past findings on depression and TBI. Consequently, we recommend the use

  10. Modelling the growth of Listeria monocytogenes on the surface of smear- or mould-ripened cheese

    Directory of Open Access Journals (Sweden)

    Sol eSchvartzman

    2014-07-01

    Full Text Available Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model and the Logistic model and three secondary (the Cardinal model, the Ratowski model and the Presser model mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modelled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  11. Growth theory after Keynes, part I: the unfortunate suppression of the Harrod-Domar model

    Directory of Open Access Journals (Sweden)

    Hendrik Van den Berg

    2013-11-01

    Full Text Available After Harrod and Domar independently developed a dynamic Keynesian circular flow model to illustrate the instability of a growing economy, mainstream economists quickly reduced their model to a supply side-only growth model, which they subsequently rejected as too simplistic and replaced with Solow’s neoclassical growth model. The rejection process of first diminishing the model and then replaced it with a neoclassical alternative was similar to how the full Keynesian macroeconomic paradigm was diminished into IS-LM analysis and then replaced by a simplistic neoclassical framework that largely ignored the demand side of the economy. Furthermore, subsequent work by mainstream economists has resulted in a logically inconsistent framework for analyzing economic growth; the popular endogenous growth models, which use Schumpeter’s concept of profit-driven creative destruction to explain the technological change that Solow left as exogenous, are not logically compatible with the Solow model.

  12. A fuzzy mathematical model of West Java population with logistic growth model

    Science.gov (United States)

    Nurkholipah, N. S.; Amarti, Z.; Anggriani, N.; Supriatna, A. K.

    2018-03-01

    In this paper we develop a mathematics model of population growth in the West Java Province Indonesia. The model takes the form as a logistic differential equation. We parameterize the model using several triples of data, and choose the best triple which has the smallest Mean Absolute Percentage Error (MAPE). The resulting model is able to predict the historical data with a high accuracy and it also able to predict the future of population number. Predicting the future population is among the important factors that affect the consideration is preparing a good management for the population. Several experiment are done to look at the effect of impreciseness in the data. This is done by considering a fuzzy initial value to the crisp model assuming that the model propagates the fuzziness of the independent variable to the dependent variable. We assume here a triangle fuzzy number representing the impreciseness in the data. We found that the fuzziness may disappear in the long-term. Other scenarios also investigated, such as the effect of fuzzy parameters to the crisp initial value of the population. The solution of the model is obtained numerically using the fourth-order Runge-Kutta scheme.

  13. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks

    DEFF Research Database (Denmark)

    Viboud, Cecile; Simonsen, Lone; Chowell, Gerardo

    2016-01-01

    the importance of sub-exponential growth for forecasting purposes.Results: We applied the generalized-growth model to 20 infectious disease outbreaks representing a range of transmission routes. We uncovered epidemic profiles ranging from very slow growth (p = 0.14 for the Ebola outbreak in Bomi, Liberia (2014...... African Ebola epidemic provided a unique opportunity to explore how growth profiles vary by geography; analysis of the largest district-level outbreaks revealed substantial growth variations (mean p = 0.59, range: 0.14–0.97). The districts of Margibi in Liberia and Bombali and Bo in Sierra Leone had near...

  14. A theoretical model describing the one-dimensional growth of single crystals on free sustained substrates

    Science.gov (United States)

    Ye, Ziran; Wang, Ke; Lu, Chenxi; Jin, Ying; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Sun, Guofang; Xu, Fengyun; Ye, Gaoxiang

    2018-03-01

    We develop a theoretical model that interprets the growth mechanism of zinc (Zn) crystal nanorods on a liquid substrate by thermal evaporation. During deposition, Zn atoms diffuse randomly on an isotropic and quasi-free sustained substrate, the nucleation of the atoms results in the primary nanorod (or seed crystal) growth. Subsequently, a characteristic one-dimensional atomic aggregation is proposed, which leads to the accelerating growth of the crystal nanorod along its preferential growth direction until the growth terminates. The theoretical results are in good agreement with the experimental findings.

  15. Population growth and income growth during the demographic transition: does a Malthusian model help explain their relationship?

    Science.gov (United States)

    Blanchet, D

    1990-01-01

    This paper examines the potential links between growth of income/head and population growth during demographic transition. In so doing, both malthusian and neo-Boserupian views are considered with a view to determining which of the 2 paradigms is most useful in explaining the current situation in developing countries. The relationship between demographic and economic progress in the Malthusian system when it is initiated by an exogenous technical progress is discussed. Attention is also called to the recent disappearance of a negative correlation between economic and demographic growth. Finally, the neo-Boseupian model is compared to the Malthusian view, and implications of the analysis as they relate to the desirability of population policies are presented.

  16. Literary Experience and Literature Teaching since the Growth Model

    Science.gov (United States)

    Reid, Ian

    2016-01-01

    By the late 70s the "growth through English" slogan, derived from John Dixon's account of the Dartmouth conference, had become popular around Australia. In 1980 the Sydney IFTE conference featured several Dartmouth veterans; but during that conference, Dartmouth-linked ideas from overseas mingled with lines of local influence, especially…

  17. Growth and yield models for Eucalyptus grandis grown in Swaziland ...

    African Journals Online (AJOL)

    Functions were fitted to describe stand density, dominant height and basal area development over time. The functions performed well when scrutinised for their goodness of fit. They were also found to be consistent with forest growth theory when their logical behaviour was tested over the range of planting densities.

  18. Fiscal Policy in a Stochastic Model of Endogenous Growth

    NARCIS (Netherlands)

    Canton, E.J.F.

    1997-01-01

    It is nowadays widely believed that public schooling may contribute favourably to long-term economic growth. The income tax rates that are needed to finance government spending typically show an erratic time pattern. Such tax randomness could increase the intensity of the business cycle. Thus,

  19. Growth and yield model application in tropical rain forest management

    Science.gov (United States)

    James Atta-Boateng; John W., Jr. Moser

    2000-01-01

    Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...

  20. Specific and general human capital in an endogenous growth model

    Czech Academy of Sciences Publication Activity Database

    Jerbashian, Vahagn; Slobodyan, Sergey; Vourvachaki, E.

    2015-01-01

    Roč. 53, č. 3 (2015), s. 167-204 ISSN 0012-8775 R&D Projects: GA AV ČR IAA700850902 Institutional support: RVO:67985998 Keywords : economic growth * human capital types * education policy Subject RIV: AH - Economic s Impact factor: 0.404, year: 2015

  1. Specific and general human capital in an endogenous growth model

    Czech Academy of Sciences Publication Activity Database

    Jerbashian, Vahagn; Slobodyan, Sergey; Vourvachaki, E.

    2015-01-01

    Roč. 53, č. 3 (2015), s. 167-204 ISSN 0012-8775 Institutional support: PRVOUK-P23 Keywords : economic growth * human capital types * education policy Subject RIV: AH - Economic s Impact factor: 0.404, year: 2015

  2. Models of economic growth and development in the context of ...

    African Journals Online (AJOL)

    It is argued that a very necessary condition for growth and transformational development in Africa is heavy investment in human capital. It is pointed out that countries that invest much human capital to produce highly educated populaces usually reap the benefits of such in terms of high per capita GDPs, regardless of the ...

  3. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the

  4. The current Russian model of social development, and economic growth

    Directory of Open Access Journals (Sweden)

    V V Paramonov

    2016-12-01

    Full Text Available Although the Article 7 of the Constitution of Russia adopted in 1993 defines the country as a social state, the contemporary social and economic situation is significantly different from this declaration. The author considers the current situation focusing on the foundations of the welfare state. The indicators of social inequality and stratification that allow to identify the country as a social state prove the widening gap between the rich and poor. In recent years, nothing has been done to achieve the more equitable distribution of income and national wealth, which led to the further growth of social inequality exceeding the global indices. The author believes that the high level of social inequality negatively affects the economic growth. Based on the studies of Russian scientists he concludes that equal distribution of income provides higher rates of economic growth and prosperity of the country. The modified theory of the factors of production explains this interconnection, and adds a few more factors, including such a specific resource as sales market, to three factors introduced by J.B. Say at the beginning of the XIX century. The huge social inequality and, consequently, a significant number of the poor deprive the country of such an important resource. To change the situation, the author proposes to return to the progressive tax scale and introduce the zero rate of income tax for the poorest groups in order to create prerequisites for the growth of consumer demand under the economic crisis.

  5. A laboratory-calibrated model of coho salmon growth with utility for ecological analyses

    Science.gov (United States)

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Plumb, John M.

    2018-01-01

    We conducted a meta-analysis of laboratory- and hatchery-based growth data to estimate broadly applicable parameters of mass- and temperature-dependent growth of juvenile coho salmon (Oncorhynchus kisutch). Following studies of other salmonid species, we incorporated the Ratkowsky growth model into an allometric model and fit this model to growth observations from eight studies spanning ten different populations. To account for changes in growth patterns with food availability, we reparameterized the Ratkowsky model to scale several of its parameters relative to ration. The resulting model was robust across a wide range of ration allocations and experimental conditions, accounting for 99% of the variation in final body mass. We fit this model to growth data from coho salmon inhabiting tributaries and constructed ponds in the Klamath Basin by estimating habitat-specific indices of food availability. The model produced evidence that constructed ponds provided higher food availability than natural tributaries. Because of their simplicity (only mass and temperature are required as inputs) and robustness, ration-varying Ratkowsky models have utility as an ecological tool for capturing growth in freshwater fish populations.

  6. Bayesian analysis of growth curves using mixed models defined by stochastic differential equations.

    Science.gov (United States)

    Donnet, Sophie; Foulley, Jean-Louis; Samson, Adeline

    2010-09-01

    Growth curve data consist of repeated measurements of a continuous growth process over time in a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates. We propose to model these variations using stochastic differential equations (SDEs) that are deduced from the standard deterministic growth function by adding random variations to the growth dynamics. A Bayesian inference of the parameters of these SDE mixed models is developed. In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the diffusion process has no explicit form, we propose to approximate it using the Euler-Maruyama scheme. Finally, we suggest validating the SDE approach via criteria based on the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz function to model data on chicken growth, the modeling being improved by the SDE approach. © 2009 INRA, Government of France.

  7. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don).

    Science.gov (United States)

    Forest, Loïc; Demongeot, Jacques; Demongeota, Jacques

    2006-05-01

    The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.

  8. Data collapse, scaling functions, and analytical solutions of generalized growth models.

    Science.gov (United States)

    Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto; Ribeiro, Fabiano

    2011-06-01

    We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.

  9. Characterizing Tropical Tree Species Growth Strategies: Learning from Inter-Individual Variability and Scale Invariance

    Science.gov (United States)

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  10. Characterizing tropical tree species growth strategies: learning from inter-individual variability and scale invariance.

    Directory of Open Access Journals (Sweden)

    Jimmy Le Bec

    Full Text Available Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth

  11. New instrument expanding individual tree stem analysis

    Science.gov (United States)

    Neil A. Clark

    2001-01-01

    Forest health, vitality, and productivity are interrelated and are maintained by using sound forest management. There are some standard indicators that are measured to assess the extent and severity of damage inflicted by biotic and abiotic agents. Assessment of these indicators using affordable methods is a subjective process. A video rangefinder instrument is...

  12. Modeling and analysis of gear tooth crack growth under variable-amplitude loading

    Science.gov (United States)

    Yin, Juliang; Wang, Wenyi; Man, Zhihong; Khoo, Suiyang

    2013-10-01

    The purpose of this paper is to reveal the pattern of gear tooth crack growth under variable-amplitude loading. To this end, a nonlinear dynamic model is proposed to describe the gear tooth crack growth. The state variables of the model are crack length and crack opening stress. The dynamics of crack growth is modeled as a modified Paris equation based on the concept of crack closure. A nonlinear second-order autoregressive equation is developed to model the dynamic behavior of the crack opening stresses. The model parameters are estimated by means of a two-step estimation method because of relatively small sample size of crack length data for G6 gear tests. The model is also validated with the crack growth data of the G6 gear.

  13. A one-dimensional mixed porohyperelastic transport swelling finite element model with growth

    Science.gov (United States)

    Harper, J.L.; Simon, B.R.; Vande Geest, J.P.

    2013-01-01

    A one-dimensional, large-strain, mixed porohyperelastic transport and swelling (MPHETS) finite element model was developed in MATLAB and incorporated with a well-known growth model for soft tissues to allow the model to grow (increase in length) or shrink (decrease in length) at constant material density. By using the finite element model to determine the deformation and stress state, it is possible to implement different growth laws in the program in the future to simulate how soft tissues grow and behave when exposed to various stimuli (e.g. mechanical, chemical, or electrical). The essential assumptions needed to use the MPHETS model with growth are clearly identified and explained in this paper. The primary assumption in this work, however, is that the stress upon which growth acts is the stress in the solid skeleton, i.e. the effective stress, Seff. It is shown that significantly different amounts of growth are experienced for the same loading conditions when using a porohyperelastic model as compared to a purely solid model. In one particular example, approximately 51% less total growth occurred in the MPHETS model than in the solid model even though both problems were subjected to the same external loading. This work represents a first step in developing more sophisticated models capable of capturing the complex mechanical and biochemical environment in growing and remodeling tissues. PMID:23778062

  14. Long-term prediction of fish growth under varying ambient temperature using a multiscale dynamic model

    Directory of Open Access Journals (Sweden)

    Radde Nicole

    2009-11-01

    Full Text Available Abstract Background Feed composition has a large impact on the growth of animals, particularly marine fish. We have developed a quantitative dynamic model that can predict the growth and body composition of marine fish for a given feed composition over a timespan of several months. The model takes into consideration the effects of environmental factors, particularly temperature, on growth, and it incorporates detailed kinetics describing the main metabolic processes (protein, lipid, and central metabolism known to play major roles in growth and body composition. Results For validation, we compared our model's predictions with the results of several experimental studies. We showed that the model gives reliable predictions of growth, nutrient utilization (including amino acid retention, and body composition over a timespan of several months, longer than most of the previously developed predictive models. Conclusion We demonstrate that, despite the difficulties involved, multiscale models in biology can yield reasonable and useful results. The model predictions are reliable over several timescales and in the presence of strong temperature fluctuations, which are crucial factors for modeling marine organism growth. The model provides important improvements over existing models.

  15. Water availability is the main climate driver of neotropical tree growth.

    Directory of Open Access Journals (Sweden)

    Fabien Wagner

    Full Text Available • Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm x d(-1 was slightly above the mean value of the growth (0.026 mm x d(-1. • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest.

  16. Water availability is the main climate driver of neotropical tree growth.

    Science.gov (United States)

    Wagner, Fabien; Rossi, Vivien; Stahl, Clément; Bonal, Damien; Hérault, Bruno

    2012-01-01

    • Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm x d(-1)) was slightly above the mean value of the growth (0.026 mm x d(-1)). • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest.

  17. Crack growth rate in core shroud horizontal welds using two models for a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis Juárez, C.R., E-mail: carlos.arganis@inin.gob.mx; Hernández Callejas, R.; Medina Almazán, A.L.

    2015-05-15

    Highlights: • Two models were used to predict SCC growth rate in a core shroud of a BWR. • A weld residual stress distribution with 30% stress relaxation by neutron was used. • Agreement is shown between the measurements of SCC growth rate and the predictions. • Slip–oxidation model is better at low fluences and empirical model at high fluences. - Abstract: An empirical crack growth rate correlation model and a predictive model based on the slip–oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip–oxidation mechanism model for relatively low fluences (5 × 10{sup 24} n/m{sup 2}), and the empirical model predicted better the SCC growth rate than the slip–oxidation model for high fluences (>1 × 10{sup 25} n/m{sup 2}). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  18. A model for grain growth based on the novel description of dendrite shape

    OpenAIRE

    O. Wodo; N. Sczygiol

    2007-01-01

    We use novel description of dendritic shape in the micro solid phase growth model. The model describes evolution of both primary solid solution dendrite and eutectic that forms between arms and grains in the last stage of solidification. Obtained results show that our approach can be used in grain growth model to determine more reliable eutectic distribution. In the paper no kinetics connected with the eutectic transformation is taken into account. However, this does not affect the eutectic d...

  19. On the influence of the environment on modeling the fatigue crack growth process

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    The effect of the environment at room and elevated temperature were considered with respect to the influence exerted on the basic mechanical aspects of the fatigue crack growth process. An experimental assessment of this influence was obtained by conducting fatigue crack growth tests both in air and vacuum and the results of such experiments are given. Topics considered include crack closure, short crack growth in notched and unnotched specimens, Mode II crack growth, and the effects of oxidation at elevated temperatures. It is shown that the basic mechanisms of fatigue crack growth can be greatly altered by the presence of oxide films at the fatigue crack tip. Modeling the mechanical aspects of the crack growth process is by itself a challenging task. In addition, the environmental considerations adds to the complexity of the modeling process. (Author)

  20. Constitutive modeling of stress-driven grain growth in nanocrystalline metals

    KAUST Repository

    Gürses, Ercan

    2013-02-08

    In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.

  1. Global warming and coral reefs: modelling the effect of temperature on Acropora palmata colony growth.

    Science.gov (United States)

    Crabbe, M James C

    2007-08-01

    Data on colony growth of the branching coral Acropora palmata from fringing reefs off Discovery Bay on the north coast of Jamaica have been obtained over the period 2002-2007 using underwater photography and image analysis by both SCUBA and remotely using an ROV incorporating twin lasers. Growth modelling shows that while logarithmic growth is an approximate model for growth, a 3:3 rational polynomial function provides a significantly better fit to growth data for this coral species. Over the period 2002-2007, involving several cycles of sea surface temperature (SST) change, the rate of growth of A. palmata was largely proportional to rate of change of SST, with R(2)=0.935. These results have implications for the influence of global warming and climate change on coral reef ecosystems.

  2. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  3. Dynamic predictive model for growth of Salmonella spp. in scrambled egg mix.

    Science.gov (United States)

    Li, Lin; Cepeda, Jihan; Subbiah, Jeyamkondan; Froning, Glenn; Juneja, Vijay K; Thippareddi, Harshavardhan

    2017-06-01

    Liquid egg products can be contaminated with Salmonella spp. during processing. A dynamic model for the growth of Salmonella spp. in scrambled egg mix - high solids (SEM) was developed and validated. SEM was prepared and inoculated with ca. 2 log CFU/mL of a five serovar Salmonella spp. cocktail. Salmonella spp. growth data at isothermal temperatures (10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) in SEM were collected. Baranyi model was used (primary model) to fit growth data and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, root mean squared error (RMSE, 0.09) and pseudo-R 2 (1.00) indicated good fit for both primary and secondary models. A dynamic model was developed by integrating the primary and secondary models and validated using two sinusoidal temperature profiles, 5-15 °C (low temperature) for 480 h and 10-40 °C (high temperature) for 48 h. The RMSE values for the sinusoidal low and high temperature profiles were 0.47 and 0.42 log CFU/mL, respectively. The model can be used to predict Salmonella spp. growth in case of temperature abuse during liquid egg processing. Copyright © 2016. Published by Elsevier Ltd.

  4. Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models

    OpenAIRE

    Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.

    2013-01-01

    Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demons...

  5. Contrasting models of the effect of inflation on growth

    Czech Academy of Sciences Publication Activity Database

    Gillman, M.; Kejak, Michal

    2005-01-01

    Roč. 19, č. 1 (2005), s. 113-136 ISSN 0950-0804 R&D Projects: GA ČR GA402/05/2172 Institutional research plan: CEZ:AV0Z70850503 Keywords : balanced-growth-path * cash-in-advance * human capital Subject RIV: AH - Economics Impact factor: 0.911, year: 2005 http://dx.doi.org/10.1111/j.0950-0804.2005.00241.x

  6. A model of optimal protein allocation during phototrophic growth

    Czech Academy of Sciences Publication Activity Database

    Faizi, M.; Zavřel, Tomáš; Loureiro, C.; Červený, Jan; Steuer, Ralf

    2018-01-01

    Roč. 166, apr (2018), s. 26-36 ISSN 0303-2647 R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-17367S; GA MŠk(CZ) LM2015055 Institutional support: RVO:86652079 Keywords : Cellular protein economy * Cyanobacteria * Microbial growth laws * Photosynthesis * Resource allocation * Systems biology Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental biotechnology Impact factor: 1.652, year: 2016

  7. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks

    Directory of Open Access Journals (Sweden)

    Cécile Viboud

    2016-06-01

    Conclusions: Our findings reveal significant variation in epidemic growth patterns across different infectious disease outbreaks and highlights that sub-exponential growth is a common phenomenon, especially for pathogens that are not airborne. Sub-exponential growth profiles may result from heterogeneity in contact structures or risk groups, reactive behavior changes, or the early onset of interventions strategies, and consideration of “deceleration parameters” may be useful to refine existing mathematical transmission models and improve disease forecasts.

  8. Small doses, big troubles: modeling growth dynamics of organisms affecting microalgal production cultures in closed photobioreactors.

    Science.gov (United States)

    Forehead, Hugh I; O'Kelly, Charles J

    2013-02-01

    The destruction of mass cultures of microalgae by biological contamination of culture medium is a pervasive and expensive problem, in industry and research. A mathematical model has been formulated that attempts to explain contaminant growth dynamics in closed photobioreactors (PBRs). The model simulates an initial growth phase without PBR dilution, followed by a production phase in which culture is intermittently removed. Contaminants can be introduced at any of these stages. The model shows how exponential growth from low initial inocula can lead to "explosive" growth in the population of contaminants, appearing days to weeks after inoculation. Principal influences are contaminant growth rate, PBR dilution rate, and the size of initial contaminant inoculum. Predictions corresponded closely with observed behavior of two contaminants, Uronema sp. and Neoparamoeba sp., found in operating PBRs. A simple, cheap and effective protocol was developed for short-term prediction of contamination in PBRs, using microscopy and archived samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Growth and energy nexus in Europe revisited: Evidence from a fixed effects political economy model

    International Nuclear Information System (INIS)

    Menegaki, Angeliki N.; Ozturk, Ilhan

    2013-01-01

    This is an empirical study on the causal relationship between economic growth and energy for 26 European countries in a multivariate panel framework over the period 1975–2009 using a two-way fixed effects model and including greenhouse gas emissions, capital, fossil energy consumption, Herfindahl index (political competition) and number of years the government chief executive stays in office (political stability) as independent variables in the model. Empirical results confirm bidirectional causality between growth and political stability, capital and political stability, capital and fossil energy consumption. Whether political stability favors the implementation of growth or leads to corruption demands further research. - Highlights: • Economic growth and energy for 26 European countries is examined. • Two-way fixed effects model with political economy variables is employed. • Bidirectional causality is observed between growth and political stability

  10. Modification of the FRI crack growth model formulation from a mathematical viewpoint

    International Nuclear Information System (INIS)

    Hashimoto, Tsuneyuki; Koshiishi, Masato

    2009-01-01

    The FRI model of crack growth, which incorporates mechanical properties into the slip oxidation mechanism of crack advance, is an extension of the well-known Ford-Andresen model. When the exponent of the oxidation current decay curve is set close to 1, however, the FRI model gives an infinite crack growth rate. Here, the oxidation decay curve integral is revised to eliminate this divergence, and modified crack growth rate equations are derived. Also presented here is a procedure for determining the oxidation current parameters from the curve-fitting to measurements of crack growth rate. Parameter value determination and crack growth calculations are illustrated for cold-worked Type 316L stainless steel. (author)

  11. Growth of adult spinal cord in knifefish: Development and parametrization of a distributed model.

    Science.gov (United States)

    Ilieş, Iulian; Sipahi, Rifat; Zupanc, Günther K H

    2018-01-21

    The study of indeterminate-growing organisms such as teleost fish presents a unique opportunity for improving our understanding of central nervous tissue growth during adulthood. Integrating the existing experimental data associated with this process into a theoretical framework through mathematical or computational modeling provides further research avenues through sensitivity analysis and optimization. While this type of approach has been used extensively in investigations of tumor growth, wound healing, and bone regeneration, the development of nervous tissue has been rarely studied within a modeling framework. To address this gap, the present work introduces a distributed model of spinal cord growth in the knifefish Apteronotus leptorhynchus, an established teleostean model of adult growth in the central nervous system. The proposed model incorporates two mechanisms, cell proliferation by active stem/progenitor cells and cell drift due to population pressure, both of which are subject to global constraints. A coupled reaction-diffusion equation approach was adopted to represent the densities of actively-proliferating and non-proliferating cells along the longitudinal axis of the spinal cord. Computer simulations using this model yielded biologically-feasible growth trajectories. Subsequent comparisons with whole-organism growth curves allowed the estimation of previously-unknown parameters, such as relative growth rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Innovation, Decentralization and Planning in a Multi-Region Model of Schumpeterian Economic Growth

    NARCIS (Netherlands)

    Batabyal, A.; Nijkamp, P.

    2014-01-01

    We study innovation and the resulting Schumpeterian economic growth that this innovation gives rise to in a model with N heterogeneous regions. For each region i where i = 1,…,N, our analysis leads to six findings. First, we define the balanced growth path (BGP) allocations and the equilibrium of

  13. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a

  14. Development and validation of SUCROS-Cotton : A potential crop growth simulation model for cotton

    NARCIS (Netherlands)

    Zhang, L.; Werf, van der W.; Cao, W.; Li, B.; Pan, X.; Spiertz, J.H.J.

    2008-01-01

    A model for the development, growth and potential production of cotton (SUCROS-Cotton) was developed. Particular attention was given to the phenological development of the plant and the plasticity of fruit growth in response to temperature, radiation, daylength, variety traits, and management. The

  15. Calibration and validation of the crop growth model daisy for spring barley in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pohanková, Eva; Hlavinka, Petr; Takáč, J.; Žalud, Zdeněk; Trnka, Miroslav

    2015-01-01

    Roč. 63, č. 4 (2015), s. 1177-1186 ISSN 1211-8516 R&D Projects: GA MŠk(CZ) LD13030; GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Tolar * Crop growth model * daisy * Field experiments * Growth dynamics * Phenology * Spring barley Subject RIV: EH - Ecology, Behaviour

  16. Variable effects of radiological contrast media on thrombus growth in a rabbit jugular vein thrombosis model

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; Biemond, B. J.; Sturk, A.; Hoek, J.; ten Cate, J. W.

    1991-01-01

    We studied the effect of an ionic high osmolar contrast medium (Ioxitalamate), an ionic low osmolar contrast medium (Ioxaglate) and various nonionic low osmolar contrast media (Iopamidol, Iopromide and Iohexol) on thrombus growth in a rabbit jugular vein thrombosis model. Thrombus growth was

  17. On Taxation in a Two-Sector Endogenous Growth Model with Endogenous Labor Supply

    NARCIS (Netherlands)

    P.A. de Hek (Paul)

    2003-01-01

    textabstractThis paper examines the effects of taxation on long-run growth in a two-sector endogenous growth model with (i) physical capital as an input in the education sector and (ii) leisure as an additional argument in the utility function. The analysis of the effects of taxation - including

  18. Proces-based modeling of the overflow induced growth of erosional channels

    NARCIS (Netherlands)

    Tuan, T.Q.; Stive, M.J.F.; Verhagen, H.J.; Visser, P.J.

    2008-01-01

    A new process-based approach is introduced for a more efficient computation of the overflow-induced growth of an erosional channel in a noncohesive homogeneous narrow landmass such as the breach growth in a sand-dike. The approach is easy to incorporate in a 1D/2DV morphodynamic model to compute the

  19. Modelling growth of five different colour types of mink | Liu | South ...

    African Journals Online (AJOL)

    Modelling growth of five different colour types of mink. Z Liu, F Ning, Z Du, C Yang, J Fu, X Wang, X Bai. Abstract. The objective of this study was to estimate and compare the growth curve parameters for live weight of standard black, brown, mahogany, Hedlund white and sapphire minks. The data were collected from five ...

  20. Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth

    Directory of Open Access Journals (Sweden)

    I. Karamatlou

    2016-02-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation

  1. Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.

    Science.gov (United States)

    Juneja, Vijay K; Mishra, Abhinav; Pradhan, Abani K

    2018-02-01

    Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R 2 ), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R 2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.

  2. Nuclear energy, renewable energy, and economic growth in developed and developing countries : A modelling analysis from simultaneous-equation models

    OpenAIRE

    Anis Omri; Anissa Chaibi

    2014-01-01

    This paper investigates the causal relationship among two types of energy consumption (nuclear energy and renewable energy) and economic growth using dynamic simultaneous-equation panel data models for 17 developed and developing countries. Our results in

  3. Model of emittance growth in a self-pinched beam

    International Nuclear Information System (INIS)

    Lee, E.P.; Yu, S.S.

    1979-01-01

    A semi-phenomenological formula is proposed for the change of emittance of a self-pinched beam which is not matched to its equilibrium radius. Near equilibrium this formula, coupled with an envelope equation, yields the damped sausage oscillations observed in simulation and experiments. For a beam which is injected cold (no transverse velocity spread), the formula coincides with the analytically calculated initial growth of emittance. The basic theory is developed here and used to compute the linear damping rate for several current profiles. The resultant non-linear increase in equilibrium quantities is also calculated in lowest order of the degree of mismatch

  4. Cohesive zone modelling of nucleation, growth and coalesce of cavities

    DEFF Research Database (Denmark)

    Biel, Anders; Stigh, U.

    2017-01-01

    The stress-deformation relation i.e. cohesive law representing the fracture process in an almost incompressible adhesive tape is measured using the double cantilever beam specimen. As in many ductile materials, the fracture process of the tape involves nucleation, growth and coalesce of cavities....... This process is studied carefully by exploiting the transparency of the used materials and the inherent stability of the specimen configuration. Utilising the path independence of the J-integral, the cohesive law is measured. The law is compared to the results of butt-joint tests. The law contains two stress...

  5. Modified inorganic surfaces as a model for hydroxyapatite growth

    CERN Document Server

    Pramatarova, Lilyana

    2006-01-01

    The process by which organisms in Nature create minerals is known as biomineralization - a process that involves complex interactions between inorganic ions, crystals and organic molecules; resulting in a controlled nucleation and growth of minerals from aqueous solutions. During the last few decades, biomineralization has been intensively studied, due to its involvement in a wide range of biological events; starting with the formation of bones, teeth, cartilage, shells, coral (so-called physiological mineralization) and encompassing pathological mineralization, i.e. the formation of kidney st

  6. Oscillations in a Growth Model with Capital, Technology and Environment with Exogenous Shocks

    Directory of Open Access Journals (Sweden)

    Wei-Bin Zhang

    2015-07-01

    Full Text Available This paper generalizes the dynamic growth model with wealth accumulation, technological change and environmental change by Zhang (2012 by making all the parameters as time-dependent parameters. The model treats physical capital accumulation, knowledge creation and utilization, and environmental change as endogenous variables. It synthesizes the basic ideas of the neoclassical growth theory, Arrow’s learning-by-doing model and the traditional dynamic models of environmental change within a comprehensive framework. The behavior of the household is described with an alternative approach to household behavior. We simulated the model to demonstrate existence of equilibrium points, motion of the dynamic system, and oscillations due to different exogenous shocks.

  7. Growth Modelling of Listeria monocytogenes in Korean Pork Bulgogi Stored at Isothermal Conditions.

    Science.gov (United States)

    Lee, Na-Kyoung; Ahn, Sin Hye; Lee, Joo-Yeon; Paik, Hyun-Dong

    2015-01-01

    The purpose of this study was to develop predictive models for the growth of Listeria monocytogenes in pork Bulgogi at various storage temperatures. A two-strain mixture of L. monocytogenes (ATCC 15313 and isolated from pork Bulgogi) was inoculated on pork Bulgogi at 3 Log CFU/g. L. monocytogenes strains were enumerated using general plating method on Listeria selective medium. The inoculated samples were stored at 5, 15, and 25℃ for primary models. Primary models were developed using the Baranyi model equations, and the maximum specific growth rate was shown to be dependent on storage temperature. A secondary model of growth rate as a function of storage temperature was also developed. As the storage temperature increased, the lag time (LT) values decreased dramatically and the specific growth rate of L. monocytogenes increased. The mathematically predicted growth parameters were evaluated based on the modified bias factor (B f ), accuracy factor (A f ), root mean square error (RMSE), coefficient of determination (R (2)), and relative errors (RE). These values indicated that the developed models were reliably able to predict the growth of L. monocytogenes in pork Bulgogi. Hence, the predictive models may be used to assess microbiological hygiene in the meat supply chain as a function of storage temperature.

  8. Age structure and capital dilution effects in neo-classical growth models.

    Science.gov (United States)

    Blanchet, D

    1988-01-01

    Economists often over estimate capital dilution effects when applying neoclassical growth models which use age structured population and depreciation of capital stock. This occurs because capital stock is improperly characterized. A standard model which assumes a constant depreciation of capital intimates that a population growth rate equal to a negative constant savings ratio is preferable to any higher growth rate. Growth rates which are lower than a negative constant savings ratio suggest an ever growing capital/labor ratio and an ever growing standard of living, even if people do not save. This is suggested because the natural reduction of the capital stock through depreciation is slower than the population decrease which is simply unrealistic. This model overlooks the fact that low or negative growth rates result in an ageing of the capital stock, and this ageing subsequently results in an increase of the overall rate of capital depreciation. In that overly simplistic model, depreciation was assumed independent of the age of the captial stock. Incorporating depreciation as a variable into a model allows a more symmetric treatment of capital. Using models with heterogenous capital, this article explores what occurs when more than 1 kind of capital good is involved in production and when these various captial goods have different lengths of life. Applying economic models, it also examines what occurs when the length of life of capital may vary. These variations correct the negative impact that population growth can have on per capital production and consumption.

  9. An Evaluation of Growth Models as Predictive Tools for Estimates at Completion (EAC)

    National Research Council Canada - National Science Library

    Trahan, Elizabeth N

    2009-01-01

    ...) as the Estimates at Completion (EAC). Our research evaluates the prospect of nonlinear growth modeling as an alternative to the current predictive tools used for calculating EAC, such as the Cost Performance Index (CPI...

  10. Some factors that will affect the next generation of forest growth models

    International Nuclear Information System (INIS)

    Leary, R.A.

    1988-01-01

    This paper discusses several types of factors that affect the form and referents of future growth models. These include philosophical, scientific, technological, educational, and organizational factors. Each factor is presented individually

  11. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.

    2014-01-01

    Roč. 22, č. 1 (2014), Art. No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014

  12. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    BACKGROUND & PURPOSE: Crouzon syndrome is characterized by growth disturbances caused by premature craniosynostosis. A mouse model with mutation Fgfr2C342Y, equivalent to the most common Crouzon syndrome mutation (henceforth called the Crouzon mouse model), has a phenotype showing many parallels...... to the human counterpart. Quantifying growth in the Crouzon mouse model could test hypotheses of the relationship between craniosynostosis and dysmorphology, leading to better understanding of the causes of Crouzon syndrome as well as providing knowledge relevant for surgery planning. METHODS: Automatic non......-rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...

  13. Effects of lag and maximum growth in contaminant transport and biodegradation modeling

    International Nuclear Information System (INIS)

    Wood, B.D.; Dawson, C.N.

    1992-06-01

    The effects of time lag and maximum microbial growth on biodegradation in contaminant transport are discussed. A mathematical model is formulated that accounts for these effects, and a numerical case study is presented that demonstrates how lag influences biodegradation

  14. Effect of the Anti-Oxidant Tempol on Fetal Growth in a Mouse Model of Fetal Growth Restriction1

    Science.gov (United States)

    Stanley, Joanna L.; Andersson, Irene J.; Hirt, Cassandra J.; Moore, Linn; Dilworth, Mark R.; Chade, Alejandro R.; Sibley, Colin P.; Davidge, Sandra T.; Baker, Philip N.

    2012-01-01

    ABSTRACT Fetal growth restriction (FGR) greatly increases the risk of perinatal morbidity and mortality and is associated with increased uterine artery resistance and levels of oxidative stress. There are currently no available treatments for this condition. The hypothesis that the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Tempol) would improve uterine artery function and rescue fetal growth was tested in a mouse model of FGR, using the endothelial nitric oxide synthase knockout mouse (Nos3−/−). Pregnant Nos3−/− and control C57BL/6J mice were treated with the superoxide dismutase-mimetic Tempol (1 mmol/L) or vehicle from Gestational Day 12.5 to 18.5. Tempol treatment significantly increased pup weight (P Tempol significantly increased end diastolic velocity in Nos3−/− mice (P Tempol treatment. Placental System A activity was reduced in Nos3−/− mice (P Tempol. Treatment of Nos3−/− mice with Tempol, however, was associated with reduced vascular density in the placental bed (P Tempol is able to improve fetal growth in a mouse model of FGR. This was associated with an increase in uterine artery blood flow velocity but not an improvement in uterine artery function or placental System A activity. PMID:22423051

  15. Effect of the anti-oxidant tempol on fetal growth in a mouse model of fetal growth restriction.

    Science.gov (United States)

    Stanley, Joanna L; Andersson, Irene J; Hirt, Cassandra J; Moore, Linn; Dilworth, Mark R; Chade, Alejandro R; Sibley, Colin P; Davidge, Sandra T; Baker, Philip N

    2012-07-01

    Fetal growth restriction (FGR) greatly increases the risk of perinatal morbidity and mortality and is associated with increased uterine artery resistance and levels of oxidative stress. There are currently no available treatments for this condition. The hypothesis that the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Tempol) would improve uterine artery function and rescue fetal growth was tested in a mouse model of FGR, using the endothelial nitric oxide synthase knockout mouse (Nos3(-/-)). Pregnant Nos3(-/-) and control C57BL/6J mice were treated with the superoxide dismutase-mimetic Tempol (1 mmol/L) or vehicle from Gestational Day 12.5 to 18.5. Tempol treatment significantly increased pup weight (P Tempol significantly increased end diastolic velocity in Nos3(-/-) mice (P Tempol treatment. Placental System A activity was reduced in Nos3(-/-) mice (P Tempol. Treatment of Nos3(-/-) mice with Tempol, however, was associated with reduced vascular density in the placental bed (P Tempol is able to improve fetal growth in a mouse model of FGR. This was associated with an increase in uterine artery blood flow velocity but not an improvement in uterine artery function or placental System A activity.

  16. Growth Modeling of Human Mandibles using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Larsen, Rasmus; Wrobel, Mark

    2003-01-01

    From a set of 31 three-dimensional CT scans we model the temporal shape and size of the human mandible. Each anatomical structure is represented using 14851 semi-landmarks, and mapped into Procrustes tangent space. Exploratory subspace analyses are performed leading to linear models of mandible s...

  17. Applied model for the growth of the daytime mixed layer

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1991-01-01

    A slab model is proposed for developing the height of the mixed layer capped by stable air aloft. The model equations are closed by relating the consumption of energy (potential and kinetic) at the top of the mixed layer to the production of convective and mechanical turbulent kinetic energy with...

  18. Quantitative Analysis of Intra Urban Growth Modeling using socio economic agents by combining cellular automata model with agent based model

    Science.gov (United States)

    Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.

    2017-12-01

    Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes

  19. Structural equation models of VMT growth in US urbanised areas.

    Science.gov (United States)

    Ewing, Reid; Hamidi, Shima; Gallivan, Frank; Nelson, Arthur C.; Grace, James B.

    2014-01-01

    Vehicle miles travelled (VMT) is a primary performance indicator for land use and transportation, bringing with it both positive and negative externalities. This study updates and refines previous work on VMT in urbanised areas, using recent data, additional metrics and structural equation modelling (SEM). In a cross-sectional model for 2010, population, income and freeway capacity are positively related to VMT, while gasoline prices, development density and transit service levels are negatively related. Findings of the cross-sectional model are generally confirmed in a more tightly controlled longitudinal study of changes in VMT between 2000 and 2010, the first model of its kind. The cross-sectional and longitudinal models together, plus the transportation literature generally, give us a basis for generalising across studies to arrive at elasticity values of VMT with respect to different urban variables.

  20. A valence force field-Monte Carlo algorithm for quantum dot growth modeling

    DEFF Research Database (Denmark)

    Barettin, Daniele; Kadkhodazadeh, Shima; Pecchia, Alessandro

    2017-01-01

    We present a novel kinetic Monte Carlo version for the atomistic valence force fields algorithm in order to model a self-assembled quantum dot growth process. We show our atomistic model is both computationally favorable and capture more details compared to traditional kinetic Monte Carlo models...

  1. A first-approximation simple dynamic growth model for forest teak ...

    African Journals Online (AJOL)

    A biologically consistent whole-stand growth model is presented, which uses the state-space approach for modelling rates of change of dominant height, stand density and stand basal area. A simple model containing few free parameters performed well and is particularly well suited to situations where available data are ...

  2. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    Science.gov (United States)

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  3. Re-parametrization of a swine model to predict growth performance of broilers

    OpenAIRE

    Dukhta, G.; van Milgen, Jacob; Kövér, G.; Halas, V.

    2017-01-01

    The aim of the study was to investigate whether a pig growth model is suitable to be modified and adapted for broilers. As monogastric animals, pigs and poultry share many similarities in their digestion and metabolism, many structures (body protein and lipid stores) and the nutrient flows of the underlying metabolic pathways are similar among species. For that purpose, the InraPorc model was used as a basis to predict growth performance and body composition at slaughter in broilers. First...

  4. Climate change feedback on economic growth: Explorations with a dynamic general equilibrium model

    OpenAIRE

    Eboli, Fabio; Parrado, Ramiro; Roson, Roberto

    2009-01-01

    Human-generated greenhouse gases depend on the level of economic activity. Therefore, most climate change studies are based on models and scenarios of economic growth. Economic growth itself, however, is likely to be affected by climate change impacts. These impacts affect the economy in multiple and complex ways: changes in productivity, resource endowments, production and consumption patterns. We use a new dynamic, multi-regional Computable General Equilibrium (CGE) model of the world econo...

  5. Modelling the Growth and Volatility in Daily International Mass Tourism to Peru

    OpenAIRE

    Jose Angelo Divino; Michael McAleer

    2009-01-01

    Peru is a South American country that is divided into two parts by the Andes Mountains. The rich historical, cultural and geographic diversity has led to the inclusion of ten Peruvian sites on UNESCO’s World Heritage List. For the potential negative impacts of mass tourism on the environment, and hence on future international tourism demand, to be managed appropriately require modelling growth rates and volatility adequately. The paper models the growth rate and volatility (or the variability...

  6. A search for distinctive features of demand-led growth models

    OpenAIRE

    Sergio Parrinello

    2014-01-01

    This paper aims at a critical and constructive assessment of some extensions of Keynes’s analysis of effective demand to the long period and growth. A criticism is addressed to a single-cause interpretation of the demand-led growth models and to the notion of normal capacity utilization adopted in such models. A positive argument tries to find a distinctive characterization of those extensions in the productive and financial conditions that make effective the autonomous changes in aggregate d...

  7. Industry growth, work role characteristics, and job satisfaction: a cross-level mediation model.

    Science.gov (United States)

    Ford, Michael T; Wooldridge, Jessica D

    2012-10-01

    The associations between industry revenue growth, individual work role characteristics, and job satisfaction were examined in this cross-level mediation analysis. Work roles were expected to be more autonomous, involve greater skill variety, and offer more opportunities for growth and development for workers in growing industries than for workers in declining industries. Supervisor support was also hypothesized to be stronger for workers in high-growth industries. Results from a nationally representative (U.S.) sample of service industry workers, using multilevel modeling, supported these propositions and suggest that job enrichment mediates relations between industry growth and job satisfaction. Associations between industry growth and autonomy were also stronger among workers in occupations that are less normatively autonomous, suggesting that industry growth fosters a weakening, and industry decline a strengthening, of traditional differences in autonomy across work roles. These results contribute to a multilevel perspective on organizational environments, individual work roles, and worker attitudes and well-being.

  8. The Growth Path of Agricultural Labor Productivity in China: A Latent Growth Curve Model at the Prefectural Level

    Directory of Open Access Journals (Sweden)

    Peng Bin

    2016-06-01

    Full Text Available Given the shrinking proportion of agriculture output and the growing mobility of the labor force in China, how agricultural labor productivity develops has become an increasingly attractive topic for researchers and policy makers. This study aims to depict the development trajectory of agricultural labor productivity in China after its WTO entry. Based on a balanced panel data containing 287 Chinese prefectures from 2000 to 2013, this study applies the Latent Growth Curve Model (LGCM and finds that the agricultural labor productivity follows a piecewise growth path with two breaking points in the years of 2004 and 2009. This may stem from some exogenous stimulus, such as supporting policies launched in the breaking years. Further statistical analysis shows an expanding gap of agricultural labor productivity among different Chinese prefectures.

  9. Economic Growth and Government Subventions for Agriculture Sector in Algeria: An ARDL Model

    Directory of Open Access Journals (Sweden)

    Mokhtari Fayçal

    2016-12-01

    Full Text Available The article analyzes the impact of government support of the agricultural sector on the economic growth in Algeria. The study is based on cointegration relation and error correction model according to Autoregressive Distributed Lag (ARDL model developed by Pesaran and al (2001. The results indicated that the support of agriculture production and producers has a positive impact on the agricultural growth, while it has a negative impact on the economic growth in the long term. On the other side, the total agricultural support regardless of its relationship with production and producers has a positive impact on agricultural production growth and economic growth in the long term. Finally, the total support of the agricultural sector is more important than individual support for agricultural producers.

  10. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  11. A simple endogenous growth model with endogenous fertility: indeterminacy and uniqueness.

    Science.gov (United States)

    Yip, C K; Zhang, J

    1997-01-01

    Considerable literature exists upon the effect of population growth upon per capita income growth. Among the reported studies, Brander and Dowrick (1994) try to explain the large variation across countries in per capita income growth. The authors explore the possibility that even with little differences in fertility rates, different countries may experience disparate growth performances solely due to the emergence of indeterminate equilibria, which could push them into different equilibrium trajectories. The equilibrium dynamics and indeterminacy of equilibria in an endogenous growth model with endogenous fertility choice are studied. The authors characterize the conditions which give rise to a unique equilibrium as well as multiple equilibria. When a unique equilibrium exists, it will be globally determinate, and when multiple equilibria arise, indeterminacy occurs. Two equilibria were found to occur, one associated with high fertility and low growth and the other with low fertility and high growth. A parameterized example is presented to assess the empirical feasibility of results. The validity of the neo-Malthusian relation between fertility and growth is then re-examined. The authors also explore the relationship between growth and welfare, and compare different balanced growth equilibria in terms of their lifetime attained utility.

  12. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  13. Visualized modeling platform for virtual plant growth and monitoring on the internet

    Science.gov (United States)

    Zhou, De-fu; Tian, Feng-qui; Ren, Ping

    2009-07-01

    Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.

  14. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 Degree C

    Science.gov (United States)

    The objective of this study was to develop primary and secondary models to describe the growth of Salmonella in raw ground beef. Primary and secondary models can be integrated into a dynamic model that can predict the microbial growth under varying environmental conditions. Growth data of Salmonel...

  16. Development and validation of a combined temperature, water activity, pH model for bacterial growth rate of Lactobacillus curvatus

    NARCIS (Netherlands)

    Wijtzes, T.; Rombouts, F.M.; Kant-Muermans, M.L.T.; Riet, van 't K.; Zwietering, M.H.

    2001-01-01

    A model was established to predict growth rate as a function of temperature, pH and water activity. The model is based on two, earlier developed models, one for growth rate as a function of temperature and water activity and the other for growth rate as a function of temperature and pH. Based on the

  17. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    Science.gov (United States)

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  18. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    -rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...... a tool for spatially detailed automatic phenotyping. MAIN OBJECTIVES OF PRESENTATION: We will present a 3D growth model of normal and Crouzon mice, and differences will be statistically and visually compared....

  19. Government spending in education and economic growth in Cameroon:a Vector error Correction Model approach

    OpenAIRE

    Douanla Tayo, Lionel; Abomo Fouda, Marcel Olivier

    2015-01-01

    This study aims at assessing the effect of government spending in education on economic growth in Cameroon over the period 1980-2012 using a vector error correction model. The estimated results show that these expenditures had a significant and positive impact on economic growth both in short and long run. The estimated error correction model shows that an increase of 1% of the growth rate of private gross fixed capital formation and government education spending led to increases of 5.03% a...

  20. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks.

    Science.gov (United States)

    Viboud, Cécile; Simonsen, Lone; Chowell, Gerardo

    2016-06-01

    A better characterization of the early growth dynamics of an epidemic is needed to dissect the important drivers of disease transmission, refine existing transmission models, and improve disease forecasts. We introduce a 2-parameter generalized-growth model to characterize the ascending phase of an outbreak and capture epidemic profiles ranging from sub-exponential to exponential growth. We test the model against empirical outbreak data representing a variety of viral pathogens in historic and contemporary populations, and provide simulations highlighting the importance of sub-exponential growth for forecasting purposes. We applied the generalized-growth model to 20 infectious disease outbreaks representing a range of transmission routes. We uncovered epidemic profiles ranging from very slow growth (p=0.14 for the Ebola outbreak in Bomi, Liberia (2014)) to near exponential (p>0.9 for the smallpox outbreak in Khulna (1972), and the 1918 pandemic influenza in San Francisco). The foot-and-mouth disease outbreak in Uruguay displayed a profile of slower growth while the growth pattern of the HIV/AIDS epidemic in Japan was approximately linear. The West African Ebola epidemic provided a unique opportunity to explore how growth profiles vary by geography; analysis of the largest district-level outbreaks revealed substantial growth variations (mean p=0.59, range: 0.14-0.97). The districts of Margibi in Liberia and Bombali and Bo in Sierra Leone had near-exponential growth, while the districts of Bomi in Liberia and Kenema in Sierra Leone displayed near constant incidences. Our findings reveal significant variation in epidemic growth patterns across different infectious disease outbreaks and highlights that sub-exponential growth is a common phenomenon, especially for pathogens that are not airborne. Sub-exponential growth profiles may result from heterogeneity in contact structures or risk groups, reactive behavior changes, or the early onset of interventions strategies