WorldWideScience

Sample records for modeling human syllogistic

  1. The Probability Heuristics Model of Syllogistic Reasoning.

    Science.gov (United States)

    Chater, Nick; Oaksford, Mike

    1999-01-01

    Proposes a probability heuristic model for syllogistic reasoning and confirms the rationality of this heuristic by an analysis of the probabilistic validity of syllogistic reasoning that treats logical inference as a limiting case of probabilistic inference. Meta-analysis and two experiments involving 40 adult participants and using generalized…

  2. Probabilistic representation in syllogistic reasoning: A theory to integrate mental models and heuristics.

    Science.gov (United States)

    Hattori, Masasi

    2016-12-01

    This paper presents a new theory of syllogistic reasoning. The proposed model assumes there are probabilistic representations of given signature situations. Instead of conducting an exhaustive search, the model constructs an individual-based "logical" mental representation that expresses the most probable state of affairs, and derives a necessary conclusion that is not inconsistent with the model using heuristics based on informativeness. The model is a unification of previous influential models. Its descriptive validity has been evaluated against existing empirical data and two new experiments, and by qualitative analyses based on previous empirical findings, all of which supported the theory. The model's behavior is also consistent with findings in other areas, including working memory capacity. The results indicate that people assume the probabilities of all target events mentioned in a syllogism to be almost equal, which suggests links between syllogistic reasoning and other areas of cognition. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Physarum Polycephalum Syllogistic L-Systems and Judaic Roots of Unconventional Computing

    Directory of Open Access Journals (Sweden)

    Schumann Andrew

    2016-03-01

    Full Text Available We show that in Kabbalah, the esoteric teaching of Judaism, there were developed ideas of unconventional automata in which operations over characters of the Hebrew alphabet can simulate all real processes producing appropriate strings in accordance with some algorithms. These ideas may be used now in a syllogistic extension of Lindenmayer systems (L-systems, where we deal also with strings in the Kabbalistic-Leibnizean meaning. This extension is illustrated by the behavior of Physarum polycephalum plasmodia which can implement, first, the Aristotelian syllogistic and, second, a Talmudic syllogistic by qal wa-homer.

  4. Inhibitory mechanism of the matching heuristic in syllogistic reasoning.

    Science.gov (United States)

    Tse, Ping Ping; Moreno Ríos, Sergio; García-Madruga, Juan Antonio; Bajo Molina, María Teresa

    2014-11-01

    A number of heuristic-based hypotheses have been proposed to explain how people solve syllogisms with automatic processes. In particular, the matching heuristic employs the congruency of the quantifiers in a syllogism—by matching the quantifier of the conclusion with those of the two premises. When the heuristic leads to an invalid conclusion, successful solving of these conflict problems requires the inhibition of automatic heuristic processing. Accordingly, if the automatic processing were based on processing the set of quantifiers, no semantic contents would be inhibited. The mental model theory, however, suggests that people reason using mental models, which always involves semantic processing. Therefore, whatever inhibition occurs in the processing implies the inhibition of the semantic contents. We manipulated the validity of the syllogism and the congruency of the quantifier of its conclusion with those of the two premises according to the matching heuristic. A subsequent lexical decision task (LDT) with related words in the conclusion was used to test any inhibition of the semantic contents after each syllogistic evaluation trial. In the LDT, the facilitation effect of semantic priming diminished after correctly solved conflict syllogisms (match-invalid or mismatch-valid), but was intact after no-conflict syllogisms. The results suggest the involvement of an inhibitory mechanism of semantic contents in syllogistic reasoning when there is a conflict between the output of the syntactic heuristic and actual validity. Our results do not support a uniquely syntactic process of syllogistic reasoning but fit with the predictions based on mental model theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Belief–logic conflict resolution in syllogistic reasoning: Inspection-time evidence for a parallel process model

    OpenAIRE

    Stupple, Edward J.N; Ball, Linden

    2008-01-01

    An experiment is reported examining dual-process models of belief bias in syllogistic reasoning using a problem complexity manipulation and an inspection-time method to monitor processing latencies for premises and conclusions. Endorsement rates indicated increased belief bias on complex problems, a finding that runs counter to the “belief-first” selective scrutiny model, but which is consistent with other theories, including “reasoning-first” and “parallel-process” models. Inspection-time da...

  6. Leibniz' First Formalization of Syllogistics

    DEFF Research Database (Denmark)

    Robering, Klaus

    2014-01-01

    of letters just those which belong to the useful, i.e., valid, modes. The set of codes of valid modes turns out to be a so-called "regular" language (in the sense of formal-language-theory). Leibniz' formalization of syllogistics in his Dissertatio thus contains an estimation of the computational complexity...

  7. Teaching Syllogistics Using E-learning Tools

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steinar

    2016-01-01

    This paper is a study of various strategies for teaching syllogistics as part of a course in basic logic. It is a continuation of earlier studies involving practical experiments with students of Communication using the Syllog system, which makes it possible to develop e-learning tools and to do l...... involving different teaching methods will be compared.......This paper is a study of various strategies for teaching syllogistics as part of a course in basic logic. It is a continuation of earlier studies involving practical experiments with students of Communication using the Syllog system, which makes it possible to develop e-learning tools and to do...... learning analytics based on log-data. The aim of the present paper is to investigate whether the Syllog e-learning tools can be helpful in logic teaching in order to obtain a better understanding of logic and argumentation in general and syllogisms in particular. Four versions of a course in basic logic...

  8. Negations in syllogistic reasoning: evidence for a heuristic-analytic conflict.

    Science.gov (United States)

    Stupple, Edward J N; Waterhouse, Eleanor F

    2009-08-01

    An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails.

  9. Logic feels so good-I like it! Evidence for intuitive detection of logicality in syllogistic reasoning.

    Science.gov (United States)

    Morsanyi, Kinga; Handley, Simon J

    2012-05-01

    When people evaluate syllogisms, their judgments of validity are often biased by the believability of the conclusions of the problems. Thus, it has been suggested that syllogistic reasoning performance is based on an interplay between a conscious and effortful evaluation of logicality and an intuitive appreciation of the believability of the conclusions (e.g., Evans, Newstead, Allen, & Pollard, 1994). However, logic effects in syllogistic reasoning emerge even when participants are unlikely to carry out a full logical analysis of the problems (e.g., Shynkaruk & Thompson, 2006). There is also evidence that people can implicitly detect the conflict between their beliefs and the validity of the problems, even if they are unable to consciously produce a logical response (e.g., De Neys, Moyens, & Vansteenwegen, 2010). In 4 experiments we demonstrate that people intuitively detect the logicality of syllogisms, and this effect emerges independently of participants' conscious mindset and their cognitive capacity. This logic effect is also unrelated to the superficial structure of the problems. Additionally, we provide evidence that the logicality of the syllogisms is detected through slight changes in participants' affective states. In fact, subliminal affective priming had an effect on participants' subjective evaluations of the problems. Finally, when participants misattributed their emotional reactions to background music, this significantly reduced the logic effect. (c) 2012 APA, all rights reserved.

  10. How logical reasoning mediates the relation between lexical quality and reading comprehension.

    Science.gov (United States)

    Segers, Eliane; Verhoeven, Ludo

    The present study aimed to examine the role of logical reasoning in the relation between lexical quality and reading comprehension in 146 fourth grade Dutch children. We assessed their standardized reading comprehension measure, along with their decoding efficiency and vocabulary as measures of lexical quality, syllogistic reasoning as measure of (verbal) logical reasoning, and nonverbal reasoning as a control measure. Syllogistic reasoning was divided into a measure tapping basic, coherence inferencing skill using logical syllogisms, and a measure tapping elaborative inferencing skill using indeterminate syllogisms. Results showed that both types of syllogisms partly mediated the relation between lexical quality and reading comprehension, but also had a unique additional effect on reading comprehension. The indirect effect of lexical quality on reading comprehension via syllogisms was driven by vocabulary knowledge. It is concluded that measures of syllogistic reasoning account for higher-order thinking processes that are needed to make inferences in reading comprehension. The role of lexical quality appears to be pivotal in explaining the variation in reading comprehension both directly and indirectly via syllogistic reasoning.

  11. The SDT Model of Belief Bias: Complexity, Time, and Cognitive Ability Mediate the Effects of Believability

    Science.gov (United States)

    Trippas, Dries; Handley, Simon J.; Verde, Michael F.

    2013-01-01

    When people evaluate conclusions, they are often influenced by prior beliefs. Prevalent theories claim that "belief bias" affects the quality of syllogistic reasoning. However, recent work by Dube, Rotello, and Heit (2010) has suggested that belief bias may be a simple response bias. In Experiment 1, receiver operating characteristic…

  12. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  13. Précis of bayesian rationality: The probabilistic approach to human reasoning.

    Science.gov (United States)

    Oaksford, Mike; Chater, Nick

    2009-02-01

    According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer, deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules of logic--the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on comparing human reasoning against logical standards. Bayesian Rationality argues that rationality is defined instead by the ability to reason about uncertainty. Although people are typically poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic reasoning. In Chapters 1-4 of Bayesian Rationality (Oaksford & Chater 2007), the case is made that cognition in general, and human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters 5-7 the psychology of "deductive" reasoning is tackled head-on: It is argued that purportedly "logical" reasoning problems, revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning, Wason's selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of this work, and the wider "probabilistic turn" in cognitive science and artificial intelligence, for understanding human rationality.

  14. Human modeling in nuclear engineering

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo.

    1994-01-01

    Review on progress of research and development on human modeling methods is made from the viewpoint of its importance on total man-machine system reliability surrounding nuclear power plant operation. Basic notions on three different approaches of human modeling (behavioristics, cognitives and sociologistics) are firstly introduced, followed by the explanation of fundamental scheme to understand human cognitives at man-machine interface and the mechanisms of human error and its classification. Then, general methodologies on human cognitive model by AI are explained with the brief summary of various R and D activities now prevailing in the human modeling communities around the world. A new method of dealing with group human reliability is also introduced which is based on sociologistic mathematical model. Lastly, problems on human model validation are discussed, followed by the introduction of new experimental method to estimate human cognitive state by psycho-physiological measurement, which is a new methodology plausible for human model validation. (author)

  15. Human Modeling for Ground Processing Human Factors Engineering Analysis

    Science.gov (United States)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  16. Digital Human Modeling

    Science.gov (United States)

    Dischinger, H. Charles, Jr.

    2017-01-01

    The development of models to represent human characteristics and behaviors in human factors is broad and general. The term "model" can refer to any metaphor to represent any aspect of the human; it is generally used in research to mean a mathematical tool for the simulation (often in software, which makes the simulation digital) of some aspect of human performance and for the prediction of future outcomes. This section is restricted to the application of human models in physical design, e.g., in human factors engineering. This design effort is typically human interface design, and the digital models used are anthropometric. That is, they are visual models that are the physical shape of humans and that have the capabilities and constraints of humans of a selected population. They are distinct from the avatars used in the entertainment industry (movies, video games, and the like) in precisely that regard: as models, they are created through the application of data on humans, and they are used to predict human response; body stresses workspaces. DHM enable iterative evaluation of a large number of concepts and support rapid analysis, as compared with use of physical mockups. They can be used to evaluate feasibility of escape of a suited astronaut from a damaged vehicle, before launch or after an abort (England, et al., 2012). Throughout most of human spaceflight, little attention has been paid to worksite design for ground workers. As a result of repeated damage to the Space Shuttle which adversely affected flight safety, DHM analyses of ground assembly and maintenance have been developed over the last five years for the design of new flight systems (Stambolian, 2012, Dischinger and Dunn Jackson, 2014). The intent of these analyses is to assure the design supports the work of the ground crew personnel and thereby protect the launch vehicle. They help the analyst address basic human factors engineering questions: can a worker reach the task site from the work platform

  17. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  18. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  19. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  20. Human Adaptive Mechatronics and Human-System Modelling

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-03-01

    Full Text Available Several topics in projects for mechatronics studies, which are 'Human Adaptive Mechatronics (HAM' and 'Human-System Modelling (HSM', are presented in this paper. The main research theme of the HAM project is a design strategy for a new intelligent mechatronics system, which enhances operators' skills during machine operation. Skill analyses and control system design have been addressed. In the HSM project, human modelling based on hierarchical classification of skills was studied, including the following five types of skills: social, planning, cognitive, motion and sensory-motor skills. This paper includes digests of these research topics and the outcomes concerning each type of skill. Relationships with other research activities, knowledge and information that will be helpful for readers who are trying to study assistive human-mechatronics systems are also mentioned.

  1. Models of human operators

    International Nuclear Information System (INIS)

    Knee, H.E.; Schryver, J.C.

    1991-01-01

    Models of human behavior and cognition (HB and C) are necessary for understanding the total response of complex systems. Many such models have come available over the past thirty years for various applications. Unfortunately, many potential model users remain skeptical about their practicality, acceptability, and usefulness. Such hesitancy stems in part to disbelief in the ability to model complex cognitive processes, and a belief that relevant human behavior can be adequately accounted for through the use of commonsense heuristics. This paper will highlight several models of HB and C and identify existing and potential applications in attempt to dispel such notions. (author)

  2. On scaling of human body models

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2007-10-01

    Full Text Available Human body is not an unique being, everyone is another from the point of view of anthropometry and mechanical characteristics which means that division of the human body population to categories like 5%-tile, 50%-tile and 95%-tile from the application point of view is not enough. On the other hand, the development of a particular human body model for all of us is not possible. That is why scaling and morphing algorithms has started to be developed. The current work describes the development of a tool for scaling of the human models. The idea is to have one (or couple of standard model(s as a base and to create other models based on these basic models. One has to choose adequate anthropometrical and biomechanical parameters that describe given group of humans to be scaled and morphed among.

  3. The Five Key Questions of Human Performance Modeling.

    Science.gov (United States)

    Wu, Changxu

    2018-01-01

    Via building computational (typically mathematical and computer simulation) models, human performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-machine system productivity and safety. This paper describes and summarizes the five key questions of human performance modeling: 1) Why we build models of human performance; 2) What the expectations of a good human performance model are; 3) What the procedures and requirements in building and verifying a human performance model are; 4) How we integrate a human performance model with system design; and 5) What the possible future directions of human performance modeling research are. Recent and classic HPM findings are addressed in the five questions to provide new thinking in HPM's motivations, expectations, procedures, system integration and future directions.

  4. Modeling multimodal human-computer interaction

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.

    2004-01-01

    Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze

  5. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    Science.gov (United States)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  6. Vicarious learning from human models in monkeys.

    Science.gov (United States)

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  7. Vicarious learning from human models in monkeys.

    Directory of Open Access Journals (Sweden)

    Rossella Falcone

    Full Text Available We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  8. Integrated Environmental Modelling: Human decisions, human challenges

    Science.gov (United States)

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  9. Vicarious Learning from Human Models in Monkeys

    OpenAIRE

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was app...

  10. Identification of walking human model using agent-based modelling

    Science.gov (United States)

    Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir

    2018-03-01

    The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.

  11. Human mobility: Models and applications

    Science.gov (United States)

    Barbosa, Hugo; Barthelemy, Marc; Ghoshal, Gourab; James, Charlotte R.; Lenormand, Maxime; Louail, Thomas; Menezes, Ronaldo; Ramasco, José J.; Simini, Filippo; Tomasini, Marcello

    2018-03-01

    Recent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between short-range and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.

  12. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    OpenAIRE

    Jiae Kim; Jiae Kim; Kristina K. Peachman; Kristina K. Peachman; Ousman Jobe; Ousman Jobe; Elaine B. Morrison; Atef Allam; Atef Allam; Linda Jagodzinski; Sofia A. Casares; Mangala Rao

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several...

  13. Cascading walks model for human mobility patterns.

    Science.gov (United States)

    Han, Xiao-Pu; Wang, Xiang-Wen; Yan, Xiao-Yong; Wang, Bing-Hong

    2015-01-01

    Uncovering the mechanism behind the scaling laws and series of anomalies in human trajectories is of fundamental significance in understanding many spatio-temporal phenomena. Recently, several models, e.g. the explorations-returns model (Song et al., 2010) and the radiation model for intercity travels (Simini et al., 2012), have been proposed to study the origin of these anomalies and the prediction of human movements. However, an agent-based model that could reproduce most of empirical observations without priori is still lacking. In this paper, considering the empirical findings on the correlations of move-lengths and staying time in human trips, we propose a simple model which is mainly based on the cascading processes to capture the human mobility patterns. In this model, each long-range movement activates series of shorter movements that are organized by the law of localized explorations and preferential returns in prescribed region. Based on the numerical simulations and analytical studies, we show more than five statistical characters that are well consistent with the empirical observations, including several types of scaling anomalies and the ultraslow diffusion properties, implying the cascading processes associated with the localized exploration and preferential returns are indeed a key in the understanding of human mobility activities. Moreover, the model shows both of the diverse individual mobility and aggregated scaling displacements, bridging the micro and macro patterns in human mobility. In summary, our model successfully explains most of empirical findings and provides deeper understandings on the emergence of human mobility patterns.

  14. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  15. 3D virtual human rapid modeling method based on top-down modeling mechanism

    Directory of Open Access Journals (Sweden)

    LI Taotao

    2017-01-01

    Full Text Available Aiming to satisfy the vast custom-made character demand of 3D virtual human and the rapid modeling in the field of 3D virtual reality, a new virtual human top-down rapid modeling method is put for-ward in this paper based on the systematic analysis of the current situation and shortage of the virtual hu-man modeling technology. After the top-level realization of virtual human hierarchical structure frame de-sign, modular expression of the virtual human and parameter design for each module is achieved gradu-al-level downwards. While the relationship of connectors and mapping restraints among different modules is established, the definition of the size and texture parameter is also completed. Standardized process is meanwhile produced to support and adapt the virtual human top-down rapid modeling practice operation. Finally, the modeling application, which takes a Chinese captain character as an example, is carried out to validate the virtual human rapid modeling method based on top-down modeling mechanism. The result demonstrates high modelling efficiency and provides one new concept for 3D virtual human geometric mod-eling and texture modeling.

  16. Human performance modeling for system of systems analytics.

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kevin R.; Lawton, Craig R.; Basilico, Justin Derrick; Longsine, Dennis E. (INTERA, Inc., Austin, TX); Forsythe, James Chris; Gauthier, John Henry; Le, Hai D.

    2008-10-01

    A Laboratory-Directed Research and Development project was initiated in 2005 to investigate Human Performance Modeling in a System of Systems analytic environment. SAND2006-6569 and SAND2006-7911 document interim results from this effort; this report documents the final results. The problem is difficult because of the number of humans involved in a System of Systems environment and the generally poorly defined nature of the tasks that each human must perform. A two-pronged strategy was followed: one prong was to develop human models using a probability-based method similar to that first developed for relatively well-understood probability based performance modeling; another prong was to investigate more state-of-art human cognition models. The probability-based modeling resulted in a comprehensive addition of human-modeling capability to the existing SoSAT computer program. The cognitive modeling resulted in an increased understanding of what is necessary to incorporate cognition-based models to a System of Systems analytic environment.

  17. Standardisation of digital human models.

    Science.gov (United States)

    Paul, Gunther; Wischniewski, Sascha

    2012-01-01

    Digital human models (DHM) have evolved as useful tools for ergonomic workplace design and product development, and found in various industries and education. DHM systems which dominate the market were developed for specific purposes and differ significantly, which is not only reflected in non-compatible results of DHM simulations, but also provoking misunderstanding of how DHM simulations relate to real world problems. While DHM developers are restricted by uncertainty about the user need and lack of model data related standards, users are confined to one specific product and cannot exchange results, or upgrade to another DHM system, as their previous results would be rendered worthless. Furthermore, origin and validity of anthropometric and biomechanical data is not transparent to the user. The lack of standardisation in DHM systems has become a major roadblock in further system development, affecting all stakeholders in the DHM industry. Evidently, a framework for standardising digital human models is necessary to overcome current obstructions. Practitioner Summary: This short communication addresses a standardisation issue for digital human models, which has been addressed at the International Ergonomics Association Technical Committee for Human Simulation and Virtual Environments. It is the outcome of a workshop at the DHM 2011 symposium in Lyon, which concluded steps towards DHM standardisation that need to be taken.

  18. Human models of acute lung injury

    Directory of Open Access Journals (Sweden)

    Alastair G. Proudfoot

    2011-03-01

    Full Text Available Acute lung injury (ALI is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.

  19. Modelling human factor with Petri nets

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constantinescu, Cristina; Guzun, Basarab

    2007-01-01

    The human contribution to risk and safety of nuclear power plant operation can be best understood, assessed and quantified using tools to evaluate human reliability. Human reliability analysis becomes an important part of every probabilistic safety assessment and it is used to demonstrate that nuclear power plants designed with different safety levels are prepared to cope with severe accidents. Human reliability analysis in context of probabilistic safety assessment consists in: identifying human-system interactions important to safety; quantifying probabilities appropriate with these interactions. Nowadays, the complex system functions can be modelled using special techniques centred either on states space adequate to system or on events appropriate to the system. Knowing that complex system model consists in evaluating the likelihood of success, in other words, in evaluating the possible value for that system being in some state, the inductive methods which are based on the system states can be applied also for human reliability modelling. Thus, switching to the system states taking into account the human interactions, the underlying basis of the Petri nets can be successfully applied and the likelihoods appropriate to these states can also derived. The paper presents the manner to assess the human reliability quantification using Petri nets approach. The example processed in the paper is from human reliability documentation without a detailed human factor analysis (qualitative). The obtained results by these two kinds of methods are in good agreement. (authors)

  20. On quantum models of the human mind.

    Science.gov (United States)

    Wang, Hongbin; Sun, Yanlong

    2014-01-01

    Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that quantum cognition models gain greater modeling power due to a richer representation scheme. Copyright © 2013 Cognitive Science Society, Inc.

  1. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body

  2. Generative models of the human connectome.

    Science.gov (United States)

    Betzel, Richard F; Avena-Koenigsberger, Andrea; Goñi, Joaquín; He, Ye; de Reus, Marcel A; Griffa, Alessandra; Vértes, Petra E; Mišic, Bratislav; Thiran, Jean-Philippe; Hagmann, Patric; van den Heuvel, Martijn; Zuo, Xi-Nian; Bullmore, Edward T; Sporns, Olaf

    2016-01-01

    The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The relevance of non-human primate and rodent malaria models for humans

    Directory of Open Access Journals (Sweden)

    Riley Eleanor

    2011-02-01

    Full Text Available Abstract At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material.

  4. Human Centered Hardware Modeling and Collaboration

    Science.gov (United States)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  5. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  6. Human thermoregulation model of RF-EMF interaction

    International Nuclear Information System (INIS)

    Niedermayr, F.

    2012-01-01

    A thermal model has been developed which allows accurate temperature computations in high resolution anatomical models. The model is based on the basic thermal model described by Pennes which neglects any of the thermoregulatory mechanisms in humans. The thermal model developed here overcomes major simplifications by the mathematical consideration of these mechanisms which is needed for modeling a physiologically correct reaction to a thermal stimulus. The local blood perfusion, as well as the local metabolic rate, is modified as a function of the local tissue temperature. The model implemented increases the blood temperature on the basis of the absorbed energy. The heat exchange at the tissue/air interface, including the skin and respiratory tract, is also improved. The model takes not only the heat dissipation by radiation, conduction and convection into consideration but also the insensible loss of water by evaporation. Furthermore, the thermal model also accounts for the active heat dissipation by sweating. The generic implementation of the thermal model makes it possible to use it for different human models (children, adults, pregnant women) and it is also possible to take implants into consideration. The performance of the model is validated by comparing the simulation results to actual temperature measurements in humans. The thermal model is used to compute the temperature elevation in humans exposed to radiofrequency electromagnetic fields. Until now, the tissue heating caused by radiofrequency electromagnetic fields could only be estimated by a surrogate, namely the specific absorption rate. The temperature elevations in children of different sizes and ages as well as pregnant women at different gestational stages exposed to plane waves is computed. Furthermore, the temperature elevation in human bodies is computed for a diagnostic modality (magnetic resonance imaging) and a therapeutic modality (medical diathermy). (author) [de

  7. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  8. Modeling human behaviors and reactions under dangerous environment.

    Science.gov (United States)

    Kang, J; Wright, D K; Qin, S F; Zhao, Y

    2005-01-01

    This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions of different people; capturing different motion postures by the Eagle Digital System; establishing 3D character animation models; establishing 3D models for the scene; planning the scenario and the contents; and programming within Virtools Dev. Programming within Virtools Dev is subdivided into modeling dangerous events, modeling character's perceptions, modeling character's decision making, modeling character's movements, modeling character's interaction with environment and setting up the virtual cameras. The real-time simulation of human reactions in hazardous environments is invaluable in military defense, fire escape, rescue operation planning, traffic safety studies, and safety planning in chemical factories, the design of buildings, airplanes, ships and trains. Currently, human motion modeling can be realized through established technology, whereas to integrate perception and intelligence into virtual human's motion is still a huge undertaking. The challenges here are the synchronization of motion and intelligence, the accurate modeling of human's vision, smell, touch and hearing, the diversity and effects of emotion and personality in decision making. There are three types of software platforms which could be employed to realize the motion and intelligence within one system, and their advantages and disadvantages are discussed.

  9. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    Science.gov (United States)

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  10. Competency Modeling in Extension Education: Integrating an Academic Extension Education Model with an Extension Human Resource Management Model

    Science.gov (United States)

    Scheer, Scott D.; Cochran, Graham R.; Harder, Amy; Place, Nick T.

    2011-01-01

    The purpose of this study was to compare and contrast an academic extension education model with an Extension human resource management model. The academic model of 19 competencies was similar across the 22 competencies of the Extension human resource management model. There were seven unique competencies for the human resource management model.…

  11. Application of postured human model for SAR measurements

    Science.gov (United States)

    Vuchkovikj, M.; Munteanu, I.; Weiland, T.

    2013-07-01

    In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.

  12. Science-Based Simulation Model of Human Performance for Human Reliability Analysis

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Boring, Ronald L.; Mosleh, Ali; Smidts, Carol

    2011-01-01

    Human reliability analysis (HRA), a component of an integrated probabilistic risk assessment (PRA), is the means by which the human contribution to risk is assessed, both qualitatively and quantitatively. However, among the literally dozens of HRA methods that have been developed, most cannot fully model and quantify the types of errors that occurred at Three Mile Island. Furthermore, all of the methods lack a solid empirical basis, relying heavily on expert judgment or empirical results derived in non-reactor domains. Finally, all of the methods are essentially static, and are thus unable to capture the dynamics of an accident in progress. The objective of this work is to begin exploring a dynamic simulation approach to HRA, one whose models have a basis in psychological theories of human performance, and whose quantitative estimates have an empirical basis. This paper highlights a plan to formalize collaboration among the Idaho National Laboratory (INL), the University of Maryland, and The Ohio State University (OSU) to continue development of a simulation model initially formulated at the University of Maryland. Initial work will focus on enhancing the underlying human performance models with the most recent psychological research, and on planning follow-on studies to establish an empirical basis for the model, based on simulator experiments to be carried out at the INL and at the OSU.

  13. Minimizing Human Risk: Human Performance Models in the Space Human Factors and Habitability and Behavioral Health and Performance Elements

    Science.gov (United States)

    Gore, Brian F.

    2016-01-01

    Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.

  14. Incorporation of human factors into ship collision risk models focusing on human centred design aspects

    International Nuclear Information System (INIS)

    Sotiralis, P.; Ventikos, N.P.; Hamann, R.; Golyshev, P.; Teixeira, A.P.

    2016-01-01

    This paper presents an approach that more adequately incorporates human factor considerations into quantitative risk analysis of ship operation. The focus is on the collision accident category, which is one of the main risk contributors in ship operation. The approach is based on the development of a Bayesian Network (BN) model that integrates elements from the Technique for Retrospective and Predictive Analysis of Cognitive Errors (TRACEr) and focuses on the calculation of the collision accident probability due to human error. The model takes into account the human performance in normal, abnormal and critical operational conditions and implements specific tasks derived from the analysis of the task errors leading to the collision accident category. A sensitivity analysis is performed to identify the most important contributors to human performance and ship collision. Finally, the model developed is applied to assess the collision risk of a feeder operating in Dover strait using the collision probability estimated by the developed BN model and an Event tree model for calculation of human, economic and environmental risks. - Highlights: • A collision risk model for the incorporation of human factors into quantitative risk analysis is proposed. • The model takes into account the human performance in different operational conditions leading to the collision. • The most important contributors to human performance and ship collision are identified. • The model developed is applied to assess the collision risk of a feeder operating in Dover strait.

  15. Dynamic Simulation of Human Gait Model With Predictive Capability.

    Science.gov (United States)

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  16. A Budyko-type Model for Human Water Consumption

    Science.gov (United States)

    Lei, X.; Zhao, J.; Wang, D.; Sivapalan, M.

    2017-12-01

    With the expansion of human water footprint, water crisis is no longer only a conflict or competition for water between different economic sectors, but also increasingly between human and the environment. In order to describe the emergent dynamics and patterns of the interaction, a theoretical framework that encapsulates the physical and societal controls impacting human water consumption is needed. In traditional hydrology, Budyko-type models are simple but efficient descriptions of vegetation-mediated hydrologic cycle in catchments, i.e., the partitioning of mean annual precipitation into runoff and evapotranspiration. Plant water consumption plays a crucial role in the process. Hypothesized similarities between human-water and vegetation-water interactions, including water demand, constraints and system functioning, give the idea of corresponding Budyko-type framework for human water consumption at the catchment scale. Analogous to variables of Budyko-type models for hydrologic cycle, water demand, water consumption, environmental water use and available water are corresponding to potential evaporation, actual evaporation, runoff and precipitation respectively. Human water consumption data, economic and hydro-meteorological data for 51 human-impacted catchments and 10 major river basins in China are assembled to look for the existence of a Budyko-type relationship for human water consumption, and to seek explanations for the spread in the observed relationship. Guided by this, a Budyko-type analytical model is derived based on application of an optimality principle, that of maximum water benefit. The model derived has the same functional form and mathematical features as those that apply for the original Budyko model. Parameters of the new Budyko-type model for human consumption are linked to economic and social factors. The results of this paper suggest that the functioning of both social and hydrologic subsystems within catchment systems can be explored within

  17. Pharmacological migraine provocation: a human model of migraine

    DEFF Research Database (Denmark)

    Ashina, Messoud; Hansen, Jakob Møller

    2010-01-01

    for migraine mechanisms. So far, however, animal models cannot predict the efficacy of new therapies for migraine. Because migraine attacks are fully reversible and can be aborted by therapy, the headache- or migraine-provoking property of naturally occurring signaling molecules can be tested in a human model....... If a naturally occurring substance can provoke migraine in human patients, then it is likely, although not certain, that blocking its effect will be effective in the treatment of acute migraine attacks. To this end, a human in vivo model of experimental headache and migraine in humans has been developed...

  18. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    Science.gov (United States)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  19. Hidden Markov Models for Human Genes

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves

    1997-01-01

    We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover com...

  20. Reconstruction of genome-scale human metabolic models using omics data

    DEFF Research Database (Denmark)

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-01-01

    used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods......, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic...... refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model....

  1. Animal Models of Human Placentation - A Review

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2007-01-01

    This review examines the strengths and weaknesses of animal models of human placentation and pays particular attention to the mouse and non-human primates. Analogies can be drawn between mouse and human in placental cell types and genes controlling placental development. There are, however...... and delivers poorly developed young. Guinea pig is a good alternative rodent model and among the few species known to develop pregnancy toxaemia. The sheep is well established as a model in fetal physiology but is of limited value for placental research. The ovine placenta is epitheliochorial...... and endometrium is similar in macaques and baboons, as is the subsequent lacunar stage. The absence of interstitial trophoblast cells in the monkey is an important difference from human placentation. However, there is a strong resemblance in the way spiral arteries are invaded and transformed in the macaque...

  2. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Teaching Syllogistics Using Conceptual Graphs

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steiner

    2014-01-01

    was presented in terms of a number of artificial words designed to summarize the deductive structure of this basic system. The present paper is a continuation of earlier studies involving practical experiments with informatics students using a student-facing Java-Applet running in the student’s browser...

  4. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Science.gov (United States)

    Kim, Jiae; Peachman, Kristina K.; Jobe, Ousman; Morrison, Elaine B.; Allam, Atef; Jagodzinski, Linda; Casares, Sofia A.; Rao, Mangala

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4) molecule (DRAG mice) infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT)-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model for studying the

  5. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    Directory of Open Access Journals (Sweden)

    Jiae Kim

    2017-10-01

    Full Text Available Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP models for studying human immunodeficiency virus (HIV-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several different types of humanized mice have been developed with varying levels of reconstitution of human CD45+ cells. In this study, we utilized humanized Rag1KO.IL2RγcKO.NOD mice expressing HLA class II (DR4 molecule (DRAG mice infused with HLA-matched hematopoietic stem cells from umbilical cord blood to study early events after HIV-1 infection, since the mucosal tissues of these mice are highly enriched for human lymphocytes and express the receptors and coreceptors needed for HIV-1 entry. We examined the various tissues on days 4, 7, 14, and 21 after an intravaginal administration of a single dose of purified primary HIV-1. Plasma HIV-1 RNA was detected as early as day 7, with 100% of the animals becoming plasma RNA positive by day 21 post-infection. Single cells were isolated from lymph nodes, bone marrow, spleen, gut, female reproductive tissue, and brain and analyzed for gag RNA and strong stop DNA by quantitative (RT-PCR. Our data demonstrated the presence of HIV-1 viral RNA and DNA in all of the tissues examined and that the virus was replication competent and spread rapidly. Bone marrow, gut, and lymph nodes were viral RNA positive by day 4 post-infection, while other tissues and plasma became positive typically between 7 and 14 days post-infection. Interestingly, the brain was the last tissue to become HIV-1 viral RNA and DNA positive by day 21 post-infection. These data support the notion that humanized DRAG mice could serve as an excellent model

  6. Mechanical Impedance Modeling of Human Arm: A survey

    Science.gov (United States)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  7. Animal and human models to understand ageing.

    Science.gov (United States)

    Lees, Hayley; Walters, Hannah; Cox, Lynne S

    2016-11-01

    Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Irreflexivity and Aristotle's Syllogismos

    NARCIS (Netherlands)

    Duncombe, Matthew

    Aristotle's definition of syllogismos at Prior Analytics 24b18–20 specifies syllogistic consequence as an irreflexive relation: the conclusion must be different from each premise and any conjunction of the premises. Typically, commentators explain this irreflexivity condition as Aristotle's attempt

  9. Humanized Mouse Models of Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2017-05-01

    Full Text Available Staphylococcus aureus is a successful human pathogen that has adapted itself in response to selection pressure by the human immune system. A commensal of the human skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used extensively in all these conditions to identify virulence factors and host components important for pathogenesis. Although significant effort has gone toward development of an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection in humans after successful studies in mice. These results have raised questions as to the utility of mice to predict patient outcome and suggest that humanized mice might prove useful in modeling infection. The development of humanized mouse models of S. aureus infection will allow us to assess the contribution of several human-specific virulence factors, in addition to exploring components of the human immune system in protection against S. aureus infection. Their use is discussed in light of several recently reported studies.

  10. Human-like motion planning model for driving in signalized intersections

    Directory of Open Access Journals (Sweden)

    Yanlei Gu

    2017-10-01

    Full Text Available Highly automated and fully autonomous vehicles are much more likely to be accepted if they react in the same way as human drivers do, especially in a hybrid traffic situation, which allows autonomous vehicles and human-driven vehicles to share the same road. This paper proposes a human-like motion planning model to represent how human drivers assess environments and operate vehicles in signalized intersections. The developed model consists of a pedestrian intention detection model, gap detection model, and vehicle control model. These three submodels are individually responsible for situation assessment, decision making, and action, and also depend on each other in the process of motion planning. In addition, these submodels are constructed and learned on the basis of human drivers' data collected from real traffic environments. To verify the effectiveness of the proposed motion planning model, we compared the proposed model with actual human driver and pedestrian data. The experimental results showed that our proposed model and actual human driver behaviors are highly similar with respect to gap acceptance in intersections.

  11. A sample application of nuclear power human resources model

    International Nuclear Information System (INIS)

    Gurgen, A.; Ergun, S.

    2016-01-01

    One of the most important issues for a new comer country initializing the nuclear power plant projects is to have both quantitative and qualitative models for the human resources development. For the quantitative model of human resources development for Turkey, “Nuclear Power Human Resources (NPHR) Model” developed by the Los Alamos National Laboratory was used to determine the number of people that will be required from different professional or occupational fields in the planning of human resources for Akkuyu, Sinop and the third nuclear power plant projects. The number of people required for different professions for the Nuclear Energy Project Implementation Department, the regulatory authority, project companies, construction, nuclear power plants and the academy were calculated. In this study, a sample application of the human resources model is presented. The results of the first tries to calculate the human resources needs of Turkey were obtained. Keywords: Human Resources Development, New Comer Country, NPHR Model

  12. A natural human hand model

    NARCIS (Netherlands)

    Van Nierop, O.A.; Van der Helm, A.; Overbeeke, K.J.; Djajadiningrat, T.J.P.

    2007-01-01

    We present a skeletal linked model of the human hand that has natural motion. We show how this can be achieved by introducing a new biology-based joint axis that simulates natural joint motion and a set of constraints that reduce an estimated 150 possible motions to twelve. The model is based on

  13. CGRP in human models of primary headaches

    DEFF Research Database (Denmark)

    Ashina, Håkan; Schytz, Henrik Winther; Ashina, Messoud

    2018-01-01

    experiments are likely due to assay variation; therefore, proper validation and standardization of an assay is needed. To what extent CGRP is involved in tension-type headache and cluster headache is unknown. CONCLUSION: Human models of primary headaches have elucidated the role of CGRP in headache...... pathophysiology and sparked great interest in developing new treatment strategies using CGRP antagonists and antibodies. Future studies applying more refined human experimental models should identify biomarkers of CGRP-induced primary headache and reveal whether CGRP provocation experiments could be used......OBJECTIVE: To review the role of CGRP in human models of primary headaches and to discuss methodological aspects and future directions. DISCUSSION: Provocation experiments demonstrated a heterogeneous CGRP migraine response in migraine patients. Conflicting CGRP plasma results in the provocation...

  14. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  15. Verbal Reasoning

    Science.gov (United States)

    1992-08-31

    Psicologia , 4(3), 183-198. 94 Guyote, M.J. and Sternberg, R.J. (1981). A transitive-chain theory of syllogistic reasoning. Cognitive Psychology, 13(4), 461...personal connections. Journal of Social Psychology, 20, 39-59. Newell, A. (1990). Unified Theories of Cognition. Cambridge, Massachusetts: Harvard

  16. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  17. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  18. A Systems Model for Teaching Human Resource Management

    Directory of Open Access Journals (Sweden)

    George R. Greene

    2013-07-01

    Full Text Available Efficient and effective human resource management is a complex, involved, and interactive process. This article presents and discusses a unique systems approach model for teaching human resource (people management processes, and the important inter-relationships within that process. The model contains two unique components related to key sub-processes: incentives management and performance evaluation. We have not observed a model applying a systems thinking paradigm presented in any textbook, journal article, business publication, or other literature addressing the topic. For nearly three decades, the model has been used in teaching a comprehensive, meaningful understanding of the human resource management process that can be effectively implemented in both corporate and academic learning venues.

  19. Experimental Human Cell and Tissue Models of Pemphigus

    Science.gov (United States)

    van der Wier, Gerda; Pas, Hendri H.; Jonkman, Marcel F.

    2010-01-01

    Pemphigus is a chronic mucocutaneous autoimmune bullous disease that is characterized by loss of cell-cell contact in skin and/or mucous membranes. Past research has successfully identified desmosomes as immunological targets and has demonstrated that acantholysis is initiated through direct binding of IgG. The exact mechanisms of acantholysis, however, are still missing. Experimental model systems have contributed considerably to today's knowledge and are still a favourite tool of research. In this paper we will describe to what extent human cell and tissue models represent the in vivo situation, for example, organ cultures of human skin, keratinocyte cultures, and human skin grafted on mice and, furthermore, how suitable they are to study the pathogenesis of pemphigus. Organ cultures closely mimic the architecture of the epidermis but are less suitable to answer posed biochemical questions. Cultured keratinocyte monolayers are convenient in this respect, but their desmosomal make-up in terms of adhesion molecules does not exactly reflect the in vivo situation. Reconstituted skin is a relatively new model that approaches organ culture. In models of human skin grafted on mice, acantholysis can be studied in actual human skin but now with all the advantages of an animal model. PMID:20585596

  20. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    Science.gov (United States)

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  1. How do humans inspect BPMN models: an exploratory study.

    Science.gov (United States)

    Haisjackl, Cornelia; Soffer, Pnina; Lim, Shao Yi; Weber, Barbara

    2018-01-01

    Even though considerable progress regarding the technical perspective on modeling and supporting business processes has been achieved, it appears that the human perspective is still often left aside. In particular, we do not have an in-depth understanding of how process models are inspected by humans, what strategies are taken, what challenges arise, and what cognitive processes are involved. This paper contributes toward such an understanding and reports an exploratory study investigating how humans identify and classify quality issues in BPMN process models. Providing preliminary answers to initial research questions, we also indicate other research questions that can be investigated using this approach. Our qualitative analysis shows that humans adapt different strategies on how to identify quality issues. In addition, we observed several challenges appearing when humans inspect process models. Finally, we present different manners in which classification of quality issues was addressed.

  2. Lessons learned from HRA and human-system modeling efforts

    International Nuclear Information System (INIS)

    Hallbert, B.P.

    1993-01-01

    Human-System modeling is not unique to the field of Human Reliability Analysis (HRA). Since human factors professionals first began their explorations of human activities, they have done so with the concept of open-quotes systemclose quotes in mind. Though the two - human and system - are distinct, they can be properly understood only in terms of each other: the system provides a context in which goals and objectives for work are defined, and the human plays either a pre-defined or ad hoc role in meeting these goals. In this sense, every intervention which attempts to evaluate or improve upon some system parameter requires that an understanding of human-system interactions be developed. It is too often the case, however, that somewhere between the inception of a system and its implementation, the human-system relationships are overlooked, misunderstood, or inadequately framed. This results in mismatches between demands versus capabilities of human operators, systems which are difficult to operate, and the obvious end product-human error. The lessons learned from human system modeling provide a valuable feedback mechanism to the process of HRA, and the technologies which employ this form of modeling

  3. Variation in calculated human exposure. Comparison of calculations with seven European human exposure models

    NARCIS (Netherlands)

    Swartjes F; ECO

    2003-01-01

    Twenty scenarios, differing with respect to land use, soil type and contaminant, formed the basis for calculating human exposure from soil contaminants with the use of models contributed by seven European countries (one model per country). Here, the human exposures to children and children

  4. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  5. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  6. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    Science.gov (United States)

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Pig models for the human heart failure syndrome

    DEFF Research Database (Denmark)

    Hunter, Ingrid; Terzic, Dijana; Zois, Nora Elisabeth

    2014-01-01

    Human heart failure remains a challenging illness despite advances in the diagnosis and treatment of heart failure patients. There is a need for further improvement of our understanding of the failing myocardium and its molecular deterioration. Porcine models provide an important research tool...... in this respect as molecular changes can be examined in detail, which is simply not feasible in human patients. However, the human heart failure syndrome is based on symptoms and signs, where pig models mostly mimic the myocardial damage, but without decisive data on clinical presentation and, therefore, a heart...... to elucidate the human heart failure syndrome....

  8. Quadrennial Review of Military Compensation (6th). Executive Summary. Volumes 1 thru 1C, and Volumes 2 thru 3

    Science.gov (United States)

    1988-08-01

    CIVILIAN EARNINGS PROFILE: ENLISTED SOURCE: SYLLOGISTICS 2-24 6th ORNC Esport -Volum 11 participation and higher than that of civilian counterparts in...7-26 6th QRNC esport - Volume I m Eliminate the existing 80 percent limiltation onmeai/entertairment deductions incurred in connection with the

  9. Advancing coupled human-earth system models: The integrated Earth System Model Project

    Science.gov (United States)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  10. Computational Intelligence in a Human Brain Model

    Directory of Open Access Journals (Sweden)

    Viorel Gaftea

    2016-06-01

    Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.

  11. Modelling dynamic human-device interaction in healthcare

    OpenAIRE

    Niezen, Gerrit

    2013-01-01

    Errors are typically blamed on human factors, forgetting that the system should have been designed to take them into account and minimise these problems. In our research we are developing tools to design interactive medical devices using human-in-the-loop modelling. Manual control theory is used to describe and analyse the dynamic aspects of human-device interaction.

  12. Dissociable neural systems underwrite logical reasoning in the context of induced emotions with positive and negative valence.

    Science.gov (United States)

    Smith, Kathleen W; Vartanian, Oshin; Goel, Vinod

    2014-01-01

    How emotions influence syllogistic reasoning is not well understood. fMRI was employed to investigate the effects of induced positive or negative emotion on syllogistic reasoning. Specifically, on a trial-by-trial basis participants were exposed to a positive, negative, or neutral picture, immediately prior to engagement in a reasoning task. After viewing and rating the valence and intensity of each picture, participants indicated by keypress whether or not the conclusion of the syllogism followed logically from the premises. The content of all syllogisms was neutral, and the influence of belief-bias was controlled for in the study design. Emotion did not affect reasoning performance, although there was a trend in the expected direction based on accuracy rates for the positive (63%) and negative (64%) versus neutral (70%) condition. Nevertheless, exposure to positive and negative pictures led to dissociable patterns of neural activation during reasoning. Therefore, the neural basis of deductive reasoning differs as a function of the valence of the context.

  13. Dissociable Neural Systems Underwrite Logical Reasoning in the Context of Induced Emotions with Positive and Negative Valence

    Science.gov (United States)

    Smith, Kathleen W.; Vartanian, Oshin; Goel, Vinod

    2014-01-01

    How emotions influence syllogistic reasoning is not well understood. fMRI was employed to investigate the effects of induced positive or negative emotion on syllogistic reasoning. Specifically, on a trial-by-trial basis participants were exposed to a positive, negative, or neutral picture, immediately prior to engagement in a reasoning task. After viewing and rating the valence and intensity of each picture, participants indicated by keypress whether or not the conclusion of the syllogism followed logically from the premises. The content of all syllogisms was neutral, and the influence of belief-bias was controlled for in the study design. Emotion did not affect reasoning performance, although there was a trend in the expected direction based on accuracy rates for the positive (63%) and negative (64%) versus neutral (70%) condition. Nevertheless, exposure to positive and negative pictures led to dissociable patterns of neural activation during reasoning. Therefore, the neural basis of deductive reasoning differs as a function of the valence of the context. PMID:25294997

  14. Dialectical Model of Human Nature

    OpenAIRE

    Cachat, Jonathan

    2013-01-01

    The DMoHN is a graphical representation of my current understanding and conceptualization of human nature, in addition to embodying the guiding ethos of social neuroscience. The dialectic is a logic, or way of thinking that joins opposite elements together in a uniting fashion to create emergent attributes not present in the elements alone. The dialectical structure of this model explicitly links Culture and Biology within the human brain in order to convey the symbiotic and dynamic interacti...

  15. Drosophila Melanogaster as an Emerging Translational Model of Human Nephrolithiasis

    Science.gov (United States)

    Miller, Joe; Chi, Thomas; Kapahi, Pankaj; Kahn, Arnold J.; Kim, Man Su; Hirata, Taku; Romero, Michael F.; Dow, Julian A.T.; Stoller, Marshall L.

    2013-01-01

    Purpose The limitations imposed by human clinical studies and mammalian models of nephrolithiasis have hampered the development of effective medical treatments and preventative measures for decades. The simple but elegant Drosophila melanogaster is emerging as a powerful translational model of human disease, including nephrolithiasis and may provide important information essential to our understanding of stone formation. We present the current state of research using D. melanogaster as a model of human nephrolithiasis. Materials and Methods A comprehensive review of the English language literature was performed using PUBMED. When necessary, authoritative texts on relevant subtopics were consulted. Results The genetic composition, anatomic structure and physiologic function of Drosophila Malpighian tubules are remarkably similar to those of the human nephron. The direct effects of dietary manipulation, environmental alteration, and genetic variation on stone formation can be observed and quantified in a matter of days. Several Drosophila models of human nephrolithiasis, including genetically linked and environmentally induced stones, have been developed. A model of calcium oxalate stone formation is among the most recent fly models of human nephrolithiasis. Conclusions The ability to readily manipulate and quantify stone formation in D. melanogaster models of human nephrolithiasis presents the urologic community with a unique opportunity to increase our understanding of this enigmatic disease. PMID:23500641

  16. Modeling and simulating human teamwork behaviors using intelligent agents

    Science.gov (United States)

    Fan, Xiaocong; Yen, John

    2004-12-01

    Among researchers in multi-agent systems there has been growing interest in using intelligent agents to model and simulate human teamwork behaviors. Teamwork modeling is important for training humans in gaining collaborative skills, for supporting humans in making critical decisions by proactively gathering, fusing, and sharing information, and for building coherent teams with both humans and agents working effectively on intelligence-intensive problems. Teamwork modeling is also challenging because the research has spanned diverse disciplines from business management to cognitive science, human discourse, and distributed artificial intelligence. This article presents an extensive, but not exhaustive, list of work in the field, where the taxonomy is organized along two main dimensions: team social structure and social behaviors. Along the dimension of social structure, we consider agent-only teams and mixed human-agent teams. Along the dimension of social behaviors, we consider collaborative behaviors, communicative behaviors, helping behaviors, and the underpinning of effective teamwork-shared mental models. The contribution of this article is that it presents an organizational framework for analyzing a variety of teamwork simulation systems and for further studying simulated teamwork behaviors.

  17. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  18. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  19. Synthetic vision and memory model for virtual human - biomed 2010.

    Science.gov (United States)

    Zhao, Yue; Kang, Jinsheng; Wright, David

    2010-01-01

    This paper describes the methods and case studies of a novel synthetic vision and memory model for virtual human. The synthetic vision module simulates the biological / optical abilities and limitations of the human vision. The module is based on a series of collision detection between the boundary of virtual humans field of vision (FOV) volume and the surface of objects in a recreated 3D environment. The memory module simulates a short-term memory capability by employing a simplified memory structure (first-in-first-out stack). The synthetic vision and memory model has been integrated into a virtual human modelling project, Intelligent Virtual Modelling. The project aimed to improve the realism and autonomy of virtual humans.

  20. Non-Human Primate Models of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Anne Schmitt

    2014-06-01

    Full Text Available Smallpox, one of the most destructive diseases, has been successfully eradicated through a worldwide vaccination campaign. Since immunization programs have been stopped, the number of people with vaccinia virus induced immunity is declining. This leads to an increase in orthopoxvirus (OPXV infections in humans, as well as in animals. Additionally, potential abuse of Variola virus (VARV, the causative agent of smallpox, or monkeypox virus, as agents of bioterrorism, has renewed interest in development of antiviral therapeutics and of safer vaccines. Due to its high risk potential, research with VARV is restricted to two laboratories worldwide. Therefore, numerous animal models of other OPXV infections have been developed in the last decades. Non-human primates are especially suitable due to their close relationship to humans. This article provides a review about on non-human primate models of orthopoxvirus infections.

  1. Geometric Modeling and Reasoning of Human-Centered Freeform Products

    CERN Document Server

    Wang, Charlie C L

    2013-01-01

    The recent trend in user-customized product design requires the shape of products to be automatically adjusted according to the human body’s shape, so that people will feel more comfortable when wearing these products.  Geometric approaches can be used to design the freeform shape of products worn by people, which can greatly improve the efficiency of design processes in various industries involving customized products (e.g., garment design, toy design, jewel design, shoe design, and design of medical devices, etc.). These products are usually composed of very complex geometric shapes (represented by free-form surfaces), and are not driven by a parameter table but a digital human model with free-form shapes or part of human bodies (e.g., wrist, foot, and head models).   Geometric Modeling and Reasoning of Human-Centered Freeform Products introduces the algorithms of human body reconstruction, freeform product modeling, constraining and reconstructing freeform products, and shape optimization for improving...

  2. Modelling human emotions for tactical decision-making games

    NARCIS (Netherlands)

    Visschedijk, G.C.; Lazonder, A.W.; Hulst, A.H. van der; Vink, N.; Leemkuil, H.

    2013-01-01

    The training of tactical decision making increasingly occurs through serious computer games. A challenging aspect of designing such games is the modelling of human emotions. Two studieswere performed to investigate the relation between fidelity and human emotion recognition in virtual human

  3. The Non-Human Primate Experimental Glaucoma Model

    Science.gov (United States)

    Burgoyne, Claude F.

    2015-01-01

    The purpose of this report is to summarize the current strengths and weaknesses of the non-human primate (NHP) experimental glaucoma (EG) model through sections devoted to its history, methods, important findings, alternative optic neuropathy models and future directions. NHP EG has become well established for studying human glaucoma in part because the NHP optic nerve head (ONH) shares a close anatomic association with the human ONH and because it provides the only means of systematically studying the very earliest visual system responses to chronic IOP elevation, i.e. the conversion from ocular hypertension to glaucomatous damage. However, NHPs are impractical for studies that require large animal numbers, demonstrate spontaneous glaucoma only rarely, do not currently provide a model of the neuropathy at normal levels of IOP, and cannot easily be genetically manipulated, except through tissue-specific, viral vectors. The goal of this summary is to direct NHP EG and non-NHP EG investigators to the previous, current and future accomplishment of clinically relevant knowledge in this model. PMID:26070984

  4. Modeling Operations Costs for Human Exploration Architectures

    Science.gov (United States)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  5. How do humans inspect BPMN models: an exploratory study

    DEFF Research Database (Denmark)

    Haisjackl, Cornelia; Soffer, Pnina; Lim, Shao Yi

    2016-01-01

    to initial research questions, we also indicate other research questions that can be investigated using this approach. Our qualitative analysis shows that humans adapt different strategies on how to identify quality issues. In addition, we observed several challenges appearing when humans inspect process......Even though considerable progress regarding the technical perspective on modeling and supporting business processes has been achieved, it appears that the human perspective is still often left aside. In particular, we do not have an in-depth understanding of how process models are inspected...... by humans, what strategies are taken, what challenges arise, and what cognitive processes are involved. This paper contributes toward such an understanding and reports an exploratory study investigating how humans identify and classify quality issues in BPMN process models. Providing preliminary answers...

  6. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  7. Children's Acquisition of Conditional Logic Structure: Teachable?

    Science.gov (United States)

    Lee, Seong-Soo

    1985-01-01

    To assess the teachability of conditional logic structure, the commonly used syllogistic conditional reasoning task was divided into three main components: (1) inductive rule learning; (2) induction of conditional language; and (3) deductive interpretation. When trained on all components, fifth and seventh graders became very competent in dealing…

  8. Secretaris der natuur : de Franse conservatieve denker Louis de Bonald en zijn Theorie van de Macht

    NARCIS (Netherlands)

    Audenaerde, Rolandus Franciscus Cornelis

    2009-01-01

    A reconstruction of the Théorie du Pouvoir, the first and major work of the French philosopher Louis de Bonald, shows that this work is best being read along the lines of political classicism: its syllogistic structure consists of a philosophical (deductive) maior, a historical (empirical) minor,

  9. Simulation Models of Human Decision-Making Processes

    Directory of Open Access Journals (Sweden)

    Nina RIZUN

    2014-10-01

    Full Text Available The main purpose of the paper is presentation of the new concept of human decision-making process modeling via using the analogy with Automatic Control Theory. From the author's point of view this concept allows to develop and improve the theory of decision-making in terms of the study and classification of specificity of the human intellectual processes in different conditions. It was proved that the main distinguishing feature between the Heuristic / Intuitive and Rational Decision-Making Models is the presence of so-called phenomenon of "enrichment" of the input information with human propensity, hobbies, tendencies, expectations, axioms and judgments, presumptions or bias and their justification. In order to obtain additional knowledge about the basic intellectual processes as well as the possibility of modeling the decision results in various parameters characterizing the decision-maker, the complex of the simulation models was developed. These models are based on the assumptions that:  basic intellectual processes of the Rational Decision-Making Model can be adequately simulated and identified by the transient processes of the proportional-integral-derivative controller; basic intellectual processes of the Bounded Rationality and Intuitive Models can be adequately simulated and identified by the transient processes of the nonlinear elements.The taxonomy of the most typical automatic control theory elements and their compliance with certain decision-making models with a point of view of decision-making process specificity and decision-maker behavior during a certain time of professional activity was obtained.

  10. Personality Model in Human Resources Management

    OpenAIRE

    Jovan Zubovic

    2008-01-01

    This paper presents the new „Personality model” of managing human resources in an organisation. The model analyses administrative personnel (usually called management) in an organisation and divides them into three core categories: managers, executives and advisors. Unlike traditional models which do not recognise advisors as part of an organisation, this model gives to advisors the same ranking as managers and executives. Model traces 11 categories of personality traits for every employee, r...

  11. Modelling human emotions for tactical decision-making games

    NARCIS (Netherlands)

    Visschedijk, G.; Lazonder, Adrianus W.; van der Hulst, A.; Vink, N.; Leemkuil, Hendrik H.

    2013-01-01

    The training of tactical decision making increasingly occurs through serious computer games. A challenging aspect of designing such games is the modelling of human emotions. Two studies were performed to investigate the relation between fidelity and human emotion recognition in virtual human

  12. A critique of recent models for human error rate assessment

    International Nuclear Information System (INIS)

    Apostolakis, G.E.

    1988-01-01

    This paper critically reviews two groups of models for assessing human error rates under accident conditions. The first group, which includes the US Nuclear Regulatory Commission (NRC) handbook model and the human cognitive reliability (HCR) model, considers as fundamental the time that is available to the operators to act. The second group, which is represented by the success likelihood index methodology multiattribute utility decomposition (SLIM-MAUD) model, relies on ratings of the human actions with respect to certain qualitative factors and the subsequent derivation of error rates. These models are evaluated with respect to two criteria: the treatment of uncertainties and the internal coherence of the models. In other words, this evaluation focuses primarily on normative aspects of these models. The principal findings are as follows: (1) Both of the time-related models provide human error rates as a function of the available time for action and the prevailing conditions. However, the HCR model ignores the important issue of state-of-knowledge uncertainties, dealing exclusively with stochastic uncertainty, whereas the model presented in the NRC handbook handles both types of uncertainty. (2) SLIM-MAUD provides a highly structured approach for the derivation of human error rates under given conditions. However, the treatment of the weights and ratings in this model is internally inconsistent. (author)

  13. Modeling human disease using organotypic cultures

    DEFF Research Database (Denmark)

    Schweiger, Pawel J; Jensen, Kim B

    2016-01-01

    animal models and in vitro cell culture systems. However, it has been exceedingly difficult to model disease at the tissue level. Since recently, the gap between cell line studies and in vivo modeling has been narrowing thanks to progress in biomaterials and stem cell research. Development of reliable 3D...... culture systems has enabled a rapid expansion of sophisticated in vitro models. Here we focus on some of the latest advances and future perspectives in 3D organoids for human disease modeling....

  14. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  15. Modeling Human Elements of Decision-Making

    Science.gov (United States)

    2002-06-01

    include factors such as personality, emotion , and level of expertise, which vary from individual to individual. The process of decision - making during... rational choice theories such as utility theory, to more descriptive psychological models that focus more on the process of decision - making ...descriptive nature, they provide a more realistic representation of human decision - making than the rationally based models. However these models do

  16. Dynamic Human Body Modeling Using a Single RGB Camera.

    Science.gov (United States)

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  17. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential. PMID:28630595

  18. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  19. A novel polar-based human face recognition computational model

    Directory of Open Access Journals (Sweden)

    Y. Zana

    2009-07-01

    Full Text Available Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.

  20. Modeling human intention formation for human reliability assessment

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1988-01-01

    This paper describes a dynamic simulation capability for modeling how people form intentions to act in nuclear power plant emergency situations. This modeling tool, Cognitive Environment Simulation or CES, was developed based on techniques from artificial intelligence. It simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g. errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person machine system. One application of the CES modeling environment is to enhance the measurement of the human contribution to risk in probabilistic risk assessment studies. (author)

  1. Modelling the basic error tendencies of human operators

    Energy Technology Data Exchange (ETDEWEB)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance.

  2. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in total, simulate the general character of operator performance. (author)

  3. Modelling the basic error tendencies of human operators

    International Nuclear Information System (INIS)

    Reason, James

    1988-01-01

    The paper outlines the primary structural features of human cognition: a limited, serial workspace interacting with a parallel distributed knowledge base. It is argued that the essential computational features of human cognition - to be captured by an adequate operator model - reside in the mechanisms by which stored knowledge structures are selected and brought into play. Two such computational 'primitives' are identified: similarity-matching and frequency-gambling. These two retrieval heuristics, it is argued, shape both the overall character of human performance (i.e. its heavy reliance on pattern-matching) and its basic error tendencies ('strong-but-wrong' responses, confirmation, similarity and frequency biases, and cognitive 'lock-up'). The various features of human cognition are integrated with a dynamic operator model capable of being represented in software form. This computer model, when run repeatedly with a variety of problem configurations, should produce a distribution of behaviours which, in toto, simulate the general character of operator performance. (author)

  4. Modelling biased human trust dynamics

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van; Treur, J.

    2013-01-01

    Abstract. Within human trust related behaviour, according to the literature from the domains of Psychology and Social Sciences often non-rational behaviour can be observed. Current trust models that have been developed typically do not incorporate non-rational elements in the trust formation

  5. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    OpenAIRE

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin ...

  6. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  7. Human tissue models in cancer research: looking beyond the mouse.

    Science.gov (United States)

    Jackson, Samuel J; Thomas, Gareth J

    2017-08-01

    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  8. Advances and perspectives in in vitro human gut fermentation modeling.

    Science.gov (United States)

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. To naturalize or not to naturalize? An issue for cognitive science as well as anthropology.

    Science.gov (United States)

    Stenning, Keith

    2012-07-01

    Several of Beller, Bender, and Medin's (2012) issues are as relevant within cognitive science as between it and anthropology. Knowledge-rich human mental processes impose hermeneutic tasks, both on subjects and researchers. Psychology's current philosophy of science is ill suited to analyzing these: Its demand for ''stimulus control'' needs to give way to ''negotiation of mutual interpretation.'' Cognitive science has ways to address these issues, as does anthropology. An example from my own work is about how defeasible logics are mathematical models of some aspects of simple hermeneutic processes. They explain processing relative to databases of knowledge and belief-that is, content. A specific example is syllogistic reasoning, which raises issues of experimenters' interpretations of subjects' reasoning. Science, especially since the advent of understandings of computation, does not have to be reductive. How does this approach transfer onto anthropological topics? Recent cognitive science approaches to anthropological topics have taken a reductive stance in terms of modules. We end with some speculations about a different cognitive approach to, for example, religion. Copyright © 2012 Cognitive Science Society, Inc.

  10. How Logical Reasoning Mediates the Relation between Lexical Quality and Reading Comprehension

    Science.gov (United States)

    Segers, Eliane; Verhoeven, Ludo

    2016-01-01

    The present study aimed to examine the role of logical reasoning in the relation between lexical quality and reading comprehension in 146 fourth grade Dutch children. We assessed their standardized reading comprehension measure, along with their decoding efficiency and vocabulary as measures of lexical quality, syllogistic reasoning as measure of…

  11. Symbolic modeling of human anatomy for visualization and simulation

    Science.gov (United States)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  12. Modeling the exergy behavior of human body

    International Nuclear Information System (INIS)

    Keutenedjian Mady, Carlos Eduardo; Silva Ferreira, Maurício; Itizo Yanagihara, Jurandir; Hilário Nascimento Saldiva, Paulo; Oliveira Junior, Silvio de

    2012-01-01

    Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. -- Highlights: ► In this article it is indicated an overview of the human thermal model. ► It is performed the energy and exergy analysis of the human body. ► Exergy destruction and exergy efficiency decreases with lifespan. ► Exergy destruction and exergy efficiency are a function of environmental conditions.

  13. Lumped parametric model of the human ear for sound transmission.

    Science.gov (United States)

    Feng, Bin; Gan, Rong Z

    2004-09-01

    A lumped parametric model of the human auditoria peripherals consisting of six masses suspended with six springs and ten dashpots was proposed. This model will provide the quantitative basis for the construction of a physical model of the human middle ear. The lumped model parameters were first identified using published anatomical data, and then determined through a parameter optimization process. The transfer function of the middle ear obtained from human temporal bone experiments with laser Doppler interferometers was used for creating the target function during the optimization process. It was found that, among 14 spring and dashpot parameters, there were five parameters which had pronounced effects on the dynamic behaviors of the model. The detailed discussion on the sensitivity of those parameters was provided with appropriate applications for sound transmission in the ear. We expect that the methods for characterizing the lumped model of the human ear and the model parameters will be useful for theoretical modeling of the ear function and construction of the ear physical model.

  14. Modelling Human Emotions for Tactical Decision-Making Games

    Science.gov (United States)

    Visschedijk, Gillian C.; Lazonder, Ard W.; van der Hulst, Anja; Vink, Nathalie; Leemkuil, Henny

    2013-01-01

    The training of tactical decision making increasingly occurs through serious computer games. A challenging aspect of designing such games is the modelling of human emotions. Two studies were performed to investigate the relation between fidelity and human emotion recognition in virtual human characters. Study 1 compared five versions of a virtual…

  15. The Victim Handling Model of Human Trafficking Through Economic Independence

    OpenAIRE

    Nuraeny, Henny; Utami, Tanti Kirana

    2016-01-01

    Human Trafficking is a modern trading of human slavery. Human Trafficking is also one of the worst forms of violation of human dignity that results in trauma to the victims. To that end, there should be a comprehensive treatment for victims. The problems that can be studied is whether a model that can be applied in the treatment of victims of trafficking in Cianjur and disseminating technical how models Handling of Victims of Human Trafficking in Cianjur. This study used normative juridical a...

  16. Advanced Video Activity Analytics (AVAA): Human Performance Model Report

    Science.gov (United States)

    2017-12-01

    effectively. The goal of the modeling effort is to provide an understanding of the current state of the system with respect to the impact on human ...representation of the human ‒ machine system. Third, task network modeling is relatively easy to use and understand . Lastly, it is more cost effective and can...and communication issues. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2006;48(2):2396–2400. Reid GB, Colle HA

  17. A Model of the Human Eye

    Science.gov (United States)

    Colicchia, G.; Wiesner, H.; Waltner, C.; Zollman, D.

    2008-01-01

    We describe a model of the human eye that incorporates a variable converging lens. The model can be easily constructed by students with low-cost materials. It shows in a comprehensible way the functionality of the eye's optical system. Images of near and far objects can be focused. Also, the defects of near and farsighted eyes can be demonstrated.

  18. Simplified human thermoregulatory model for designing wearable thermoelectric devices

    Science.gov (United States)

    Wijethunge, Dimuthu; Kim, Donggyu; Kim, Woochul

    2018-02-01

    Research on wearable and implantable devices have become popular with the strong need in market. A precise understanding of the thermal properties of human skin, which are not constant values but vary depending on ambient condition, is required for the development of such devices. In this paper, we present simplified human thermoregulatory model for accurately estimating the thermal properties of the skin without applying rigorous calculations. The proposed model considers a variable blood flow rate through the skin, evaporation functions, and a variable convection heat transfer from the skin surface. In addition, wearable thermoelectric generation (TEG) and refrigeration devices were simulated. We found that deviations of 10-60% can be resulted in estimating TEG performance without considering human thermoregulatory model owing to the fact that thermal resistance of human skin is adapted to ambient condition. Simplicity of the modeling procedure presented in this work could be beneficial for optimizing and predicting the performance of any applications that are directly coupled with skin thermal properties.

  19. Human physiologically based pharmacokinetic model for propofol

    Directory of Open Access Journals (Sweden)

    Schnider Thomas W

    2005-04-01

    Full Text Available Abstract Background Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK model for propofol. Methods PKQuest, a freely distributed software routine http://www.pkquest.com, was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1 the value of the propofol oil/water partition coefficient; 2 the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. Results The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters. The average weighted residual error (WRE of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. Conclusion A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a

  20. Vaccines against viral hemorrhagic fevers: non-human primate models.

    Science.gov (United States)

    Carrion, Ricardo; Patterson, Jean L

    2011-06-01

    Viral hemorrhagic fevers are a group of disease syndromes caused by infection with certain RNA viruses. The disease is marked by a febrile response, malaise, coagulopathy and vascular permeability culminating in death. Case fatality rates can reach 90% depending on the etiologic agent. Currently, there is no approved antiviral treatment. Because of the high case fatality, risk of importation and the potential to use these agents as biological weapons, development of countermeasures to these agents is a high priority. The sporadic nature of disease outbreaks and the ethical issues associated with conducting a human trial for such diseases make human studies impractical; therefore, development of countermeasures must occur in relevant animal models. Non-human primates are superior models to study infectious disease because their immune system is similar to humans and they are good predictors of efficacy in vaccine development and other intervention strategies. This review article summarizes viral hemorrhagic fever non-human primate models.

  1. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome.

    Science.gov (United States)

    Vershkov, Dan; Benvenisty, Nissim

    2017-01-01

    Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.

  2. Modelling human behaviours and reactions under dangerous environment

    OpenAIRE

    Kang, J; Wright, D K; Qin, S F; Zhao, Y

    2005-01-01

    This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions...

  3. In vivo modelling of normal and pathological human T-cell development

    NARCIS (Netherlands)

    Wiekmeijer, A.S.

    2016-01-01

    This thesis describes novel insights in human T-cell development by transplanting human HSPCs in severe immunodeficient NSG mice. First, an in vivo model was optimized to allow engraftment of hematopoietic stem cells derived from human bone marrow. This model was used to study aberrant human T-cell

  4. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  5. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  6. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  7. Workforce scheduling: A new model incorporating human factors

    Directory of Open Access Journals (Sweden)

    Mohammed Othman

    2012-12-01

    Full Text Available Purpose: The majority of a company’s improvement comes when the right workers with the right skills, behaviors and capacities are deployed appropriately throughout a company. This paper considers a workforce scheduling model including human aspects such as skills, training, workers’ personalities, workers’ breaks and workers’ fatigue and recovery levels. This model helps to minimize the hiring, firing, training and overtime costs, minimize the number of fired workers with high performance, minimize the break time and minimize the average worker’s fatigue level.Design/methodology/approach: To achieve this objective, a multi objective mixed integer programming model is developed to determine the amount of hiring, firing, training and overtime for each worker type.Findings: The results indicate that the worker differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human fatigue and recovery on the performance of the production systems.Research limitations/implications: In this research, there are some assumptions that might affect the accuracy of the model such as the assumption of certainty of the demand in each period, and the linearity function of Fatigue accumulation and recovery curves. These assumptions can be relaxed in future work.Originality/value: In this research, a new model for integrating workers’ differences with workforce scheduling is proposed. To the authors' knowledge, it is the first time to study the effects of different important human factors such as human personality, skills and fatigue and recovery in the workforce scheduling process. This research shows that considering both technical and human factors together can reduce the costs in manufacturing systems and ensure the safety of the workers.

  8. Monte Carlo modeling of human tooth optical coherence tomography imaging

    International Nuclear Information System (INIS)

    Shi, Boya; Meng, Zhuo; Wang, Longzhi; Liu, Tiegen

    2013-01-01

    We present a Monte Carlo model for optical coherence tomography (OCT) imaging of human tooth. The model is implemented by combining the simulation of a Gaussian beam with simulation for photon propagation in a two-layer human tooth model with non-parallel surfaces through a Monte Carlo method. The geometry and the optical parameters of the human tooth model are chosen on the basis of the experimental OCT images. The results show that the simulated OCT images are qualitatively consistent with the experimental ones. Using the model, we demonstrate the following: firstly, two types of photons contribute to the information of morphological features and noise in the OCT image of a human tooth, respectively. Secondly, the critical imaging depth of the tooth model is obtained, and it is found to decrease significantly with increasing mineral loss, simulated as different enamel scattering coefficients. Finally, the best focus position is located below and close to the dental surface by analysis of the effect of focus positions on the OCT signal and critical imaging depth. We anticipate that this modeling will become a powerful and accurate tool for a preliminary numerical study of the OCT technique on diseases of dental hard tissue in human teeth. (paper)

  9. Formální aspekty Aristotelovy logiky z historického úhlu pohledu

    OpenAIRE

    Fontán, Martin

    2010-01-01

    This thesis focuses on formal properties of Aristotle's syllogistic as seen from the per- spective of both modern logic and Aristotle himself. Its main objective is the proof of the standard completeness theorem that does not employ the indirect deduction as has become a custom in modern reconstructions of Aristotle's deductive system.

  10. Review on modeling heat transfer and thermoregulatory responses in human body.

    Science.gov (United States)

    Fu, Ming; Weng, Wenguo; Chen, Weiwang; Luo, Na

    2016-12-01

    Several mathematical models of human thermoregulation have been developed, contributing to a deep understanding of thermal responses in different thermal conditions and applications. In these models, the human body is represented by two interacting systems of thermoregulation: the controlling active system and the controlled passive system. This paper reviews the recent research of human thermoregulation models. The accuracy and scope of the thermal models are improved, for the consideration of individual differences, integration to clothing models, exposure to cold and hot conditions, and the changes of physiological responses for the elders. The experimental validated methods for human subjects and manikin are compared. The coupled method is provided for the manikin, controlled by the thermal model as an active system. Computational Fluid Dynamics (CFD) is also used along with the manikin or/and the thermal model, to evaluate the thermal responses of human body in various applications, such as evaluation of thermal comfort to increase the energy efficiency, prediction of tolerance limits and thermal acceptability exposed to hostile environments, indoor air quality assessment in the car and aerospace industry, and design protective equipment to improve function of the human activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Realistic Modeling and Animation of Human Body Based on Scanned Data

    Institute of Scientific and Technical Information of China (English)

    Yong-You Ma; Hui Zhang; Shou-Wei Jiang

    2004-01-01

    In this paper we propose a novel method for building animation model of real human body from surface scanned data.The human model is represented by a triangular mesh and described as a layered geometric model.The model consists of two layers: the control skeleton generating body animation from motion capture data,and the simplified surface model providing an efficient representation of the skin surface shape.The skeleton is generated automatically from surface scanned data using the feature extraction,and thena point-to-line mapping is used to map the surface model onto the underlying skeleton.The resulting model enables real-time and smooth animation by manipulation of the skeleton while maintaining the surface detail.Compared with earlier approach,the principal advantages of our approach are the automated generation of body control skeletons from the scanned data for real-time animation,and the automatic mapping and animation of the captured human surface shape.The human model constructed in this work can be used for applications of ergonomic design,garment CAD,real-time simulating humans in virtual reality environment and so on.

  12. Human BDCM Mulit-Route PBPK Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains the code for the BDCM human multi-route model written in the programming language acsl. The final published manuscript is provided since it...

  13. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  14. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  15. A human capital predictive model for agent performance in contact centres

    Directory of Open Access Journals (Sweden)

    Chris Jacobs

    2011-10-01

    Research purpose: The primary focus of this article was to develop a theoretically derived human capital predictive model for agent performance in contact centres and Business Process Outsourcing (BPO based on a review of current empirical research literature. Motivation for the study: The study was motivated by the need for a human capital predictive model that can predict agent and overall business performance. Research design: A nonempirical (theoretical research paradigm was adopted for this study and more specifically a theory or model-building approach was followed. A systematic review of published empirical research articles (for the period 2000–2009 in scholarly search portals was performed. Main findings: Eight building blocks of the human capital predictive model for agent performance in contact centres were identified. Forty-two of the human capital contact centre related articles are detailed in this study. Key empirical findings suggest that person– environment fit, job demands-resources, human resources management practices, engagement, agent well-being, agent competence; turnover intention; and agent performance are related to contact centre performance. Practical/managerial implications: The human capital predictive model serves as an operational management model that has performance implications for agents and ultimately influences the contact centre’s overall business performance. Contribution/value-add: This research can contribute to the fields of human resource management (HRM, human capital and performance management within the contact centre and BPO environment.

  16. Geometry Modeling Program Implementation of Human Hip Tissue

    Directory of Open Access Journals (Sweden)

    WANG Mo-nan

    2017-10-01

    Full Text Available Abstract:Aiming to design a simulate software of human tissue modeling and analysis,Visual Studio 2010 is selected as a development tool to develop a 3 D reconstruction software of human tissue with language C++.It can be used alone. It also can be a module of the virtual surgery systems. The system includes medical image segmentation modules and 3 D reconstruction modules,and can realize the model visualization. This software system has been used to reconstruct hip muscles,femur and hip bone accurately. The results show these geometry models can simulate the structure of hip tissues.

  17. Geometry Modeling Program Implementation of Human Hip Tissue

    Directory of Open Access Journals (Sweden)

    WANG Monan

    2017-04-01

    Full Text Available Aiming to design a simulate software of human tissue modeling and analysis,Visual Studio 2010 is selected as a development tool to develop a 3 D reconstruction software of human tissue with language C++.It can be used alone. It also can be a module of the virtual surgery systems. The system includes medical image segmentation modules and 3 D reconstruction modules,and can realize the model visualization. This software system has been used to reconstruct hip muscles,femur and hip bone accurately. The results show these geometry models can simulate the structure of hip tissues.

  18. Optical models of the human eye.

    Science.gov (United States)

    Atchison, David A; Thibos, Larry N

    2016-03-01

    Optical models of the human eye have been used in visual science for purposes such as providing a framework for explaining optical phenomena in vision, for predicting how refraction and aberrations are affected by change in ocular biometry and as computational tools for exploring the limitations imposed on vision by the optical system of the eye. We address the issue of what is understood by optical model eyes, discussing the 'encyclopaedia' and 'toy train' approaches to modelling. An extensive list of purposes of models is provided. We discuss many of the theoretical types of optical models (also schematic eyes) of varying anatomical accuracy, including single, three and four refracting surface variants. We cover the models with lens structure in the form of nested shells and gradient index. Many optical eye models give accurate predictions only for small angles and small fields of view. If aberrations and image quality are important to consider, such 'paraxial' model eyes must be replaced by 'finite model' eyes incorporating features such as aspheric surfaces, tilts and decentrations, wavelength-dependent media and curved retinas. Many optical model eyes are population averages and must become adaptable to account for age, gender, ethnicity, refractive error and accommodation. They can also be customised for the individual when extensive ocular biometry and optical performance data are available. We consider which optical model should be used for a particular purpose, adhering to the principle that the best model is the simplest fit for the task. We provide a glimpse into the future of optical models of the human eye. This review is interwoven with historical developments, highlighting the important people who have contributed so richly to our understanding of visual optics. © 2016 The Authors. Clinical and Experimental Optometry © 2016 Optometry Australia.

  19. Cognitive modelling: a basic complement of human reliability analysis

    International Nuclear Information System (INIS)

    Bersini, U.; Cacciabue, P.C.; Mancini, G.

    1988-01-01

    In this paper the issues identified in modelling humans and machines are discussed in the perspective of the consideration of human errors managing complex plants during incidental as well as normal conditions. The dichotomy between the use of a cognitive versus a behaviouristic model approach is discussed and the complementarity aspects rather than the differences of the two methods are identified. A cognitive model based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology is presented as the counterpart to the 'classical' THERP methodology for studying human errors. Such a cognitive model is discussed at length and its fundamental components, i.e. the High Level Decision Making and the Low Level Decision Making models, are reviewed. Finally, the inadequacy of the 'classical' THERP methodology to deal with cognitive errors is discussed on the basis of a simple test case. For the same case the cognitive model is then applied showing the flexibility and adequacy of the model to dynamic configuration with time-dependent failures of components and with consequent need for changing of strategy during the transient itself. (author)

  20. Identification of human operator performance models utilizing time series analysis

    Science.gov (United States)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  1. Simplified human model and pedestrian simulation in the millimeter-wave region

    Science.gov (United States)

    Han, Junghwan; Kim, Seok; Lee, Tae-Yun; Ka, Min-Ho

    2016-02-01

    The 24 GHz and 77 GHz radar sensors have been studied as a strong candidate for advanced driver assistance systems(ADAS) because of their all-weather capability and accurate range and radial velocity measuring scheme. However, developing a reliable pedestrian recognition system hasmany obstacles due to the inaccurate and non-trivial radar responses at these high frequencies and the many combinations of clothes and accessories. To overcome these obstacles, many researchers used electromagnetic (EM) simulation to characterize the radar scattering response of a human. However, human simulation takes so long time because of the electrically huge size of a human in the millimeter-wave region. To reduce simulation time, some researchers assumed the skin of a human is the perfect electric conductor (PEC) and have simulated the PEC human model using physical optics (PO) algorithm without a specific explanation about how the human body could be modeled with PEC. In this study, the validity of the assumption that the surface of the human body is considered PEC in the EM simulation is verified, and the simulation result of the dry skin human model is compared with that of the PEC human model.

  2. Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases.

    Science.gov (United States)

    Barruet, Emilie; Hsiao, Edward C

    2016-01-01

    Musculoskeletal disorders affecting the bones and joints are major health problems among children and adults. Major challenges such as the genetic origins or poor diagnostics of severe skeletal disease hinder our understanding of human skeletal diseases. The recent advent of human induced pluripotent stem cells (human iPS cells) provides an unparalleled opportunity to create human-specific models of human skeletal diseases. iPS cells have the ability to self-renew, allowing us to obtain large amounts of starting material, and have the potential to differentiate into any cell types in the body. In addition, they can carry one or more mutations responsible for the disease of interest or be genetically corrected to create isogenic controls. Our work has focused on modeling rare musculoskeletal disorders including fibrodysplasia ossificans progressive (FOP), a congenital disease of increased heterotopic ossification. In this review, we will discuss our experiences and protocols differentiating human iPS cells toward the osteogenic lineage and their application to model skeletal diseases. A number of critical challenges and exciting new approaches are also discussed, which will allow the skeletal biology field to harness the potential of human iPS cells as a critical model system for understanding diseases of abnormal skeletal formation and bone regeneration.

  3. A Perspective on Computational Human Performance Models as Design Tools

    Science.gov (United States)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  4. Syllogistic Reasoning Tasks, A Methodological Review.

    Science.gov (United States)

    1985-07-01

    and that Figure 1 syllogisms were easier than the Figure 4, con- firmed the results reported by Frase (1968). Syllogism figure also had an effect on...241 In other words, both premises must assert class inclusion to entail an af- firmative conclusion. But class inclusion can be expressed only by...34There are no unicorns " does not. * The particular propositions (I, 0) have existential import, while the two * universal propositions (A, E) do not

  5. Familiarity with Content and Syllogistic Reasoning.

    Science.gov (United States)

    Mast, Terrill A.; And Others

    Forty-four education and 44 dental students were administered a 30-item syllogism test containing five syllogic forms six times repeated in three different content forms--technical dental terms, common dental terms, and content-free (letters). Data were analyzed using a two-factor with repeated measures on one factor design. It was found that…

  6. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  7. Improving Saliency Models by Predicting Human Fixation Patches

    KAUST Repository

    Dubey, Rachit

    2015-04-16

    There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

  8. Improving Saliency Models by Predicting Human Fixation Patches

    KAUST Repository

    Dubey, Rachit; Dave, Akshat; Ghanem, Bernard

    2015-01-01

    There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

  9. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  10. Some aspects of statistical modeling of human-error probability

    International Nuclear Information System (INIS)

    Prairie, R.R.

    1982-01-01

    Human reliability analyses (HRA) are often performed as part of risk assessment and reliability projects. Recent events in nuclear power have shown the potential importance of the human element. There are several on-going efforts in the US and elsewhere with the purpose of modeling human error such that the human contribution can be incorporated into an overall risk assessment associated with one or more aspects of nuclear power. An effort that is described here uses the HRA (event tree) to quantify and model the human contribution to risk. As an example, risk analyses are being prepared on several nuclear power plants as part of the Interim Reliability Assessment Program (IREP). In this process the risk analyst selects the elements of his fault tree that could be contributed to by human error. He then solicits the HF analyst to do a HRA on this element

  11. Human performance modeling for system of systems analytics :soldier fatigue.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in September 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.

  12. A transparent model of the human scala tympani cavity.

    Science.gov (United States)

    Rebscher, S J; Talbot, N; Bruszewski, W; Heilmann, M; Brasell, J; Merzenich, M M

    1996-01-01

    A dimensionally accurate clear model of the human scala tympani has been produced to evaluate the insertion and position of clinically applied intracochlear electrodes for electrical stimulation. Replicates of the human scala tympani were made from low melting point metal alloy (LMA) and from polymethylmeth-acrylate (PMMA) resin. The LMA metal casts were embedded in blocks of epoxy and in clear silicone rubber. After removal of the metal alloy, a cavity was produced that accurately models the human scala tympani. Investment casting molds were made from the PMMA scala tympani casts to enable production of multiple LMA casts from which identical models were fabricated. Total dimensional distortion of the LMA casting process was less than 1% in length and 2% in diameter. The models have been successfully integrated into the design process for the iterative development of advanced intracochlear electrode arrays at UCSF. These fabrication techniques are applicable to a wide range of biomedical design problems that require modelling of visually obscured cavities.

  13. Modeling human learning involved in car driving

    NARCIS (Netherlands)

    Wewerinke, P.H.

    1994-01-01

    In this paper, car driving is considered at the level of human tracking and maneuvering in the context of other traffic. A model analysis revealed the most salient features determining driving performance and safety. Learning car driving is modelled based on a system theoretical approach and based

  14. Learning from video modeling examples : Effects of seeing the human model's face

    NARCIS (Netherlands)

    Van Gog, Tamara; Verveer, Ilse; Verveer, Lise

    2014-01-01

    Video modeling examples in which a human(-like) model shows learners how to perform a task are increasingly used in education, as they have become very easy to create and distribute in e-learning environments. However, little is known about design guidelines to optimize learning from video modeling

  15. First International Workshop on Human Factors in Modeling (HuFaMo 2015)

    DEFF Research Database (Denmark)

    Störrle, Harald; Chaudron, Michel R. V.; Amaral, Vasco

    2015-01-01

    human factors in modeling. Our goal is to improve the state of the science and professionalism in empirical research in the Model Based Engineering community. Typical examples of research questions might consider the usability of a certain approach, such as a method or language, or the emotional states......Modeling is a human-intensive enterprise. As such, many research questions related to modeling can only be answered by empirical studies employing human factors. The International Workshop Series on Human Factors in Modeling (HuFaMo) is dedicated to the discussion of empirical research involving...... or personal judgements of modelers. While concerned with foundations and framework support for modeling, the community has been somehow neglecting the issue of human factors in this context. There is a growing need from the community concerned with quality factors to understand the best practices...

  16. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    Science.gov (United States)

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  17. tDCS Stimulation of the dlPFC Selectively Moderates the Detrimental Impact of Emotion on Analytical Reasoning.

    Science.gov (United States)

    Trémolière, Bastien; Maheux-Caron, Véronique; Lepage, Jean-François; Blanchette, Isabelle

    2018-01-01

    There is evidence of a detrimental effect of emotion on reasoning. Recent studies suggest that this relationship is mediated by working memory, a function closely associated with the dorsolateral prefrontal cortex (dlPFC). Relying on transcranial direct current stimulation (tDCS), the present research explores the possibility that anodal stimulation of the dlPFC has the potential to prevent the effect of emotion on analytical reasoning. Thirty-four participants took part in a lab experiment and were tested twice: one session using offline anodal stimulation (with a 2 mA current stimulation applied to the left dlPFC for 20 min), one session using a control (sham) stimulation. In each session, participants solved syllogistic reasoning problems featuring neutral and emotionally negative contents. Results showed that anodal stimulation diminished the deleterious effect of emotion on syllogistic reasoning, but only for a subclass of problems: problems where the conclusion was logically valid. We discuss our results in the light of the reasoning literature as well as the apparent variability of tDCS effects.

  18. Modelling human eye under blast loading.

    Science.gov (United States)

    Esposito, L; Clemente, C; Bonora, N; Rossi, T

    2015-01-01

    Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues.

  19. Modelling Engagement in Multi-Party Conversations : Data-Driven Approaches to Understanding Human-Human Communication Patterns for Use in Human-Robot Interactions

    OpenAIRE

    Oertel, Catharine

    2016-01-01

    The aim of this thesis is to study human-human interaction in order to provide virtual agents and robots with the capability to engage into multi-party-conversations in a human-like-manner. The focus lies with the modelling of conversational dynamics and the appropriate realization of multi-modal feedback behaviour. For such an undertaking, it is important to understand how human-human communication unfolds in varying contexts and constellations over time. To this end, multi-modal human-human...

  20. The empirical study of norms is just what we are missing

    Science.gov (United States)

    Achourioti, Theodora; Fugard, Andrew J. B.; Stenning, Keith

    2014-01-01

    This paper argues that the goals people have when reasoning determine their own norms of reasoning. A radical descriptivism which avoids norms never worked for any science; nor can it work for the psychology of reasoning. Norms as we understand them are illustrated with examples from categorical syllogistic reasoning and the “new paradigm” of subjective probabilities. We argue that many formal systems are required for psychology: classical logic, non-monotonic logics, probability logics, relevance logic, and others. One of the hardest challenges is working out what goals reasoners have and choosing and tailoring the appropriate logics to model the norms those goals imply. PMID:25368590

  1. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

  2. Jack Human Modelling Tool: A Review

    Science.gov (United States)

    2010-01-01

    design and evaluation [8] and evolved into the Computerised Biomechanical Man Model (Combiman), shown in Figure 2. Combiman was developed at the...unrealistic arrangement of tetrahedra (Figure 7) to a highly realistic human model based on current anthropometric, anatomical and biomechanical data...has long legs and a short torso may find it difficult to adjust the seat and rudder pedals to achieve the required over the nose vision, reach to

  3. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    Science.gov (United States)

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  4. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    Science.gov (United States)

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  5. Biomechanical Analysis and Evaluation Technology Using Human Multi-Body Dynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hyuk; Shin, June Ho; Khurelbaatar, Tsolmonbaatar [Kyung Hee University, Yongin (Korea, Republic of)

    2011-10-15

    This paper presents the biomechanical analysis and evaluation technology of musculoskeletal system by multi-body human dynamic model and 3-D motion capture data. First, medical image based geometric model and material properties of tissue were used to develop the human dynamic model and 3-D motion capture data based motion analysis techniques were develop to quantify the in-vivo joint kinematics, joint moment, joint force, and muscle force. Walking and push-up motion was investigated using the developed model. The present model and technologies would be useful to apply the biomechanical analysis and evaluation of human activities.

  6. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  7. A review on otolith models in human perception.

    Science.gov (United States)

    Asadi, Houshyar; Mohamed, Shady; Lim, Chee Peng; Nahavandi, Saeid

    2016-08-01

    The vestibular system, which consists of semicircular canals and otolith, are the main sensors mammals use to perceive rotational and linear motions. Identifying the most suitable and consistent mathematical model of the vestibular system is important for research related to driving perception. An appropriate vestibular model is essential for implementation of the Motion Cueing Algorithm (MCA) for motion simulation purposes, because the quality of the MCA is directly dependent on the vestibular model used. In this review, the history and development process of otolith models are presented and analyzed. The otolith organs can detect linear acceleration and transmit information about sensed applied specific forces on the human body. The main purpose of this review is to determine the appropriate otolith models that agree with theoretical analyses and experimental results as well as provide reliable estimation for the vestibular system functions. Formulating and selecting the most appropriate mathematical model of the vestibular system is important to ensure successful human perception modelling and simulation when implementing the model into the MCA for motion analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Circuit Model of Real Time Human Body Hydration.

    Science.gov (United States)

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  9. Modeling human infertility with pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2017-05-01

    Full Text Available Human fertility is dependent upon the correct establishment and differentiation of the germline. This is because no other cell type in the body is capable of passing a genome and epigenome from parent to child. Terminally differentiated germline cells in the adult testis and ovary are called gametes. However, the initial specification of germline cells occurs in the embryo around the time of gastrulation. Most of our knowledge regarding the cell and molecular events that govern human germline specification involves extrapolating scientific principles from model organisms, most notably the mouse. However, recent work using next generation sequencing, gene editing and differentiation of germline cells from pluripotent stem cells has revealed that the core molecular mechanisms that regulate human germline development are different from rodents. Here, we will discuss the major molecular pathways required for human germline differentiation and how pluripotent stem cells have revolutionized our ability to study the earliest steps in human embryonic lineage specification in order to understand human fertility.

  10. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  11. Models of the Human in Tantric Hinduism

    DEFF Research Database (Denmark)

    Olesen, Bjarne Wernicke; Flood, Gavin

    2019-01-01

    This research project explores the origins, developments and transformations of yogic models of the human (e.g. kuṇḍalinī yoga, the cakra system and ritual sex) in the tantric goddess traditions or what might be called Śāktism of medieval India. These Śākta models of esoteric anatomy originating...

  12. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    Science.gov (United States)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial

  13. Development of a finite element model of the human abdomen.

    Science.gov (United States)

    Lee, J B; Yang, K H

    2001-11-01

    Currently, three-dimensional finite element models of the human body have been developed for frequently injured anatomical regions such as the brain, chest, extremities and pelvis. While a few models of the human body include the abdomen, these models have tended to oversimplify the complexity of the abdominal region. As the first step in understanding abdominal injuries via numerical methods, a 3D finite element model of a 50(th) percentile male human abdomen (WSUHAM) has been developed and validated against experimental data obtained from two sets of side impact tests and a series of frontal impact tests. The model includes a detailed representation of the liver, spleen, kidneys, spine, skin and major blood vessels. Hollow organs, such as the esophagus, stomach, small and large intestines, gallbladder, bile ducts, ureters, rectum and adrenal glands are grouped into three bodybags in order to provide realistic inertial properties and to maintain the position of the solid organs in their appropriate locations. Using direct connections, the model was joined superiorly to a partial model of the human thorax, and inferiorly to models of the human pelvis and the lower extremities that have been previously developed. Material properties for various tissues of the abdomen were derived from the literature. Data obtained in a series of cadaveric pendulum impact tests conducted at Wayne State University (WSU), a series of lateral drop tests conducted at Association Peugeot-Renault (APR) and a series of cadaveric lower abdomen frontal impact tests conducted at WSU were used to validate the model. Results predicted by the model match these experimental data for various impact speeds, impactor masses and drop heights. Further study is still needed in order to fully validate WSUHAM before it can be used to assess various impact loading conditions associated with vehicular crashes.

  14. New paradigms for metabolic modeling of human cells

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally......, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented.......Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we...

  15. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    Science.gov (United States)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  16. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  17. Evaluation of human thorax FE model in various impact scenarios

    Directory of Open Access Journals (Sweden)

    Jansová M.

    2015-06-01

    Full Text Available The study focused on the validation of the 50th percentile male model — a detailed FE model of the thoracic segment of the human body developed within project Development of a Finite Element Model of the Human Thorax and Upper Extremities (THOMO co-funded by the European Commission (7th Framework Programme. The model response was tested in three impact scenarios: frontal, lateral and oblique. The resulting impactor contact force vs. time and chest deflection vs. time responses were compared with experimental results. The strain profile of the 5th rib was checked with lateral and oblique strain profiles from post-mortem human subject (PMHS experiments. The influence of heart and lungs on the mechanical response of the model was assessed and the material data configuration, giving the most biofidelic thorax behaviour, was identified.

  18. Modeling human comprehension of data visualizations

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haass, Michael Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Divis, Kristin Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need for cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.

  19. A statistical model of future human actions

    International Nuclear Information System (INIS)

    Woo, G.

    1992-02-01

    A critical review has been carried out of models of future human actions during the long term post-closure period of a radioactive waste repository. Various Markov models have been considered as alternatives to the standard Poisson model, and the problems of parameterisation have been addressed. Where the simplistic Poisson model unduly exaggerates the intrusion risk, some form of Markov model may have to be introduced. This situation may well arise for shallow repositories, but it is less likely for deep repositories. Recommendations are made for a practical implementation of a computer based model and its associated database. (Author)

  20. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    Science.gov (United States)

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Modeling and Simulating Virtual Anatomical Humans

    NARCIS (Netherlands)

    Madehkhaksar, Forough; Luo, Zhiping; Pronost, Nicolas; Egges, Arjan

    2014-01-01

    This chapter presents human musculoskeletal modeling and simulation as a challenging field that lies between biomechanics and computer animation. One of the main goals of computer animation research is to develop algorithms and systems that produce plausible motion. On the other hand, the main

  2. Investigation and Modeling of Capacitive Human Body Communication.

    Science.gov (United States)

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  3. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  4. Human Engineering Modeling and Performance Lab Study Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  5. Model-Based approaches to Human-Automation Systems Design

    DEFF Research Database (Denmark)

    Jamieson, Greg A.; Andersson, Jonas; Bisantz, Ann

    2012-01-01

    Human-automation interaction in complex systems is common, yet design for this interaction is often conducted without explicit consideration of the role of the human operator. Fortunately, there are a number of modeling frameworks proposed for supporting this design activity. However...... (and reportedly one or two critics) can engage one another on several agreed questions about such frameworks. The goal is to aid non-aligned practitioners in choosing between alternative frameworks for their human-automation interaction design challenges....

  6. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  7. Maintenance modeling and optimization integrating human and material resources

    International Nuclear Information System (INIS)

    Martorell, S.; Villamizar, M.; Carlos, S.; Sanchez, A.

    2010-01-01

    Maintenance planning is a subject of concern to many industrial sectors as plant safety and business depend on it. Traditionally, the maintenance planning is formulated in terms of a multi-objective optimization (MOP) problem where reliability, availability, maintainability and cost (RAM+C) act as decision criteria and maintenance strategies (i.e. maintenance tasks intervals) act as the only decision variables. However the appropriate development of each maintenance strategy depends not only on the maintenance intervals but also on the resources (human and material) available to implement such strategies. Thus, the effect of the necessary resources on RAM+C needs to be modeled and accounted for in formulating the MOP affecting the set of objectives and constraints. In this paper RAM+C models to explicitly address the effect of human resources and material resources (spare parts) on RAM+C criteria are proposed. This extended model allows accounting for explicitly how the above decision criteria depends on the basic model parameters representing the type of strategies, maintenance intervals, durations, human resources and material resources. Finally, an application case is performed to optimize the maintenance plan of a motor-driven pump equipment considering as decision variables maintenance and test intervals and human and material resources.

  8. Maintenance modeling and optimization integrating human and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Martorell, S., E-mail: smartore@iqn.upv.e [Dpto. Ingenieria Quimica y Nuclear, Universidad Politecnica Valencia (Spain); Villamizar, M.; Carlos, S. [Dpto. Ingenieria Quimica y Nuclear, Universidad Politecnica Valencia (Spain); Sanchez, A. [Dpto. Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica Valencia (Spain)

    2010-12-15

    Maintenance planning is a subject of concern to many industrial sectors as plant safety and business depend on it. Traditionally, the maintenance planning is formulated in terms of a multi-objective optimization (MOP) problem where reliability, availability, maintainability and cost (RAM+C) act as decision criteria and maintenance strategies (i.e. maintenance tasks intervals) act as the only decision variables. However the appropriate development of each maintenance strategy depends not only on the maintenance intervals but also on the resources (human and material) available to implement such strategies. Thus, the effect of the necessary resources on RAM+C needs to be modeled and accounted for in formulating the MOP affecting the set of objectives and constraints. In this paper RAM+C models to explicitly address the effect of human resources and material resources (spare parts) on RAM+C criteria are proposed. This extended model allows accounting for explicitly how the above decision criteria depends on the basic model parameters representing the type of strategies, maintenance intervals, durations, human resources and material resources. Finally, an application case is performed to optimize the maintenance plan of a motor-driven pump equipment considering as decision variables maintenance and test intervals and human and material resources.

  9. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  10. Specific and General Human Capital in an Endogenous Growth Model

    OpenAIRE

    Evangelia Vourvachaki; Vahagn Jerbashian; : Sergey Slobodyan

    2014-01-01

    In this article, we define specific (general) human capital in terms of the occupations whose use is spread in a limited (wide) set of industries. We analyze the growth impact of an economy's composition of specific and general human capital, in a model where education and research and development are costly and complementary activities. The model suggests that a declining share of specific human capital, as observed in the Czech Republic, can be associated with a lower rate of long-term grow...

  11. Process modeling for Humanities: tracing and analyzing scientific processes

    OpenAIRE

    Hug , Charlotte; Salinesi , Camille; Deneckere , Rebecca; Lamasse , Stéphane

    2011-01-01

    International audience; This paper concerns epistemology and the understanding of research processes in Humanities, such as Archaeology. We believe that to properly understand research processes, it is essential to trace them. The collected traces depend on the process model established, which has to be as accurate as possible to exhaustively record the traces. In this paper, we briefly explain why the existing process models for Humanities are not sufficient to represent traces. We then pres...

  12. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  13. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  14. Finite-element modeling of the human neurocranium under functional anatomical aspects.

    Science.gov (United States)

    Mall, G; Hubig, M; Koebke, J; Steinbuch, R

    1997-08-01

    Due to its functional significance the human skull plays an important role in biomechanical research. The present work describes a new Finite-Element model of the human neurocranium. The dry skull of a middle-aged woman served as a pattern. The model was developed using only the preprocessor (Mentat) of a commercial FE-system (Marc). Unlike that of other FE models of the human skull mentioned in the literature, the geometry in this model was designed according to functional anatomical findings. Functionally important morphological structures representing loci minoris resistentiae, especially the foramina and fissures of the skull base, were included in the model. The results of two linear static loadcase analyses in the region of the skull base underline the importance of modeling from the functional anatomical point of view.

  15. Human Nonindependent Mate Choice: Is Model Female Attractiveness Everything?

    Directory of Open Access Journals (Sweden)

    Antonios Vakirtzis

    2012-04-01

    Full Text Available Following two decades of research on non-human animals, there has recently been increased interest in human nonindependent mate choice, namely the ways in which choosing women incorporate information about a man's past or present romantic partners (‘model females’ into their own assessment of the male. Experimental studies using static facial images have generally found that men receive higher desirability ratings from female raters when presented with attractive (compared to unattractive model females. This phenomenon has a straightforward evolutionary explanation: the fact that female mate value is more dependent on physical attractiveness compared to male mate value. Furthermore, due to assortative mating for attractiveness, men who are paired with attractive women are more likely to be of high mate value themselves. Here, we also examine the possible relevance of model female cues other than attractiveness (personality and behavioral traits by presenting video recordings of model females to a set of female raters. The results confirm that the model female's attractiveness is the primary cue. Contrary to some earlier findings in the human and nonhuman literature, we found no evidence that female raters prefer partners of slightly older model females. We conclude by suggesting some promising variations on the present experimental design.

  16. Modelling human interactions in the assessment of man-made hazards

    International Nuclear Information System (INIS)

    Nitoi, M.; Farcasiu, M.; Apostol, M.

    2016-01-01

    The human reliability assessment tools are not currently capable to model adequately the human ability to adapt, to innovate and to manage under extreme situations. The paper presents the results obtained by ICN PSA team in the frame of FP7 Advanced Safety Assessment Methodologies: extended PSA (ASAMPSA_E) project regarding the investigation of conducting HRA in human-made hazards. The paper proposes to use a 4-steps methodology for the assessment of human interactions in the external events (Definition and modelling of human interactions; Quantification of human failure events; Recovery analysis; Review). The most relevant factors with respect to HRA for man-made hazards (response execution complexity; existence of procedures with respect to the scenario in question; time available for action; timing of cues; accessibility of equipment; harsh environmental conditions) are presented and discussed thoroughly. The challenges identified in relation to man-made hazards HRA are highlighted. (authors)

  17. Computational Modeling of Human Multiple-Task Performance

    National Research Council Canada - National Science Library

    Kieras, David E; Meyer, David

    2005-01-01

    This is the final report for a project that was a continuation of an earlier, long-term project on the development and validation of the EPIC cognitive architecture for modeling human cognition and performance...

  18. Microfluidic Organ-on-a-Chip Models of Human IntestineSummary

    Directory of Open Access Journals (Sweden)

    Amir Bein

    Full Text Available Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine. Keywords: Organs-on-Chips, Gut-on-a-Chip, Intestine-on-a-Chip, Microfluidic

  19. The application of cognitive models to the evaluation and prediction of human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.; Reason, J.T.

    1986-01-01

    The first section of the paper provides a brief overview of a number of important principles relevant to human reliability modeling that have emerged from cognitive models, and presents a synthesis of these approaches in the form of a Generic Error Modeling System (GEMS). The next section illustrates the application of GEMS to some well known nuclear power plant (NPP) incidents in which human error was a major contributor. The way in which design recommendations can emerge from analyses of this type is illustrated. The third section describes the use of cognitive models in the classification of human errors for prediction and data collection purposes. The final section addresses the predictive modeling of human error as part of human reliability assessment in Probabilistic Risk Assessment

  20. Models of Easter Island Human-Resource Dynamics: Advances and Gaps

    Directory of Open Access Journals (Sweden)

    Agostino Merico

    2017-12-01

    Full Text Available Finding solutions to the entangled problems of human population growth, resource exploitation, ecosystem degradation, and biodiversity loss is considered humanity's grand challenge. Small and isolated societies of the past, such as the Rapanui of Easter Island, constitute ideal laboratories for understanding the consequences of human-driven environmental degradation and associated crises. By integrating different processes into a coherent and quantitative framework, mathematical models can be effective tools for investigating the ecological and socioeconomic history of these ancient civilizations. Most models of Easter Island are grounded around the Malthusian theory of population growth and designed as Lotka-Volterra predator-prey systems. Within ranges of plausible parameter values, these dynamic systems models predict a population overshoot and collapse sequence, in line with the ecocidal view about the Rapanui. With new archaeological evidence coming to light, casting doubts on the classical narrative of a human-induced collapse, models have begun to incorporate the new pieces of evidence and started to describe a more complex historical ecology, in line with the view of a resilient society that suffered genocide after the contact with Europeans. Uncertainties affecting the archaeological evidence contribute to the formulation of contradictory narratives. Surprisingly, no agent-based models have been applied to Easter Island. I argue that these tools offer appealing possibilities for overcoming the limits of dynamic systems models and the uncertainties in the available archaeological data.

  1. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  2. Personalized medicine for cystic fibrosis: establishing human model systems.

    Science.gov (United States)

    Mou, Hongmei; Brazauskas, Karissa; Rajagopal, Jayaraj

    2015-10-01

    With over 1,500 identifiable mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that result in distinct functional and phenotypical abnormalities, it is virtually impossible to perform randomized clinical trials to identify the best therapeutics for all patients. Therefore, a personalized medicine approach is essential. The only way to realistically accomplish this is through the development of improved in vitro human model systems. The lack of a readily available and infinite supply of human CFTR-expressing airway epithelial cells is a key bottleneck. We propose that a concerted two-pronged approach is necessary for patient-specific cystic fibrosis research to continue to prosper and realize its potential: (1) more effective culture and differentiation conditions for growing primary human airway and nasal epithelial cells and (2) the development of collective protocols for efficiently differentiating disease- and patient-specific induced pluripotent stem cells (iPSC) into pure populations of adult epithelial cells. Ultimately, we need a personalized human model system for cystic fibrosis with the capacity for uncomplicated bankability, widespread availability, and universal applicability for patient-specific disease modeling, novel pharmacotherapy investigation and screening, and readily executable genetic modification. © 2015 Wiley Periodicals, Inc.

  3. Human-centric decision-making models for social sciences

    CERN Document Server

    Pedrycz, Witold

    2014-01-01

    The volume delivers a wealth of effective methods to deal with various types of uncertainty inherently existing in human-centric decision problems. It elaborates on  comprehensive decision frameworks to handle different decision scenarios, which help use effectively the explicit and tacit knowledge and intuition, model perceptions and preferences in a more human-oriented style. The book presents original approaches and delivers new results on fundamentals and applications related to human-centered decision making approaches to business, economics and social systems. Individual chapters cover multi-criteria (multiattribute) decision making, decision making with prospect theory, decision making with incomplete probabilistic information, granular models of decision making and decision making realized with the use of non-additive measures. New emerging decision theories being presented as along with a wide spectrum of ongoing research make the book valuable to all interested in the field of advanced decision-mak...

  4. Modeling Human Steering Behavior During Path Following in Teleoperation of Unmanned Ground Vehicles.

    Science.gov (United States)

    Mirinejad, Hossein; Jayakumar, Paramsothy; Ersal, Tulga

    2018-04-01

    This paper presents a behavioral model representing the human steering performance in teleoperated unmanned ground vehicles (UGVs). Human steering performance in teleoperation is considerably different from the performance in regular onboard driving situations due to significant communication delays in teleoperation systems and limited information human teleoperators receive from the vehicle sensory system. Mathematical models capturing the teleoperation performance are a key to making the development and evaluation of teleoperated UGV technologies fully simulation based and thus more rapid and cost-effective. However, driver models developed for the typical onboard driving case do not readily address this need. To fill the gap, this paper adopts a cognitive model that was originally developed for a typical highway driving scenario and develops a tuning strategy that adjusts the model parameters in the absence of human data to reflect the effect of various latencies and UGV speeds on driver performance in a teleoperated path-following task. Based on data collected from a human subject test study, it is shown that the tuned model can predict both the trend of changes in driver performance for different driving conditions and the best steering performance of human subjects in all driving conditions considered. The proposed model with the tuning strategy has a satisfactory performance in predicting human steering behavior in the task of teleoperated path following of UGVs. The established model is a suited candidate to be used in place of human drivers for simulation-based studies of UGV mobility in teleoperation systems.

  5. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    Science.gov (United States)

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  6. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  7. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.

    Science.gov (United States)

    Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P

    2014-09-01

    Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. © 2014 by the Society for Experimental Biology and Medicine.

  8. Mathematical models of human behavior

    DEFF Research Database (Denmark)

    Møllgaard, Anders Edsberg

    at the Technical University of Denmark. The data set includes face-to-face interaction (Bluetooth), communication (calls and texts), mobility (GPS), social network (Facebook), and general background information including a psychological profile (questionnaire). This thesis presents my work on the Social Fabric...... data set, along with work on other behavioral data. The overall goal is to contribute to a quantitative understanding of human behavior using big data and mathematical models. Central to the thesis is the determination of the predictability of different human activities. Upper limits are derived....... Evidence is provided, which implies that the asymmetry is caused by a self-enhancement in the initiation dynamics. These results have implications for the formation of social networks and the dynamics of the links. It is shown that the Big Five Inventory (BFI) representing a psychological profile only...

  9. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  10. A Mouse Model for Human Anal Cancer

    Science.gov (United States)

    Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.

    2010-01-01

    Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including but not limited to their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors; whereas, none of the like treated non-transgenic mice showed tumors. Histopathological analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. PMID:20947489

  11. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  12. Critical review evaluating the pig as a model for human nutritional physiology.

    Science.gov (United States)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Le Huerou-Luron, Isabelle; de Jager, Nadia; Schuurman, Teun; Val-Laillet, David

    2016-06-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.

  13. Modeling Individual Cyclic Variation in Human Behavior.

    Science.gov (United States)

    Pierson, Emma; Althoff, Tim; Leskovec, Jure

    2018-04-01

    Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets-of human menstrual cycle symptoms and physical activity tracking data-yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.

  14. Modeling aspects of human memory for scientific study.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico); Watson, Patrick (University of Illinois - Champaign-Urbana Beckman Institute); McDaniel, Mark A. (Washington University); Eichenbaum, Howard B. (Boston University); Cohen, Neal J. (University of Illinois - Champaign-Urbana Beckman Institute); Vineyard, Craig Michael; Taylor, Shawn Ellis; Bernard, Michael Lewis; Morrow, James Dan; Verzi, Stephen J.

    2009-10-01

    Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closer to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.

  15. On modeling human reliability in space flights - Redundancy and recovery operations

    Science.gov (United States)

    Aarset, M.; Wright, J. F.

    The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.

  16. Numerical human model for impact and seating comfort

    NARCIS (Netherlands)

    Hoof, J.F.A.M. van; Lange, R. de; Verver, M.M.

    2003-01-01

    This paper presents a detailed numerical model of the human body that can be used to evaluate both safety and comfort aspects of vehicle interiors. The model is based on a combination of rigid body and finite element techniques to provide an optimal combination of computational efficiency and

  17. Guidelines for system modeling: pre-accident human errors, rev.0

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors.

  18. Guidelines for system modeling: pre-accident human errors, rev.0

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E.

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors

  19. Human and avian running on uneven ground: a model-based comparison

    OpenAIRE

    Müller, R.; Birn-Jeffery, A. V.; Blum, Y.

    2016-01-01

    Birds and humans are successful bipedal runners, who have individually evolved bipedalism, but the extent of the similarities and differences of their bipedal locomotion is unknown. In turn, the anatomical differences of their locomotor systems complicate direct comparisons. However, a simplifying mechanical model, such as the conservative spring–mass model, can be used to describe both avian and human running and thus, provides a way to compare the locomotor strategies that birds and humans ...

  20. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Science.gov (United States)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  1. The quantitative modelling of human spatial habitability

    Science.gov (United States)

    Wise, James A.

    1988-01-01

    A theoretical model for evaluating human spatial habitability (HuSH) in the proposed U.S. Space Station is developed. Optimizing the fitness of the space station environment for human occupancy will help reduce environmental stress due to long-term isolation and confinement in its small habitable volume. The development of tools that operationalize the behavioral bases of spatial volume for visual kinesthetic, and social logic considerations is suggested. This report further calls for systematic scientific investigations of how much real and how much perceived volume people need in order to function normally and with minimal stress in space-based settings. The theoretical model presented in this report can be applied to any size or shape interior, at any scale of consideration, for the Space Station as a whole to an individual enclosure or work station. Using as a point of departure the Isovist model developed by Dr. Michael Benedikt of the U. of Texas, the report suggests that spatial habitability can become as amenable to careful assessment as engineering and life support concerns.

  2. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  3. New ICRP human respiratory tract model

    International Nuclear Information System (INIS)

    Bailey, M.R.

    1993-01-01

    The new ICRP dosimetric model for the human respiratory tract is based on the premise that the large differences in radiation sensitivity of respiratory tract tissues, and the wide range of doses they receive argue for calculating specific tissue doses rather than average lung doses. The model is also directly applicable to the worldwide population of both workers and the public. The requirement to describe intake, and deposition, clearance and dosimetry in each respiratory tract region, for a wide range of subjects at various levels of exercise necessarily means that the model is more complex than that of ICRP Publication 30. The widespread use of powerful personal computers, and the availability of user-friendly software to implement the model, however, will make it widely and readily accessible when the report is published. (Author)

  4. Multiple sequential failure model: A probabilistic approach to quantifying human error dependency

    International Nuclear Information System (INIS)

    Samanta

    1985-01-01

    This paper rpesents a probabilistic approach to quantifying human error dependency when multiple tasks are performed. Dependent human failures are dominant contributors to risks from nuclear power plants. An overview of the Multiple Sequential Failure (MSF) model developed and its use in probabilistic risk assessments (PRAs) depending on the available data are discussed. A small-scale psychological experiment was conducted on the nature of human dependency and the interpretation of the experimental data by the MSF model show remarkable accommodation of the dependent failure data. The model, which provides an unique method for quantification of dependent failures in human reliability analysis, can be used in conjunction with any of the general methods currently used for performing the human reliability aspect in PRAs

  5. Quantifications and Modeling of Human Failure Events in a Fire PSA

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol

    2014-01-01

    USNRC and EPRI developed guidance, 'Fire Human Reliability Analysis Guidelines, NUREG-1921', for estimating human error probabilities (HEPs) for HFEs under fire conditions. NUREG-1921 classifies HFEs into four types associated with the following human actions: - Type 1: New and existing Main Control Room (MCR) actions - Type 2: New and existing ex-MCR actions - Type 3: Actions associated with using alternate shutdown means (ASD) - Type 4: Actions relating to the error of commissions (EOCs) or error of omissions (EOOs) as a result of incorrect indications (SPI) In this paper, approaches for the quantifications and modeling of HFEs related to Type 1, 2 and 3 human actions are introduced. This paper introduced the human reliability analysis process for a fire PSA of Hanul Unit 3. A multiplier of 10 was used to re-estimate the HEPs for the preexisting internal human actions. The HEPs for all ex- MCR actions were assumed to be one. New MCR human actions were quantified using the scoping analysis method of NUREG-1921. If the quantified human action were identified to be risk-significant, detailed approaches (modeling and quantification) were used for incorporating fire situations into them. Multiple HFEs for single human action were defined and they were separately and were separately quantified to incorporate the specific fire situations into them. From this study, we can confirm that the modeling as well as quantifications of human actions is very important to appropriately treat them in PSA logic structures

  6. Quantifications and Modeling of Human Failure Events in a Fire PSA

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    USNRC and EPRI developed guidance, 'Fire Human Reliability Analysis Guidelines, NUREG-1921', for estimating human error probabilities (HEPs) for HFEs under fire conditions. NUREG-1921 classifies HFEs into four types associated with the following human actions: - Type 1: New and existing Main Control Room (MCR) actions - Type 2: New and existing ex-MCR actions - Type 3: Actions associated with using alternate shutdown means (ASD) - Type 4: Actions relating to the error of commissions (EOCs) or error of omissions (EOOs) as a result of incorrect indications (SPI) In this paper, approaches for the quantifications and modeling of HFEs related to Type 1, 2 and 3 human actions are introduced. This paper introduced the human reliability analysis process for a fire PSA of Hanul Unit 3. A multiplier of 10 was used to re-estimate the HEPs for the preexisting internal human actions. The HEPs for all ex- MCR actions were assumed to be one. New MCR human actions were quantified using the scoping analysis method of NUREG-1921. If the quantified human action were identified to be risk-significant, detailed approaches (modeling and quantification) were used for incorporating fire situations into them. Multiple HFEs for single human action were defined and they were separately and were separately quantified to incorporate the specific fire situations into them. From this study, we can confirm that the modeling as well as quantifications of human actions is very important to appropriately treat them in PSA logic structures.

  7. Human reliability data collection and modelling

    International Nuclear Information System (INIS)

    1991-09-01

    The main purpose of this document is to review and outline the current state-of-the-art of the Human Reliability Assessment (HRA) used for quantitative assessment of nuclear power plants safe and economical operation. Another objective is to consider Human Performance Indicators (HPI) which can alert plant manager and regulator to departures from states of normal and acceptable operation. These two objectives are met in the three sections of this report. The first objective has been divided into two areas, based on the location of the human actions being considered. That is, the modelling and data collection associated with control room actions are addressed first in chapter 1 while actions outside the control room (including maintenance) are addressed in chapter 2. Both chapters 1 and 2 present a brief outline of the current status of HRA for these areas, and major outstanding issues. Chapter 3 discusses HPI. Such performance indicators can signal, at various levels, changes in factors which influence human performance. The final section of this report consists of papers presented by the participants of the Technical Committee Meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Heterogeneous Community-based mobility model for human opportunistic network

    DEFF Research Database (Denmark)

    Hu, Liang; Dittmann, Lars

    2009-01-01

    a heterogeneous community-based random way-point (HC-RWP) mobility model that captures the four important properties of real human mobility. These properties are based on both intuitive observations of daily human mobility and analysis of empirical mobility traces. By discrete event simulation, we show HC...

  9. Mathematical Analysis of a Model for Human Immunodeficiency ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The objective of this paper is to present a mathematical model formulated to investigate the dynamics of human immunodeficiency virus (HIV). The disease free equilibrium of the model was found to be locally and globally asymptotically stable. The endemic equilibrium point exists and it was discovered that the ...

  10. A Multiscale Survival Process for Modeling Human Activity Patterns.

    Science.gov (United States)

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.

  11. Impact Response Comparison Between Parametric Human Models and Postmortem Human Subjects with a Wide Range of Obesity Levels.

    Science.gov (United States)

    Zhang, Kai; Cao, Libo; Wang, Yulong; Hwang, Eunjoo; Reed, Matthew P; Forman, Jason; Hu, Jingwen

    2017-10-01

    Field data analyses have shown that obesity significantly increases the occupant injury risks in motor vehicle crashes, but the injury assessment tools for people with obesity are largely lacking. The objectives of this study were to use a mesh morphing method to rapidly generate parametric finite element models with a wide range of obesity levels and to evaluate their biofidelity against impact tests using postmortem human subjects (PMHS). Frontal crash tests using three PMHS seated in a vehicle rear seat compartment with body mass index (BMI) from 24 to 40 kg/m 2 were selected. To develop the human models matching the PMHS geometry, statistical models of external body shape, rib cage, pelvis, and femur were applied to predict the target geometry using age, sex, stature, and BMI. A mesh morphing method based on radial basis functions was used to rapidly morph a baseline human model into the target geometry. The model-predicted body excursions and injury measures were compared to the PMHS tests. Comparisons of occupant kinematics and injury measures between the tests and simulations showed reasonable correlations across the wide range of BMI levels. The parametric human models have the capability to account for the obesity effects on the occupant impact responses and injury risks. © 2017 The Obesity Society.

  12. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  13. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    International Nuclear Information System (INIS)

    Aljneibi, Hanan Salah Ali; Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun

    2015-01-01

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation

  14. Role of frameworks, models, data, and judgment in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W

    1986-05-01

    Many advancements in the methods for treating human interactions in PRA studies have occurred in the last decade. These advancements appear to increase the capability of PRAs to extend beyond just the assessment of the human's importance to safety. However, variations in the application of these advanced models, data, and judgements in recent PRAs make quantitative comparisons among studies extremely difficult. This uncertainty in the analysis diminishes the usefulness of the PRA study for upgrading procedures, enhancing traning, simulator design, technical specification guidance, and for aid in designing the man-machine interface. Hence, there is a need for a framework to guide analysts in incorporating human interactions into the PRA systems analyses so that future users of a PRA study will have a clear understanding of the approaches, models, data, and assumptions which were employed in the initial study. This paper describes the role of the systematic human action reliability procedure (SHARP) in providing a road map through the complex terrain of human reliability that promises to improve the reproducibility of such analysis in the areas of selecting the models, data, representations, and assumptions. Also described is the role that a human cognitive reliability model can have in collecting data from simulators and helping analysts assign human reliability parameters in a PRA study. Use of these systematic approaches to perform or upgrade existing PRAs promises to make PRA studies more useful as risk management tools.

  15. [Human resources for health in Ecuador's new model of care].

    Science.gov (United States)

    Espinosa, Verónica; de la Torre, Daniel; Acuña, Cecilia; Cadena, Cristina

    2017-06-08

    Describe strategies implemented by Ecuador's Ministry of Public Health (MPH) to strengthen human resources for health leadership and respond to the new model of care, as a part of the reform process in the period 2012-2015. A documentary review was carried out of primary and secondary sources on development of human resources for health before and after the reform. In the study period, Ecuador developed a new institutional and regulatory framework for developing human resources for health to respond to the requirements of a model of care based on primary health care. The MPH consolidated its steering role by forging strategic partnerships, implementing human resources planning methods, and making an unprecedented investment in health worker training, hiring, and wage increases. These elements constitute the initial core for development of human resources for health policy and a health-services study program consistent with the reform's objectives. Within the framework of the reform carried out from 2012 to 2015, intersectoral work by the MPH has led to considerable achievements in development of human resources for health. Notable achievements include strengthening of the steering role, development and implementation of standards and regulatory instruments, creation of new professional profiles, and hiring of professionals to implement the comprehensive health care model, which helped to solve problems carried over from the years prior to the reform.

  16. Application of the Human Activity Assistive Technology model for occupational therapy research.

    Science.gov (United States)

    Giesbrecht, Ed

    2013-08-01

    Theoretical models provide a framework for describing practice and integrating evidence into systematic research. There are few models that relate specifically to the provision of assistive technology in occupational therapy practice. The Human Activity Assistive Technology model is an enduring example that has continued to develop by integrating a social model of disability, concepts from occupational therapy theory and principles of assistive technology adoption and abandonment. This study first describes the core concepts of the Human Activity Assistive Technology model and reviews its development over three successive published versions. A review of the research literature reflects application of the model to clinical practice, study design, outcome measure selection and interpretation of results, particularly among occupational therapists. An evaluative framework is used to critique the adequacy of the Human Activity Assistive Technology model for practice and research, exploring attributes of clarity, simplicity, generality, accessibility and importance. Finally, recommendations are proposed for continued development of the model and research applications. Most of the existing research literature employs the Human Activity Assistive Technology model for background and study design; there is emerging evidence to support the core concepts as predictive factors. Although the concepts are generally simple, clear and applicable to occupational therapy practice and research, evolving terminology and outcomes become more complex with the conflation of integrated theories. The development of the Human Activity Assistive Technology model offers enhanced access and application for occupational therapists, but poses challenges to clarity among concepts. Suggestions are made for further development and applications of the model. © 2013 Occupational Therapy Australia.

  17. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Science.gov (United States)

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  18. Modelling dengue epidemic spreading with human mobility

    Science.gov (United States)

    Barmak, D. H.; Dorso, C. O.; Otero, M.

    2016-04-01

    We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics.

  19. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong, E-mail: yongzhao@uic.edu [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Zhang, Yongkang [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Jain, Sumit [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Skidgel, Randal A. [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Prabhakar, Bellur S. [Department of Immunology and Microbiology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Mazzone, Theodore [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Holterman, Mark J. [Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  20. Modelling large scale human activity in San Francisco

    Science.gov (United States)

    Gonzalez, Marta

    2010-03-01

    Diverse group of people with a wide variety of schedules, activities and travel needs compose our cities nowadays. This represents a big challenge for modeling travel behaviors in urban environments; those models are of crucial interest for a wide variety of applications such as traffic forecasting, spreading of viruses, or measuring human exposure to air pollutants. The traditional means to obtain knowledge about travel behavior is limited to surveys on travel journeys. The obtained information is based in questionnaires that are usually costly to implement and with intrinsic limitations to cover large number of individuals and some problems of reliability. Using mobile phone data, we explore the basic characteristics of a model of human travel: The distribution of agents is proportional to the population density of a given region, and each agent has a characteristic trajectory size contain information on frequency of visits to different locations. Additionally we use a complementary data set given by smart subway fare cards offering us information about the exact time of each passenger getting in or getting out of the subway station and the coordinates of it. This allows us to uncover the temporal aspects of the mobility. Since we have the actual time and place of individual's origin and destination we can understand the temporal patterns in each visited location with further details. Integrating two described data set we provide a dynamical model of human travels that incorporates different aspects observed empirically.

  1. A human cadaver fascial compartment pressure measurement model.

    Science.gov (United States)

    Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee

    2013-10-01

    Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Customized Finite Element Modelling of the Human Cornea.

    Directory of Open Access Journals (Sweden)

    Irene Simonini

    Full Text Available To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK.Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea.Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP.Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK. Patient-specific models can be used as indicators of feasibility before performing the surgery.

  3. Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs.

    Science.gov (United States)

    Tello, Javier A; Kohout, Trudy; Pineda, Rafael; Maki, Richard A; Scott Struthers, R; Millar, Robert P

    2013-07-01

    The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in (ki/ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. ¹²⁵I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.

  4. Humanized mouse models to study pathophysiology and treatment of HIV infection.

    Science.gov (United States)

    Masse-Ranson, Guillemette; Mouquet, Hugo; Di Santo, James P

    2018-03-01

    Immunodeficient mice that lack all lymphocyte subsets and have phagocytic cells that are tolerant of human cells can be stably xenografted with human hematopoietic stem cell as well as other human tissues (fetal liver and thymus) creating 'human immune system' (HIS) mice. HIS mice develop all major human lymphocyte classes (B, T, natural killer, and innate lymphoid cell) and their specialized subsets as well as a variety of myeloid cells (dendritic cell, monocytes, and macrophages) thereby providing a small animal model in which to interrogate human immune responses to infection. HIS mouse models have been successfully used to study several aspects of HIV-1 biology, including viral life cycle (entry, restriction, replication, and spread) as well as virus-induced immunopathology (CD4 T-cell depletion, immune activation, and mucosal inflammation). Recent work has shown that HIV reservoirs can be established in HIV-infected HIS mice after treatment with combinations of antiretroviral drugs thereby providing a model to test new approaches to eliminate latently infected cells. HIS mice provide cost-effective preclinical platform to assess combination immunotherapies that can target HIV reservoirs. Therapeutic strategies validated in HIS mice should be considered in designing the roadmap toward HIV 'cure'.

  5. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.

    Science.gov (United States)

    Aurich, Maike K; Thiele, Ines

    2016-01-01

    Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.

  6. The big challenges in modeling human and environmental well-being.

    Science.gov (United States)

    Tuljapurkar, Shripad

    2016-01-01

    This article is a selective review of quantitative research, historical and prospective, that is needed to inform sustainable development policy. I start with a simple framework to highlight how demography and productivity shape human well-being. I use that to discuss three sets of issues and corresponding challenges to modeling: first, population prehistory and early human development and their implications for the future; second, the multiple distinct dimensions of human and environmental well-being and the meaning of sustainability; and, third, inequality as a phenomenon triggered by development and models to examine changing inequality and its consequences. I conclude with a few words about other important factors: political, institutional, and cultural.

  7. Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies

    Science.gov (United States)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2016-06-01

    While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization receiver operating characteristic (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative ordered sets expectation-maximization (OSEM) reconstruction algorithm was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning channelized nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.

  8. Disease modeling using human induced pluripotent stem cells: lessons from the liver.

    Science.gov (United States)

    Gieseck, Richard L; Colquhoun, Jennifer; Hannan, Nicholas R F

    2015-01-01

    Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Teaching Qualitative Research for Human Services Students: A Three-Phase Model

    Science.gov (United States)

    Goussinsky, Ruhama; Reshef, Arie; Yanay-Ventura, Galit; Yassour-Borochowitz, Dalit

    2011-01-01

    Qualitative research is an inherent part of the human services profession, since it emphasizes the great and multifaceted complexity characterizing human experience and the sociocultural context in which humans act. In the department of human services at Emek Yezreel College, Israel, we have developed a three-phase model to ensure a relatively…

  10. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. © The Author 2016. Published by Oxford University Press.

  11. Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model.

    Science.gov (United States)

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Prasad, Priya

    2005-11-01

    Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact. Results also indicated that the model exhibited speed sensitive response characteristics and the compressibility of the abdomen significantly influenced the overall impact response in the simulated impact conditions. This study demonstrates that the development of a validated finite element human body model can be useful for abdominal injury assessment. Internal organ injuries, which are difficult to detect in experimental studies with human cadavers due to the difficulty of instrumentation, may be more easily identified with a validated finite element model through stress-strain analysis.

  12. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Teeguarden, Justin G.; Fisher, Jeffrey W.

    2015-01-01

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d 6 -BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d 6 -BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d 6 -BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  13. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    Science.gov (United States)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  14. Can the silkworm (Bombyx mori) be used as a human disease model?

    Science.gov (United States)

    Tabunoki, Hiroko; Bono, Hidemasa; Ito, Katsuhiko; Yokoyama, Takeshi

    2016-02-01

    Bombyx mori (silkworm) is the most famous lepidopteran in Japan. B. mori has long been used in the silk industry and also as a model insect for agricultural research. In recent years, B. mori has attracted interest in its potential for use in pathological analysis of model animals. For example, the human macular carotenoid transporter was discovered using information of B. mori carotenoid transporter derived from yellow-cocoon strain. The B. mori carotenoid transport system is useful in human studies. To develop a human disease model, we characterized the human homologs of B. mori, and by constructing KAIKO functional annotation pipeline, and to analyze gene expression profile of a unique B. mori mutant strain using microarray analysis. As a result, we identified a novel molecular network involved in Parkinson's disease. Here we describe the potential use of a spontaneous mutant silkworm strain as a human disease model. We also summarize recent progress in the application of genomic information for annotation of human homologs in B. mori. The B. mori mutant will provide a clue to pathological mechanisms, and the findings will be helpful for the development of therapies and for medical drug discovery.

  15. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  16. Contribution of the swine model in the study of human sexually transmitted infections

    DEFF Research Database (Denmark)

    Käser, Tobias; Renois, Fanny; Wilson, Heather L.

    2017-01-01

    The pig has garnered more and more interest as a model animal to study various conditions in humans. The growing success of the pig as an experimental animal model is explained by its similarities with humans in terms of anatomy, genetics, immunology, and physiology, by their manageable behavior...... transmitted diseases (STIs) like Chlamydia trachomatis. In the current review, we discuss the use of animal models for biomedical research on the major human STIs. We summarize results obtained in the most common animal models and focus on the contributions of the pig model towards the understanding...... of pathogenesis and the host immune response. In addition, we present the main features of the porcine model that are particularly relevant for the study of pathogens affecting human female and male genital tracts. We also inform on the technological advancements in the porcine toolbox to facilitate new...

  17. Computational 3-D Model of the Human Respiratory System

    Science.gov (United States)

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  18. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  19. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    Science.gov (United States)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  20. Bayesian Modeling of a Human MMORPG Player

    Science.gov (United States)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  1. Electromagnetic Modeling of Human Body Using High Performance Computing

    Science.gov (United States)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  2. A serial founder effect model for human settlement out of Africa

    OpenAIRE

    Deshpande, Omkar; Batzoglou, Serafim; Feldman, Marcus W.; Luca Cavalli-Sforza, L.

    2008-01-01

    The increasing abundance of human genetic data has shown that the geographical patterns of worldwide genetic diversity are best explained by human expansion out of Africa. This expansion is modelled well by prolonged migration from a single origin in Africa with multiple subsequent serial founding events. We discuss a new simulation model for the serial founder effect out of Africa and compare it with results from previous studies. Unlike previous models, we distinguish colonization events fr...

  3. Human processor modelling language (HPML): Estimate working memory load through interaction

    OpenAIRE

    Geisler, J.; Scheben, C.

    2007-01-01

    To operate machines over their user interface may cause high load on human's working memory. This load can decrease performance in the working task significantly if this task is a cognitive challenging one, e. g. diagnosis. With the »Human Processor Modelling Language« (HPML) the interaction activity can be modelled with a directed graph. From such models a condensed indicator value for working memory load can be estimated. Thus different user interface solutions can get compared with respect...

  4. Brief communication: human cranial variation fits iterative founder effect model with African origin.

    Science.gov (United States)

    von Cramon-Taubadel, Noreen; Lycett, Stephen J

    2008-05-01

    Recent studies comparing craniometric and neutral genetic affinity matrices have concluded that, on average, human cranial variation fits a model of neutral expectation. While human craniometric and genetic data fit a model of isolation by geographic distance, it is not yet clear whether this is due to geographically mediated gene flow or human dispersal events. Recently, human genetic data have been shown to fit an iterative founder effect model of dispersal with an African origin, in line with the out-of-Africa replacement model for modern human origins, and Manica et al. (Nature 448 (2007) 346-349) have demonstrated that human craniometric data also fit this model. However, in contrast with the neutral model of cranial evolution suggested by previous studies, Manica et al. (2007) made the a priori assumption that cranial form has been subject to climatically driven natural selection and therefore correct for climate prior to conducting their analyses. Here we employ a modified theoretical and methodological approach to test whether human cranial variability fits the iterative founder effect model. In contrast with Manica et al. (2007) we employ size-adjusted craniometric variables, since climatic factors such as temperature have been shown to correlate with aspects of cranial size. Despite these differences, we obtain similar results to those of Manica et al. (2007), with up to 26% of global within-population craniometric variation being explained by geographic distance from sub-Saharan Africa. Comparative analyses using non-African origins do not yield significant results. The implications of these results are discussed in the light of the modern human origins debate. (c) 2007 Wiley-Liss, Inc.

  5. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    Science.gov (United States)

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  6. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model.

    Science.gov (United States)

    Ruan, Jesse; El-Jawahri, Raed; Chai, Li; Barbat, Saeed; Prasad, Priya

    2003-10-01

    Human thoracic dynamic responses and injuries associated with frontal impact, side impact, and belt loading were investigated and predicted using a complete human body finite element model for an average adult male. The human body model was developed to study the impact biomechanics of a vehicular occupant. Its geometry was based on the Visible Human Project (National Library of Medicine) and the topographies from human body anatomical texts. The data was then scaled to an average adult male according to available biomechanical data from the literature. The model includes details of the head, neck, ribcage, abdomen, thoracic and lumbar spine, internal organs of the chest and abdomen, pelvis, and the upper and lower extremities. The present study is focused on the dynamic response and injuries of the thorax. The model was validated at various impact speeds by comparing predicted responses with available experimental cadaver data in frontal and side pendulum impacts, as well as belt loading. Model responses were compared with similar individual cadaver tests instead of using cadaver corridors because the large differences between the upper and lower bounds of the corridors may confound the model validation. The validated model was then used to study thorax dynamic responses and injuries in various simulated impact conditions. Parameters that could induce injuries such as force, deflection, and stress were computed from model simulations and were compared with previously proposed thoracic injury criteria to assess injury potential for the thorax. It has been shown that the model exhibited speed sensitive impact characteristics, and the compressibility of the internal organs significantly influenced the overall impact response in the simulated impact conditions. This study demonstrates that the development of a validated FE human body model could be useful for injury assessment in various cadaveric impacts reported in the literature. Internal organ injuries, which are

  7. Optimization of experimental human leukemia models (review

    Directory of Open Access Journals (Sweden)

    D. D. Pankov

    2012-01-01

    Full Text Available Actual problem of assessing immunotherapy prospects including antigenpecific cell therapy using animal models was covered in this review.Describe the various groups of currently existing animal models and methods of their creating – from different immunodeficient mice to severalvariants of tumor cells engraftment in them. The review addresses the possibility of tumor stem cells studying using mouse models for the leukemia treatment with adoptive cell therapy including WT1. Also issues of human leukemia cells migration and proliferation in a mice withdifferent immunodeficiency degree are discussed. To assess the potential immunotherapy efficacy comparison of immunodeficient mouse model with clinical situation in oncology patients after chemotherapy is proposed.

  8. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    Science.gov (United States)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  9. An ex vivo human skin model for studying skin barrier repair.

    Science.gov (United States)

    Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A

    2015-01-01

    In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Active numerical model of human body for reconstruction of falls from height.

    Science.gov (United States)

    Milanowicz, Marcin; Kędzior, Krzysztof

    2017-01-01

    Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated

  11. Review-Research on the physical training model of human body based on HQ.

    Science.gov (United States)

    Junjie, Liu

    2016-11-01

    Health quotient (HQ) is the newest health culture and concept in the 21st century, and the analysis of the human body sports model is not enough mature at present, what's more, the purpose of this paper is to study the integration of the two subjects the health quotient and the sport model. This paper draws the conclusion that physical training and education in colleges and universities can improve the health quotient, and it will make students possess a more healthy body and mind. Then through a new rigid body model of sports to simulate the human physical exercise. After that this paper has an in-depth study on the dynamic model of the human body movement on the basis of establishing the matrix and equation. The simulation results of the human body bicycle riding and pole throwing show that the human body joint movement simulation can be realized and it has a certain operability as well. By means of such simulated calculation, we can come to a conclusion that the movement of the ankle joint, knee joint and hip joint's motion law and real motion are basically the same. So it further verify the accuracy of the motion model, which lay the foundation of other research movement model, also, the study of the movement model is an important method in the study of human health in the future.

  12. Integrated Human Futures Modeling in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fellner, Karen Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silver, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelke, Peter [Atlantic Council, Washington, D.C. (United States); Burrow, Mat [Atlantic Council, Washington, D.C. (United States); Keith, Bruce [United States Military Academy, West Point, NY (United States)

    2016-01-01

    The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on

  13. Teaching Syllogistics Through Gamification and Interactive Proofs

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter; Sandborg-Petersen, Ulrik; Thorvaldsen, Steinar

    2015-01-01

    teaching through the use of interactive systems and also to do learning analytics based on the log-data from the use of the systems. The aim of the present paper is to investigate whether the use of gamification and an interactive proof system formulated in terms of controlled natural language can...

  14. More-Realistic Digital Modeling of a Human Body

    Science.gov (United States)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  15. Human Plague Risk: Spatial-Temporal Models

    Science.gov (United States)

    Pinzon, Jorge E.

    2010-01-01

    This chpater reviews the use of spatial-temporal models in identifying potential risks of plague outbreaks into the human population. Using earth observations by satellites remote sensing there has been a systematic analysis and mapping of the close coupling between the vectors of the disease and climate variability. The overall result is that incidence of plague is correlated to positive El Nino/Southem Oscillation (ENSO).

  16. Applying Petri nets in modelling the human factor

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constntinescu, Cristina; Guzun, Basarab

    2007-01-01

    Usually, in the reliability analysis performed for complex systems, we determine the success probability to work with other performance indices, i.e. the likelihood associated with a given state. The possible values assigned to system states can be derived using inductive methods. If one wants to calculate the probability to occur a particular event in the system, then deductive methods should be applied. In the particular case of the human reliability analysis, as part of probabilistic safety analysis, the international regulatory commission have developed specific guides and procedures to perform such assessments. The paper presents the modality to obtain the human reliability quantification using the Petri nets approach. This is an efficient means to assess reliability systems because of their specific features. The examples showed in the paper are from human reliability documentation without a detailed human factor analysis (qualitative). We present human action modelling using event trees and Petri nets approach. The obtained results by these two kinds of methods are in good concordance. (authors)

  17. Approach to modeling of human performance for purposes of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Swain, A.D.

    1983-01-01

    This paper describes the general approach taken in NUREG/CR-1278 to model human performance in sufficienct detail to permit probabilistic risk assessments of nuclear power plant operations. To show the basis for the more specific models in the above NUREG, a simplified model of the human component in man-machine systems is presented, the role of performance shaping factors is discussed, and special problems in modeling the cognitive aspect of behavior are described

  18. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  19. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Teeguarden, Justin G. [Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  20. Mechanisms and genes in human strial presbycusis from animal models.

    Science.gov (United States)

    Ohlemiller, Kevin K

    2009-06-24

    Schuknecht proposed a discrete form of presbycusis in which hearing loss results principally from degeneration of cochlear stria vascularis and decline of the endocochlear potential (EP). This form was asserted to be genetically linked, and to arise independently from age-related pathology of either the organ of Corti or cochlear neurons. Although extensive strial degeneration in humans coincides with hearing loss, EPs have never been measured in humans, and age-related EP reduction has never been verified. No human genes that promote strial presbycusis have been identified, nor is its pathophysiology well understood. Effective application of animal models to this issue requires models demonstrating EP decline, and preferably, genetically distinct strains that vary in patterns of EP decline and its cellular correlates. Until recently, only two models, Mongolian gerbils and Tyrp1(B-lt) mice, were known to undergo age-associated EP reduction. Detailed studies of seven inbred mouse strains have now revealed three strains (C57BL/6J, B6.CAST-Cdh23(CAST), CBA/J) showing essentially no EP decline with age, and four strains ranging from modest to severe EP reduction (C57BL/6-Tyr(c-2J), BALB/cJ, CBA/CaJ, NOD.NON-H2(nbl)/LtJ). Collectively, animal models support five basic principles regarding a strial form of presbycusis: 1) Progressive EP decline from initially normal levels as a defining characteristic; 2) Non-universality, not all age-associated hearing loss involves EP decline; 3) A clear genetic basis; 4) Modulation by environment or stochastic events; and 5) Independent strial, organ of Corti, and neural pathology. Shared features between human strial presbycusis, gerbils, and BALB/cJ and C57BL/6-Tyr(c-2J) mice further suggest this condition frequently begins with strial marginal cell dysfunction and loss. By contrast, NOD.NON-H2(nbl) mice may model a sequence more closely associated with strial microvascular disease. Additional studies of these and other inbred mouse

  1. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  2. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Study on Model for Human Resources Development Strategy in the Nuclear Field

    International Nuclear Information System (INIS)

    Lee, Eui Jin

    2005-01-01

    Qualified manpower is an essential for the successful implementation of a national long-term nuclear development program as well as the associated R and D programs. Such manpower could only be developed systematically under a well-established national model and strategy, which addresses the demand for human resources, number of personnel and timing, and the education and training. To discuss a model for human resources development, it is suggested to consider the following: approach to the Human Resources Development (HRD) Model, HRD policy targets, estimation of the manpower requirement, organizational coordination frameworks for the HRD, promotion of HRD in the action plan

  4. Analyzing, Modeling, and Simulation for Human Dynamics in Social Network

    Directory of Open Access Journals (Sweden)

    Yunpeng Xiao

    2012-01-01

    Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.

  5. CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK

    Directory of Open Access Journals (Sweden)

    Baranov A. O.

    2017-03-01

    Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.

  6. A Language for Modeling Cultural Norms, Biases and Stereotypes for Human Behavior Models

    National Research Council Canada - National Science Library

    Solomon, Steven; van Lent, Michael; Core, Mark; Carpenter, Paul; Rosenberg, Milton

    2008-01-01

    .... The Culturally-Affected Behavior project seeks to define a language for encoding ethnographic data in order to capture cultural knowledge and use that knowledge to affect human behavior models...

  7. Bioprinted three dimensional human tissues for toxicology and disease modeling.

    Science.gov (United States)

    Nguyen, Deborah G; Pentoney, Stephen L

    2017-03-01

    The high rate of attrition among clinical-stage therapies, due largely to an inability to predict human toxicity and/or efficacy, underscores the need for in vitro models that better recapitulate in vivo human biology. In much the same way that additive manufacturing has revolutionized the production of solid objects, three-dimensional (3D) bioprinting is enabling the automated production of more architecturally and functionally accurate in vitro tissue culture models. Here, we provide an overview of the most commonly used bioprinting approaches and how they are being used to generate complex in vitro tissues for use in toxicology and disease modeling research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  9. Emotion model of interactive virtual humans on the basis of MDP

    Institute of Scientific and Technical Information of China (English)

    WANG Guojiang; WANG Zhiliang; TENG Shaodong; XIE Yinggang; WANG Yujie

    2007-01-01

    Emotion plays an essential role in the adaptation and social communication of organisms.Similarly,an appropriately timed and clearly expressed emotion is a central requirement for believable interactive virtual humans.Presently,incorporating emotion into virtual humans has gained increasing attention in the academia and industry.This strong interest is driven by a wide spectrum of promising applications in many areas such as virtual reality,e-learning,entertainment,etc.This paper introduces an emotion model of artificial psychology,in which the transition of emotion can be viewed as a Markov process and the relation of emotion,external incentive and personality can be described by a Markov decision process (MDP).In order to demonstrate the approach,this paper integrates the emotion model into a system composed of voice recognition and a realistic facial model.Thus,the model could be used for generating a variety of emotional expressions of autonomous,interactive virtual human beings.

  10. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    Science.gov (United States)

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases

    Science.gov (United States)

    Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi

    2013-01-01

    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886

  12. A topological multilayer model of the human body.

    Science.gov (United States)

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  13. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  14. Feedforward Object-Vision Models Only Tolerate Small Image Variations Compared to Human

    Directory of Open Access Journals (Sweden)

    Masoud eGhodrati

    2014-07-01

    Full Text Available Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modelling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well when images with more complex variations of the same object are applied to them. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e. briefly presented masked stimuli with complex image variations, human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modelling. We show that this approach is not of significant help in solving the computational crux of object recognition (that is invariant object recognition when the identity-preserving image variations become more complex.

  15. TR146 cells grown on filters as a model of human buccal epithelium

    DEFF Research Database (Denmark)

    Nielsen, H M; Rassing, M R; Nielsen, Hanne Mørck

    2000-01-01

    The objective of the present study was to evaluate the TR146 cell culture model as an in vitro model of human buccal epithelium. For this purpose, the permeability of water, mannitol and testosterone across the TR146 cell culture model was compared to the permeability across human, monkey...

  16. Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.

    Science.gov (United States)

    Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H

    2018-01-01

    Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

  17. The threshold of a stochastic avian-human influenza epidemic model with psychological effect

    Science.gov (United States)

    Zhang, Fengrong; Zhang, Xinhong

    2018-02-01

    In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.

  18. Modeling human faces with multi-image photogrammetry

    Science.gov (United States)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a

  19. Modeling large-scale human alteration of land surface hydrology and climate

    Science.gov (United States)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface

  20. Mathematical modeling of human thermoregulation : a neurophysiological approach to vasoconstriction

    NARCIS (Netherlands)

    Kingma, B.R.M.; Frijns, A.J.H.; Saris, W.H.; Steenhoven, van A.A.; Marken Lichtenbelt, van W.D.; Madani, K.; Correia, A.D.; Rosa, A.; Filipe, J.

    2012-01-01

    Skin blood flow is of major importance in human thermoregulation. Classic thermoregulation models require an explicit set point to control temperature. Normally such a set point is defined in the unit of the controlled variable (i.e. Celsius). However, the human body does not sense temperature

  1. A mathematical model of interaction among humans, vampires and werewolves populations

    Science.gov (United States)

    Sumarti, Novriana; Nurrizky, Insan; Nuraini, Nuning

    2018-03-01

    In every country there are many fictional creatures depicting evil. In the western world, fictional creatures who often appear in horror stories are vampires and werewolves. Many released movies expose the conflict between humans with one or both creatures. In this paper, the interaction among humans, vampires and werewolves is modeled using a system of differential equations. We consider the stability of equilibrium points of the system that represent four situations; only humans remain or a disease-free condition, either vampires or werewolves are going to extinction, and no population goes extinct. The derived model is implemented for depicting some scenarios in the movie series of Underworld. The model can describe the fluctuation of vampires and werewolves population from the beginning to their extinction at 1500 years since the story started.

  2. Translational mixed-effects PKPD modelling of recombinant human growth hormone - from hypophysectomized rat to patients

    DEFF Research Database (Denmark)

    Thorsted, A; Thygesen, P; Agersø, H

    2016-01-01

    BACKGROUND AND PURPOSE: We aimed to develop a mechanistic mixed-effects pharmacokinetic (PK)-pharmacodynamic (PD) (PKPD) model for recombinant human growth hormone (rhGH) in hypophysectomized rats and to predict the human PKPD relationship. EXPERIMENTAL APPROACH: A non-linear mixed-effects model...... was developed from experimental PKPD studies of rhGH and effects of long-term treatment as measured by insulin-like growth factor 1 (IGF-1) and bodyweight gain in rats. Modelled parameter values were scaled to human values using the allometric approach with fixed exponents for PKs and unscaled for PDs...... s.c. administration was over predicted. After correction of the human s.c. absorption model, the induction model for IGF-1 well described the human PKPD data. CONCLUSIONS: A translational mechanistic PKPD model for rhGH was successfully developed from experimental rat data. The model links...

  3. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-01-01

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  4. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  5. Pearls and pitfalls in human pharmacological models of migraine

    DEFF Research Database (Denmark)

    Ashina, Messoud; Hansen, Jakob Møller; Olesen, Jes

    2013-01-01

    In vitro studies have contributed to the characterization of receptors in cranial blood vessels and the identification of new possible anti-migraine agents. In vivo animal models enable the study of vascular responses, neurogenic inflammation, peptide release and genetic predisposition and thus......- or migraine-provoking property of naturally occurring signaling molecules can be tested in a human model. If such an endogenous substance can provoke migraine in human patients, then it is likely, although not certain, that blocking its effect will be effective in the treatment of acute migraine attacks...... an important role in translational migraine research leading to the identification of three new principally different targets in the treatment of acute migraine attacks and has been used to examine other endogenous signaling molecules as well as genetic susceptibility factors. New additions to the model...

  6. Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models.

    Science.gov (United States)

    Sproul, Andrew A

    2015-01-01

    Human pluripotent stem cells (PSCs) have the capacity to revolutionize medicine by allowing the generation of functional cell types such as neurons for cell replacement therapy. However, the more immediate impact of PSCs on treatment of Alzheimer's disease (AD) will be through improved human AD model systems for mechanistic studies and therapeutic screening. This review will first briefly discuss different types of PSCs and genome-editing techniques that can be used to modify PSCs for disease modeling or for personalized medicine. This will be followed by a more in depth analysis of current AD iPSC models and a discussion of the need for more complex multicellular models, including cell types such as microglia. It will finish with a discussion on current clinical trials using PSC-derived cells and the long-term potential of such strategies for treating AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  8. A Benefit/Cost/Deficit (BCD) model for learning from human errors

    International Nuclear Information System (INIS)

    Vanderhaegen, Frederic; Zieba, Stephane; Enjalbert, Simon; Polet, Philippe

    2011-01-01

    This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.

  9. Modelling of human-machine interaction in equipment design of manufacturing cells

    Science.gov (United States)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

  10. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    Science.gov (United States)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  11. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    Energy Technology Data Exchange (ETDEWEB)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; Hubacek, Klaus; Miralles-Wilhelm, Fernando; Miyoshi, Takemasa; Ruth, Matthias; Sagdeev, Roald; Shirmohammadi, Adel; Shukla, Jagadish; Srebric, Jelena; Yakovenko, Victor M.; Zeng, Ning

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.

  12. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine.

    Science.gov (United States)

    Fan, Jianglin; Kitajima, Shuji; Watanabe, Teruo; Xu, Jie; Zhang, Jifeng; Liu, Enqi; Chen, Y Eugene

    2015-02-01

    Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Human, Social, Cultural Behavior (HSCB) Modeling Workshop I: Characterizing the Capability Needs for HSCB Modeling

    Science.gov (United States)

    2008-07-01

    The expectations correspond to different roles individuals perform SocialConstructionis Social constructionism is a school of thought Peter L...HUMAN, SOCIAL , CULTURAL BEHAVIOR (HSCB) MODELING WORKSHOP I: CHARACTERIZING THE CAPABILITY NEEDS FOR HSCB MODELING FINAL REPORT... Social , Cultural Behavior (HSCB) Modeling Workshop I: Characterizing the Capability Needs for HSCB Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  14. Three Models of Education: Rights, Capabilities and Human Capital

    Science.gov (United States)

    Robeyns, Ingrid

    2006-01-01

    This article analyses three normative accounts that can underlie educational policies, with special attention to gender issues. These three models of education are human capital theory, rights discourses and the capability approach. I first outline five different roles that education can play. Then I analyse these three models of educational…

  15. In vivo human corneal hydration control dynamics: A new model

    NARCIS (Netherlands)

    Odenthal, M.T.P.; Nieuwendaal, C.P.; Venema, H.W.; Oosting, J.; Kok, J.H.C.; Kijlstra, A.

    1999-01-01

    PURPOSE. To introduce a new model describing human in vivo corneal deswelling after hypoxic contact lens wear, based on a damped harmonic oscillator, which can describe an overshoot in corneal deswelling, to compare this new model with the currently used exponential model, and also to test whether a

  16. In vivo human corneal hydration control dynamics: a new model

    NARCIS (Netherlands)

    Odenthal, M. T.; Nieuwendaal, C. P.; Venema, H. W.; Oosting, J.; Kok, J. H. C.; Kijlstra, A.

    1999-01-01

    PURPOSE: To introduce a new model describing human in vivo corneal deswelling after hypoxic contact lens wear, based on a damped harmonic oscillator, which can describe an overshoot in corneal deswelling, to compare this new model with the currently used exponential model, and also to test whether a

  17. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males....... A bivariate analysis indicated significant shared genetic variance between NumCh and FirstTry....

  18. Experimental primates and non-human primate (NHP) models of human diseases in China: current status and progress.

    Science.gov (United States)

    Zhang, Xiao-Liang; Pang, Wei; Hu, Xin-Tian; Li, Jia-Li; Yao, Yong-Gang; Zheng, Yong-Tang

    2014-11-18

    Non-human primates (NHPs) are phylogenetically close to humans, with many similarities in terms of physiology, anatomy, immunology, as well as neurology, all of which make them excellent experimental models for biomedical research. Compared with developed countries in America and Europe, China has relatively rich primate resources and has continually aimed to develop NHPs resources. Currently, China is a leading producer and a major supplier of NHPs on the international market. However, there are some deficiencies in feeding and management that have hampered China's growth in NHP research and materials. Nonetheless, China has recently established a number of primate animal models for human diseases and achieved marked scientific progress on infectious diseases, cardiovascular diseases, endocrine diseases, reproductive diseases, neurological diseases, and ophthalmic diseases, etc. Advances in these fields via NHP models will undoubtedly further promote the development of China's life sciences and pharmaceutical industry, and enhance China's position as a leader in NHP research. This review covers the current status of NHPs in China and other areas, highlighting the latest developments in disease models using NHPs, as well as outlining basic problems and proposing effective countermeasures to better utilize NHP resources and further foster NHP research in China.

  19. Cognitive Emotional Regulation Model in Human-Robot Interaction

    OpenAIRE

    Liu, Xin; Xie, Lun; Liu, Anqi; Li, Dan

    2015-01-01

    This paper integrated Gross cognitive process into the HMM (hidden Markov model) emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition...

  20. Analysis of operational events by ATHEANA framework for human factor modelling

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constntinescu, Cristina; Doca, Cezar; Guzun, Basarab

    2007-01-01

    In the area of human reliability assessment, the experts recognise the fact that the current methods have not represented correctly the role of human in prevention, initiating and mitigating the accidents in nuclear power plants. The nature of this deficiency appears because the current methods used in modelling of human factor have not taken into account the human performance and reliability such as it has been observed in the operational events. ATHEANA - A Technique for Human Error ANAlysis - is a new methodology for human analysis that has included the specific data of operational events and also psychological models for human behaviour. This method has included new elements such as the unsafe action and error mechanisms. In this paper we present the application of ATHEANA framework in the analysis of operational events that appeared in different nuclear power plants during 1979-2002. The analysis of operational events has consisted of: - identification of the unsafe actions; - including the unsafe actions into a category, omission ar commission; - establishing the type of error corresponding to the unsafe action: slip, lapse, mistake and circumvention; - establishing the influence of performance by shaping the factors and some corrective actions. (authors)

  1. Modeling human neurological disorders with induced pluripotent stem cells.

    Science.gov (United States)

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  2. Neuroimaging in human MDMA (Ecstasy) users: A cortical model

    Science.gov (United States)

    Cowan, Ronald L; Roberts, Deanne M; Joers, James M

    2009-01-01

    MDMA (3,4 methylenedioxymethamphetamine) has been used by millions of people worldwide as a recreational drug. MDMA and Ecstasy are often used synonymously but it is important to note that the purity of Ecstasy sold as MDMA is not certain. MDMA use is of public health concern, not so much because MDMA produces a common or severe dependence syndrome, but rather because rodent and non-human primate studies have indicated that MDMA (when administered at certain dosages and intervals) can cause long-lasting reductions in markers of brain serotonin (5-HT) that appear specific to fine diameter axons arising largely from the dorsal raphe nucleus (DR). Given the popularity of MDMA, the potential for the drug to produce long-lasting or permanent 5-HT axon damage or loss, and the widespread role of 5-HT function in the brain, there is a great need for a better understanding of brain function in human users of this drug. To this end, neuropsychological, neuroendocrine, and neuroimaging studies have all suggested that human MDMA users may have long-lasting changes in brain function consistent with 5-HT toxicity. Data from animal models leads to testable hypotheses regarding MDMA effects on the human brain. Because neuropsychological and neuroimaging findings have focused on the neocortex, a cortical model is developed to provide context for designing and interpreting neuroimaging studies in MDMA users. Aspects of the model are supported by the available neuroimaging data but there are controversial findings in some areas and most findings have not been replicated across different laboratories and using different modalities. This paper reviews existing findings in the context of a cortical model and suggests directions for future research. PMID:18991874

  3. Are animal models predictive for human postmortem muscle protein degradation?

    Science.gov (United States)

    Ehrenfellner, Bianca; Zissler, Angela; Steinbacher, Peter; Monticelli, Fabio C; Pittner, Stefan

    2017-11-01

    A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.

  4. A System Dynamics Model to Predict the Human Monocyte Response to Endotoxins

    Directory of Open Access Journals (Sweden)

    Enrique Álvarez

    2017-08-01

    Full Text Available System dynamics is a powerful tool that allows modeling of complex and highly networked systems such as those found in the human immune system. We have developed a model that reproduces how the exposure of human monocytes to lipopolysaccharides (LPSs induces an inflammatory state characterized by high production of tumor necrosis factor alpha (TNFα, which is rapidly modulated to enter into a tolerant state, known as endotoxin tolerance (ET. The model contains two subsystems with a total of six states, seven flows, two auxiliary variables, and 14 parameters that interact through six differential and nine algebraic equations. The parameters were estimated and optimized to obtain a model that fits the experimental data obtained from human monocytes treated with various LPS doses. In contrast to publications on other animal models, stimulation of human monocytes with super-low-dose LPSs did not alter the response to a second LPSs challenge, neither inducing ET, nor enhancing the inflammatory response. Moreover, the model confirms the low production of TNFα and increased levels of C–C motif ligand 2 when monocytes exhibit a tolerant state similar to that of patients with sepsis. At present, the model can help us better understand the ET response and might offer new insights on sepsis diagnostics and prognosis by examining the monocyte response to endotoxins in patients with sepsis.

  5. Modeling human diseases: an education in interactions and interdisciplinary approaches

    Directory of Open Access Journals (Sweden)

    Leonard Zon

    2016-06-01

    Full Text Available Traditionally, most investigators in the biomedical arena exploit one model system in the course of their careers. Occasionally, an investigator will switch models. The selection of a suitable model system is a crucial step in research design. Factors to consider include the accuracy of the model as a reflection of the human disease under investigation, the numbers of animals needed and ease of husbandry, its physiology and developmental biology, and the ability to apply genetics and harness the model for drug discovery. In my lab, we have primarily used the zebrafish but combined it with other animal models and provided a framework for others to consider the application of developmental biology for therapeutic discovery. Our interdisciplinary approach has led to many insights into human diseases and to the advancement of candidate drugs to clinical trials. Here, I draw on my experiences to highlight the importance of combining multiple models, establishing infrastructure and genetic tools, forming collaborations, and interfacing with the medical community for successful translation of basic findings to the clinic.

  6. Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Ordoñez, M Paulina; Steele, John W

    2017-02-01

    Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Experimental model for the study of the human immune system: production and monitoring of "human immune system" Rag2-/-gamma c-/- mice

    NARCIS (Netherlands)

    Legrand, Nicolas; Weijer, Kees; Spits, Hergen

    2008-01-01

    Since the late 1980s, the study of the function and development of the human immune system has made intensive use of humanized animal models, among which mouse models have been proven extremely efficient and handy. Recent advances have lead to the establishment of new models with improved

  8. Velocity profiles in idealized model of human respiratory tract

    Science.gov (United States)

    Elcner, J.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2013-04-01

    This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  9. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  10. Marmosets: A Neuroscientific Model of Human Social Behavior

    Science.gov (United States)

    Freiwald, Winrich A; Leopold, David A; Mitchell, Jude F; Silva, Afonso C; Wang, Xiaoqin

    2016-01-01

    The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species’ reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets’ behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets’ social cognition and communication are more similar to that of humans. For example, marmosets are amongst only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this review, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior and communication, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and communication. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in nearly all neuropsychiatric disorders. PMID:27100195

  11. Stress, overeating, and obesity: Insights from human studies and preclinical models.

    Science.gov (United States)

    Razzoli, Maria; Pearson, Carolyn; Crow, Scott; Bartolomucci, Alessandro

    2017-05-01

    Eating disorders and obesity have become predominant in human society. Their association to modern lifestyle, encompassing calorie-rich diets, psychological stress, and comorbidity with major diseases are well documented. Unfortunately the biological basis remains elusive and the pharmacological treatment inadequate, in part due to the limited availability of valid animal models. Human research on binge eating disorder (BED) proves a strong link between stress exposure and bingeing: state-levels of stress and negative affect are linked to binge eating in individuals with BED both in laboratory settings and the natural environment. Similarly, classical animal models of BED reveal an association between acute exposure to stressors and binging but they are often associated with unchanged or decreased body weight, thus reflecting a negative energy balance, which is uncommon in humans where most commonly BED is associated with excessive or unstable body weight gain. Recent mouse models of subordination stress induce spontaneous binging and hyperphagia, altogether more closely mimicking the behavioral and metabolic features of human BED. Therefore the translational relevance of subordination stress models could facilitate the identification of the neurobiological basis of BED and obesity-associated disease and inform on the development of innovative therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dose-response model of Rocky Mountain spotted fever (RMSF) for human.

    Science.gov (United States)

    Tamrakar, Sushil B; Haas, Charles N

    2011-10-01

    Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID₅₀) exposed human population, N₅₀, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID₁₀ and ID₂₀ are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship. © 2011 Society for Risk Analysis.

  13. Fractional poisson--a simple dose-response model for human norovirus.

    Science.gov (United States)

    Messner, Michael J; Berger, Philip; Nappier, Sharon P

    2014-10-01

    This study utilizes old and new Norovirus (NoV) human challenge data to model the dose-response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta-Poisson dose-response model that includes parameters for virus aggregation and for a beta-distribution that describes variable susceptibility among hosts. The quality of the beta-Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two-parameter beta-distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta-Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta-Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta-Poisson model. At low, environmentally relevant exposure levels (Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low-dose data would be of great value to further clarify the NoV dose-response relationship and to support improved risk assessment for environmentally relevant exposures. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. Government work and is in the public domain for the U.S.A.

  14. Integration of Lightning- and Human-Caused Wildfire Occurrence Models

    DEFF Research Database (Denmark)

    Vilar, Lara; Nieto Solana, Hector; Martín, M. Pilar

    2010-01-01

    Fire risk indices are useful tools for fire prevention actions by fire managers. A fire ignition is either the result of lightning or human activities. In European Mediterranean countries most forest fires are due to human activities. However, lightning is still an important fire ignition source...... probability models at 1 × 1 km grid cell resolution in two regions of Spain: Madrid, which presents a high fire incidence due to human activities; and Aragón, one of the most affected regions in Spain by lightning-fires. For validation, independent fire ignition points were used to compute the Receiver...

  15. Multi-model approach to characterize human handwriting motion.

    Science.gov (United States)

    Chihi, I; Abdelkrim, A; Benrejeb, M

    2016-02-01

    This paper deals with characterization and modelling of human handwriting motion from two forearm muscle activity signals, called electromyography signals (EMG). In this work, an experimental approach was used to record the coordinates of a pen tip moving on the (x, y) plane and EMG signals during the handwriting act. The main purpose is to design a new mathematical model which characterizes this biological process. Based on a multi-model approach, this system was originally developed to generate letters and geometric forms written by different writers. A Recursive Least Squares algorithm is used to estimate the parameters of each sub-model of the multi-model basis. Simulations show good agreement between predicted results and the recorded data.

  16. Human-Guided Learning for Probabilistic Logic Models

    Directory of Open Access Journals (Sweden)

    Phillip Odom

    2018-06-01

    Full Text Available Advice-giving has been long explored in the artificial intelligence community to build robust learning algorithms when the data is noisy, incorrect or even insufficient. While logic based systems were effectively used in building expert systems, the role of the human has been restricted to being a “mere labeler” in recent times. We hypothesize and demonstrate that probabilistic logic can provide an effective and natural way for the expert to specify domain advice. Specifically, we consider different types of advice-giving in relational domains where noise could arise due to systematic errors or class-imbalance inherent in the domains. The advice is provided as logical statements or privileged features that are thenexplicitly considered by an iterative learning algorithm at every update. Our empirical evidence shows that human advice can effectively accelerate learning in noisy, structured domains where so far humans have been merely used as labelers or as designers of the (initial or final structure of the model.

  17. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly

    Science.gov (United States)

    Ke, Qiong; Li, Weiqiang; Lai, Xingqiang; Chen, Hong; Huang, Lihua; Kang, Zhuang; Li, Kai; Ren, Jie; Lin, Xiaofeng; Zheng, Haiqing; Huang, Weijun; Ma, Yunhan; Xu, Dongdong; Chen, Zheng; Song, Xinming; Lin, Xinyi; Zhuang, Min; Wang, Tao; Zhuang, Fengfeng; Xi, Jianzhong; Mao, Frank Fuxiang; Xia, Huimin; Lahn, Bruce T; Zhou, Qi; Yang, Shihua; Xiang, Andy Peng

    2016-01-01

    Gene editing in non-human primates may lead to valuable models for exploring the etiologies and therapeutic strategies of genetically based neurological disorders in humans. However, a monkey model of neurological disorders that closely mimics pathological and behavioral deficits in humans has not yet been successfully generated. Microcephalin 1 (MCPH1) is implicated in the evolution of the human brain, and MCPH1 mutation causes microcephaly accompanied by mental retardation. Here we generated a cynomolgus monkey (Macaca fascicularis) carrying biallelic MCPH1 mutations using transcription activator-like effector nucleases. The monkey recapitulated most of the important clinical features observed in patients, including marked reductions in head circumference, premature chromosome condensation (PCC), hypoplasia of the corpus callosum and upper limb spasticity. Moreover, overexpression of MCPH1 in mutated dermal fibroblasts rescued the PCC syndrome. This monkey model may help us elucidate the role of MCPH1 in the pathogenesis of human microcephaly and better understand the function of this protein in the evolution of primate brain size. PMID:27502025

  18. Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms

    Science.gov (United States)

    Humphrey, J.D.; Holzapfel, G.A.

    2011-01-01

    Biomechanical factors play fundamental roles in the natural history of abdominal aortic aneurysms (AAAs) and their responses to treatment. Advances during the past two decades have increased our understanding of the mechanics and biology of the human abdominal aorta and AAAs, yet there remains a pressing need for considerable new data and resulting patient-specific computational models that can better describe the current status of a lesion and better predict the evolution of lesion geometry, composition, and material properties and thereby improve interventional planning. In this paper, we briefly review data on the structure and function of the human abdominal aorta and aneurysmal wall, past models of the mechanics, and recent growth and remodeling models. We conclude by identifying open problems that we hope will motivate studies to improve our computational modeling and thus general understanding of AAAs. PMID:22189249

  19. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  20. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    Science.gov (United States)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  1. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    Science.gov (United States)

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  2. The quantitative modelling of human spatial habitability

    Science.gov (United States)

    Wise, J. A.

    1985-01-01

    A model for the quantitative assessment of human spatial habitability is presented in the space station context. The visual aspect assesses how interior spaces appear to the inhabitants. This aspect concerns criteria such as sensed spaciousness and the affective (emotional) connotations of settings' appearances. The kinesthetic aspect evaluates the available space in terms of its suitability to accommodate human movement patterns, as well as the postural and anthrometric changes due to microgravity. Finally, social logic concerns how the volume and geometry of available space either affirms or contravenes established social and organizational expectations for spatial arrangements. Here, the criteria include privacy, status, social power, and proxemics (the uses of space as a medium of social communication).

  3. A review of the models for evaluating organizational factors in human reliability analysis

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da; Melo, Paulo Fernando Ferreira Frutuoso e

    2009-01-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  4. A review of the models for evaluating organizational factors in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br; Melo, Paulo Fernando Ferreira Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br

    2009-07-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  5. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  6. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  7. Virtual pharmacokinetic model of human eye.

    Science.gov (United States)

    Kotha, Sreevani; Murtomäki, Lasse

    2014-07-01

    A virtual pharmacokinetic 3D model of the human eye is built using Comsol Multiphysics® software, which is based on the Finite Element Method (FEM). The model considers drug release from a polymer patch placed on sclera. The model concentrates on the posterior part of the eye, retina being the target tissue, and comprises the choroidal blood flow, partitioning of the drug between different tissues and active transport at the retina pigment epithelium (RPE)-choroid boundary. Although most straightforward, in order to check the mass balance, no protein binding or metabolism is yet included. It appeared that the most important issue in obtaining reliable simulation results is the finite element mesh, while time stepping has hardly any significance. Simulations were extended to 100,000 s. The concentration of a drug is shown as a function of time at various points of retina, as well as its average value, varying several parameters in the model. This work demonstrates how anybody with basic knowledge of calculus is able to build physically meaningful models of quite complex biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.

    2012-01-01

    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...... for reflection and distortion-source otoacoustic emissions (OAEs) and simulates spontaneous OAEs through manipulation of the middle-ear reflectance. The model was calibrated using human psychoacoustical and otoacoustic tuning parameters. It can be used to investigate time-dependent properties of cochlear...

  9. Model for screening-level assessment of near-field human exposure to neutral organic chemicals released indoors.

    Science.gov (United States)

    Zhang, Xianming; Arnot, Jon A; Wania, Frank

    2014-10-21

    Screening organic chemicals for hazard and risk to human health requires near-field human exposure models that can be readily parametrized with available data. The integration of a model of human exposure, uptake, and bioaccumulation into an indoor mass balance model provides a quantitative framework linking emissions in indoor environments with human intake rates (iRs), intake fractions (iFs) and steady-state concentrations in humans (C) through consideration of dermal permeation, inhalation, and nondietary ingestion exposure pathways. Parameterized based on representative indoor and adult human characteristics, the model is applied here to 40 chemicals of relevance in the context of human exposure assessment. Intake fractions and human concentrations (C(U)) calculated with the model based on a unit emission rate to air for these 40 chemicals span 2 and 5 orders of magnitude, respectively. Differences in priority ranking based on either iF or C(U) can be attributed to the absorption, biotransformation and elimination processes within the human body. The model is further applied to a large data set of hypothetical chemicals representative of many in-use chemicals to show how the dominant exposure pathways, iF and C(U) change as a function of chemical properties and to illustrate the capacity of the model for high-throughput screening. These simulations provide hypotheses for the combination of chemical properties that may result in high exposure and internal dose. The model is further exploited to highlight the role human contaminant uptake plays in the overall fate of certain chemicals indoors and consequently human exposure.

  10. Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems

    Science.gov (United States)

    Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael

    2013-01-01

    The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.

  11. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  12. Application of a canine 238Pu dosimetry model to human bioassay data

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Jr., A. W. [Florida Univ., Gainesville, FL (United States)

    1991-08-01

    Associated with the use of 2238Pu in thermoelectric power sources for space probes and power supplies for cardiac devices is the potential for human exposure to 238Pu, primarily by inhalation. In the event of human internal exposure, a means is needed for assessing the level of intake and calculating radiation doses. Several bioassay/dosimetry models have been developed for 239Pu. However, results from studies with laboratory animals have indicated that the biokinetics, and therefore the descriptive models, of 238Pu are significantly different from those for 239Pu. A canine model accounting for these differences has been applied in this work to urinary excretion data from seven humans occupationally exposed to low levels of an insoluble 238Pu compound. The modified model provides a good description of the urinary excretion kinetics observed in the exposed humans. The modified model was also used to provide estimates of the initial intakes of 238Pu for the seven individuals; these estimates ranged from 4.5 nCi (170 Bq) to 87 nCi (3200 Bq). Autopsy data on the amount and distribution of 238Pu retained in the organs may be used in the future to validate or refute both these estimates and the assumptions used to formulate the human model. Modification of the human model to simulate an injection exposure to 239Pu gave patterns of retention in the organs and urinary excretion comparable to those seen previously in humans; further modification of the model using fecal data (unavailable for the subjects of this study) is indicated.

  13. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  14. Modelled temperature-dependent excitability behaviour of a generalised human peripheral sensory nerve fibre

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-09-01

    Full Text Available The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres...

  15. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  16. Hologram QSAR model for the prediction of human oral bioavailability.

    Science.gov (United States)

    Moda, Tiago L; Montanari, Carlos A; Andricopulo, Adriano D

    2007-12-15

    A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

  17. Genetic human prion disease modelled in PrP transgenic Drosophila.

    Science.gov (United States)

    Thackray, Alana M; Cardova, Alzbeta; Wolf, Hanna; Pradl, Lydia; Vorberg, Ina; Jackson, Walker S; Bujdoso, Raymond

    2017-09-20

    Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrP Sc , an abnormal isomer of the normal host protein PrP C , in the brain of affected individuals. PrP Sc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host. © 2017 The Author(s).

  18. Expanding the use of empiricism in nursing: can we bridge the gap between knowledge and clinical practice?

    Science.gov (United States)

    Giuliano, Karen K

    2003-04-01

    The philosophy of Aristotle and its impact on the process of empirical scientific inquiry has been substantial. The influence of the clarity and orderliness of his thinking, when applied to the acquisition of knowledge in nursing, can not be overstated. Traditional empirical approaches have and will continue to have an important influence on the development of nursing knowledge through nursing research. However, as nursing is primarily a practice discipline, the transition from empirical and syllogistic reasoning is problematic. Other types of inquiry are essential in the application of nursing knowledge obtained by empirical scientific approaches and to understand how that knowledge can best be used in the care of patients. This paper reviews the strengths and limitations of syllogistic reasoning by applying it to a recently published study on temperature measurement in nursing. It then discusses possible ways that the empirical knowledge gained from that study and confirmed in its reasoning by logical analysis could be used in the daily care of critically ill patients. It concludes by highlighting the utility of broader approaches to knowledge development, including interpretative approaches and contemporary empiricism, as a way to bridge the gap between factual empirical knowledge and the practical application of that knowledge in everyday clinical nursing practice.

  19. Modeling Human Behaviour with Higher Order Logic: Insider Threats

    DEFF Research Database (Denmark)

    Boender, Jaap; Ivanova, Marieta Georgieva; Kammuller, Florian

    2014-01-01

    it to the sociological process of logical explanation. As a case study on modeling human behaviour, we present the modeling and analysis of insider threats as a Higher Order Logic theory in Isabelle/HOL. We show how each of the three step process of sociological explanation can be seen in our modeling of insider’s state......, its context within an organisation and the effects on security as outcomes of a theorem proving analysis....

  20. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  1. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  2. A model for assessing the risk of human trafficking on a local level

    Science.gov (United States)

    Colegrove, Amanda

    Human trafficking is a human rights violation that is difficult to quantify. Models for estimating the number of victims of trafficking presented by previous researchers depend on inconsistent, poor quality data. As an intermediate step to help current efforts by nonprofits to combat human trafficking, this project presents a model that is not dependent on quantitative data specific to human trafficking, but rather profiles the risk of human trafficking at the local level through causative factors. Businesses, indicated by the literature, were weighted based on the presence of characteristics that increase the likelihood of trafficking in persons. The mean risk was calculated by census tract to reveal the multiplicity of risk levels in both rural and urban settings. Results indicate that labor trafficking may be a more diffuse problem in Missouri than sex trafficking. Additionally, spatial patterns of risk remained largely the same regardless of adjustments made to the model.

  3. Human Mobility Patterns and Cholera Epidemics: a Spatially Explicit Modeling Approach

    Science.gov (United States)

    Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    Cholera is an acute enteric disease caused by the ingestion of water or food contaminated by the bacterium Vibrio cholerae. Although most infected individuals do not develop severe symptoms, their stool may contain huge quantities of V.~cholerae cells. Therefore, while traveling or commuting, asymptomatic carriers can be responsible for the long-range dissemination of the disease. As a consequence, human mobility is an alternative and efficient driver for the spread of cholera, whose primary propagation pathway is hydrological transport through river networks. We present a multi-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of V.~cholerae due to human movement. In particular, building on top of state-of-the-art spatially explicit models for cholera spread through surface waters, we describe human movement and its effects on the propagation of the disease by means of a gravity-model approach borrowed from transportation theory. Gravity-like contact processes have been widely used in epidemiology, because they can satisfactorily depict human movement when data on actual mobility patterns are not available. We test our model against epidemiological data recorded during the cholera outbreak occurred in the KwaZulu-Natal province of South Africa during years 2000--2001. We show that human mobility does actually play an important role in the formation of the spatiotemporal patterns of cholera epidemics. In particular, long-range human movement may determine inter-catchment dissemination of V.~cholerae cells, thus in turn explaining the emergence of epidemic patterns that cannot be produced by hydrological transport alone. We also show that particular attention has to be devoted to study how heterogeneously distributed drinking water supplies and sanitation conditions may affect cholera transmission.

  4. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  5. Human experimental pain models: A review of standardized methods in drug development

    Directory of Open Access Journals (Sweden)

    K. Sunil kumar Reddy

    2012-01-01

    Full Text Available Human experimental pain models are essential in understanding the pain mechanisms and appear to be ideally suited to test analgesic compounds. The challenge that confronts both the clinician and the scientist is to match specific treatments to different pain-generating mechanisms and hence reach a pain treatment tailored to each individual patient. Experimental pain models offer the possibility to explore the pain system under controlled settings. Standardized stimuli of different modalities (i.e., mechanical, thermal, electrical, or chemical can be applied to the skin, muscles, and viscera for a differentiated and comprehensive assessment of various pain pathways and mechanisms. Using a multimodel-multistructure testing, the nociception arising from different body structures can be explored and modulation of specific biomarkers by new and existing analgesic drugs can be profiled. The value of human experimental pain models is to link animal and clinical pain studies, providing new possibilities for designing successful clinical trials. Spontaneous pain, the main compliant of the neuropathic patients, but currently there is no human model available that would mimic chronic pain. Therefore, current human pain models cannot replace patient studies for studying efficacy of analgesic compounds, although being helpful for proof-of-concept studies and dose finding.

  6. The Virtual Physiological Human - a European initiative for in silico human modelling -.

    Science.gov (United States)

    Viceconti, Marco; Clapworthy, Gordon; Van Sint Jan, Serge

    2008-12-01

    The Virtual Physiological Human (VPH) is an initiative, strongly supported by the European Commission (EC), that seeks to develop an integrated model of human physiology at multiple scales from the whole body through the organ, tissue, cell and molecular levels to the genomic level. VPH had its beginnings in 2005 with informal discussions amongst like-minded scientists which led to the STEP project, a Coordination Action funded by the EC that began in early 2006. The STEP project greatly accelerated the progress of the VPH and proved to be a catalyst for wide-ranging discussions within Europe and for outreach activities designed to develop a broad international approach to the huge scientific and technological challenges involved in this area. This paper provides an overview of the VPH and the developments it has engendered in the rapidly expanding worldwide activities associated with the physiome. It then uses one particular project, the Living Human Project, to illustrate the type of advances that are taking place to further the aims of the VPH and similar initiatives worldwide.

  7. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma.

    Science.gov (United States)

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. © 2013 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  8. Human migraine models

    DEFF Research Database (Denmark)

    Iversen, Helle Klingenberg

    2001-01-01

    , which is a human experience. A set-up for investigations of experimental headache and migraine in humans, has been evaluated and headache mechanisms explored by using nitroglycerin and other headache-inducing agents. Nitric oxide (NO) or other parts of the NO activated cascade seems to be responsible...

  9. A murine model of human myeloma bone disease

    NARCIS (Netherlands)

    Garrett, I.R.; Dallas, S.; Radl, J.; Mundy, G.R.

    1997-01-01

    Myeloma causes a devastating and unique form of osteolytic bone disease. Although osteoclast activation is responsible for bone destruction, the precise mechanisms by which myeloma cells increase osteoclast activity have not been defined. An animal model of human myeloma bone disease mould help in

  10. 3-D Model of the Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  11. Xenotransplantation as a model for human testicular development.

    Science.gov (United States)

    Hutka, Marsida; Smith, Lee B; Mitchell, Rod T

    The developing male reproductive system may be sensitive to disruption by a wide range of exogenous 'endocrine disruptors'. In-utero exposure to environmental chemicals and pharmaceuticals have been hypothesized to have an impact in the increasing incidence of male reproductive disorders. The vulnerability to adverse effects as a consequence of such exposures is elevated during a specific 'window of susceptibility' in fetal life referred to as the masculinisation programing window (MPW). Exposures that occur during prepuberty, such as chemotherapy treatment for cancer during childhood, may also affect future fertility. Much of our current knowledge about fetal and early postnatal human testicular development derives from studies conducted in animal models predictive for humans. Therefore, over recent years, testicular transplantation has been employed as a 'direct' approach to understand the development of human fetal and prepubertal testis in health and disease. In this review we describe the potential use of human testis xenotransplantation to study testicular development and its application for (i) assessing the effects of environmental exposures in humans, and (ii) establishing fertility preservation options for prepubertal boys with cancer. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  13. Improved numerical modelling of heat transfer in human tissue exposed to RF

    International Nuclear Information System (INIS)

    Prishvin, Mikheil; Zaridze, Revaz; Bit-Babik, Georgi; Faraone, Antonio

    2010-01-01

    Full text: A novel numerical model to simulate thermal response of human body tissues exposed to RF energy is presented in this article. It is based on a new algorithm for the construction of a realistic blood vessel network, a new model of blood flow velocity distribution and an approach to solve the bio-heat equation in human tissue with variable and initially unknown blood temperature distribution. The algorithm generates a discrete 3D representation of both arterial and venous vascular networks and a continuous blood velocity vector field for arbitrary enclosed geome tries required to represent the complex anatomy of human body and blood flow. The results obtained in this article by applying the developed method to realistic exposure con ditions demonstrates relative difference in thermal response of the exposed tissue compared to results obtained by conventional bio-heat equation with constant blood perfusion and temperature. The developed technique may provide more accurate and realistic modelling in thermal dosimetry studies of human body RF exposure.

  14. Influence of the model's degree of freedom on human body dynamics identification.

    Science.gov (United States)

    Maita, Daichi; Venture, Gentiane

    2013-01-01

    In fields of sports and rehabilitation, opportunities of using motion analysis of the human body have dramatically increased. To analyze the motion dynamics, a number of subject specific parameters and measurements are required. For example the contact forces measurement and the inertial parameters of each segment of the human body are necessary to compute the joint torques. In this study, in order to perform accurate dynamic analysis we propose to identify the inertial parameters of the human body and to evaluate the influence of the model's number of degrees of freedom (DoF) on the results. We use a method to estimate the inertial parameters without torque sensor, using generalized coordinates of the base link, joint angles and external forces information. We consider a 34DoF model, a 58DoF model, as well as the case when the human is manipulating a tool (here a tennis racket). We compare the obtained in results in terms of contact force estimation.

  15. Human Posture and Movement Prediction based on Musculoskeletal Modeling

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi

    2014-01-01

    Abstract This thesis explores an optimization-based formulation, so-called inverse-inverse dynamics, for the prediction of human posture and motion dynamics performing various tasks. It is explained how this technique enables us to predict natural kinematic and kinetic patterns for human posture...... and motion using AnyBody Modeling System (AMS). AMS uses inverse dynamics to analyze musculoskeletal systems and is, therefore, limited by its dependency on input kinematics. We propose to alleviate this dependency by assuming that voluntary postures and movement strategies in humans are guided by a desire...... expenditure, joint forces and other physiological properties derived from the detailed musculoskeletal analysis. Several attempts have been made to uncover the principles underlying motion control strategies in the literature. In case of some movements, like human squat jumping, there is almost no doubt...

  16. A Novel Parametric Model For The Human Respiratory System

    Directory of Open Access Journals (Sweden)

    Clara Mihaela IONESCU

    2003-12-01

    Full Text Available The purpose of this work is to present some recent results in an ongoing research project between Ghent University and Chess Medical Technology Company Belgium. The overall aim of the project is to provide a fast method for identification of the human respiratory system in order to allow for an instantaneously diagnosis of the patient by the medical staff. A novel parametric model of the human respiratory system as well as the obtained experimental results is presented in this paper. A prototype apparatus developed by the company, based on the forced oscillation technique is used to record experimental data from 4 patients in this paper. Signal processing is based on spectral analysis and is followed by the parametric identification of a non-linear mechanistic model. The parametric model is equivalent to the structure of a simple electrical RLC-circuit, containing a non-linear capacitor. These parameters have a useful and easy-to-interpret physical meaning for the medical staff members.

  17. Switching Adaptability in Human-Inspired Sidesteps: A Minimal Model.

    Science.gov (United States)

    Fujii, Keisuke; Yoshihara, Yuki; Tanabe, Hiroko; Yamamoto, Yuji

    2017-01-01

    Humans can adapt to abruptly changing situations by coordinating redundant components, even in bipedality. Conventional adaptability has been reproduced by various computational approaches, such as optimal control, neural oscillator, and reinforcement learning; however, the adaptability in bipedal locomotion necessary for biological and social activities, such as unpredicted direction change in chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop system. Here we propose a switching adaptation model for performing bipedal locomotion by improving autonomous distributed control, where autonomous actuators interact without central control and switch the roles for propulsion, balancing, and leg swing. Our switching mobility model achieved direction change at any time using only three actuators, although it showed higher motor costs than comparable models without direction change. Our method of evaluating such adaptation at any time should be utilized as a prerequisite for understanding universal motor control. The proposed algorithm may simply explain and predict the adaptation mechanism in human bipedality to coordinate the actuator functions within and between limbs.

  18. Review on present state of human model researches in nuclear engineering and the prospect for their industrial applications

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Furuta, Kazuo; Nakagawa, Tsuneo; Yoshimura, Seiichi; Yoshida, Kazuo; Naito, Norio

    1999-01-01

    Reviews have been made on the researches and developments for human models in the field of nuclear engineering. Until now, the related works have been made mainly for the modeling of plant operator and operator crew in the control room, but also there arise new tendencies of extending the modeling works for maintenance field as well as for personnel training purposes. The whole range of human model research is divided into the five areas of (a) modeling for machine system, (b) measurement and analysis of human information behavior, (c) modeling of human internal information process, (d) modeling of human interaction with machine system, and (e) that of between human themselves. The real examples of the human model developments as well as their methods, applications, and the model validations are described, and then, the further subjects and efforts are pointed out which would be needed for the broader industrial application of the human modeling. (author)

  19. Compilation Of An Econometric Human Resource Efficiency Model For Project Management Best Practices

    OpenAIRE

    G. van Zyl; P. Venier

    2006-01-01

    The aim of the paper is to introduce a human resource efficiency model in order to rank the most important human resource driving forces for project management best practices. The results of the model will demonstrate how the human resource component of project management acts as the primary function to enhance organizational performance, codified through improved logical end-state programmes, work ethics and process contributions. Given the hypothesis that project management best practices i...

  20. ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS

    OpenAIRE

    W. Nakanishi; T. Fuse; T. Ishikawa

    2015-01-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...

  1. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    Science.gov (United States)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  2. Development of a realistic human airway model.

    Science.gov (United States)

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained.

  3. Techniques for Modeling Human Performance in Synthetic Environments: A Supplementary Review

    National Research Council Canada - National Science Library

    Ritter, Frank E; Shadbolt, Nigel R; Elliman, David; Young, Richard M; Gobet, Fernand; Baxter, Gordon D

    2003-01-01

    Selected recent developments and promising directions for improving the quality of models of human performance in synthetic environments are summarized, beginning with the potential uses and goals for behavioral models...

  4. Supportive Accountability: A model for providing human support for internet and ehealth interventions

    NARCIS (Netherlands)

    Mohr, D.C.; Cuijpers, P.; Lehman, K.A.

    2011-01-01

    The effectiveness of and adherence to eHealth interventions is enhanced by human support. However, human support has largely not been manualized and has usually not been guided by clear models. The objective of this paper is to develop a clear theoretical model, based on relevant empirical

  5. Design and Validation of a Model of a Human's Functional State and Performance

    NARCIS (Netherlands)

    Bosse, T.; Both, F.; Hoogendoorn, M.; Jaffry, S.W.; van Lambalgen, R.M.; Oorburg, R.; Sharpanskykh, A.; Treur, J.; de Vos, M.

    2011-01-01

    This paper presents a computational model of the dynamics of a human's functional state in relation to task performance and environment. It can be used in intelligent systems that support humans in demanding circumstances. The model takes task demand and situational aspects as input and calculates

  6. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  7. Human Guidance Behavior Decomposition and Modeling

    Science.gov (United States)

    Feit, Andrew James

    Trained humans are capable of high performance, adaptable, and robust first-person dynamic motion guidance behavior. This behavior is exhibited in a wide variety of activities such as driving, piloting aircraft, skiing, biking, and many others. Human performance in such activities far exceeds the current capability of autonomous systems in terms of adaptability to new tasks, real-time motion planning, robustness, and trading safety for performance. The present work investigates the structure of human dynamic motion guidance that enables these performance qualities. This work uses a first-person experimental framework that presents a driving task to the subject, measuring control inputs, vehicle motion, and operator visual gaze movement. The resulting data is decomposed into subspace segment clusters that form primitive elements of action-perception interactive behavior. Subspace clusters are defined by both agent-environment system dynamic constraints and operator control strategies. A key contribution of this work is to define transitions between subspace cluster segments, or subgoals, as points where the set of active constraints, either system or operator defined, changes. This definition provides necessary conditions to determine transition points for a given task-environment scenario that allow a solution trajectory to be planned from known behavior elements. In addition, human gaze behavior during this task contains predictive behavior elements, indicating that the identified control modes are internally modeled. Based on these ideas, a generative, autonomous guidance framework is introduced that efficiently generates optimal dynamic motion behavior in new tasks. The new subgoal planning algorithm is shown to generate solutions to certain tasks more quickly than existing approaches currently used in robotics.

  8. Compilation Of An Econometric Human Resource Efficiency Model For Project Management Best Practices

    Directory of Open Access Journals (Sweden)

    G. van Zyl

    2006-11-01

    Full Text Available The aim of the paper is to introduce a human resource efficiency model in order to rank the most important human resource driving forces for project management best practices. The results of the model will demonstrate how the human resource component of project management acts as the primary function to enhance organizational performance, codified through improved logical end-state programmes, work ethics and process contributions. Given the hypothesis that project management best practices involve significant human resource and organizational changes, one would reasonably expect this process to influence and resonate throughout all the dimensions of an organisation.

  9. Aristotelian syllogisms

    Science.gov (United States)

    Ollongren, Alexander

    2011-02-01

    Aristotelian assertive syllogistic logic (without modalities) is embedded in the author's Lingua Cosmica. The well-known basic structures of assertions and conversions between them in this logic are represented in LINCOS. Since these representations correspond with set-theoretic operations, the latter are embedded in LINCOS as well. Based on this valid argumentation in Aristotle's sense is obtained for four important so-called perfect figures. Their constructive (intuitionistic) verifications are of a surprisingly elegant simplicity.

  10. Islamic positivism and scientific truth: Qur'an and archeology in a creationist documentary film

    OpenAIRE

    Dupret , Baudouin; Gutron , Clémentine

    2016-01-01

    International audience; The ambition of “scientific creationism” is to prove that science actually confirms religion. This is especially true in the case of Muslim creationism, which adopts a reasoning of a syllogistic type: divine revelation is truth; good science confirms truth; divine revelation is henceforth scientifically proven. Harun Yahya is a prominent Muslim “creationist” whose website hosts many texts and documentary films, among which “Evidence of the true faith in historical sour...

  11. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies

    Directory of Open Access Journals (Sweden)

    David A. Bulger

    2017-01-01

    Full Text Available Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2. CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways.

  12. Incorporating Ecosystem Processes Controlling Carbon Balance Into Models of Coupled Human-Natural Systems

    Science.gov (United States)

    Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.

    2012-12-01

    A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also

  13. A hybrid modeling with data assimilation to evaluate human exposure level

    Science.gov (United States)

    Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.

    2015-12-01

    Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.

  14. Computer modelling of HT gas metabolism in humans

    International Nuclear Information System (INIS)

    Peterman, B.F.

    1982-01-01

    A mathematical model was developed to simulate the metabolism of HT gas in humans. The rate constants of the model were estimated by fitting the calculated curves to the experimental data by Pinson and Langham in 1957. The calculations suggest that the oxidation of HT gas (which probably occurs as a result of the enzymatic action of hydrogenase present in bacteria of human gut) occurs at a relatively low rate with a half-time of 10-12 hours. The inclusion of the dose due to the production of the HT oxidation product (HTO) in the soft tissues lowers the value of derived air concentration by about 50%. Furthermore the relationship between the concentration of HTO in urine and the dose to the lung from HT in the air in lungs is linear after short HT exposures, and hence HTO concentrations in urine can be used to estimate the upper limits on the lung dose from HT exposures. (author)

  15. A soft-contact model for computing safety margins in human prehension.

    Science.gov (United States)

    Singh, Tarkeshwar; Ambike, Satyajit

    2017-10-01

    The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Predicting the Consequences of Workload Management Strategies with Human Performance Modeling

    Science.gov (United States)

    Mitchell, Diane Kuhl; Samma, Charneta

    2011-01-01

    Human performance modelers at the US Army Research Laboratory have developed an approach for establishing Soldier high workload that can be used for analyses of proposed system designs. Their technique includes three key components. To implement the approach in an experiment, the researcher would create two experimental conditions: a baseline and a design alternative. Next they would identify a scenario in which the test participants perform all their representative concurrent interactions with the system. This scenario should include any events that would trigger a different set of goals for the human operators. They would collect workload values during both the control and alternative design condition to see if the alternative increased workload and decreased performance. They have successfully implemented this approach for military vehicle. designs using the human performance modeling tool, IMPRINT. Although ARL researches use IMPRINT to implement their approach, it can be applied to any workload analysis. Researchers using other modeling and simulations tools or conducting experiments or field tests can use the same approach.

  17. The sheep as a large osteoporotic model for orthopaedic research in humans

    DEFF Research Database (Denmark)

    Cheng, L.; Ding, Ming; Li, Z.

    2008-01-01

    Although small animals as rodents are very popular animals for osteoporosis models , large animals models are necessary for research of human osteoporotic diseases. Sheep osteoporosis models are becoming more important because of its unique advantages for osteoporosis reseach. Sheep are docile...... in nature and large in size , which facilitates obtaining blood samples , urine samples and bone tissue samples for different biochemical tests and histological tests , and surgical manipulation and instrument examinations. Their physiology is similar to humans. To induce osteoporosis , OVX and calcium...... intake restriction and glucocorticoid application are the most effective methods for sheep osteoporosis model. Sheep osteoporosis model is an ideal animal model for studying various medicines reacting to osteoporosis and other treatment methods such as prosthetic replacement reacting to osteoporotic...

  18. Fast detection and modeling of human-body parts from monocular video

    NARCIS (Netherlands)

    Lao, W.; Han, Jungong; With, de P.H.N.; Perales, F.J.; Fisher, R.B.

    2009-01-01

    This paper presents a novel and fast scheme to detect different body parts in human motion. Using monocular video sequences, trajectory estimation and body modeling of moving humans are combined in a co-operating processing architecture. More specifically, for every individual person, features of

  19. A stochastic dynamic model for human error analysis in nuclear power plants

    Science.gov (United States)

    Delgado-Loperena, Dharma

    Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.

  20. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    Science.gov (United States)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  1. Biomedical Simulation Models of Human Auditory Processes

    Science.gov (United States)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  2. Attempting to train a digital human model to reproduce human subject reach capabilities in an ejection seat aircraft

    NARCIS (Netherlands)

    Zehner, G.F.; Hudson, J.A.; Oudenhuijzen, A.

    2006-01-01

    From 1997 through 2002, the Air Force Research Lab and TNO Defence, Security and Safety (Business Unit Human Factors) were involved in a series of tests to quantify the accuracy of five Human Modeling Systems (HMSs) in determining accommodation limits of ejection seat aircraft. The results of these

  3. The Institutional Approach for Modeling the Evolution of Human Societies.

    Science.gov (United States)

    Powers, Simon T

    2018-01-01

    Artificial life is concerned with understanding the dynamics of human societies. A defining feature of any society is its institutions. However, defining exactly what an institution is has proven difficult, with authors often talking past each other. This article presents a dynamic model of institutions, which views them as political game forms that generate the rules of a group's economic interactions. Unlike most prior work, the framework presented here allows for the construction of explicit models of the evolution of institutional rules. It takes account of the fact that group members are likely to try to create rules that benefit themselves. Following from this, it allows us to determine the conditions under which self-interested individuals will create institutional rules that support cooperation-for example, that prevent a tragedy of the commons. The article finishes with an example of how a model of the evolution of institutional rewards and punishments for promoting cooperation can be created. It is intended that this framework will allow artificial life researchers to examine how human groups can themselves create conditions for cooperation. This will help provide a better understanding of historical human social evolution, and facilitate the resolution of pressing societal social dilemmas.

  4. Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data

    Directory of Open Access Journals (Sweden)

    Joel E. Cohen

    2018-03-01

    Full Text Available Background: Taylor's law (TL states a linear relationship on logarithmic scales between the variance and the mean of a nonnegative quantity. TL has been observed in spatiotemporal contexts for the population density of hundreds of species including humans. TL also describes temporal variation in human mortality in developed countries, but no explanation has been proposed. Objective: To understand why and to what extent TL describes temporal variation in human mortality, we examine whether the mortality models of Gompertz, Makeham, and Siler are consistent with TL. We also examine how strongly TL differs between observed and modeled mortality, between women and men, and among countries. Methods: We analyze how well each mortality model explains TL fitted to observed occurrence-exposure death rates by comparing three features: the log-log linearity of the temporal variance as a function of the temporal mean, the age profile, and the slope of TL. We support some empirical findings from the Human Mortality Database with mathematical proofs. Results: TL describes modeled mortality better than observed mortality and describes Gompertz mortality best. The age profile of TL is closest between observed and Siler mortality. The slope of TL is closest between observed and Makeham mortality. The Gompertz model predicts TL with a slope of exactly 2 if the modal age at death increases linearly with time and the parameter that specifies the growth rate of mortality with age is constant in time. Observed mortality obeys TL with a slope generally less than 2. An explanation is that, when the parameters of the Gompertz model are estimated from observed mortality year by year, both the modal age at death and the growth rate of mortality with age change over time. Conclusions: TL describes human mortality well in developed countries because their mortality schedules are approximated well by classical mortality models, which we have shown to obey TL. Contribution

  5. Statistical modelling of networked human-automation performance using working memory capacity.

    Science.gov (United States)

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  6. Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering

    Science.gov (United States)

    Bolton, Matthew L.; Bass, Ellen J.

    2009-01-01

    Both the human factors engineering (HFE) and formal methods communities are concerned with finding and eliminating problems with safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to use model checking with HFE practices to perform formal verification of a human-interactive system. Despite the use of a seemingly simple target system, a patient controlled analgesia pump, the initial model proved to be difficult for the model checker to verify in a reasonable amount of time. This resulted in a number of model revisions that affected the HFE architectural, representativeness, and understandability goals of the effort. If formal methods are to meet the needs of the HFE community, additional modeling tools and technological developments are necessary.

  7. Predicted congestions never occur. On the gap between transport modeling and human behavior

    Directory of Open Access Journals (Sweden)

    Harald FREY

    2011-01-01

    Full Text Available This paper presents an introduction to meso-scale transport modeling and issues of human behaviour in transport systems. Along with other examples of the human ability to learn in transport systems we look at the comparison of real life data and the prediction of modeling tools for the closure of Vienna’s inner ring road during the 2008 European Football Championship (EURO 2008. Some light is shed on the scientific question, whether currently used modeling tools are able to adequately reproduce the real-life behaviour of human beings in the transport system and should be used for transport policy decision making.

  8. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  9. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  10. Comparison between a Computational Seated Human Model and Experimental Verification Data

    Directory of Open Access Journals (Sweden)

    Christian G. Olesen

    2014-01-01

    Full Text Available Sitting-acquired deep tissue injuries (SADTI are the most serious type of pressure ulcers. In order to investigate the aetiology of SADTI a new approach is under development: a musculo-skeletal model which can predict forces between the chair and the human body at different seated postures. This study focuses on comparing results from a model developed in the AnyBody Modeling System, with data collected from an experimental setup. A chair with force-measuring equipment was developed, an experiment was conducted with three subjects, and the experimental results were compared with the predictions of the computational model. The results show that the model predicted the reaction forces for different chair postures well. The correlation coefficients of how well the experiment and model correlate for the seat angle, backrest angle and footrest height was 0.93, 0.96, and 0.95. The study show a good agreement between experimental data and model prediction of forces between a human body and a chair. The model can in the future be used in designing wheelchairs or automotive seats.

  11. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  12. Comparing ESC and iPSC-Based Models for Human Genetic Disorders.

    Science.gov (United States)

    Halevy, Tomer; Urbach, Achia

    2014-10-24

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  13. Correlation between human observer performance and model observer performance in differential phase contrast CT

    International Nuclear Information System (INIS)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-01-01

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  14. Multiconjugate adaptive optics applied to an anatomically accurate human eye model

    Science.gov (United States)

    Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  15. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    Science.gov (United States)

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  16. Constructing a Computer Model of the Human Eye Based on Tissue Slice Images

    OpenAIRE

    Dai, Peishan; Wang, Boliang; Bao, Chunbo; Ju, Ying

    2010-01-01

    Computer simulation of the biomechanical and biological heat transfer in ophthalmology greatly relies on having a reliable computer model of the human eye. This paper proposes a novel method on the construction of a geometric model of the human eye based on tissue slice images. Slice images were obtained from an in vitro Chinese human eye through an embryo specimen processing methods. A level set algorithm was used to extract contour points of eye tissues while a principle component analysi...

  17. Experimental Models of Vaginal Candidiasis and Their Relevance to Human Candidiasis

    Science.gov (United States)

    Sobel, Jack D.

    2016-01-01

    Vulvovaginal candidiasis (VVC) is a high-incidence disease seriously affecting the quality of life of women worldwide, particularly in its chronic, recurrent forms (RVVC), and with no definitive cure or preventive measure. Experimental studies in currently used rat and mouse models of vaginal candidiasis have generated a large mass of data on pathogenicity determinants and inflammation and immune responses of potential importance for the control of human pathology. However, reflection is necessary about the relevance of these rodent models to RVVC. Here we examine the chemical, biochemical, and biological factors that determine or contrast the forms of the disease in rodent models and in women and highlight the differences between them. We also appeal for approaches to improve or replace the current models in order to enhance their relevance to human infection. PMID:26883592

  18. Gene therapy in nonhuman primate models of human autoimmune disease

    NARCIS (Netherlands)

    t'Hart, B. A.; Vervoordeldonk, M.; Heeney, J. L.; Tak, P. P.

    2003-01-01

    Before autoimmune diseases in humans can be treated with gene therapy, the safety and efficacy of the used vectors must be tested in valid experimental models. Monkeys, such as the rhesus macaque or the common marmoset, provide such models. This publication reviews the state of the art in monkey

  19. Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings

    DEFF Research Database (Denmark)

    Gao, Jie; Wang, Yi; Wargocki, Pawel

    2015-01-01

    In this paper, a comparative analysis was performed on the human thermal sensation estimated by modified predicted mean vote (PMV) models and modified standard effective temperature (SET) models in naturally ventilated buildings; the data were collected in field study. These prediction models were....../s, the expectancy factors for the extended PMV model and the extended SET model were from 0.770 to 0.974 and from 1.330 to 1.363, and the adaptive coefficients for the adaptive PMV model and the adaptive SET model were from 0.029 to 0.167 and from-0.213 to-0.195. In addition, the difference in thermal sensation...... between the measured and predicted values using the modified PMV models exceeded 25%, while the difference between the measured thermal sensation and the predicted thermal sensation using modified SET models was approximately less than 25%. It is concluded that the modified SET models can predict human...

  20. Rasmussen's model of human behavior in laparoscopy training.

    Science.gov (United States)

    Wentink, M; Stassen, L P S; Alwayn, I; Hosman, R J A W; Stassen, H G

    2003-08-01

    Compared to aviation, where virtual reality (VR) training has been standardized and simulators have proven their benefits, the objectives, needs, and means of VR training in minimally invasive surgery (MIS) still have to be established. The aim of the study presented is to introduce Rasmussen's model of human behavior as a practical framework for the definition of the training objectives, needs, and means in MIS. Rasmussen distinguishes three levels of human behavior: skill-, rule-, and knowledge-based behaviour. The training needs of a laparoscopic novice can be determined by identifying the specific skill-, rule-, and knowledge-based behavior that is required for performing safe laparoscopy. Future objectives of VR laparoscopy trainers should address all three levels of behavior. Although most commercially available simulators for laparoscopy aim at training skill-based behavior, especially the training of knowledge-based behavior during complications in surgery will improve safety levels. However, the cost and complexity of a training means increases when the training objectives proceed from the training of skill-based behavior to the training of complex knowledge-based behavior. In aviation, human behavior models have been used successfully to integrate the training of skill-, rule-, and knowledge-based behavior in a full flight simulator. Understanding surgeon behavior is one of the first steps towards a future full-scale laparoscopy simulator.

  1. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  2. Computational Human Performance Modeling For Alarm System Design

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo

    2012-07-01

    The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators’ alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

  3. Confronting human papilloma virus/oropharyngeal cancer: a model for interprofessional collaboration.

    Science.gov (United States)

    Fried, Jacquelyn L

    2014-06-01

    A collaborative practice model related to Human Papilloma Virus (HPV) associated oropharyngeal cancer highlights the role of the dental hygienist in addressing this condition. The incidence of HPV associated head and neck cancer is rising. Multiple professionals including the dental hygienist can work collaboratively to confront this growing public health concern. A critical review applies the growth and utilization of interprofessional education (IPE) and interprofessional collaboration (IPC) to multi-disciplinary models addressing the human papilloma virus and oropharyngeal cancers. A model related to HPV associated oropharyngeal cancer addresses an oral systemic condition that supports the inclusion of a dental hygienist on collaborative teams addressing prevention, detection, treatment and cure of OPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Physicologically Based Toxicokinetic Models of Tebuconazole and Application in Human Risk Assessment

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Reffstrup, Trine Klein; Petersen, Annette

    2016-01-01

    (ADME) of tebuconazole. The developed models were validated on in vivo half-life data for rabbit with good results, and on plasma and tissue concentration-time course data of tebuconazole after i.v. administration in rabbit. In most cases, the predicted concentration levels were seen to be within......A series of physiologically based toxicokinetic (PBTK) models for tebuconazole were developed in four species, rat, rabbit, rhesus monkey, and human. The developed models were analyzed with respect to the application of the models in higher tier human risk assessment, and the prospect of using...... such models in risk assessment of cumulative and aggregate exposure is discussed. Relatively simple and biologically sound models were developed using available experimental data as parameters for describing the physiology of the species, as well as the absorption, distribution, metabolism, and elimination...

  5. The emergence of egalitarianism in a model of early human societies

    Directory of Open Access Journals (Sweden)

    Guillaume Calmettes

    2017-11-01

    Full Text Available How did egalitarianism emerge in early human societies? In contrast to dominance hierarchies in non-human primates, human simple forager bands are typically egalitarian, with male hunters often serving as the collective alpha. Here we present a thermodynamics-inspired simple population model, based on stochastic optimization of dominance relationships, in which a dominance hierarchy of individuals with exclusively self-centered characteristics (the desire to dominate, resentment at being dominated transitions spontaneously to egalitarianism as their capacity for language develops. Language, specifically gossip, allows resentment against being dominated to promote the formation of antidominance coalitions which destabilize the alpha position for individuals, leading to a phase transition in which a coalition of the full population suddenly becomes dominant. Thus, egalitarianism emerges suddenly as the optimal power-sharing arrangement in a population of selfish individuals without any inherently altruistic qualities. We speculate that egalitarianism driven by punishment for exhibiting alpha-like behavior may then set the stage for genuinely altruistic traits to propagate as predicted by game theory models. Based on model simulations, we also predict that egalitarianism is a pre-condition for adaptation of tools as weapons. Potential implications for origins of human moral belief systems are discussed. Keywords: Sociology, Evolution, Anthropology

  6. Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure

    International Nuclear Information System (INIS)

    Ekanem, Nsimah J.; Mosleh, Ali; Shen, Song-Hua

    2016-01-01

    Phoenix method is an attempt to address various issues in the field of Human Reliability Analysis (HRA). Built on a cognitive human response model, Phoenix incorporates strong elements of current HRA good practices, leverages lessons learned from empirical studies, and takes advantage of the best features of existing and emerging HRA methods. Its original framework was introduced in previous publications. This paper reports on the completed methodology, summarizing the steps and techniques of its qualitative analysis phase. The methodology introduces the “Crew Response Tree” which provides a structure for capturing the context associated with Human Failure Events (HFEs), including errors of omission and commission. It also uses a team-centered version of the Information, Decision and Action cognitive model and “macro-cognitive” abstractions of crew behavior, as well as relevant findings from cognitive psychology literature and operating experience, to identify potential causes of failures and influencing factors during procedure-driven and knowledge-supported crew-plant interactions. The result is the set of identified HFEs and likely scenarios leading to each. The methodology itself is generic in the sense that it is compatible with various quantification methods, and can be adapted for use across different environments including nuclear, oil and gas, aerospace, aviation, and healthcare. - Highlights: • Produces a detailed, consistent, traceable, reproducible and properly documented HRA. • Uses “Crew Response Tree” to capture context associated with Human Failure Events. • Models dependencies between Human Failure Events and influencing factors. • Provides a human performance model for relating context to performance. • Provides a framework for relating Crew Failure Modes to its influencing factors.

  7. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies.

    Science.gov (United States)

    Bulger, David A; Fukushige, Tetsunari; Yun, Sijung; Semple, Robert K; Hanover, John A; Krause, Michael W

    2017-01-05

    Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP) and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2 CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways. Copyright © 2017 Bulger et al.

  8. A conceptual and computational model of moral decision making in human and artificial agents.

    Science.gov (United States)

    Wallach, Wendell; Franklin, Stan; Allen, Colin

    2010-07-01

    Recently, there has been a resurgence of interest in general, comprehensive models of human cognition. Such models aim to explain higher-order cognitive faculties, such as deliberation and planning. Given a computational representation, the validity of these models can be tested in computer simulations such as software agents or embodied robots. The push to implement computational models of this kind has created the field of artificial general intelligence (AGI). Moral decision making is arguably one of the most challenging tasks for computational approaches to higher-order cognition. The need for increasingly autonomous artificial agents to factor moral considerations into their choices and actions has given rise to another new field of inquiry variously known as Machine Morality, Machine Ethics, Roboethics, or Friendly AI. In this study, we discuss how LIDA, an AGI model of human cognition, can be adapted to model both affective and rational features of moral decision making. Using the LIDA model, we will demonstrate how moral decisions can be made in many domains using the same mechanisms that enable general decision making. Comprehensive models of human cognition typically aim for compatibility with recent research in the cognitive and neural sciences. Global workspace theory, proposed by the neuropsychologist Bernard Baars (1988), is a highly regarded model of human cognition that is currently being computationally instantiated in several software implementations. LIDA (Franklin, Baars, Ramamurthy, & Ventura, 2005) is one such computational implementation. LIDA is both a set of computational tools and an underlying model of human cognition, which provides mechanisms that are capable of explaining how an agent's selection of its next action arises from bottom-up collection of sensory data and top-down processes for making sense of its current situation. We will describe how the LIDA model helps integrate emotions into the human decision-making process, and we

  9. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies

    Directory of Open Access Journals (Sweden)

    Karina O. Brandão

    2017-09-01

    Full Text Available It is now a decade since human induced pluripotent stem cells (hiPSCs were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.

  10. Is a Swine Model of Arteriovenous Malformation Suitable for Human Extracranial Arteriovenous Malformation? A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ming-ming, E-mail: lvmingming001@163.com [Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Department of Oral and Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology (China); Fan, Xin-dong, E-mail: fanxindong@yahoo.com.cn [Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Department of Radiology (China); Su, Li-xin, E-mail: sulixin1975@126.com [Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Department of Oral and Maxillofacial Surgery, Shanghai Key Laboratory of Stomatology (China)

    2013-10-15

    Objective: A chronic arteriovenous malformation (AVM) model using the swine retia mirabilia (RMB) was developed and compared with the human extracranial AVM (EAVM) both in hemodynamics and pathology, to see if this brain AVM model can be used as an EAVM model. Methods: We created an arteriovenous fistula between the common carotid artery and the external jugular vein in eight animals by using end-to-end anastomosis. All animals were sacrificed 1 month after surgery, and the bilateral retia were obtained at autopsy and performed hematoxylin and eosin staining and immunohistochemistry. Pre- and postsurgical hemodynamic evaluations also were conducted. Then, the blood flow and histological changes of the animal model were compared with human EAVM. Results: The angiography after operation showed that the blood flow, like human EAVM, flowed from the feeding artery, via the nidus, drained to the draining vein. Microscopic examination showed dilated lumina and disrupted internal elastic lamina in both RMB of model and nidus of human EAVM, but the thickness of vessel wall had significant difference. Immunohistochemical reactivity for smooth muscle actin, angiopoietin 1, and angiopoietin 2 were similar in chronic model nidus microvessels and human EAVM, whereas vascular endothelial growth factor was significant difference between human EAVM and RMB of model. Conclusions: The AVM model described here is similar to human EAVM in hemodynamics and immunohistochemical features, but there are still some differences in anatomy and pathogenetic mechanism. Further study is needed to evaluate the applicability and efficacy of this model.

  11. Is a Swine Model of Arteriovenous Malformation Suitable for Human Extracranial Arteriovenous Malformation? A Preliminary Study

    International Nuclear Information System (INIS)

    Lv, Ming-ming; Fan, Xin-dong; Su, Li-xin

    2013-01-01

    Objective: A chronic arteriovenous malformation (AVM) model using the swine retia mirabilia (RMB) was developed and compared with the human extracranial AVM (EAVM) both in hemodynamics and pathology, to see if this brain AVM model can be used as an EAVM model. Methods: We created an arteriovenous fistula between the common carotid artery and the external jugular vein in eight animals by using end-to-end anastomosis. All animals were sacrificed 1 month after surgery, and the bilateral retia were obtained at autopsy and performed hematoxylin and eosin staining and immunohistochemistry. Pre- and postsurgical hemodynamic evaluations also were conducted. Then, the blood flow and histological changes of the animal model were compared with human EAVM. Results: The angiography after operation showed that the blood flow, like human EAVM, flowed from the feeding artery, via the nidus, drained to the draining vein. Microscopic examination showed dilated lumina and disrupted internal elastic lamina in both RMB of model and nidus of human EAVM, but the thickness of vessel wall had significant difference. Immunohistochemical reactivity for smooth muscle actin, angiopoietin 1, and angiopoietin 2 were similar in chronic model nidus microvessels and human EAVM, whereas vascular endothelial growth factor was significant difference between human EAVM and RMB of model. Conclusions: The AVM model described here is similar to human EAVM in hemodynamics and immunohistochemical features, but there are still some differences in anatomy and pathogenetic mechanism. Further study is needed to evaluate the applicability and efficacy of this model

  12. Evaluation of two endometriosis models by transplantation of human endometrial tissue fragments and human endometrial mesenchymal cells

    Directory of Open Access Journals (Sweden)

    Mina Jafarabadi

    2017-08-01

    Full Text Available Background: The animal models of endometriosis could be a valuable alternative tool for clarifying the etiology of endometriosis. Objective: In this study two endometriosis models at the morphological and molecular levels was evaluated and compared. Materials and Methods: The human endometrial tissues were cut into small fragments then they were randomly considered for transplantation into γ irradiated mice as model A; or they were isolated and cultured up to fourth passages. 2×106 cultured stromal cells were transplanted into γ irradiated mice subcutaneously as model B. twenty days later the ectopic tissues in both models were studied morphologically by Periodic acid-Schiff and hematoxylin and eosin staining. The expression of osteopontin (OPN and matrix metalloproteinase 2 (MMP2 genes were also assessed using real time RT-PCR. 17-β estradiol levels of mice sera were compared before and after transplantation. Results: The endometrial like glands and stromal cells were formed in the implanted subcutaneous tissue of both endometriosis models. The gland sections per cubic millimeter, the expression of OPN and MMP2 genes and the level of 17-β estradiol were higher in model B than model A (p=0.03. Conclusion: Our observation demonstrated that endometrial mesenchymal stromal cells showed more efficiency to establish endometriosis model than human endometrial tissue fragments.

  13. The Use Of Computational Human Performance Modeling As Task Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Jacuqes Hugo; David Gertman

    2012-07-01

    During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employed to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.

  14. Hirarchical emotion calculation model for virtual human modellin - biomed 2010.

    Science.gov (United States)

    Zhao, Yue; Wright, David

    2010-01-01

    This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.

  15. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  16. Human Factor Modelling in the Risk Assessment of Port Manoeuvers

    Directory of Open Access Journals (Sweden)

    Teresa Abramowicz-Gerigk

    2015-09-01

    Full Text Available The documentation of human factor influence on the scenario development in maritime accidents compared with expert methods is commonly used as a basis in the process of setting up safety regulations and instructions. The new accidents and near misses show the necessity for further studies in determining the human factor influence on both risk acceptance criteria and development of risk control options for the manoeuvers in restricted waters. The paper presents the model of human error probability proposed for the assessment of ship masters and marine pilots' error decision and its influence on the risk of port manoeuvres.

  17. Functional modelling for integration of human-software-hardware in complex physical systems

    International Nuclear Information System (INIS)

    Modarres, M.

    1996-01-01

    A framework describing the properties of complex physical systems composed of human-software-hardware interactions in terms of their functions is described. It is argued that such a framework is domain-general, so that functional primitives present a language that is more general than most other modeling methods such as mathematical simulation. The characteristics and types of functional models are described. Examples of uses of the framework in modeling physical systems composed of human-software-hardware (hereby we refer to them as only physical systems) are presented. It is concluded that a function-centered model of a physical system provides a capability for generating a high-level simulation of the system for intelligent diagnostic, control or other similar applications

  18. Plants as models for the study of human pathogenesis.

    Science.gov (United States)

    Guttman, David S

    2004-05-01

    There are many common disease mechanisms used by bacterial pathogens of plants and humans. They use common means of attachment, secretion and genetic regulation. They share many virulence factors, such as extracellular polysaccharides and some type III secreted effectors. Plant and human innate immune systems also share many similarities. Many of these shared bacterial virulence mechanisms are homologous, but even more appear to have independently converged on a common function. This combination of homologous and analogous systems reveals conserved and critical steps in the disease process. Given these similarities, and the many experimental advantages of plant biology, including ease of replication, stringent genetic and reproductive control, and high throughput with low cost, it is proposed that plants would make excellent models for the study of human pathogenesis.

  19. Frontal Plane Modelling of Human Dynamics during Standing in Narrow-Stance

    Science.gov (United States)

    Sonobe, M.; Yamaguchi, H.; Hino, J.

    2016-09-01

    Standing ride type vehicles like electric skateboards have been developed in recent years. Although these vehicles have advantages as being compact and low cost due to their simple structure, it is necessary to improve the riding quality. Therefore, the system aiding riders to keep their balance on a skateboard by feedback control or feedforward control has been required. To achieve it, a human balance model should be built as simple as possible. In this study, we focus on the human balance modelling during standing when the support surface moves largely. We restricted the model on frontal plane and narrow stance because the restrictions allow us to assume single-degree-of-freedom model. The balance control system is generally assumed as a delayed feedback control system. The model was identified through impulse response test and frequency response test. As a result, we found the phase between acceleration of the skateboard and posture angle become opposite phase in low frequency range.

  20. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    Science.gov (United States)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and

  1. Cognition and procedure representational requirements for predictive human performance models

    Science.gov (United States)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  2. Modelling human resource requirements for the nuclear industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Ferry [Nuclear Research and Consultancy Group (NRG) (Netherlands); Flore, Massimo; Estorff, Ulrik von [Joint Research Center (JRC) (Netherlands)

    2017-11-15

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  3. Modelling human resource requirements for the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Roelofs, Ferry; Flore, Massimo; Estorff, Ulrik von

    2017-01-01

    The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.

  4. COMPARING THE UTILITY OF MULTIMEDIA MODELS FOR HUMAN AND ECOLOGICAL EXPOSURE ANALYSIS: TWO CASES

    Science.gov (United States)

    A number of models are available for exposure assessment; however, few are used as tools for both human and ecosystem risks. This discussion will consider two modeling frameworks that have recently been used to support human and ecological decision making. The study will compare ...

  5. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  6. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  7. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....

  8. Computer Modeling and Simulation of Bullet Impact to the Human Thorax

    National Research Council Canada - National Science Library

    Jolly, Johannes

    2000-01-01

    .... The objective of the study was to create a viable finite element model of the human thorax. The model was validated by comparing the results of tests of body armor systems conducted on cadavers to results obtained from finite element analysis...

  9. Modeling human behavior in economics and social science.

    Science.gov (United States)

    Dolfin, M; Leonida, L; Outada, N

    2017-12-01

    The complex interactions between human behaviors and social economic sciences is critically analyzed in this paper in view of possible applications of mathematical modeling as an attainable interdisciplinary approach to understand and simulate the aforementioned dynamics. The quest is developed along three steps: Firstly an overall analysis of social and economic sciences indicates the main requirements that a contribution of mathematical modeling should bring to these sciences; subsequently the focus moves to an overview of mathematical tools and to the selection of those which appear, according to the authors bias, appropriate to the modeling; finally, a survey of applications is presented looking ahead to research perspectives. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Models and data requirements for human reliability analysis

    International Nuclear Information System (INIS)

    1989-03-01

    It has been widely recognised for many years that the safety of the nuclear power generation depends heavily on the human factors related to plant operation. This has been confirmed by the accidents at Three Mile Island and Chernobyl. Both these cases revealed how human actions can defeat engineered safeguards and the need for special operator training to cover the possibility of unexpected plant conditions. The importance of the human factor also stands out in the analysis of abnormal events and insights from probabilistic safety assessments (PSA's), which reveal a large proportion of cases having their origin in faulty operator performance. A consultants' meeting, organized jointly by the International Atomic Energy Agency (IAEA) and the International Institute for Applied Systems Analysis (IIASA) was held at IIASA in Laxenburg, Austria, December 7-11, 1987, with the aim of reviewing existing models used in Probabilistic Safety Assessment (PSA) for Human Reliability Analysis (HRA) and of identifying the data required. The report collects both the contributions offered by the members of the Expert Task Force and the findings of the extensive discussions that took place during the meeting. Refs, figs and tabs

  11. From meta-omics to causality: experimental models for human microbiome research.

    Science.gov (United States)

    Fritz, Joëlle V; Desai, Mahesh S; Shah, Pranjul; Schneider, Jochen G; Wilmes, Paul

    2013-05-03

    Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case-control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation.

  12. Norepinephrine metabolism in humans. Kinetic analysis and model

    International Nuclear Information System (INIS)

    Linares, O.A.; Jacquez, J.A.; Zech, L.A.; Smith, M.J.; Sanfield, J.A.; Morrow, L.A.; Rosen, S.G.; Halter, J.B.

    1987-01-01

    The present study was undertaken to quantify more precisely and to begin to address the problem of heterogeneity of the kinetics of distribution and metabolism of norepinephrine (NE) in humans, by using compartmental analysis. Steady-state NE specific activity in arterialized plasma during [ 3 H]NE infusion and postinfusion plasma disappearance of [ 3 H]NE were measured in eight healthy subjects in the supine and upright positions. Two exponentials were clearly identified in the plasma [ 3 H]NE disappearance curves of each subject studied in the supine (r = 0.94-1.00, all P less than 0.01) and upright (r = 0.90-0.98, all P less than 0.01) positions. A two-compartment model was the minimal model necessary to simultaneously describe the kinetics of NE in the supine and upright positions. The NE input rate into the extravascular compartment 2, estimated with the minimal model, increased with upright posture (1.87 +/- 0.08 vs. 3.25 +/- 0.2 micrograms/min per m2, P less than 0.001). Upright posture was associated with a fall in the volume of distribution of NE in compartment 1 (7.5 +/- 0.6 vs. 4.7 +/- 0.3 liters, P less than 0.001), and as a result of that, there was a fall in the metabolic clearance rate of NE from compartment 1 (1.80 +/- 0.11 vs. 1.21 +/- 0.08 liters/min per m2, P less than 0.001). We conclude that a two-compartment model is the minimal model that can accurately describe the kinetics of distribution and metabolism of NE in humans

  13. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    Science.gov (United States)

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  14. Emotional and cognitive stimuli differentially engage the default network during inductive reasoning

    OpenAIRE

    Eldaief, Mark C.; Deckersbach, Thilo; Carlson, Lindsay E.; Beucke, Jan C.; Dougherty, Darin D.

    2011-01-01

    The brain’s default network (DN) is comprised of several cortical regions demonstrating robust intrinsic connectivity at rest. The authors sought to examine the differential effects of emotional reasoning and reasoning under certainty upon the DN through the employment of an event-related fMRI design in healthy participants. Participants were presented with syllogistic arguments which were organized into a 2 × 2 factorial design in which the first factor was emotional salience and the second ...

  15. Secretaris der natuur: de Franse conservatieve denker Louis de Bonald en zijn Theorie van de Macht

    OpenAIRE

    Audenaerde, Rolandus Franciscus Cornelis

    2009-01-01

    A reconstruction of the Théorie du Pouvoir, the first and major work of the French philosopher Louis de Bonald, shows that this work is best being read along the lines of political classicism: its syllogistic structure consists of a philosophical (deductive) maior, a historical (empirical) minor, and the political conclusion that the aristocratic authority and corporative forms characteristic of the preabsolutist era rather than ancien régime monarchy should be restored. As much as a frontal ...

  16. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    Science.gov (United States)

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  17. Fractional calculus model of electrical impedance applied to human skin.

    Science.gov (United States)

    Vosika, Zoran B; Lazovic, Goran M; Misevic, Gradimir N; Simic-Krstic, Jovana B

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects.

  18. Fractional calculus model of electrical impedance applied to human skin.

    Directory of Open Access Journals (Sweden)

    Zoran B Vosika

    Full Text Available Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1 Weyl fractional derivative operator, 2 Cole equation, and 3 Constant Phase Element (CPE. These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects.

  19. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    Science.gov (United States)

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  20. Zebrafish models in translational research: tipping the scales toward advancements in human health

    Directory of Open Access Journals (Sweden)

    Jennifer B. Phillips

    2014-07-01

    Full Text Available Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.

  1. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  2. Human-induced Terrestrial Water Storage Change: A Global Analysis using Hydrological Models and GRACE

    Science.gov (United States)

    Felfelani, F.; Pokhrel, Y. N.

    2016-12-01

    Hydrological models and data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) change; however, both have disadvantages that necessitate the integrated use of them. While GRACE doesn't disintegrate the vertical storage into its components, most models do not account for human activities. Here we use two Land Surface Models (LSMs), i.e., HiGW-MAT and PCRGLOBWB that fully couple natural and human drivers of changes in water cycle, explicitly simulating the changes in various TWS compartments. We first evaluate the models performance with GRACE observations. Then, we quantify the human footprint over global river basins located in different geographic and climate regions. To quantify human impacts, a new framework is proposed based on the GRACE observations (representing both climate variability and human activities) together with the natural simulation of LSMs using water budget equation (P-ET-R; P for precipitation, ET for evapotranspiration, and R for runoff). Finally, we examine the uncertainty in TWS simulations arising from the uncertainties in forcing data. Results indicate that, in snow-dominated regions, PCRGLOBWB generally fails to reproduce neither the interannual variability of observed TWS nor the seasonal cycle, while HiGW-MAT model shows significantly better results. In basins with human signatures, PCRGLOBWB generally shows better agreement with GRACE compared to HiGW-MAT. It is found that HiGW-MAT tends to overestimate groundwater depletion in basins with human impacts (e.g., Amudarya, Colorado, Euphrates and Indus), which results in larger negative interannual TWS trend compared to GRACE. Euphrates and Ganges river basins experience the highest human-induced TWS deficit rates (2.08 cm/yr and 1.94 cm/yr, respectively) during the simulation period of 2002-2010. Uncertainty analysis of results from the same model but with different forcing data suggests a high standard

  3. Toward a Theoretical Model of Employee Turnover: A Human Resource Development Perspective

    Science.gov (United States)

    Peterson, Shari L.

    2004-01-01

    This article sets forth the Organizational Model of Employee Persistence, influenced by traditional turnover models and a student attrition model. The model was developed to clarify the impact of organizational practices on employee turnover from a human resource development (HRD) perspective and provide a theoretical foundation for research on…

  4. Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages.

    Science.gov (United States)

    Loccisano, Anne E; Longnecker, Matthew P; Campbell, Jerry L; Andersen, Melvin E; Clewell, Harvey J

    2013-01-01

    Perfluoroalkyl acid carboxylates and sulfonates (PFAA) have many consumer and industrial applications. Developmental toxicity studies in animals have raised concern about potential reproductive/developmental effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); however, in humans conflicting results have been reported for associations between maternal PFAA levels and these outcomes. Risk assessments and interpretation of available human data during gestation and lactation are hindered due to lack of a framework for understanding and estimating maternal, fetal, and neonatal pharmacokinetics (PK). Physiologically based pharmacokinetic (PBPK) models were developed for PFOA and PFOS for the gestation and lactation life stages in humans to understand how the physiological changes associated with development affect pharmacokinetics of these compounds in the mother, fetus, and infant. These models were derived from PBPK models for PFOA/PFOS that were previously developed for adult humans and rats during gestation and lactation and from existing human pregnancy and lactation models developed for other chemicals. The models simulated PFOA and PFOS concentrations in fetal, infant, and maternal plasma and milk, were compared to available data in humans, and also were used to estimate maternal exposure. The models reported here identified several research needs, which include (1) the identification of transporters involved in renal resorption to explain the multiyear half-lives of these compounds in humans, (2) factors affecting clearance of PFOA/PFOS during gestation and lactation, and (3) data to estimate clearance of PFOA/PFOS in infants. These models may help address concerns regarding possible adverse health effects due to PFOA/PFOS exposure in the fetus and infant and may be useful in comparing pharmacokinetics across life stages.

  5. TR146 cells grown on filters as a model of human buccal epithelium

    DEFF Research Database (Denmark)

    Mørck Nielsen, H; Rømer Rassing, M; Nielsen, Hanne Mørck

    2000-01-01

    cell culture model, and human and porcine buccal epithelium were compared. The esterase activity in the intact cell culture model and in the porcine buccal mucosa was compared. Further, the TR146 cell culture model was used to study the permeability rate and metabolism of leu-enkephalin. The activity...... of the three enzymes in the TR146 homogenate supernatants was in the same range as the activity in homogenate supernatants of human buccal epithelium. In the TR146 cell culture model, the activity of aminopeptidase (13.70+/-2.10 nmol/min per mg protein) was approx. four times the activity of carboxypeptidase...

  6. Can the hair follicle become a model for studying selected aspects of human ocular immune privilege?

    Science.gov (United States)

    Kinori, Michael; Kloepper, Jennifer E; Paus, Ralf

    2011-06-23

    Immune privilege (IP) is important in maintaining ocular health. Understanding the mechanism underlying this dynamic state would assist in treating inflammatory eye diseases. Despite substantial progress in defining eye IP mechanisms, because of the scarcity of human ocular tissue for research purposes, most of what we know about ocular IP is based on rodent models (of unclear relevance to human eye immunology) and on cultured human eye-derived cells that cannot faithfully mirror the complex cell-tissue interactions that underlie normal human ocular IP in situ. Therefore, accessible, instructive, and clinically relevant human in vitro models are needed for exploring the general principles of why and how IP collapses under clinically relevant experimental conditions and how it can be protected or even restored therapeutically. Among the few human IP sites, the easily accessible and abundantly available hair follicle (HF) may offer one such surrogate model. There are excellent human HF organ culture systems for the study of HF IP in situ that instructively complement in vivo autoimmunity research in the human system. In this article, we delineate that the human eye and HF, despite their obvious differences, share key molecular and cellular mechanisms for maintaining IP. We argue that, therefore, human scalp HFs can provide an unconventional, but highly instructive, accessible, easily manipulated, and clinically relevant preclinical model for selected aspects of ocular IP. This essay is an attempt to encourage professional eye researchers to turn their attention, with appropriate caveats, to this candidate surrogate model for ocular IP in the human system.

  7. Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection.

    Science.gov (United States)

    Cui, Liang; Hou, Jue; Fang, Jinling; Lee, Yie Hou; Costa, Vivian Vasconcelos; Wong, Lan Hiong; Chen, Qingfeng; Ooi, Eng Eong; Tannenbaum, Steven R; Chen, Jianzhu; Ong, Choon Nam

    2017-07-15

    Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly

  8. SAR in human head model due to resonant wireless power transfer system.

    Science.gov (United States)

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  9. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  10. Mechanical model of human eye compliance for volumetric occlusion break surge measurements.

    Science.gov (United States)

    Dyk, David W; Miller, Kevin M

    2018-02-01

    To develop a mechanical model of human eye compliance for volumetric studies. Alcon Research, Ltd., Lake Forest, California, USA. Experimental study. Enucleated human eyes underwent pressurization and depressurization cycles with peak intraocular pressures (IOPs) of 60 to 100 mm Hg; anterior chamber pressure and volume changes were measured. Average net volume change curves were calculated as a function of IOP for each eye. Overall mean volumes were computed from each eye's average results at pressure points extrapolated over the range of 5 to 90 mm Hg. A 2-term exponential function was fit to these results. A fluid chamber with a displaceable piston was created as a mechanical model of this equation. A laser confocal displacement meter was used to measure piston displacement. A test bed incorporated the mechanical model with a mounted phacoemulsification probe and allowed for simulated occlusion breaks. Surge volume was calculated from piston displacement. An exponential function, V = C 1 × exp(C 2 × IOP) + C 3  × exp(C 4  × IOP) - V 0 , where V, the volume, was fit to the final depressurization curve obtained from 15 enucleated human eyes. The C 1 through C 4 values were -0.07141, -0.23055, -0.14972, and -0.02006, respectively. The equation was modeled using a piston system with 3 parallel springs that engaged serially. The mechanical model mimicked depressurization curves observed in human cadaver eyes. The resulting mechanical compliance model measured ocular volumetric changes and thus would be helpful in characterizing the postocclusion break surge response. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Human factors engineering program review model

    International Nuclear Information System (INIS)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element

  12. Experimental identification and analytical modelling of human walking forces: Literature review

    Science.gov (United States)

    Racic, V.; Pavic, A.; Brownjohn, J. M. W.

    2009-09-01

    Dynamic forces induced by humans walking change simultaneously in time and space, being random in nature and varying considerably not only between different people but also for a single individual who cannot repeat two identical steps. Since these important aspects of walking forces have not been adequately researched in the past, the corresponding lack of knowledge has reflected badly on the quality of their mathematical models used in vibration assessments of pedestrian structures such as footbridges, staircases and floors. To develop better force models which can be used with more confidence in the structural design, an adequate experimental and analytical approach must be taken to account for their complexity. This paper is the most comprehensive review published to date, of 270 references dealing with different experimental and analytical characterizations of human walking loading. The source of dynamic human-induced forces is in fact in the body motion. To date, human motion has attracted a lot of interest in many scientific branches, particularly in medical and sports science, bioengineering, robotics, and space flight programs. Other fields include biologists of various kinds, physiologists, anthropologists, computer scientists (graphics and animation), human factors and ergonomists, etc. It resulted in technologically advanced tools that can help understanding the human movement in more detail. Therefore, in addition to traditional direct force measurements utilizing a force plate and an instrumented treadmill, this review also introduces methods for indirect measurement of time-varying records of walking forces via combination of visual motion tracking (imaging) data and known body mass distribution. The review is therefore an interdisciplinary article that bridges the gaps between biomechanics of human gait and civil engineering dynamics. Finally, the key reason for undertaking this review is the fact that human-structure dynamic interaction and

  13. Humanized mice: models for evaluating NeuroHIV and cure strategies.

    Science.gov (United States)

    Honeycutt, Jenna B; Garcia, J Victor

    2018-04-01

    While the human immunodeficiency virus (HIV) epidemic was initially characterized by a high prevalence of severe and widespread neurological pathologies, the development of better treatments to suppress viremia over years and even decades has mitigated many of the severe neurological pathologies previously observed. Despite effective treatment, mild neurocognitive impairment and premature cognitive aging are observed in HIV-infected individuals, suggesting a changing but ongoing role of HIV infection in the central nervous system (CNS). Although current therapies are effective in suppressing viremia, they are not curative and patients must remain on life-long treatment or risk recrudescence of virus. Important for the development and evaluation of a cure for HIV will be animal models that recapitulate critical aspects of infection in vivo. In the following, we seek to summarize some of the recent developments in humanized mouse models and their usefulness in modeling HIV infection of the CNS and HIV cure strategies.

  14. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  15. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... that includes studying more complex 3D cell cultures, as well as accelerating aging of the neurons, may help to yield stronger phenotypes in the cultured cells. Thus, the use and application of pluripotent stem cells for modelling disease have already shown to be a powerful approach for discovering more about...

  16. Time Series Modeling of Human Operator Dynamics in Manual Control Tasks

    Science.gov (United States)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.

  17. Design strategies for human & earth systems modeling to meet emerging multi-scale decision support needs

    Science.gov (United States)

    Spak, S.; Pooley, M.

    2012-12-01

    The next generation of coupled human and earth systems models promises immense potential and grand challenges as they transition toward new roles as core tools for defining and living within planetary boundaries. New frontiers in community model development include not only computational, organizational, and geophysical process questions, but also the twin objectives of more meaningfully integrating the human dimension and extending applicability to informing policy decisions on a range of new and interconnected issues. We approach these challenges by posing key policy questions that require more comprehensive coupled human and geophysical models, identify necessary model and organizational processes and outputs, and work backwards to determine design criteria in response to these needs. We find that modular community earth system model design must: * seamlessly scale in space (global to urban) and time (nowcasting to paleo-studies) and fully coupled on all component systems * automatically differentiate to provide complete coupled forward and adjoint models for sensitivity studies, optimization applications, and 4DVAR assimilation across Earth and human observing systems * incorporate diagnostic tools to quantify uncertainty in couplings, and in how human activity affects them * integrate accessible community development and application with JIT-compilation, cloud computing, game-oriented interfaces, and crowd-sourced problem-solving We outline accessible near-term objectives toward these goals, and describe attempts to incorporate these design objectives in recent pilot activities using atmosphere-land-ocean-biosphere-human models (WRF-Chem, IBIS, UrbanSim) at urban and regional scales for policy applications in climate, energy, and air quality.

  18. Validation of a finite element human model for prediction of rib fractures

    NARCIS (Netherlands)

    Mordaka, J.K.; Meijer, R.; Rooij, L. van; Zmijewska, A.

    2007-01-01

    In the past, several crash test dummies were developed in order to measure forces acting on the human body during different loading conditions. However, they are limited in their biofidelity and their application type (frontal, lateral etc.). Recently, several numerical human models were developed.

  19. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. © 2015 Wiley Periodicals, Inc.

  20. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    Science.gov (United States)

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.